-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompute_qa_sig.py
115 lines (89 loc) · 4.77 KB
/
compute_qa_sig.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import argparse
import numpy as np
import pandas as pd
from statsmodels.stats.contingency_tables import mcnemar
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, Trainer, DefaultDataCollator
from utils import seed_everything
from benchmark_qa import get_ds, prepare_validation_features, postprocess_qa_predictions, get_training_args
def evaluate_model(model, tokenizer, dataset):
training_args, data_args = get_training_args("mcnemar-test", push_to_hub=False)
# Convert the dataset into a format suitable for the model
features = dataset.map(lambda x: prepare_validation_features(x, tokenizer, data_args), batched=True, remove_columns=dataset.column_names)
# Use the model to make predictions
trainer = Trainer(
model=model,
args=training_args,
tokenizer=tokenizer,
data_collator=DefaultDataCollator(),
)
raw_predictions = trainer.predict(features)
features.set_format(type=features.format["type"], columns=list(features.features.keys()))
# Postprocess the predictions
predictions = postprocess_qa_predictions(dataset, features, raw_predictions.predictions, tokenizer, data_args)
# Create a dictionary of references keyed by ID
references = {ex["id"]: ex["answers"]["text"][0] for ex in dataset}
# Compare the predictions to the ground truth using IDs
results = [int(predictions[pred_id] == references[pred_id]) for pred_id in tqdm(predictions, total=len(predictions), desc="Evaluating")]
return results
def main(args):
# Load the models
model_1 = AutoModelForQuestionAnswering.from_pretrained(args.original_model)
model_2 = AutoModelForQuestionAnswering.from_pretrained(args.model)
# Load the corresponding tokenizer
tokenizer_1 = AutoTokenizer.from_pretrained(args.original_model)
tokenizer_2 = AutoTokenizer.from_pretrained(args.model)
# Load the test dataset
_, _, test_dataset = get_ds(return_hf=True)
# Evaluate the models
results_model_1 = evaluate_model(model_1, tokenizer_1, test_dataset)
results_model_2 = evaluate_model(model_2, tokenizer_2, test_dataset)
# Compute McNemar's test
# The input should be a 2x2 contingency table
table = pd.crosstab(results_model_1, results_model_2)
result = mcnemar(table, exact=True)
return result.pvalue, result.statistic
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, required=False, help="Path to the model")
parser.add_argument("--original-model", type=str, required=False, default="parinzee/claq-qa-th-wangchanberta-original", help="Path to the original model")
parser.add_argument("--all-best-models", action="store_true", help="Evaluate all best models (must have results in results/mrc_cosine_distance.csv)")
parser.add_argument("--seed", type=int, default=42, help="Random seed")
args = parser.parse_args()
seed_everything(args.seed)
if args.all_best_models:
# First find the best models
data = pd.read_csv("results/mrc_cosine_distance.csv")
# Function to extract the augmentation type from the name
def get_augmentation_type(name):
if name == "original":
return "original"
return name.rsplit("_", 2)[0]
# Function to extract the augmentation ratio from the name
def get_augment_ratio(name):
if name == "original":
return "N/A" # Not applicable for the original model
return name.rsplit("_", 1)[-1]
# Apply the function to create a new column with the augmentation type
data['augmentation_type'] = data['Name'].apply(get_augmentation_type)
# Find the best performing model for each augmentation type based on the "test_exact_match" metric
best_models = data.loc[data.groupby('augmentation_type')['test_exact_match'].idxmax()]
# Resetting the index
best_models.reset_index(drop=True, inplace=True)
# Apply the functions to create the new columns
best_models['augment_ratio'] = best_models['Name'].apply(get_augment_ratio)
for row in best_models.itertuples():
print(f"Augmentation type: {row.augmentation_type}")
print(f"Augmentation ratio: {row.augment_ratio}")
print(f"Model: {row.Name}")
args.model = f"parinzee/claq-qa-th-wangchanberta-{row.Name}"
p_value, statistic = main(args)
print(f"p-value: {p_value}")
print(f"statistic: {statistic}")
print("---")
else:
# Assert that the model path is provided
assert args.model is not None, "Please provide the path to the model"
p_value, statistic = main(args)
print(f"p-value: {p_value}")
print(f"statistic: {statistic}")