-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathmain.py
298 lines (242 loc) · 12.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import pickle
import time
import argparse
import torch.nn as nn
from torch.nn.utils.rnn import pack_padded_sequence
from torchvision import transforms
from model import EncoderCNN, AttnDecoderRNN
from data_loader import get_loader
from nltk.translate.bleu_score import corpus_bleu
from utils import *
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
parser = argparse.ArgumentParser()
parser.add_argument('--data_name', type=str, default='coco_5_cap_per_img_5_min_word_freq')
parser.add_argument('--model_path', type=str, default='models/' , help='path for saving trained models')
parser.add_argument('--crop_size', type=int, default=224 , help='size for randomly cropping images')
parser.add_argument('--vocab_path', type=str, default='data/vocab.pkl', help='path for vocabulary wrapper')
parser.add_argument('--image_dir', type=str, default='data/resized2014', help='directory for resized images')
parser.add_argument('--image_dir_val', type=str, default='data/val2014_resized', help='directory for resized images')
parser.add_argument('--caption_path', type=str, default='data/annotations/captions_train2014.json', help='path for train annotation json file')
parser.add_argument('--caption_path_val', type=str, default='data/annotations/captions_val2014.json', help='path for val annotation json file')
parser.add_argument('--log_step', type=int , default=100, help='step size for prining log info')
parser.add_argument('--save_step', type=int , default=1000, help='step size for saving trained models')
# Model parameters
parser.add_argument('--embed_dim', type=int , default=512, help='dimension of word embedding vectors')
parser.add_argument('--attention_dim', type=int , default=512, help='dimension of attention linear layers')
parser.add_argument('--decoder_dim', type=int , default=512, help='dimension of decoder rnn')
parser.add_argument('--dropout', type=float , default=0.5)
parser.add_argument('--start_epoch', type=int, default=0)
parser.add_argument('--epochs', type=int, default=120)
parser.add_argument('--epochs_since_improvement', type=int, default=0)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--num_workers', type=int, default=1)
parser.add_argument('--encoder_lr', type=float, default=1e-4)
parser.add_argument('--decoder_lr', type=float, default=4e-4)
parser.add_argument('--checkpoint', type=str, default='ckpt/BEST_checkpoint_coco_5_cap_per_img_5_min_word_freq.pth.tar' , help='path for checkpoints')
parser.add_argument('--grad_clip', type=float, default=5.)
parser.add_argument('--alpha_c', type=float, default=1.)
parser.add_argument('--best_bleu4', type=float, default=0.)
parser.add_argument('--fine_tune_encoder', type=bool, default='False' , help='fine-tune encoder')
args = parser.parse_args()
print(args)
def main(args):
global best_bleu4, epochs_since_improvement, checkpoint, start_epoch, fine_tune_encoder, data_name, word_map
# Load vocabulary wrapper
with open(args.vocab_path, 'rb') as f:
vocab = pickle.load(f)
if args.checkpoint is None:
decoder = AttnDecoderRNN(attention_dim=args.attention_dim,
embed_dim=args.embed_dim,
decoder_dim=args.decoder_dim,
vocab_size=len(vocab),
dropout=args.dropout)
decoder_optimizer = torch.optim.Adam(params=filter(lambda p: p.requires_grad, decoder.parameters()),lr=args.decoder_lr)
encoder = EncoderCNN()
encoder.fine_tune(args.fine_tune_encoder)
encoder_optimizer = torch.optim.Adam(params=filter(lambda p: p.requires_grad, encoder.parameters()),
lr=args.encoder_lr) if args.fine_tune_encoder else None
else:
checkpoint = torch.load(args.checkpoint)
start_epoch = checkpoint['epoch'] + 1
epochs_since_improvement = checkpoint['epochs_since_improvement']
best_bleu4 = checkpoint['bleu-4']
decoder = checkpoint['decoder']
decoder_optimizer = checkpoint['decoder_optimizer']
encoder = checkpoint['encoder']
encoder_optimizer = checkpoint['encoder_optimizer']
if fine_tune_encoder is True and encoder_optimizer is None:
encoder.fine_tune(fine_tune_encoder)
encoder_optimizer = torch.optim.Adam(params=filter(lambda p: p.requires_grad, encoder.parameters()),
lr=args.encoder_lr)
decoder = decoder.to(device)
encoder = encoder.to(device)
criterion = nn.CrossEntropyLoss().to(device)
# Image preprocessing, normalization for the pretrained resnet
transform = transforms.Compose([
transforms.RandomCrop(args.crop_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
# Build data loader
train_loader = get_loader(args.image_dir, args.caption_path, vocab,
transform, args.batch_size,
shuffle=True, num_workers=args.num_workers)
val_loader = get_loader(args.image_dir_val, args.caption_path_val, vocab,
transform, args.batch_size,
shuffle=True, num_workers=args.num_workers)
for epoch in range(args.start_epoch, args.epochs):
if args.epochs_since_improvement == 20:
break
if args.epochs_since_improvement > 0 and args.epochs_since_improvement % 8 == 0:
adjust_learning_rate(decoder_optimizer, 0.8)
if args.fine_tune_encoder:
adjust_learning_rate(encoder_optimizer, 0.8)
train(train_loader=train_loader,
encoder=encoder,
decoder=decoder,
criterion=criterion,
encoder_optimizer=encoder_optimizer,
decoder_optimizer=decoder_optimizer,
epoch=epoch)
recent_bleu4 = validate(val_loader=val_loader,
encoder=encoder,
decoder=decoder,
criterion=criterion)
is_best = recent_bleu4 > best_bleu4
best_bleu4 = max(recent_bleu4, best_bleu4)
if not is_best:
args.epochs_since_improvement +=1
print ("\nEpoch since last improvement: %d\n" %(args.epochs_since_improvement,))
else:
args.epochs_since_improvement = 0
save_checkpoint(args.data_name, epoch, args.epochs_since_improvement, encoder, decoder, encoder_optimizer, decoder_optimizer,
recent_bleu4, is_best)
def train(train_loader, encoder, decoder, criterion, encoder_optimizer, decoder_optimizer, epoch):
decoder.train()
encoder.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top5accs = AverageMeter()
start = time.time()
for i, (imgs, caps, caplens) in enumerate(train_loader):
data_time.update(time.time() - start)
# Move to GPU, if available
imgs = imgs.to(device)
caps = caps.to(device)
imgs = encoder(imgs)
# scores, caps_sorted, decode_lengths, alphas, sort_ind = decoder(imgs, caps, caplens)
scores, caps_sorted, decode_lengths, alphas = decoder(imgs, caps, caplens)
scores, _ = pack_padded_sequence(scores, decode_lengths, batch_first=True)
targets = caps_sorted[:, 1:]
targets, _ = pack_padded_sequence(targets, decode_lengths, batch_first=True)
loss = criterion(scores, targets)
loss += args.alpha_c * ((1. - alphas.sum(dim=1)) ** 2).mean()
decoder_optimizer.zero_grad()
if encoder_optimizer is not None:
encoder_optimizer.zero_grad()
loss.backward()
if args.grad_clip is not None:
clip_gradient(decoder_optimizer, args.grad_clip)
if encoder_optimizer is not None:
clip_gradient(encoder_optimizer, args.grad_clip)
decoder_optimizer.step()
if encoder_optimizer is not None:
encoder_optimizer.step()
top5 = accuracy(scores, targets, 5)
losses.update(loss.item(), sum(decode_lengths))
top5accs.update(top5, sum(decode_lengths))
batch_time.update(time.time() - start)
start = time.time()
# Print status
if i % args.log_step == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data Load Time {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Top-5 Accuracy {top5.val:.3f} ({top5.avg:.3f})'.format(epoch, i, len(train_loader),
batch_time=batch_time,
data_time=data_time, loss=losses,
top5=top5accs))
def validate(val_loader, encoder, decoder, criterion):
"""
Performs one epoch's validation.
:param val_loader: DataLoader for validation data.
:param encoder: encoder model
:param decoder: decoder model
:param criterion: loss layer
:return: BLEU-4 score
"""
decoder.eval() # eval mode (no dropout or batchnorm)
if encoder is not None:
encoder.eval()
batch_time = AverageMeter()
losses = AverageMeter()
top5accs = AverageMeter()
start = time.time()
references = list() # references (true captions) for calculating BLEU-4 score
hypotheses = list() # hypotheses (predictions)
# Batches
for i, (imgs, caps, caplens, allcaps) in enumerate(val_loader):
# Move to device, if available
imgs = imgs.to(device)
caps = caps.to(device)
# Forward prop.
if encoder is not None:
imgs = encoder(imgs)
scores, caps_sorted, decode_lengths, alphas = decoder(imgs, caps, caplens)
# Since we decoded starting with <start>, the targets are all words after <start>, up to <end>
targets = caps_sorted[:, 1:]
# Remove timesteps that we didn't decode at, or are pads
# pack_padded_sequence is an easy trick to do this
scores_copy = scores.clone()
scores, _ = pack_padded_sequence(scores, decode_lengths, batch_first=True)
targets, _ = pack_padded_sequence(targets, decode_lengths, batch_first=True)
# Calculate loss
loss = criterion(scores, targets)
# Add doubly stochastic attention regularization
loss += args.alpha_c * ((1. - alphas.sum(dim=1)) ** 2).mean()
# Keep track of metrics
losses.update(loss.item(), sum(decode_lengths))
top5 = accuracy(scores, targets, 5)
top5accs.update(top5, sum(decode_lengths))
batch_time.update(time.time() - start)
start = time.time()
if i % args.log_step == 0:
print('Validation: [{0}/{1}]\t'
'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Top-5 Accuracy {top5.val:.3f} ({top5.avg:.3f})\t'.format(i, len(val_loader), batch_time=batch_time,
loss=losses, top5=top5accs))
# Store references (true captions), and hypothesis (prediction) for each image
# If for n images, we have n hypotheses, and references a, b, c... for each image, we need -
# references = [[ref1a, ref1b, ref1c], [ref2a, ref2b], ...], hypotheses = [hyp1, hyp2, ...]
# References
# allcaps = allcaps[sort_ind] # because images were sorted in the decoder
for j in range(allcaps.shape[0]):
img_caps = allcaps[j].tolist()
img_captions = list(
map(lambda c: [w for w in c if w not in {word_map['<start>'], word_map['<pad>']}],
img_caps)) # remove <start> and pads
references.append(img_captions)
# Hypotheses
_, preds = torch.max(scores_copy, dim=2)
preds = preds.tolist()
temp_preds = list()
for j, p in enumerate(preds):
temp_preds.append(preds[j][:decode_lengths[j]]) # remove pads
preds = temp_preds
hypotheses.extend(preds)
assert len(references) == len(hypotheses)
# Calculate BLEU-4 scores
bleu4 = corpus_bleu(references, hypotheses, emulate_multibleu=True)
print(
'\n * LOSS - {loss.avg:.3f}, TOP-5 ACCURACY - {top5.avg:.3f}, BLEU-4 - {bleu}\n'.format(
loss=losses,
top5=top5accs,
bleu=bleu4))
return bleu4
if __name__ == '__main__':
main(args)