-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain.py
192 lines (160 loc) · 6.93 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import LambdaLR
from modules import ParrotDataset, Parrot, ModelLoss
from lightning.pytorch.callbacks import ModelCheckpoint
from lightning.pytorch import loggers as pl_loggers
import lightning as L
import yaml
import argparse
from pathlib import Path
import math
def get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps: int,
num_training_steps: int,
num_cycles: float = 0.5,
last_epoch: int = -1,
):
"""
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
initial lr set in the optimizer.
Args:
optimizer (:class:`~torch.optim.Optimizer`):
The optimizer for which to schedule the learning rate.
num_warmup_steps (:obj:`int`):
The number of steps for the warmup phase.
num_training_steps (:obj:`int`):
The total number of training steps.
num_cycles (:obj:`float`, `optional`, defaults to 0.5):
The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
following a half-cosine).
last_epoch (:obj:`int`, `optional`, defaults to -1):
The index of the last epoch when resuming training.
Return:
:obj:`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(
max(1, num_training_steps - num_warmup_steps)
)
return max(
0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
class LitParrot(L.LightningModule):
# define model architecture
def __init__(
self, data_config, src_vocab_size, src_pad_idx
):
super().__init__()
self.save_hyperparameters()
self.train_config = data_config
self.parrot = Parrot(data_config, src_vocab_size, src_pad_idx)
self.loss_fn = ModelLoss(data_config)
# forward defines the prediction/inference actions
def forward(self, batch, inference=False):
return self.parrot(batch, inference=inference)
# Training logic, calculate loss, and send logs to tensorboard and return loss
def training_step(self, batch, batch_idx):
out, _, _, log_dur_preds = self.parrot(batch)
total_loss, code_loss, dur_loss = self.loss_fn(out, log_dur_preds, batch)
self.log("train_total_loss", total_loss, prog_bar=True)
self.log("train_code_loss", code_loss, prog_bar=True)
self.log("train_dur_loss", dur_loss, prog_bar=True)
self.log("lr", self.trainer.optimizers[0].param_groups[0]['lr'], prog_bar=False, rank_zero_only=True)
# Clear GPU cache after every training step (if needed)
torch.cuda.empty_cache()
return total_loss
# Validation logic, calculate loss, and send logs to tensorboard and return loss
def validation_step(self, batch, batch_idx):
out, _, _, log_dur_preds = self.parrot(batch)
total_loss, code_loss, dur_loss = self.loss_fn(out, log_dur_preds, batch)
self.log("val_total_loss", total_loss, prog_bar=True, sync_dist=True)
self.log("val_code_loss", code_loss, prog_bar=True, sync_dist=True)
self.log("val_dur_loss", dur_loss, prog_bar=True, sync_dist=True)
return total_loss
# define optimizers and schedulers
def configure_optimizers(self):
optimizer = torch.optim.AdamW(
self.parrot.parameters(),
lr=self.train_config["optimizer"]["init_lr"],
weight_decay=self.train_config["optimizer"]["weight_decay"]
)
scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=self.train_config["train"]["warmup_steps"],
num_training_steps=self.train_config["train"]["total_steps"]
)
return [optimizer], [{"scheduler": scheduler, "interval": "step", "frequency": 1}]
def infer(self, batch):
self.eval()
res = self.parrot.infer(batch)
return res
def main(args):
data_config = yaml.load(open(args.config, "r"), Loader=yaml.FullLoader)
# setup datasets
train_dataset = ParrotDataset("train", data_config=data_config)
train_loader = DataLoader(
train_dataset,
batch_size=data_config["train"]["batch_size"],
shuffle=True,
collate_fn=train_dataset.collate_fn,
num_workers=4,
)
val_dataset = ParrotDataset("val", data_config=data_config)
val_loader = DataLoader(
val_dataset,
batch_size=data_config["train"]["batch_size"],
collate_fn=val_dataset.collate_fn,
num_workers=4,
)
src_vocab_size = train_dataset.src_vocab_size
src_pad_idx = train_dataset.src_pad_idx
# Init the lightning module
lit_parrot = LitParrot(data_config ,src_vocab_size, src_pad_idx)
# set up some model callbacks
checkpoint_callback = ModelCheckpoint(
save_top_k=-1,
monitor="val_total_loss",
filename="parrot_model-{step}-{val_total_loss_step:.2f}",
mode="min",
dirpath=data_config["path"]["root_path"]+"/ckpt",
every_n_train_steps=data_config["train"]["save_every"],
)
log_path = Path(data_config["path"]["root_path"]) / "logs"
tb_logger = pl_loggers.TensorBoardLogger(save_dir=log_path / "tensorboard_logs")
csv_logger = pl_loggers.CSVLogger(save_dir=log_path / "csv_logs")
# automates all the hardware engineering
trainer = L.Trainer(
accelerator="gpu",
strategy="auto",
devices=args.num_gpus,
callbacks=[checkpoint_callback],
max_steps=data_config["train"]["total_steps"],
val_check_interval=data_config["train"]["val_every"],
check_val_every_n_epoch=None,
log_every_n_steps=data_config["train"]["log_every"],
accumulate_grad_batches=data_config["train"]["grad_acc_steps"],
gradient_clip_val=data_config["train"]["grad_clip"],
deterministic=True,
default_root_dir=data_config["path"]["log_path"],
logger=[tb_logger, csv_logger],
)
# Clear GPU cache before starting training
torch.cuda.empty_cache()
# add pytorch dataloader
trainer.fit(
model=lit_parrot, train_dataloaders=train_loader, val_dataloaders=val_loader
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str)
parser.add_argument("--checkpoint_pth", type=str, default=None)
parser.add_argument("--num_gpus", type=int, default=2)
args = parser.parse_args()
L.seed_everything(42, workers=True)
main(args)