diff --git a/examples/mnist.ipynb b/examples/mnist.ipynb index ce860a2..96111a0 100644 --- a/examples/mnist.ipynb +++ b/examples/mnist.ipynb @@ -22,11 +22,15 @@ "source": [ "%matplotlib inline\n", "\n", + "import os\n", + "os.environ[\"MPP_GPU\"] = \"0\" # Disable GPU\n", + "\n", "import matplotlib.pyplot as plt\n", "import matplotlib as mpl\n", "import micrograd_pp as mpp\n", - "import numpy as np\n", - "from tqdm import trange\n", + "from tqdm.notebook import trange\n", + "\n", + "np = mpp.numpy # `import numpy as np` will not work when using GPU\n", "\n", "mpl.style.use(\"fivethirtyeight\")\n", "plt.rcParams[\"lines.linewidth\"] = 2" @@ -59,7 +63,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6IAAAPTCAYAAACqhrTjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACdIElEQVR4nOzdd3hU1fr28TsQegst9N5BOiodVEAFIYLSiyAHFTxYKHIQVH6iUgSlSrGLVAEJiDSlKuIR6b33Im0ITUIg7x+8zHGyNskQZtakfD/X5XVl3Vmz5xGySZ7s2c8EuVyuaAEAAAAAYEmKQBcAAAAAAEheaEQBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAHARw4fPqyQkBCFhIQEuhTcJ3/9XTZp0kQhISGaOnWqT4/rD2vWrFFISIjKly8f6FIAAElQcKALAICErEmTJvr111/j3OdyufxfjINPPvlEFy9eVLt27VSoUKF7fvzVq1e1atUqLV26VL///rsOHz6sGzduKGfOnKpWrZqef/551atXz/Gxhw8fVsWKFWM9fmhoqPbs2XNPNR0+fFjTpk1TlixZ1KNHj3t6LAAASBxoRAHAC/nz51f+/Plj3ZMqVSqVKFHCUkW3TZgwQUePHlXt2rXj1Yi+9tprmjVrliQpTZo0KlasmIKCgnTgwAGFh4crPDxcL7zwgoYPHx7rcapXr+6YZ82a9Z5rOnLkiIYNG6YCBQoErBH1199l/vz5VaJECWXOnNnnx/a19OnTq0SJEsqTJ0+gSwEAJEE0ogDghfbt26t///6x7smbN6/++OMPSxX5TqNGjfT888+rfv36Sps2rSTpypUrGjx4sCZOnKjJkyerXLlyeu655+56jMWLF9sq1wp//V1OmjTJ58f0l6pVqybKr2cAQOJAIwoAydjQoUOVLVs2I8+QIYOGDh2q3bt3a8WKFfr8889jbUQBAADuBcOKAMBHYhtw888hNcePH9drr72m8uXLK2fOnGrXrp1736FDh/T666+rSpUqyp07t/Lmzavy5csrLCxMI0eO1JUrVyRJU6dOVUhIiI4ePSpJatq0qfu5Q0JC1L17d69qdmpC/6lBgwaSdM/3ecZXkyZN1LRpU0nS0aNHPf6fQkJCtGbNGknmn/WSJUvUvHlzFS1aVCEhIfrhhx8kSZcvX9bMmTPVtWtXPfTQQypYsKBy586tqlWrqk+fPjp8+LBjHd7+XV64cEH/+c9/VL58eYWGhqpMmTJ65ZVXdPr06bv+/zkNK7rz99mkSRP3+rHHHlO+fPlUoEABPfXUU1qxYsVd/9xu3bqlL774QnXr1lWePHlUtGhRtWrVSuvWrYv34KXYhhWVL1/e/fexd+9e/etf/1LJkiWVJ08e1apVS9OmTXPvjYiI0LvvvqsqVaooV65cKleunN566y1dvXrV8XnXrl2rt956S48++qhKlSqlnDlzqkSJEmrVqlWcV95Pnz6tXr16qVy5csqVK5fKly+v//znP3K5XBoyZEis58b169c1efJkPfnkkypcuLBCQ0NVvnx59ezZUwcOHHB8TGRkpCZMmKCGDRuqYMGCypkzp0qWLKm6deuqb9++2rRpU6z1AkByxhVRALDowIEDeuuttxQREaFSpUopc+bMCg6+/U/x1q1b1aRJE0VERCht2rQqXLiw0qZNq5MnT2rNmjVatWqVu9kKDQ1V9erVtXHjRl2/fl1ly5b1uO+wePHiPqn3+vXrkqR06dLFuq9fv37as2ePgoKClC9fPtWvX1/NmjVTqlSp7un5ypYtqwsXLmjHjh1KkyaNKleu7PF5p3srx44dq7feekvZsmVT4cKFlT59evfnfvnlF7344osKDg5WaGioihYtqqtXr+ro0aP67LPP9N1332nevHnG83jjxIkTqlOnjk6dOqWSJUsqTZo0OnDggL755hutXr1aq1atUpYsWe75uP/+97/17bffKn/+/CpWrJj279+vX375RWvXrtWUKVPczeod0dHR+te//qW5c+dKun0fas6cObVu3To1adJEgwcPvucavLVp0yYNGzZM0u2vuRMnTmj79u3q0aOHLly4oLZt26px48bau3evSpcurTx58ujw4cMaO3asdu/e7b4/+Z86dOig8+fPK2vWrMqdO7dy586t48ePa+nSpVq6dKn69OmjgQMHGo87cOCAmjRpopMnTyplypQqXbq0oqOjNXnyZC1dulSNGjW66//HqVOn1KpVK23ZskVBQUHKmzev8ufPrwMHDmjKlCn6/vvvNXXqVI/BXTdv3tSzzz6r1atXS5IKFiyo4sWL6/z589qzZ4+2bNmiLFmyqFKlSvf5pwwASRONKABYNGrUKNWvX18TJkxQaGioJOnatWuSbr9MNiIiQq1atdKIESM8mq6zZ8/q+++/V6ZMmSRJDRs2VMOGDVW+fHkdPXpUw4YNU506dXxa661btzRnzhxJUo0aNWLdG/PexylTpqhYsWL65ptvVK5cOa+f88MPP9SaNWvUtGlThYaGenXv6bvvvqshQ4bohRdeUMqUKSVJf//9tySpWLFi+vrrr/XYY48pY8aM7sdcunRJY8aM0YcffqgePXpo7dq1CgoK8rpOSRo+fLjq1Kmjn376Sblz55Z0uzFr2bKlDh06pPHjx+vNN9+8p2P+97//1c6dO/X999/rkUcekXT7ft1u3brpxx9/VP/+/dW4cWOPWr/44gvNnTtXadOm1aRJkxQWFibp9i8RBg0apHfeeeeeargX7777rjp27Kj33nvP/QuADz74QMOHD9fQoUP1888/K0uWLNqyZYvy5csnSfrpp5/Upk0bLV26VKtWrTKmMg8aNEh169ZV4cKFPfKVK1eqW7duGjFihJ588klVrVrV4/MvvPCCTp48qUqVKumbb75RwYIFJd1uUDt06KDPP//c8f/h1q1b6tSpk7Zs2aJ69epp5MiR7l/kREZGasiQIfr444/VpUsXrV+/3v0qgsWLF2v16tXKly+fZs6cqQceeMB9zKioKK1YseKev6YAIDnhpbkA4IVhw4YZLxO989+dl4F6I1u2bPrqq6/cTaj0v6uNd17+2rNnT+PKX44cOdStWzflzJnTB/833hk/fry2b9+uoKAg9erVy/h8cHCwnnrqKU2ZMkWbNm3S6dOntXfvXk2ePFkFCxbU/v371bx5c504ccKvdXbs2FHdu3d3N6GS3EOXSpQoobCwMI8mVJIyZcqkAQMGqHr16tq5c6c2bNhwz8+bOXNmffHFF+4mVJIqVaqkV155RVL8BjjduHFDQ4YMcTeh0u37dT/66COlSpVKR44c0fbt292fi46O1ujRoyVJ/fv3dzeh0u0pyEOGDFG1atXuuQ5vlShRQiNGjPC4Cv3GG28oT548unTpktauXavPPvvM3YRKt1/ufeeqrtOfUadOnYwmVJLq16+vt956S5I8Xvor3X4Z8fr165UmTRpNmTLF3YRKUtGiRfX111/r1q1bjv8P4eHh+u9//6uiRYtq6tSpHq8mSJ06td555x098cQTOn/+vL7++mv35+6cr82aNfNoQqXb50bDhg3dL20HAJi4IgoAXojt7Vvius/yn8LCwtxXNZ2eY+/evfruu+9UtmxZj8bKtuXLl2vQoEGSpF69ejk2M/ny5dO3337rkeXMmVOtWrXSI488okceeUTHjh3T8OHDNWrUKL/V2qFDh1g/f/PmTS1evFgrV67U4cOHdenSJUVHR0uS9u/fL0navHmzcYUtLs8++6zjfZcPP/ywJOngwYP3dDzpdnPbqlUrI8+dO7cKFSqkffv26cCBA+7GZ8+ePTpy5Iiku/85dOjQQb/99ts91+KNjh07KkUKz99pBwcHq1y5cjp58qQee+wxFShQwHhc5cqVFR4eftc/o127dmnevHnavn27Lly4oKioKEm37zeVbv99/dNPP/0k6Xaz6vR8JUqUUPXq1R3fE3jevHmSpJYtWxq/sLijWbNm7iugr7/+uiS5/z1YsWKFTp8+rVy5cjk+FgDgjEYUALzgzdu3eKNUqVJ3/VzPnj21cuVKjRkzRjNnztSjjz6qBx98UDVq1FCZMmXu+7m99ccff6hTp066efOmnnnmGQ0YMOCej5EzZ069/vrr6t27txYsWKCPP/7Yby9TjO3P9J/3/sXm/Pnz9/y8d7sP987V7suXL9/zMe+8j6uTnDlzat++fe6BVZK0d+9eSbffbiZ79uyOj4t5tc6XihYt6pjnyJHDq8//8//ljkGDBmn06NHuXxY4ifn3defPwWmw0h0PPPCAYyO6bds2SdLcuXO1atUqx8devHhRkjyu7jdp0kTFihXTrl27VL58edWuXVs1atTQQw89pIcffth9VR4A4IxGFAAs+udLGGN69NFHFR4ero8++ki//vqrpk+frunTp0u63WwNHDjQPVHWXzZt2qRnnnlGly9fVtOmTTVp0iTjipe37lwZPHfunFwul7JmzerLUt0yZMhw18+9/PLL2rJliwoXLqy33npLDz30kEJDQ5UmTRpJ0osvvqiZM2fqxo0b9/y8d/u7vNNIxtZI3esxJbn/Hv75EtM7jdzdruRJuusVeF+I688grs/HfLnsnDlzNGrUKKVIkUJvvPGGmjZtqkKFCilDhgxKkSKFVq1apbCwMOPv637+HFwul6TbzeydhvZu/jnpN3369Fq0aJE+/PBDzZ07V8uXL9fy5cvdz/Xcc8/pzTffjPXvFACSMxpRAEhA6tatq7p16+rq1av6448/tHbtWs2fP187d+5Up06dNHv2bD322GN+ee6tW7eqefPmioiIUOPGjfXFF1+4J/rGR+rUqd0fx6fRu1+nT5/Wzz//LEmaMWOGSpcubey5cOGC7bJ86k4THtvV10uXLtkq577duffz3//+t+MrEO7293U/fw4ZMmTQuXPnNHXqVGMicVxCQ0P14Ycfavjw4dq1a5d+++03LVu2TEuXLtW4ceN06tQpffbZZ/d0TABILhhWBAAJUPr06VWvXj31799fa9euVbNmzRQdHW1M/vTVy1137Nihp59+WhcuXNDjjz+ur7766p7fesXpmNLtYUx3e9moE1/9P915j9CsWbM6NqFRUVHxGlKUkJQoUULS7ZeMnjt3znHPnZeeJgZ3/s7uNqX5999/d8zv/Dls3br1rse+259D2bJlYz22N4KCglSmTBk9//zzmj59uqZMmSJJmj17tvuKKwDAE40oACRwQUFBql69uqTb9zz+052X/d15u5L42L17t8LCwnTu3Dk1atRIU6ZM8biaGR9RUVEaN26cpNtXee9l8JIv/p+k/00jvnTpkuO9iNOmTdPZs2fv6zkCrWTJku4JsTEHR91xtzwhuvN3FvPrXJLOnDnjfql6THdeJbBy5UodPXrU+Py+ffu0bt06x8c2b95ckvTNN984Pm981KxZ0/2xr44JAEkNjSgAJBDPPfec5s+f73EfmnR7+uqdt42oUqWKx+eKFCkiSVq9enW8nvPAgQN6+umndebMGTVs2PCemtBXXnlF4eHhRsN45MgRtW/fXuvXr1dwcLD69et3TzUVKVJEQUFBOnPmjHbu3HlPj/2nMmXKKHv27IqKilKfPn3c79cqSd9//7369euX6AfKBAUF6dVXX5UkDRkyRPPnz3d/7vr16+rfv7/Wr18fqPLuWa1atSRJI0eOdL89iiQdOnRIrVq1uusvJ+rUqaNq1arp+vXr6tSpk0czevDgQXXq1Omu9zo/++yzevDBB+VyudSsWTPHCcO7d+/W+++/r0WLFrmzcePGafTo0e6pxXdcvXpVQ4cOlSSFhIS4z1EAgCfuEQWABGLFihUKDw9XcHCwihQpoixZsujChQs6cOCAoqOjVaxYMaOpa9OmjRYtWqSxY8dqwYIFypMnj1KkSKEGDRq432YiNn369NHJkyclSWfPnvV4H8qYYr7n44YNG/TNN98oVapUKlKkiDJnzqyLFy9q3759io6OVvr06TV27FijeY5L1qxZ1ahRIy1ZskT16tVTmTJl3ENohgwZogoVKnh1nODgYA0aNEg9e/bU9OnTtXDhQhUtWlSnT592v7VI9uzZNWvWrHuqL6F5/vnn9euvv2ru3Lnq1KmT8ufPr9DQUPeE3XfffVcDBgyI99Apm1599VXNnTtXx44dU82aNVW8eHGlSJFCu3btUqZMmfTuu+/qjTfeMB4XFBSkyZMnq3Hjxtq4caMqVaqkMmXK6NatW9q1a5cKFSqk559/XpMmTTKuzqdMmVLTpk1Thw4d9Pvvv+vJJ59UaGioChQooBs3bujo0aPue1PHjx/vftyxY8c0ceJEvfPOO8qdO7fy5MmjyMhIHT58WJcvX1ZwcLBGjRrlHowFAPBEIwoACcTEiRO1YsUK/f777zp58qQOHjyo9OnTq3LlymrSpIlefPFFYypoWFiYxo0bp6+++kq7d+/W4cOHFR0d7X65ZlyuX7/u/njjxo33VG/v3r31008/afPmzTp9+rQOHDigdOnSqVy5cqpfv77+9a9/qXDhwvd0zDsmTZqk999/X8uWLdPOnTsVGRkp6X9vo+Gtjh07KmvWrBozZoy2bt2qvXv3qkiRIurRo4e6d++unj17xqu+hCQoKEifffaZatWqpS+//FL79u3T5cuX9eCDD6p3797u9zr15/RcX8mTJ49++uknvffee1q+fLn279+vXLlyqW3btnrjjTeMq4//VLRoUa1atUpDhw7V4sWLtWfPHoWGhqpr16568803NXLkSEnOfw45c+bUwoULNWfOHM2ePVubNm3Sli1blCVLFuXPn19NmjRR48aN9eijj7of07VrV+XIkUNr1qzRgQMHtGvXLt26dUt58+ZVWFiYevTooXLlyvn+DwkAkoggl8t17/PlAQBAojBv3jx17txZFSpUiPdLuJOCVq1aaenSpRo6dKheeumlQJcDAMlewn+dDgAAiLdvvvlGkucAneTmyJEjWrlypaTk/ecAAAkJjSgAAIncxx9/rC1btnhkFy9eVN++fbV8+XKlSpVKXbp0CVB1dhw8eFDjxo0z3sZm69atatOmjSIjI1WjRg2v7zEGAPgXL80FACCRq127trZt26bMmTOrUKFCunXrlvbu3avIyEilSJFCI0aM0PPPPx/oMv1qy5Ytqlu3roKCgpQnTx7lzp1bZ8+edd9Xmj9/fi1YsIAptgCQQNCIAgCQyM2ZM0dz587Vli1bdOHCBUVGRipnzpyqXr26unfvrmrVqgW6RL9zuVwaP368Vq5cqSNHjujChQvuic5PPPGEevTooWzZsgW6TADA/0cjCgAAAACwintEAQAAAABW0YgCAAAAAKyiEQUAAAAAWEUjCgAAAACwikYUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVtGIAgAAAACsohEFAAAAAFhFIwoAAAAAsIpGFAAAAABgFY0oAAAAAMCq4EAXkNCFhIR4ta9AgQLaunWrf4sBEoDjx49r8uTJWrx4sY4dO6aUKVOqUKFCeuqpp/Tiiy96fc4AScXbb7+tMWPGuNcLFixQnTp1AlgR4B8ul0sbN27Un3/+qQ0bNmjDhg06deqUJKlWrVpauHBhgCsE7Ll+/bqmTp2q8PBwbdu2TREREcqWLZvKli2rVq1aqXXr1kqRgmt+saERBeC1n376SV27dtXFixc98q1bt2rr1q36+uuvNW3aNFWqVCkwBQKWbd68WZ988kmgywCsqFu3ro4cORLoMoCA279/v9q1a6fdu3d75KdPn9bp06e1YsUKffPNN5o+fTq/oI8FjaiXunbtqq5du97186lTp7ZYDWDftm3b9Nxzz+nKlStKnz69Xn31VdWrV09RUVH68ccfNWnSJJ04cUKtW7fWypUrlSdPnkCXDPjVzZs39eqrryoqKko5c+bUmTNnAl0S4FfR0dHuj0NDQ1W5cmUtWbIkgBUB9p09e1ZhYWE6duyYJCksLExt2rRR3rx5dfr0ac2ePVuzZs3Sb7/9pnbt2mnBggVKmTJlgKtOmGhEvZQjRw6VLVs20GUAAdO/f39duXJFKVOm1HfffadatWq5P1e7dm1VrFhRL774ok6fPq333ntP48ePD2C1gP998skn2rRpk0qXLq0mTZpo5MiRgS4J8KsXXnhBBQsWVJUqVVSgQAFJ3t/CBCQVw4YNczeh/fr1U//+/T0+36hRI5UvX15vvfWW1q5dq6lTp6pTp06BKDXB44XLAOK0adMmrVmzRpLUrl07jyb0jtatW6tu3bqSpBkzZnB1CEnaoUOHNGTIEAUFBemjjz5ScDC/10XS17NnT4WFhbmbUCC5uXnzpmbNmiXp9nyYN954w3Ffz549Vbp0aUnSxx9/bK2+xIZGFECcFixY4P64Y8eOd93XoUMHSbf/oV60aJHf6wICpVevXrp69arat2+vmjVrBrocAIAF+/fvd8/JeOSRR2J9yW2DBg0kSQcPHtSWLVus1JfY0IgCiNNvv/0mSUqfPr2qVKly133/nBR65zFAUjNjxgwtX75c2bNn17vvvhvocgAAlpw/f979cWhoaKx7//n5tWvX+q2mxIxG1Evh4eGqXr268ubNq3z58qlSpUrq1q0bN+kjWbgzFa5o0aKxvgQxT548ypw5s8djgKTk3LlzGjBggCRp8ODBypYtW4ArAgDYkiFDBvfHMd9BIKZ/fp6fiZxxU4uXdu3a5bG+cuWKDh06pO+++0516tTR559/HudvRoDE6Pr16zp37pwkKV++fHHuz5s3ryIiInT8+HF/lwZY179/f507d061a9dWu3btAl0OAMCiokWLKlWqVLpx40acVzn/+fk7w43giSuicUifPr1atGih0aNH68cff9Tq1asVHh6uN998U3nz5pUkrVmzRk8//bQuXboU4GoB37t8+bL743/+JvBu7uy5cuWK32oCAuHnn3/WrFmzlDp1aoZPAEAylCFDBj3yyCOSpO3bt2v27NmO+xYvXuxxi9I/f5bC/3BFNA47duxwHE1er149vfTSS+rYsaNWrVqlHTt2aPjw4Ro8eLD9IgE/unbtmvvjVKlSxbn/znvq/vNxQGJ39epVvf7665Kk1157TSVKlAhwRQCAQOjfv79WrFihGzduqHv37jpw4IDxPqJDhgxRypQpFR0drVu3bvEz0V1wRTQOsb0/VubMmfX1118ra9askqQvv/xSkZGRlioD7EiXLp374xs3bsS5/8458M/HAYnd+++/ryNHjqhYsWLq1atXoMsBAARI5cqVNX78eKVOnVo3btzQBx98oAoVKihHjhwqV66c3nnnHUVGRmro0KGKjo6WJGXMmDHAVSdMNKL3KSQkRC1atJB0+7L7pk2bAlsQ4GP//MfTm5fb3tnjzct4gcRg48aNmjhxoiRp5MiRSps2bYArAgAEUqtWrbRixQq1aNHCPaRRkoKCglSrVi0tWLBAjRs3djeisV3YSs54aa4P3HnDWkk6ceJEACsBfC9NmjTKnj27zp0759UAojvngDeDjYDEYMyYMbp586ZKlSqlc+fOac6cOcaenTt3uj9evXq1/vrrL0nSY489xg8gAJAElStXTl988YVu3rypU6dO6e+//1bu3Lndv4hfunSpe+8/ewX8D42oDwQFBQW6BMCvSpUqpbVr1+rAgQOKioq661u4nDx5UhEREe7HAEnB9evXJd0ev9+1a9c493/44Yfuj1evXk0jCgBJWMqUKR1/+f7PYUXVqlWzWVKiwUtzfeCfb+2SO3fuAFYC+EeNGjUk3R7YsmHDhrvu++WXX4zHAAAAJCc3b950v3oma9as7km78EQjep9cLpf7Cy19+vSqXLlygCsCfK9p06buj6dMmXLXfd9++62k278dfPLJJ/1eF2DDtGnT5HK5Yv2vX79+7v0LFixw5xUqVAhg5QCAQPjqq6905MgRSVKnTp2UJk2aAFeUMNGIxmLRokWKioq66+cjIiLUuXNnXbhwQZLUsWNHvtCQJFWqVEl16tSRdPuHcqc3cZ41a5ZWrVolSWrTpo1y5sxptUYAAAAb7jSZTlasWKEBAwZIkvLnz6++ffvaKivR4R7RWLzxxhu6ceOGmjZtqgcffFCFChVSunTp5HK5tG7dOn311VfuwSwlS5ZU//79A1wx4D9DhgzR448/ritXrujZZ5/Va6+9pnr16ikqKko//vije6poaGioBg4cGOBqAQC+tmXLFm3dutXxc3/99ZemTp3qkTVo0EC5cuWyURpgVa1atVStWjU9/fTTKl26tNKkSaMjR47ohx9+0Hfffafo6Gj32zzy1i13F+RyuaIDXURCVb58eR09ejTOfXXr1tWkSZOUJ08eC1UBgfPTTz+pa9euunjxouPn8+bNq2nTpqlSpUp2CwMCbMiQIRo2bJik2y/NvfMKAiAp+efXuTc4F5BU5cuXL9a3tCtRooQmTZqkKlWqWKwq8eGKaCwmTJigX3/9VevXr9fBgwd1/vx5RUREKH369MqbN6+qVaumli1bql69eoEuFbCiQYMGWrt2rSZNmqQlS5bo2LFjSpkypQoWLKinnnpKL730EhNCAQBAkjZ27FgtX75cGzZs0KlTp3T58mVlz55dZcuWVVhYmFq3bs3tel7giigAAAAAwCqGFQEAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKuCvd3Im9QjNi6XK9AlWMF5gNgkh/OAcwCxSQ7ngMR5gNhxHgDenQdcEQUAAAAAWEUjCgAAAACwikYUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVtGIAgAAAACsohEFAAAAAFhFIwoAAAAAsCo40AUASFqqVq1qZP/+97+NrFOnTh7rb775xtgzduxYI9uwYcN9VAcAAICEgCuiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYxbCiGFKmTGlkWbJkiffxnIa0pE+f3mNdqlQpY8/LL79sZCNGjDCytm3bGtnff/9tZEOHDjWy//u//zMy4F5UqlTJyJYtW2ZkmTNnNrLo6GiPdceOHY09zZo1M7Ls2bPfQ4VA0vPYY48Z2dSpU42sXr16RrZ7926/1AT4ysCBA43M6eeVFCnMayn169c3slWrVvmkLgC+xxVRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVtGIAgAAAACsShLDigoWLGhkqVOnNrKaNWt6rGvXrm3sCQkJMbJnnnkm/sV54dixY0Y2ZswYI2vevLmRXbp0ycg2b95sZNysj/v10EMPGdmcOXOMzGm4V8zBRJL5tRsZGWnscRpMVL16dSPbsGGDkTkdDwlL3bp1jczp7/z777+3UU6i8eCDDxrZH3/8EYBKgPvXuXNnj3W/fv2MPbdu3fLqWE7fawAkXFwRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAqkQ3rKhSpUpGtnz5ciNzGpiSUMS86X7gwIHGnsuXLxvZ1KlTjezkyZNGduHCBSPbvXv3vZSIZCR9+vRGVqVKFSP79ttvjSxPnjzxft69e/d6rIcPH27smTFjhpH9+uuvRuZ0Dg0ZMiTetcGO+vXrG1mJEiWMLDkPK0qRwvx9cZEiRYysUKFCRhYUFOSXmgBfivm1mzZt2gBVAjh7+OGHjaxDhw5GVq9ePSMrV66cV8/Rp08fj/WJEyeMPU5DVp1+Nvv999+9es6EgCuiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYleiGFR05csTIzp07Z2T+HlbkdCOwy+UyskceecTIIiMjPdZTpkzxWV3AvZo0aZKRtW3b1u/PG3MgUsaMGY09q1atMjKnATcVKlTwWV2wp1OnTkb222+/BaCShMtpIFi3bt2MzGlgxa5du/xSExBfDRo0MLKePXvG+Tinr+WnnnrKyE6fPh2/woD/r3Xr1kY2evRoI8uRI4eROQ2IW7lypZHlzJnTyD788MM4a3M6vtOx2rRpE+exEgquiAIAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYFWiG1Z0/vx5I+vbt6+ROd3EvnHjRo/1mDFjvHrOTZs2GVnDhg2N7MqVK0ZWrlw5I3v11Ve9el7AH6pWreqxbtKkibHH6YZ4J07DhBYsWGBkI0aMMLITJ054rGOen5J04cIFI3v00UeNzNt6kbCkSMHvQuPy2WefebVv7969fq4EuDe1a9c2si+//NLIvBku6TTI5fDhw/ErDMlWcLDZ9lSrVs1j/emnnxp70qdPb2SrV682ssGDBxvZL7/8YmRp0qQxslmzZnmsGzVqZOxxsn79eq/2JVT8FAAAAAAAsIpGFAAAAABgFY0oAAAAAMAqGlEAAAAAgFWJbliRk3nz5hnZ8uXLjezSpUse64oVKxp7unbtamROg1acBhM52b59u5G98MILXj0WuF+VKlUysmXLlnmsM2fObOyJjo42skWLFhlZ27ZtjaxevXpGNnDgQCOLOYTlzJkzxp7Nmzcb2a1bt4zMaeBSlSpVjGzDhg1GBnsqVKjgsc6VK1eAKkk8vBnkIpnnNRBozz33nJHlzZs3zsetXLnSyL755htflIRkrkOHDkbmzUA4p39fW7dubWQRERFe1eH0WG+GEx07dszIvv76a6+eM6HiiigAAAAAwCoaUQAAAACAVTSiAAAAAACrksQ9ok68eZ32xYsXvTpWt27djGzmzJlG5nTvGmBLyZIljaxv375GFvOes7Nnzxp7Tp48aWRO9yFcvnzZyBYuXOhV5kvp0qUzst69extZ+/bt/VoHYte4cWOPtdPfW3LmdM9skSJFvHrs8ePHfV0O4LUcOXIY2fPPP29kTj8nuVwuj/V7773ns7qQfA0ePNjI3nzzTSOLORPjk08+MfY4zbnw9n5QJwMGDIjX41555RUjc5qvkZhwRRQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKuS7LAibwwaNMjIqlatamT16tUzsgYNGhjZ0qVLfVIXEJc0adIY2YgRI4ws5nAYSbp06ZLHulOnTsae9evXG1liGyxTsGDBQJeAGEqVKhXnnu3bt1uoJGFyOoedBhjt2bPHyGKe14C/FC5c2MjmzJkT7+ONHTvWY71ixYp4HwvJ09tvv21kToOJIiMjjWzJkiUe6379+hl7rl275lUdadOmNbJGjRoZmdPPJ0FBQR5rp6Fd4eHhXtWRmHBFFAAAAABgFY0oAAAAAMAqGlEAAAAAgFU0ogAAAAAAq5L1sKIrV64YWbdu3Yxsw4YNRvbpp58amdMN9k5DX8aPH++xjo6OjrVOIKbKlSsbmdNgIidhYWEe61WrVvmkJsAX/vjjj0CXcN8yZ85sZE888YSRdejQwWPtNNTCyeDBg43M5XJ5Vxxwn5y+litUqODVY3/++WcjGz169H3XhOQjJCTEyHr06GFkTj9bxxxMJElPP/10vOooXry4kU2dOtXInIagOpk9e7bHevjw4fGqK7HhiigAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFYl62FFTvbv329knTt3NrIvv/zSyDp27OhVliFDBo/1N998Y+w5efJkbGUimfvoo4+MLCgoyMicBhEl9uFEKVKYvz+7detWACqBP2TLls2nx6tYsaKRxTxXGjRoYOzJnz+/kaVOndrI2rdvb2ROX6PXrl0zst9//91jff36dWNPcLD5bfrPP/80MsAfnAa5DB061KvH/vLLL0b23HPPGdnFixfvuS4kX07/DufIkcOrx77yyitGFhoa6rHu0qWLsadZs2ZG9sADDxhZxowZjcxpaJJT9u2333qsnQaqJkVcEQUAAAAAWEUjCgAAAACwikYUAAAAAGAVjSgAAAAAwCqGFXnh+++/N7K9e/camdMAmccee8zIPvjgA491oUKFjD3vv/++kR0/fjzWOpE0PfXUU0ZWqVIlI3O6+X3+/Pn+KCmgnAYTOf2/b9q0yUI1uBcxB/Y4/b1NnDjRyN588814P2eFChWMLOawoqioKGPP1atXjWzHjh1G9sUXXxjZ+vXrjcxpSNjp06c91seOHTP2pEuXzsh27dplZMD9Kly4sJHNmTMn3sc7cOCAkcX8mgfuVWRkpJGdOXPGyHLmzGlkBw8eNDKn70PeOHHihJFFREQYWZ48eYzs7NmzRrZgwYJ41ZHYcUUUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACrGFYUT9u2bTOyVq1aGVnTpk2N7Msvv/RYv/jii8aeEiVKGFnDhg3vpUQkEU7DSlKnTm1kf/31l5HNnDnTLzX5Q5o0aYxs0KBBXj12+fLlRta/f//7LQk+1qNHD4/14cOHjT01a9b06XMeOXLEyObNm+ex3rlzp7Fn3bp1Pq3DyQsvvOCxdhqu4TTwBfCHfv36GZnTcDhvDR069H7KARy5XC4je/rpp43shx9+MLJs2bIZ2f79+z3W4eHhxp6vvvrKyM6fP29kM2bMMDKnYUVO+5IrrogCAAAAAKyiEQUAAAAAWEUjCgAAAACwikYUAAAAAGAVw4p8yOkG6ilTphjZZ5995rEODjb/GurWrWtk9evXN7KVK1d6XR+StuvXrxvZyZMnA1CJd2IOJxo4cKCxp2/fvkZ27NgxIxs5cqSRXb58+T6qgw3Dhg0LdAkB9dhjj8W5Z86cORYqQXJUqVIlj3WjRo3ifSynAS+7d++O9/GAe/H7778bmdPwN19y+jm9Xr16RuY08IshdP/DFVEAAAAAgFU0ogAAAAAAq2hEAQAAAABWcY9oPFWoUMHInn32WSN78MEHjczpntCYduzYYWSrV6/2sjokR/Pnzw90CXcV814kybz/s3Xr1sYep/uOnnnmGZ/VBSR033//faBLQBK1dOlSj3XWrFm9ety6deuMrHPnzr4oCUg00qVLZ2RO94NGR0cb2YwZM/xSU2LEFVEAAAAAgFU0ogAAAAAAq2hEAQAAAABW0YgCAAAAAKxiWFEMpUqVMrJ///vfRtaiRQsjy507d7ye8+bNm0Z28uRJI3O6CRpJX1BQkFfZ008/bWSvvvqqP0qK1euvv25kb731lpFlyZLFYz116lRjT6dOnXxXGADALXv27B5rb3/G+OSTT4zs8uXLPqkJSCyWLFkS6BKSBK6IAgAAAACsohEFAAAAAFhFIwoAAAAAsIpGFAAAAABgVbIaVhRzmFDbtm2NPU6DiQoXLuzTOtavX++xfv/994098+fP9+lzIvGKjo72KnMaljVmzBgj++KLLzzW586dM/ZUr17dyDp27GhkFStWNLL8+fMb2ZEjR4ws5o3+TgMwgOTEaQhZyZIljWzdunU2ykES8uWXXxpZihTxuxaxdu3a+y0HSPQef/zxQJeQJHBFFAAAAABgFY0oAAAAAMAqGlEAAAAAgFU0ogAAAAAAq5LEsKJcuXIZWdmyZY1s3LhxHuvSpUv7tI7ff//dyD788EMjCw8P91jfunXLp3UgeUqZMqWR9ejRw8ieeeYZj3VERISxp0SJEvGuw2mQxYoVK4zs7bffjvdzAEmR0xCy+A6UQfJVqVIlI2vQoIGRxfzZIzIy0tgzfvx4Izt9+nT8iwOSiKJFiwa6hCSB73AAAAAAAKtoRAEAAAAAVtGIAgAAAACsohEFAAAAAFiVoIcVZcuWzcgmTZpkZE435vvyJmKn4SsjR440siVLlhjZtWvXfFYHkqfffvvNyP744w8je/DBB706Xu7cuT3WTsO+nJw7d87IZsyYYWSvvvqqV8cDELcaNWoY2VdffWW/ECQaISEhRhbz330nx48fN7I+ffr4oiQgyVmzZo2ROQ2XYyBp7LgiCgAAAACwikYUAAAAAGAVjSgAAAAAwCoaUQAAAACAVQEZVvTwww8bWd++fY3soYceMrJ8+fL5rI6rV68a2ZgxY4zsgw8+MLIrV674rA4gNseOHTOyFi1aGNmLL75oZAMHDozXc44ePdrIJkyYYGT79u2L1/EBmIKCggJdAgDAC9u2bTOyvXv3GpnT8NRixYoZ2ZkzZ3xTWCLDFVEAAAAAgFU0ogAAAAAAq2hEAQAAAABW0YgCAAAAAKwKyLCi5s2be5V5a8eOHUb2ww8/GFlUVJTHeuTIkcYel8sV7zoAW06ePGlkgwYN8ioDkDAsWrTIY92yZcsAVYKkZNeuXUa2du1aI6tdu7aNcoBkw2m46WeffWZk77//vpH17NnTY+3U2yRFXBEFAAAAAFhFIwoAAAAAsIpGFAAAAABgVZDL5Yr2ZmNISIifS0FillzureU8QGySw3nAOYDYJIdzQOI8QOw4D5KnzJkzG9msWbOMrEGDBkY2d+5cj3WXLl2MPVeuXLmP6uzz5jzgiigAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFYFB7oAAAAAAEjMIiIijKxVq1ZG9v777xtZ9+7dPdaDBg0y9uzYsSP+xSVQXBEFAAAAAFhFIwoAAAAAsIpGFAAAAABgFY0oAAAAAMCqIJfLFe3NxpCQED+XgsTM5XIFugQrOA8Qm+RwHnAOIDbJ4RyQOA8QO84DwLvzgCuiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABY5fWwIgAAAAAAfIErogAAAAAAq2hEAQAAAABW0YgCAAAAAKyiEQUAAAAAWEUjCgAAAACwikYUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVtGIAgAAAACsohEFAAAAAFhFIwoAAAAAsCo40AUkdJs2bdKyZcu0bt067dq1S2fOnFFwcLBCQ0NVrVo1tWnTRg0aNAh0mYBfuVwubdy4UX/++ac2bNigDRs26NSpU5KkWrVqaeHChQGuEPCvq1evatmyZdqwYYM2btyoY8eO6dy5c7py5YoyZ86sEiVKqH79+nruueeUN2/eQJcL+AXfC4C7e/vttzVmzBj3esGCBapTp04AK0r4glwuV3Sgi0ioGjdurLVr18a57/HHH9fkyZOVJUsWC1UB9lWoUEFHjhxx/Bw/fCA52Lhxox555JE492XIkEEffvih2rVrZ6EqwC6+FwDONm/erMcee0xRUVHujEY0blwRjcXJkyclSaGhoQoLC1PNmjVVoEABBQUFaePGjZowYYL279+vJUuWqG3btvrhhx+UIgWvdkbSEx39v99XhYaGqnLlylqyZEkAKwLsy507t+rUqaOKFSuqQIECyp07t1KmTKkTJ05o6dKlmj17tq5cuaKXX35ZOXLkUKNGjQJdMuBTfC8ATDdv3tSrr76qqKgo5cyZU2fOnAl0SYkGjWgsSpYsqYEDByosLEzBwZ5/VFWrVlXbtm3VokUL/f7771q7dq2+++47tW7dOkDVAv7zwgsvqGDBgqpSpYoKFCggSQoJCQlsUYBFFSpU0K5du+76+WbNmqlLly564okndOPGDb333ns0okhy+F4AmD755BNt2rRJpUuXVpMmTTRy5MhAl5Ro0IjGYubMmbF+PkOGDProo49Uq1YtSdK8efNoRJEk9ezZM9AlAAGVMmXKOPdUrVpVdevW1c8//6wtW7bo8uXLypgxo4XqADv4XgB4OnTokIYMGaKgoCB99NFHWrVqVaBLSlR4Hel9KleunLJlyyZJOnjwYICrAQAE0j8bz8jIyABWAgDwt169eunq1atq3769atasGehyEh0aUR+4c2My94cCQPJ19uxZ92/Ds2fP7v4lJQAg6ZkxY4aWL1+u7Nmz69133w10OYkSndN92rx5syIiIiRJpUqVCnA1AACb/v77bx06dEhfffWVGjZsKJfLJUnq3r17YAsDAPjNuXPnNGDAAEnS4MGD+cVjPHGP6H0aMWKE++PmzZsHsBIAgA2LFy9WmzZt7vr5du3a6ZVXXrFYEQDApv79++vcuXOqXbs2b9d1H2hE78PcuXO1YMECSVLlypXVtGnTAFcEAAiUokWL6uOPP1a9evUCXQoAwE9+/vlnzZo1S6lTp9bHH38c6HISNRrReNq2bZt7elz69Ok1adIkBQUFBbgqAIC/1apVS2vXrpV0eyDRkSNHtGjRIs2aNUsvvfSSBg4cqPbt2we4SgCAr129elWvv/66JOm1115TiRIlAlxR4kYjGg+HDx9Wq1atdOXKFaVIkUITJkxQyZIlA10WAMCCTJkyqWzZsu51pUqV1KxZM7Vp00atWrXSyy+/rGPHjqlfv34BrBIA4Gvvv/++jhw5omLFiqlXr16BLifRY1jRPTp16pSaN2+uEydOSJJGjRqlsLCwAFcFAAi0evXq6aWXXpIkDRs2THv27AlwRQAAX9m4caMmTpwoSRo5cqTSpk0b4IoSP66I3oNz586pefPmOnDggCTpgw8+UKdOnQJcFQAgoWjcuLFGjx6tW7duacGCBerdu3egSwIA+MCYMWN08+ZNlSpVSufOndOcOXOMPTt37nR/vHr1av3111+SpMcee0whISG2Sk00aES95HK51Lx5c/cX2IABA9SjR48AVwUASEhy5Mjh/vjo0aMBrAQA4EvXr1+XJO3evVtdu3aNc/+HH37o/nj16tU0og54aa4XLl++rJYtW2rLli2Sbt+c3Ldv3wBXBQBIaO7ctiFJGTJkCGAlAAAkbFwRjcO1a9fUpk0b/fHHH5KkF154QYMGDQpsUQCABCk8PNz98T8HGgEAErdp06bFuWfIkCEaNmyYJGnBggWqU6eOv8tK1LgiGovIyEh16tRJv/zyiySpY8eO7i8uAEDyMWPGDF2+fDnWPd9//72+/PJLSVLmzJnVuHFjG6UBAJAocUU0Fv/617+0bNkySdJDDz2kF1980eMmZCf8BhxJ0ZYtW7R161bHz/3111+aOnWqR9agQQPlypXLRmmAFePGjdMbb7yhJk2aqGbNmipWrJgyZcqkq1evas+ePZo/f777+0VQUJCGDh2qrFmzBrhqwLf4XgDAl2hEYzF//nz3x//9739Vu3btOB/jcrn8WBEQGAsXLrzrqwH27t2rl19+2SNbsGABP3wgyYmIiND06dM1ffr0u+7JmjWrhg8frpYtW1qsDLCD7wUAfIlGFACAOEybNk2rVq3SmjVrtHPnTp05c0bnzp1T6tSplS1bNpUrV04NGjTQs88+y2REAAC8EORyuaIDXQQAAAAAIPlgWBEAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALAq2NuNvEE3YuNyuQJdghWcB4hNcjgPOAcQm+RwDkicB4gd5wHg3XnAFVEAAAAAgFU0ogAAAAAAq2hEAQAAAABW0YgCAAAAAKyiEQUAAAAAWEUjCgAAAACwikYUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKuCA10AgIRn9OjRRvbKK68Y2bZt24zsqaeeMrLDhw/7pjAAAADck59//tnIgoKCjOzRRx+1UY4bV0QBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALCKYUU+lClTJiPLmDGjkTVp0sRjnTNnTmPPRx99ZGTXr1+/j+oAZ4ULFzayDh06GNmtW7eMrEyZMkZWunRpI2NYERKykiVLGlmqVKmMrG7dukb2ySefGJnTueJL4eHhRtamTRsji4yM9GsdSPqczoOaNWsa2QcffGBktWrV8ktNAGL38ccfG5nTefvNN9/YKCdWXBEFAAAAAFhFIwoAAAAAsIpGFAAAAABgFY0oAAAAAMAqhhV5wWmYS79+/YysRo0aRvbAAw/E6znz5MljZK+88kq8jgXE5syZM0a2evVqI2vWrJmNcgCfKleunJF17tzZY92yZUtjT4oU5u9p8+bNa2ROg4mio6PvocJ753QuTpw40chee+01I4uIiPBHSUiismTJYmQrVqwwslOnThlZ7ty5vdoHIP6GDh1qZC+99JKR3bhxw8h+/vlnv9R0L7giCgAAAACwikYUAAAAAGAVjSgAAAAAwCoaUQAAAACAVcl6WFHp0qWNzGm4Q/v27Y0sXbp0RhYUFGRkR48eNbJLly55rMuUKWPsadWqlZF98sknRrZr1y4jA+7FlStXjOzw4cMBqATwvSFDhhhZ48aNA1CJf3Xq1MnIPv/8cyP79ddfbZSDZMZpMBHDigD/q169upGlSpXKyH755RcjmzVrll9quhdcEQUAAAAAWEUjCgAAAACwikYUAAAAAGAVjSgAAAAAwKokO6woS5YsRjZs2DCPdevWrY09mTJlivdz7t2718gef/xxI4t5E7HTwKEcOXJ4lQH3KyQkxMgqVqxovxDAD5YtW2Zk3gwr+uuvv4zMafhPihTm73Nv3brlVW01a9b0WNerV8+rxwEJjdOwRiCpqFu3rpENGDDAyNq2bWtk58+f91kdTsd/4IEHjGz//v1G1qdPH5/V4UtcEQUAAAAAWEUjCgAAAACwikYUAAAAAGAVjSgAAAAAwKokO6yoefPmRvavf/3LZ8d3uhG4YcOGRnb06FEjK168uM/qAO5X+vTpjaxgwYLxPt6DDz5oZE4DuQ4fPhzv5wC8NWHCBCObN29enI+7ceOGkZ06dcoXJbllzpzZY71t2zZjT968eb06ltP/0/r16+NVF3CvoqOjjSxt2rQBqATwvcmTJxtZiRIljKxs2bJG9ssvv/isjjfffNPIsmfPbmTdunUzss2bN/usDl/iiigAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFYl2WFFLVu2jNfjDh06ZGR//PGHkfXr18/InAYTOSlTpsw91wX4y4kTJ4zsq6++MrJBgwZ5dTynfS6Xy8jGjRvn1fGA+xEVFWVk3v5b7W+PP/64xzpr1qzxPtaxY8eM7Pr16/E+HnC/qlWrZmTr1q0LQCXA/bl69aqR+XtAV6VKlYysUKFCRnbr1i2/1uFvXBEFAAAAAFhFIwoAAAAAsIpGFAAAAABgVZK9R9TpzVxfeOEFj/XSpUuNPfv27TOyv/76y3eFScqVK5dPjwf42uDBg43M23tEAZjatGljZDG/T6VLly7ex3/77bfj/Vjgbpzusb548aKRZcmSxciKFSvml5oAf3L6+ad8+fJGtnPnTiPbvHlzvJ83Q4YMHmunWTTp06c3Mqf7rmfPnh3vOmzjiigAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFYl2WFFJ06cMLKEMmylRo0agS4BuGcpUpi/t3J6I2UgOWnfvr2R/ec//zGy4sWLG1mqVKni9ZybNm0yshs3bsTrWEBsXC6Xka1Zs8bInnrqKQvVAL5XoEABj7XTsFOnoV3//ve/jezMmTPxruOjjz7yWLds2dLY49Tb1KpVK97PmRBwRRQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKuS7LAiX3rllVeMLEOGDPE+Xvny5ePcs3btWiP77bff4v2cwP1yGkwUHR0dgEoA7xUuXNjIOnbs6LFu0KBBvI9fu3ZtI4vveREREWFkToOPfvzxRyO7du1avJ4TAJKLBx54wMi+//57j3WOHDmMPWPHjjWyVatWxbuOPn36GFnnzp3jfNz7778f7+dMqLgiCgAAAACwikYUAAAAAGAVjSgAAAAAwCoaUQAAAACAVclqWFH69Ok91mXLljX2vPPOO0bWuHFjr46fIoXZ1zsNeInpxIkTRtalSxcju3nzpld1AEBy5DSIYv78+UZWsGBBG+XcszVr1hjZ5MmTA1AJcP+yZ88e6BKQTAQHm+1Mhw4djOzzzz83spg/uzv93F6jRg0j69+/v5F99NFHRpYtWzYja9mypZEFBQV5rL/55htjz6RJk4wsseOKKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAEAAAAAViWJYUWpUqUyssqVKxvZnDlzPNZ58uQx9ly7ds3InIYJ/fbbb0b2xBNPGFnMAUlOnG6ybtGihZGNHj3ayCIjI+M8PgAkVzEHQNwti6/4Dqlz8tRTTxnZk08+aWSLFi2K1/EBm5o1axboEpBMtGnTxsg+++wzI4uOjjaymP9e79u3z9hTrVo1r7KwsDAjy5cvn5E59R9nzpzxWD///PPGnqSIK6IAAAAAAKtoRAEAAAAAVtGIAgAAAACsohEFAAAAAFiV6IYVpU6d2sichgTNnTs3zmP93//9n5EtX77cyH799Vcjy5Ytm1ePfeCBB+KsI2fOnEY2ZMgQIzty5IiRzZs3z8iuX78e53MC9+p+hrLUrVvXyMaNG3ffNQH/tG3bNiOrX7++kXXo0MFjvWTJEmPP33//7bO6JKlr165G1rNnT58+B2DDihUrjMxp0BbgD61btzayL7/80shu3LhhZC6Xy8jatWvnsb5w4YKxZ+TIkUZWr149I3MaYOQ0HM9paFKOHDk81kePHjX2OH0/279/v5ElJlwRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAqiCXy2XeMesgJCTEz6WYUqVKZWTvvvuukfXt29er4y1atMhj3bFjR2OP043MTsOEfvzxRyOrUqWKkUVGRhrZ8OHDPdZOA43CwsKMzMlPP/1kZMOGDTMyp5uvY9q0aZNXz+nE6c8tKQrEeZBQ3Lx508icbrj3VoUKFTzWO3bsiPexEorkcB4k53PgfmTJksXIzp07F+fjmjZtamQxv5clJMnhHJCS93nwzDPPGNl3331nZNeuXTOysmXLGtnhw4d9U1gCwnngP06DQQsVKmRk7733npE5DTXyhtPX7aRJk4ysRo0aRubtsKKYpk2bZmSdOnWK83EJiTfnAVdEAQAAAABW0YgCAAAAAKyiEQUAAAAAWBUc6ALuSJkypZENHjzYyPr06WNkV65cMbL//Oc/RjZjxgyPtdNrl53ejHbcuHFGVrlyZSPbu3evkXXv3t3IYr4ZdObMmY09NWvWNLL27dsbWbNmzYxs2bJlRuYk5pvlFilSxKvHIXmaOHGikb344ovxPt4LL7zgsX7ttdfifSwgoXv88ccDXQLgE1FRUV7tc7o3Lk2aNL4uB8lMeHi4kc2dO9fIYv6Mez9y5MhhZE7zXZy0bdvWyLZt2xbn444dO+bV8RM7rogCAAAAAKyiEQUAAAAAWEUjCgAAAACwikYUAAAAAGBVghlWFHNwieQ8mOjq1atG5jQwZenSpUZWvXp1j3WXLl2MPU8++aSRpUuXzsjeffddI3N6o1xvbpaOiIgwssWLF3uVOd0E3a5duzifU5Jef/11r/YBkrRr165Al4BkKlWqVEbWqFEjI3N6o/Nr1675pabYOH1vGT16tPU6AH9wGhbj9P2hdOnSRuY0lK5Hjx4+qQvJg7//Lc2SJYuRtWzZ0sicBo3u37/fyGbNmuWbwpIorogCAAAAAKyiEQUAAAAAWEUjCgAAAACwikYUAAAAAGBVkMvlivZmY0hIiF8LOXnypJHlzJnTyK5fv25kTjfJZ8iQwciKFy8er9oGDRpkZEOGDDGymzdvxuv4SYHL5Qp0CVb4+zxIbPbs2WNkxYoV8+qxKVJ4/h7M6fx0uvE/IUsO54G/z4HatWsb2YABA4ysYcOGRlakSBEj82ZgnLeyZctmZI0bNzaysWPHGlmmTJniPL7TYKVmzZoZ2YoVK+I8VqAkh3NA4ntBTKNGjTIyp6FduXLlMrK///7bHyUFFOdB4tW/f38jGzx4sJGdOXPGyB588EEjO3bsmG8KS4S8OQ+4IgoAAAAAsIpGFAAAAABgFY0oAAAAAMAqGlEAAAAAgFXBgS7gjlOnThmZ07CiNGnSGFnFihW9eo4ff/zRY7169Wpjz7x584zs0KFDRpacBxMBd2zfvt3IihYt6tVjb9265etykASMGzfOyB544AGvHvvGG28Y2aVLl+67pjucBiRVqVLFyKKjvZoBqJUrV3qsJ0yYYOxJyIOJgNg4nQeRkZEBqAS4u0KFCnms//Wvfxl7nL6WJ0+ebGTJeTBRfHFFFAAAAABgFY0oAAAAAMAqGlEAAAAAgFU0ogAAAAAAqxLMsKK6desa2dNPP21kToMh/vrrLyP74osvjOzChQsea26aB+6P0836TZs2DUAlgNS9e/dAlyDJ+XvSggULjOzVV1/1WP/9999+qwmwLXPmzEYWFhZmZN9//72NcgBHy5Yt81jHHF4kSd9++62RvfPOO36rKTnhiigAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFYlmGFFly5dMrIpU6Z4lQEIjB07dhjZzp07jaxMmTI2ykES0LlzZyPr2bOnkT333HN+rWP//v1GdvXqVSNbs2aNkTkN8dq2bZtvCgMSoFatWhnZ9evXjczp+wMQSF9++aXHevDgwcae8PBwW+UkO1wRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAqiCXyxXtzcaQkBA/l4LEzOVyBboEKzgPEJvkcB4E4hxIkyaNkTkNNXrvvfeMLGvWrEY2b948j/WyZcuMPU7DKU6dOhVLlZCSxzkg8b0gphkzZhiZ05C6Zs2aGdnhw4f9UlMgcR4A3p0HXBEFAAAAAFhFIwoAAAAAsIpGFAAAAABgFfeIwie4HwJIHucB5wBikxzOAYnzALHjPAC4RxQAAAAAkADRiAIAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVtGIAgAAAACsohEFAAAAAFhFIwoAAAAAsIpGFAAAAABgFY0oAAAAAMCqIJfLFR3oIgAAAAAAyQdXRAEAAAAAVtGIAgAAAACsohEFAAAAAFhFIwoAAAAAsIpGFAAAAABgFY0oAAAAAMAqGlEAAAAAgFU0ogAAAAAAq2hEAQAAAABW0YgCAAAAAKyiEQUAAAAAWEUjCgAAAACwikYUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYFVwoAtIyK5evaply5Zpw4YN2rhxo44dO6Zz587pypUrypw5s0qUKKH69evrueeeU968eQNdLuA3ISEhXu0rUKCAtm7d6t9igADg+wFgOnPmjKZMmaJFixbp0KFDunjxorJly6Z8+fKpZs2aatq0qR566KFAlwn4lMvl0saNG/Xnn39qw4YN2rBhg06dOiVJqlWrlhYuXBjgChOPIJfLFR3oIhKqjRs36pFHHolzX4YMGfThhx+qXbt2FqoC7KMRRXLH9wPA08yZM9WvXz+5XK677mncuLGmTZtmryjAggoVKujIkSOOn6MRvTdcEY1D7ty5VadOHVWsWFEFChRQ7ty5lTJlSp04cUJLly7V7NmzdeXKFb388svKkSOHGjVqFOiSAb/p2rWrunbtetfPp06d2mI1gF18PwBu++KLL9S7d29FR0crV65cev7551W9enVlyZJFp0+f1qFDh7R48WKlSpUq0KUCPhcd/b9reKGhoapcubKWLFkSwIoSL66IxuLmzZtKmTJlrHv+/PNPPfHEE7px44YqVKig1atXW6oOsOfOFdF+/fqpf//+gS0GCAC+HwC3bdq0SQ0aNFBUVJTq1q2rqVOnKlOmTI57IyMj+QUlkpyxY8eqYMGCqlKligoUKCDpfz8ncUX03jCsKBZx/dAhSVWrVlXdunUlSVu2bNHly5f9XRYAwDK+HwC39erVS1FRUcqdO7e++eabuzahEq+SQdLUs2dPhYWFuZtQxB+NqA9kzJjR/XFkZGQAKwEABBLfD5CU3RnOIkk9evTwen4AADihEb1PZ8+e1apVqyRJ2bNnV7Zs2QJcEQAgEPh+gKRu7ty57o+bN2/u/tjlcmn//v26cOFCIMoCkEjRiMbD33//rUOHDumrr75Sw4YN3RPjunfvHtjCAD8LDw9X9erVlTdvXuXLl0+VKlVSt27duEkfyRbfD5CcrF+/XpKUJ08eFShQQFOnTlWNGjVUuHBhVa1aVUWKFFGlSpU0fPhwXblyJcDVAkjoGFbkpcWLF6tNmzZ3/Xy7du00atQo7odAkuTNy6/q1Kmjzz//XKGhof4vCAggvh8guSpUqJAuXryohx9+WMWLF9fUqVPvurds2bKaM2eO8uTJY7FCIDAYVhQ/XBG9T0WLFlV4eLg++eQTfuhAkpU+fXq1aNFCo0eP1o8//qjVq1crPDxcb775pvLmzStJWrNmjZ5++mldunQpwNUCgcH3AyRlt27dUkREhKTbk3OnTp2q7Nmza8yYMdq/f79OnTqln3/+WY899pgkaceOHercubNu3boVyLIBJGBcEfXSpUuXdPToUUm3B1AcOXJEixYt0qxZsxQaGqqBAweqffv2Aa4S8A+Xy3XXq6IRERHq2LGj+964nj17avDgwRarA+zi+wGSo8uXLyt//vzuderUqfXzzz+rfPnyHvtu3rypli1bavny5ZKkr7/+WmFhYVZrBWzjimj80Ijep1WrVqlVq1a6fv26+vfvr379+gW6JMA6l8ulypUr68KFC8qYMaMOHDjAFSEkO3w/QFIWFRWlHDlyuNedOnXSmDFjHPdu375dtWrVkiQ1bdpUU6ZMsVIjECg0ovHDS3PvU7169fTSSy9JkoYNG6Y9e/YEuCLAvpCQELVo0ULS7d+ab9q0KbAFAQHA9wMkZcHBwUqbNq17fecluE7KlSvnvjd048aNfq8NQOJEI+oDjRs3lnT7/okFCxYEuBogMEqXLu3++MSJEwGsBAgcvh8gKcuXL5/743++TNfJnc+fPXvWrzUBSLxoRH3gny9VuXPfEJDcBAUFBboEIOD4foCk7J+/cLx582ase+98PmXKlH6tCUDiRSPqA/+8+pMhQ4YAVgIEzq5du9wf586dO4CVAIHD9wMkZTVr1nR/fPDgwVj33vk8b98C4G5oRH0gPDzc/XHZsmUDWAkQGC6XS3PmzJF0+61eKleuHOCKgMDg+wGSsqZNm7pf/RLbS8/XrFmjCxcuSPJsXgHgn2hEYzFjxgxdvnw51j3ff/+9vvzyS0lS5syZ3fcHAUnFokWLFBUVddfPR0REqHPnzu4fOjp27Kg0adLYKg+wgu8HgFSwYEE988wzkqSFCxdq0aJFxp6IiAj95z//ca+7dOlirT4AiQtv3xKL2rVr68iRI2rSpIlq1qypYsWKKVOmTLp69ar27Nmj+fPna9myZZJu3x83fvx4tWvXLsBVA75Vvnx53bhxQ02bNtWDDz6oQoUKKV26dHK5XFq3bp2++uor98sRS5YsqaVLl971PUeBxIrvB8Btx44d06OPPqq//vpLqVKlUrdu3fTkk08qU6ZM2rZtm0aNGqV9+/ZJkrp166YPP/wwwBUDvrVlyxZt3brVI3v55ZclSSVKlNBrr73m8bkGDRooV65ctspLVGhEY1G7dm1t27Ytzn1Zs2bV8OHD1bJlSwtVAXaVL1/eq6ErdevW1aRJk7gfCEkS3w+A/9m8ebPat2+vY8eO3XXPc889p5EjRyo4ONhiZYD/DRkyRMOGDfN6/4IFC1SnTh0/VpR48a9DLKZNm6ZVq1ZpzZo12rlzp86cOaNz584pderUypYtm8qVK6cGDRro2Wef5QoQkqwJEybo119/1fr163Xw4EGdP39eERERSp8+vfLmzatq1aqpZcuWqlevXqBLBfyG7wfA/1SsWFFr167V559/rvnz5+vgwYO6evWqQkNDVb16dXXp0kW1atUKdJkAEjiuiAIAAAAArGJYEQAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVtGIAgAAAACsohEFAAAAAFhFIwoAAAAAsCrY2428QTdi43K5Al2CFZwHiE1yOA84BxCb5HAOSJwHiB3nAeDdecAVUQAAAACAVTSiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVwYEuAAAAAElfyZIljWzx4sUe65QpUxp7ChUq5LeaAAQOV0QBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALCKYUUAAADwqbFjxxpZ69atjSxbtmwe6x9++MFvNQFIWLgiCgAAAACwikYUAAAAAGAVjSgAAAAAwKpkfY9o2bJljeypp54yshdeeMHI/vjjDyPbuHGjV887atQoj3VkZKRXjwMAAAikXLlyGdncuXONrHr16kYWHR1tZNu2bfNYd+3a9T6qA5CYcEUUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACrktWwohdffNFjPWLECGNPxowZvTpWsWLFjKxNmzZePTbmoKMVK1Z49TgASMxi/vvq9Ob2f//9t5FVrVrVyDJlymRk7du3N7KVK1ca2fHjx2Mr856cOnXKyMLDw41s/fr1PntOwJaSJUsamdPPTg8//LBXx+vfv7+RxTw3zp0752V1gO8FBQUZ2fTp042scePGRuY0BPXYsWO+KSyJ4oooAAAAAMAqGlEAAAAAgFU0ogAAAAAAq2hEAQAAAABWBblcrmhvNoaEhPi5FP/Lli2bx3rnzp3GntDQUL/X4XK5PNZOAzuWLl3q9zp8Keb/U1KVFM4D+E9yOA/u5xwYPny4x7pPnz73WU3CdOvWLSPbsWOHkcUcgOE0EOPQoUM+q8uG5HAOSMnne0H16tWN7JdffvHqsU5DXzp06GBkTl/3iR3nQeKVPn16I9u9e7eR5cuXz8heeOEFI/vss898U1gi5M15wBVRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVtGIAgAAAACsCg50ATadP3/eY/3OO+8Ye0aOHGlkTjcuHzlyxMgKFizoVR0xb+5+4oknjD2JbVgRYEuhQoWMLF26dEbWtm1bI+vevXucx1+4cKGRdenSxcvqEJsWLVr47Fjnzp0zsi1btvjs+E7DKUqVKmVkTsM6KleubGQPPPCAkb3//vsea6f6E9uwIiReJUuWNLJp06YZmdMQIidO53t4ePi9FwZYdPXqVSPbu3evkTkNK8qZM6dfakrKuCIKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVyWpYUUwTJ040spdeesnIKlasaGQRERE+q2PcuHE+OxaQWDVo0MDInIZdOA0hypIli5FFR0fHq47q1avH63GI2+OPP+6xdhqOsmfPHq+O5TRQ4uTJk/Er7D5kypTJyLZu3Wpk3gyza9asmZE5Dc8C/KFjx45G5vR1++OPPxqZ089Ox48f901hQICNHz/eyOrXr29kZcqUsVBN0sIVUQAAAACAVTSiAAAAAACraEQBAAAAAFbRiAIAAAAArErWw4qcvPfee0Y2YMAAI6tUqZLPnjN16tQ+OxaQEH322WdGVr58eY/1gw8+GO/jX7p0ycimTp1qZH/88YeRTZ8+3WP9999/x7sOxG7//v2xrhOjp556ysi8GUwkSdevX/dYf/rppz6pCfDG2rVrPdZOP9ccOnTIyF5//XUjYzARkrL//ve/Xu1r1aqVkfXr18/IAjFYL6HiiigAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFYxrCiG2bNnG9kvv/xiZEuXLjWymMNXvOU0IOnZZ5+N17EAm7Jnz25kQ4YMMbLnn3/eyM6fP++x/vPPP409Q4cONbJt27YZ2bVr14zsyJEjRgZ4y2mI3JgxY4ysU6dO8X6OGjVqeKw3bdoU72MBsQkLCzOyhx9+2GMdHR1t7Pnuu++MjIFugBQUFGRkTt83mjVrZmSTJk3yS02JEVdEAQAAAABW0YgCAAAAAKyiEQUAAAAAWMU9ojG0b9/eyCpWrGhkDzzwgM+e0+keVCAxeOutt4ysa9euRjZ27FgjGzBggMf68uXLvisMuAePPPKIkXXs2NHIOnfu7NXxbty4YWSvvPKKke3atcur4wH3IiQkxMjq1KkTr2NduHDByI4dOxavY93Nq6++6rEuUKCAV4/r06ePT+sA7oXTPdVOnO4bxf9wRRQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKuS1bCi0qVLe6y///57Y0/x4sWNLDjYv39M8+fP9+vxgdikT5/eyPr162dkTsNbXnvtNSNbsWKFkS1ZssTIeFN0BMpDDz3ksV66dKmxJ2XKlPE+vtMQiyNHjhjZzZs34/0cwN04fV1VrVrVyFKk8LwWcevWLWPP6tWr413H66+/7tW+nj17eqwLFSrk1eN69+5tZPnz5zey48ePe3U8APZxRRQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKuS1bCiMmXKeKyLFCli7PH3YCInTjf0x7x5H/CXgQMHGpnTsKJZs2YZmdOQF4YQIaFr1aqVx/p+BhM5SZ06tZEtXLjQyNavX++xXrBggbHHaajetm3b7qM6JHX16tUzsjp16hhZzOFETgO1zp4969VzVqpUyavnbNasWZzHunLlipEdO3bMyEqVKmVks2fPNrI2bdoY2eHDh+OsA4D/cUUUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACrktWwophDH9544w1jz7Bhw4wsbdq0fqtJkvLkyePX4wOx6d+/v5FFR0cb2fTp042MwURIjObOneuxjjnITpIefPBBI8uRI4dP66hWrVqsa0l65513jGzUqFFGNnz4cCP766+/4l8cEoVMmTIZmdMgRicnTpzwWE+ZMsXYs2/fPiMrWbKkkfXt29fIwsLCjMxp+FHMoXcjR4409mTJksXIli9f7tU+wB+CgoKMzOlnJ8SOK6IAAAAAAKtoRAEAAAAAVtGIAgAAAACsohEFAAAAAFiVrIYVxTRmzBgj27t3r5GFhIR4dbzgYPOPc9y4cUaWOXNmr44H2PDf//7XyJyGpjh9LV+7ds3Ili1b5pvCAD9Zu3atx7pJkybGnoIFCxqZ07CiXLlyGVmLFi2M7Pnnnzcyp2EXMaVIYf6+uFevXkZWtWpVI3vssceM7NatW3E+JxKP2rVrG9nHH3/s1WM//fRTj/W7775r7HH6+h4xYoSRNW7c2MguXbpkZLNmzTKyPn36eKxLlChh7Jk4caJXx//555+N7PDhw0YG3C8GE/kGV0QBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALAqWQ8rcrJo0aJ4P9Zp8ETx4sWN7O233/ZYV6pUydhTqFAhI+OGe8Tm4YcfNrKNGzcaWWRkpMf6ySefNPa88sorRvbWW28Z2ezZs72qY9euXUYGJGRHjhzxKnPi9H1k5cqVRtazZ0+P9UMPPeRdcQ7q1atnZDGHwEjS8OHD4/0cSHgqVKgQ78c6DSeKae7cuUbm9G+8k7CwMCNbtWqVkVWvXt1j/csvv3h1/FGjRhmZ09c8EEhbtmwJdAkJGldEAQAAAABW0YgCAAAAAKyiEQUAAAAAWEUjCgAAAACwimFFPpQ6dWojizmYyMmNGzeM7ObNmz6pCYlfnjx5jOyHH34wsoIFCxrZ66+/bmTffvutx/r8+fPGnnHjxhmZ07CijBkzGlm2bNmMDEjupk6damQzZ870WP/000/Gnrp168b7OZ2G5SFpCQkJMTKnwYnh4eFxHstpcGLhwoW9On7v3r2NzGkwUcmSJY1s2rRp8Tq+07AiIKHZv39/oEtI0LgiCgAAAACwikYUAAAAAGAVjSgAAAAAwCruEfWh9957L16P+/zzz43s2LFj91sOkogNGzYYWebMmY2sX79+RhbzflBvvfrqq17tc7qnbdu2bfF6TiC5iYqK8lj/+eefxp77uUd0z5498X4sEq/o6GivMm/cunXLq2NVqFDByI4cOWJkadOmNbKDBw96rOvUqWPsuXjxYqx1AkicuCIKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVCXpYUfbs2Y3syy+/NLLp06d7lflSnjx5jOyFF16I17Hmzp17v+UgCRszZoyRDRw40Kt9TllMe/fuNbISJUoY2eHDh42sf//+RhYRERHncwL+4PTvcrdu3Yxs165dHutZs2b5rabYpEyZ0mNdsWLFeB8r5uAjSVq3bl28j4fEITw83Mj69u1rZGFhYUZWvXp1j3WlSpWMPZkyZfKqjk6dOhlZUFCQkZ09e9bIBg0a5LE+fvy4V88JJAZp0qQJdAkJGldEAQAAAABW0YgCAAAAAKyiEQUAAAAAWEUjCgAAAACwKkEPK3IatNK0aVMjK1mypJGdOHHCyGLeAL9v3z5jT9WqVb06/htvvGFkmTNnNjInI0eO9Fg71QrcMWTIECO7ceOGkVWuXNnIGjRoEOfxs2bNamQLFy40sj59+hiZ0zkE2JA7d24jW7x4sZGVL1/eyJy+5v0tV65cRtarVy+P9aOPPhrv4+/cudPIfvnll3gfD4mD0/eCq1evGln69OmN7Ndff/VYR0dH+64wSZcuXTIyp8FgixYt8unzAglJ48aNjWzs2LEBqCRh4oooAAAAAMAqGlEAAAAAgFU0ogAAAAAAq2hEAQAAAABWJehhRU438xYpUsTIatSoYWQrV640skOHDnmsd+zYYeypU6eOkWXKlCmWKv/H6Ub/Xbt2Gdk777zjsf7777+9Oj5wx4gRIwJdAhBQo0aNMjKnwUROYn4f2b17t7Hn2rVrXh0rXbp0RuY0zC7mYCLJu+8tQUFBRuY0BOaVV16J81hIev78808ja9u2rZE5ff3Vr18/Xs/59ddfG9nWrVuNbOPGjUa2atWqeD0nEEinT582su3btxtZuXLlbJSTpHBFFAAAAABgFY0oAAAAAMAqGlEAAAAAgFU0ogAAAAAAq4JcLpc5YcdBSEiIn0vxzsiRI41s3759RvbJJ5/YKMfD+fPnjSx79uzW6wgEl8sV6BKsSCjnARKm5HAeJJRzoFu3bkY2adKkeB3LaajKxYsXvXpslixZjKxy5crxqsPJ5cuXjax58+ZG9vPPP/vsOe9HcjgHpIRzHiBh4jxI+v744w8jq1q1qpH98MMPRtasWTO/1JTQeHMecEUUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACrggNdwL3q3bu3kaVJk8bIMmbMGOexnAZKtG3b1qs6nAZZNGzY0KvHAgDuz7Jly4xsxowZRtamTZs4j+XL4UL3IioqymM9atQoY8+cOXOM7Pfff/dXSQAAL2zatMnInIYVedOPJGdcEQUAAAAAWEUjCgAAAACwikYUAAAAAGAVjSgAAAAAwKogl8sV7c3GkJAQP5eCxMzlcgW6BCs4DxCb5HAeJORzwGlwXfPmzY3s0Ucf9Vjv2bPH2NOsWTOvnnPXrl1e7Vu+fHmcj3UafpHYJIdzQErY5wECj/Mg6StcuLCRTZ8+3ci+/vprI5s4caI/SkpwvDkPuCIKAAAAALCKRhQAAAAAYBWNKAAAAADAKu4RhU9wPwSQPM4DzgHEJjmcAxLnAWLHeQBwjygAAAAAIAGiEQUAAAAAWEUjCgAAAACwikYUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVQS6XKzrQRQAAAAAAkg+uiAIAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVtGIAgAAAACsohEFAAAAAFhFIwoAAAAAsIpGFAAAAABgFY0oAAAAAMAqGlEAAAAAgFU0ogAAAAAAq2hEAQAAAABW0YgCAAAAAKyiEQUAAAAAWEUjCgAAAACwikYUAAAAAGAVjSgAAAAAwKrgQBeQkDVp0kS//vrrPT1m/Pjxat++vZ8qAgJj06ZNWrZsmdatW6ddu3bpzJkzCg4OVmhoqKpVq6Y2bdqoQYMGgS4T8LsbN25o5syZCg8P19atW3X+/HkFBwcrV65cqlq1qtq3b69HHnkk0GUCVpw5c0ZTpkzRokWLdOjQIV28eFHZsmVTvnz5VLNmTTVt2lQPPfRQoMsE/OL69euaOnWqwsPDtW3bNkVERChbtmwqW7asWrVqpdatWytFCq75xSbI5XJFB7qIhCo+jeiyZcv04IMP+qkiwL7GjRtr7dq1ce57/PHHNXnyZGXJksVCVYB9x44dU6tWrbRjx45Y9zVv3lyTJk1S6tSpLVUG2Ddz5kz169dPLpfrrnsaN26sadOm2SsKsGT//v1q166ddu/efdc9NWrU0PTp0xUSEmKvsESGRjQWhw4d0tWrV2Pdc+bMGYWFhUmSihcvrvXr19soDbCmcuXKOnjwoEJDQxUWFqaaNWuqQIECCgoK0saNGzVhwgTt379fklSzZk398MMP/AYQSU5UVJTq1q3rbkLLlCmjHj16qGTJkvr777+1YcMGjRkzRhcuXJAkde3aVSNHjgxkyYDffPHFF+rdu7eio6OVK1cuPf/886pevbqyZMmi06dP69ChQ1q8eLEyZ86sr7/+OtDlAj519uxZ1a9fX8eOHZMkhYWFqU2bNsqbN69Onz6t2bNna9asWZJu/1y0YMECpUyZMpAlJ1g0ovdp3LhxGjhwoCTprbfeUu/evQNcEeBbrVu3VqtWrRQWFqbgYPPV/FeuXFGLFi30+++/S5ImTZqk1q1b2y4T8Kvw8HA999xzkqRq1app8eLFxvlw+PBh1alTRxEREUqRIoV2796tnDlzBqJcwG82bdqkBg0auH85M3XqVGXKlMlxb2RkJK8MQJLTt29fffrpp5Kkfv36qX///saesWPH6q233pIkjRkzRp06dbJaY2LBZYv7NH36dElSihQp+OEbSdLMmTP1zDPPODahkpQhQwZ99NFH7vW8efMsVQbYc+cXLZLUu3dvx/OhUKFC7hkBt27d4hUySJJ69eqlqKgo5c6dW998881dm1BJNKFIcm7evOm+2lmgQAG98cYbjvt69uyp0qVLS5I+/vhja/UlNjSi92Hr1q3avn27JKlu3brKnz9/gCsCAqNcuXLKli2bJOngwYMBrgbwvRs3brg/Lly48F33FS1a1P1xZGSkP0sCrPvzzz+1YcMGSVKPHj249w3Jzv79+3Xx4kVJ0iOPPBLrS27vDHE8ePCgtmzZYqW+xIZG9D7cuRoqSW3btg1gJUDgRUVFSRL3hyJJKl68uPvjQ4cO3XXfP38RU6JECX+WBFg3d+5c98fNmzd3f+xyubR//373PdJAUnX+/Hn3x6GhobHu/efnvRn6mBzxE2M8RUVFafbs2ZKkjBkzqmnTpgGuCAiczZs3KyIiQpJUqlSpAFcD+N6zzz6rzJkzS5I++ugj3bx509hz9OhRTZ06VdLtARVly5a1WiPgb3debp4nTx4VKFBAU6dOVY0aNVS4cGFVrVpVRYoUUaVKlTR8+HBduXIlwNUCvpchQwb3x3eujN7NPz8f23Td5IxGNJ5++ukn/fXXX5JuT8tKnz59gCsCAmfEiBHuj//5W3IgqciePbsmTZqk9OnT648//nAPafnvf/+rVatWafTo0apfv74uXryoIkWKaNy4cYEuGfC5Xbt2SZIKFiyol19+WS+//LJ27tzpsefQoUP64IMP1LBhQ508eTIQZQJ+U7RoUaVKlUpS3Fc5//n5OxN24YlGNJ5mzJjh/rhdu3YBrAQIrLlz52rBggWSbr/VC68OQFL15JNPatWqVerSpYt27Nihl19+WY0aNVJYWJjeeecd3bhxQwMHDtSKFSs87hUFkoJbt265X/myadMmTZ06VdmzZ9eYMWO0f/9+nTp1Sj///LMee+wxSdKOHTvUuXNn3bp1K5BlAz6VIUMGPfLII5Kk7du3u18dGdPixYv122+/udeXL1+2Ul9iQyMaDy6XS4sWLZJ0e0pizZo1A1wREBjbtm1Tz549JUnp06fXpEmTFBQUFOCqAP+4ceOGZs6cqYULFyo62nzns4iICH333XfuX8wAScnVq1fdX/fXr19X6tSpNW/ePHXq1EnZs2dX2rRpVbVqVc2aNUuPPvqopNvTpjkfkNT079/ffVW0e/fuGj58uI4cOaKoqCgdP35co0ePVufOnZUyZUr33Ixr164FsuQEi0Y0HubOnavr169Lktq0acMP3kiWDh8+rFatWunKlStKkSKFJkyYoJIlSwa6LMAvrly5orCwMI0YMULnzp3Tyy+/rN9++02nT5/WsWPHtHDhQj3++OPavXu3evbsqf/85z+BLhnwqbRp03qs27Rpo/Llyxv7UqZMqcGDB7vXd7tiBCRWlStX1vjx45U6dWrduHFDH3zwgSpUqKAcOXKoXLlyeueddxQZGamhQ4e6f3mTMWPGAFedMNGIxsOdablBQUFMy0WydOrUKTVv3lwnTpyQJI0aNUphYWEBrgrwn6FDh7rv9xk1apTef/99lSlTRmnSpFHGjBlVq1YtzZw5Uy1btpQkTZw40f3KGSApCA4O9mhG77wE10m5cuWUJ08eSdLGjRv9XhtgW6tWrbRixQq1aNHCPchOut0b1KpVSwsWLFDjxo3djShvdeSMRvQe7d+/X3/88YckuSfFAcnJuXPn1Lx5cx04cECS9MEHH6hTp04Brgrwn+joaH377beSpGLFiqljx4533fvOO++4P77zGCCpyJcvn/vjuN47/c7nz54969eagEApV66cvvjiCx08eFDbt2/Xn3/+6X6FTK1atbR9+3b33tKlSwew0oSLRvQe8d6hSM5cLpeaN2/unpI4YMAA9ejRI8BVAf71119/ud8fsWLFirHuzZ8/v3LmzClJ2rt3r99rA2z65w/TTm9h9E93Pp8yZUq/1gQEWsqUKZUvXz4VK1bM4+1d/jmsqFq1aoEoLcGjEb0H0dHR7mm56dOn19NPPx3YggCLLl++rJYtW2rLli2SpNdee019+/YNcFWA/wUHB7s/vnHjRpz77+z55+OApOCfwxkPHjwY6947n7/zEl0gObl586bmzJkjScqaNat70i480Yjeg9WrV7vfB+ipp55SpkyZAlwRYMe1a9fUpk0b98vSX3jhBQ0aNCiwRQGWZMuWzX0P0Pr16xUVFXXXvdu3b5fL5ZJ0e6o6kJQ0bdrUPaAxtmm4a9ascb+KgHcWQHL01Vdf6ciRI5KkTp06KU2aNAGuKGGiEb0HvHcokqPIyEh16tRJv/zyiySpY8eOGjZsWICrAuwJCgrS448/Lkk6efKkhg4d6rjv2rVreuONN9zrJ5980kp9gC0FCxbUM888I0lauHCh40CuiIgIj6nRXbp0sVYfYMudJtPJihUrNGDAAEm3b9fg1WN3F+Ryucw3Q4PhypUrKlWqlC5fvqx8+fJp69at7vcGApKyTp06af78+ZKkhx56SB999FGcX/tly5a1URpgzb59+1SvXj1duXJFktSwYUO1a9dORYoUUVRUlDZv3qyJEye67wstU6aMVq9e7X6vOSCpOHbsmB599FH99ddfSpUqlbp166Ynn3xSmTJl0rZt2zRq1Cjt27dPktStWzd9+OGHAa4Y8L0CBQqoWrVqevrpp1W6dGmlSZNGR44c0Q8//KDvvvtO0dHRypw5s77//ntVrVo10OUmWDSiXpo+fbq6d+8uSerVq5fefvvtAFcE2BGfkeN3XpoIJCWrV69W165ddebMmVj3VaxYUVOnTo1zqiiQWG3evFnt27d3367k5LnnntPIkSO5VxpJUr58+dy/mHRSokQJTZo0SVWqVLFYVeJDI+qlZs2aafXq1ZKkP/74QyVKlAhwRYAdNKLA/7hcLk2ZMkXLli3Tzp075XK5lDJlSuXIkUMVK1bU008/rebNm/PDN5K8iIgIff7555o/f74OHjyoq1evKjQ0VNWrV1eXLl1Uq1atQJcI+M3cuXO1fPlybdiwQadOndLly5eVPXt2lS1bVmFhYWrdujX3hXqBRhQAAAAAYBU3OQIAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKu8fsft+LypPZIPl8sV6BKs4DxAbJLDecA5gNgkh3NA4jxA7DgPAO/OA66IAgAAAACsohEFAAAAAFhFIwoAAAAAsIpGFAAAAABgFY0oAAAAAMAqGlEAAAAAgFU0ogAAAAAAq2hEAQAAAABW0YgCAAAAAKyiEQUAAAAAWEUjCgAAAACwikYUAAAAAGAVjSgAAAAAwCoaUQAAAACAVcGBLgAAAABJX9GiRY1syJAhHuvmzZsbeypUqGBku3bt8l1hAAKCK6IAAAAAAKtoRAEAAAAAVtGIAgAAAACs4h5RAAAA+FTNmjWNbPHixUZ25swZj/X48eONPadPn/ZdYQASDK6IAgAAAACsohEFAAAAAFhFIwoAAAAAsIpGFAAAAABgFcOKgGSuY8eORtaoUSMjq1SpkpGVKlXKq+dYt26dkTVt2tRjffHiRa+OBSQnGTJkMLKVK1caWd68eY2sVq1aRnbo0CFflAV4aNKkiZHNnj3byCZOnGhkAwYM8FhfvXrVd4UBSNC4IgoAAAAAsIpGFAAAAABgFY0oAAAAAMAqGlEAAAAAgFUMKwKSsBw5chjZZ5995rGOOTRIklwul5GtXbvWyJwGn9SvX9/IateubWS//fabx7ps2bLGHiAxchoclDNnzjgfd+HCBSN75JFHjKxq1apGtnv3biM7d+5cnM8J3KvixYsb2axZs4xs1apVRta7d28ju3Xrlm8KA5DocEUUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACrGFbkQ0434adOndrIypQp47Fu3769V8fftWuXkZUrV87L6pAcLV682MgKFy7ssR4+fLix58MPPzSy8+fPe/WcpUuXNrL//ve/RlayZEmP9dtvv23seffdd716TuB+PPDAA0b2yiuvGFmhQoW8Ol7Mr21JKliwYJyPGzp0qJE5DfEKCgoysuPHjxuZ0/cf4F6kTZvWyGIOvJOkrVu3GlmrVq2MjMFESCqyZctmZK1btzayN99808icBtrFNHDgQCMbMmSIl9UlHlwRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAqiCXyxXtzcaQkBA/l5Iw1KtXz8icBlk47WvevLmROQ2ViC+nm/z37dtnZE7DLfzN5XJZf85ASMjnQcOGDY3MaVjRrFmzPNZt27b1W013OA0dinkj/uHDh409RYoU8VtN/pAczoOEfA7El9Ngoo8//jjex7t+/bqRfffdd0b26KOPeqy9GWAhOX9f6dSpk5F9++23Xh3Pl5LDOSAlzfPAidPgun//+99GVqJECSM7duyYX2pKDDgPkpbq1asbmdP3iIceesjIoqO9arO8MmXKFCPr0qWLz47va96cB1wRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAquBAF+ALefLkMbLp06cbWdGiReM8VpYsWYwsQ4YMRuY0LOLPP/80sipVqsT5nN5KkcL8vYFTbUiegoPN09lpmNWMGTNslONh9uzZRhZzWFHatGmNPZkzZzayiIgI3xWGZGnQoEEe6759+3r1uK+//trIzpw5Y2QjRozwal+lSpU81kuWLDH25MiRw6tjOZ1jwL1IkyaNkXXo0MHIVq5caWTJeTARkhanf3M//fRTIytTpoyROf3bPG/ePCMLDw83spgD51q2bGnscRqalDp1aiOLjIw0soSKK6IAAAAAAKtoRAEAAAAAVtGIAgAAAACsohEFAAAAAFiV6IYVNWjQwMicbiIuUKCAX+soW7askZ09e9bInG56zps3r8f6yy+/NPbkz5/fqzp27Njh1T4kfStWrDCyypUrG9nVq1dtlOPh+vXrce7JlSuXkbVr187IJk6c6JOakHzFHPKWLl06Y8/hw4eNbMCAAUZ28uRJr56zePHiRvbmm296rHPmzGnsuXLlipHFHLYkSX///bdXdQB388YbbxhZxowZjczpPACSCqdBQk6DiZYuXWpkjRs3jvfz7t2712Pt1O849QZOtW3evDneddjGFVEAAAAAgFU0ogAAAAAAq2hEAQAAAABWJbp7RJ3uYYjv/aBO963169fPyNatW2dku3fv9uo5zp07Z2Svvvqqx9rb+0EPHTpkZB07dvTqsUj6EvI9YgcOHDCy7du3e6zLlStn7ClRooTfakLyNXv2bI/1E088YexxmgMwdOhQI+vRo4eRZcmSxcg++ugjI2vSpInH+vz588ae999/38gmTJhgZMD9atSokZH9+uuvRrZhwwYb5QABce3aNa/2Od1L6m8RERFG5jSfJjHhiigAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFYl6GFFTjfOV69ePd7HO3LkiMfaadCP0435vubtcKKYnG6MTuw3KSN5uHHjhpFFRUUFoBJA2rRpk8faaSCd07CiRx991MgaNmxoZB9//LGRFSxYMM66/u///s/Ixo4dG+fjgPioXbu2x9rp56vy5cv79Dnr169vZGfOnPFYxxxkB9gUFBTkVXbhwgUjS5s2rZEVK1bMyDp37mxkVatW9VifOnXK2NO2bVsjO378uJElJlwRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAqgQ9rKh3795Glj59eq8eu3btWiOLOQjC14OJsmbNamRPPPGEkdWtWzfOYznV/+OPP8avMCDA0qRJY2RON/XHdOnSJX+Ug2Tu+vXrHuuIiAivHpc3b14jmzNnjpE5DbaIjo42ss8//9xjPW/ePK/qAHyhQ4cOHuudO3caew4ePOjVsZyGr4wcOdLInH5Oink+9unTx9gzfvx4r+oA7le5cuWMzOnf7169ehmZU98ScwjR3bRp08ZjPXv2bK8el9hxRRQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKsS9LCiyZMnG1mOHDmM7OLFi0bWrl07Izt16pRvCruLl156ycgGDx4c5+O2b99uZK1atTIyf9cP+EvhwoWNrFSpUnE+bvHixfF+Tqd/KypWrGhkNWrU8Fh/9913xp7du3fHuw4kfIcPH/b7czgNmxsxYoTH+ujRo36vA7jj+eef91g7/dwUc5CQJKVOndrI3nnnHSN78cUXjWzJkiVG1rhxY4/1l19+aezZv3+/kd3P9wfgbs6dO2dkmTJlMrJq1aoZmbeD6q5evWpkO3bs8LbEJIUrogAAAAAAq2hEAQAAAABW0YgCAAAAAKyiEQUAAAAAWJWghxXNmTPHqywQmjZtamRvv/22V4+NioryWE+cONHYw2AiJAZp0qQxsvz58xtZzZo143V8p3Pjzz//NLIqVaoYWbZs2YysQIECRnbp0iWPdfHixY09nTt3jq1MJDIpU6b0WNepU8fY4zR0wlsLFy40MqfvGYAt5cqVM7LgYM8fAWP+bHI3Tv/eOg0Omj17tlfHmzlzpse6du3axp7+/ft79ZzA/XI6V6pXr25kTj/rxPxavpu5c+caGcOKAAAAAACwgEYUAAAAAGAVjSgAAAAAwCoaUQAAAACAVQl6WFFCNm/ePCOLjo726rGvvPKKx3ry5Mm+KAnJXLp06YwsNDTUyGIOmnC6Cf/RRx/16jnTpk1rZE43+seX07GyZMni1WO/+OILI3MaInP27FmP9aFDh7wrDonWjBkzPNYtWrQw9nj777mT+3ks4A+5c+eOc8+uXbu8Otb27duNbODAgfdc091MmDDByLZu3eqz4wP3at26dUb2wAMPxPt4H3zwwf2Uk6RwRRQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKsYVuQFp5uKU6Qwe/hbt255dbxVq1bdd01IPpyGEA0aNMjImjZtamSlS5f2WR0RERFGdunSJSOLiooysuDguP+p+eyzz4xs4sSJRrZhw4Y4j4XkKW/evEbWpUsXI3vmmWc81k7DhZy+zjZv3uzV8Z2GhAEJ3fHjx73a5/Tvvi8dO3bMr8cHfKF8+fJGdj+9QXLFFVEAAAAAgFU0ogAAAAAAq2hEAQAAAABWcY9oDKlTpzayypUrG5nTa76d7jN69dVXjWzv3r3xrA7J0bx584ysYcOGRnb9+nUjW7hwoZEdPHjQYx0eHu7VsQ4dOmRkTvfyOL0pesmSJY3swIEDHutevXoZey5fvmxkwN089thjRvbuu+/G+biBAwca2bhx44zs6aefNjKne0R37NgR53MCNgUFBXmVJQT16tUzMn/flwrcq2vXrhmZU2+wcuVKI4uMjPRHSYkSV0QBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALAqWQ8rSp8+vZF16NDByJwGwziZPn26kU2dOtXIeHNb3ItGjRoZWcyBQ5LUokULI9u0aZPP6ggONv+5GDZsmJHly5fPyP766y8ja9WqlceawUS4F/Xr1zeyMWPGePXYZs2aeax/+uknY0/u3LmN7O233/bq+E6DvYBAchqm6JQFQqpUqTzWL730krFnypQptsoBDKVLlzayrl27GtmZM2eMbMKECUbG94j/4YooAAAAAMAqGlEAAAAAgFU0ogAAAAAAq2hEAQAAAABWJathRZkyZfJYf/rpp8aeZ5991qtjvf7660Y2btw4I2MwEe6X00AJl8tlZNu2bfPZc6ZNm9bIvvvuOyNr0qSJkV2/ft3I2rRpY2QbNmyIZ3WA8xC5LFmyGNmqVauM7IcffvBYxxyWIklPPfWUV8cPCgoyMqeBFUAg7dixw8hOnjzpsXYa1ug0aOV+OJ1rMZ+jcOHCxp7nnnvOp3UAd+P07/ySJUuMzGkwY79+/Yxs9uzZviksieKKKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAEAAAAAViWrYUUxbyz2djDR/v37jWzMmDE+qQmIy549e4ysUqVKRjZ58mQjy549u5Ft3rzZY33gwAFjT9++fY2sVKlSRvb7778bWffu3Y1s06ZNRgbcD6dBcE6DvZyymANTnn76aWPP6NGjjezChQtG9tlnnxmZrwe8APcr5mAiSfrggw881iNHjvTqWFOnTjWyokWLGlnFihWN7M033zSyv//+22PdqFEjY8/Zs2e9qg24X8OHDzcyp8FE06dPNzJvzyH8D1dEAQAAAABW0YgCAAAAAKyiEQUAAAAAWEUjCgAAAACwKskOKypdurSR9e7dO87HOQ2GefLJJ31SExAfTl/LgwcPNrI+ffoYWYoU5u+annjiiTifc/78+UbmdP4sXrw4zmMB/hAaGurVvjNnzhjZsmXLPNZ16tTx6lhdunQxsgULFnj1WCChGT9+fJx7nIavjBs3zqvjX7p0ycicBj2+9957HuvIyEivjg/4QoMGDTzWHTp0MPZcu3bNyGbPnu23mpITrogCAAAAAKyiEQUAAAAAWEUjCgAAAACwikYUAAAAAGBVkMvlivZmY0hIiJ9L8a2pU6caWevWreN8XM+ePY1swoQJPqkpKXO5XIEuwYrEdh7AruRwHiSUc+C1114zMqfBKk6CgoI81ufPnzf2OA1yGTp0qJE5DbFIzpLDOSAlnPMACRPnQcJUuHBhI/vzzz891mnTpjX2OA0w+v77731WV1LlzXnAFVEAAAAAgFU0ogAAAAAAq2hEAQAAAABW0YgCAAAAAKwKDnQBvlCuXDkjy5w5c5yPmzx5spEtX77cJzUBAPzn66+/NrLUqVMb2VtvvWVk69ev91jPnz/f2PPxxx/fR3UAgEBKly6dkfXu3dvIsmTJ4rGeM2eOsYfBRP7DFVEAAAAAgFU0ogAAAAAAq2hEAQAAAABWBblcrmhvNibkN60dNmyYkTm9Dvzw4cMe68aNGxt7du/e7bvCkhHevBlIHucB5wBikxzOAYnzALHjPAi87t27G9m4ceOMbO3atR7rBg0aGHuuX7/uu8KSEW/OA66IAgAAAACsohEFAAAAAFhFIwoAAAAAsIpGFAAAAABgVXCgC/CFpUuXGpnTsKJevXp5rBlMBAAAACReDz30kJG9+eabRvbee+8Z2aeffuqxZjCRXVwRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAqiQxrOjnn382suDgJPG/BgAAAOAu/vvf/xpZgQIFAlAJ7hVXRAEAAAAAVtGIAgAAAACsohEFAAAAAFhFIwoAAAAAsCrI5XJFB7oIAAAAAEDywRVRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVtGIAgAAAACsohEFAAAAAFhFIwoAAAAAsIpGFAAAAABgFY0oAAAAAMAqGlEAAAAAgFU0ogAAAAAAq2hEAQAAAABW0YgCAAAAAKyiEQUAAAAAWEUjCgAAAACwikYUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMaT2+//bZCQkLc/61ZsybQJQFWHD9+XO+8844efvhh5cuXTwULFlSdOnU0bNgwuVyuQJcH+NX169f1xRdfKCwsTMWKFVPOnDlVqlQpNW/eXNOnT9etW7cCXSLgNy6XSytWrNCIESPUrl07lS5d2v1zUJMmTQJdHvD/2rv34KjKM47jTwgNFAIS7hcDlHLJAEKaoTECihaEqbWFUQQNomCUi7YWaJFGEQYDpIQmIDehqFyKoFxaEVDbiiFUwjjDIDchTCHGjCQkNrCJ3AIJ6R8MGU6ek+Sw7L5nk3w/M53J+8u7Zx+mec0+OdknRnAOfKe+2wXURIcPH5YVK1a4XQZg3GeffSZxcXFSWFhoyY8ePSpHjx6VdevWycaNGyUyMtKdAgE/On36tMTGxsrJkycteV5enuTl5UlqaqqsX79eNm3aJM2aNXOnSMCPHnjgAcnOzna7DMBVnAPf4Y7obSotLZXf//73UlJSIq1atXK7HMCYY8eOybPPPiuFhYXSqFEjiY+Pl08//VR27twpL774ogQHB0tOTo6MHj1acnNz3S4X8Kn//e9/Mnz48PImdPjw4bJp0yZJS0uTzZs3y6hRo0REZP/+/RIbGyulpaVulgv4RVlZWfnHrVu3lmHDhrlYDeAOzoHvcEf0Nq1YsUIOHTokERER8qtf/UqSk5PdLgkwIj4+Xi5evCjBwcGyZcsWGTBgQPnnBg4cKH379pWJEydKXl6ezJ07V5YvX+5itYBvLViwQL777jsREZkxY4bEx8dbPj906FC555575PXXX5f09HR577335JlnnnGjVMBvJkyYIB07dpSoqCgJDw8XEeHuP+oczoHvBHk8nrLqt0FEJCsrS/r37y+XL1+WXbt2SVpamixYsEBERHbs2CH333+/yxUC/nHo0CF58MEHRURk7NixsnTpUtt9v/nNb2Tv3r0SHBwsGRkZ/NYAaoXS0lLp0qWLFBYWSnh4uBw6dEiCg4Nt98bExEhGRob85Cc/ka+++spwpYB5N1+ADxgwQHbt2uVuMYBLOAfe4Vdzb8O0adPk0qVLMmbMGOnfv7/b5QDG7Nixo/zjsWPHVrrv6aefFpEbL9w/+eQTv9cFmHD69Ony90U/9NBDlTahIiJDhgwREZFvvvlGjhw5YqQ+AABqIhpRh95//335/PPPpUWLFvLGG2+4XQ5g1P79+0VEpFGjRhIVFVXpvlt/K+DmY4Ca7ty5c+Uft27dusq9t34+PT3dbzUBAFDT0Yg6UFBQIK+99pqIiCQkJEjz5s1drggw6+aAli5dukj9+pW/tbxdu3bStGlTy2OAmq5x48blH1ecGF3RrZ/nDAAAUDkaUQfi4+OloKBABg4cKLGxsW6XAxhVXFwsBQUFIiLSoUOHave3b99eRG78vVGgNujSpYv86Ec/EpHq73Le+vmbw40AAIBGI1qN3bt3y+bNmyUkJEQWLVrkdjmAcRcuXCj/+NY7Q5W5uefixYt+qwkwqXHjxvLQQw+JiMjXX38tW7dutd336aefWn4l/dazAwAArGhEq3Dp0iWZOnWqiIhMmTJFunXr5nJFgHmXL18u//jmXaGqhISEqMcBNV18fHz51//kyZMlKSlJsrOzpaSkRM6cOSNvvvmmjBs3ToKDg6VevRvfWjkDAABUjka0CvPmzZPs7Gz56U9/KtOmTXO7HMAVP/7xj8s/vnbtWrX7r169qh4H1HQ/+9nPZPny5RISEiLXrl2T+fPnS58+faRly5bSq1cvmT17tly9elX+/Oc/l/+x89DQUJerBgAgcNGIVuKrr76SlStXiohIcnKyNGzY0OWKAHfc+mLaya/b3tzj5Nd4gZpk1KhRkpqaKo899lj5UC4RkaCgIBkwYIDs2LFDHnnkkfJGlD9wDgBA5Soff1nHLVmyREpLS6VHjx5SUFAg27ZtU3tOnDhR/vHevXslPz9fREQGDx7MCxDUGg0aNJAWLVpIQUGBowFEOTk5IuJssBFQ0/Tq1UveffddKS0tlbNnz8qVK1ekbdu25T94+de//lW+NyIiwq0yAQAIeDSilSguLhaRG+P34+Liqt2/cOHC8o/37t1LI4papUePHpKeni6ZmZlSUlJS6Z9wyc3NlaKiovLHALVVcHCw7Q9bbh1W1K9fP5MlAQBQo/CruQCqdd9994nIjQFeBw8erHTfF198oR4D1BWlpaXlvz0TFhZWPmkXAABoNKKV2Lhxo3g8nir/N2PGjPL9O3bsKM/79OnjYuWA7/36178u//hvf/tbpfs2bNggIjfuFv3yl7/0e11AIFm7dq1kZ2eLiMgzzzwjDRo0cLkiAAACF40ogGpFRkbK/fffLyI3fkiTnp6u9mzevFnS0tJEROTJJ5+UVq1aGa0R8LebTaad1NRUee2110RE5O6775bp06ebKgsAgBqJ94gCcCQxMVGGDRsmFy9elJEjR8qUKVNk0KBBUlJSIh9//HH5lOnWrVvLzJkzXa4W8L0BAwZIv379ZMSIERIRESENGjSQ7Oxs2blzp2zZskXKysqkadOmsm7dOv50C2qlI0eOyNGjR20/l5+fL++9954lGzJkiLRp08ZEaYAxnAPfCfJ4PGVuF1FTJSYmyoIFC0Tkxq/m3rxjBNRWn332mcTFxUlhYaHt59u3by8bN26UyMhIs4UBBnTo0KHKP2HUrVs3WbVqlURFRRmsCjDn1tc9TvDaCLUR58B3uCMKwLEhQ4ZIenq6rFq1Sv75z3/Kd999J8HBwdKxY0d59NFHZdKkSUyMRq21dOlS+fzzz+XgwYNy9uxZuXDhgrRo0UJ69uwpw4cPl9GjR/O+UAAAHOKOKAAAAADAKIYVAQAAAACMohEFAAAAABhFIwoAAAAAMIpGFAAAAABgFI0oAAAAAMAoGlEAAAAAgFE0ogAAAAAAo+o73cgfqUdVPB6P2yUYwTlAVerCOeAMoCp14QyIcA5QNc4B4OwccEcUAAAAAGAUjSgAAAAAwCgaUQAAAACAUTSiAAAAAACjaEQBAAAAAEbRiAIAAAAAjKIRBQAAAAAYRSMKAAAAADCKRhQAAAAAYBSNKAAAAADAKBpRAAAAAIBRNKIAAAAAAKNoRAEAAAAARtGIAgAAAACMqu92AQAAAABQ22zatEllMTExKnvyySct6y+//NJvNQUS7ogCAAAAAIyiEQUAAAAAGEUjCgAAAAAwiveIuqB79+6W9cqVK9WeMWPGqCw3N9dvNQGmPfjgg5b17t271Z569fTPyio+TkQkLS3NV2UBAAD4RKdOnVTWuXNnlW3YsMGy7tmzp9pz7do1n9UVKLgjCgAAAAAwikYUAAAAAGAUjSgAAAAAwCgaUQAAAACAUUaGFTVp0sSyDg0NVXsKCwtVdunSJb/V5KZHHnnEsn7ggQfUnueff15liYmJKispKfFdYYCfjBs3TmW/+93vLOvr1687ulZKSorK1q9fr7Lly5erjPMCAIEtPj5eZfPmzVNZUlKSyv70pz/5pSbAifDwcJX169fP0WO7du1qWdevr1s0hhUBAAAAAHCHaEQBAAAAAEbRiAIAAAAAjKIRBQAAAAAYFeTxeMqcbGzWrJnXT5KQkGBZ270Rffr06SpbtGiR188ZyAYOHGhZ79mzx9HjIiIiVHbq1ClflHTHPB6P2yUYcSfnoK6wG0w0duxYldkN6aqoXj39szKnQ40qvvFfROTbb7919Fhv1YVzwBmoXqdOnVQ2depUlb344ouWtd1wivfff19lsbGxd1Cdf9WFMyDCOfCligMtT548qfa0adNGZXaDW1566SWVvfPOO3dQnXc4B3VT7969VXb06FFHj/3www8t68cff1ztcfr6J1A4OQfcEQUAAAAAGEUjCgAAAAAwikYUAAAAAGAUjSgAAAAAwCg9GcEls2fPVllmZqbKtm/fbqIcv2rbtq3bJQBVshtAEBkZqbI1a9aorGXLlipr2LBhtc+ZkZGhMrthRd27d6/2WoAp48ePV9nixYtV9t///ldlEydOtKzDw8PVHrvvjW+88YbK7M4PEGjsBnJNnjzZsrYbTGQnLy9PZfv37/euMOA22X0t2w1jdWrjxo2WdU0bTOQt7ogCAAAAAIyiEQUAAAAAGEUjCgAAAAAwikYUAAAAAGBUwAwrCg0NVZndIJShQ4eq7MCBA36pyRfs/l3Tpk3z6lpPPPGEyhITE726FnDTiBEjVPbCCy+ozO7s2Q0T8vYN9gsXLnR0/dWrV3t1feB2hISEqOwPf/iDymbNmqWylJQUldl9fXs8Hss6KipK7bEbVvTDDz+oDKgJYmJiVObt65hJkyap7Pjx415dC7hdixYtUllsbKwLldRs3BEFAAAAABhFIwoAAAAAMIpGFAAAAABgFI0oAAAAAMAoI8OKsrKyvHpc06ZNVTZnzhyVPf300yo7f/68V8/pa127dlVZdHS0C5UAN1Q8L+vWrfP6WnbDhLwVFBRk/DmByowfP15lc+fOVdmUKVNUtnTpUq+e024gWH5+vsrOnDnj1fUBkzp37qyyJUuWeHWt3bt3q2zPnj1eXQu4XXYDHOPi4lyopPbhFR0AAAAAwCgaUQAAAACAUTSiAAAAAACjaEQBAAAAAEYZGVa0du1ay7p9+/Zqz+zZsx1da9iwYSp7/PHHVfb22287K87P7AZNZGZmWtZdunRxdK0tW7b4pCbUHXaDvBYvXmxZX79+Xe25cuWKyvLy8lTWpEkTlTVv3txRbRWfo6ioSO256667VGZXL3An7L5mExISVLZ161aVvfXWW14/b6dOnSzr559/3utrAYFmx44dKuvZs2e1j7P7XrBw4UKVXb582bvCgCrYDapbtmyZykJCQlR28OBBlUVFRfmmsFqKO6IAAAAAAKNoRAEAAAAARtGIAgAAAACMMvIe0dLSUsva7g8ajxkzRmVdu3Z1dP2XXnpJZf/4xz9UVlBQ4Oh6vtS6dWuVOX1PKHA7RowYobJ169apzMl7LL/88kuVDRkyRGXjxo1T2erVq6u9vojIq6++alnbnVm76wN3qn5967e+ffv2qT1274mePHmyykpKSryuY8OGDZa13feG5ORkr68PuKlXr14qKysrq/ZxK1asUNm///1vn9SEmi80NFRlffv2VVn37t1Vdu+996ps1KhRlnVYWJijOl5++WWVffzxxyo7deqUo+vVVdwRBQAAAAAYRSMKAAAAADCKRhQAAAAAYBSNKAAAAADAKCPDiioqLCxUmd2wCKfDiu655x6VhYeHq8zbYUV2f7R24sSJjh77xBNPePWcQFXshvgsXrzY0WOvXLliWdsNJrJ7E75Thw8fVpnd0KS33nqr2mtt3bpVZS+88ILKoqOjHVYHiIwcOdKythtq8Ytf/EJl586d8/o5n3rqKZXFxMRY1hcuXFB7/vKXv3j9nIApKSkpKgsKClKZ3bCi3bt3W9YJCQm+Kwy1zt13362yd999V2V2/123U7EnsRu4mJSUpLKsrCxHtaFq3BEFAAAAABhFIwoAAAAAMIpGFAAAAABgFI0oAAAAAMAoV4YV2dm/f7/Knn32Wa+vd99996ns0KFDlnX//v3VHrssNDRUZTNnzvS6NidOnDihsvPnz/v1OVFzvP766ypr3Lixo8fOnz/fsk5MTPS6ji+++EJln3zyicry8vK8ur7d8Jbi4mKvrgXcVPF7y8mTJ9We9PR0r6/ftm1bldkNE6tXz/qz4KVLl6o93p4dwF+WL1+ushEjRqjMbjDRkSNHVDZmzBjLuuJAPeBWGRkZKuvTp4/KunXr5uh6RUVFlnV2drZ3hd0hp6/hahvuiAIAAAAAjKIRBQAAAAAYRSMKAAAAADCKRhQAAAAAYFTADCt6++23VTZo0CCVxcbGOrresmXLHGVOVBwoISJy/fp1r67lVM+ePVVmNwzgnXfe8WsdcF9kZKTKmjRpojK7r9Pg4GB/lFTu1KlTfr2+naCgIJXZ/duBygwbNsyynjVrltpz7do1R9dq2rSpyrZt26ayli1bqmzlypWW9YIFCxw9J2BKdHS0yuxei9gN6LLz17/+VWXff//9bdcF3MpuiOGxY8eM1/HDDz+o7OzZsyqzOy/Dhw+3rNeuXeuzugIZr94AAAAAAEbRiAIAAAAAjKIRBQAAAAAYRSMKAAAAADAqYIYV2UlOTlbZU089ZbwOu8FEZWVlxuuIiYlRGcOKapfevXurzG7wSVhYmMr8PUDLDaGhoSoLCQlRWW38t8M3Bg8eXO2eDz/80NG1Kg45EhFZtWqVyjp27Kgyu8Fer776qmVdVFTkqA7AlOeee05l7dq1c/TYEydOqGz79u13XBMQqAoKClT2zTffqMxuWFFqaqpfagp03BEFAAAAABhFIwoAAAAAMIpGFAAAAABgFI0oAAAAAMCogB5WFCjshkzYDSvatWuXygoLC1U2a9Ys3xSGWmfJkiUqsxt8UleMHDlSZdHR0S5UgpoqLy9PZVeuXLGsN2/erPY0adJEZa1atVJZcXGxyoKCglS2fPlyldl9fwDcMmXKFJXFxcWpzOmwxocfflhlOTk5t10XUBfk5ua6XYIruCMKAAAAADCKRhQAAAAAYBSNKAAAAADAKBpRAAAAAIBRdWpY0blz5yzr7OxstSc5OVllmzZt8vo5IyMjVcawIvjDK6+84nYJdyQiIkJlSUlJjh6blZWlsooDaVA3HTt2TGWTJk2yrO0Gshw+fFhldt8Lli1bprIDBw6obNWqVVXWCZgWHh5uWdudg3r19P2K0tJSla1evVplDCYC7NkN/MrPz3ehEvdxRxQAAAAAYBSNKAAAAADAKBpRAAAAAIBRAf0e0czMTJWtX79eZV26dFHZiRMnVFbxD4rbvXcokA0dOlRlYWFhKjt//ryJchBgCgoK3C7htlR8T+j27dvVnhYtWqjM7n0UI0eOVFleXt4dVIfarOL3EbvvK0FBQSpbvHixytq0aaOyxx57TGW8Zxlu6tq1q8o++ugjy7pHjx6OrrVo0SKVzZgxw7vCAJdVPBvNmzd39LhLly6prOIsGhGRlJQUldnNv2jVqlWVaxGRRo0aqWzu3Lkq27Jli8oqnvdAwR1RAAAAAIBRNKIAAAAAAKNoRAEAAAAARtGIAgAAAACMCuhhRUVFRSp77rnnXKgkMHTo0EFlISEhLlQCf7EbkGL3B8XtrFmzRmV2Q1j8LTQ01FEdw4cPr/ZadgPLHn30UZWdPHnSYXWAM4MGDVLZb3/7W5XNmzdPZQcOHPBLTYC37AYROR1OVFGgDj1B3WX3WthukOmECRNUNnHiRMvabiCQnatXr6rswoULKnM6/KjigKHvv/9e7bH7d951110qO3v2rMoC9dxyRxQAAAAAYBSNKAAAAADAKBpRAAAAAIBRNKIAAAAAAKMCelhRbeDxeFSWm5trWbdr187r68+fP19lFd94LSJSUlLi9XPAnLlz56rsgw8+UJndm9PtpKamqqysrMyy3r59u9pjN/znlVdeUZndcCW7N9NHR0er7NKlS5a13dfy3//+d0e1Ab62ceNGleXk5KgsKSnJRDnAHXE6MKWiPXv2qOz48eN3WA3gvTZt2qjszTffVNno0aN99pwVX7eL6NdSIiJff/21yg4fPuyzOpxat26d8ef0FndEAQAAAABG0YgCAAAAAIyiEQUAAAAAGEUjCgAAAAAwKsjj8eh329po1qyZn0upO+69917L2m4gi92bsZ2yG2Rz8eJFr6/nhN1QptrIjXMwaNAglW3btk1ldv+/16unf9Z0/fp13xR2G9dPS0tT2fr166tc10R14RzUxu8F/fr1U1l6errKXn75ZZWtXLnSLzXVVHXhDIjUvHOQlZWlsvDw8GofZzfwZevWrb4oqVbjHPjP1KlTVZaSkuL19Xbu3GlZJycnqz379u1T2bVr17x+zrrCyTngjigAAAAAwCgaUQAAAACAUTSiAAAAAACjaEQBAAAAAEYxrCgA2A3KqPjmaRGRli1bOrre4MGDVWY3LMaXeGO+WR06dFDZhAkTVDZz5kyV+XJYUX5+vsr+85//qGzixIkqKyws9FkdgaIunINAOQN3omHDhpa13WCisLAwlfXu3Vtl/h4EV9PUhTMgEtjnoFevXirbs2ePypo3b25Zz5kzR+1JSEhQWVmZo5eNdRrnwH86d+6sso8++khlOTk5Kvvggw9UtmbNGp/UBY1hRQAAAACAgEMjCgAAAAAwikYUAAAAAGAUjSgAAAAAwKj6bhcAkQMHDqhs6tSpKps+fbrKdu3a5eh6qF3OnDmjstmzZ6ssMzNTZX/84x8t64iICLUnIyNDZQsXLlTZ6dOnVbZv3z6VAYFk/PjxlnXfvn3VHruMwUSoCWJiYlTWpEmTah9XXFysMgYTIdBkZWWprE+fPuYLgU9wRxQAAAAAYBSNKAAAAADAKBpRAAAAAIBRNKIAAAAAAKOCPB6Po3eiN2vWzM+loCbzeDxul2AE5wBVqQvnoDacgePHj1vWdkNafv7zn6uspKTEbzXVFnXhDIjUvHPw7bffqqxRo0aW9cMPP6z2HDp0yF8l1WqcA8DZOeCOKAAAAADAKBpRAAAAAIBRNKIAAAAAAKPqu10AAAAmNW/e3LKeM2eO2sP7QVGbdOrUye0SAEDhjigAAAAAwCgaUQAAAACAUTSiAAAAAACjaEQBAAAAAEYxrAgAUKe0bdvW7RIAAKjzuCMKAAAAADCKRhQAAAAAYBSNKAAAAADAKBpRAAAAAIBRNKIAAAAAAKNoRAEAAAAARtGIAgAAAACMohEFAAAAABhFIwoAAAAAMCrI4/GUuV0EAAAAAKDu4I4oAAAAAMAoGlEAAAAAgFE0ogAAAAAAo2hEAQAAAABG0YgCAAAAAIyiEQUAAAAAGEUjCgAAAAAwikYUAAAAAGAUjSgAAAAAwKj/A2rUPv6UnH21AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6IAAAPTCAYAAACqhrTjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdd0lEQVR4nOzdeZyN9f//8efYjW0wdiH7vkRZsiUkZMu+RT5J+USiJFq+qVBUtmxFJVlCxlKWECElWyTb2LKF4Ri7Geb3h5/5OPO+zBzjnPeZ5XG/3brd5v2c97nOy+Qy85rrXK8T4HK5ogQAAAAAgCUp/F0AAAAAACB5oREFAAAAAFhFIwoAAAAAsIpGFAAAAABgFY0oAAAAAMAqGlEAAAAAgFU0ogAAAAAAq2hEAQAAAABW0YgCAAAAAKyiEQUALzl8+LCCgoIUFBTk71LgBU2aNFFQUJBmzJjhtWP+8ssvCgoKUrly5bx2TF964YUXFBQUpGHDhvm7FABAEpPK3wUAQELWpEkTrV+/Ps59hw4d8n0xDhYvXqwdO3aoZs2aqlWr1j0//saNG1q3bp2WL1+u33//Xfv27dPFixeVOXNmlStXTq1bt1bHjh2VMmVKx8d78vWZO3eu6tevf0913W58bjdCAAAgaaERBQAP5M+fX/nz57/r51OlSqXUqVOrWLFiFquSlixZopkzZ0pSvBrRGTNmqE+fPpKkgIAAPfjggypUqJAOHz6sNWvWaM2aNZoxY4Zmz56tLFmy3PU4RYoUUY4cORw/F59GcsSIEZKkjh07+q0RzZ8/v4oVK6bMmTN77ZiBgYEqVqyY8uTJ47Vj+lLu3LlVrFgxZc+e3d+lAACSGBpRAPBAp06dNGjQoFj3ZMyYUZs2bbJUkfeULl1aPXv2VPPmzZU1a1ZJUlRUlGbMmKFXXnlFGzdu1IABAzRlypS7HuOVV15Rp06dbJVsxaRJk7x+zMqVKyeqvyNvv/223n77bX+XAQBIgrhHFACSsaeeekrr169Xt27doptQ6dbV0c6dO+u1116TJM2fP1/nzp3zV5kAACCJoREFAC+JbVjRnUNfzp8/r7fffltVqlRR7ty53QbXhIeH64MPPlDNmjWVL18+5ciRQyVKlFDdunU1ePBgHThwwO25br8sd8SIEdHPfS/DcLJmzaqAgIC7fr5BgwaSbt1LGhoa6umXIt6GDRvm9vWrUKGC25/rzqE55cqVU1BQkH755Rft27dPvXr1UunSpRUcHKwXXnghet+GDRv05ptvql69eipRooRy5MihYsWKqW3btvrxxx/vWsvdhhXFHDj0ww8/qEmTJipQoIDy5s2rxx9/XPPmzXM8ZmzDiu58vnPnzun1119XuXLllDNnTpUqVUp9+vTRv//+e9d6//33X/Xr10+lS5dWrly5VK5cOb3++utyuVzRX9c7vy6euNuwoph/11euXKlmzZqpYMGCKlCggJo3b67ffvsten9oaKh69eqlUqVKKVeuXKpWrZqmTZvm+JzXr1/XwoUL1bt3b9WoUUOFChWK/vM8//zz2rlzZ6w1b9u2TR06dNCDDz6oPHnyqEaNGho/frxu3rwZ5wCqkydP6q233lL16tWVL18+5c2bVzVq1NDw4cN14cIFx8f8+++/euONN1S1alXlyZNHuXLlUqlSpdSwYUO99957OnXqVKz1AkByxUtzAcCis2fP6rHHHtPBgwdVvHhxlShRQlevXpUkXbhwQQ0aNNCePXui79cMCgrS6dOn9ddff2nbtm0qUaKEChcurHTp0qlatWoKDQ3V6dOnjXtYc+XK5ZV6b9cm3bq/8W4WLlyoH374QeHh4cqWLZsqVaqktm3bKm/evPf0fPnz51e1atW0ceNGSVKlSpWUNm1at8/HtGnTJo0cOVI3btxQiRIlFBQUpBQp/vd71s6dO+vs2bPKmjWrcufOrdy5c+vYsWNavny5li9frn79+sX75acjRozQsGHDlDNnThUuXFgHDx7U5s2b1aNHD4WFhalnz573fMzjx4+rVq1aOnnypIoXL660adPqwIED+vrrr7V27VqtXbvWuG/1wIEDatKkiU6cOKGUKVOqZMmSioqK0uTJk7V8+XI1bNgwXn8+T0ybNk2vvPKKcuTIoUKFCik0NFRr1qzRb7/9pgULFihlypR6+umndfPmTRUtWlSRkZHavXu3+vXrpwsXLkTfo3zb/v371bVrV6VIkUI5cuRQgQIFFBERoX/++UezZ8/W999/r6+++kpPPvmkUcuSJUvUrVs3RUREKEOGDCpZsqTOnj2rwYMH6/fff4/1z7FmzRp16dJF4eHhSpMmjQoWLChJ2rNnj4YPH6558+Zp4cKFbvf3Hjt2TI8//rhOnjypVKlSqXDhwsqYMaP+/fdfbd68Wb///rtq1qypnDlzeuErDQBJC40oAFg0depUlSpVSn/88YeKFCkiSbpy5Yokafr06dqzZ49Kly6tmTNnRv8gLN1qCJcuXRrd2OXKlUtLly7VCy+8oJkzZ3p0D2t8zJ07V5IUHBysEiVK3HXfsmXL3NYhISH64IMP9O6776pXr14eP1+XLl3UpUuX6CttX375pdvXwcn777+vVq1a6aOPPop+3O2vqSS98847ql27tgoVKuT2uJ9//lnPPfecPvnkEzVu3FgPP/ywx3VKt66effrpp5oyZYratGkjSYqMjNTrr7+uzz//XO+++646dOigTJky3dNxP/zwQ9WqVUs//fSTcufOLUnavn272rRpo0OHDmncuHF64403ovdHRUXpueee04kTJ1SuXDlNnz49+s8aGhqqjh076osvvrinGu7FG2+8odGjR6tLly4KCAjQpUuX9Mwzz+inn37S66+/rrNnz6p169Z67733on+Z8d5772nkyJEaPny4unXr5tZYBwcHa9KkSWrYsKHby8WvXbumr7/+Wq+//rpefPFF/fXXX26/HDl58qReeOEFRUREqG3btvr444+VMWNGSdJPP/2kbt266dq1a45/hgMHDqhz5866cOGCBgwYoJdffjn6sSdPntRLL72kFStW6Pnnn9fChQujHzd27FidPHlSderU0RdffKHg4ODoz4WHh2vRokX3/MsYAEgueGkuAHgg5ktf7/xv8eLFHh8nZcqUmjFjRnQTKknp06eXJO3bt0/SrWYsZvOVLl06tWjRQo888ogX/jSe2bx5c/TLJ19++WXHt3ApX768Ro0apfXr1+vIkSM6fvy4li9frqZNm+r69et6/fXX9fXXX/u0zmLFimnChAluL+m9/TWVpK5duxpNqCTVrVtXb775piRFv8T5XkREROiVV16JbkKlW9OT33vvPQUHB+vixYv65Zdf7vm4mTNn1tSpU6ObUOnWS5RvXzlcunSp2/5ffvlFmzdvVurUqd2aUOnWNOOvvvpKN27cuOc6PNWpUyd17do1+iXeGTJk0HvvvSfp1stkM2bMqJEjR7o1jQMHDlTu3Ll1+fJl42uUM2dOtWvXzq0JlaS0adPqueee09NPP61z584ZX4epU6cqPDxcxYoV02effRbdSEpS/fr19e677yoiIsLxz3D7pbfPP/+8hgwZ4vbY3Llza+rUqcqbN6/Wrl2rzZs3R3/u9jnbs2dPtyZUuvX/sVOnTipevHjsX0AASKa4IgoAHojt7VuyZcvm8XHq1Klz1yt8DzzwgKRbjUaXLl3cfhi27eTJk+ratasiIyNVo0aNu95bGPPeQUl65JFH9M0336hfv36aNm2a3n77bT399NPKkCGDT2rt0KGDUqWK/dvZ7t27tWDBAv311186d+6cIiMjJd26aiVJf/75Z7ye+z//+Y+RpUuXTuXLl9eqVaui7+m9F61bt3a8z/j2LyEOHjzolq9cuVKSHK/6SlLJkiVVtWpV/frrr/dciyeeeeYZx+dMnz69rly5oi5duri9VFqSUqdOrbJly+rkyZN3/RqtWbNGy5cv1/79+3XhwgXdvHlTknT06FFJt/6ftWrVKnr/7a9Dx44dHf8+dOjQQYMGDTKuikZERET/MqlHjx6OtWTKlEl169bVt99+qzVr1qhy5cqS/nfOhoSEqEGDBkqTJo3j4wEAJhpRAPCAt176WrJkybt+rnPnzho/frzWrFmjkiVLqm7duqpataqqVaumhx56yPGKpC+EhYWpZcuWOnbsmEqWLKnp06fH67nffvvt6ME7a9eudbynzxti+5pKt16aO3r0aEVFRd11z9mzZ+/5ebNnz25ctbvt9nuqXrx48Z6PW7RoUcf89n2GMYfm3L4qF9uAqvLly/usES1cuLBjnj17dh09evSun799BfHSpUtu+cWLF9WlSxetXr061ueN+f8srq9D+vTpVbRoUf31119ueWhoqC5fvixJxv2qd/rnn38k3bov9LZevXpp1qxZmjNnjn766SfVq1dPjzzyiKpVq6Zy5crFOggMAJI7XpoLABbFNvAnZ86cWrlypTp06KAUKVJo8eLFevPNN9WgQQOVKFFCo0aNir6S5ysul0stWrTQ33//raJFiyokJETZs2eP17GCgoKim0RfTtyN7Ws6b948ffrppwoICNDAgQO1bt06/fPPPzp79qxcLpdCQkIk6a4v2Yzv896+Ahhb83uvx71bU3O7kYvtCvq93qd6L+52pft2vXH9eWJ+jd58802tXr1a2bNn15gxY7R161adOHFCLpdLLpdLr776qiTz/1l8vw4ulyv6440bN971v9sN6O2mVbr1S5AVK1aoadOmunLliubOnavXXntNtWvXVvny5e86GRgAwBVRAEhQChUqpAkTJujGjRvasWOHNm7cqBUrVmjVqlUaOnSowsPD9X//938+ee7z58+rRYsW2rFjhwoXLqxFixbd9/Td2y9V9HUDfTfffvutJKl3796OV7STwnuj3m4EY7v6ere3HkloIiMj9d1330mSPvvsMz3xxBPGnrv9P8uQIYPCw8Pv+etw++sXEBCgM2fO3PPV/3Llyumbb77R9evXtXXrVm3cuFE//vijNm7cqH79+unmzZt3fckvACRnXBEFgAQoZcqUqlixonr16qV58+bpww8/lHRrIMudV5C89dK/8PBwtWrVStu2bVOhQoW0aNEit7epiI/IyEjt3btXkpQvXz5vlHnPDh8+LEmqUaOG4+c3bdpksxyfKFasmCTF+v6aO3bssFXOfTlz5kx0I3mv/8/i+jpcuXLF8cp80aJFlTZtWkVFRWnXrl3xKVvSrV+6VK1aVX379tXSpUv10ksvSZJPJxYDQGJGIwoAiUDVqlUl3bqic+dVndsve7zz7Uru1cWLF9W6dWtt3rxZBQsW1KJFi7zSOH7xxRcKDw9XqlSpVLt27Xt6rDf+XNL/puf++++/xufOnDkTfcU0MXv88ccl3Rruc7vxvtPevXuj35c1obtz2rHT/7M1a9Zo+/btjo+9/XWYOXOm4xX42bNnu70v7p3PefvK69ixY+NVt5Pb5+zx48e9dkwASEpoRAEggfi///s/ffHFFzp16pRb7nK59Mknn0i6dfXmzvdcfPDBByVJv/76q65fv37Pz3n58mW1a9dOv//+uwoUKKDFixdHTwKNy8yZM/XRRx9FTzG97dq1axo/fryGDBki6dZk2Xt9ie/tP9fPP/98T4+L6dFHH5UkjRo1Svv374/ODx06pHbt2t13o5sQ1KpVS1WqVFFERIS6du2qI0eORH/uwIEDeuaZZ6wNurpfWbJkUdmyZSVJgwYNcrt/85dfflGPHj2ULl06x8c+++yzypw5s/bs2aP//ve/bkOQVq1apTfffFOpU6d2fOybb76pTJkyac6cOerbt6/RBEdGRmrdunXq3bu3W2PZt29fzZo1y61O6VYT/dlnn0mSHnroIY///ACQnHCPKAAkEHv27NEnn3yi/v37K3/+/MqVK5cuX76sAwcO6Nq1a8qQIYNGjx7t9pjmzZvr/fff16ZNm1S6dGkVKVJEqVKlUq5cuTR16tQ4n3PixIlav369pFtvqfHcc8/ddW///v3VoEGD6PW5c+f0/vvv6/3331fevHmVO3du3bhxQ/v27Yse6NKqVSsNHTr0nr8W7du315tvvqnXX39dU6dOVXBwsAICAtSxY0d16tTJ4+P07dtX33//vf755x9Vq1ZNRYsWVYoUKbR7925lypRJQ4cOjR5+k1gFBARo8uTJaty4sbZv365KlSqpVKlSunnzpnbv3q2CBQvq2Wef1aRJkxJFQ/ruu++qTZs2WrFihcqUKaMiRYro/PnzOnz4sMqVK6e6des6XrnMnTu3JkyYoGeeeUazZs3S4sWLVaxYMZ07d06HDh1Ss2bNdObMGW3YsMH4OhQrVkzffvutunXrpq+++krTp09XkSJFFBQUpIsXL0afg5L02muvRT9u8+bN+uqrrxQQEKBChQope/bsCg8P14EDBxQZGakcOXI4vsURAIArogCQYLz22msaMGCAqlevrqioKO3YsUOHDh1SwYIF9dxzz2nDhg3RV/huy58/v+bPn68GDRooKipKmzZt0vr16z2+9/HO91QMDQ2NdWpozCu19erVU9++ffXoo48qRYoU+vvvv7V7925ly5ZNLVq00Jw5czR16tS7XoWKTe/evTV06FCVLVtWR48e1YYNG7R+/Xq3q32eyJMnj1asWKG2bdsqKChIoaGhCg8PV4cOHbR27do43/olsShcuLDWrFmj7t27K2fOnNq7d6/Cw8PVo0cPrVq1Kvr/gS+n53pLvXr1tGjRItWtW1cBAQHat2+f0qZNqwEDBmjZsmWxTitu0qSJfvrpJzVq1EipUqXS33//rfTp02vo0KGaNm1a9C9InL4OtWrV0qZNm/TGG2/ooYce0r///qstW7bo+PHjKlWqlPr06aNly5apQIEC0Y8ZNmyY/vvf/+qhhx7SlStXtH37dh07dkwlSpRQv3799Ouvv6pEiRLe/yIBQBIQ4HK57n22PAAASDTatm2r5cuXa/jw4erVq5e/y/GLGzdu6MEHH1R4eLjWrVsX/RJgAIB/cEUUAIAk7MiRI9H32t5tEm1y8P333ys8PFzZsmVLMlfCASAxoxEFACCRO3z4sMaOHauwsDC3fMeOHWrfvr2uX7+u6tWrq3z58n6q0I6ffvpJ8+fPd3vJeVRUlBYtWqT+/ftLujXUKFUqRmQAgL/x0lwAABK5Xbt2qUaNGkqRIoWKFCmiLFmy6NSpU9H31ObPn1+LFi2KnkacVE2ePFmvvfaa0qVLpyJFiihdunQ6dOhQdINeq1YtzZ07V2nTpvVzpQAAGlEAABK58PBwjRs3Tj///LMOHz6sc+fOKXXq1HrwwQfVqFEjvfjii8qWLZu/y/S5vXv3asqUKVq/fr1Onjyp8PBwZcyYUaVLl1br1q3VpUuXeA3PAgB4H40oAAAAAMAq7hEFAAAAAFhFIwoAAAAAsIpGFAAAAABgFY0oAAAAAMAqGlEAAAAAgFU0ogAAAAAAq2hEAQAAAABW0YgCAAAAAKyiEQUAAAAAWEUjCgAAAACwikYUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtS+buAhC4oKMijfQ888IB27Njh22KABODYsWOaPHmyli5dqqNHjyplypQqWLCgmjZtqueff97jcwZIKt566y2NGTMmer1o0SLVqlXLjxUBvuFyubR161Zt3rxZmzdv1tatW3Xy5ElJ0qOPPqolS5b4uULAnmvXrmnmzJkKCQnRjh07dP78eWXNmlWlSpVS69at1bFjR6VMmdLfZSZoNKIAPPbTTz+pR48eOn/+vFu+Y8cO7dixQ1999ZW+/fZbVaxY0T8FApZt375dn332mb/LAKyoXbu2jhw54u8yAL8LDQ1Vp06dtHv3brf81KlTOnXqlNasWaOvvvpKs2bNUnBwsJ+qTPhoRD3Uo0cP9ejR466fT5MmjcVqAPt27typZ555RpcuXVJgYKD69u2rOnXqKDIyUj/88IMmTZqk48ePq127dvr555+VJ08ef5cM+NSNGzfUt29fRUZGKkeOHDp9+rS/SwJ8KioqKvrjnDlzqlKlSlq2bJkfKwLsO3PmjJo3b66jR49Kkpo2baqOHTsqX758On36tObPn6+ZM2fqjz/+UNu2bbV06VL6hLugEfVQcHCwSpcu7e8yAL8ZNGiQLl26pJQpU+q7777To48+Gv25mjVrqkKFCnr++ef177//6r333tP48eP9WC3ge5999pm2bdumkiVLqkmTJho1apS/SwJ8qmfPnipQoIAqV66s/PnzS/L8FiYgqRgxYkR0EzpgwAANGTLE7fP169dXlSpV9Morr2jLli2aMmWKevfu7Y9SEzyGFQGI07Zt2/TLL79Ikjp27OjWhN7Wrl071a5dW5I0a9Ysrg4hSTt06JCGDRumgIAAffzxx0qVit/rIul76aWX1Lx58+gmFEhubty4oTlz5kiS8ufPr0GDBjnue/bZZ/XQQw9JkkaPHq2bN29aqzExoREFEKdFixZFf9ylS5e77uvcubOkW/9Q//jjjz6vC/CXV155RZcvX1anTp1Uo0YNf5cDALAgNDQ0ek5GvXr1Yh1G1KBBA0m37hvdsGGDlfoSGxpRAHH69ddfJUmBgYHRv+Fzcuek0NuPAZKaWbNmadWqVcqePbveffddf5cDALDk7Nmz0R/nzJkz1r13fp5G1BmNqIdCQkJUrVo15c2bV/ny5VPFihX1n//8h5v0kSzs2bNHklS4cOFYX4KYJ08eZcqUye0xQFISFhamwYMHS5KGDh2qbNmy+bkiAIAtGTJkiP445jsIxHTn52NO18Ut3NTioZh/gS5duqRDhw5p7ty5qlWrlr744os4fzMCJEbXrl1TWFiYJClfvnxx7s+XL592796tY8eO+bo0wLpBgwYpLCxMNWvWVMeOHf1dDgDAosKFCyt16tSKiIjQ+vXrY91751XQ28ON4I4ronEIDAxUq1atNHr0aP3www9au3atQkJCNHjwYOXNm1eS9Msvv6hFixa6cOGCn6sFvO/ixYvRH9/5m8C7ub3n0qVLPqsJ8IeVK1dqzpw5SpMmjT755BN/lwMAsCxDhgyqW7euJGnXrl2aPXu24741a9Zo5cqV0es7f5bC/3BFNA67du1yHE1ep04dPf/88+rSpYvWrFmjXbt26cMPP9TQoUPtFwn40JUrV6I/Tp06dZz7b79X1p2PAxK7S5cuqV+/fpKkl19+WcWKFfNzRQAAf3j99de1evVqRUZGqnfv3jpw4IDxPqIffPCBUqdOrevXr0viZ6K74YpoHGJ7f6zMmTPrq6++UtasWSVJ06ZNi/4LByQV6dOnj/44IiIizv23z4E7Hwckdh988IGOHDmiIkWKqH///v4uBwDgJ5UrV9bYsWOVJk0aRUZGasSIEapQoYKCg4NVqlQpDR48WFevXtXIkSOjH5MxY0Y/Vpxw0Yjep6CgILVq1UrSrcvu27Zt829BgJfd+Y+nJy+3vb3Hk5fxAonB1q1bNXHiREnSqFGjlDZtWj9XBADwpw4dOmjlypVq0aJF9JBGSUqRIoXq1q2rZcuWqVGjRtF5bBe2kjNemusFJUuWjP74+PHjfqwE8L60adMqe/bsCgsL82gA0e1zwJPBRkBiMGbMGN24cUMlSpRQWFiY5s2bZ+z5+++/oz9eu3atTp06JUl6/PHH+QEEAJKgcuXK6csvv9SNGzd08uRJXbt2Tblz51ZgYKAk97exu7NXwP/QiHpBQECAv0sAfKpEiRLasGGDDhw4oMjIyLu+hcuJEycUHh4e/RggKbh27ZqkW29J1KNHjzj3f/TRR9Efr127lkYUAJKwlClTOv7yfevWrdEfV6lSxWZJiQYvzfWCO9/aJXfu3H6sBPCN6tWrS5IuX76sLVu23HXfunXrjMcAAAAkNyEhIZJuvQPHnS/Txf/QiN4nl8sV/TKtwMBAVapUyc8VAd731FNPRX88ffr0u+775ptvJN367eCTTz7p87oAG7799lu5XK5Y/xs4cGD0/kWLFkXn5cuX92PlAAB/WLFihX777TdJUtu2bZUlSxY/V5Qw0YjG4scff1RkZORdPx8eHq5u3brp3LlzkqQuXbowxAJJUsWKFVWzZk1Jt34ov/NNmm+bM2eO1qxZI0lq3769cuTIYbVGAAAAG2KbCbN9+3Y9//zzkqTg4GC99dZbtspKdLhHNBavvfaaIiIi9NRTT+nhhx9WwYIFlT59erlcLm3cuFFffvll9F/E4sWLa9CgQX6uGPCd4cOH64knntClS5fUunVrvfzyy6pTp44iIyP1ww8/RE8VzZUrl4YMGeLnagEA3vbnn39qx44djp87deqUZsyY4ZbVr19fuXLlslEaYFX16tVVrVo1NWrUSKVKlVK6dOl04sQJLVu2TDNmzFBERIQCAwM1depUZcuWzd/lJlgBLpcryt9FJFTlypXTP//8E+e+2rVra9KkScqTJ4+FqgD/+emnn9SjRw+dP3/e8fN58+bVt99+q4oVK9otDPCzYcOGacSIEZJuvTS3Vq1afq4I8L47/557gnMBSVW+fPlifUu7ggULasKECapRo4bFqhIfrojGYsKECVq/fr02b96sgwcPKiwsTOHh4QoMDFTevHlVpUoVtWnTRnXq1PF3qYAV9evX14YNGzRp0iQtW7ZMR48eVcqUKVWgQAE1bdpUvXr1YkIoAABI0saOHatVq1Zpy5YtOnnypC5cuKDg4GCVKFFCzZo1U4cOHZQ+fXp/l5ngcUUUAAAAAGAVw4oAAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVqTzdyJvUIzYul8vfJVjBeYDYJIfzgHMAsUkO54DEeYDYcR4Anp0HXBEFAAAAAFhFIwoAAAAAsIpGFAAAAABgFY0oAAAAAMAqGlEAAAAAgFU0ogAAAAAAq2hEAQAAAABW0YgCAAAAAKyiEQUAAAAAWEUjCgAAAACwikYUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALAqlb8LAJC0VK5c2cj++9//GlnXrl3d1l9//bWxZ+zYsUa2ZcuW+6gOAAAACQFXRAEAAAAAVtGIAgAAAACsohEFAAAAAFhFIwoAAAAAsIphRTGkTJnSyLJkyRLv4zkNaQkMDHRblyhRwtjTu3dvIxs5cqSRdejQwciuXr1qZMOHDzey//u//zMy4F5UrFjRyFasWGFkmTNnNrKoqCi3dZcuXYw9zZo1M7Ls2bPfQ4VA0vP4448b2YwZM4ysTp06RrZnzx6f1AR4y5AhQ4zM6eeVFCnMayl169Y1sjVr1nilLgDexxVRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVtGIAgAAAACsShLDigoUKGBkadKkMbIaNWq4rWvWrGnsCQoKMrKnn346/sV54OjRo0Y2ZswYI2vZsqWRXbhwwci2b99uZNysj/v1yCOPGNm8efOMzGm4V8zBRJL5d/f69evGHqfBRNWqVTOyLVu2GJnT8ZCw1K5d28ic/p9///33NspJNB5++GEj27Rpkx8qAe5ft27d3NYDBw409ty8edOjYzl9rwGQcHFFFAAAAABgFY0oAAAAAMAqGlEAAAAAgFU0ogAAAAAAqxLdsKKKFSsa2apVq4zMaWBKQhHzpvshQ4YYey5evGhkM2bMMLITJ04Y2blz54xsz54991IikpHAwEAje+ihh4zsm2++MbI8efLE+3n37dvntv7www+NPbNmzTKy9evXG5nTOTRs2LB41wY76tata2TFihUzsuQ8rChFCvP3xQ8++KCRFSxY0MgCAgJ8UhPgTTH/7qZLl85PlQDOqlatamSdO3c2sjp16hhZmTJlPHqOAQMGuK2PHz9u7HEasur0s9lvv/3m0XMmBFwRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAqkQ3rOjIkSNGFhYWZmS+HlbkdCOwy+Uysscee8zIrl+/7raePn261+oC7tWkSZOMrEOHDj5/3pgDkTJmzGjsWbNmjZE5DbgpX7681+qCPV27djWyX3/91Q+VJFxOA8Gee+45I3MaWLF7926f1ATEV/369Y3spZdeivNxTn+XmzZtamT//vtv/AoD/r927doZ2ejRo40sODjYyJwGxP38889GliNHDiP76KOP4qzN6fhOx2rfvn2cx0oouCIKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBViW5Y0dmzZ43s1VdfNTKnm9i3bt3qth4zZoxHz7lt2zYja9CggZFdunTJyMqUKWNkffv29eh5AV+oXLmy27pJkybGHqcb4p04DRNatGiRkY0cOdLIjh8/7raOeX5K0rlz54ysXr16RuZpvUhYUqTgd6Fx+fzzzz3at2/fPh9XAtybmjVrGtm0adOMzJPhkk6DXA4fPhy/wpBspUpltj1VqlRxW0+ZMsXYExgYaGRr1641sqFDhxrZunXrjCxt2rRGNmfOHLd1w4YNjT1O/vjjD4/2JVT8FAAAAAAAsIpGFAAAAABgFY0oAAAAAMAqGlEAAAAAgFWJbliRkwULFhjZqlWrjOzChQtu6woVKhh7evToYWROg1acBhM5+euvv4ysZ8+eHj0WuF8VK1Y0shUrVritM2fObOyJiooysh9//NHIOnToYGR16tQxsiFDhhhZzCEsp0+fNvZs377dyG7evGlkTgOXHnroISPbsmWLkcGe8uXLu61z5crlp0oSD08GuUjmeQ342zPPPGNkefPmjfNxP//8s5F9/fXX3igJyVznzp2NzJOBcE7/vrZr187IwsPDParD6bGeDCc6evSokX311VcePWdCxRVRAAAAAIBVNKIAAAAAAKtoRAEAAAAAViWJe0SdePI67fPnz3t0rOeee87IZs+ebWRO964BthQvXtzIXn31VSOLec/ZmTNnjD0nTpwwMqf7EC5evGhkS5Ys8SjzpvTp0xtZ//79jaxTp04+rQOxa9y4sdva6f9bcuZ0z+yDDz7o0WOPHTvm7XIAjwUHBxvZs88+a2ROPye5XC639Xvvvee1upB8DR061MjeeOMNI4s5E+Ozzz4z9jjNufD0flAngwcPjtfj+vTpY2RO8zUSE66IAgAAAACsohEFAAAAAFhFIwoAAAAAsIpGFAAAAABgVZIdVuSJd955x8gqV65sZHXq1DGy+vXrG9ny5cu9UhcQl7Rp0xrZyJEjjSzmcBhJunDhgtu6a9euxp4//vjDyBLbYJkCBQr4uwTEUKJEiTj3/PXXXxYqSZiczmGnAUZ79+41spjnNeArhQoVMrJ58+bF+3hjx451W69evTrex0Ly9NZbbxmZ02Ci69evG9myZcvc1gMHDjT2XLlyxaM60qVLZ2QNGzY0MqefTwICAtzWTkO7QkJCPKojMeGKKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAEAAAAAViXrYUWXLl0ysueee87ItmzZYmRTpkwxMqcb7J2GvowfP95tHRUVFWudQEyVKlUyMqfBRE6aN2/utl6zZo1XagK8YdOmTf4u4b5lzpzZyBo1amRknTt3dls7DbVwMnToUCNzuVyeFQfcJ6e/y+XLl/fosStXrjSy0aNH33dNSD6CgoKM7MUXXzQyp5+tYw4mkqQWLVrEq46iRYsa2YwZM4zMaQiqk7lz57qtP/zww3jVldhwRRQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKuS9bAiJ6GhoUbWrVs3I5s2bZqRdenSxaMsQ4YMbuuvv/7a2HPixInYykQy9/HHHxtZQECAkTkNIkrsw4lSpDB/f3bz5k0/VAJfyJYtm1ePV6FCBSOLea7Ur1/f2JM/f34jS5MmjZF16tTJyJz+jl65csXIfvvtN7f1tWvXjD2pUpnfpjdv3mxkgC84DXIZPny4R49dt26dkT3zzDNGdv78+XuuC8mX07/DwcHBHj22T58+RpYzZ063dffu3Y09zZo1M7KyZcsaWcaMGY3MaWiSU/bNN9+4rZ0GqiZFXBEFAAAAAFhFIwoAAAAAsIpGFAAAAABgFY0oAAAAAMAqhhV54Pvvvzeyffv2GZnTAJnHH3/cyD744AO3dcGCBY0977//vpEdO3Ys1jqRNDVt2tTIKlasaGRON78vXLjQFyX5ldNgIqc/+7Zt2yxUg3sRc2CP0/+3iRMnGtkbb7wR7+csX768kcUcVhQZGWnsuXz5spHt2rXLyKZOnWpkf/zxh5E5DQn7999/3dZHjx419qRPn97Idu/ebWTA/SpUqJCRzZs3L97HO3DggJHF/DsP3Kvr168b2enTp40sR44cRnbw4EEjc/o+5Injx48bWXh4uJHlyZPHyM6cOWNkixYtilcdiR1XRAEAAAAAVtGIAgAAAACsohEFAAAAAFhFIwoAAAAAsIphRfG0c+dOI2vbtq2RPfXUU0Y2bdo0t/Xzzz9v7ClWrJiRNWjQ4F5KRBLhNKwkTZo0Rnbq1Ckjmz17tk9q8oW0adMa2TvvvOPRY1etWmVkgwYNut+S4GUvvvii2/rw4cPGnho1anj1OY8cOWJkCxYscFv//fffxp6NGzd6tQ4nPXv2dFs7DddwGvgC+MLAgQONzGk4nKeGDx9+P+UAjlwul5G1aNHCyBYvXmxk2bJlM7LQ0FC3dUhIiLHnyy+/NLKzZ88a2axZs4zMaViR077kiiuiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYxbAiL3K6gXr69OlG9vnnn7utU6Uy/zfUrl3byOrWrWtkP//8s8f1IWm7du2akZ04ccIPlXgm5nCiIUOGGHteffVVIzt69KiRjRo1ysguXrx4H9XBhhEjRvi7BL96/PHH49wzb948C5UgOapYsaLbumHDhvE+ltOAlz179sT7eMC9+O2334zMafibNzn9nF6nTh0jcxr4xRC6/+GKKAAAAADAKhpRAAAAAIBVNKIAAAAAAKu4RzSeypcvb2StW7c2socfftjInO4JjWnXrl1GtnbtWg+rQ3K0cOFCf5dwVzHvRZLM+z/btWtn7HG67+jpp5/2Wl1AQvf999/7uwQkUcuXL3dbZ82a1aPHbdy40ci6devmjZKARCN9+vRG5nQ/aFRUlJHNmjXLJzUlRlwRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAKoYVxVCiRAkj++9//2tkrVq1MrLcuXPH6zlv3LhhZCdOnDAyp5ugkfQFBAR4lLVo0cLI+vbt64uSYtWvXz8je/PNN40sS5YsbusZM2YYe7p27eq9wgAA0bJnz+629vRnjM8++8zILl686JWagMRi2bJl/i4hSeCKKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAEAAAAAViWrYUUxhwl16NDB2OM0mKhQoUJereOPP/5wW7///vvGnoULF3r1OZF4RUVFeZQ5DcsaM2aMkU2dOtVtHRYWZuypVq2akXXp0sXIKlSoYGT58+c3siNHjhhZzBv9nQZgAMmJ0xCy4sWLG9nGjRttlIMkZNq0aUaWIkX8rkVs2LDhfssBEr0nnnjC3yUkCVwRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAqiQxrChXrlxGVrp0aSMbN26c27pkyZJereO3334zso8++sjIQkJC3NY3b970ah1InlKmTGlkL774opE9/fTTbuvw8HBjT7FixeJdh9Mgi9WrVxvZW2+9Fe/nAJIipyFk8R0og+SrYsWKRla/fn0ji/mzx/Xr140948ePN7J///03/sUBSUThwoX9XUKSwHc4AAAAAIBVNKIAAAAAAKtoRAEAAAAAVtGIAgAAAACsStDDirJly2ZkkyZNMjKnG/O9eROx0/CVUaNGGdmyZcuM7MqVK16rA8nTr7/+amSbNm0ysocfftij4+XOndtt7TTsy0lYWJiRzZo1y8j69u3r0fEAxK169epG9uWXX9ovBIlGUFCQkcX8d9/JsWPHjGzAgAHeKAlIcn755Rcjcxoux0DS2HFFFAAAAABgFY0oAAAAAMAqGlEAAAAAgFU0ogAAAAAAq/wyrKhq1apG9uqrrxrZI488YmT58uXzWh2XL182sjFjxhjZBx98YGSXLl3yWh1AbI4ePWpkrVq1MrLnn3/eyIYMGRKv5xw9erSRTZgwwcj2798fr+MDMAUEBPi7BACAB3bu3Glk+/btMzKn4alFihQxstOnT3unsESGK6IAAAAAAKtoRAEAAAAAVtGIAgAAAACsohEFAAAAAFjll2FFLVu29Cjz1K5du4xs8eLFRhYZGem2HjVqlLHH5XLFuw7AlhMnThjZO++841EGIGH48ccf3dZt2rTxUyVISnbv3m1kGzZsMLKaNWvaKAdINpyGm37++edG9v777xvZSy+95LZ26m2SIq6IAgAAAACsohEFAAAAAFhFIwoAAAAAsCrA5XJFebIxKCjIx6UgMUsu99ZyHiA2yeE84BxAbJLDOSBxHiB2nAfJU+bMmY1szpw5Rla/fn0jmz9/vtu6e/fuxp5Lly7dR3X2eXIecEUUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACrUvm7AAAAAABIzMLDw42sbdu2Rvb+++8b2QsvvOC2fuedd4w9u3btin9xCRRXRAEAAAAAVtGIAgAAAACsohEFAAAAAFhFIwoAAAAAsCrA5XJFebIxKCjIx6UgMXO5XP4uwQrOA8QmOZwHnAOITXI4ByTOA8SO8wDw7DzgiigAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFZ5PKwIAAAAAABv4IooAAAAAMAqGlEAAAAAgFU0ogAAAAAAq2hEAQAAAABW0YgCAAAAAKyiEQUAAAAAWEUjCgAAAACwikYUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVtGIAgAAAACsSuXvAhK6bdu2acWKFdq4caN2796t06dPK1WqVMqZM6eqVKmi9u3bq379+v4uE/Apl8ulrVu3avPmzdq8ebO2bt2qkydPSpIeffRRLVmyxM8VAr51+fJlrVixIvrv/7FjxxQWFqZLly4pc+bMKlasmOrWratnnnlGefPm9Xe5gE/wvQC4u7feektjxoyJXi9atEi1atXyY0UJX4DL5YrydxEJVePGjbVhw4Y49z3xxBOaPHmysmTJYqEqwL7y5cvryJEjjp/jhw8kB1u3btVjjz0W574MGTLoo48+UseOHS1UBdjF9wLA2fbt2/X4448rMjIyOqMRjRtXRGNx4sQJSVLOnDnVvHlz1ahRQw888IACAgK0detWTZgwQaGhoVq2bJk6dOigxYsXK0UKXu2MpCcq6n+/r8qZM6cqVaqkZcuW+bEiwL7cuXOrVq1aqlChgh544AHlzp1bKVOm1PHjx7V8+XLNnTtXly5dUu/evRUcHKyGDRv6u2TAq/heAJhu3Lihvn37KjIyUjly5NDp06f9XVKiQSMai+LFi2vIkCFq3ry5UqVy/1JVrlxZHTp0UKtWrfTbb79pw4YN+u6779SuXTs/VQv4Ts+ePVWgQAFVrlxZ+fPnlyQFBQX5tyjAovLly2v37t13/XyzZs3UvXt3NWrUSBEREXrvvfdoRJHk8L0AMH322Wfatm2bSpYsqSZNmmjUqFH+LinRoBGNxezZs2P9fIYMGfTxxx/r0UcflSQtWLCARhRJ0ksvveTvEgC/SpkyZZx7KleurNq1a2vlypX6888/dfHiRWXMmNFCdYAdfC8A3B06dEjDhg1TQECAPv74Y61Zs8bfJSUqvI70PpUpU0bZsmWTJB08eNDP1QAA/OnOxvP69et+rAQA4GuvvPKKLl++rE6dOqlGjRr+LifRoRH1gts3JnN/KAAkX2fOnIn+bXj27Nmjf0kJAEh6Zs2apVWrVil79ux69913/V1OokTndJ+2b9+u8PBwSVKJEiX8XA0AwKarV6/q0KFD+vLLL9WgQQO5XC5J0gsvvODfwgAAPhMWFqbBgwdLkoYOHcovHuOJe0Tv08iRI6M/btmypR8rAQDYsHTpUrVv3/6un+/YsaP69OljsSIAgE2DBg1SWFiYatasydt13Qca0fswb948LVq0SJJUqVIlPfXUU36uCADgL4ULF9Ynn3yiOnXq+LsUAICPrFy5UnPmzFGaNGn0ySef+LucRI1GNJ527twZ/RvvwMBATZo0SQEBAX6uCgDga48++qg2bNgg6dZAoiNHjujHH3/UnDlz1KtXLw0ZMkSdOnXyc5UAAG+7dOmS+vXrJ0l6+eWXVaxYMT9XlLjRiMbD4cOH1bZtW126dEkpUqTQhAkTVLx4cX+XBQCwIFOmTCpdunT0umLFimrWrJnat2+vtm3bqnfv3jp69KgGDhzoxyoBAN72wQcf6MiRIypSpIj69+/v73ISPYYV3aOTJ0+qZcuWOn78uCTp008/VfPmzf1cFQDA3+rUqaNevXpJkkaMGKG9e/f6uSIAgLds3bpVEydOlCSNGjVKadOm9XNFiR9XRO9BWFiYWrZsqQMHDki69VuRrl27+rkqAEBC0bhxY40ePVo3b97UokWL+I05ACQRY8aM0Y0bN1SiRAmFhYVp3rx5xp6///47+uO1a9fq1KlTkqTHH39cQUFBtkpNNGhEPXT+/Hm1bNky+i/Y4MGD9eKLL/q5KgBAQhIcHBz98T///OPHSgAA3nTt2jVJ0p49e9SjR48493/00UfRH69du5ZG1AEvzfXAxYsX1bp1a/3555+Sbt2c/Oqrr/q5KgBAQnP7tg1JypAhgx8rAQAgYeOKaByuXLmi9u3ba9OmTZKknj176p133vFvUQCABCkkJCT64zsHGgEAErdvv/02zj3Dhg3TiBEjJEmLFi1SrVq1fF1WosYV0Vhcv35dXbt21bp16yRJXbp0if7LBQBIPmbNmqWLFy/Guuf777/XtGnTJEmZM2dW48aNbZQGAECixBXRWPznP//RihUrJEmPPPKInn/+ebebkJ3wG3AkRX/++ad27Njh+LlTp05pxowZbln9+vWVK1cuG6UBVowbN06vvfaamjRpoho1aqhIkSLKlCmTLl++rL1792rhwoXR3y8CAgI0fPhwZc2a1c9VA97F9wIA3kQjGouFCxdGf/z777+rZs2acT7G5XL5sCLAP5YsWXLXVwPs27dPvXv3dssWLVrEDx9IcsLDwzVz5kzNnDnzrnuyZs2qDz/8UG3atLFYGWAH3wsAeBONKAAAcfjmm2+0dOlS/fbbb9q/f79Onz6tsLAwpUmTRtmyZVOZMmVUv359tW7dmsmIAAB4IMDlckX5uwgAAAAAQPLBsCIAAAAAgFU0ogAAAAAAq2hEAQAAAABW0YgCAAAAAKyiEQUAAAAAWEUjCgAAAACwikYUAAAAAGBVKk838gbdiI3L5fJ3CVZwHiA2yeE84BxAbJLDOSBxHiB2nAeAZ+cBV0QBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVtGIAgAAAACsohEFAAAAAFhFIwoAAAAAsIpGFAAAAABgFY0oAAAAAMAqGlEAAAAAgFU0ogAAAAAAq2hEAQAAAABW0YgCAAAAAKxK5e8CACQ8o0ePNrI+ffoY2c6dO42sadOmRnb48GHvFAYAAIB7snLlSiMLCAgwsnr16tkoJxpXRAEAAAAAVtGIAgAAAACsohEFAAAAAFhFIwoAAAAAsIphRV6UKVMmI8uYMaORNWnSxG2dI0cOY8/HH39sZNeuXbuP6gBnhQoVMrLOnTsb2c2bN42sVKlSRlayZEkjY1gRErLixYsbWerUqY2sdu3aRvbZZ58ZmdO54k0hISFG1r59eyO7fv26T+tA0ud0HtSoUcPIPvjgAyN79NFHfVITgNh98sknRuZ03n799dc2yokVV0QBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALCKYUUecBrmMnDgQCOrXr26kZUtWzZez5knTx4j69OnT7yOBcTm9OnTRrZ27Voja9asmY1yAK8qU6aMkXXr1s1t3aZNG2NPihTm72nz5s1rZE6DiaKiou6hwnvndC5OnDjRyF5++WUjCw8P90VJSKKyZMliZKtXrzaykydPGlnu3Lk92gcg/oYPH25kvXr1MrKIiAgjW7lypU9quhdcEQUAAAAAWEUjCgAAAACwikYUAAAAAGAVjSgAAAAAwKpkPayoZMmSRuY03KFTp05Glj59eiMLCAgwsn/++cfILly44LYuVaqUsadt27ZG9tlnnxnZ7t27jQy4F5cuXTKyw4cP+6ESwPuGDRtmZI0bN/ZDJb7VtWtXI/viiy+MbP369TbKQTLjNJiIYUWA71WrVs3IUqdObWTr1q0zsjlz5vikpnvBFVEAAAAAgFU0ogAAAAAAq2hEAQAAAABW0YgCAAAAAKxKssOKsmTJYmQjRoxwW7dr187YkylTpng/5759+4zsiSeeMLKYNxE7DRwKDg72KAPuV1BQkJFVqFDBfiGAD6xYscLIPBlWdOrUKSNzGv6TIoX5+9ybN296VFuNGjXc1nXq1PHocUBC4zSsEUgqateubWSDBw82sg4dOhjZ2bNnvVaH0/HLli1rZKGhoUY2YMAAr9XhTVwRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAqiQ7rKhly5ZG9p///Mdrx3e6EbhBgwZG9s8//xhZ0aJFvVYHcL8CAwONrECBAvE+3sMPP2xkTgO5Dh8+HO/nADw1YcIEI1uwYEGcj4uIiDCykydPeqOkaJkzZ3Zb79y509iTN29ej47l9Gf6448/4lUXcK+ioqKMLF26dH6oBPC+yZMnG1mxYsWMrHTp0ka2bt06r9XxxhtvGFn27NmN7LnnnjOy7du3e60Ob+KKKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAEAAAAAViXZYUVt2rSJ1+MOHTpkZJs2bTKygQMHGpnTYCInpUqVuue6AF85fvy4kX355ZdG9s4773h0PKd9LpfLyMaNG+fR8YD7ERkZaWSe/lvta0888YTbOmvWrPE+1tGjR43s2rVr8T4ecL+qVKliZBs3bvRDJcD9uXz5spH5ekBXxYoVjaxgwYJGdvPmTZ/W4WtcEQUAAAAAWEUjCgAAAACwikYUAAAAAGBVkr1H1OnNXHv27Om2Xr58ubFn//79Rnbq1CnvFSYpV65cXj0e4G1Dhw41Mk/vEQVgat++vZHF/D6VPn36eB//rbfeivdjgbtxusf6/PnzRpYlSxYjK1KkiE9qAnzJ6eefcuXKGdnff/9tZNu3b4/382bIkMFt7TSLJjAw0Mic7rueO3duvOuwjSuiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYlWSHFR0/ftzIEsqwlerVq/u7BOCepUhh/t7K6Y2UgeSkU6dORvb6668bWdGiRY0sderU8XrObdu2GVlERES8jgXExuVyGdkvv/xiZE2bNrVQDeB9DzzwgNvaadip09Cu//73v0Z2+vTpeNfx8ccfu63btGlj7HHqbR599NF4P2dCwBVRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVtGIAgAAAACsSrLDirypT58+RpYhQ4Z4H69cuXJx7tmwYYOR/frrr/F+TuB+OQ0mioqK8kMlgOcKFSpkZF26dHFb169fP97Hr1mzppHF97wIDw83MqfBRz/88IORXblyJV7PCQDJRdmyZY3s+++/d1sHBwcbe8aOHWtka9asiXcdAwYMMLJu3brF+bj3338/3s+ZUHFFFAAAAABgFY0oAAAAAMAqGlEAAAAAgFU0ogAAAAAAq5LVsKLAwEC3denSpY09b7/9tpE1btzYo+OnSGH29U4DXmI6fvy4kXXv3t3Ibty44VEdAJAcOQ2iWLhwoZEVKFDARjn37JdffjGyyZMn+6ES4P5lz57d3yUgmUiVymxnOnfubGRffPGFkcX82d3p5/bq1asb2aBBg4zs448/NrJs2bIZWZs2bYwsICDAbf31118beyZNmmRkiR1XRAEAAAAAVtGIAgAAAACsohEFAAAAAFhFIwoAAAAAsCpJDCtKnTq1kVWqVMnI5s2b57bOkyePsefKlStG5jRM6NdffzWyRo0aGVnMAUlOnG6ybtWqlZGNHj3ayK5fvx7n8QEguYo5AOJuWXzFd0idk6ZNmxrZk08+aWQ//vhjvI4P2NSsWTN/l4Bkon379kb2+eefG1lUVJSRxfz3ev/+/caeKlWqeJQ1b97cyPLly2dkTv3H6dOn3dbPPvussScp4oooAAAAAMAqGlEAAAAAgFU0ogAAAAAAq2hEAQAAAABWJbphRWnSpDEypyFB8+fPj/NY//d//2dkq1atMrL169cbWbZs2Tx6bNmyZeOsI0eOHEY2bNgwIzty5IiRLViwwMiuXbsW53MC9+p+hrLUrl3byMaNG3ffNQF32rlzp5HVrVvXyDp37uy2XrZsmbHn6tWrXqtLknr06GFkL730klefA7Bh9erVRuY0aAvwhXbt2hnZtGnTjCwiIsLIXC6XkXXs2NFtfe7cOWPPqFGjjKxOnTpG5jTAyGk4ntPQpODgYLf1P//8Y+xx+n4WGhpqZIkJV0QBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALAqwOVymXfMOggKCvJxKabUqVMb2bvvvmtkr776qkfH+/HHH93WXbp0MfY43cjsNEzohx9+MLKHHnrIyK5fv25kH374odvaaaBR8+bNjczJTz/9ZGQjRowwMqebr2Patm2bR8/pxOnrlhT54zxIKG7cuGFkTjfce6p8+fJu6127dsX7WAlFcjgPkvM5cD+yZMliZGFhYXE+7qmnnjKymN/LEpLkcA5Iyfs8ePrpp43su+++M7IrV64YWenSpY3s8OHD3iksAeE88B2nwaAFCxY0svfee8/InIYaecLp7+2kSZOMrHr16kbm6bCimL799lsj69q1a5yPS0g8OQ+4IgoAAAAAsIpGFAAAAABgFY0oAAAAAMCqVP4u4LaUKVMa2dChQ41swIABRnbp0iUje/31141s1qxZbmun1y47vRntuHHjjKxSpUpGtm/fPiN74YUXjCzmm0FnzpzZ2FOjRg0j69Spk5E1a9bMyFasWGFkTmK+We6DDz7o0eOQPE2cONHInn/++Xgfr2fPnm7rl19+Od7HAhK6J554wt8lAF4RGRnp0T6ne+PSpk3r7XKQzISEhBjZ/PnzjSzmz7j3Izg42Mic5rs46dChg5Ht3LkzzscdPXrUo+MndlwRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAqgQzrCjm4BLJeTDR5cuXjcxpYMry5cuNrFq1am7r7t27G3uefPJJI0ufPr2Rvfvuu0bm9Ea5ntwsHR4ebmRLly71KHO6Cbpjx45xPqck9evXz6N9gCTt3r3b3yUgmUqdOrWRNWzY0Mic3uj8ypUrPqkpNk7fW0aPHm29DsAXnIbFOH1/KFmypJE5DaV78cUXvVIXkgdf/1uaJUsWI2vTpo2ROQ0aDQ0NNbI5c+Z4p7AkiiuiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYFeByuaI82RgUFOTTQk6cOGFkOXLkMLJr164ZmdNN8hkyZDCyokWLxqu2d955x8iGDRtmZDdu3IjX8ZMCl8vl7xKs8PV5kNjs3bvXyIoUKeLRY1OkcP89mNP56XTjf0KWHM4DX58DNWvWNLLBgwcbWYMGDYzswQcfNDJPBsZ5Klu2bEbWuHFjIxs7dqyRZcqUKc7jOw1WatasmZGtXr06zmP5S3I4ByS+F8T06aefGpnT0K5cuXIZ2dWrV31Rkl9xHiRegwYNMrKhQ4ca2enTp43s4YcfNrKjR496p7BEyJPzgCuiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYlcrfBdx28uRJI3MaVpQ2bVojq1ChgkfP8cMPP7it165da+xZsGCBkR06dMjIkvNgIuC2v/76y8gKFy7s0WNv3rzp7XKQBIwbN87IypYt69FjX3vtNSO7cOHCfdd0m9OApIceesjIoqI8mgGon3/+2W09YcIEY09CHkwExMbpPLh+/bofKgHurmDBgm7r//znP8Yep7/LkydPNrLkPJgovrgiCgAAAACwikYUAAAAAGAVjSgAAAAAwCoaUQAAAACAVQlmWFHt2rWNrEWLFkbmNBji1KlTRjZ16lQjO3funNuam+aB++N0s/5TTz3lh0oA6YUXXvB3CZKcvyctWrTIyPr27eu2vnr1qs9qAmzLnDmzkTVv3tzIvv/+exvlAI5WrFjhto45vEiSvvnmGyN7++23fVZTcsIVUQAAAACAVTSiAAAAAACraEQBAAAAAFbRiAIAAAAArEoww4ouXLhgZNOnT/coA+Afu3btMrK///7byEqVKmWjHCQB3bp1M7KXXnrJyJ555hmf1hEaGmpkly9fNrJffvnFyJyGeO3cudM7hQEJUNu2bY3s2rVrRub0/QHwp2nTprmthw4dauwJCQmxVU6ywxVRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVtGIAgAAAACsCnC5XFGebAwKCvJxKUjMXC6Xv0uwgvMAsUkO54E/zoG0adMamdNQo/fee8/IsmbNamQLFixwW69YscLY4zSc4uTJk7FUCSl5nAMS3wtimjVrlpE5Dalr1qyZkR0+fNgnNfkT5wHg2XnAFVEAAAAAgFU0ogAAAAAAq2hEAQAAAABWcY8ovIL7IYDkcR5wDiA2yeEckDgPEDvOA4B7RAEAAAAACRCNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVtGIAgAAAACsohEFAAAAAFhFIwoAAAAAsIpGFAAAAABgFY0oAAAAAMAqGlEAAAAAgFU0ogAAAAAAq2hEAQAAAABW0YgCAAAAAKwKcLlcUf4uAgAAAACQfHBFFAAAAABgFY0oAAAAAMAqGlEAAAAAgFU0ogAAAAAAq2hEAQAAAABW0YgCAAAAAKyiEQUAAAAAWEUjCgAAAACwikYUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVqXydwEJ2eXLl7VixQpt3rxZW7du1bFjxxQWFqZLly4pc+bMKlasmOrWratnnnlGefPm9Xe5gM8EBQV5tO+BBx7Qjh07fFsM4Ad8PwDcuVwuffPNN1qyZIkOHjyos2fPKigoSLlz51bVqlX15JNPql69ev4uE/A6l8ulrVu3avPmzdHfE06ePClJevTRR7VkyRI/V5h4BLhcrih/F5FQbd26VY899lic+zJkyKCPPvpIHTt2tFAVYB+NKJI7vh8A/7N48WL169dPp0+fvuuesmXLat26dRarAuwoX768jhw54vg5GtF7wxXROOTOnVu1atVShQoV9MADDyh37txKmTKljh8/ruXLl2vu3Lm6dOmSevfureDgYDVs2NDfJQM+06NHD/Xo0eOun0+TJo3FagC7+H4ASN9995169eqlGzduKEeOHOrevbuqV6+ubNmy6fLly9q7d6+WLl0aa5MKJGZRUf+7hpczZ05VqlRJy5Yt82NFiRdXRGNx48YNpUyZMtY9mzdvVqNGjRQREaHy5ctr7dq1lqoD7Ll9RXTgwIEaNGiQf4sB/IDvB4C0b98+1apVS1evXlWtWrU0Y8YMZc6c2XHv9evX+eUkkqSxY8eqQIECqly5svLnzy/pfz8ncUX03jCsKBZx/dAhSZUrV1bt2rUlSX/++acuXrzo67IAAJbx/QCQXnvtNV29elW5cuXS9OnT79qESrxCBknXSy+9pObNm0c3oYg/GlEvyJgxY/TH169f92MlAAB/4vsBkqp9+/Zp9erVkqSePXt6PDsAAO6GRvQ+nTlzRmvWrJEkZc+eXdmyZfNzRQAAf+D7AZKy77//PvrjJ598MvrjCxcuKDQ0lHtCAdwzGtF4uHr1qg4dOqQvv/xSDRo0kMvlkiS98MIL/i0M8LGQkBBVq1ZNefPmVb58+VSxYkX95z//4SZ9JFt8P0By8ccff0iSUqdOreLFi2v16tVq1KiRHnjgAVWuXFnFihVTiRIl9Prrr+vMmTN+rhZAYsCwIg8tXbpU7du3v+vnO3bsqE8//ZR7IpAkefISrFq1aumLL75Qzpw5fV8Q4Ed8P0BydPstK4KDg9WvXz8NGTLEbXronfLmzavvvvtOZcqUsVwl4B8MK4ofrojep8KFCyskJESfffYZP3QgyQoMDFSrVq00evRo/fDDD1q7dq1CQkI0ePBg5c2bV5L0yy+/qEWLFrpw4YKfqwX8g+8HSMpuX+0PDw/XkCFDFBgYqA8++EC7d+/WqVOntH79erVt21aSdPz4cXXq1InvBwBixRVRD124cEH//POPpFsDKI4cOaIff/xRc+bMUc6cOTVkyBB16tTJz1UCvuFyue56VTQ8PFxdunSJvjfupZde0tChQy1WB9jF9wMkR9mzZ9eNGzckSQEBAZo/f74ee+wxY99LL72k6dOnS5Leffdd9enTx2qdgD9wRTR+aETv05o1a9S2bVtdu3ZNgwYN0sCBA/1dEmCdy+VSpUqVdO7cOWXMmFEHDhzgihCSHb4fICnLly+fLl26JEl64oknNHv2bMd9YWFhKlWqlK5fv64KFSpE/5ISSMpoROOHl+bepzp16qhXr16SpBEjRmjv3r1+rgiwLygoSK1atZIkXbx4Udu2bfNvQYAf8P0ASdmdb01Uv379u+7Lnj27KlWqJEnauXOnIiIifF4bgMSJRtQLGjduLEm6efOmFi1a5OdqAP8oWbJk9MfHjx/3YyWA//D9AElV/vz5oz/Oly+fR3tv3Lihc+fO+bQuAIkXjagXBAcHR398+74hILkJCAjwdwmA3/H9AEnVnb9svH2v6N3c+fmUKVP6rCYAiRuNqBfcefUnQ4YMfqwE8J/du3dHf5w7d24/VgL4D98PkFTVqFEj+uNDhw7FuvfgwYOSpPTp0ytr1qy+LAtAIkYj6gUhISHRH5cuXdqPlQD+4XK5NG/ePEm33url9v1BQHLD9wMkVU2aNIkeQrdw4cK77jt06JB27NghSapatapSpOBHTQDO+NchFrNmzdLFixdj3fP9999r2rRpkqTMmTNH3x8EJBU//vijIiMj7/r58PBwdevWLfo+oC5duiht2rS2ygOs4PsBkrugoCB169ZNkrRp0yZNnTrV2BMREaF+/frp5s2bkqTu3bvbLBFAIsPbt8SiZs2aOnLkiJo0aaIaNWqoSJEiypQpky5fvqy9e/dq4cKFWrFihaRb98eNHz9eHTt29HPVgHeVK1dOEREReuqpp/Twww+rYMGCSp8+vVwulzZu3Kgvv/wy+uWIxYsX1/Lly+/6nqNAYsX3A0A6e/asHnvsMR0+fFgBAQHq3Lmznn76aQUFBSk0NFTjx4/Xli1bJEmNGjXSzJkzmR+AJOfPP/+Mvup/W+/evSVJxYoV08svv+z2ufr16ytXrly2yktUaERjUbNmTe3cuTPOfVmzZtWHH36oNm3aWKgKsKtcuXIeDV2pXbu2Jk2apDx58lioCrCL7wfALfv371eHDh20b9++u+558sknNWXKFLe3fAGSimHDhmnEiBEe71+0aJFq1arlw4oSr1T+LiAh++abb7R06VL99ttv2r9/v06fPq2wsDClSZNG2bJlU5kyZVS/fn21bt2aK0BIsiZMmKD169dr8+bNOnjwoMLCwhQeHq7AwEDlzZtXVapUUZs2bVSnTh1/lwr4DN8PgFuKFi2qtWvXatq0aQoJCdG+fft04cIFBQcHq3LlyurUqZOefPJJf5cJIBHgiigAAAAAwCqGFQEAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtSebqRN+hGbFwul79LsILzALFJDucB5wBikxzOAYnzALHjPAA8Ow+4IgoAAAAAsIpGFAAAAABgFY0oAAAAAMAqGlEAAAAAgFU0ogAAAAAAq2hEAQAAAABW0YgCAAAAAKyiEQUAAAAAWEUjCgAAAACwKpW/CwAAAEDSV7x4cSNbunSp2zplypTGnoIFC/qsJgD+wxVRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVtGIAgAAAACsYlgRAAAAvGrs2LFG1q5dOyPLli2b23rx4sU+qwlAwsIVUQAAAACAVTSiAAAAAACraEQBAAAAAFYl63tES5cubWRNmzY1sp49exrZpk2bjGzr1q0ePe+nn37qtr5+/bpHjwMAAPCnXLlyGdn8+fONrFq1akYWFRVlZDt37nRb9+jR4z6qA5CYcEUUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACrktWwoueff95tPXLkSGNPxowZPTpWkSJFjKx9+/YePTbmoKPVq1d79DgASMxi/vvq9Ob2V69eNbLKlSsbWaZMmYysU6dORvbzzz8b2bFjx2Ir856cPHnSyEJCQozsjz/+8NpzArYUL17cyJx+dqpatapHxxs0aJCRxTw3wsLCPKwO8L6AgAAjmzlzppE1btzYyJyGoB49etQ7hSVRXBEFAAAAAFhFIwoAAAAAsIpGFAAAAABgFY0oAAAAAMCqAJfLFeXJxqCgIB+X4nvZsmVzW//999/Gnpw5c/q8DpfL5bZ2GtixfPlyn9fhTTH/TElVUjgP4DvJ4Ty4n3Pgww8/dFsPGDDgPqtJmG7evGlku3btMrKYAzCcBmIcOnTIa3XZkBzOASn5fC+oVq2aka1bt86jxzoNfencubOROf29T+w4DxKvwMBAI9uzZ4+R5cuXz8h69uxpZJ9//rl3CkuEPDkPuCIKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVqfxdgE1nz551W7/99tvGnlGjRhmZ043LR44cMbICBQp4VEfMm7sbNWpk7Elsw4oAWwoWLGhk6dOnN7IOHToY2QsvvBDn8ZcsWWJk3bt397A6xKZVq1ZeO1ZYWJiR/fnnn147vtNwihIlShiZ07COSpUqGVnZsmWN7P3333dbO9Wf2IYVIfEqXry4kX377bdG5jSEyInT+R4SEnLvhQEWXb582cj27dtnZE7DinLkyOGTmpIyrogCAAAAAKyiEQUAAAAAWEUjCgAAAACwikYUAAAAAGBVshpWFNPEiRONrFevXkZWoUIFIwsPD/daHePGjfPasYDEqn79+kbmNOzCaQhRlixZjCwqKipedVSrVi1ej0PcnnjiCbe103CUvXv3enQsp4ESJ06ciF9h9yFTpkxGtmPHDiPzZJhds2bNjMxpeBbgC126dDEyp7+3P/zwg5E5/ex07Ngx7xQG+Nn48eONrG7dukZWqlQpC9UkLVwRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAqmQ9rMjJe++9Z2SDBw82sooVK3rtOdOkSeO1YwEJ0eeff25k5cqVc1s//PDD8T7+hQsXjGzGjBlGtmnTJiObOXOm2/rq1avxrgOxCw0NjXWdGDVt2tTIPBlMJEnXrl1zW0+ZMsUrNQGe2LBhg9va6eeaQ4cOGVm/fv2MjMFESMp+//13j/a1bdvWyAYOHGhk/hisl1BxRRQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKsYVhTD3LlzjWzdunVGtnz5ciOLOXzFU04Dklq3bh2vYwE2Zc+e3ciGDRtmZM8++6yRnT171m29efNmY8/w4cONbOfOnUZ25coVIzty5IiRAZ5yGiI3ZswYI+vatWu8n6N69epu623btsX7WEBsmjdvbmRVq1Z1W0dFRRl7vvvuOyNjoBsgBQQEGJnT941mzZoZ2aRJk3xSU2LEFVEAAAAAgFU0ogAAAAAAq2hEAQAAAABWcY9oDJ06dTKyChUqGFnZsmW99pxO96ACicGbb75pZD169DCysWPHGtngwYPd1hcvXvReYcA9eOyxx4ysS5cuRtatWzePjhcREWFkffr0MbLdu3d7dDzgXgQFBRlZrVq14nWsc+fOGdnRo0fjday76du3r9v6gQce8OhxAwYM8GodwL1wuqfaidN9o/gfrogCAAAAAKyiEQUAAAAAWEUjCgAAAACwikYUAAAAAGBVshpWVLJkSbf1999/b+wpWrSokaVK5dsv08KFC316fCA2gYGBRjZw4EAjcxre8vLLLxvZ6tWrjWzZsmVGxpuiw18eeeQRt/Xy5cuNPSlTpoz38Z2GWBw5csTIbty4Ee/nAO7G6e9V5cqVjSxFCvdrETdv3jT2rF27Nt519OvXz6N9L730ktu6YMGCHj2uf//+RpY/f34jO3bsmEfHA2AfV0QBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALAqWQ0rKlWqlNv6wQcfNPb4ejCRE6cb+mPevA/4ypAhQ4zMaVjRnDlzjMxpyAtDiJDQtW3b1m19P4OJnKRJk8bIlixZYmR//PGH23rRokXGHqehejt37ryP6pDU1alTx8hq1aplZDGHEzkN1Dpz5oxHz1mxYkWPnrNZs2ZxHuvSpUtGdvToUSMrUaKEkc2dO9fI2rdvb2SHDx+Osw4AvscVUQAAAACAVTSiAAAAAACraEQBAAAAAFbRiAIAAAAArEpWw4piDn147bXXjD0jRowwsnTp0vmsJknKkyePT48PxGbQoEFGFhUVZWQzZ840MgYTITGaP3++2zrmIDtJevjhh40sODjYq3VUqVIl1rUkvf3220b26aefGtmHH35oZKdOnYp/cUgUMmXKZGROgxidHD9+3G09ffp0Y8/+/fuNrHjx4kb26quvGlnz5s2NzGn4Ucyhd6NGjTL2ZMmSxchWrVrl0T7AFwICAozM6WcnxI4rogAAAAAAq2hEAQAAAABW0YgCAAAAAKyiEQUAAAAAWJWshhXFNGbMGCPbt2+fkQUFBXl0vFSpzC/nuHHjjCxz5sweHQ+w4ffffzcyp6EpTn+Xr1y5YmQrVqzwTmGAj2zYsMFt3aRJE2NPgQIFjMxpWFGuXLmMrFWrVkb27LPPGpnTsIuYUqQwf1/8yiuvGFnlypWN7PHHHzeymzdvxvmcSDxq1qxpZJ988olHj50yZYrb+t133zX2OP39HjlypJE1btzYyC5cuGBkc+bMMbIBAwa4rYsVK2bsmThxokfHX7lypZEdPnzYyID7xWAi7+CKKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAEAAAAAViXrYUVOfvzxx3g/1mnwRNGiRY3srbfecltXrFjR2FOwYEEj44Z7xKZq1apGtnXrViO7fv262/rJJ5809vTp08fI3nzzTSObO3euR3Xs3r3byICE7MiRIx5lTpy+j/z8889G9tJLL7mtH3nkEc+Kc1CnTh0jizkERpI+/PDDeD8HEp7y5cvH+7FOw4limj9/vpE5/RvvpHnz5ka2Zs0aI6tWrZrbet26dR4d/9NPPzUyp7/zgD/9+eef/i4hQeOKKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVjGsyIvSpEljZDEHEzmJiIgwshs3bnilJiR+efLkMbLFixcbWYECBYysX79+RvbNN9+4rc+ePWvsGTdunJE5DSvKmDGjkWXLls3IgORuxowZRjZ79my39U8//WTsqV27dryf02lYHpKWoKAgI3ManBgSEhLnsZwGJxYqVMij4/fv39/InAYTFS9e3Mi+/fbbeB3faVgRkNCEhob6u4QEjSuiAAAAAACraEQBAAAAAFbRiAIAAAAArOIeUS9677334vW4L774wsiOHj16v+UgidiyZYuRZc6c2cgGDhxoZDHvB/VU3759PdrndE/bzp074/WcQHITGRnptt68ebOx537uEd27d2+8H4vEKyoqyqPMEzdv3vToWOXLlzeyI0eOGFm6dOmM7ODBg27rWrVqGXvOnz8fa50AEieuiAIAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYFWCHlaUPXt2I5s2bZqRzZw506PMm/LkyWNkPXv2jNex5s+ff7/lIAkbM2aMkQ0ZMsSjfU5ZTPv27TOyYsWKGdnhw4eNbNCgQUYWHh4e53MCvuD07/Jzzz1nZLt373Zbz5kzx2c1xSZlypRu6woVKsT7WDEHH0nSxo0b4308JA4hISFG9uqrrxpZ8+bNjaxatWpu64oVKxp7MmXK5FEdXbt2NbKAgAAjO3PmjJG98847butjx4559JxAYpA2bVp/l5CgcUUUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACrEvSwIqdBK0899ZSRFS9e3MiOHz9uZDFvgN+/f7+xp3Llyh4d/7XXXjOyzJkzG5mTUaNGua2dagVuGzZsmJFFREQYWaVKlYysfv36cR4/a9asRrZkyRIjGzBggJE5nUOADblz5zaypUuXGlm5cuWMzOnvvK/lypXLyF555RW3db169eJ9/L///tvI1q1bF+/jIXFw+l5w+fJlIwsMDDSy9evXu62joqK8V5ikCxcuGJnTYLAff/zRq88LJCSNGzc2srFjx/qhkoSJK6IAAAAAAKtoRAEAAAAAVtGIAgAAAACsohEFAAAAAFiVoIcVOd3M++CDDxpZ9erVjeznn382skOHDrmtd+3aZeypVauWkWXKlCmWKv/H6Ub/3bt3G9nbb7/ttr569apHxwduGzlypL9LAPzq008/NTKnwUROYn4f2bNnj7HnypUrHh0rffr0RuY0zC7mYCLJs+8tAQEBRuY0BKZPnz5xHgtJz+bNm42sQ4cORub0969u3brxes6vvvrKyHbs2GFkW7duNbI1a9bE6zkBf/r333+N7K+//jKyMmXK2CgnSeGKKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVgW4XC5zwo6DoKAgH5fimVGjRhnZ/v37jeyzzz6zUY6bs2fPGln27Nmt1+EPLpfL3yVYkVDOAyRMyeE8SCjnwHPPPWdkkyZNitexnIaqnD9/3qPHZsmSxcgqVaoUrzqcXLx40chatmxpZCtXrvTac96P5HAOSAnnPEDCxHmQ9G3atMnIKleubGSLFy82smbNmvmkpoTGk/OAK6IAAAAAAKtoRAEAAAAAVtGIAgAAAACsohEFAAAAAFiVyt8F3Kv+/fsbWdq0aY0sY8aMcR7LaaBEhw4dPKrDaZBFgwYNPHosAOD+rFixwshmzZplZO3bt4/zWN4cLnQvIiMj3daffvqpsWfevHlG9ttvv/mqJACAB7Zt22ZkTsOKPOlHkjOuiAIAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYFWAy+WK8mRjUFCQj0tBYuZyufxdghWcB4hNcjgPEvI54DS4rmXLlkZWr149t/XevXuNPc2aNfPoOXfv3u3RvlWrVsX5WKfhF4lNcjgHpIR9HsD/OA+SvkKFChnZzJkzjeyrr74ysokTJ/qipATHk/OAK6IAAAAAAKtoRAEAAAAAVtGIAgAAAACs4h5ReAX3QwDJ4zzgHEBsksM5IHEeIHacBwD3iAIAAAAAEiAaUQAAAACAVTSiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVtGIAgAAAACsohEFAAAAAFgV4HK5ovxdBAAAAAAg+eCKKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVtGIAgAAAACsohEFAAAAAFhFIwoAAAAAsIpGFAAAAABgFY0oAAAAAMAqGlEAAAAAgFU0ogAAAAAAq2hEAQAAAABW0YgCAAAAAKyiEQUAAAAAWEUjCgAAAACwikYUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFbRiAIAAAAArErl7wISsiZNmmj9+vX39Jjx48erU6dOPqoI8I9t27ZpxYoV2rhxo3bv3q3Tp08rVapUypkzp6pUqaL27durfv36/i4T8LmIiAjNnj1bISEh2rFjh86ePauUKVMqV65cqlKlijp16qTHHnvM32UCPudyufTNN99oyZIlOnjwoM6ePaugoCDlzp1bVatW1ZNPPql69er5u0zAZ65du6aZM2dGfz84f/68smbNqlKlSql169bq2LGjUqZM6e8yE7QAl8sV5e8iEqr4NKIrVqzQww8/7KOKAPsaN26sDRs2xLnviSee0OTJk5UlSxYLVQH2HT16VG3bttWuXbti3deyZUtNmjRJadKksVQZYNfixYvVr18/nT59+q57ypYtq3Xr1lmsCrAnNDRUnTp10u7du++6p0qVKpo1a5aCg4MtVpa40IjG4tChQ7p8+XKse06fPq3mzZtLkooWLao//vjDRmmANZUqVdLBgweVM2dONW/eXDVq1NADDzyggIAAbd26VRMmTFBoaKgkqUaNGlq8eLFSpOBV/0haIiMjVbt27egmtFSpUnrxxRdVvHhxXb16VVu2bNGYMWN07tw5SVKPHj00atQof5YM+MR3332nXr166caNG8qRI4e6d++u6tWrK1u2bLp8+bL27t2rpUuX6vTp0/rpp5/8XS7gdWfOnFHdunV19OhRSVLTpk3VsWNH5cuXT6dPn9b8+fM1c+ZMRUVF6aGHHtLSpUv5xeRd0Ijep3HjxmnIkCGSpDfffFP9+/f3c0WAd7Vr105t27ZV8+bNlSqV+Wr+S5cuqVWrVvrtt98kSZMmTVK7du1slwn4VEhIiJ555hlJt37LvXTpUuN8OHz4sGrVqqXw8HClSJFCe/bsUY4cOfxRLuAT+/btU61atXT16lXVqlVLM2bMUObMmR33Xr9+nR++kSS9+uqrmjJliiRpwIAB0X3AnaZOnapXXnlFkvT++++rd+/eVmtMLLhscZ9mzpwpSUqRIgU/fCNJmj17tp5++mnHJlSSMmTIoI8//jh6vWDBAkuVAfbc/kWLJPXv39/xfChYsGD0jICbN2/yChkkOa+99pquXr2qXLlyafr06XdtQiXRhCJJunHjhubMmSNJyp8/vwYNGuS479lnn9VDDz0kSRo9erRu3rxprcbEhEb0PuzYsUN//fWXJKl27drKnz+/nysC/KNMmTLKli2bJOngwYN+rgbwvoiIiOiPCxUqdNd9hQsXjv74+vXrviwJsGrfvn1avXq1JKlnz54KCgryb0GAH4SGhur8+fOSpHr16sU6jKhBgwaSpFOnTnk0ayM5ohG9D7evhkpShw4d/FgJ4H+RkZGSxP2hSJKKFi0a/fGhQ4fuuu/OX8QUK1bMlyUBVn3//ffRHz/55JPRH1+4cEGhoaGxDi4CkoqzZ89Gf5wzZ85Y9975eRpRZ/zEGE+RkZH67rvvJEmZMmXSU0895eeKAP/Zvn27wsPDJUklSpTwczWA97Vu3Tr6ZYiffPKJbty4Yez5559/NGPGDEm3BneVLl3aao2AL91+qXnq1KlVvHhxrV69Wo0aNdIDDzygypUrq1ixYipRooRef/11nTlzxs/VAr6RIUOG6I9vXxm9mzs/H9t03eSMRjSefvrpp+jf/jVr1kyBgYF+rgjwn5EjR0Z/3LJlSz9WAvhG9uzZNXHiRAUGBur3339X7dq1NWPGDP3+++9as2aNRo8erbp16+r8+fN68MEHNW7cOH+XDHjV7R+ks2TJokmTJqlVq1bauHGj255///1XEydOVO3ataNvXQKSksKFCyt16tSSFOdbPN55FfT2hF24oxGNp1mzZkV/3LFjRz9WAvjXvHnztGjRIkm33uqFVwcgqWrcuLHWrFmj7t27a9euXerdu7caNmyo5s2b6+2331ZERISGDBmi1atXu90rCiQFLpdLkhQeHq4hQ4YoMDBQH3zwgXbv3q1Tp05p/fr1atu2rSTp+PHj6tSpky5cuODHigHvy5Ahg+rWrStJ2rVrl2bPnu24b82aNVq5cmX0+uLFizbKS3RoROPB5XLpxx9/lHRrSmKNGjX8XBHgHzt37lSfPn0kSYGBgZo0aZICAgL8XBXgGxEREZo9e7aWLFmiqCjznc/Cw8P13XffafHixX6oDvCtS5cuSfrfEK5vvvlGL774onLnzq00adKoTJkymjx5srp06SLp1r3U06ZN81u9gK+8/vrr0ZPTe/furWHDhunw4cOKjIzUiRMnNH78eHXs2DH6yqkkXblyxV/lJmg0ovEwf/58Xbt2TZLUvn17fvBGsnT48GG1bdtWly5dUooUKTRhwgQVL17c32UBPnHp0iU1b95cI0eOVFhYmHr37q1ff/1V//77r44ePaolS5boiSee0J49e/Tf//5Xr7/+ur9LBrwqXbp00R83bNhQjz32mOO+d955J/qtW+bNm2elNsCmypUra+zYsUqTJo0iIyM1YsQIVahQQcHBwSpVqpQGDx6sq1evut22lDFjRj9WnHDRiMbD7Wm5AQEBTMtFsnTy5Em1bNlSx48flyR9+umnat68uZ+rAnxn+PDh0ff7fPrpp3r//fdVqlQppU2bVhkzZtSjjz6q2bNnq02bNpKkiRMnRr9yBkgK7vxBun79+nfdlz17dlWqVEnSrVfN3PnWR0BS0aFDB61cuVItWrRQpkyZovMUKVKobt26WrZsmRo1ahSd83ZHzmhE79H+/fu1adMmSVL16tVjfT85ICkKCwtTy5YtdeDAAUnSBx98oK5du/q5KsB3oqKi9M0330iSihQpEv3SQydvv/129Me3HwMkBXe+V3q+fPk82nvjxg2dO3fOp3UB/lKuXDl9+eWXOnTokP766y9t2bJFR48e1YIFC1SlShWFhoZG7y1ZsqQfK024aETv0Z1DirgaiuTm/Pnzatmypf7++29J0uDBg/Xiiy/6uSrAt06dOhX9w3SFChVi3Zs/f37lyJFDkrRv3z6f1wbYcucP0k5vX3SnOz+fMmVKn9UEJAQpU6ZUvnz5VLhwYbd30di6dWv0x1WqVPFHaQkejeg9iIqKim5EAwMD1aJFC/8WBFh08eJFtW7dWn/++ack6eWXX9arr77q56oA37s9lEKSRy8zvL3nzscBid2dgxkPHToU696DBw9KktKnT6+sWbP6siwgwQoJCZF0q2e482W6+B8a0Xuwdu3a6PcBatq0qdtrwoGk7MqVK2rfvn30y9J79uypd955x79FAZZky5ZNmTNnliT98ccfioyMvOvev/76K/ptLgoWLGijPMCKJk2aRA8hWrhw4V33HTp0SDt27JAkVa1aVSlS8KMmkp8VK1bot99+kyS1bdtWWbJk8XNFCRP/OtwD3jsUydH169fVtWtXrVu3TpLUpUsXjRgxws9VAfYEBAToiSeekCSdOHFCw4cPd9x35coVvfbaa9HrJ5980kp9gA1BQUHq1q2bJGnTpk2aOnWqsSciIkL9+vXTzZs3JUndu3e3WSJgze1hjU62b9+u559/XpIUHByst956y1ZZiU6Ay+Uy3wwNhkuXLqlEiRK6ePGi8uXLpx07dvBbPiQLXbt2jf7t9yOPPKKPP/44zr/7pUuXtlEaYM3+/ftVp06d6PdSbNCggTp27KgHH3xQkZGR2r59uyZOnBh9X2ipUqW0du1at/eRAxK7s2fP6rHHHtPhw4cVEBCgzp076+mnn1ZQUJBCQ0M1fvx4bdmyRZLUqFEjzZw5k7e4Q5JUsGBBVatWTY0aNVKpUqWULl06nThxQsuWLdOMGTMUERGhwMBAzZo1S7Vr1/Z3uQkWjaiHZs6cqRdeeEGS9Morr/DbDSQb8Rk5fvuliUBSsnbtWvXo0UOnT5+OdV+FChU0Y8YMtymjQFKxf/9+dejQIdZhXE8++aSmTJnCeyciycqXL1/0LyadFCxYUBMmTHC7txomGlEPNWvWTGvXrpV06yUpxYoV83NFgB00osD/uFwuTZ8+XStWrNDff/8tl8ullClTKjg4WBUqVFCLFi3UsmVLBhUhSbty5YqmTZumkJAQ7du3TxcuXFBwcLAqV66sTp068bJ0JHnz58/XqlWrtGXLFp08eTL6HChRooSaNWumDh06KH369P4uM8GjEQUAAAAAWMVNjgAAAAAAq2hEAQAAAABW0YgCAAAAAKyiEQUAAAAAWEUjCgAAAACwikYUAAAAAGAVjSgAAAAAwCqP33E7Pm9qj+TD5XL5uwQrOA8Qm+RwHnAOIDbJ4RyQOA8QO84DwLPzgCuiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVtGIAgAAAACsohEFAAAAAFhFIwoAAAAAsIpGFAAAAABgVSp/FwAAAICkr3DhwkY2bNgwt3XLli2NPeXLlzey3bt3e68wAH7BFVEAAAAAgFU0ogAAAAAAq2hEAQAAAABWcY8oAAAAvKpGjRpGtnTpUiM7ffq023r8+PHGnn///dd7hQFIMLgiCgAAAACwikYUAAAAAGAVjSgAAAAAwCoaUQAAAACAVQwrApK5Ll26GFnDhg2NrGLFikZWokQJj55j48aNRvbUU0+5rc+fP+/RsYDkJEOGDEb2888/G1nevHmN7NFHHzWyQ4cOeaMswE2TJk2MbO7cuUY2ceJEIxs8eLDb+vLly94rDECCxhVRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVtGIAgAAAACsYlgRkIQFBwcb2eeff+62jjk0SJJcLpeRbdiwwcicBp/UrVvXyGrWrGlkv/76q9u6dOnSxh4gMXIaHJQjR444H3fu3Dkje+yxx4yscuXKRrZnzx4jCwsLi/M5gXtVtGhRI5szZ46RrVmzxsj69+9vZDdv3vROYQASHa6IAgAAAACsohEFAAAAAFhFIwoAAAAAsIpGFAAAAABgFcOKvMjpJvw0adIYWalSpdzWnTp18uj4u3fvNrIyZcp4WB2So6VLlxpZoUKF3NYffvihseejjz4ysrNnz3r0nCVLljSy33//3ciKFy/utn7rrbeMPe+++65Hzwncj7JlyxpZnz59jKxgwYIeHS/m321JKlCgQJyPGz58uJE5DfEKCAgwsmPHjhmZ0/cf4F6kS5fOyGIOvJOkHTt2GFnbtm2NjMFESCqyZctmZO3atTOyN954w8icBtrFNGTIECMbNmyYh9UlHlwRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAqgCXyxXlycagoCAfl5Iw1KlTx8icBlk47WvZsqWROQ2ViC+nm/z3799vZE7DLXzN5XJZf05/SMjnQYMGDYzMaVjRnDlz3NYdOnTwWU23OQ0dinkj/uHDh409Dz74oM9q8oXkcB4k5HMgvpwGE33yySfxPt61a9eM7LvvvjOyevXqua09GWAhOX9f6dq1q5F98803Hh3Pm5LDOSAlzfPAidPguv/+979GVqxYMSM7evSoT2pKDDgPkpZq1aoZmdP3iEceecTIoqI8arM8Mn36dCPr3r27147vbZ6cB1wRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAqlT+LsAb8uTJY2QzZ840ssKFC8d5rCxZshhZhgwZjMxpWMTmzZuN7KGHHorzOT2VIoX5ewOn2pA8pUplns5Ow6xmzZploxw3c+fONbKYw4rSpUtn7MmcObORhYeHe68wJEvvvPOO2/rVV1/16HFfffWVkZ0+fdrIRo4c6dG+ihUruq2XLVtm7AkODvboWE7nGHAv0qZNa2SdO3c2sp9//tnIkvNgIiQtTv/mTpkyxchKlSplZE7/Ni9YsMDIQkJCjCzmwLk2bdoYe5yGJqVJk8bIrl+/bmQJFVdEAQAAAABW0YgCAAAAAKyiEQUAAAAAWEUjCgAAAACwKtENK6pfv76ROd1E/MADD/i0jtKlSxvZmTNnjMzppue8efO6radNm2bsyZ8/v0d17Nq1y6N9SPpWr15tZJUqVTKyy5cv2yjHzbVr1+LckytXLiPr2LGjkU2cONErNSH5ijnkLX369Maew4cPG9ngwYON7MSJEx49Z9GiRY3sjTfecFvnyJHD2HPp0iUjizlsSZKuXr3qUR3A3bz22mtGljFjRiNzOg+ApMJpkJDTYKLly5cbWePGjeP9vPv27XNbO/U7Tr2BU23bt2+Pdx22cUUUAAAAAGAVjSgAAAAAwCoaUQAAAACAVYnuHlGnexjiez+o031rAwcONLKNGzca2Z49ezx6jrCwMCPr27ev29rT+0EPHTpkZF26dPHosUj6EvI9YgcOHDCyv/76y21dpkwZY0+xYsV8VhOSr7lz57qtGzVqZOxxmgMwfPhwI3vxxReNLEuWLEb28ccfG1mTJk3c1mfPnjX2vP/++0Y2YcIEIwPuV8OGDY1s/fr1RrZlyxYb5QB+ceXKFY/2Od1L6mvh4eFG5jSfJjHhiigAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFYl6GFFTjfOV6tWLd7HO3LkiNvaadCP04353ubpcKKYnG6MTuw3KSN5iIiIMLLIyEg/VAJI27Ztc1s7DaRzGlZUr149I2vQoIGRffLJJ0ZWoECBOOv6v//7PyMbO3ZsnI8D4qNmzZpua6efr8qVK+fV56xbt66RnT592m0dc5AdYFNAQIBH2blz54wsXbp0RlakSBEj69atm5FVrlzZbX3y5EljT4cOHYzs2LFjRpaYcEUUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACrEvSwov79+xtZYGCgR4/dsGGDkcUcBOHtwURZs2Y1skaNGhlZ7dq14zyWU/0//PBD/AoD/Cxt2rRG5nRTf0wXLlzwRTlI5q5du+a2Dg8P9+hxefPmNbJ58+YZmdNgi6ioKCP74osv3NYLFizwqA7AGzp37uy2/vvvv409Bw8e9OhYTsNXRo0aZWROPyfFPB8HDBhg7Bk/frxHdQD3q0yZMkbm9O/3K6+8YmROfUvMIUR30759e7f13LlzPXpcYscVUQAAAACAVTSiAAAAAACraEQBAAAAAFbRiAIAAAAArErQw4omT55sZMHBwUZ2/vx5I+vYsaORnTx50juF3UWvXr2MbOjQoXE+7q+//jKytm3bGpmv6wd8pVChQkZWokSJOB+3dOnSeD+n078VFSpUMLLq1au7rb/77jtjz549e+JdBxK+w4cP+/w5nIbNjRw50m39zz//+LwO4LZnn33Wbe30c1PMQUKSlCZNGiN7++23jez55583smXLlhlZ48aN3dbTpk0z9oSGhhrZ/Xx/AO4mLCzMyDJlymRkVapUMTJPB9VdvnzZyHbt2uVpiUkKV0QBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALAqQQ8rmjdvnkeZPzz11FNG9tZbb3n02MjISLf1xIkTjT0MJkJikDZtWiPLnz+/kdWoUSNex3c6NzZv3mxkDz30kJFly5bNyB544AEju3Dhgtu6aNGixp5u3brFViYSmZQpU7qta9WqZexxGjrhqSVLlhiZ0/cMwJYyZcoYWapU7j8CxvzZ5G6c/r11Ghw0d+5cj443e/Zst3XNmjWNPYMGDfLoOYH75XSuVKtWzcicftaJ+Xf5bubPn29kDCsCAAAAAMACGlEAAAAAgFU0ogAAAAAAq2hEAQAAAABWJehhRQnZggULjCwqKsqjx/bp08dtPXnyZG+UhGQuffr0RpYzZ04jizlowukm/Hr16nn0nOnSpTMypxv948vpWFmyZPHosVOnTjUypyEyZ86ccVsfOnTIs+KQaM2aNctt3apVK2OPp/+eO7mfxwK+kDt37jj37N6926Nj/fXXX0Y2ZMiQe67pbiZMmGBkO3bs8NrxgXu1ceNGIytbtmy8j/fBBx/cTzlJCldEAQAAAABW0YgCAAAAAKyiEQUAAAAAWEUjCgAAAACwimFFHnC6qThFCrOHv3nzpkfHW7NmzX3XhOTDaQjRO++8Y2RPPfWUkZUsWdJrdYSHhxvZhQsXjCwyMtLIUqWK+5+azz//3MgmTpxoZFu2bInzWEie8ubNa2Tdu3c3sqefftpt7TRcyOnv2fbt2z06vtOQMCChO3bsmEf7nP7d96ajR4/69PiAN5QrV87I7qc3SK64IgoAAAAAsIpGFAAAAABgFY0oAAAAAMAq7hGNIU2aNEZWqVIlI3N6zbfTfUZ9+/Y1sn379sWzOiRHCxYsMLIGDRoY2bVr14xsyZIlRnbw4EG3dUhIiEfHOnTokJE53cvj9KboxYsXN7IDBw64rV955RVjz8WLF40MuJvHH3/cyN599904HzdkyBAjGzdunJG1aNHCyJzuEd21a1eczwnYFBAQ4FGWENSpU8fIfH1fKnCvrly5YmROvcHPP/9sZNevX/dFSYkSV0QBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALAqWQ8rCgwMNLLOnTsbmdNgGCczZ840shkzZhgZb26Le9GwYUMjizlwSJJatWplZNu2bfNaHalSmf9cjBgxwsjy5ctnZKdOnTKytm3buq0ZTIR7UbduXSMbM2aMR49t1qyZ2/qnn34y9uTOndvI3nrrLY+O7zTYC/Anp2GKTpk/pE6d2m3dq1cvY8/06dNtlQMYSpYsaWQ9evQwstOnTxvZhAkTjIzvEf/DFVEAAAAAgFU0ogAAAAAAq2hEAQAAAABW0YgCAAAAAKxKVsOKMmXK5LaeMmWKsad169YeHatfv35GNm7cOCNjMBHul9NACZfLZWQ7d+702nOmS5fOyL777jsja9KkiZFdu3bNyNq3b29kW7ZsiWd1gPMQuSxZshjZmjVrjGzx4sVu65jDUiSpadOmHh0/ICDAyJwGVgD+tGvXLiM7ceKE29ppWKPToJX74XSuxXyOQoUKGXueeeYZr9YB3I3Tv/PLli0zMqfBjAMHDjSyuXPneqewJIorogAAAAAAq2hEAQAAAABW0YgCAAAAAKyiEQUAAAAAWJWshhXFvLHY08FEoaGhRjZmzBiv1ATEZe/evUZWsWJFI5s8ebKRZc+e3ci2b9/utj5w4ICx59VXXzWyEiVKGNlvv/1mZC+88IKRbdu2zciA++E0CM5psJdTFnNgSosWLYw9o0ePNrJz584Z2eeff25k3h7wAtyvmIOJJOmDDz5wW48aNcqjY82YMcPIChcubGQVKlQwsjfeeMPIrl696rZu2LChsefMmTMe1Qbcrw8//NDInAYTzZw508g8PYfwP1wRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAqiQ7rKhkyZJG1r9//zgf5zQY5sknn/RKTUB8OP1dHjp0qJENGDDAyFKkMH/X1KhRozifc+HChUbmdP4sXbo0zmMBvpAzZ06P9p0+fdrIVqxY4bauVauWR8fq3r27kS1atMijxwIJzfjx4+Pc4zR8Zdy4cR4d/8KFC0bmNOjxvffec1tfv37do+MD3lC/fn23defOnY09V65cMbK5c+f6rKbkhCuiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYFeByuaI82RgUFOTjUrxrxowZRtauXbs4H/fSSy8Z2YQJE7xSU1Lmcrn8XYIVie08gF3J4TxIKOfAyy+/bGROg1WcBAQEuK3Pnj1r7HEa5DJ8+HAjcxpikZwlh3NASjjnARImzoOEqVChQka2efNmt3W6dOmMPU4DjL7//nuv1ZVUeXIecEUUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACrUvm7AG8oU6aMkWXOnDnOx02ePNnIVq1a5ZWaAAC+89VXXxlZmjRpjOzNN980sj/++MNtvXDhQmPPJ598ch/VAQD8KX369EbWv39/I8uSJYvbet68ecYeBhP5DldEAQAAAABW0YgCAAAAAKyiEQUAAAAAWBXgcrmiPNmYkN+0dsSIEUbm9Drww4cPu60bN25s7NmzZ4/3CktGePNmIHmcB5wDiE1yOAckzgPEjvPA/1544QUjGzdunJFt2LDBbV2/fn1jz7Vr17xXWDLiyXnAFVEAAAAAgFU0ogAAAAAAq2hEAQAAAABW0YgCAAAAAKxK5e8CvGH58uVG5jSs6JVXXnFbM5gIAAAASLweeeQRI3vjjTeM7L333jOyKVOmuK0ZTGQXV0QBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALAqSQwrWrlypZGlSpUk/mgAAAAA7uL33383sgceeMAPleBecUUUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACrAlwuV5S/iwAAAAAAJB9cEQUAAAAAWEUjCgAAAACwikYUAAAAAGAVjSgAAAAAwCoaUQAAAACAVTSiAAAAAACraEQBAAAAAFbRiAIAAAAArKIRBQAAAABYRSMKAAAAALCKRhQAAAAAYBWNKAAAAADAKhpRAAAAAIBVNKIAAAAAAKtoRAEAAAAAVtGIAgAAAACsohEFAAAAAFhFIwoAAAAAsIpGFAAAAABgFY0oAAAAAMAqGlEAAAAAgFU0ovH01ltvKSgoKPq/X375xd8lAVYcO3ZMb7/9tqpWrap8+fKpQIECqlWrlkaMGCGXy+Xv8gCfunbtmr788ku1bNlSRYsWVY7/197dB1VZp38cvxCXDCEV8SkfhzUlM2XMNTRLx4dsNzedzSwxp8wSy91W7dFydUyTUEFXfFwrHzLycTcza50ixU0cZxyTdBVn1UUnRWjRAz6iIL8/Gvl5c93A7fGc732A92vmN8P34/fc52p+fpdzeXNfNGkiHTp0kCFDhsgnn3wiJSUlbpcI+I3H45Ht27fL3LlzZcSIERIdHV32Oejxxx93uzzACM6B79R1u4DqKDMzUxYvXux2GYBx3377rYwZM0YKCgos+YEDB+TAgQOyatUqSU1NlZiYGHcKBPzo2LFjMnLkSMnKyrLkeXl5kpeXJ+np6bJq1SpZu3atREZGulQl4D+PPPKInDx50u0yAFdxDnyHO6K3qKSkRP785z9LcXGxNGnSxO1yAGMOHjwozz33nBQUFEhoaKhMnjxZ/vnPf8qXX34pr7zyigQHB8vp06fl6aeflpycHLfLBXzqf//7nwwZMqSsCR08eLCkpqZKenq6bNy4UeLi4iQoKEj27t0rw4cPl6tXr7pcMeB7paWlZV83bdpUBg0a5GI1gDs4B77DHdFbtHjxYtm/f79ER0fL448/LklJSW6XBBgxefJkuXjxogQHB8uGDRvkoYceKvuz3r17S9euXSU+Pl5yc3Nl5syZsmjRIherBXwrMTFRfvrpJxERef3112XKlCmWPx8wYIB0795dJk2aJPv27ZPly5fL+PHj3SgV8JuxY8dKmzZt5IEHHpBWrVqJiEjDhg3dLQowjHPgO0Eej6e06m0QEcnOzpZevXrJ5cuXZevWrZKeni6JiYkiIrJlyxZ5+OGHXa4Q8I/9+/dL3759RURk1KhRkpKSYrvviSeekJ07d0pwcLBkZWXxUwOoEUpKSiQqKkoKCgqkVatWkpmZKcHBwbZ7+/XrJ/v27ZOmTZtKVlaW1KnDDx6hZrvxAfyhhx6SrVu3ulsM4BLOgXf4DnkLJk2aJJcuXZKRI0dKr1693C4HMGbLli1lX48aNarCfc8++6yI/PLB/euvv/Z7XYAJx44dK3suul+/fhU2oSIiAwcOFJFfnhvNyMgwUh8AANURjahDa9eule+++04aN24s7733ntvlAEbt3r1bRERCQ0OlW7duFe67+acCbrwGqO7Onj1b9nXTpk0r3Xvzn9OIAgBQMRpRB/Lz8+Xdd98VEZEZM2ZIRESEyxUBZh05ckRERKKioqRu3YofLW/RooWEh4dbXgNUd/Xr1y/7uvzE6PJu/vPy03UBAMD/oxF1YPLkyZKfny+9e/eWuLg4t8sBjCoqKpL8/HwREWnZsmWV+2/sOXXqlF/rAkyJioqSX/3qVyIismvXrkr33nwX9MZwIwAAoNGIViEtLU3Wr18vISEhMm/ePLfLAYy7cOFC2dc33xmqyI09Fy9e9FtNgEn169cvG9Z16NAhWbdune2+9PR0SUtLK1vffHYAAIAVjWglLl68KBMnThQRkQkTJsg999zjckWAeZcvXy77+sZdocqEhISo1wHV3dtvv132Y+njx4+XhIQEOXHihBQXF0tOTo4sWrRI4uLiLGeEMwAAQMVoRCsxa9YsOXnypPz617+W1157ze1yAFfceeedZV9fu3atyv1Xr15VrwOquwceeEBSUlIkJCREiouLJTExUbp27SqRkZFy7733yrvvvitXrlyRuXPnlr0mLCzMxYoBAAhsNKIV+OGHH2Tp0qUiIpKUlCR33HGHyxUB7rj5w7STH7e9scfJj/EC1cmIESMkLS1Nhg4dWjaUS0SkTp060rdvX9m2bZs89thjZTm/4BwAgIpVPP6ylluwYIGUlJRIx44dJT8/XzZt2qT2HD58uOzrnTt3Sl5enoiI9O/fnw8gqDHuuOMOady4seTn5zsaQHT69GkRcTbYCKhu7r//flm5cqWUlJTImTNnpKioSJo3by6hoaEiYv21RdHR0W6VCQBAwKMRrUBRUZGI/PIrKMaMGVPl/jlz5pR9vXPnThpR1CgdO3aUjIwMOX78uBQXF1f4K1xycnKksLCw7DVATRUcHGz7jy0//PBD2dfdu3c3WRIAANUKP5oLoEo9e/YUEZFLly7Jvn37Ktz3/fffq9cAtcnmzZtFRCQ0NNTyY7oAAMCKRrQCqamp4vF4Kv2/t956q2z/li1byvIuXbq4WDnge7///e/Lvv7kk08q3LdmzRoR+eVu0W9/+1u/1wUEkm+++Ub27NkjIiLDhw+XBg0auFwRAACBi0YUQJViYmKkd+/eIvLLP9JkZGSoPevXr5f09HQREXnmmWekSZMmRmsE/O3G8892MjMzJT4+XkREIiMjZerUqabKAgCgWuIZUQCOfPDBBzJo0CC5ePGiDBs2TCZMmCB9+vSR4uJi+eqrr8qmTDdr1kymTJnicrWA7/Xs2VNiY2Plsccek3vvvVfq1asnOTk5sm3bNvn000/l2rVrEhoaKh9//LFERES4XS7gcz/++KMcOHDA9s/y8vLk008/tWQDBgyQZs2amSgNMIZz4DtBHo+n1O0iqquEhARJTEwUkV9+NPfhhx92uSLAv7799lsZM2aMFBQU2P753XffLampqRITE2O2MMCAli1bVvorjNq2bStLliyRXr16GawKMOfmzz1O8NkINRHnwHe4IwrAsQEDBkhGRoYsW7ZMtm3bJj/99JMEBwdLmzZtZPDgwTJu3DgmRqPGSklJke+++0727dsnZ86ckfPnz0tkZKR07NhRnnjiCRkxYoTceeedbpcJAEC1wB1RAAAAAIBRDCsCAAAAABhFIwoAAAAAMIpGFAAAAABgFI0oAAAAAMAoGlEAAAAAgFE0ogAAAAAAo2hEAQAAAABG1XW6kV9Sj8p4PB63SzCCc4DK1IZzwBlAZWrDGRDhHKBynAPA2TngjigAAAAAwCgaUQAAAACAUTSiAAAAAACjaEQBAAAAAEbRiAIAAAAAjKIRBQAAAAAYRSMKAAAAADCKRhQAAAAAYBSNKAAAAADAKBpRAAAAAIBRNKIAAAAAAKNoRAEAAAAARtGIAgAAAACMohEFAAAAABhV1+0CAAAAAKCm+eyzz1QWGxursmeeecay3rNnj99qCiTcEQUAAAAAGEUjCgAAAAAwikYUAAAAAGAUz4i6oEOHDpb10qVL1Z6RI0eqLCcnx281Aab17dvXsk5LS1N76tTR/1ZW/nUiIunp6b4qCwAAwCfatm2rsnbt2qlszZo1lnWnTp3UnmvXrvmsrkDBHVEAAAAAgFE0ogAAAAAAo2hEAQAAAABG0YgCAAAAAIwyMqwoPDzcsg4LC1N7CgoKVHbp0iW/1eSm3/3ud5b1I488ova8+OKLKktISFBZcXGx7woD/OT5559X2Z/+9CfL+vr1646ulZycrLLVq1erbNGiRSrjvABAYJs8ebLK3n//fZXNnj1bZW+//bZfagKcaN26tcq6d+/u6LXt27e3rOvW1S0aw4oAAAAAALhNNKIAAAAAAKNoRAEAAAAARtGIAgAAAACMCvJ4PKVONjZs2NDrN5kxY4Zlbfcg+htvvKGyefPmef2egax3796W9Y4dOxy9Ljo6WmVHjx71RUm3zePxuF2CEbdzDmoLu8FEo0aNUpndkK7y6tTR/1bmdKhR+Qf/RUROnDjh6LXeqg3ngDNQtbZt26ps4sSJKnvllVcsa7vhFGvXrlVZXFzcbVTnX7XhDIhwDnyp/EDLI0eOqD3NmjVTmd3glvHjx6vso48+uo3qvMM5qJ06d+6ssgMHDjh67eeff25ZP/nkk2qP088/gcLJOeCOKAAAAADAKBpRAAAAAIBRNKIAAAAAAKNoRAEAAAAARunJCC6ZNm2ayo4fP66yzZs3myjHr5o3b+52CUCl7AYQxMTEqGzFihUqi4yMVFm9evWqfM+srCyV2Q0r6tChQ5XXAkwZPXq0yubPn6+y//znPyqLj4+3rFu3bq322H1vfO+991Rmd36AQGM3kOvll1+2rO0GE9nJzc1V2e7du70rDLhFdn+X7YaxOpWammpZV7fBRN7ijigAAAAAwCgaUQAAAACAUTSiAAAAAACjaEQBAAAAAEYFzLCisLAwldkNQnn00UdVtnfvXr/U5At2/12TJk3y6lpPPfWUyhISEry6FnDD0KFDVfbSSy+pzO7s2Q0T8vYB+zlz5ji6/vLly726PnArQkJCVPbaa6+pbOrUqSpLTk5Wmd3fb4/HY1l369ZN7bEbVnT+/HmVAdVBbGysyrz9HDNu3DiVHTp0yKtrAbdq3rx5KouLi3OhkuqNO6IAAAAAAKNoRAEAAAAARtGIAgAAAACMohEFAAAAABhlZFhRdna2V6+76667VDZ9+nSVPfvssyo7d+6cV+/pa+3bt1dZjx49XKgE+EX587Jq1Sqvr2U3TMhbQUFBxt8TqMjo0aNVNnPmTJVNmDBBZSkpKV69p91AsLy8PJWdOnXKq+sDJrVr105lCxYs8OpaaWlpKtuxY4dX1wJuld0AxzFjxrhQSc3DJzoAAAAAgFE0ogAAAAAAo2hEAQAAAABG0YgCAAAAAIwyMqxo5cqVlvXdd9+t9kybNs3RtQYNGqSyJ598UmUffvihs+L8zG7QxPHjxy3rqKgoR9fasGGDT2pC7WE3yGv+/PmW9fXr19WeK1euqCw3N1dl4eHhKouIiHBUW/n3KCwsVHsaNGigMrt6gdth93d2xowZKtu4caPKlixZ4vX7tm3b1rJ+8cUXvb4WEGi2bNmisk6dOlX5OrvvBXPmzFHZ5cuXvSsMqITdoLqFCxeqLCQkRGX79u1TWbdu3XxTWA3FHVEAAAAAgFE0ogAAAAAAo2hEAQAAAABGGXlGtKSkxLK2+4XGI0eOVFn79u0dXX/8+PEq+8c//qGy/Px8R9fzpaZNm6rM6TOhwK0YOnSoylatWqUyJ89Y7tmzR2UDBgxQ2fPPP6+y5cuXV3l9EZF33nnHsrY7s3bXB25X3brWb327du1Se+yeiX755ZdVVlxc7HUda9assaztvjckJSV5fX3ATffdd5/KSktLq3zd4sWLVfbNN9/4pCZUf2FhYSrr2rWryjp06KCyBx98UGXDhw+3rBs1auSojldffVVlX331lcqOHj3q6Hq1FXdEAQAAAABG0YgCAAAAAIyiEQUAAAAAGEUjCgAAAAAwysiwovIKCgpUZjcswumwovvvv19lrVu3Vpm3w4rsfmltfHy8o9c+9dRTXr0nUBm7IT7z58939NorV65Y1naDiewewncqMzNTZXZDk5YsWVLltTZu3Kiyl156SWU9evRwWB0gMmzYMMvabqhFv379VHb27Fmv33PEiBEqi42NtawvXLig9sydO9fr9wRMSU5OVllQUJDK7IYVpaWlWdYzZszwXWGocVq1aqWyjz/+WGV2/7tup3xPYjdwcfbs2SrLzs52VBsqxx1RAAAAAIBRNKIAAAAAAKNoRAEAAAAARtGIAgAAAACMcmVYkZ3du3er7LnnnvP6ej179lTZ/v37LetevXqpPXZZWFiYyqZMmeJ1bU4cPnxYZefOnfPre6L6+Mtf/qKy+vXrO3rtrFmzLOuEhASv6/j+++9V9vXXX6ssNzfXq+vbDW8pKiry6lrADeW/txw5ckTtycjI8Pr6zZs3V5ndMLE6daz/FpySkqL2eHt2AH9ZtGiRyoYOHaoyu8FEP/74o8pGjhxpWZcfqAfcLCsrS2VdunRR2T333OPoeoWFhZb1yZMnvSvsNjn9DFfTcEcUAAAAAGAUjSgAAAAAwCgaUQAAAACAUTSiAAAAAACjAmZY0YcffqiyPn36qCwuLs7R9RYuXOgoc6L8QAkRkevXr3t1Lac6deqkMrthAB999JFf64D7YmJiVBYeHq4yu7+nwcHB/iipzNGjR/16fTtBQUEqs/tvByoyaNAgy3rq1Klqz7Vr1xxd66677lLZpk2bVBYZGamypUuXWtaJiYmO3hMwpUePHiqz+yxiN6DLzt/+9jeV/fzzz7dcF3AzuyGGBw8eNF7H+fPnVXbmzBmV2Z2XIUOGWNYrV670WV2BjE9vAAAAAACjaEQBAAAAAEbRiAIAAAAAjKIRBQAAAAAYFTDDiuwkJSWpbMSIEcbrsBtMVFpaaryO2NhYlTGsqGbp3LmzyuwGnzRq1Ehl/h6g5YawsDCVhYSEqKwm/rfDN/r371/lns8//9zRtcoPORIRWbZsmcratGmjMrvBXu+8845lXVhY6KgOwJQXXnhBZS1atHD02sOHD6ts8+bNt10TEKjy8/NV9t///ldldsOKtm/f7peaAh13RAEAAAAARtGIAgAAAACMohEFAAAAABhFIwoAAAAAMCqghxUFCrshE3bDirZu3aqygoIClU2dOtU3haHGWbBggcrsBp/UFsOGDVNZjx49XKgE1VVubq7Krly5YlmvX79e7QkPD1dZkyZNVFZUVKSyoKAglS1atEhldt8fALdMmDBBZWPGjFGZ02GNAwcOVNnp06dvuS6gNsjJyXG7BFdwRxQAAAAAYBSNKAAAAADAKBpRAAAAAIBRNKIAAAAAAKNq1bCis2fPWtYnT55Ue5KSklT22Wefef2eMTExKmNYEfzhzTffdLuE2xIdHa2y2bNnO3ptdna2ysoPpEHtdPDgQZWNGzfOsrYbyJKZmakyu+8FCxcuVNnevXtVtmzZskrrBExr3bq1ZW13DurU0fcrSkpKVLZ8+XKVMZgIsGc38CsvL8+FStzHHVEAAAAAgFE0ogAAAAAAo2hEAQAAAABGBfQzosePH1fZ6tWrVRYVFaWyw4cPq6z8LxS3e3YokD366KMqa9SokcrOnTtnohwEmPz8fLdLuCXlnwndvHmz2tO4cWOV2T1HMWzYMJXl5ubeRnWoycp/H7H7vhIUFKSy+fPnq6xZs2Yq+8Mf/qAynlmGm9q3b6+yL774wrLu2LGjo2vNmzdPZW+99ZZ3hQEuK382IiIiHL3u0qVLKis/i0ZEJDk5WWV28y+aNGlS6VpEJDQ0VGUzZ85U2YYNG1RW/rwHCu6IAgAAAACMohEFAAAAABhFIwoAAAAAMIpGFAAAAABgVEAPKyosLFTZCy+84EIlgaFly5YqCwkJcaES+IvdgBS7XyhuZ8WKFSqzG8Lib2FhYY7qGDJkSJXXshtYNnjwYJUdOXLEYXWAM3369FHZH//4R5W9//77Ktu7d69fagK8ZTeIyOlwovICdegJai+7z8J2g0zHjh2rsvj4eMvabiCQnatXr6rswoULKnM6/Kj8gKGff/5Z7bH772zQoIHKzpw5o7JAPbfcEQUAAAAAGEUjCgAAAAAwikYUAAAAAGAUjSgAAAAAwKiAHlZUE3g8HpXl5ORY1i1atPD6+rNmzVJZ+QevRUSKi4u9fg+YM3PmTJWtW7dOZXYPp9vZvn27ykpLSy3rzZs3qz12w3/efPNNldkNV7J7mL5Hjx4qu3TpkmVt93f573//u6PaAF9LTU1V2enTp1U2e/ZsE+UAt8XpwJTyduzYobJDhw7dZjWA95o1a6ayv/71ryp7+umnffae5T+3i+jPUiIi//73v1WWmZnpszqcWrVqlfH39BZ3RAEAAAAARtGIAgAAAACMohEFAAAAABhFIwoAAAAAMCrI4/Hop21tNGzY0M+l1B4PPvigZW03kMXuYWyn7AbZXLx40evrOWE3lKkmcuMc9OnTR2WbNm1Smd3/3+vU0f/WdP36dd8UdgvXT09PV9nq1asrXVdHteEc1MTvBd27d1dZRkaGyl599VWVLV261C81VVe14QyIVL9zkJ2drbLWrVtX+Tq7gS8bN270RUk1GufAfyZOnKiy5ORkr6/35ZdfWtZJSUlqz65du1R27do1r9+ztnByDrgjCgAAAAAwikYUAAAAAGAUjSgAAAAAwCgaUQAAAACAUQwrCgB2gzLKPzwtIhIZGenoev3791eZ3bAYX+LBfLNatmypsrFjx6psypQpKvPlsKK8vDyV/etf/1JZfHy8ygoKCnxWR6CoDecgUM7A7ahXr55lbTeYqFGjRirr3Lmzyvw9CK66qQ1nQCSwz8F9992nsh07dqgsIiLCsp4+fbraM2PGDJWVljr62FircQ78p127dir74osvVHb69GmVrVu3TmUrVqzwSV3QGFYEAAAAAAg4NKIAAAAAAKNoRAEAAAAARtGIAgAAAACMqut2ARDZu3evyiZOnKiyN954Q2Vbt251dD3ULKdOnVLZtGnTVHb8+HGVvf7665Z1dHS02pOVlaWyOXPmqOzYsWMq27Vrl8qAQDJ69GjLumvXrmqPXcZgIlQHsbGxKgsPD6/ydUVFRSpjMBECTXZ2tsq6dOlivhD4BHdEAQAAAABG0YgCAAAAAIyiEQUAAAAAGEUjCgAAAAAwKsjj8Th6Er1hw4Z+LgXVmcfjcbsEIzgHqExtOAc14QwcOnTIsrYb0vKb3/xGZcXFxX6rqaaoDWdApPqdgxMnTqgsNDTUsh44cKDas3//fn+VVKNxDgBn54A7ogAAAAAAo2hEAQAAAABG0YgCAAAAAIyq63YBAACYFBERYVlPnz5d7eF5UNQkbdu2dbsEAFC4IwoAAAAAMIpGFAAAAABgFI0oAAAAAMAoGlEAAAAAgFEMKwIA1CrNmzd3uwQAAGo97ogCAAAAAIyiEQUAAAAAGEUjCgAAAAAwikYUAAAAAGAUjSgAAAAAwCgaUQAAAACAUTSiAAAAAACjaEQBAAAAAEbRiAIAAAAAjAryeDylbhcBAAAAAKg9uCMKAAAAADCKRhQAAAAAYBSNKAAAAADAKBpRAAAAAIBRNKIAAAAAAKNoRAEAAAAARtGIAgAAAACMohEFAAAAABhFIwoAAAAAMOr/AKHMh6OD3vwoAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -87,7 +91,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8wAAAH7CAYAAAAZyBZSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACAG0lEQVR4nOzdeVxUdf///yebooBgLoi7iKWmueUS7humaO6kuddlXlJq7salXZmGYblQLmUfLRdcU3PPJTTFrTTN3Qxc0zQXQEFkm98f/pivczEgyMgw9rjfbt2u8Zz3Oec1L+cSnnPOeR+76OhogwAAAAAAgAl7axcAAAAAAEBeRGAGAAAAAMAMAjMAAAAAAGYQmAEAAAAAMIPADAAAAACAGQRmAAAAAADMIDADAAAAAGAGgRkAAAAAADMIzAAAAAAAmEFgBgAgF1SvXl0eHh4aPHiwtUt5JkyZMkUeHh7y8PCwdilZ5u/vLw8PD/n7+6dbd/HiReP7CQsLs0J1T27w4MHy8PBQ9erVrV0KAFico7ULAACkt2fPHnXo0MH4Z2dnZ509e1bu7u6P3bZOnTqKjIw0/nn69Ol68803TcZcvHhRNWrUMP65evXq2r17t+zs7DLcb1hYmN555x1J0nfffadWrVplWPPYsWP1/vvvm92PwWDQtm3btHr1ah0+fFjXr19XYmKiihQpoqJFi6p8+fLy9fVVw4YNVa1aNdnb26er90n99ttvKleu3BNtm5ycrI0bN2rHjh365Zdf9Pfffys2NlZubm7y8vJSnTp11K5dO7Vu3VqOjvx4fVT16tV1+fLldMtdXFzk5uam5557Ti+++KJq1Kih9u3bq3z58rlfJAAAZnCGGQBsQEJCgtatW/fYcQcPHjQJy1l1/Phxff/9909QWfb8/fffat++vV5//XWtXLlSkZGRunfvnhITE3Xt2jUdP35cGzZs0Pvvv68mTZooPDz8qdeUFVu2bFG9evXUv39/LVmyRGfPntXt27eVnJysO3fu6NSpU1q8eLF69uypGjVqaOnSpdYu2SbExcXpr7/+0qlTp7Rq1SqNHz9etWrVUteuXXXmzBmr1GTLZ3otyRbP4APA08BX4ACQxzk7OyshIUHLly9X3759Mx27fPlySVKBAgV0//79bB3nk08+UceOHWVv/3S+S01MTFTnzp114sQJSVK1atXUq1cvvfTSS3Jzc1NcXJz++OMPHTx4UD/88INu3rxp3LZkyZLat29fhvvu2rWrrl27Ji8vL61evTrDcSVLlsx23TNmzNBHH30kg8EgSWrcuLHatWunKlWqqHDhwoqOjtb58+e1detW7dixQ3/++afGjRunN954I9vHetb9799PUlKSYmJi9Oeff+rQoUNat26dbt68qR9//FF79+7VtGnT1KtXL7P7ev/99zO8iiGv2rRpk7VLeCrmzp2ruXPnWrsMAHgqCMwAkMe1a9dOa9as0f79+3Xx4sUMLyl+8OCB1q5da9wms+D4qCJFiujWrVs6e/asVqxYoZ49e1qs9kctWrTIGJZ79uyp2bNnpwvnr7zyivr06aOUlBRt3LhRpUqVkiQ5OTmpatWqGe477RJoR0fHTMdl1/LlyzVx4kRJD/u0YMECNW3aNN24pk2bqn///rpw4YL++9//aufOnRar4VmS2d9Pz5499fHHH2v27NkKDg5WQkKChg4dKk9Pz3SX/wMAkFu4JBsA8riGDRuqTJkyMhgMWrlyZYbjtmzZoujoaOXPn1+dOnXK8v4DAgKMwTQkJETJyck5LdmstLNrjo6OmjJlSqZnsh0cHNSxY0dVqVLlqdSSFdeuXdPIkSMlSQULFtSmTZvMhuVHlS9fXgsXLtQnn3ySGyU+c5ydnTVy5Ejj2cqUlBQNGTJEDx48sHJlAIB/KgIzAORxdnZ2CggIkCStWLEiw3HLli2TJLVp0yZb9x3mz5/fGAwvXLigJUuWPHmxmbhy5Yok6bnnnrOJ+yLnzJmjuLg4SQ8v/61cuXKWt32Sy7H/+usv/d///Z/69u2r2rVrq2TJkipevLiqVKminj17as2aNUpNTc10Hw8ePNC8efPUoUMH+fj4qGjRoipXrpzq1Kmjjh07avr06Tp79qzZbaOiojRu3Dj5+vqqdOnSKlasmF544QX5+vpq4MCBWrZsme7evZvt9/UkAgIC9Nprr0l6+MWFuXvCs3KPbUREhN5++23VrFlTXl5eKlGihKpVq6ZmzZpp9OjR2rJli/FSe0ny8PAwmVzunXfeMR4j7b8pU6YY14eFhRmXX7x4UYmJifryyy/l5+enihUrqnDhwho3bpxxfGazZJuzbt06de7cWZUqVZKnp6dq166t999/Xzdu3Mhwm6zee5zRvdpp7ykkJMSkL//738WLF43rszpL9tmzZzVy5Ei9/PLLKlWqlEqWLKk6depo+PDhOn36dKbb/m//jx49qoEDB6patWoqXry4XnjhBfXr109HjhzJdD8AkF1ckg0ANqBHjx6aNm2a/vjjDx06dEgvv/yyyfq0+z7TxmZXnz59FBoaqosXL+qzzz5Tz549lT9/fovUniZfvnySHk78dfv2bT333HMW3b8lGQwG4xcQLi4u6tev31M9XkpKiqpWrWo2EF+7dk3Xrl3Tli1btHjxYi1evFiurq7pxl2/fl2dO3fWqVOnTJbHxMQoJiZGkZGR+umnn3TixAktWLDAZMy6dev09ttvpzuTe/36dV2/ft04KVexYsVy7fLowMBArV+/XpK0YcMGDRgwIFvbjx8/XrNmzUq3/MqVK7py5YqOHj2qr7/+Wn/99ZecnZ1zXO+dO3fUt29f/fbbbznelyQNHTpUixYtMlkWFRWluXPnavny5fruu+9Up04dixwrN3zxxRf68MMPlZKSYrI8MjJSkZGRWrRokcaPH6/hw4c/dl/z58/X2LFjTa6GuX79utatW6dNmzZp/vz56tixo8XfA4B/JgIzANiASpUqqU6dOjp8+LBWrFiRLjCvXLlSycnJKlKkiFq3bq0DBw5ka/9OTk4aM2aM3nnnHV25ckXffPON/v3vf1vyLahGjRo6efKkDAaD3n33XX311Vdyc3Oz6DEs5cyZM8ZJxxo0aKBChQo91eOlneVs0qSJWrdurapVq6pIkSK6d++eLly4oEWLFunnn3/Wzp07NWrUKH355Zfp9jFmzBhjWO7WrZs6dOigkiVLysnJSTdu3NBvv/2mrVu3pnt02I0bNxQYGKgHDx6oaNGieuutt1S/fn0VKVJEDx480IULF3Tw4MFcn7CqXr16cnNz0927d/Xzzz8rJSVFDg4OWdp269atxrBctWpVDRgwQC+88II8PDx09+5d/f7779q9e7e2bt1qst2+ffv0119/qUuXLpIehu527dqZjClWrJjZY77zzjs6deqUAgIC1KVLF5UoUULXrl1LFxCzYv78+fr1119Vo0YNvfPOO3r++ed1+/ZtrV69WkuXLtWdO3fUtWtX7d+/X15eXtnef2b8/f1Vq1YtzZ8/X/Pnz5cksxPuZWcCvW+//VYTJkyQ9PBM8bBhw9SwYUNJ0v79+zVz5kzduXNHEydOlJubm/71r39luK+dO3fq0KFDeuGFFzR48GC9+OKLSk5O1vbt2/X5558rMTFRQ4YMUaNGjVSkSJHsvHUAMIvADAA2okePHjp8+LBWr16t4OBgOTk5GdelzY7dtWtXk+XZ3f/MmTN17tw5zZgxQ3379lXBggUtUrskDRw4UCtWrFBKSoo2b96sF198Ua+++qpeeeUV1a5dW1WrVn3i2i3t+PHjxtc1a9Z86sdzcHDQoUOH5O3tnW5do0aN1Lt3bwUHB2vq1KlasWKFRo8erYoVKxrHJCQkaPPmzZIeBrePP/443X78/Pw0evRo3b5922T51q1bjZeer1u3Ti+++KLJ+nr16ikgIECffPKJEhIScvxes8re3l7VqlXT/v37de/ePf3111/Ge+0fZ82aNZKkMmXKaNu2benOyDds2FADBgww3vOfpmrVqnJxcTH+2cvLK8uTyJ08eVIzZswwORP+pJ+dX3/9VS1atNCKFStM/j/RokUL1a1bV++9956io6P1wQcf6Ouvv36iY2Qk7dLnokWLGpflZCK927dv6z//+Y8kqWjRotq2bZvJ57xevXrq2LGj/Pz8dOPGDU2YMEGvvfaaihcvbnZ/P//8s1q2bKmlS5ea/N3Vr19fFStW1ODBgxUbG6sVK1YoMDDwiesGgDTcwwwANiItDN++fVvbtm0zLj99+rSOHTsmSTma4drBwcF4v+X169ct/ot4rVq1FBoaarw0OzY2VitXrtTw4cPVtGlTlS1bVu3bt9eXX36p6Ohoix47ux4NlRmdUbQkOzs7s2H5UWPHjlWRIkVkMBiM4TjNnTt3lJSUJEnGM3cZ+d9L4dPuh/Xw8EgXlh/l5OSU61cEFC5c2Pj6zp07Wd4u7T3VqFHD7OXraTw8PNKdcX9SjRo1yvZl4xnJly+fZs2aZfYLpP79+6tx48aSpO+//15///23RY75tCxZssT4hcyHH35o9nNevnx5ffTRR5Kk+/fvp7sU/VHOzs6aO3eu2VtGXn/9dZUoUUKS+bPiAPAkCMwAYCOee+45tW7dWpLp5F9p99q+8MILqlWrVo6O0aVLF2NoCg0NVWxsbI7297969+6t/fv3q1+/fnJ3dzdZd//+fUVERGjcuHGqVatWpjOCP2337t0zvrbkWfasSk1N1bVr13Tu3DmdOnVKp06d0tmzZ42XwaY9nivNc889Z/wiYsWKFdma6TwtYERHR+e55wQ/GnYf/Tt5nEdD0/nz5y1elzlpE/NZQvPmzTO95Ll3796SHj7HOiIiwmLHfRrSHrHm4uKibt26ZTiuS5cuxlsfMnssW9OmTTM8+2xvb2+ctO3ChQtPWDEAmCIwA4ANSZvQa+vWrYqOjlZqaqpWrVol6eHZlZyys7NTUFCQpIdnWefMmZPjff6vihUrKjQ0VJGRkfrxxx/1ySefqGfPnipfvrxxzJ07d/T2228bvwzIbY8Gtfj4+Fw5psFg0IoVK9S+fXuVKlVKVapUUd26deXr62v8L+1S8f+9rDp//vzq2rWrpIeXVdesWVPjx4/XDz/88Niz9e3atTPOqNy7d2+1b99es2bN0q+//vrUHjGWVY/Oyp2ds9tpV1rcvn1br7zyigYMGKDFixfr3LlzFq8xzeNmiM6Ox03m9ej6kydPWuy4T0Pa7NfVqlXLdHK1fPny6aWXXpKkdBPXPeqFF17I9Hhpn+XsfMECAJkhMAOADXn11VdVuHBhPXjwQGvXrtXOnTt17do12dvbW+wMl7+/v2rXri3p4aOVsnMpbHY4OjqqTp06+ve//625c+fq6NGjCg8P1yuvvGIc8/7771vlF99HL1vOjUteExISFBAQoEGDBikiIkL379/PdLy59VOnTlX79u0lPZwJetasWerRo4cqVKigRo0aaerUqcaJzB5VuHBhrVixQqVLl5bBYFBERITGjx+vFi1aqFy5cnr99de1du3axz7S6ml49IuBRy/PfpwmTZpoxowZcnFxUUJCgtauXashQ4aobt26ev755xUYGKiDBw9atFZLPirtcbcBPLr+f788yWvS/v149J7ojHh6ekp6OLP7o4/7elSBAgUy3Ufa892fZLI1ADCHwAwANiRfvnzGGXyXL19unOyrUaNGKl26tMWOkzZJT2xsrD7//HOL7fdxateure+++854n2N0dLR27dqVa8dP8+jZwqNHjz7143322Wfavn27pIf3IH/77bc6cuSI/vzzT92+fVvR0dGKjo42fplgLky4ublpyZIl2rVrl4YNG6Y6derI0dFRBoNBJ06cUHBwsGrXrq0ffvgh3bb169fX4cOHtWDBAgUEBKhMmTKSpLi4OG3dulUDBgxQ69atzQbupyU1NdV49rRQoULGMJVVAwYM0LFjxxQSEmL8okl6eH/z0qVL1aZNGw0ZMsRiXwSkBTVLeNx91RmFybwsK/eK2+L7AvDsIzADgI1Juyz74MGDxufUPsmzlzPTsmVLYzibN29erk4s5OLiYry8WHr47NncVrlyZeMZsf379ysmJuapHctgMGjx4sWSpFdeeUUbNmxQp06dVKFCBbm4uJgEsaxMhlazZk1NnDhRP/74oy5evKjvvvtOAQEBsre3V2xsrN58801dv3493Xb58+dXly5dNG/ePB0/flwnTpzQzJkzVa1aNUnS4cOH9d5771nkPWfFgQMHjFcX1KtXL8uPlHpUkSJFNGjQIC1fvlxRUVHau3ev/vOf/xjvgV28eLHmzZtn0botIW3Ssow8+sXF/07i9ujnJbMvA3LrVoO0Lyqy8m9I2vt2d3e32GRsAJBTBGYAsDF169aVj4+PJOnBgwcqWLCgXnvtNYsfZ/z48ZIenmWcPn26xfefmUefLWuNX5zt7OyM98HGx8dnOmtvTt25c8cYYDt16pThmcp79+5l+x5cFxcXtWrVSvPmzTP+fcbHx6d7/rA5pUuXVv/+/RUeHm58rNAPP/zw2MvFLWXu3LnG1x06dMjx/uzs7PTiiy9q9OjR2rZtm3GW5e+//z7dOGs7fPhwput//fVX4+v/feTTo/ffZ/YFy++//57pMSzVhypVqkh6OFHdgwcPMhyXmJhonO0/J4+xAgBLIzADgA164403lD9/fuXPn1+dOnXK9NE5T6phw4Zq1qyZJOmbb77RtWvXcrS/7FxueeTIEePrcuXK5ei4TyowMNA4Q/aUKVN05syZLG+bncnKHp1YK7OzfosWLcrRJFxNmzY1vr5161aWt8uXL5/xaoPk5GSLz5xuzsqVK7VhwwZJD788sfQVFOXLlzdOMve/vXh0YqrExESLHjer0uYmyEhYWJikh/MANGrUyGTdo5PnPRqs/1faZIEZebQPmQXdx2nevLmkh1+8pT0f25zvv//e+NlK2wYA8gICMwDYoBEjRuj69eu6fv36U5nJOk3aWcmEhAR9+eWXOdpX7969NW/evMdO4vXjjz8aA6erq6sxtOc2Ly8vTZs2TdLDINu+fXv99NNPmW5z8eJFDRgwQGPHjs3ycYoWLWp8xNZ3331nNpz8+uuvCg4OznAfFy5c0J49ezI9Tnh4uPH1o19C7NixI9NwlpCQoP3790t6eJ90kSJFMj1OTiQkJGjatGkaPHiwpIfPBp81a5bZZ+5mZs2aNZl++XDhwgXjpf7/+4XMo4/oyq1HUv2vxMREDR061OwXJIsWLTJ+Djt27JjuEUv169eXo6OjJGnWrFlmL8tevny5Nm7cmGkNj94znpM+9OrVSy4uLpIePof54sWL6cZcvHhREyZMkPRwUq++ffs+8fEAwNIcrV0AACDvevnll9WmTRtt3bo1xxM+/fnnnxozZowmTpyoNm3aqEGDBnrhhRdUuHBhJSUlKTIyUlu2bNG6deuMv+RPmDDB+GxWa+jZs6euXbumSZMm6ebNm+rYsaOaNGkif39/Va5cWR4eHoqJidGFCxe0fft2bd26VYmJidmqOW2G86+//lonT57Uq6++qnfeeUcVK1ZUbGystm3bpvnz58vFxUUlSpTQH3/8kW4fly9fVocOHfT888/L399ftWrVUqlSpWRvb69r165p06ZNWrp0qaSHl1q3adPGuO3q1avVs2dPNW3aVC1atFDVqlVVuHBhxcfH69y5c5o/f77xMT99+/Y1hrEnkZycbPLIoOTkZMXExOjPP//UL7/8onXr1hk/Z87Ozpo2bZpatmyZ7eP897//1Xvvvae2bduqYcOG8vHxkaurq+7cuaNff/1V8+bNU1JSkiTpzTffNNnW0dFRtWvX1oEDB7RkyRK99NJLql69upycnCQ9vCc3OzN2P4natWtr+/btat26tQIDA1WpUiXduXNHa9as0ZIlSyQ9vM930qRJ6bYtWrSounTpopUrV2rXrl0KCAjQ22+/LU9PT127dk1r167VypUr1aBBAx04cCDDGurXr298HRQUpJEjR6pEiRLGS7XLli2bpc9CkSJF9PHHH+u9997T9evX1bx5c7333nvGqxYOHDigGTNmGGf7njRpUobPWQYAayAwAwAy9Z///Efbtm3L8Qy2JUuW1NGjR42XZmZ2eWaBAgU0YcIEDRo0KEfHtIQRI0aoSpUqCgoK0vnz57V7927t3r07w/FlypTRf//732wdY/z48Tpw4ICOHz+uI0eO6F//+pfJ+sKFC2vRokUKDg42G5jT/P7775nem1q6dGktW7bMeMYvTVJSknbs2KEdO3ZkuG2nTp30wQcfZPEdmXft2jX5+vpmOsbOzk4tWrTQ5MmTjfe/PonY2FitWLFCK1asMLvewcFBH3zwgdq1a5du3fDhw9WjRw/dvn073d/F2LFj9f777z9xXVnx1ltvqWrVqlqyZIkGDhyYbr2Hh4dWrlypkiVLmt0+ODhYR48e1e+//27277Vp06YKCQlRgwYNMqzB29tbnTt31tq1axUeHm5yhYIk/fbbb1m+XaJ///6KjY3VxIkTdfv2bbOfIwcHB40fPz5dvwHA2gjMAIBMvfTSS+rYsWO6yZGya+nSpfrjjz/0448/6uDBgzpz5oz+/PNP3bt3T/nz51fhwoX1wgsvqGnTpgoICDCZ+Mva2rZtq9atW2vjxo3avn27Dh06pBs3buju3btydXVVqVKlVKdOHfn7+6tVq1bZntHZ3d1dW7du1ezZs7V27VpFRUXJ0dFRpUqVkp+fn/7973+rVKlSGW7v6+ur7du3a9euXdq7d68uX76sv//+W/Hx8fLw8FDVqlX16quvql+/funC8ieffKJ27drpp59+0q+//qrr16/r77//loODg0qUKKGXX35ZPXr0eKIzvY9ToEABFSpUSM8995yqVq2qWrVqqX379ib34T6JLVu2aOfOnfrpp590+vRp3bhxQ3fu3FGBAgVUtmxZNWzYUG+++aYqV65sdvs2bdpo3bp1mjt3ro4cOaJbt24Zz0jnllmzZqlly5b69ttvdfLkSd29e1clS5ZUmzZtNHz48Ewfs1W0aFFt375dX3zxhdavX69Lly4pf/78euGFF9SzZ0/169dPly9ffmwN8+bNU61atbRu3TqdO3dOd+/efeIvzoYOHao2bdroq6++0u7du3X16lVJD299aNKkid5+++0cfUECAE+LXXR0NA+9AwAAAADgfzDpFwAAAAAAZhCYAQAAAAAwg8AMAAAAAIAZBGYAAAAAAMwgMAMAAAAAYEaeD8xhYWHy8PDI9L/XXnvNZJvY2FgFBQWpWrVqKl68uKpVq6agoCDFxsZmeJxVq1apRYsWKlmypMqVK6fu3bvryJEjGY6PjIxU//79VbFiRZUoUUK+vr6aN2+eUlNTLfbeAQAAAADWk+cfK3Xs2DFt2rTJ7Lr169fr9OnTmjhxooYNGyZJiouL06uvvqrjx4+refPmqlGjhk6cOKEdO3aoevXq+uGHH9I9g3LatGmaNGmSSpcurY4dOyouLk5r1qxRQkKCVq9ercaNG5uMP3PmjPz8/HT//n117txZXl5e2r59u06dOqV+/fopNDT06TQDAAAAAJBr8nxgzkhiYqIqV66s2NhYnTp1SsWLF5ckBQcHa+rUqRo2bJgmTpxoHJ+2fMyYMQoKCjIuj4yMVP369VW+fHn9+OOPcnd3lySdPn1aLVu2lKenp3755Rc5Ojoat2nXrp327dunlStXys/PT5KUlJSkbt266aefftL69evVpEmT3GgDAAAAAOApyfOXZGdk48aNun37ttq0aWMMywaDQYsXL5arq6vGjBljMn7EiBHy8PDQkiVLZDD8v+8IwsLClJycrJEjRxrDsiRVqVJFPXr00Pnz57V7927j8j/++EP79u1T48aNjWFZkpycnDRhwgRJ0qJFi57KewYAAAAA5B6bDcyLFy+WJPXt29e4LDIyUteuXVP9+vXTXXbt7OwsX19fXb16VVFRUcblERERkqQWLVqkO0basr1792ZpfJ06deTu7m4yHplLSEhQVFSUEhISrF2KzaOXlkEfLYM+Wg69tAz6aDn00jLoo2XQR8uhl+Y5Pn5I3nPp0iX99NNPKlmypFq1amVcHhkZKUny9vY2u13FihWN4x597erqKk9Pz0zHZ+UYdnZ28vb21pEjRxQfH6+CBQtm+j74MD68tD4lJUWJiYnWLsXm0UvLoI+WQR8th15aBn20HHppGfTRMuij5fyTeuns7JzlsTYZmMPCwpSamqo33nhDDg4OxuVps2A/emn1o9zc3EzGpb0uVqxYtsZn9RiPC8xXr15VSkpKpmP+Ka5fv27tEp4Z9NIy6KNl0EfLoZeWQR8th15aBn20DPpoOc96Lx0cHDI8wWqOzQXm1NRUhYWFyc7OTr1797Z2OTlSsmRJa5dgdYmJibp+/bo8PT2VL18+a5dj0+ilZdBHy6CPlkMvLYM+Wg69tAz6aBn00XLopXk2F5h37typK1euqGnTpipfvrzJukKFCkmSYmJizG579+5dk3FprzN6PnNG47NyjLQzzZnJzqUAz7p8+fLRDwuhl5ZBHy2DPloOvbQM+mg59NIy6KNl0EfLoZembG7SL3OTfaVJu+f40Um9HpV2/3HauLTX9+7dM3vpQUbjMzqGwWBQVFSUvLy80k06BgAAAACwLTYVmG/fvq3NmzercOHCat++fbr1FStWlJeXlw4ePKi4uDiTdQkJCdq3b5+8vLxMrllv2LChJCk8PDzd/tKWpY2RpEaNGmU4/vDhw4qJiTEZDwAAAACwTTZ1Sfby5cuVmJioAQMGKH/+/OnW29nZqU+fPpo6daqmTp2qiRMnGtdNnz5d0dHRevvtt2VnZ2dc3qtXL33xxReaNm2a2rVrZ5zM6/Tp01q+fLkqVKigJk2aGMf7+PjI19dXe/bs0bZt24zPYk5KStLkyZMlmT/7DQB4ulJTUxUXF/fMPYEgNTVV+fLlU0xMjPG2H2SfrfbR3t5ebm5u3E8IAFZiU4F5yZIlkjIPpMOGDdOWLVsUGhqqY8eOqWbNmjpx4oS2b9+u6tWra9iwYSbjfXx8NG7cOE2ePFkNGzZUx44dFR8fr9WrVyspKUmhoaFydDRt0/Tp0+Xn56fevXurU6dO8vLy0o4dO3Ty5En17dvXJGADAJ6+1NRU3bp1S66uripatKjJF6O2LjU1VYmJicqXL5/s7W3qwrA8xVb7mJKSolu3bqlo0aI2VTcAPCtsJjAfPnxYp06dUp06dfTiiy9mOM7FxUUbN25USEiI1q9fr4iICHl6eiowMFBjx441e2/xqFGjVLZsWc2dO1cLFiyQk5OT6tWrp6CgINWuXTvd+MqVKys8PFyTJk3Sjh07FBcXJ29vb4WEhGjgwIEWfd8AgMeLi4uTq6urChQoYO1SAItycHAwTlDq4eFh7XIA4B/HZgJznTp1FB0dnaWx7u7uCg4OVnBwcJb3HxAQoICAgCyP9/Hx0cKFC7M8HgDw9CQkJKho0aLWLgN4KvLnz29Tl5EDwLOEa3sAAM+EZ+kybOBRfLYBwHoIzAAAAAAAmEFgBgAAAADADAIzAAAAAABmEJgBAAAAADDDZmbJBgDgSXl886e1S8hQ9IBS1i7hiXl4eKhhw4batGnTE+9jz5496tChg8aOHav333/fgtUBAJBzBGbASp7OL/AFJd2y2N5s+Rd54J8iu8/mzeojGv/JkpOT9c0332jlypU6e/as7t+/r+eee06lS5dWvXr11KNHD9WoUeOJ9+/v76+9e/fydwEANoDADACADRs7dmy6ZSEhISpUqJAGDx78VI/9888/q0CBAjnaR506dfTzzz+rSJEiFqoqZ1JSUtStWzft2rVLXl5e6tixo4oWLapr167p3Llz+uqrr+Ti4pKjwAwAsB0EZgAAbJi5y5hDQkLk7u7+1C9xfv7553O8j4IFC1pkP5ayatUq7dq1Sy1bttTy5cvl5ORksv769eu6du2alaoDAOQ2Jv0CAOAf4OLFi/Lw8NDgwYP1+++/q3fv3vL29paHh4cuXrwoSdqwYYPeeust1apVS15eXipbtqzatm2rdevWmd2nh4eH/P39TZYNHjzYuM//+7//U7169eTp6alq1arpk08+UWpqqsn4PXv2yMPDQ1OmTDFZXr16dVWvXl1xcXEKCgpSlSpVVLx4cfn6+mZYz8WLFzVgwACVL19epUqVUrt27bR3715NmTJFzz33nPbu3fvYPv3yyy+SpAEDBqQLy5Lk6empmjVrplt+9+5dBQcHq0GDBipRooTKli2rrl27av/+/el6llaHh4eH8b+nfTUAAODJcIYZAIB/kPPnz6tVq1aqUqWKevbsqTt37ihfvnySpI8++khOTk7G0Hfz5k1t2bJF/fr1U0hIiAYNGpTl43zwwQeKiIhQmzZt1Lx5c23atEmffPKJkpKSNGHChCztIzk5WV26dNGdO3fUvn173b9/X2vWrFH//v21evVqtWjRwjj26tWratOmjf766y/5+fmpWrVqOnfunLp06aLGjRtnue7ChQsb+5RVd+7cUbt27XT69Gm98soratGihWJjY7V582Z16NBB3377rdq3by/p4SX0S5cu1eXLl00up69evXqWjwcAyD0EZgAA/kEOHDig0aNH6z//+U+6datWrVL58uVNlt27d09+fn76+OOP1adPHxUsWDBLxzl69Kj27t2rEiVKSJLGjBmj2rVra968eRo7dqwxpGfm2rVrqlWrljZs2GAc3717d3Xs2FGzZ882Ccwffvih/vrrL02aNElDhgwxLg8LC9M777yTpZolqX379poxY4YmT56sS5cuyc/PTzVq1FDx4sUz3GbMmDE6ffq0Zs2apd69exuX37hxQy1atNB7772nVq1aydnZWe+//74iIiJ0+fJlZgUHABvAJdkAAPyDeHp6avTo0WbX/W9YliRXV1e98cYbio2N1a+//prl44wePdoYliWpSJEiateune7evatz585leT/BwcEm4bpp06YqU6aMSS0PHjzQunXrVLx48XRnwd94441s3SNds2ZNzZ49Wy4uLvr666/VvXt3Pf/883rxxRcVGBioo0ePmoy/deuW1qxZo6ZNm5qEZUkqXry4hgwZops3b2rXrl1ZrgEAkHdwhhkAgH+QatWqZXh29++//9aMGTO0Y8cOXb58Wffv3zdZ/9dff2X5OOZmkS5V6uGj6mJiYrK0D3d3d7MhvlSpUvr555+Nfz537pwePHigWrVqpXtvdnZ2qlu3rn7//fcs196jRw916tRJO3fu1IEDB3T06FH9/PPPWrp0qZYvX67PPvtMb775piTp119/VUpKih48eJDuPmxJioqKMtb46quvZrkGAEDeQGAGAOAfpFixYmaX37lzR82bN9eVK1fUoEEDNW3aVO7u7nJwcNDx48e1efNmPXjwIMvHKVSoULplDg4Okh4+uulJ95G2n0cnD7t7964kZfhoqswup86Is7Oz2rZtq7Zt20qSEhIS9MUXX+jjjz/WuHHj5O/vL09PT925c0fSw0vdDxw4kOH+4uLisl0DAMD6CMwAAPyD2NnZmV2+ePFiXblyRePHj9eoUaNM1s2YMUObN2/OjfKeiJubm6SHl0ebc+PGjRwfw9nZWaNHj9bOnTu1b98+HThwQB07djQe+91339XkyZNzfBwAQN7CPcwAAMA4K3TaGdVH/e+jkfKaSpUqKX/+/Dp69KgSExNN1hkMBh06dMhix3JxcTH5c+3atWVnZ2d8HFVWZPdMOwDAegjMAABAZcqUkaR0lxWvWrVK27Zts0ZJWZY/f3517NhR169f11dffWWybtmyZTp79myW97V69Wr99NNPMhgM6dYdPHhQERERcnR0VN26dSU9nEStc+fOOnjwoD7//HOz2x06dEjx8fHGP6c9uurPP//Mcl0AAOvgkmwAAKDXX39dM2fO1JgxY7Rnzx6VKVNGJ0+e1K5du9ShQwdt2LDB2iVm6oMPPtCuXbs0YcIE7dmzR9WrV9e5c+e0detWtWrVSjt27JC9/ePPE/zyyy/68ssvVbJkSfn6+qp06dJKTEzU2bNntXPnTqWmpurDDz9UyZIljdtMmzZN586d0wcffKDly5erXr16KlSokP78808dPXpUkZGROnv2rPGRXE2aNNG6devUv39/tW7dWs7OzqpataratGnz1PoDAHgyBGYAwDMvekApa5eQ55UqVUqbNm3Sf//7X+3atUspKSl66aWXtHbtWl25ciXPB+bSpUtr27Zt+vDDDxUeHq6IiAjVqFFDa9as0ffffy/p/93rnJl3331XFSpUUHh4uH799Vdt2bJFSUlJKl68uF577TUNGDBATZs2NdmmcOHC2rZtm77++mutWbNGq1atUmpqqooXL65q1app9OjRJhOS9evXT5cuXdLq1as1bdo0JScnq2fPngRmAMiD7KKjo9NfOwTkkoSEBF2+fFllypSRs7OztcvJVR7f5P1L8f6JIeOf/Jm0pNzu499//53h7M+2LjU1VYmJicqXL1+WzpAivVdffVU///yzzp07p8KFC9tkH/PSZ5x/Jy2DPloGfbQcemme7f3EAAAAMMPcc6JXrlypAwcOqGnTpukm7AIA4HG4JBsAADwTXnnlFb300kt64YUXjM+PjoiIkJubmyZNmmTt8gAANojADAAAnglvvvmmtmzZoiNHjig+Pl5FixZV9+7dNXr0aPn4+KR75BQAAI9DYAYAAM+ECRMmaMKECWbXpaam5nI1AIBnAfcwAwAAAABgBoEZAAAAAAAzCMwAAAAAAJhBYAYAAAAAwAwCMwAAAAAAZhCYAQAAAAAwg8AMAAAAAIAZBGYAAAAAAMxwtHYBAAAAQF7n8c2fT2GvBSXdsugeoweUsuj+gH86AjMA4Jnn2q+ZtUvI0L2Fu6xdAgAAyACXZAMAYMM8PDyy9Z+lhYWFycPDQ2FhYdne9tSpU/r3v/+t6tWrq3jx4ipbtqxq1aql3r17a+7cuTIYDE9c1549e+Th4aEpU6Y88T4AAOAMMwAANmzs2LHploWEhKhQoUIaPHiwFSrKmp07d+r1119XcnKymjZtqvbt20uSLly4oIMHD2rjxo0aOHCgHB35VQUAYD38FAIAwIa9//776ZaFhITI3d3d7Lq8YsSIEUpJSdH333+vJk2amKwzGAwKDw+Xg4ODlaoDAOAhLskGAOAfwmAwaPHixWrTpo3KlCkjLy8vNWvWTIsXL043NiEhQV988YUaNmyosmXLqlSpUqpZs6beeustnTx5UpI0ePBgvfPOO5Kkd955J8uXfv/99986f/68qlSpki4sS5KdnZ1atmwpOzu7dOv27t2r119/Xd7e3ipevLhq166tyZMnKz4+3jhmypQp6tChg6SHXx54eHjoueeeU4kSJXTp0qUs9wsAAM4wAwDwD2AwGPT2229r1apV8vHxUbdu3eTk5KRdu3ZpyJAhOnv2rCZPnmwcP3jwYK1du1Yvvvii3njjDeXPn19XrlzRnj171KJFC7344ovy9/dXTEyMNm/erHbt2ql69epZqqVQoUJycHDQ9evXFRcXJxcXlyxtt2DBAo0cOVIeHh569dVXVbRoUf3666/67LPPtGfPHm3YsEH58uVTo0aNdOnSJS1btkwNGzZUo0aNZDAYlJKSInd39yfqHwDgn4nADADAP8CiRYu0atUq9enTRzNmzDDeG5yYmKi+fftq1qxZ6tatm2rWrKmYmBh9//33qlWrlnbs2GFyaXRKSoru3r0rSWrfvr0xMPv7+6tXr15ZqiV//vx69dVXtWnTJr366qvq37+/6tWrp8qVK8vJycnsNmfOnNGYMWNUvXp1rVu3ToULFzaumzFjhiZOnKivvvpKQ4YMUePGjSVJy5YtU6NGjfT+++8rNTVViYmJypcv3xP1DwDwz0RgBgBIehrPGOX5onnJvHnz5OLiok8//dRkIq18+fJpwoQJ+uGHH/Tdd9+pZs2asrOzk8FgUP78+dPdR+zg4GCR2bY///xzJScna+vWrRo5cqSxllq1aqlz587q16+fChQoYBz/zTffKDk5WSEhISZhWZKGDRum2bNna/Xq1RoyZEiOawMAIA2BGQCAZ1x8fLxOnTolLy8vzZgxI9365ORkSdK5c+ckPbxkulWrVtqxY4eaNGmijh076pVXXtHLL79ssTO0RYoU0YoVK/THH3/oxx9/1OHDh3Xo0CEdPHhQBw8e1KJFi7Rp0yZjOD506JAk6ccff9SuXbvS7c/JyclYPwAAlmJTgXnDhg2aP3++fvvtN92/f1/FixdX3bp1NXHiRJUuXdo4LjY2Vp988onWr1+vGzduqHjx4nrttdc0btw4FSpUyOy+V61apblz5+rMmTNycnJSvXr1FBQUpFq1apkdHxkZqUmTJmnPnj2Ki4uTt7e3+vfvr3/961+yt2cuNQBA3hEdHS2DwaCrV68qJCQkw3FxcXHG1wsXLtT06dP13XffadKkSZIkNzc39erVSx988IEKFixokdp8fHzk4+Nj/POxY8c0aNAgnTp1Sp988omx3jt37kiSPvvsM4scFwCArLCJwGwwGDR8+HB9++23qlChgrp27SpXV1ddu3ZNe/fu1eXLl42BOS4uTv7+/jp+/LiaN2+ubt266cSJE5ozZ4727NmjH374Id3kItOmTdOkSZNUunRpDRgwQHFxcVqzZo3atGmj1atXG++FSnPmzBn5+fnp/v376ty5s7y8vLR9+3aNGTNGJ0+eVGhoaK71BgCAx3Fzc5Mk1axZ0+zZWXNcXFw0YcIETZgwQRcuXNCePXv0zTff6Msvv1RCQoJmzpz5VGp96aWXFBISotdee0179uwxLk97D5cvXza+BgDgabOJwPzVV1/p22+/1cCBA/XJJ5+ku58q7VIySQoNDdXx48c1bNgwTZw40bg8ODhYU6dOVWhoqIKCgozLIyMjNWXKFPn4+OjHH380zp45aNAgtWzZUkOHDtUvv/xicr/XiBEjFBsbq5UrV8rPz0+SNH78eHXr1k0LFy5U165dzT4mAwAAa3Bzc9MLL7yg33//XdHR0dm+B7l8+fIqX768unXrpkqVKmnLli3GwJz2MzklJcVi9ZqbNfvll1/Wb7/9pkOHDql58+aP3cfTqAsA8M+T568dvn//vkJCQlS+fHlNmTIlXViWZAyzac+XdHV11ZgxY0zGjBgxQh4eHlqyZIkMBoNxeVhYmJKTkzVy5EiTR01UqVJFPXr00Pnz57V7927j8j/++EP79u1T48aNjWFZenjv1IQJEyQ9nIkUAIC8ZNCgQYqPj9ewYcNMLr1Oc+HCBV28eFGSdPPmTR0+fDjdmOjoaD148EDOzs7GZWn3GF+9ejXLtcTFxemzzz7TrVvpJ4VLTk42XqnVoEED4/K33npLjo6OGjNmjK5cuWK2tt9++y1HdQEA8L/y/BnmnTt36s6dO3rjjTeUkpKizZs3KzIyUu7u7mrWrJm8vb2NYyMjI3Xt2jW1bNky3bfTzs7O8vX11ebNmxUVFaWKFStKkiIiIiRJLVq0SHfsFi1aaMGCBdq7d69xfWbj69SpI3d3d+3duzdL7y0hISFL455liYmJJv+LvOWf+BnlM5m3ZfSZTE1NVWpqai5XYxmPqzvtS16DwZDt9/jo+H79+umXX37RsmXLdPDgQTVt2lQlSpTQjRs3dO7cOR0+fFjz5s1TmTJl9Oeff6ply5aqXLmyatSoIS8vL92+fVtbtmxRUlKShg4datz3yy+/rAIFCmju3LmKjY1V0aJFJUnvvfdehnUlJiZq8uTJ+uSTT1S3bl1Vq1ZNbm5uunHjhn788Uddu3ZN5cqV0+jRo43HqVy5sj799FONGjVKdevWVatWrVShQgXdvXtXFy5c0L59+9SzZ09Nnz5d0sN7o728vLRmzRoVKFBAXl5eMhgM+te//mWTz2JOTU3NM/8m8+9k3pZXPie5hc+j5fyTevnoF7+Pk+cD85EjRyQ9PIvcqFEjkxkw7e3tFRgYqMmTJ0t6GJglmYToR6WF5MjISJPXrq6u8vT0zHR8msyOYWdnJ29vbx05ckTx8fGPnRDl6tWrXCr2/7t+/bq1S7ACy0yY8zRdvnzZ2iVYDZ/JvCmjz2S+fPky/QF/86sfnlZJOZfFX0ySkpKytVuDwZCuJzNmzFCzZs0UFhamrVu3Ki4uTkWLFlWFChX03//+V76+vkpMTFSJEiU0atQoRUREaNeuXbpz546ee+45VatWTYMGDVKzZs2M+3ZxcdHXX3+tzz77TN98843u378vSQoMDMywtvz58yssLEy7du3SwYMH9f333+vOnTsqUKCAvL291bt3bw0cOFCFChUyeQ89e/ZU5cqV9dVXX+nAgQP64Ycf5ObmptKlS+vtt99WQECAyfj58+dr0qRJWrFihe7duydJ6tixo8njqmxFQkKCYmNjrV2GiX/ev5N5/99I6Z/7s/uf93l8ep71Xjo4OGSYF83J84H55s2bkqRZs2apRo0aCg8P1/PPP69jx47pvffe06xZs1ShQgW99dZbxh8kGX1znDZJyKM/cGJjY1WsWLFsjc/qMR4XmEuWLJnp+n+CxMREXb9+XZ6enhZ7VIntsOzzaZ+GMmXKWLuEXMdnMm/L6DMZExPzzP59GQwGJSUlycnJSXZ2dlna5vbt2xmu6969u7p3757p9sWKFTOZ7+Nx2rVrp3bt2mV5vCS1bdtWbdu2zdY2klS/fn3Vr18/S2MbNGigTZs2SXqyPuYlzs7OZr/ct4Z/7r+Tef/fSOmf97P7n/t5tDx6aV6eD8xpl2Lly5dPYWFh8vLykiT5+vpq4cKFatiwoWbNmqW33nrLmmU+kexcCvCsy5cvH/3Ig/7Jfyd8JvOmjP5O7t69+8w+0i/t56Cdnd0z+x5zg6330d7ePs/9m8S/k3nTP/XvhM+j5dBLU3k+MKc9N7lmzZrGsJymSpUqKl++vKKiohQdHW0cGxMTY3Zfd+/eNdln2uuMLnHKaHxWjsEjL4Dc4fHNn09hrwVl6TMJ0QNKWXR/AADgn80Wfgd6Fn7/yfNfsVaqVElSxpdApy1PSEgw3nMcFRVldmza/cdp49Je37t3z+y1+hmNz+gYBoNBUVFR8vLyMvtIDAAAAACA7cjzZ5gbN24sSfr999/TrUtKSlJUVJRcXFxUtGhReXp6ysvLSwcPHlRcXJxJaE1ISNC+ffvk5eVlcpN3w4YN9fPPPys8PFw9e/Y02X94eLhxTJpGjRoZ1w0fPtxk/OHDhxUTE6PWrVvn8F3nbZb/NouzeQAAPC2chQKAJ5fnzzBXqFBBLVq0UFRUVLrnG8+YMUMxMTHy9/eXo6Oj7Ozs1KdPH927d09Tp041GTt9+nRFR0erT58+JpN99OrVS46Ojpo2bZrJZdanT5/W8uXLVaFCBTVp0sS43MfHR76+vtqzZ4+2bdtmXJ6UlGScrbtv374W7QEAAAAAIPfl+TPMkjRt2jT5+flp6NCh2rRpkypVqqRjx45p9+7dKlOmjCZNmmQcO2zYMG3ZskWhoaE6duyYatasqRMnTmj79u2qXr26hg0bZrJvHx8fjRs3TpMnT1bDhg3VsWNHxcfHa/Xq1UpKSlJoaKgcHU3bNH36dPn5+al3797q1KmTvLy8tGPHDp08eVJ9+/Y1CdgAAAAAANuU588wSw/PMu/cuVNvvPGGjh49qq+++kpRUVEaOHCgwsPDTR6z4OLioo0bNyowMFDnzp3TrFmzdPr0aQUGBmrjxo1m7y0eNWqU5s2bp2LFimnBggVavXq16tWrp61bt5oNv5UrV1Z4eLjatm2rHTt26Msvv1RqaqpCQkI0c+bMp9kKAAAAAEAusYkzzJJUunRpzZkzJ0tj3d3dFRwcrODg4CzvPyAgQAEBAVke7+Pjo4ULF2Z5PADg6TIYDHni+bpHbiY+hb3aS0q22N5qFeX5mrbEYDBYuwTAopgPB7bEJs4wAwCQGWdnZyUkJFi7DOCpePDggZycnKxdBgD8IxGYAQA2z8XFRffu3dP9+/c5G4dnSkpKimJjY1WoUCFrlwIA/0g2c0k2AAAZsbe3V5EiRRQXF6ebN29atZY/rj6w6vGzorQhv7VLyHWpqalKSEiQs7Oz7O1t53yBvb29PDw8bKpmAHiWEJgBAM8Ee3t7ubm5yc3Nzap1DNz4NJ55a1nRNYpZu4Rcl5CQoNjYWHl6esrZ2dna5QAAbARfVwIAAAAAYAaBGQAAAAAAMwjMAAAAAACYQWAGAAAAAMAMAjMAAAAAAGYQmAEAAAAAMIPADAAAAACAGQRmAAAAAADMIDADAAAAAGAGgRkAAAAAADMIzAAAAAAAmEFgBgAAAADADAIzAAAAAABmEJgBAAAAADCDwAwAAAAAgBkEZgAAAAAAzCAwAwAAAABgBoEZAAAAAAAzCMwAAAAAAJjhaO0CAAAAzPH45k8L77GgpFsW3WP0gFIW3R8AIG/hDDMAAAAAAGYQmAEAAAAAMIPADAAAAACAGQRmAAAAAADMIDADAAAAAGAGgRkAAAAAADMIzAAAAAAAmEFgBgAAAADADAIzAAAAAABmEJgBAAAAADCDwAwAAAAAgBkEZgAAAAAAzCAwAwAAAABgBoEZAAAAAAAzCMwAAAAAAJhBYAYAAAAAwAwCMwAAAAAAZhCYAQAAAAAwwyYCc/Xq1eXh4WH2v+HDh6cbHxsbq6CgIFWrVk3FixdXtWrVFBQUpNjY2AyPsWrVKrVo0UIlS5ZUuXLl1L17dx05ciTD8ZGRkerfv78qVqyoEiVKyNfXV/PmzVNqaqpF3jMAAAAAwLocrV1AVhUqVEiDBw9Ot7xWrVomf46Li5O/v7+OHz+u5s2bq1u3bjpx4oTmzJmjPXv26IcffpCLi4vJNtOmTdOkSZNUunRpDRgwQHFxcVqzZo3atGmj1atXq3Hjxibjz5w5Iz8/P92/f1+dO3eWl5eXtm/frjFjxujkyZMKDQ21fAMAAAAAALnKZgKzu7u73n///ceOCw0N1fHjxzVs2DBNnDjRuDw4OFhTp05VaGiogoKCjMsjIyM1ZcoU+fj46Mcff5S7u7skadCgQWrZsqWGDh2qX375RY6O/69VI0aMUGxsrFauXCk/Pz9J0vjx49WtWzctXLhQXbt2VZMmTSz11gEAAAAAVmATl2RnlcFg0OLFi+Xq6qoxY8aYrBsxYoQ8PDy0ZMkSGQwG4/KwsDAlJydr5MiRxrAsSVWqVFGPHj10/vx57d6927j8jz/+0L59+9S4cWNjWJYkJycnTZgwQZK0aNGip/UWAQAAAAC5xGYCc2JiopYuXapp06Zp/vz5On78eLoxkZGRunbtmurXr5/usmtnZ2f5+vrq6tWrioqKMi6PiIiQJLVo0SLd/tKW7d27N0vj69SpI3d3d5PxAAAAAADbZDOXZF+/fl2BgYEmy1q1aqWvvvpKRYoUkfQwMEuSt7e32X1UrFjROO7R166urvL09Mx0fJrMjmFnZydvb28dOXJE8fHxKliwYKbvKSEhIdP1eHL01jLoo+XQS8ugj5ZBHy2HXloGfbQcemkZ9NEy8mofnZ2dszzWJgJz79691bBhQ1WpUkX58uXT2bNnFRISou3bt6tnz57aunWr7OzsjLNgP3pp9aPc3NwkyWS27NjYWBUrVixb47N6jMcF5qtXryolJSXTMXlT5u8rL7h8+bK1S8gC+mgZeb+PEr20FPpoGbbRR4leWgp9tIy830eJXloKfbSMvNhHBweHDE+wmmMTgXns2LEmf3755Ze1YsUK+fv7a//+/dq2bZvatGljpeqeXMmSJa1dwhO6Ze0CHqtMmTLWLiEL6KNl5P0+SvTSUuijZdhGHyV6aSn00TLyfh8lemkp9NEybKOPmbOJwGyOvb293njjDe3fv18HDx5UmzZtVKhQIUlSTEyM2W3u3r0rScZxaa8zej5zRuOzcoy0M82Zyc6lAMgeemsZ9NFy6KVl0EfLoI+WQy8tgz5aDr20DPpoGc9CH21m0i9z0u5djo+Pl/T/7jl+dFKvR6Xdf5w2Lu31vXv3dP369SyPz+gYBoNBUVFR8vLySjfpGAAAAADAtth0YD58+LAkqWzZspIehlkvLy8dPHhQcXFxJmMTEhK0b98+eXl5mVyz3rBhQ0lSeHh4uv2nLUsbI0mNGjXKcPzhw4cVExNjMh4AAAAAYJvyfGA+c+aMoqOj0y3fv3+/Zs+erfz586tDhw6SHs5S3adPH927d09Tp041GT99+nRFR0erT58+srOzMy7v1auXHB0dNW3aNJPLrE+fPq3ly5erQoUKatKkiXG5j4+PfH19tWfPHm3bts24PCkpSZMnT5Yk9e3b1yLvHQAAAABgPXn+Hua1a9fq888/V5MmTVS2bFnlz59fp0+fVnh4uOzt7TVjxgyTm8mHDRumLVu2KDQ0VMeOHVPNmjV14sQJbd++XdWrV9ewYcNM9u/j46Nx48Zp8uTJatiwoTp27Kj4+HitXr1aSUlJCg0NlaOjaZumT58uPz8/9e7dW506dZKXl5d27NihkydPqm/fviYBGwAAAABgm/J8YG7cuLF+//13/fbbb9q3b58SEhJUvHhxdenSRYGBgapTp47JeBcXF23cuFEhISFav369IiIi5OnpqcDAQI0dO9bsvcWjRo1S2bJlNXfuXC1YsEBOTk6qV6+egoKCVLt27XTjK1eurPDwcE2aNEk7duxQXFycvL29FRISooEDBz61XgAAAAAAck+eD8yNGjUy3jecVe7u7goODlZwcHCWtwkICFBAQECWx/v4+GjhwoXZqgsAAAAAYDvy/D3MAAAAAABYA4EZAAAAAAAzCMwAAAAAAJhBYAYAAAAAwAwCMwAAAAAAZhCYAQAAAAAwg8AMAAAAAIAZBGYAAAAAAMwgMAMAAAAAYAaBGQAAAAAAMwjMAAAAAACYQWAGAAAAAMAMAjMAAAAAAGYQmAEAAAAAMIPADAAAAACAGQRmAAAAAADMIDADAAAAAGAGgRkAAAAAADMIzAAAAAAAmEFgBgAAAADADAIzAAAAAABmEJgBAAAAADCDwAwAAAAAgBkEZgAAAAAAzCAwAwAAAABgBoEZAAAAAAAzCMwAAAAAAJhBYAYAAAAAwAwCMwAAAAAAZhCYAQAAAAAwg8AMAAAAAIAZBGYAAAAAAMwgMAMAAAAAYAaBGQAAAAAAMwjMAAAAAACYQWAGAAAAAMAMAjMAAAAAAGYQmAEAAAAAMIPADAAAAACAGQRmAAAAAADMIDADAAAAAGAGgRkAAAAAADNsMjCHhobKw8NDHh4e+uWXX8yOiY2NVVBQkKpVq6bixYurWrVqCgoKUmxsbIb7XbVqlVq0aKGSJUuqXLly6t69u44cOZLh+MjISPXv318VK1ZUiRIl5Ovrq3nz5ik1NTXH7xEAAAAAYF02F5jPnj2r4OBgubi4ZDgmLi5O/v7+mjNnjipVqqTAwEBVrlxZc+bMkb+/v+Li4tJtM23aNA0cOFA3btzQgAED1LlzZx08eFBt2rTRnj170o0/c+aMmjdvrk2bNqlly5YaNGiQJGnMmDEaPny45d4wAAAAAMAqchSYa9SooTfffDNLY9966y3VrFkzJ4dTSkqKBg8erGrVqsnf3z/DcaGhoTp+/LiGDRumtWvX6sMPP9R3332nMWPG6Pjx4woNDTUZHxkZqSlTpsjHx0d79+7Vxx9/rJkzZ2rr1q1ydHTU0KFDlZycbLLNiBEjFBsbq7CwMM2bN08TJ07UTz/9pKZNm2rhwoXavXt3jt4rAAAAAMC6chSYL126pGvXrmVp7PXr13Xp0qWcHE4zZ87UiRMnNGvWLDk4OJgdYzAYtHjxYrm6umrMmDEm60aMGCEPDw8tWbJEBoPBuDwsLEzJyckaOXKk3N3djcurVKmiHj166Pz58yYB+I8//tC+ffvUuHFj+fn5GZc7OTlpwoQJkqRFixbl6L0CAAAAAKwr1y7JTk5Olr39kx/u1KlTCgkJ0ahRo1SlSpUMx0VGRuratWuqX79+usu2nZ2d5evrq6tXryoqKsq4PCIiQpLUokWLdPtLW7Z3794sja9Tp47c3d1NxgMAAAAAbI9jbhwkOTlZUVFRKly48BNvHxgYqOeff/6x9wdHRkZKkry9vc2ur1ixonHco69dXV3l6emZ6fisHMPOzk7e3t46cuSI4uPjVbBgwQxrTUhIyPS94MnRW8ugj5ZDLy2DPloGfbQcemkZ9NFy6KVl0EfLyKt9dHZ2zvLYbAXmvXv3Gs+uprly5YpCQkIy3CYhIUEHDhzQzZs31bp16+wczmjatGk6ceKEduzYIScnp0zHps2C/eil1Y9yc3MzGZf2ulixYtkan9VjZBaYr169qpSUlAzX510Zv6e84vLly9YuIQvoo2Xk/T5K9NJS6KNl2EYfJXppKfTRMvJ+HyV6aSn00TLyYh8dHBwyPLlqTrYC8549exQSEiI7Ozvjsj///DPTwCw9vK+4YMGCGjlyZHYOJ0k6fvy4PvvsMw0ZMiTHk4blNSVLlrR2CU/olrULeKwyZcpYu4QsoI+Wkff7KNFLS6GPlmEbfZTopaXQR8vI+32U6KWl0EfLsI0+Zi5bgbl69erq2bOn8c/Lli1TsWLF1LJlS7Pj7ezsVLBgQVWoUEEdO3ZUqVKlsl3g4MGDVaFCBY0bNy5L4wsVKiRJiomJMbv+7t27JuPSXmf0fOaMxmflGGlnmjOSnUsBkD301jLoo+XQS8ugj5ZBHy2HXloGfbQcemkZ9NEynoU+Zisw+/v7mzzOadmyZfL29tacOXMsXliaEydOSJLZ+4slGS/zXrJkidq3b2+85/jRSb0elXb/cdq4tNc///yzrl+/nu44GY3P6BgGg0FRUVHy8vLK9FnRAAAAAIC8LUeTfv32229P/VuDPn36mF2+b98+RUZGqm3btipatKjKli0r6WGY9fLy0sGDBxUXF2cSWhMSErRv3z55eXmZXLfesGFD/fzzzwoPDzc5gy5J4eHhxjFpGjVqZFz3v5OQHT58WDExMU98vzYAAAAAIG/IUWBOC6lP0xdffGF2+eDBgxUZGakRI0aobt26xuV2dnbq06ePpk6dqqlTp2rixInGddOnT1d0dLTefvttk/uwe/XqpS+++ELTpk1Tu3btjJN5nT59WsuXL1eFChXUpEkT43gfHx/5+vpqz5492rZtm/FZzElJSZo8ebIkqW/fvpZrAgAAAAAg11nssVJ3797V+fPnFRcXp9TU1AzHPXqm9mkZNmyYtmzZotDQUB07dkw1a9bUiRMntH37dlWvXl3Dhg0zGe/j46Nx48Zp8uTJatiwoTp27Kj4+HitXr1aSUlJCg0NlaOjaaumT58uPz8/9e7dW506dZKXl5d27NihkydPqm/fviYBGwAAAABge3IcmI8eParx48dr//79MhgMmY61s7PTrVtPfzY3FxcXbdy4USEhIVq/fr0iIiLk6empwMBAjR071uy9xaNGjVLZsmU1d+5cLViwQE5OTqpXr56CgoJUu3btdOMrV66s8PBwTZo0STt27FBcXJy8vb0VEhKigQMHPvX3CAAAAAB4unIUmI8ePSp/f3/dv39fBoNB+fPnV9GiRWVvb2+p+jI0d+5czZ07N8P17u7uCg4OVnBwcJb3GRAQoICAgCyP9/Hx0cKFC7M8HgAAAABgO3IUmKdMmaL4+HjVrVtXU6dOfeaekwwAAAAA+OfKUWA+ePCgnJ2dtXz5cj333HOWqgkAAAAAAKvL0bXTDx48UKVKlQjLAAAAAIBnTo4Cs7e3t+Lj4y1VCwAAAAAAeUaOAvMbb7yhqKgoHTt2zFL1AAAAAACQJ+QoMA8ePFjNmzdX3759dfDgQUvVBAAAAACA1eVo0q8hQ4aoaNGi2rNnj9q2basXX3xRPj4+KliwoNnxdnZ2mjVrVk4OCQAAAABArshRYF66dKns7OxkMBgkSSdOnNCJEycyHE9gBgAAAADYihwF5rFjx1qqDgAAAAAA8pQcBeZx48ZZqg4AAAAAAPKUHE36BQAAAADAs4rADAAAAACAGTm6JHvv3r3Z3qZhw4Y5OSQAAAAAALkiR4G5ffv2srOzy/J4Ozs73bp1KyeHBAAAAAAgV+QoMJcuXTrDwBwfH28Mx/ny5ZOnp2dODgUAAAAAQK7KUWA+fvx4puujo6P1f//3f5oxY4b69u2rUaNG5eRwAAAAAADkmhwF5sfx8PDQqFGj5O3trX/961+qWrWq2rVr9zQPCQAAAACAReTKLNldunRR8eLFNWvWrNw4HAAAAAAAOZZrj5UqWbKkTpw4kVuHAwAAAAAgR3IlMKempioqKkopKSm5cTgAAAAAAHLsqQfmpKQkBQUFKSYmRlWrVn3ahwMAAAAAwCJyNOnXO++8k+E6g8Ggv//+W8eOHdPff/8tOzs7BQYG5uRwAAAAAADkmhwF5qVLl8rOzk4GgyHTcS4uLvrggw/UuXPnnBwOAAAAAIBck6PAPHbs2AzX2dnZqWDBgqpYsaKaNGkiV1fXnBwKAAAAAIBclaPAPG7cOEvVAQAAAABAnpJrj5UCAAAAAMCW5OgM8/9KTU3V5cuXde/ePbm6uqpMmTKytyeTAwAAAABsj0UC89GjRzVt2jTt3LlT8fHxxuUFCxZUy5YtNXz4cNWsWdMShwIAAAAAIFfk+PTv4sWL5efnp02bNikuLk4Gg8H4X1xcnNavXy8/Pz8tWbLEEvUCAAAAAJArchSYjx07puHDhyspKUkNGjTQ0qVLdfToUf311186evSoli1bJl9fXyUlJWn48OE6duyYpeoGAAAAAOCpylFgnjVrllJSUvTOO+9o8+bNatu2rcqVK6f8+fOrXLlyevXVV7Vp0yYNGTJEycnJmjVrlqXqBgAAAADgqcpRYN67d6/c3d313//+N9Nx48ePV6FChbR3796cHA4AAAAAgFyTo8D8999/q2LFinJycsp0XL58+eTj46ObN2/m5HAAAAAAAOSaHAVmV1dXXb9+PUtjb9y4IRcXl5wcDgAAAACAXJOjwPzSSy/p6tWr2rx5c6bjtmzZoitXruill17KyeEAAAAAAMg1OQrMvXv3lsFg0Ntvv63Zs2fr/v37JusTEhI0d+5cDRo0SHZ2durTp0+OigUAAAAAILc45mTjbt26acOGDVq/fr0mTJigKVOmqFy5cvL09NT169d18eJFxcfHy2AwqGPHjurataul6gYAAAAA4KnK0RlmSVqwYIHGjh0rV1dXxcXF6dSpU9q5c6dOnTqluLg4ubq6aty4cZo/f74l6gUAAAAAIFfk6AyzJDk4OGjcuHEaOnSo9u/fr3PnzunevXtydXXV888/rwYNGqhgwYKWqBUAAAAAgFyT48CcpmDBgmrZsqVatmxpqV0CAAAAAGA12b4ku1evXipfvrxCQ0OzNH7mzJkqX768+vfvn91DAQAAAABgNdkKzEeOHNHmzZtVunRpDR06NEvbDB06VKVLl9b69et19OjRJ6kRAAAAAIBcl63AvGrVKtnZ2WnUqFGys7PL2gHs7TV69GgZDAatWLEi2wVGR0drzJgxat26tZ5//nkVL15cVapUUYcOHbRu3ToZDIZ028TGxiooKEjVqlVT8eLFVa1aNQUFBSk2NjbT99aiRQuVLFlS5cqVU/fu3XXkyJEMx0dGRqp///6qWLGiSpQoIV9fX82bN0+pqanZfo8AAAAAgLwnW4F5//79yp8/v9q0aZOtg/j5+Sl//vzav39/traTpNu3byssLEwFCxaUv7+/3n33XbVq1UpnzpxRv3799N5775mMj4uLk7+/v+bMmaNKlSopMDBQlStX1pw5c+Tv76+4uLh0x5g2bZoGDhyoGzduaMCAAercubMOHjyoNm3aaM+ePenGnzlzRs2bN9emTZvUsmVLDRo0SJI0ZswYDR8+PNvvEQAAAACQ92Rr0q/z58+rbNmyKlCgQLYOUqBAAZUvX17nz5/P1naSVK5cOV28eFGOjqal3r17V61bt9bChQv173//W1WqVJEkhYaG6vjx4xo2bJgmTpxoHB8cHKypU6cqNDRUQUFBxuWRkZGaMmWKfHx89OOPP8rd3V2SNGjQILVs2VJDhw7VL7/8YnL8ESNGKDY2VitXrpSfn58kafz48erWrZsWLlyorl27qkmTJtl+rwAAAACAvCNbZ5jj4uLk5ub2RAdydXXV/fv3s72dg4NDurAsSW5ubmrRooUkKSoqSpJkMBi0ePFiubq6asyYMSbjR4wYIQ8PDy1ZssTkMu6wsDAlJydr5MiRxrAsSVWqVFGPHj10/vx57d6927j8jz/+0L59+9S4cWNjWJYkJycnTZgwQZK0aNGibL9PAAAAAEDekq3A7OHhodu3bz/RgW7fvq1ChQo90bbmJCQkaPfu3bKzs1PlypUlPTxbfO3aNdWvX18uLi4m452dneXr66urV68aA7YkRURESJIxfD8qbdnevXuzNL5OnTpyd3c3GQ8AAAAAsE3ZuiS7bNmyOnr0qG7duqUiRYpkebubN2/qwoULqlmzZnbrM4qOjtbcuXOVmpqqmzdvavv27bpy5YrGjh2rihUrSnoYmCXJ29vb7D4eHffoa1dXV3l6emY6Pk1mx7Czs5O3t7eOHDmi+Ph4FSxYMNP3lJCQkOl6PDl6axn00XLopWXQR8ugj5ZDLy2DPloOvbQM+mgZebWPzs7OWR6brcDcqFEjHTlyRAsWLNDo0aOzvN2CBQtkMBhydF9vTEyMQkJCjH92cnLSpEmT9O677xqXpc2C/eil1Y9Ku5z80dmyY2NjVaxYsWyNz+oxHheYr169qpSUlEzH5E2Zv6+84PLly9YuIQvoo2Xk/T5K9NJS6KNl2EYfJXppKfTRMvJ+HyV6aSn00TLyYh8dHBwyPMFqTrYCc//+/TV79mxNnz5djRo10iuvvPLYbfbt26fp06fL0dFRffv2zc7hTJQrV07R0dFKSUnRlStXtGbNGk2aNEkHDx7Ut99+a/Y+57yuZMmS1i7hCd2ydgGPVaZMGWuXkAX00TLyfh8lemkp9NEybKOPEr20FPpoGXm/jxK9tBT6aBm20cfMZStlVqhQQf/+9781e/ZsderUSSNGjNDAgQP13HPPpRt7+/ZtzZs3TzNnzlRiYqL+/e9/ZyvJZ8TBwUHlypXT8OHD5eDgoA8++EALFy7UW2+9ZbxHOiYmxuy2d+/elSSTe6kLFSqU4fOZMxqflWNkZXK07FwKgOyht5ZBHy2HXloGfbQM+mg59NIy6KPl0EvLoI+W8Sz0MdunZT/66CNduHBBmzZtUkhIiD777DNVrlxZ5cuXl4uLi+Li4nThwgWdOXNGKSkpMhgMateunSZPnmzx4ps3by7p4URcb731lvGe40cn9XpU2v3HaePSXv/888+6fv16uvuYMxqf0TEMBoOioqLk5eWVbtIxAAAAAIBtydYs2ZJkb2+vJUuW6KOPPlLhwoWVnJysEydOaOPGjVq5cqU2btyoEydOKDk5WR4eHpo4caLCwsJkb5/tQz3WX3/9JUnGy7ErVqwoLy8vHTx4UHFxcSZjExIStG/fPnl5eZmc6W7YsKEkKTw8PN3+05aljZEe3sed0fjDhw8rJibGZDwAAAAAwDY9cYodMmSIjh8/rm+//VaDBg1Shw4d1LRpU7Vv315vv/22vv32Wx0/flxDhw7NUYHHjh0ze/nznTt39NFHH0mSWrVqJenhLNV9+vTRvXv3NHXqVJPx06dPV3R0tPr06SM7Ozvj8l69esnR0VHTpk0zOc7p06e1fPlyVahQwWSyMh8fH/n6+mrPnj3atm2bcXlSUpLxLHpO7tUGAAAAAOQNOZopq2DBgurYsaM6duxoqXrSWbp0qRYvXqxGjRqpbNmyKliwoC5fvqxt27bp3r17eu2119S9e3fj+GHDhmnLli0KDQ3VsWPHVLNmTZ04cULbt29X9erVNWzYMJP9+/j4aNy4cZo8ebIaNmyojh07Kj4+XqtXr1ZSUpJCQ0PTTSg2ffp0+fn5qXfv3urUqZO8vLy0Y8cOnTx5Un379s3RbOAAAAAAgLwhz08t3bFjR8XGxurQoUPav3+/4uPjVbhwYTVo0EA9evRQ165dTc4Yu7i4aOPGjQoJCdH69esVEREhT09PBQYGauzYsWbvLR41apTKli2ruXPnasGCBXJyclK9evUUFBSk2rVrpxtfuXJlhYeHa9KkSdqxY4fi4uLk7e2tkJAQDRw48Kn2AwAAAACQO/J8YH7llVey9PiqR7m7uys4OFjBwcFZ3iYgIEABAQFZHu/j46OFCxdmqy4AAAAAgO2w/ExcAAAAAAA8AwjMAAAAAACYQWAGAAAAAMAMAjMAAAAAAGYQmAEAAAAAMIPADAAAAACAGQRmAAAAAADMIDADAAAAAGAGgRkAAAAAADMIzAAAAAAAmEFgBgAAAADADAIzAAAAAABmEJgBAAAAADCDwAwAAAAAgBkEZgAAAAAAzCAwAwAAAABgBoEZAAAAAAAzCMwAAAAAAJhBYAYAAAAAwAwCMwAAAAAAZhCYAQAAAAAwg8AMAAAAAIAZBGYAAAAAAMwgMAMAAAAAYAaBGQAAAAAAMwjMAAAAAACYQWAGAAAAAMAMAjMAAAAAAGYQmAEAAAAAMIPADAAAAACAGQRmAAAAAADMIDADAAAAAGAGgRkAAAAAADMIzAAAAAAAmEFgBgAAAADADAIzAAAAAABmEJgBAAAAADCDwAwAAAAAgBkEZgAAAAAAzCAwAwAAAABgBoEZAAAAAAAzCMwAAAAAAJiR5wPz1atXNWfOHHXu3FnVqlVTsWLF9Pzzz6tPnz46dOiQ2W1iY2MVFBSkatWqqXjx4qpWrZqCgoIUGxub4XFWrVqlFi1aqGTJkipXrpy6d++uI0eOZDg+MjJS/fv3V8WKFVWiRAn5+vpq3rx5Sk1NzfF7BgAAAABYX54PzPPmzVNQUJAuXLigZs2a6d1331WDBg20efNm+fn5ae3atSbj4+Li5O/vrzlz5qhSpUoKDAxU5cqVNWfOHPn7+ysuLi7dMaZNm6aBAwfqxo0bGjBggDp37qyDBw+qTZs22rNnT7rxZ86cUfPmzbVp0ya1bNlSgwYNkiSNGTNGw4cPfzqNAAAAAADkKkdrF/A4tWvX1ubNm+Xr62uyfN++ferYsaNGjBihdu3aKX/+/JKk0NBQHT9+XMOGDdPEiRON44ODgzV16lSFhoYqKCjIuDwyMlJTpkyRj4+PfvzxR7m7u0uSBg0apJYtW2ro0KH65Zdf5Oj4/1o1YsQIxcbGauXKlfLz85MkjR8/Xt26ddPChQvVtWtXNWnS5Kn1BAAAAADw9OX5M8yvvfZaurAsSb6+vmrcuLHu3LmjU6dOSZIMBoMWL14sV1dXjRkzxmT8iBEj5OHhoSVLlshgMBiXh4WFKTk5WSNHjjSGZUmqUqWKevToofPnz2v37t3G5X/88Yf27dunxo0bG8OyJDk5OWnChAmSpEWLFlnmzQMAAAAArCbPB+bMODk5SZIcHBwkPTxbfO3aNdWvX18uLi4mY52dneXr66urV68qKirKuDwiIkKS1KJFi3T7T1u2d+/eLI2vU6eO3N3dTcYDAAAAAGxTnr8kOyOXL1/Wrl275OnpqRdffFHSw8AsSd7e3ma3qVixonHco69dXV3l6emZ6fg0mR3Dzs5O3t7eOnLkiOLj41WwYMFM30NCQkKm6/Hk6K1l0EfLoZeWQR8tgz5aDr20DPpoOfTSMuijZeTVPjo7O2d5rE0G5qSkJA0aNEgPHjzQxIkTjWeY02bBfvTS6ke5ubmZjEt7XaxYsWyNz+oxHheYr169qpSUlEzH5E2Zv6+84PLly9YuIQvoo2Xk/T5K9NJS6KNl2EYfJXppKfTRMvJ+HyV6aSn00TLyYh8dHBwyPMFqjs0F5tTUVL3zzjvat2+f+vXrpx49eli7pCdWsmRJa5fwhG5Zu4DHKlOmjLVLyAL6aBl5v48SvbQU+mgZttFHiV5aCn20jLzfR4leWgp9tAzb6GPmbCowGwwGDR06VCtXrlRAQIBmzJhhsr5QoUKSpJiYGLPb371712Rc2uuMns+c0fisHCPtTHNmsnMpALKH3loGfbQcemkZ9NEy6KPl0EvLoI+WQy8tgz5axrPQR5uZ9Cs1NVXvvvuulixZom7dumnu3LmytzctP+2e40cn9XpU2v3HaePSXt+7d0/Xr1/P8viMjmEwGBQVFSUvL690k44BAAAAAGyLTQTm1NRUDRkyRGFhYerSpYu++uor433Lj6pYsaK8vLx08OBBxcXFmaxLSEjQvn375OXlZXLNesOGDSVJ4eHh6faXtixtjCQ1atQow/GHDx9WTEyMyXgAAAAAgG3K84E57cxyWFiYOnXqpHnz5pkNy9LDWar79Omje/fuaerUqSbrpk+frujoaPXp00d2dnbG5b169ZKjo6OmTZtmcpn16dOntXz5clWoUEFNmjQxLvfx8ZGvr6/27Nmjbdu2GZcnJSVp8uTJkqS+ffta5L0DAAAAAKwnz9/DHBISoqVLl8rV1VU+Pj769NNP043x9/fXSy+9JEkaNmyYtmzZotDQUB07dkw1a9bUiRMntH37dlWvXl3Dhg0z2dbHx0fjxo3T5MmT1bBhQ3Xs2FHx8fFavXq1kpKSFBoaKkdH0zZNnz5dfn5+6t27tzp16iQvLy/t2LFDJ0+eVN++fU0CNgAAAADANuX5wHzp0iVJ0r179/TZZ5+ZHVO2bFljYHZxcdHGjRsVEhKi9evXKyIiQp6engoMDNTYsWPN3ls8atQolS1bVnPnztWCBQvk5OSkevXqKSgoSLVr1043vnLlygoPD9ekSZO0Y8cOxcXFydvbWyEhIRo4cKAF3z0AAAAAwFryfGCeO3eu5s6dm61t3N3dFRwcrODg4CxvExAQoICAgCyP9/Hx0cKFC7NVFwAAAADAduT5e5gBAAAAALAGAjMAAAAAAGYQmAEAAAAAMIPADAAAAACAGQRmAAAAAADMIDADAAAAAGAGgRkAAAAAADMIzAAAAAAAmEFgBgAAAADADAIzAAAAAABmEJgBAAAAADCDwAwAAAAAgBkEZgAAAAAAzCAwAwAAAABgBoEZAAAAAAAzCMwAAAAAAJhBYAYAAAAAwAwCMwAAAAAAZhCYAQAAAAAwg8AMAAAAAIAZBGYAAAAAAMwgMAMAAAAAYAaBGQAAAAAAMwjMAAAAAACYQWAGAAAAAMAMAjMAAAAAAGYQmAEAAAAAMIPADAAAAACAGQRmAAAAAADMIDADAAAAAGAGgRkAAAAAADMIzAAAAAAAmEFgBgAAAADADAIzAAAAAABmEJgBAAAAADCDwAwAAAAAgBkEZgAAAAAAzCAwAwAAAABgBoEZAAAAAAAzCMwAAAAAAJhBYAYAAAAAwAxHaxcAPKtc+zXLdH1y7pSRKcdmYdYuAQAAAMizOMMMAAAAAIAZNhGYV6xYoffee0/NmjVT8eLF5eHhobCwjM+MxcbGKigoSNWqVVPx4sVVrVo1BQUFKTY2NsNtVq1apRYtWqhkyZIqV66cunfvriNHjmQ4PjIyUv3791fFihVVokQJ+fr6at68eUpNTc3RewUAAAAA5A02EZgnT56sb7/9VpcvX5anp2emY+Pi4uTv7685c+aoUqVKCgwMVOXKlTVnzhz5+/srLi4u3TbTpk3TwIEDdePGDQ0YMECdO3fWwYMH1aZNG+3Zsyfd+DNnzqh58+batGmTWrZsqUGDBkmSxowZo+HDh1vmTQMAAAAArMomAvMXX3yhY8eOKTIyUm+++WamY0NDQ3X8+HENGzZMa9eu1YcffqjvvvtOY8aM0fHjxxUaGmoyPjIyUlOmTJGPj4/27t2rjz/+WDNnztTWrVvl6OiooUOHKjnZ9G7TESNGKDY2VmFhYZo3b54mTpyon376SU2bNtXChQu1e/dui/cAAAAAAJC7bCIwN2vWTGXLln3sOIPBoMWLF8vV1VVjxowxWTdixAh5eHhoyZIlMhgMxuVhYWFKTk7WyJEj5e7ublxepUoV9ejRQ+fPnzcJwH/88Yf27dunxo0by8/Pz7jcyclJEyZMkCQtWrToid8rAAAAACBveKZmyY6MjNS1a9fUsmVLubi4mKxzdnaWr6+vNm/erKioKFWsWFGSFBERIUlq0aJFuv21aNFCCxYs0N69e43rMxtfp04dubu7a+/evVmqNyEhIetvDtmSF3rrau0CLCAv9LHooFczXW8rs43nhV4+C+ijZdBHy6GXlpEX+sjPGzyKPlpGXu2js7Nzlsc+c4FZkry9vc2uTwvJkZGRJq9dXV3N3hv96JisHMPOzk7e3t46cuSI4uPjVbBgwUzrvXr1qlJSUh73tvKgzN9XXnD58mVrl6Ci1i7AAuij5eSFXtaaPDDT9bbwy2Be6OPj8W+k5dBLy6CPWcHPm9zEZzIr+Ln9dDg4OGSYF815pgJz2izYj15a/Sg3NzeTcWmvixUrlq3xWT3G4wJzyZIlM12fd92ydgGPVaZMGWuX8Eygj5ZDLy0jL/TxWTgLlRf6mDX8vLEM+vhPYhu95DP5T/Es9PGZCsy2JjuXAuQW137NHjvGFn4ZzIu9tUX00XLopWXQR8ugj5ZDLy2DPlpOXujl436f5HfJf45noY/PVGAuVKiQJCkmJsbs+rt375qMS3ud0fOZMxqflWOknWkGAAB4mp6FcAIAeZVNzJKdVWn3HEdFRZldn3b/cdq4tNf37t3T9evXszw+o2MYDAZFRUXJy8sr3aRjAAAAAADb8swFZi8vLx08eFBxcXEm6xISErRv3z55eXmZ3OTdsGFDSVJ4eHi6/aUtSxsjSY0aNcpw/OHDhxUTE2MyHgAAAABgm56pwGxnZ6c+ffro3r17mjp1qsm66dOnKzo6Wn369JGdnZ1xea9eveTo6Khp06aZXGZ9+vRpLV++XBUqVFCTJk2My318fOTr66s9e/Zo27ZtxuVJSUmaPHmyJKlv375P6y0CAAAAAHKJTdzDvGjRIu3fv1+SdOrUKUnS4sWLjc9E9vf3V/v27SVJw4YN05YtWxQaGqpjx46pZs2aOnHihLZv367q1atr2LBhJvv28fHRuHHjNHnyZDVs2FAdO3ZUfHy8Vq9eraSkJIWGhsrR0bRN06dPl5+fn3r37q1OnTrJy8tLO3bs0MmTJ9W3b1+TgA0AANJ7ViaZBAA822wiMO/fv1/Lli0zWXbgwAEdOHBAklS2bFljYHZxcdHGjRsVEhKi9evXKyIiQp6engoMDNTYsWPN3ls8atQolS1bVnPnztWCBQvk5OSkevXqKSgoSLVr1043vnLlygoPD9ekSZO0Y8cOxcXFydvbWyEhIRo4MPPnpQEAAAAAbINNBOa5c+dq7ty5WR7v7u6u4OBgBQcHZ3mbgIAABQQEZHm8j4+PFi5cmOXxAAAAAADb8kzdwwwAAAAAgKUQmAEAAAAAMIPADAAAAACAGQRmAAAAAADMIDADAAAAAGAGgRkAAAAAADMIzAAAAAAAmEFgBgAAAADADAIzAAAAAABmEJgBAAAAADCDwAwAAAAAgBkEZgAAAAAAzCAwAwAAAABgBoEZAAAAAAAzCMwAAAAAAJhBYAYAAAAAwAwCMwAAAAAAZhCYAQAAAAAwg8AMAAAAAIAZBGYAAAAAAMwgMAMAAAAAYAaBGQAAAAAAMwjMAAAAAACYQWAGAAAAAMAMAjMAAAAAAGYQmAEAAAAAMIPADAAAAACAGQRmAAAAAADMIDADAAAAAGAGgRkAAAAAADMIzAAAAAAAmEFgBgAAAADADAIzAAAAAABmEJgBAAAAADCDwAwAAAAAgBkEZgAAAAAAzCAwAwAAAABgBoEZAAAAAAAzCMwAAAAAAJhBYAYAAAAAwAwCMwAAAAAAZhCYAQAAAAAwg8CcA7/++qu6d++ucuXKqWTJkmrRooVWrVpl7bIAAAAAABbgaO0CbNWePXvUtWtX5cuXT126dFGhQoW0YcMGDRw4UJcuXdLIkSOtXSIAAAAAIAcIzE8gOTlZQ4cOlZ2dnTZt2qQaNWpIksaOHSs/Pz9NmTJFnTp1UsWKFa1cKQAAAADgSRGYn8Du3bt1/vx59erVyxiWJcnNzU2jR4/Wm2++qbCwMH3wwQdWrPLJGNzcrV1ClhTJn/fvJrCFXtJHy7CFPkr00lLoo2XYQh8lemkp9NEybKGPEr20FPqYN9hFR0cbrF2Erfnoo480ffp0zZ8/X127djVZFx0drfLly6t+/fraunWrlSoEAAAAAOTUs/+VwFMQGRkpSWYvufbw8FCRIkWMYwAAAAAAtonA/ARiY2MlSYUKFTK73s3NzTgGAAAAAGCbCMwAAAAAAJhBYH4CaWeWMzqLfPfu3QzPPgMAAAAAbAOB+Qmk3bts7j7l6Oho3bp1i0dKAQAAAICNIzA/gYYNG0qSwsPD061LW5Y2BgAAAABgm3is1BNITk7Wyy+/rGvXrmn79u166aWXJD28FNvPz0/nzp3TgQMH5OPjY+VKAQAAAABPijPMT8DR0VGff/65UlNT1a5dOw0bNkzjx49Xo0aNdPr0aY0bN46w/Bi//vqrunfvrnLlyqlkyZJq0aKFVq1aZe2ybM6KFSv03nvvqVmzZipevLg8PDwUFhZm7bJsytWrVzVnzhx17txZ1apVU7FixfT888+rT58+OnTokLXLsynR0dEaM2aMWrdureeff17FixdXlSpV1KFDB61bt04GA9/PPqnQ0FB5eHjIw8NDv/zyi7XLsSnVq1c39u5//xs+fLi1y7M5GzZsUKdOnVShQgWVKFFCL730kt566y1duXLF2qXleWFhYRl+FtP+e+2116xdps0wGAxav3692rdvrxdeeEFeXl56+eWX9d577+nChQvWLs9mpKamat68eWrSpIm8vLxUpkwZtWvXTps3b7Z2aXmGo7ULsFVNmjTRDz/8oClTpmjt2rVKSkpS5cqV9Z///EcBAQHWLi9P27Nnj7p27ap8+fKpS5cuKlSokDZs2KCBAwfq0qVLGjlypLVLtBmTJ0/W5cuXVaRIEXl6eury5cvWLsnmzJs3TzNnzlSFChXUrFkzFStWTJGRkdq0aZM2bdqk+fPnq3PnztYu0ybcvn1bYWFhevnll+Xv76/ChQvr77//1g8//KB+/fqpX79+Cg0NtXaZNufs2bMKDg6Wi4uL4uLirF2OTSpUqJAGDx6cbnmtWrWsUI1tMhgMGj58uL799ltVqFBBXbt2laurq65du6a9e/fq8uXLKl26tLXLzNOqV6+usWPHml23fv16nT59Wi1btszlqmzX+PHjNXv2bJUoUUL+/v5yc3PTiRMntHDhQq1evVpbt25V1apVrV1mnmYwGNS/f3+tX79eFSpUUO/evZWYmKjNmzfrjTfe0NSpU/X2229bu0yr45Js5Krk5GTVrVtXV69e1bZt21SjRg1JppezHzx4kEnTsmjXrl3y9vZW2bJlNWPGDE2cOFGzZ89Wr169rF2azVi/fr2KFi0qX19fk+X79u1Tx44d5erqqjNnzih//vxWqtB2pKSkyGAwyNHR9LvYu3fvqnXr1jpz5oz279+vKlWqWKlC25OSkqLWrVvLzs5OFStW1MqVK7V9+3bVrVvX2qXZjOrVq0uSjh8/buVKbNuXX36pcePGaeDAgfrkk0/k4OBgsj45OTnd//eRNYmJiapcubJiY2N16tQpFS9e3Nol5XnXr19XlSpVVLp0aUVERJg8nWbOnDkKCgpSr169NHv2bCtWmfetW7dO/fr1U4MGDbR27VoVKFBAknTr1i01a9ZMN27c0M8//6xy5cpZuVLr4pJs5Krdu3fr/Pnz6tatmzEsS5Kbm5tGjx6t5ORkLinOhmbNmqls2bLWLsOmvfbaa+nCsiT5+vqqcePGunPnjk6dOmWFymyPg4OD2V+Y3dzc1KJFC0lSVFRUbpdl02bOnKkTJ05o1qxZ6QIKkFvu37+vkJAQlS9fXlOmTDH7WSQsP7mNGzfq9u3batOmDWE5iy5duqTU1FQ1aNAg3aNc27RpI0m6efOmNUqzKZs2bZIkjRgxwhiWJalIkSIKDAzUgwcP+L1cXJKNXBYRESFJxl+eH5W2bO/evblaE5ARJycnSSKo5FBCQoJ2794tOzs7Va5c2drl2IxTp04pJCREo0aN4qx8DiUmJmrp0qW6du2aPDw8VK9ePeOZZzzezp07defOHb3xxhtKSUnR5s2bFRkZKXd3dzVr1kze3t7WLtGmLV68WJLUt29fK1diOypWrKh8+fLpwIEDunv3rtzc3Izrtm3bJklq3LixtcqzGTdu3JAks2eQ05bt2bMnV2vKiwjMyFVpz642d8m1h4eHihQpYvb51kBuu3z5snbt2iVPT0+9+OKL1i7HpkRHR2vu3LlKTU3VzZs3tX37dl25ckVjx47ldossSk5OVmBgoJ5//nkmprKA69evKzAw0GRZq1at9NVXX6lIkSJWqsp2HDlyRNLDs8iNGjXSuXPnjOvs7e0VGBioyZMnW6s8m3bp0iX99NNPKlmypFq1amXtcmzGc889pwkTJmjChAmqX7++2rZtK1dXV506dUq7du1S//79NWjQIGuXmecVLVpUknTx4kW98MILJusuXrwoSfrjjz9yva68hsCMXBUbGytJ6S6fSePm5qarV6/mZklAOklJSRo0aJAePHigiRMncoY5m2JiYhQSEmL8s5OTkyZNmqR3333XilXZlmnTpunEiRPasWOH8UoHPJnevXurYcOGqlKlivLly6ezZ88qJCRE27dvV8+ePbV161bZ2dlZu8w8Le3S1lmzZqlGjRoKDw/X888/r2PHjum9997TrFmzVKFCBb311ltWrtT2hIWFKTU1VW+88QY/a7JpyJAhKlGihIYPH6758+cbl9evX18BAQH825kFrVq10nfffacZM2aoSZMmcnZ2lvRwEs+5c+dKevgz/Z+Oe5gB4BGpqal65513tG/fPvXr1089evSwdkk2p1y5coqOjtatW7f022+/KSgoSJMmTVKfPn2UnJxs7fLyvOPHj+uzzz7TkCFDVLNmTWuXY/PGjh2rRo0aqUiRInJzc9PLL7+sFStW6JVXXtHPP/9svHwTGUtNTZUk5cuXT2FhYapdu7ZcXV3l6+urhQsXyt7eXrNmzbJylbYnNTVVYWFhsrOzU+/eva1djs359NNPFRgYqOHDh+vkyZP6888/9cMPPyg5OVkdOnTQ+vXrrV1intetWzc1btxY+/fvl6+vr0aPHq3hw4erQYMGxsvc+SKHwIxclnZmOe1M8/+6e/duhmefgafNYDBo6NChWrlypQICAjRjxgxrl2TTHBwcVK5cOQ0fPlzjx4/Xxo0btXDhQmuXlecNHjxYFSpU0Lhx46xdyjPL3t5eb7zxhiTp4MGDVq4m70v7uVyzZk15eXmZrKtSpYrKly+v8+fPKzo62grV2a6dO3fqypUratKkicqXL2/tcmzKTz/9pI8//lgDBw7UyJEjVapUKbm4uKhBgwZasWKFChQooKCgIGuXmec5Ojrqu+++07hx42Rvb6+FCxdqw4YNateunRYtWiRJ3LYiAjNyWdr9i+buU047I8U9jrCG1NRUvfvuu1qyZIm6deumuXPnyt6efyItpXnz5pL+38R/yNiJEyf0+++/y9PTUx4eHsb/li1bJklq3bq1PDw8tHHjRitXatvSfgmMj4+3ciV5X6VKlSRJ7u7uZtenLU9ISMi1mp4FTPb15DKb2Kto0aKqWrWqrly5olu3buV2aTYnf/78GjdunA4dOqQbN27ojz/+0MyZM423SPK8eu5hRi5r2LChpk+frvDwcHXt2tVkXXh4uHEMkJtSU1M1ZMgQhYWFqUuXLvrqq6+4BMnC/vrrL0k8eiYr+vTpY3b5vn37FBkZqbZt26po0aI8Ui6HDh8+LEn0MQvSQsnvv/+ebl1SUpKioqLk4uJinEAIj3f79m1t3rxZhQsXVvv27a1djs1JTEyUlPGjo9KW58uXL9dqetasWrVKktL9vv5PxG8uyFVNmzZV+fLl9d1332nQoEF66aWXJD28FPvTTz+Vo6Oj8TI5IDeknVleunSpOnXqpHnz5hGWn9CxY8dUrly5dGeh7ty5o48++kiSmAU2C7744guzywcPHqzIyEiNGDFCdevWzeWqbNOZM2dUokQJeXh4mCzfv3+/Zs+erfz586tDhw7WKc6GVKhQQS1atFB4eLgWLVpkckZ0xowZiomJUUBAAF+IZcPy5cuVmJioAQMGKH/+/NYux+Y0aNBAX3/9tebMmaPXXnvN5OfO0qVLFRUVpZo1a5o8bgrmxcbGprsdct26dVqyZIlq167Nv5EiMCOXOTo66vPPP1fXrl3Vrl07de3aVW5ubtqwYYMuXryo8ePHy8fHx9pl2oxFixZp//79kh4+s1V6eIlX2mWv/v7+fHP9GCEhIVq6dKlcXV3l4+OjTz/9NN0Yf39/45c7yNjSpUu1ePFiNWrUSGXLllXBggV1+fJlbdu2Tffu3dNrr72m7t27W7tM/IOsXbtWn3/+uZo0aaKyZcsqf/78On36tMLDw2Vvb68ZM2aoTJky1i7TJkybNk1+fn4aOnSoNm3apEqVKunYsWPavXu3ypQpo0mTJlm7RJuyZMkSSVyO/aQ6deqkb775RhEREapTp47atm0rDw8PnThxQjt37lT+/Pk1ZcoUa5dpE1q1aqVSpUrp+eefl7Ozsw4fPqyIiAiVL19e3377LScRRGCGFTRp0kQ//PCDpkyZorVr1yopKUmVK1fWf/7zHwUEBFi7PJuyf/9+432NaQ4cOKADBw5IenipIYE5c5cuXZIk3bt3T5999pnZMWXLliUwZ0HHjh0VGxurQ4cOaf/+/YqPj1fhwoXVoEED9ejRQ127duXxPchVjRs31u+//67ffvtN+/btU0JCgooXL64uXbooMDBQderUsXaJNqNChQrauXOngoOD9eOPPyo8PFyenp4aOHCgxowZo2LFilm7RJtx+PBhnTp1SnXq1NGLL75o7XJskoODg1avXq0vv/xSa9as0erVq5WYmKjixYure/fuGj58uKpWrWrtMm1C586dtWHDBh06dEhJSUkqV66cRo0apaFDhzIR7//PLjo62mDtIgAAAAAAyGuYAhYAAAAAADMIzAAAAAAAmEFgBgAAAADADAIzAAAAAABmEJgBAAAAADCDwAwAAAAAgBkEZgAAAAAAzCAwAwAAAABgBoEZAAAAAAAzCMwAAPyDTZkyRR4eHho8eLC1SwEAIM9xtHYBAADAcqKiorRw4ULt2bNHly5dUnR0tFxcXFShQgW98sor6t69u2rXrm3tMgEAsAkEZgAAngEpKSn673//q7lz5yolJUV2dnYqV66cypYtq7t37+r06dM6evSo5s6dq3bt2mnp0qXWLhkAgDyPwAwAgI0zGAzq16+fNm7cqPz582v06NF66623VKxYMeOYuLg4bd26VZ999pkiIiKsWC0AALaDwAwAgI2bNWuWNm7cKCcnJ61evVqNGjVKN8bFxUVdunRRx44d9fnnn1uhSgAAbA+BGQAAGxYXF6cZM2ZIkoYPH242LD/KwcFBw4cPz9K+9+3bpy1btmjv3r36888/dfv2bXl4eKhWrVp688039eqrr5rd7u7du5ozZ442btyo8+fPKzExUUWKFFHJkiXl6+urAQMGyNvb2zg+NTVVy5Yt09KlS3Xq1CndvXtX7u7u8vT0VJ06ddS9e3c1adIkix0BAMByCMwAANiw7du36/bt23JwcNDbb79t0X337t1bt2/fVuHChVWiRAmVKFFCf/75p7Zt26Zt27Zp1KhRGj9+vMk29+7dU5s2bXTq1CnZ2dmpQoUK8vDw0N9//61jx47p8OHDqlSpkklgfuedd7Rs2TJJUsmSJVW+fHndvXtXFy9e1KlTp/TgwQMCMwDAKgjMAADYsP3790uSKleurKJFi1p03x9++KGaNGmi8uXLmyzftWuXBg4cqM8++0xt27ZVnTp1jOsWL16sU6dOqWrVqlq2bJnKlStnXJeQkKAffvhBJUuWNC47fvy4li1bpkKFCiksLEyNGzc2rjMYDNq3b59u3Lhh0fcFAEBWEZgBALBhV69elaR0odYS+vbta3Z5s2bNNGHCBA0dOlRLly41Ccy///67JKlPnz4mYVmSnJ2d1alTJ5NlaeMbN25sEpYlyc7OTg0bNszp2wAA4IkRmAEAsGF3796V9HBSr6fhzJkz+v7773Xy5EnduXNHycnJkqTY2FhJ0m+//WYyvnTp0pKkTZs2qVevXipUqFCm+08b/8svvygyMlIVK1a09FsAAOCJEZgBALBhrq6ukh5O/mVpH374oUJDQ2UwGDIcc/v2bZM/9+7dW7Nnz1ZERISqVKmipk2bqkGDBqpbt67q1q0rR0fTXz3q1q2rV155Rfv371fdunXVoEEDNWzYUC+//LJ8fX3l5uZm8fcFAEBW2Vu7AAAA8OTS7ge+cOGCRfe7evVqzZw5U3Z2dho7dqwiIiJ0+fJl3b59W9HR0Vq3bp0kKSkpyWQ7T09P/fjjj3r99ddlb2+vzZs364MPPlDbtm1VuXJlTZ8+XSkpKcbx9vb2WrlypUaMGKESJUpo3759+vTTT/X666+rUqVKevfdd9OFcgAAcguBGQAAG+br6yvp4aXTN2/etNh+ly5dKkl699139f7776tatWpyc3OTvf3DXx3u3LmT4bYVKlTQV199pQsXLmjXrl0KDg5W06ZNdfPmTX300Uf6+OOPTca7ubnpgw8+0KlTp/Trr79q9uzZ6tatmyRpyZIl6tWrl1JTUy323gAAyCoCMwAANqxVq1YqXLiwUlJSNG/ePIvt9+LFi5KkV155xez6gwcPPnYfDg4OqlmzpgIDA7Vu3Tp98sknkqT58+dnuI23t7d69eql//u//9P27dtlZ2en/fv368SJE0/wLgAAyBkCMwAANszV1VXvvfeeJGnmzJmKiIjIdHxKSopmzJjx2P0WKFBAkvTXX3+lW/f3338bn5ucHWlnw2NiYhQfH//Y8dWrVzdOGmauDgAAnjYCMwAANm7o0KFq27atEhMT1bVrV4WEhOjvv/82GRMfH69169apadOmWQrMaY9zmjZtmvHRT9LDe6UDAgKUkJBgdruJEydq/vz56Z6dHB0dbTxu5cqVVbBgQUnSihUr9PHHH5scQ3p4b/Tnn3+umJgYOTo6qnr16o+tGQAAS2OWbAAAbJydnZ0WL16s8ePH6+uvv9aUKVP0ySefqHz58nruued07949XbhwQQ8ePJAkdejQ4bH7HDZsmNasWaMrV67I19dXPj4+sre315kzZ+Tm5qaPPvpIY8aMSbfd2bNnNWPGDI0cOVKlS5eWp6en4uPjFRUVpQcPHsjV1VXTp083jr9165Y+/fRTffrpp3ruuedUpkwZGQwGXbx4UTExMZIehnAvLy8LdQsAgKwjMAMA8AxwdHTUJ598on/9619atGiRdu/erUuXLuny5csqWLCgXnjhBTVo0EA9evx/7d0hjgJBEIbRf8MdIGPAI+cEJPjRi0ei5wRzLIIaToBBgJkT4AkJDlWbdWv2Pd3d/kuq0t9p2/bX95qmyfF4zDAMOZ1Oud/vWSwW2e126fs+0zSV9/q+z3q9zvl8zjRNuVwumc1mWS6X2Ww2ORwOWa1Wn/Nd1+X1emUcx1yv19xutzyfz8zn82y32+z3+88oNwD8ta/H4/Hz54oAAADwT9lhBgAAgIJgBgAAgIJgBgAAgIJgBgAAgIJgBgAAgIJgBgAAgIJgBgAAgIJgBgAAgIJgBgAAgIJgBgAAgIJgBgAAgIJgBgAAgIJgBgAAgMIbQ9uZDY0fmF8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8wAAAH7CAYAAAAZyBZSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAACAWUlEQVR4nOzdd1yV9f//8SeIk6moqCDuEW6tVDRRXCm4c+XKzF1pFmqmpS0cmfbJXTYwNUvFhWUGOXBmpmZWFu5tKiIoIuP3hz/OlyMXCHLkcOxxv928Bdf1vq7rdV6ehOd5X8MuOjo6RQAAAAAAwIy9tQsAAAAAACAvIjADAAAAAGCAwAwAAAAAgAECMwAAAAAABgjMAAAAAAAYIDADAAAAAGCAwAwAAAAAgAECMwAAAAAABgjMAAAAAAAYIDADAJALatWqJTc3Nw0fPtzapTwSgoOD5ebmJjc3N2uXkmUBAQFyc3NTQEBAunUnT540vZ6lS5daoboHN3z4cLm5ualWrVrWLgUALM7B2gUAANLbvn27OnToYPq+UKFC+uuvv+Tq6nrfbRs0aKCoqCjT9x9++KGef/55szEnT55UnTp1TN/XrFlT27dvl52dXYb7Xbp0qUaOHClJWrlypVq1apVhzePGjdPrr79uuJ+UlBT98MMPWrVqlX755RddvHhRt27dkqOjo0qVKqXKlSurfv368vPzU4MGDWRvb5+u3gd18OBBlStX7oG2TUxM1IYNG/Tjjz/q559/1uXLlxUTEyNnZ2eVLl1aDRo0UPv27dW6dWs5OPDjNa1atWrp9OnT6ZY7OjrK2dlZxYoVU40aNVSnTh0FBgaqfPnyuV8kAAAGmGEGABsQHx+vtWvX3nfcnj17zMJyVh0+fFhr1qx5gMqy5/LlywoMDFTPnj31zTffKCoqSrGxsUpKSlJMTIyOHj2qjRs36t1331Xr1q0VERHx0GvKiu+++05PPvmknnvuOX311Vf666+/dPXqVSUmJuratWs6cuSIlixZot69e6tOnTpatmyZtUu2CXFxcbpw4YKOHDmib7/9VhMnTlS9evXUrVs3/fnnn1apyZZnei3JFmfwAeBh4CNwAMjjChUqpPj4eH399dfq379/pmO//vprSVLhwoV169atbB1n6tSp6tSpk+ztH85nqQkJCerSpYsOHz4s6e6sdp8+fVS7dm05OzsrLi5Of//9t/bu3avvv/9e//77r2nbMmXKaOfOnRnuu1u3bjp//rxKly6tVatWZTiuTJky2a571qxZevvtt5WSkiJJeuqpp9S+fXs99thjKlq0qKKjo3X8+HFt2rRJP/74o86ePavx48fr2WefzfaxHnX3/v3cuXNH169f19mzZ7Vv3z6tXbtW//77r8LDw7Vjxw7NnDlTffr0MdzX66+/nuFZDHlVWFiYtUt4KObPn6/58+dbuwwAeCgIzACQx7Vv316rV6/Wrl27dOrUKXl7exuOu337tkJDQ03bZBYc03J3d9eVK1f0119/acWKFerdu7fFak8rJCTEFJZ79+6tuXPnpgvnjRs3Vv/+/ZWUlKQNGzbI09NTkpQ/f375+PhkuO/UU6AdHBwyHZddy5cv15QpUyTd7dNnn30mPz+/dOP8/Pz03HPP6cSJE3rrrbf0008/WayGR0lmfz+9e/fWe++9p7lz5+r9999XfHy8Xn75ZXl4eKQ7/R8AgNzCKdkAkMc1adJEXl5eSklJ0YoVKzIc99133yk6OloFCxZU586ds7z/7t27m2Zep0+frsTExJyWbCh1ds3BwUHBwcGZzmTny5dPnTp10mOPPfZQasmK8+fP67XXXpMkFSlSRGFhYYZhOa3y5cvryy+/1NSpU3OjxEdOoUKF9Oqrr5pmK5OSkvTSSy/p9u3bVq4MAPBfRWAGgDzOzs5OPXv2lKRMA/Py5cslSW3bts3WdYeFChUyBcPjx4/rq6++evBiM3HmzBlJUrFixWziush58+YpLi5O0t3Tf6tXr57lbR/kdOwLFy7o008/Vf/+/VW/fn2VKVNGJUuW1GOPPabevXtr9erVSk5OznQft2/f1qJFi9ShQwdVrlxZxYsXl7e3txo0aKBOnTrpww8/1F9//WW47bFjxzR+/Hj5+vrKy8tLJUqUUNWqVeXr66vBgwdr+fLlunHjRrZf14Po0aOHOnbsKOnuBxdG14Rn5RrbyMhIDRkyRHXr1lXp0qVVqlQp1axZU82bN1dQUJC+++4706n2kuTm5mZ2c7mRI0eajpH6Jzg42LR+6dKlpuUnT55UQkKCFixYoDZt2qhSpUoqWrSoxo8fbxqf2V2yjaxdu1ZdunRRlSpV5OHhofr16+v111/XpUuXMtwmq9ceZ3StduprmjZtmllf7v1z8uRJ0/qs3iX7r7/+0quvvqrHH39cnp6eKlOmjBo0aKBXXnlFf/zxR6bb3tv/AwcOaPDgwapZs6ZKliypatWqacCAATpw4ECm+wGA7OKUbACwAb169dLMmTP1zz//aN++fXr88cfN1l++fFnh4eGmsdnVr18/ffTRRzp58qQ++OAD9e7dWwULFrRI7akKFChgqvXatWsqWrSoRfdvSSkpKaYPIBwdHTVgwICHerykpCT5+PgYBuLz58/r/Pnz+u6777RkyRItWbJETk5O6cZdvHhRXbp00ZEjR8yWx8TEKCYmRlFRUdq6dasOHz6szz77zGzM2rVrNWTIkHQzuZcuXdKlS5dMN+UqUaJErp0ePWLECK1bt06StH79eg0cODBb20+cOFFz5sxJt/zMmTM6c+aMDhw4oE8++UQXLlxQoUKFclzvtWvX1L9/fx08eDDH+5Kkl19+WSEhIWbLjh07pvnz5+vrr7/WypUr1aBBA4scKzd8/PHHmjx5spKSksyWR0VFKSoqSiEhIZo0aZJGjx593319+umnGj9+vNnZMBcvXtTatWu1ceNGffbZZ2ZPGQCAnCAwA4ANqFKliho0aKBffvlFK1asSBeYv/32WyUmJqp48eJq3bq1du/ena3958+fX2PHjtXIkSN15swZff755xo2bJglX4Lq1Kmj33//XSkpKRo5cqQWLlwoZ2dnix7DUv7880/TTccaNWokFxeXh3q81FnOZs2aqXXr1vLx8ZG7u7tiY2N14sQJhYSEaO/evfrpp5/02muvacGCBen2MXbsWFNYfuaZZ9ShQweVKVNG+fPn16VLl3Tw4EFt2rQp3aPDLl26pBEjRuj27dsqXry4Bg0apIYNG8rd3V23b9/WiRMntGfPnly/YdWTTz4pZ2dn3bhxQ3v37lVSUpLy5cuXpW03bdpkCss+Pj4aOHCgqlWrJjc3N924cUNHjx7Vtm3btGnTJrPtdu7cqQsXLqhr166S7obu9u3bm40pUaKE4TFHjhypI0eOqEePHuratatKlSql8+fPpwuIWbF48WLt379fderU0ciRI1W1alVdvXpVq1at0rJly3Tt2jV169ZNu3btUunSpbO9/8wEBASoXr16Wrx4sRYvXixJhjfcy84N9L744gtNmjRJ0t2Z4lGjRqlJkyaSpF27dmn27Nm6du2aJk+eLCcnJ73wwgsZ7isiIkK//PKLqlWrpuHDh6tGjRpKTEzU5s2b9b///U8JCQl68cUX1aRJExUrViw7Lx0ADBGYAcBG9OrVS7/88otWrVql999/X/nz5zetS707dteuXc2WZ3f/s2fP1t9//61Zs2apf//+KlKkiEVql6TBgwdrxYoVSkpK0saNG1WjRg09/fTTaty4serXry8fH58Hrt3SfvvtN9PXdevWfejHy5cvn/bt26eKFSumW9e0aVP17dtX77//vqZPn64VK1YoKChIlSpVMo2Jj4/Xxo0bJd0Nbu+99166/bRp00ZBQUG6evWq2fJNmzaZTj1fu3atatSoYbb+ySefVI8ePTR16lTFx8fn+LVmlb29vWrWrKldu3YpNjZWFy5cMN0E7n5Wr14tSSpbtqx++OGHdDPyTZo00cCBA03X/Kfy8fGRo6Oj6fvSpUtn+SZyv//+u2bNmmU2E/6g7539+/fL399fK1asMPt/wt/fX0888YRGjx6t6Ohovfnmm/rkk08e6BgZST31uXjx4qZlObmR3pUrV/TGG29IkooXL64ffvjB7H3+5JNPqlOnTmrTpo0uXbqkSZMmqWPHjipZsqTh/n7++We1bNlSy5YtM/u7a9iwoSpVqqThw4fr+vXrWrFihYYPH/7AdQNAKq5hBgAb0a1bN+XPn19Xr17VDz/8YFr+xx9/6NChQ5KUoztc58uXz3S95cWLFy3+i3i9evX00UcfmU7NjomJ0TfffKNXXnlFfn5+8vb2VmBgoBYsWKDo6GiLHju70obKjGYULcnOzs4wLKc1btw4ubu7KyUlxRSOU127dk137tyRJNPMXUbunXVLvR7Wzc0tXVhOK3/+/Ll+RkDa0/avXbuW5e1SX1OdOnUMT19P5ebmlm7G/UE1bdo026eNZ6RAgQKaM2eO4QdIzz33nJ566ilJ0po1a3T58mWLHPNhWbp0qekDmcmTJxu+z8uXL6+3335bknTr1q10p6KnVahQIc2fP9/wkpGePXuqVKlSkqQdO3ZYonwAIDADgK0oVqyYWrduLcn85l+p19pWq1ZN9erVy9ExunbtagpNH330kcVv8tS3b1/t2rVLAwYMkKurq9m6W7duKTIyUuPHj1e9evX0zTffWPTY2REbG2v62pKz7FmVnJys8+fP6++//9aRI0d05MgR/fXXX6bTYFMfz5WqWLFipg8iVqxYka07nacGjOjo6Dz3nOC0YTft38n9pL6mnTt36vjx4xavy0iPHj0stq8WLVpkespz3759Jd19jnVkZKTFjvswpD5izdHRUc8880yG47p27Wq69CGzx7L5+fllOPtsb29vumnbiRMnHrBiADBHYAYAG5J6Q69NmzYpOjpaSUlJ+vbbbyXJdCftnLCzs9OECRMk3Z1lnTt3bo73ea9KlSrpo48+UlRUlMLDwzV16lT17t1b5cuXN425du2ahgwZYvowILelDWo3b97MlWOmPjYsMDBQnp6eeuyxx/TEE0/I19fX9Cf1VPF7T6suWLCgunXrJunuadV169bVxIkT9f333993tr59+/amOyr37dtXgYGBmjNnjvbv3//QHjGWVWk/sMnO7HbqmRZXr15V48aNNXDgQC1ZskR///23xWtMdb87RGfH/W7mlXb977//brHjPgypd7+uWbNmpjdXK1CggGrXri1J6W5cl1a1atUyPV7qezk7H7AAQGYIzABgQ55++mkVLVpUt2/fVmhoqLZs2aLz58/L3t7eYjNcAQEBql+/vqS7j1Z6WKdHOzg4qEGDBho2bJjmz5+vAwcOKDw8XI0bNzaNef31163yi2/a05Zz45TX+Ph49ejRQ0OHDlVkZKRu3bqV6Xij9dOnT1dgYKCku3eCnjNnjnr16qUKFSqoadOmmj59uulGZmkVLVpUK1asMD3rOzIyUhMnTpS/v7/KlSunnj17KjQ09L6PtHoY0n4wkJ27qjdr1kyzZs2So6Oj4uPjFRoaqpdeeklPPPGEqlatqhEjRmjPnj0WrdWSj0q732UAadff++FJXpN6Kn3aa6Iz4uHhIUm6fv262eO+0ipcuHCm+0h9vvuD3GwNAIwQmAHAhhQoUMB0B9+vv/7adLOvpk2bysvLy2LHSb1JT0xMjD766COL7fd+GjRooJUrV5quc4yOjtaWLVty7fip0s4W5sZzXT/44ANt3rxZ0t1rkL/44gv9+uuvOnv2rK5evaro6GhFR0ebPkwwChPOzs766quvtGXLFo0aNUoNGjSQg4ODUlJSdPjwYb3//vuqX7++vv/++3TbNmzYUL/88os+++wz9ezZU2XLlpUkxcXFadOmTRo4cKBat25tGLgfluTkZNPsqYuLiylMZdXAgQN16NAhTZ8+Xe3atTMF7kuXLmnZsmVq27atXnrpJYt9EJAa1CzBUtdV5yWP4msC8N9AYAYAG5N6WvaePXtMz6l9kGcvZ6Zly5amcLZo0aJcvbGQo6Oj6fRi6e6zZ3Nb9erVTTNiu3bt0vXr1x/asVJSUrRkyRJJUuPGjbV+/Xp17txZFSpUkKOjo1kQy8psf926dTVlyhSFh4fr5MmTWrlypXr06CF7e3vFxMTo+eef18WLF9NtV7BgQXXt2lULFy7Ub7/9psOHD2v27NmqWbOmJOmXX37J0jNyLWX37t2mswuefPLJLD9SKi13d3fTqf3Hjh3Tjh079MYbb5iugV2yZIkWLVpk0botIfWmZRlJ+//jvTdxS/t+yezDgNy61CD1g4qs/BuS+r50dXUlYAPIMwjMAGBjnnjiCVWuXFmSdPv2bTk6Oqpjx44WP07qLHNcXJw+/PBDi+8/M2mfLWuNX5zt7OxM18HevHkz07v25tS1a9dMQaFz584ZzlTGxsZm+xpcR0dHtWrVSosWLdLEiRMl3X099z5/2IiXl5eee+45RUREmB4r9P3339/3dHFLmT9/vunrDh065Hh/dnZ2qlGjhoKCgvTDDz+Y7rK8Zs2adOOs7Zdffsl0/f79+01f3/vIp7TX32f2AcvRo0czPYal+vDYY49Junujutu3b2c4LiEhwXS3/5w8xgoALI3ADAA26Nlnn1XBggVVsGBBderUKdNH5zyopk2bqnnz5pKkzz//XOfPn8/R/jK6JtHIr7/+avq6XLlyOTrugxoxYoTpDtnBwcH6888/s7ztsmXLsjw27Y21Mpv1CwkJydFNuPz8/ExfX7lyJcvbFShQwHS2QWJiomJiYh64hqz65ptvtH79ekl3PzzJyePSjJQvX950k7l7e5H2xlQJCQkWPW5W/fTTT5n+//bVV19JunsfgKZNm5qtS3vzvLTB+l6pNwvMSNo+ZBZ076dFixaS7n7wlvp8bCNr1qwxvbdStwGAvIDADAA2aMyYMbp48aIuXryoefPmPbTjpM5KxsfHa8GCBTnaV9++fbVo0aL73sQrPDzcdHdsJycnU2jPbaVLl9bMmTMl3Q2yAQEB2rp1a6bbnDx5UgMHDjQ9zzorihcvbnrE1sqVKw3Dyf79+/X+++9nuI8TJ07c9/FCERERpq/TfggRHh6eaTiLj4/Xrl27JN29Ttrd3T3T4+REfHy8Zs6cqeHDh0u6+2zwOXPmmB6ZlVWrV6/O9MOHEydOmE71v/cDmbSP6MqtR1LdKyEhQS+//LLhByQhISHatm2bJKlTp07pHrHUsGFDOTg4SJLmzJljeFr2119/rQ0bNmRaQ9prxnPShz59+sjR0VHS3ecwnzx5Mt2YkydPatKkSZLu3tSrf//+D3w8ALA0B2sXAADIux5//HG1bdtWmzZtyvENn86ePauxY8dqypQpatu2rRo1aqRq1aqpaNGiunPnjqKiorRx40atXbvWNBs9adIk07NZraF37946f/683nnnHV25ckWdOnVSs2bNFBAQoOrVq8vNzU3Xr1/XiRMntHnzZm3atEkJCQnZqjn1DueffPKJfv/9dz399NMaOXKkKlWqpJiYGP3www9avHixHB0dVapUKf3zzz/p9nH69Gl16NBBVatWVUBAgOrVqydPT0/Z29vr/PnzCgsLM816e3l5qW3btqZtV65cqZUrV8rPz0/+/v7y8fFR0aJFdfPmTf39999avHix6TE//fv3N4WxB5GYmGj2yKDExERdv35dZ8+e1c8//6y1a9ea3meFChXSzJkz1bJly2wf56233tLo0aPVrl07NWnSRJUrV5aTk5OuXbum/fv3a9GiRbpz544k6fnnnzfb1sHBQfXr19fu3bv11VdfqXbt2qpVq5by588v6e41udm5Y/eDqF+/vjZv3qzWrVtrxIgRqlKliq5du6bVq1ebZpddXV31zjvvpNu2ePHi6tq1q7755htt2bJFPXr00JAhQ+Th4aHz588rNDRU33zzjRo1aqTdu3dnWEPDhg1NX0+YMEGvvvqqSpUqZTpV29vbO0vvBXd3d7333nsaPXq0Ll68qBYtWmj06NGmsxZ2796tWbNmme72/c4772T4nGUAsAYCMwAgU2+88YZ++OGHbJ1SbaRMmTI6cOCA6dTMzE7PLFy4sCZNmqShQ4fm6JiWMGbMGD322GOaMGGCjh8/rm3btplm+IyULVtWb731VraOMXHiRO3evVu//fabfv31V73wwgtm64sWLaqQkBC9//77hoE51dGjRzO9NtXLy0vLly83zfilunPnjn788Uf9+OOPGW7buXNnvfnmm1l8RcbOnz8vX1/fTMfY2dnJ399f7777run61wcRExOjFStWaMWKFYbr8+XLpzfffFPt27dPt+6VV15Rr169dPXq1XR/F+PGjdPrr7/+wHVlxaBBg+Tj46OvvvpKgwcPTrfezc1N33zzjcqUKWO4/fvvv68DBw7o6NGjhn+vfn5+mjZtmho1apRhDRUrVlSXLl0UGhqqiIgIszMUJOngwYNZvlziueeeU0xMjKZMmaKrV68avo/y5cuniRMnpus3AFgbgRkAkKnatWurU6dO6W6OlF3Lli3TP//8o/DwcO3Zs0d//vmnzp49q9jYWBUsWFBFixZVtWrV5Ofnpx49epjd+Mva2rVrp9atW2vDhg3avHmz9u3bp0uXLunGjRtycnKSp6enGjRooICAALVq1Srbd3R2dXXVpk2bNHfuXIWGhurYsWNycHCQp6en2rRpo2HDhsnT0zPD7X19fRUWFqaIiAj9/PPPOnv2rC5fvqybN2/Kzc1NPj4+evrppzVgwIB0YTk4OFgtWrTQ9u3b9fvvv+vixYu6fPmy8uXLp1KlSunxxx9Xr169Hmim934KFy4sFxcXFStWTD4+PqpXr54CAwPNrsN9EOvXr9emTZu0a9cu/f3337p8+bKuXr2qwoULy9vbW02aNNHzzz+v6tWrG27ftm1brV27VgsWLNCvv/6qf//91zQjnVvmzJmjli1b6osvvtDvv/+uGzduqEyZMmrbtq1eeeWVTB+zVbx4cW3evFkff/yx1q1bp1OnTqlgwYKqVq2aevfurQEDBuj06dP3rWHRokWqV6+e1q5dq7///luxsbEP/Biul19+WW3bttXChQu1bds2nTt3TtLdSx+aNWumIUOG5OgDEgB4WOyio6NzNmUAAAAAAMAjiJt+AQAAAABggMAMAAAAAIABAjMAAAAAAAYIzAAAAAAAGCAwAwAAAABgIM8H5qVLl8rNzS3TPx07djTbJiYmRhMmTFDNmjVVsmRJ1apVS5MmTVJsbKzhMZKTk7Vw4UL5+vqqVKlSqlSpkgYNGqQTJ05kWFd4eLjat28vLy8vlS1bVoGBgdq6daslXzoAAAAAwIry/GOlDh06pLCwMMN169at0x9//KEpU6Zo1KhRkqS4uDg9/fTT+u233+Tv76/atWvr0KFDioiIUP369bVx40YVKlTIbD8vv/yyQkJC9Nhjj6lNmzY6f/681qxZI0dHR/3444+qVKmS2fgVK1Zo6NChKl68uLp06SJJCg0N1ZUrV/TFF1+oU6dOD6ETAAAAAIDclOcDc0YSEhJUvXp1xcTE6MiRIypZsqQk6f3339f06dM1evRoTZ482TR+8uTJmj17tt58802NGTPGtHzbtm3q2LGjfH19tWbNGhUoUECStHnzZnXv3l3+/v5avXq1aXx0dLTq1KkjBwcHbdu2TZ6enpKks2fPqlmzZpKkAwcOyNnZ+WG3AAAAAADwEOX5U7IzEhYWpqtXr6pt27amsJySkqIlS5bIyclJQUFBZuODgoLk5OSkkJAQs+Wp37/xxhumsCxJrVu3VtOmTRUREaHTp0+blq9Zs0bXr1/XkCFDTGFZkjw9PTV48GBduXJFGzZssPjrBQAAAADkLpsNzKlBt3///qZlUVFROn/+vBo2bChHR0ez8Y6OjmrYsKFOnDihM2fOmJZHRkbK0dFRjRo1SneMli1bSpJ27NhhNl6S/P39szQemYuPj9exY8cUHx9v7VJsGn20HHppGfTRcuilZdBHy6CPlkMvLYM+Wg69NOZg7QIexKlTp7R161Z5enqqVatWpuVRUVGSpIoVKxpuV7FiRYWHhysqKkpeXl6Ki4vThQsX5OPjo3z58hmOT7vftF/fe11z2mVpx2eGN+PdU+uTkpKUkJBg7VJsGn20HHppGfTRcuilZdBHy6CPlkMvLYM+Ws5/qZf33tMqMzYZmJcuXark5GT17t3bLOjGxMRIklxdXQ23c3FxMRuX+t/U5fcbf79tUq9bTjs+M+fOnVNSUlKWxj7qLl68aO0SHgn00XLopWXQR8uhl5ZBHy2DPloOvbQM+mg5j3ov8+XLl+EEqxGbC8zJyclaunSp7Ozs1LdvX2uXkyNlypSxdglWl5CQoIsXL8rDw8PsGnJkD320HHppGfTRcuilZdBHy6CPlkMvLYM+Wg69NGZzgXnLli06c+aM/Pz8VL58ebN1qbO+169fN9z23tlhoxnkzMbfu02xYsXMxt+4cSPd+Mxk51SAR12BAgXohwXQR8uhl5ZBHy2HXloGfbQM+mg59NIy6KPl0EtzNnfTL6ObfaVKvYb42LFjhtumLk8d5+joqFKlSunkyZOGp0bfOz7t10bXKWd2fTMAAAAAwLbYVGC+evWqNm7cqKJFiyowMDDd+kqVKql06dLas2eP4uLizNbFxcVpz549KleunLy8vEzLmzRpori4OO3evTvd/sLDwyVJvr6+ZuMlKSIiIsPxqWMAAAAAALbLpk7J/vrrr5WQkKCBAweqYMGC6dbb2dmpX79+mj59umbMmKHJkyeb1s2YMUOxsbEaM2aM2TYDBgzQqlWr9N5772nNmjWm8/U3b96syMhI+fv7y9vb2zS+S5cueuutt7Ro0SL17dvX9Czms2fP6pNPPpG7u7thmAcAPFzJycmKi4t75J5AkJycrAIFCuj69eumS3+Qfbbax0KFCsnR0VH29jY1xwEAjwybCsxfffWVJOPTsVONGjVKGzdu1OzZs3Xo0CHVqVNHBw8eVEREhOrXr6/hw4ebjW/WrJn69++vkJAQ+fn5qU2bNrpw4YJCQ0NVtGhRTZ8+3Wy8m5ubZsyYoaFDh8rPz09dunSRJIWGhurq1av6/PPPTXfLBgDkjuTkZF25ckVOTk4qXry47OzsrF2SxSQnJyshIUEFChQgNOWALfYxJSVF8fHxunLlitzd3W2mbgB4lNjMv7y//PKLjhw5ogYNGqhGjRoZjnN0dFRYWJiGDx+uo0ePas6cOTp69KhefPFFrV27VoULF063zezZszV16lRJ0oIFC7R582YFBgYqIiJClStXTje+Z8+eWrlypapUqaJly5Zp+fLlqlatmkJDQ9W5c2eLvWYAQNbExcXJyclJhQsXfqTCMv7b7OzsVLhwYTk5OaW71AwAkDvsoqOjU6xdBP674uPjdfr0aZUtW5a78eUAfbQcemkZud3Hy5cvP3Izy6lscWY0L7LlPqakpOjff/9ViRIlrF0K/0ZaEL20DPpoOfTSmG39xAAAIAOPYlgGJN7bAGBNBGYAAAAAAAwQmAEAAAAAMEBgBgAAAADAAIEZAAAAAAADNvUcZgAAHoTb52etXUKGogd6WruEB+Lm5qYmTZooLCzsgfexfft2dejQQePGjdPrr79uweoAALAMAjNgJZb/Bb6IpCsW3aOt/iIP/Fe4ublla3x0dPRDqeNRkpKSom+++UZfffWVDh8+rNjYWLm5ualUqVJ68skn1aVLFzVt2vSB9z98+HAtX75cBw8eVLly5SxYOQDgYSAwAwBgo8aNG5du2fz58xUTE2O4zpL27t2rwoUL52gfDRo00N69e+Xu7m6hqnJu5MiRWrZsmdzc3NS2bVuVKVNGt27d0uHDh7VkyRLduHEjR4EZAGBbCMwAANgoo9OYly1bppiYmId+inPVqlVzvI8iRYpYZD+WsnPnTi1btky1atVSWFiYXFxczNZHR0frr7/+slJ1AABr4KZfAAA84k6ePCk3NzcNHz5cf/31l/r06aMKFSrIzc1NJ0+elCStX79egwYNUr169VS6dGl5e3urXbt2Wrt2reE+3dzcFBAQYLZs+PDhcnNz04kTJ7RgwQI98cQTKlmypGrWrKmpU6cqOTnZbPz27dvl5uam4OBgs+W1atVSrVq1FBsbq3Hjxql69eoqWbKkfH19M6zn5MmTGjhwoMqXLy9PT0+1b99eO3bsUHBwsNzc3BQZGXnfPv3888+SpN69e6cLy6mvuWHDhumWJyQkaM6cOWrWrJnKlCkjLy8vtWvXThs3bkz3upYvXy5JqlOnjtzc3Az7CADIO5hhBgDgP+L48eNq3bq1fHx89Oyzz+rq1asqUKCAJOntt99W/vz51ahRI5UqVUr//vuvvvvuOw0YMEDTpk3T0KFDs3ycN998Uzt27FDbtm3l7++vsLAwTZ06VXfu3NGkSZOytI/ExER17dpV0dHR6tChg27duqXVq1frueee06pVq+Tv728ae+7cObVt21YXLlxQq1atVLt2bf3999/q0qWLmjVrluW6ixYtKkmKiorK8ja3b99Wt27dFBkZqVq1aqlv375KTEzUDz/8oGeffVbTp0/XkCFDJN39QGHZsmU6fPiwhg0bJldXV0mSt7d3lo8HAMhdBGYAAP4jdu/erbFjx2rChAnp1n377bcqX7682bLY2Fi1adNG7733nvr166ciRYpk6TgHDx7Ujh07VKpUKUnS2LFjVb9+fS1atEjjxo0zhfTMnD9/XvXq1dOGDRtM47t3765OnTpp7ty5ZoF58uTJunDhgiZNmqRXX33VtHzJkiV66aWXslSzJLVs2VIuLi767LPPFBMTo8DAQNWrVy/TQDt9+nRFRkYqKChIEyZMkJ2dnSTpxo0b6tixoyZOnKgOHTqodOnSGjFihH777TcdPnxYw4cP56ZfAGADOCUbAID/CA8PD7322muG6+4Ny5Lk5OSkZ599VjExMdq/f3+WjxMUFGQKy5Lk7u6u9u3b68aNG/r777+zvJ/333/fLFz7+fmpbNmyZrXcvn1ba9euVYkSJfTiiy+abd+3b19VqVIly8fz9PRUSEiIPD099e2332rAgAGqXbu2KleurIEDB2rr1q1m45OTk7V48WJVqFDBLCxLkrOzs8aOHauEhAStX78+yzUAAPIWZpgBAPiPqFmzZoazu5cvX9asWbP0448/6vTp07p165bZ+gsXLmT5OHXr1k23zNPz7mPqrl+/nqV9uLq6GoZ4T09P7d271/T933//rdu3b6tevXoqWLCg2Vg7Ozs9+eST2QrpzZs314EDBxQZGakdO3bo4MGD2r17t0JDQxUaGqoxY8bozTffNB07OjpapUuX1tSpU9Pt68qVK6ZxAADbRGAGAOA/okSJEobLr127phYtWujMmTNq1KiR/Pz85Orqqnz58um3337Txo0bdfv27Swfx9nZOd2yfPnySZKSkpKytA+jm26l7iftzcNu3LghSSpevLjh+JIlS2bpeGk5ODioefPmat68uaS711MvW7ZMY8aM0YcffqiOHTuqbt26unbtmiTpjz/+0B9//JHh/uLi4rJdAwAgbyAwAwDwH5H2lOG0lixZojNnzuiNN95QUFCQ2bpZs2alu9tzXpIazv/991/D9ZcuXcrxMRwcHNS/f3/t3LlTX3/9tbZv3666deuajt2xY0eFhITk+DgAgLyHa5gBAPiPO378uCSpffv26dbt2rUrt8vJlipVqqhgwYI6cOBAulnwlJQU06OiLMHJycns+2rVqsnFxUW//vqr7ty5k6V9pM603/uILQBA3kRgBgDgP65s2bKS7t5FO61vv/1WP/zwgzVKyrKCBQuqU6dOunTpkubPn2+2bvny5Tp69GiW9/Xjjz8qLCxMiYmJ6dYdO3ZMa9askSQ1btxY0t2Z5+eff16nT5/WxIkTDUPzkSNHdPnyZdP3qY+uOnPmTJbrAgBYD6dkAwDwH9ezZ0/Nnj1bY8eO1fbt21W2bFkdPnxYW7duVYcOHfL8XZ7ffPNNbdmyRZMnT9aOHTtMz2HetGmTWrVqpR9//FH29vefIzh69KgmTJggd3d3+fr6qkKFCkpJSdGxY8e0efNmJSQkaNCgQXr88cdN27z++us6ePCgFi5cqB9++EG+vr4qUaKEzp07pyNHjujw4cPavHmz6frxZs2a6eOPP9bo0aPVsWNHFSlSRGXLllWvXr0eWn8AAA+OwAwAeORFD/S0dgl5mqenp8LCwvTWW29py5YtSkpKUu3atRUaGqozZ87k+cDs5eWlH374QZMnT1ZERIR27NihOnXqaPXq1aZZYaMbkd2rR48ecnJyUnh4uI4cOaItW7YoPj5e7u7uatGihZ599ll16tTJbJuCBQtq5cqVWrJkib7++mutX79et2/fVokSJVS9enU9//zz8vHxMY1v3bq13n77bX355ZeaM2eO7ty5oyZNmhCYASCPsouOjk6xdhH474qPj9fp06dVtmxZFSpUyNrl5Cq3z89au4T7+i+GjP/ye9KScruPly9fzvAO0LYuOTlZCQkJKlCgQJZmSWHu6aef1t69e3XixAkVKFDAZvuYV97j/BtpOfTSMuij5dBLY7b3EwMAAOAeRs+JXrFihXbv3q3mzZunu2EXAABZwSnZAADA5jVu3Fi1a9dWtWrVTM+PjoyMlLOzs9555x1rlwcAsFEEZgAAYPOef/55fffdd/r111918+ZNFS9eXN27d1dQUJCqVq3KY5wAAA+EwAwAAGzepEmTNGnSJGuXAQB4xHANMwAAAAAABgjMAAAAAAAYIDADAAAAAGCAwAwAAAAAgAECMwAAAAAABgjMAAAAAAAYIDADAAAAAGCAwAwAAAAAgAEHaxcAAAAA5HVun599CHstIumKxfYWPdDTYvsCcBeBGQDwyHMa0NzaJWQo9sst1i4BAABkgFOyAQCwUW5ubtn6Y2nBwcFyc3PT9u3bs73tkSNHNGzYMNWqVUslS5aUt7e36tWrp759+2r+/PlKSUl54Lq2b98uNzc3BQcHP/A+AACQmGEGAMBmjRs3Lt2y+fPnKyYmxnBdXvHTTz+pZ8+eSkxMVPPmzRUYGKhChQrp+PHj2rFjhzZs2KDBgwfLwYFfUwAA1sVPIgAAbNTrr7+ebtmyZcsUExNjuC6vGDNmjJKSkrRmzRo1a9bMbF1KSooiIiKUL18+K1UHAMD/4ZRsAAD+AxISEjRnzhw1a9ZMZcqUkZeXl9q1a6eNGzemG3v9+nW99957atiwoTw9PVW2bFnVq1dPw4YN06lTpyRJAQEBmjZtmiSpQ4cOptO+a9WqlWkdly9f1vHjx/XYY4+lC8uSZGdnp5YtW8rOzi7duh07dqhnz56qWLGiSpYsqfr16+vdd9/VzZs3TWOCg4PVoUMHSdK0adNMdRUrVsxUOwAAWcUMMwAAj7jbt2+rW7duioyMVK1atdS3b18lJibqhx9+0LPPPqvp06dryJAhku7O8Hbr1k379u1To0aN1LJlS9nb2+v06dP67rvv1KtXL3l7e+vZZ5+VdDfE9u7dW97e3pIkV1fXTGtxcXGRg4ODLl68qLi4ODk6OmbpNSxevFivvfaaXF1d9fTTT6tEiRL69ddf9cEHH2j79u1av369ChQooKZNm+rUqVNavny5mjRpoqZNm5pe1/1qAwDgXgRmAAAecdOnT1dkZKSCgoI0YcIE0+ztjRs31LFjR02cOFEdOnRQ6dKldeTIEe3bt08BAQFaunSp2X5u376tO3fuSJL69OmjU6dOaceOHXr22Wf11FNPZamWggULql27dlq/fr1at26tAQMGqGHDhvLx8VGBAgUMt/nzzz81btw41ahRQ+vWrVOxYsVM62bNmqUpU6Zo4cKFeumll0x1LF++XE2bNjWdmp6cnKyEhITsNQ4A8J9HYAYASHoYzxi17PNFJZ4x+iCSk5O1ePFiVahQwSwsS5Kzs7PGjh2r3r17a/369aZZZkkqXLhwun0VLFhQBQsWzHFNH330ke7cuaPvv//edHOyAgUKqF69eurSpYsGDBhgdvzPP/9ciYmJmj59ullYlqRRo0Zp7ty5WrVqlV566aUc1wYAQFoEZgAAHmF///23oqOjVbp0aU2dOjXd+itXrpjGSVK1atVUo0YNrVy5UmfPnlVAQICaNm2q2rVry97eMrc+KVasmL7++mtFRUXpxx9/1C+//KJ9+/Zpz5492rNnj0JCQhQWFqaiRYtKkvbt2ydJioiI0NatW9PtL3/+/Kb6AQCwJJsKzOvXr9fixYt18OBB3bx5Ux4eHnriiSc0ZcoUeXl5mcbFxMRo6tSpWrdunS5duiQPDw917txZ48aNk5OTU7r9Jicn65NPPtGXX36pY8eOydHRUc2bN9ekSZNUvnx5w1rCw8M1c+ZMHTp0SHZ2dqpTp46CgoLk5+f3sF4+AADZdu3aNUnSH3/8oT/++CPDcXFxcZIkBwcHrV+/XsHBwVq/fr0mTpwoSSpevLgGDx6s1157zWJ3sK5UqZIqVapk+v7QoUMaOnSojhw5oqlTp5puKpb6Gj744AOLHBcAgKyyicCckpKiV155RV988YUqVKigbt26ycnJSefPn9eOHTt0+vRpU2COi4tTQECAfvvtN/n7++uZZ57RoUOH9PHHH2vHjh3auHGjChUqZLb/0aNHKyQkRI899piGDh2q8+fPa82aNYqIiNCPP/5o9sNcklasWKGhQ4eqePHi6t27tyQpNDRUnTt31hdffKFOnTrlTmMAALgPZ2dnSVLHjh0VEhKSpW2KFSumGTNmaPr06Tp69Ki2bdumRYsWKTg4WPnz59eYMWMeSq21a9fWtGnT1LFjR23fvj3dazh9+rTpawAAcoNNBOYFCxboiy++0AsvvKBp06al+2Q7MTHR9PVHH32k3377TaNHj9bkyZNNyydPnqzZs2dr3rx5Zj/ot23bppCQEPn6+mrNmjWmG450795d3bt3V1BQkFavXm0aHx0drbFjx8rd3V1bt26Vp+fd6+lGjx6tZs2aacyYMfL39+cHOgAgT6hWrZpcXFz066+/6s6dO8qfP3+Wt7Wzs1O1atVUrVo1tWvXTjVr1tR3331n+jma+vM4OTnZYvUanQn2+OOP6+DBg9q3b59atGhx332k1pWUlGSxugAA/015/jnMt27d0rRp01S+fHlNnTrV8DQwB4e7uT8lJUVLliyRk5OTgoKCzMYEBQXJyckp3afrqd+/8cYbZnfnbN26tZo2baqIiAidPn3atHzNmjW6fv26hgwZYgrLkuTp6anBgwfrypUr2rBhQ85fOAAAFuDg4KDnn39ep0+f1sSJE013uU7ryJEjunz5siTp5MmTOnnyZLoxqevT3vQr9RrjM2fOZLmeuLg4ffDBB6Zrp9NKTEzU//73P0lSo0aNTMsHDRokBwcHjR071uxncqro6GgdPHgwXV1nz1r6RnYAgP+aPD/DHBERoejoaPXp00dJSUnauHGjoqKi5OrqqubNm6tixYqmsVFRUTp//rxatmyZ7rmOjo6OatiwocLDw3XmzBnTKdyRkZFydHQ0+8GcqmXLloqMjNSOHTvUq1cv03hJ8vf3Nxw/depU0zMp7yc+Pj7rjXhEpT7ig0d95E3/xfco78m8LaP3ZHJyskVnOXPT/epOSUkx/Tc7rzHt2HHjxunAgQNauHChfvjhBzVu3FglSpTQ+fPndeTIER0+fFibNm2Su7u7Dh06pP79+6t+/fqqVq2aPDw8dP78eYWFhcne3l7Dhw837btJkyays7PTO++8oz/++EMuLi5ydXXV4MGDM6wrISFB7777rqZOnaonnnhCNWvWlLOzsy5duqSIiAidO3dO5cqVU1BQkOk41atX14wZM/Taa6/piSeeUKtWrVShQgXFxsbqxIkT2rlzp3r37q0PP/xQklS5cmWVLl1aq1evVoECBVSmTBlJ0sCBA+Xu7m6T75Xk5OQ88W8y/0bmbXnhPZLbeE9azn+pl/deopuZPB+YDxw4IOnu6VVNmjTRP//8Y1pnb2+vESNG6N1335V0NzBLMgvRaVWsWFHh4eGKioqSl5eX4uLidOHCBfn4+BjOXKfuJ3W/ab++97rmtMvSjs/MuXPnOF3s/7t48aK1S7CCItYu4L6MZnL+K3hP5k0ZvScLFCiQ6Q/4fxd+/7BKyrks/mJiNDNsJDVgp+2HnZ2dli5dqmXLlunbb7/V+vXrlZCQoOLFi6tq1aqaNm2aKleurISEBNWoUUMvvviidu7cqR9++EExMTEqUaKEmjVrphEjRqhBgwamfVesWFGzZ8/WggUL9Mknn+j27dvy8vLSgAEDMqyvYMGCWrp0qbZs2aI9e/ZozZo1unbtmgoXLqyKFSuqT58+Gjx4sFxcXMxeQ+/evVW9enUtXLhQu3fv1qZNm+Ts7CwvLy8NGTJEPXr0MBu/ePFivfPOO1q1apViY2MlSV26dJGLi0uW+pjXxMfHKyYmxtplmPBvZN7Ez21YwqPey3z58mWYF43k+cD877//SpLmzp2rOnXqKCIiQlWrVtWhQ4c0evRozZkzRxUqVNCgQYNMP0hcXV0N95X6QzJ1XOp/M/rhee/4+22Tet1yVn+gpX7i/V+WkJCgixcvysPDw+yU+P8Gyz6f9mEoW7astUvIdbwn87aM3pPXr19/ZP++UlJSTNcep32GckYOHTqU4bpBgwZp0KBBmW5fvnx5TZkyJcv19evXT/369cvyeElq166d2rVrl61tJKlhw4Zq2LBhlsY2atRIYWFhpu+z28e8plChQvLw8LB2Gfwbmcfxc/u/9p60LHppLM8H5tTTpgoUKKClS5eqdOnSkiRfX1998cUXatq0qebMmXPfXwDyouycCvCoK1CgAP3Ig/7Lfye8J/OmjP5Obty4YbFnBOc1qT8H7ezsHtnXmBtsvY/29vZ56t8k/o3Mm/7Lfye8Jy2HXprL84E5dSa3bt26prCcysfHR+XLl9exY8cUHR1tGnv9+nXDfd07O2w0g5zZ+Hu3KVasmNn4GzdupBsP4OFy+/xh3NSniCw5kxA90PP+gwAAALKB34FyR57/iLVKlSqSMj7NOnV5fHy86RriY8eOGY5NXZ46ztHRUaVKldLJkycNryW+d3zar42uU87s+mYAAAAAgG3J8zPMTz31lCTp6NGj6dbduXNHx44dk6Ojo4oXLy4PDw+VLl1ae/bsUVxcnNmdsuPi4rRnzx6VK1fOdIds6e4dPletWqXdu3erSZMmZvsPDw+XdPf077TjV65cqYiICD3xxBOG4+/dz6PEFj7Jkh6NT7MAALAEy//s5uc2gP+OPD/DXKFCBfn7++vYsWPpnqE8a9YsXb9+XQEBAXJwcJCdnZ369eun2NhYzZgxw2zsjBkzFBsbm+7Onanfv/fee2Z319y8ebMiIyPl7+8vb29v0/LUO2wuWrTI7PmOZ8+e1SeffCJ3d3cFBgZa7PUDAAAAAKwjz88wS9LMmTPVpk0bvfzyywoLC1OVKlV06NAhbdu2TWXLltU777xjGjtq1Cht3LhRs2fP1qFDh1SnTh0dPHhQERERql+/voYPH26272bNmql///4KCQmRn5+f2rRpowsXLig0NFRFixbV9OnTzca7ublpxowZGjp0qPz8/NSlSxdJUmhoqK5evarPP//cdLdsAAAAAIDtyvMzzNLdWeaffvpJzz77rA4cOKCFCxfq2LFjGjx4sCIiIswes+Do6KiwsDANHz5cR48e1Zw5c3T06FG9+OKLWrt2rQoXLpxu/7Nnz9bUqVMlSQsWLNDmzZsVGBioiIgIVa5cOd34nj17auXKlapSpYqWLVum5cuXq1q1agoNDVXnzp0fWh8AAAAAALnHJmaYJcnLy0vz5s3L0lhXV1cFBwcrODg4S+Pt7e01bNgwDRs2LMv1tGrVSq1atcryeADAw5WSkpInnq/7678J9x+UbfaSEi22t3rFeb6mLUlJSbF2CYBFcV09bIlNzDADAJCZQoUKKT4+3tplAA9FfHw8z0QFACshMAMAbJ6jo6NiY2N169YtZuPwyEhJSdGtW7cUGxtr9uQPAEDusZlTsgEAyIi9vb3c3d0VFxenf//916q1/HPutlWPnxVeKQWtXUKuS05ONs3U2tvbznxBoUKF5O7ublM1A8CjhMAMAHgk2Nvby9nZ2epPKhi84WE8r96youuUsHYJuS4+Pl4xMTHy8PDg9GYAQJbxcSUAAAAAAAYIzAAAAAAAGCAwAwAAAABggMAMAAAAAIABAjMAAAAAAAYIzAAAAAAAGCAwAwAAAABggMAMAAAAAIABAjMAAAAAAAYIzAAAAAAAGCAwAwAAAABggMAMAAAAAIABAjMAAAAAAAYIzAAAAAAAGCAwAwAAAABggMAMAAAAAIABAjMAAAAAAAYIzAAAAAAAGCAwAwAAAABgwMHaBQAAANzL7fOzD2GvRSRdsegeowd6WnR/AIC8hRlmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBgE4G5Vq1acnNzM/wTEBCQbvzt27c1bdo01a9fXx4eHqpevbpGjRqly5cvZ3iMb775Rv7+/ipTpozKlSunnj176sCBAxmO379/v7p37y5vb2+VKVNGrVq1UmhoqCVeLgAAAAAgD3CwdgFZ5eLiouHDh6db7u3tbfZ9cnKynn32WYWHh+uJJ55Qx44dFRUVpZCQEG3dulU//vijihcvbrbNBx98oHfffVdly5bVwIEDFRsbq9WrV6tt27Zau3atGjVqZDZ+27Zt6tatmwoVKqSuXbvKyclJ69at08CBA3XmzBm99NJLlm8AAAAAACBX2UxgdnV11euvv37fccuWLVN4eLieeeYZffLJJ7Kzs5MkffbZZxozZozeffddzZ492zQ+KipKU6dOVeXKlRUeHi5XV1dJ0qBBg9S6dWuNGjVKu3btkr393cn4xMREjRo1Svb29goLC1Pt2rUlSWPHjlXLli31zjvvqFOnTumCPAAAAADAttjEKdnZERISIkl68803TWFZkgYOHKjy5cvr22+/1a1bt0zLly5dqsTERL366qumsCxJtWvXVrdu3fTXX39p165dpuXbtm3T8ePH9cwzz5jCsnQ30I8ZM0YJCQlavnz5w3yJAAAAAIBcYDOBOSEhQUuXLtXMmTO1aNEi7du3L92Y+Ph47du3T1WqVEk3w2tnZ6cWLVooLi5Ov/76q2l5ZGSkJMnf3z/d/lq2bClJ2rFjxwOPBwAAAADYJps5JfvixYsaOXKk2bL69etr8eLFqlChgiTp+PHjSk5OVsWKFQ33kbo8KipKvr6+pq+dnJzk4eGRbnylSpVMY1Klfp26Li0PDw85OTnp2LFjWXpN8fHxWRqH7KO3lkEfLYM+Wg69tAz6aDn00jLoo2XQR8uhl5aRV/tYqFChLI+1icDcp08fNW7cWD4+PnJ0dNQ///yjuXPnasWKFerYsaN27twpZ2dnxcTESJLZqdVpubi4SJJpXOrXJUqUMBzv7OxsOD7tvoy2STs+M+fOnVNSUlKWxuYdRaxdQJacPn3a2iVkQd7vJX20DNvoo0QvLYU+Wkbe76NELy2FPlqGbfRRopeWQh8fRL58+TKcYDViE4F5/PjxZt/Xrl1bCxculCStWLFCX375pV588UVrlJYjZcqUsXYJD+CKtQvIkrJly1q7hCzI+72kj5ZhG32U6KWl0EfLyPt9lOilpdBHy7CNPkr00lLoY26wicCckYEDB2rFihXas2ePXnzxRdOs7/Xr1w3HG80Ou7i4ZDgjfOPGDcPxafdltI2bm1uW6s/OqQDIHnprGfTRMuij5dBLy6CPlkMvLYM+WgZ9tBx6aRmPQh9t5qZfRtzd3SVJN2/elCSVL19e9vb2GV5DnLo87fXHlSpVUmxsrC5evJhuvNH1ykbXNae6ePGiYmNjszXFDwAAAADIm2w6MKfeKTv1jtiFCxdWgwYN9Pfff+vUqVNmY1NSUvTTTz/J0dFR9erVMy1v0qSJJCkiIiLd/sPDw83GPMh4AAAAAIBtyvOB+ejRo6YZ5HuXT548WZL0zDPPmJYPGDBAkvT2228rJSXFtPzzzz/XiRMn1L17dxUuXNi0vE+fPnJwcNDMmTPNTuU+dOiQVq1apWrVqqlx48am5X5+fipfvrxWrlypQ4cOmZZfv35dH374oQoUKKBevXrl/IUDAAAAAKwqz1/DvGrVKs2bN0++vr4qW7asihQpon/++UebN2/WnTt3NGbMGLMZ3WeffVahoaFauXKlTp48qSZNmujYsWNav369ypUrp4kTJ5rtv3Llyho/frzeffddNW3aVB07dlRsbKxWr14tSfroo49kb/9/nys4ODjof//7n7p166aAgAB17dpVTk5OWrdunU6fPq133nlH5cqVy53mAAAAAAAemjwfmJ966ikdPXpUhw4d0q5du3Tz5k25u7urdevWeuGFF+Tv72823t7eXsuWLdOsWbO0YsUKzZs3T0WLFlW/fv00ceJEFS9ePN0xXnvtNXl7e2v+/Pn67LPPlD9/fjVu3FgTJkxQ3bp1041v1qyZvv/+ewUHBys0NFR37tyRj4+PpkyZoq5duz6sVgAAAAAAclGeD8xNmzZV06ZNs7VNwYIFNX78+HSPo8pMjx491KNHjyyPb9CggVauXJmtugAAAAAAtiPPX8MMAAAAAIA1EJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBgs4F59uzZcnNzk5ubm37++ed062NiYjRhwgTVrFlTJUuWVK1atTRp0iTFxsYa7i85OVkLFy6Ur6+vSpUqpUqVKmnQoEE6ceJEhjWEh4erffv28vLyUtmyZRUYGKitW7da6iUCAAAAAKzIJgPzkSNHFBwcLEdHR8P1cXFxCggI0Lx581S1alWNGDFCVapU0ccff6yOHTsqPj4+3TajR4/WuHHjlJKSoqFDh6ply5Zav369WrRooaioqHTjV6xYoW7duuno0aPq3bu3evXqpT///FOdO3fW2rVrLf6aAQAAAAC5K0eBuU6dOnr++eezNHbQoEGqW7duTg4nSbpz546GDx+uWrVqKSAgwHDMRx99pN9++02jR4/W6tWrNXnyZK1evVqjR4/W/v37NW/ePLPx27ZtU0hIiHx9fbV161ZNmTJFixYt0tKlS3Xt2jUFBQWZjY+OjtbYsWPl7u6urVu3asaMGZoxY4a2bt2qYsWKacyYMbpx40aOXysAAAAAwHpyFJhPnTql8+fPZ2nsxYsXderUqZwcTpL0wQcf6M8//9ScOXOUL1++dOtTUlK0ZMkSOTk5pQu6QUFBcnJyUkhIiNny1O/feOMNFShQwLS8devWatq0qSIiInT69GnT8jVr1uj69esaMmSIPD09Tcs9PT01ePBgXblyRRs2bMjxawUAAAAAWE+unZKdmJgoe/ucHe7AgQOaOXOmxo0bp+rVqxuOiYqK0vnz59WwYcN0p2w7OjqqYcOGOnHihM6cOWNaHhkZKUdHRzVq1Cjd/lq2bClJ2rFjh9l4SfL398/SeAAAAACA7XHIjYPcuXNHUVFRKlq06APv4/bt26ZTsUeNGpXhuNTrjStWrGi4vmLFigoPD1dUVJS8vLwUFxenCxcuyMfHx3DGOnU/aa9jTv26UqVK6canLjO67vleRtdSwzLorWXQR8ugj5ZDLy2DPloOvbQM+mgZ9NFy6KVl5NU+FipUKMtjsxWYd+zYYZpdTXXmzBlNmzYtw21u3bqlXbt26cqVK2rdunV2Dmfm/fffV1RUlLZs2WIYbFPFxMRIklxdXQ3Xu7i4mI1L/W/q8vuNv982zs7O6cZn5Ny5c0pKSrrvuLyliLULyJK0p9DnXXm/l/TRMmyjjxK9tBT6aBl5v48SvbQU+mgZttFHiV5aCn18EPny5ctwctVItgLz9u3bNW3aNNnZ2ZmWnT17NtPALN29rrhIkSJ69dVXs3M4k7179+rjjz/W+PHj5ePj80D7yIvKlClj7RIewBVrF5AlZcuWtXYJWZD3e0kfLcM2+ijRS0uhj5aR9/so0UtLoY+WYRt9lOilpdDH3JCtwFyrVi317t3b9P3y5ctVokQJ03W797Kzs1ORIkVUoUIFderUyewGWVmVmJio4cOHq0aNGnrllVfuOz511vf69euG6++dHTaaQc5s/L3bFCtWzGx86t2xM5qxTis7pwIge+itZdBHy6CPlkMvLYM+Wg69tAz6aBn00XLopWU8Cn3MVmAOCAgwe5TT8uXLVbFixXSPabKk2NhY0/XAJUqUMByTeqr3V199ZboZ2LFjxwzHpi5PvdbY0dFRpUqV0smTJ5WUlJTudO97x6d+/euvvyoqKipdYM7s+mYAAAAAgO3I0U2/Dh48+NA/NShYsKD69etnuG7nzp2KiopSu3btVLx4cXl7e6tSpUoqXbq09uzZo7i4OLM7ZcfFxWnPnj0qV66cvLy8TMubNGmiVatWaffu3WrSpInZMcLDwyVJvr6+ZuNXrlypiIgIPfHEE4bj790PAAAAAMC25Og5T97e3ipZsqSlajFUuHBhffzxx4Z/nnzySUnSmDFj9PHHH6t27dqys7NTv379FBsbqxkzZpjta8aMGYqNjdWAAQPMlqd+/9577ykhIcG0fPPmzYqMjJS/v7+8vb1Ny7t06SIXFxctWrRIZ8+eNS0/e/asPvnkE7m7uyswMNDivQAAAAAA5B6LPVbqxo0bOn78uGJjY5WSkpLhuNyYeR01apQ2btyo2bNn69ChQ6pTp44OHjyoiIgI1a9fX8OHDzcb36xZM/Xv318hISHy8/NTmzZtdOHCBYWGhqpo0aKaPn262Xg3NzfNmDFDQ4cOlZ+fn7p06SJJCg0N1dWrV/X555+b7pYNAAAAALBNOQ7MBw4c0MSJE7Vr165Mg7J09yZgV648/Lu5OTo6KiwsTFOnTtX69eu1fft2eXh46MUXX9S4ceNUuHDhdNvMnj1bPj4++vLLL7VgwQI5OjoqMDBQkyZNUoUKFdKN79mzp9zd3TVz5kwtW7ZMdnZ2qlOnjoKCgtS8efOH/hoBAAAAAA9XjgLzgQMHFBAQoFu3biklJUUFCxZU8eLFZW+fozO9s2z+/PmaP3++4TpXV1cFBwcrODg4S/uyt7fXsGHDNGzYsCwfv1WrVmrVqlWWxwMAAAAAbEeOAnNwcLBu3ryphg0batq0aapTp46l6gIAAAAAwKpyFJj37NmjQoUKafny5SpatKilagIAAAAAwOpydO50QkKCqlSpQlgGAAAAADxychSYK1SooJs3b1qqFgAAAAAA8owcBeZnn31Wx44d06FDhyxVDwAAAAAAeUKOAvPw4cPVokUL9e/fX3v27LFUTQAAAAAAWF2Obvr10ksvqXjx4tq+fbvatWunGjVqqHLlyipSpIjheDs7O82ZMycnhwQAAAAAIFfkKDAvW7ZMdnZ2SklJkSQdPnxYhw8fznA8gRkAAAAAYCtyFJjHjRtnqToAAAAAAMhTchSYx48fb6k6AAAAAADIU3J00y8AAAAAAB5VBGYAAAAAAAzk6JTsHTt2ZHubJk2a5OSQAAAAAADkihwF5sDAQNnZ2WV5vJ2dna5cuZKTQwIAAAAAkCtyFJi9vLwyDMw3b940heMCBQrIw8MjJ4cCAAAAACBX5Sgw//bbb5muj46O1qeffqpZs2apf//+eu2113JyOAAAAAAAck2OAvP9uLm56bXXXlPFihX1wgsvyMfHR+3bt3+YhwQAAAAAwCJy5S7ZXbt2VcmSJTV37tzcOBwAAAAAADmWa4+VKlOmzH1P4QYAAAAAIK/IlcCcnJysY8eOKSkpKTcOBwAAAABAjj30wHznzh1NmDBB169fl4+Pz8M+HAAAAAAAFpGjm36NHDkyw3UpKSm6fPmyDh06pMuXL8vOzi7T8QAAAAAA5CU5CszLli2TnZ2dUlJSMh3n6OioN998U507d87J4QAAAAAAyDU5Cszjxo3LcJ2dnZ2KFCmiSpUqqVmzZnJycsrJoQAAAAAAyFU5Cszjx4+3VB0AAAAAAOQpufZYKQAAAAAAbEmOZpjvlZiYqFOnTunGjRtydnaWt7e3HBwseggAAAAAAHKFRdLs/v37NWPGDG3dulXx8fGm5YUKFVKLFi302muvqV69epY4FAAAAAAAuSLHp2R/+eWXatu2rTZt2qRbt24pJSXF9OfWrVvauHGj2rRpo5CQEEvUCwAAAABArshRYD548KBeffVVJSYmqlGjRlq2bJkOHDigCxcu6MCBA1q2bJkaN26sxMREjRkzRgcPHrRU3QAAAAAAPFQ5Csxz5sxRUlKSXnzxRW3cuFHt2rVTuXLlVLBgQZUrV07t2rXTxo0b9dJLLykpKUlz5861VN0AAAAAADxUOQrMO3fulKurq958881Mx02aNEkuLi7asWNHTg4HAAAAAECuyVFgvnz5sipVqqT8+fNnOi5//vyqXLmy/v3335wcDgAAAACAXJOjwOzk5KSLFy9maezFixfl6OiYk8MBAAAAAJBrchSYa9eurXPnzmnjxo2ZjgsLC9PZs2dVu3btnBwOAAAAAIBck6PA3LdvX6WkpGjIkCGaM2eObt68abb+5s2b+vjjjzV06FDZ2dmpX79+OSoWAAAAAIDc4pCTjZ955hmtX79e69at05tvvqn3339f3t7eKlmypC5duqRTp04pPj5eKSkp6tSpk7p162apugEAAAAAeKhyNMMsSZ999pnGjRsnJycn3bp1S3/99Ze2b9+uv/76S7du3ZKTk5PGjx+vxYsXW6JeAAAAAAByRY5mmCUpX758Gj9+vF5++WXt2rVLf//9t2JjY+Xk5KSqVauqUaNGKlKkiCVqBQAAAAAg1+Q4MKcqUqSIWrZsqZYtW1pqlwAAAAAAWE22T8kOCAhQsWLFNHPmzCyNnzlzpooVK6YuXbpkuzgAAAAAAKwlW4F5586d2rlzp+rWratXX301S9u8+uqrqlu3rrZu3aq9e/c+UJEAAAAAAOS2bAXmVatWyc7OTq+88kq2DvLqq68qJSVF3377bba2k6T4+HhNmDBB7dq1U/Xq1eXh4aGqVauqbdu2+uqrr3Tnzp1028TExGjChAmqWbOmSpYsqVq1amnSpEmKjY01PEZycrIWLlwoX19flSpVSpUqVdKgQYN04sSJDOsKDw9X+/bt5eXlpbJlyyowMFBbt27N9usDAAAAAORN2QrMe/bsUaFChdS6detsHaRVq1YqVKiQ9uzZk63tJCkuLk6fffaZ7Ozs1KZNG40cOVKBgYE6d+6cXnzxRfXs2VPJyclm4wMCAjRv3jxVrVpVI0aMUJUqVfTxxx+rY8eOio+PT3eM0aNHa9y4cUpJSdHQoUPVsmVLrV+/Xi1atFBUVFS68StWrFC3bt109OhR9e7dW7169dKff/6pzp07a+3atdl+jQAAAACAvCdbN/06deqUvL29VahQoWwdpGDBgipXrpxOnjyZre0kqWjRojp16pQKFChgtjwxMVGdO3dWRESENm/erLZt20qSPvroI/32228aPXq0Jk+ebBo/efJkzZ49W/PmzdOYMWNMy7dt26aQkBD5+vpqzZo1puN0795d3bt3V1BQkFavXm0aHx0drbFjx8rd3V1bt26Vp6enpLuhu1mzZhozZoz8/f3l7Oyc7dcKAAAAAMg7sjXDnPpc5QeR+pzm7LK3t08XliXJwcFBgYGBkqRjx45JklJSUrRkyRI5OTkpKCjIbHxQUJCcnJwUEhJitjz1+zfeeMPsOK1bt1bTpk0VERGh06dPm5avWbNG169f15AhQ0xhWZI8PT01ePBgXblyRRs2bMj26wQAAAAA5C3ZCsxubm66cuXKAx3oypUrcnV1faBtjSQnJys8PFyS5OPjI0mKiorS+fPn1bBhQzk6OpqNd3R0VMOGDXXixAmdOXPGtDwyMlKOjo5q1KhRumOkPiJrx44dZuMlyd/fP0vjAQAAAAC2KVunZJcrV0779+/X5cuXVaJEiSxvd+nSJZ08eVL169fPdoGpEhISNHPmTKWkpOjatWvaunWrjh49qj59+sjPz0+STNcbV6xY0XAfFStWVHh4uKKiouTl5aW4uDhduHBBPj4+ypcvn+H4tPtN+3WlSpXSjU9dZnTdsxGj66lhGfTWMuijZdBHy6GXlkEfLYdeWgZ9tAz6aDn00jLyah+zc4lxtgLzU089pf3792vx4sUaP358lrdbvHixUlJS1KxZs+wczkxCQoKmTZtm+t7Ozk4vvfSS3nrrLdOymJgYScpwJtvFxcVsXOp/U5ffb/z9tkm9bjnt+MycO3dOSUlJWRqbdxSxdgFZkvY0+rwr7/eSPlqGbfRRopeWQh8tI+/3UaKXlkIfLcM2+ijRS0uhjw8iX758GU6wGslWYB4wYIDmzJmj2bNnq2nTpmratOl9t9m+fbtmz54tBwcH9e/fPzuHM+Pk5KTo6GglJyfr/Pnz+v777/X222/r559/1jfffJNh6M3LypQpY+0SHsCDnZKf28qWLWvtErIg7/eSPlqGbfRRopeWQh8tI+/3UaKXlkIfLcM2+ijRS0uhj7khW4G5fPnyGjZsmObMmaNu3bpp1KhRGjp0qNzd3dONvXLlihYsWKD//e9/unPnjoYPH67y5cvnuGB7e3t5enpq0KBBcnd313PPPaeZM2dqypQpptB8/fp1w23vnR02mkHObPy92xQrVsxs/I0bN9KNz0x27zaOrKO3lkEfLYM+Wg69tAz6aDn00jLoo2XQR8uhl5bxKPQxW4FZkqZMmaLjx48rLCxMH3zwgT788ENVr15d5cuXl6Ojo+Li4nTixAn9+eefSk5OVkpKitq3b6933nnH4sW3aNFC0v/diCv1GuLUu2bfK3V56jhHR0eVKlVKJ0+eVFJSUrrrmO8dn/r1r7/+qqioqHSBObPrmwEAAAAAtiVbd8mW7s7wfvXVV3r77bfl5uampKQk/f777woLC9O3336rsLAw/f7770pKSpKbm5umTJmipUuXyt4+24e6rwsXLkiS8ufPL+luUC1durT27NmjuLg4s7FxcXHas2ePypUrJy8vL9PyJk2aKC4uTrt37063/9S7cPv6+pqNl6SIiIgMx6eOAQAAAADYrgdOsS+99JIOHz6sL774QkOHDlWHDh3k5+enDh06aOjQofriiy/022+/6eWXX85RgX/++adu3ryZbvnNmzf1xhtvSLr7zGTp7o3A+vXrp9jYWM2YMcNs/IwZMxQbG6sBAwaYLU/9/r333lNCQoJp+ebNmxUZGSl/f395e3ublnfp0kUuLi5atGiRzp49a1p+9uxZffLJJ3J3dzc9HxoAAAAAYLuyfUp2WkWKFFGnTp3UqVMnS9WTTmhoqObNm6dGjRrJ29tbzs7OOnfunH788UddvXpVjRs31ogRI0zjR40apY0bN2r27Nk6dOiQ6tSpo4MHDyoiIkL169fX8OHDzfbfrFkz9e/fXyEhIfLz81ObNm104cIFhYaGqmjRopo+fbrZeDc3N82YMUNDhw6Vn5+funTpYqrz6tWr+vzzz013ywYAAAAA2K4cBebc8PTTT+vChQvau3ev9u7dq7i4OLm4uKhGjRrq1q2b+vbtKweH/3sZjo6OCgsL09SpU7V+/Xpt375dHh4eevHFFzVu3DgVLlw43TFmz54tHx8fffnll1qwYIEcHR0VGBioSZMmqUKFCunG9+zZU+7u7po5c6aWLVsmOzs71alTR0FBQWrevPnDbAcAAAAAIJfk+cBcr1491atXL1vbuLq6Kjg4WMHBwVkab29vr2HDhmnYsGFZPkarVq3UqlWrbNUFAAAAALAdlr8TFwAAAAAAjwACMwAAAAAABgjMAAAAAAAYIDADAAAAAGCAwAwAAAAAgAECMwAAAAAABgjMAAAAAAAYIDADAAAAAGCAwAwAAAAAgAECMwAAAAAABgjMAAAAAAAYIDADAAAAAGCAwAwAAAAAgAECMwAAAAAABgjMAAAAAAAYIDADAAAAAGCAwAwAAAAAgAECMwAAAAAABgjMAAAAAAAYIDADAAAAAGCAwAwAAAAAgAECMwAAAAAABgjMAAAAAAAYIDADAAAAAGCAwAwAAAAAgAECMwAAAAAABgjMAAAAAAAYIDADAAAAAGCAwAwAAAAAgAECMwAAAAAABgjMAAAAAAAYIDADAAAAAGCAwAwAAAAAgAECMwAAAAAABgjMAAAAAAAYIDADAAAAAGCAwAwAAAAAgAECMwAAAAAABgjMAAAAAAAYIDADAAAAAGCAwAwAAAAAgAECMwAAAAAABvJ8YD537pzmzZunLl26qGbNmipRooSqVq2qfv36ad++fYbbxMTEaMKECapZs6ZKliypWrVqadKkSYqNjTUcn5ycrIULF8rX11elSpVSpUqVNGjQIJ04cSLDusLDw9W+fXt5eXmpbNmyCgwM1NatWy3xkgEAAAAAeUCeD8yLFi3ShAkTdOLECbVo0UIvvviiGjVqpI0bN6pNmzZavXq12fi4uDgFBARo3rx5qlq1qkaMGKEqVaro448/VseOHRUfH5/uGKNHj9a4ceOUkpKioUOHqmXLllq/fr1atGihqKiodONXrFihbt266ejRo+rdu7d69eqlP//8U507d9batWsfWi8AAAAAALnHwdoF3E/9+vW1YcMGNW3a1Gz5zp071alTJ40ZM0YBAQEqWLCgJOmjjz7Sb7/9ptGjR2vy5Mmm8ZMnT9bs2bM1b948jRkzxrR827ZtCgkJka+vr9asWaMCBQpIkrp3767u3bsrKCjILJRHR0dr7Nixcnd319atW+Xp6Snpbuhu1qyZxowZI39/fzk7Oz+slgAAAAAAckGen2Hu2LFjurAsSb6+vnrqqacUHR2tI0eOSJJSUlK0ZMkSOTk5KSgoyGx8UFCQnJycFBISYrY89fs33njDFJYlqXXr1mratKkiIiJ0+vRp0/I1a9bo+vXrGjJkiCksS5Knp6cGDx6sK1euaMOGDTl/4QAAAAAAq8rzgTkz+fPnlyTly5dPkhQVFaXz58+rYcOGcnR0NBvr6Oiohg0b6sSJEzpz5oxpeWRkpBwdHdWoUaN0+2/ZsqUkaceOHWbjJcnf3z9L4wEAAAAAtinPn5KdkdOnT2vLli0qVaqUatSoIUmm640rVqxouE3FihUVHh6uqKgoeXl5KS4uThcuXJCPj48pdN87Pu1+035dqVKldONTlxld92zE6HpqWAa9tQz6aBn00XLopWXQR8uhl5ZBHy2DPloOvbSMvNrHQoUKZXmsTQbmO3fuaOjQobp9+7YmT55sCrsxMTGSJFdXV8PtXFxczMal/jd1+f3G32+b1OuW047PzLlz55SUlJSlsXlHEWsXkCVpT6PPu/J+L+mjZdhGHyV6aSn00TLyfh8lemkp9NEybKOPEr20FPr4IPLly5fhBKsRmwvMycnJGjFihHbu3KkBAwaoV69e1i7pgZUpU8baJTyAK9YuIEvKli1r7RKyIO/3kj5ahm30UaKXlkIfLSPv91Gil5ZCHy3DNvoo0UtLoY+5waYCc3JyskaOHKlvv/1WPXr00KxZs8zWp876Xr9+3XD7e2eHjWaQMxt/7zbFihUzG3/jxo104zOTnVMBkD301jLoo2XQR8uhl5ZBHy2HXloGfbQM+mg59NIyHoU+2sxNv1JnlpcvX65nnnlG8+fPl729efmp1xAfO3bMcB+py1PHOTo6qlSpUjp58qThqdH3jk/7tdF1ypld3wwAAAAAsC02EZhTw/LXX3+trl27auHChYY36apUqZJKly6tPXv2KC4uzmxdXFyc9uzZo3LlysnLy8u0vEmTJoqLi9Pu3bvT7S88PFzS3UdYpR0vSRERERmOTx0DAAAAALBdeT4wp56G/fXXX6tz585atGiRYViWJDs7O/Xr10+xsbGaMWOG2boZM2YoNjZWAwYMMFue+v17772nhIQE0/LNmzcrMjJS/v7+8vb2Ni3v0qWLXFxctGjRIp09e9a0/OzZs/rkk0/k7u6uwMDAHL9uAAAAAIB15flrmKdNm6bly5fLyclJlStXTheEJSkgIEC1a9eWJI0aNUobN27U7NmzdejQIdWpU0cHDx5URESE6tevr+HDh5tt26xZM/Xv318hISHy8/NTmzZtdOHCBYWGhqpo0aKaPn262Xg3NzfNmDFDQ4cOlZ+fn7p06SJJCg0N1dWrV/X555+b7pYNAAAAALBdeT4wnzp1SpIUGxurDz74wHCMt7e3KTA7OjoqLCxMU6dO1fr167V9+3Z5eHjoxRdf1Lhx41S4cOF028+ePVs+Pj768ssvtWDBAjk6OiowMFCTJk1ShQoV0o3v2bOn3N3dNXPmTC1btkx2dnaqU6eOgoKC1Lx5c8u9eAAAAACA1eT5wDx//nzNnz8/W9u4uroqODhYwcHBWRpvb2+vYcOGadiwYVk+RqtWrdSqVats1QUAAAAAsB15/hpmAAAAAACsgcAMAAAAAIABAjMAAAAAAAYIzAAAAAAAGCAwAwAAAABggMAMAAAAAIABAjMAAAAAAAYIzAAAAAAAGCAwAwAAAABggMAMAAAAAIABAjMAAAAAAAYIzAAAAAAAGCAwAwAAAABggMAMAAAAAIABAjMAAAAAAAYIzAAAAAAAGCAwAwAAAABggMAMAAAAAIABAjMAAAAAAAYIzAAAAAAAGCAwAwAAAABggMAMAAAAAIABAjMAAAAAAAYIzAAAAAAAGCAwAwAAAABggMAMAAAAAIABAjMAAAAAAAYIzAAAAAAAGCAwAwAAAABggMAMAAAAAIABAjMAAAAAAAYIzAAAAAAAGCAwAwAAAABggMAMAAAAAIABAjMAAAAAAAYIzAAAAAAAGCAwAwAAAABggMAMAAAAAIABAjMAAAAAAAYIzAAAAAAAGCAwAwAAAABgwMHaBQCPKqcBzTNdn5g7ZWTKoflSa5cAAAAA5FnMMAMAAAAAYMAmAvOKFSs0evRoNW/eXCVLlpSbm5uWLs14ZiwmJkYTJkxQzZo1VbJkSdWqVUuTJk1SbGys4fjk5GQtXLhQvr6+KlWqlCpVqqRBgwbpxIkTGR4jPDxc7du3l5eXl8qWLavAwEBt3bo1py8VAAAAAJBH2ERgfvfdd/XFF1/o9OnT8vDwyHRsXFycAgICNG/ePFWtWlUjRoxQlSpV9PHHH6tjx46Kj49Pt83o0aM1btw4paSkaOjQoWrZsqXWr1+vFi1aKCoqKt34FStWqFu3bjp69Kh69+6tXr166c8//1Tnzp21du1ai71uAAAAAID12ERg/vjjj3Xo0CFFRUXp+eefz3TsRx99pN9++02jR4/W6tWrNXnyZK1evVqjR4/W/v37NW/ePLPx27ZtU0hIiHx9fbV161ZNmTJFixYt0tKlS3Xt2jUFBQWZjY+OjtbYsWPl7u6urVu3asaMGZoxY4a2bt2qYsWKacyYMbpx44bFewAAAAAAyF02EZibN28ub2/v+45LSUnRkiVL5OTklC7oBgUFycnJSSEhIWbLU79/4403VKBAAdPy1q1bq2nTpoqIiNDp06dNy9esWaPr169ryJAh8vT0NC339PTU4MGDdeXKFW3YsOGBXicAAAAAIO94pO6SHRUVpfPnz6tly5ZydHQ0W+fo6KiGDRsqPDxcZ86ckZeXlyQpMjJSjo6OatSoUbr9tWzZUpGRkdqxY4d69eplGi9J/v7+huOnTp2qHTt2qHfv3vet1+j0cFhGXuitk7ULsIC80MfiQ5/OdL0t3G08L/TxUUEvLYM+Wg69tIy80Ed+3iAtemkZebWPhQoVyvLYRy4wS1LFihUN11esWFHh4eGKioqSl5eX4uLidOHCBfn4+ChfvnyG49PuN+3XlSpVSjc+dZnRdc9Gzp07p6SkpCyNzTuKWLuALEl7VoC1FLd2ARZAHy0jL/Sx3ruD7zvGFn4ZzAu9vL+8/+8kfbQcemkZeaGP/LzJTbwns+J+P7v5uf1g8uXLl2FeNPJIBeaYmBhJkqurq+F6FxcXs3Gp/01dfr/x99vG2dk53fjMlClTJkvj8pYr1i4gS8qWLWvtEh4J9NEy6KPl5IVePgqzUHmhj/fHzxvLyfu9tI0+5n2200fek/8Vj0IfH6nAbGuycypAbnEa0DzT9bbwi6CUN3tri+ijZdBHy6GXlkEfLYdeWgZ9tIy80Mf7/S4pWf/3SX6XzD2PQh8fqcCcOut7/fp1w/X3zg4bzSBnNv7ebYoVK2Y2PvXu2BnNWAMAAFjao/JhNwDkRTZxl+ysSr2G+NixY4brU5enjnN0dFSpUqV08uRJw2uJ7x2f9muj65Qzu74ZAAAAAGBbHrnAXLp0ae3Zs0dxcXFm6+Li4rRnzx6VK1fOdIdsSWrSpIni4uK0e/fudPsLDw+XJPn6+pqNl6SIiIgMx6eOAQAAAADYrkcqMNvZ2alfv36KjY3VjBkzzNbNmDFDsbGxGjBggNny1O/fe+89JSQkmJZv3rxZkZGR8vf3N3sGdJcuXeTi4qJFixbp7NmzpuVnz57VJ598Ind3dwUGBj6MlwcAAAAAyEU2cQ1zSEiIdu3aJUk6cuSIJGnJkiWmZyI3btxY/fv3lySNGjVKGzdu1OzZs3Xo0CHVqVNHBw8eVEREhOrXr6/hw4eb7btZs2bq37+/QkJC5OfnpzZt2ujChQsKDQ1V0aJFNX36dLPxbm5umjFjhoYOHSo/Pz916dJFkhQaGqqrV6/q888/N90tGwAAGOO6WwCALbCJwLxr1y4tX77cbNnu3bvNTqNODcyOjo4KCwvT1KlTtX79em3fvl0eHh568cUXNW7cOBUuXDjd/mfPni0fHx99+eWXWrBggRwdHRUYGKhJkyapQoUK6cb37NlT7u7umjlzppYtWyY7OzvVqVNHQUFBat68uWVfPAAAAADAKmwiMM+fP1/z58/P8nhXV1cFBwcrODg4S+Pt7e01bNgwDRs2LMvHaNWqlVq1apXl8QAAAAAA2/JIXcMMAAAAAIClEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYM6B/fv3q3v37vL29laZMmXUqlUrhYaGWrssAAAAAIAFOFi7AFu1bds2devWTYUKFVLXrl3l5OSkdevWaeDAgTpz5oxeeukla5cIAAAAAMgBAvMDSExM1KhRo2Rvb6+wsDDVrl1bkjR27Fi1bNlS77zzjjp16iRvb28rVwoAAAAAeFAE5gewbds2HT9+XH369DGFZUlydXXVmDFjNGLECC1fvlzjxo2zYpUPJsXZ1dol3Jd7Qdu4koBeWgZ9tAxb6KNELy2FPlqGLfRRopeWQh8tgz5aDr3MG+yio6NTrF2ErXn77bf14YcfavHixerWrZvZuosXL6patWpq1qyZ1q1bZ6UKAQAAAAA59eh/JPAQREVFSZIqVaqUbp2Hh4ecnJx07Nix3C4LAAAAAGBBBOYHEBMTI0lycXExXO/s7GwaAwAAAACwTQRmAAAAAAAMEJgfQOrMckazyDdu3Mhw9hkAAAAAYBsIzA8g9drl1GuZ07p48aJiY2NVsWLF3C4LAAAAAGBBBOYH0KRJE0lSREREunXh4eFmYwAAAAAAtonHSj2AxMREPf744zp//rw2b95sehbz9evX1bJlS506dUo///yzypUrZ+VKAQAAAAAPihnmB+Dg4KD//e9/Sk5OVkBAgEaNGqU33nhDTZs21T///KNJkyYRlu9j//796t69u7y9vVWmTBm1atVKoaGh1i7LpqxYsUKjR49W8+bNVbJkSbm5uWnp0qXWLsvmnDt3TvPmzVOXLl1Us2ZNlShRQlWrVlW/fv20b98+a5dnU+Lj4zVhwgS1a9dO1atXl4eHh6pWraq2bdvqq6++0p07d6xdos2aPXu23Nzc5Obmpp9//tna5diMWrVqmfp275+AgABrl2eT1q9fr86dO6tChQry8PBQ7dq1NWjQIJ05c8bapeV5S5cuzfD9mPqnY8eO1i7TJqSkpGjdunUKDAxUtWrVVLp0aT3++OMaPXq0Tpw4Ye3ybEpycrIWLVqkZs2aqXTp0ipbtqzatWunjRs3Wru0PMPB2gXYqmbNmun7779XcHCwQkNDdefOHfn4+GjKlCnq2rWrtcvL07Zt26Zu3bqpUKFC6tq1q5ycnLRu3ToNHDhQZ86c0UsvvWTtEm3Cu+++q9OnT8vd3V0eHh46ffq0tUuySYsWLdLs2bNVoUIFtWjRQsWLF1dUVJTCwsIUFhamTz/9lP+nsyguLk6fffaZ6tevrzZt2qh48eKKjo7W5s2b9eKLL2r16tVauXKl7O35rDY7jhw5ouDgYDk6OiouLs7a5dgcFxcXDR8+PN1yb29vK1Rju1JSUvTKK6/oiy++UIUKFdStWzc5OTnp/Pnz2rFjh06fPi0vLy9rl5mn1apVS+PGjTNct27dOv3xxx9q2bJlLldlmyZOnKi5c+eqVKlSCggIkLOzsw4fPqwvv/xSq1at0qZNm+Tj42PtMvO8lJQUPffcc1q3bp0qVKigvn37KiEhQRs3btSzzz6r6dOna8iQIdYu0+o4JRu5KjExUU888YTOnTuX4ens+/bt4xeZLNiyZYsqVqwob29vzZo1S1OmTNHcuXPVp08fa5dmU9atW6dixYqpadOmZst37typTp06ydHRUX/99ZcKFixopQptR3JyshITE1WgQAGz5YmJiercubMiIyO1YsUKtW3b1koV2p47d+6oVatWyp8/vypWrKhvvvlGmzdv1hNPPGHt0mxCrVq1JEm//fablSuxffPnz9frr7+uF154QdOmTVO+fPnM1icmJsrBgXmYB5GQkKDq1asrJiZGR44cUcmSJa1dUp528eJFPfbYY/L09FRkZKRcXV1N6+bOnas33nhDffr00dy5c61YpW1Yu3atBgwYoEaNGik0NFSFCxeWJF25ckXNmzfXpUuXtHfv3v/8mbN8zI9ctW3bNh0/flzPPPOMKSxLkqurq8aMGaOEhAQtX77cihXajubNm/PBggV07NgxXViWJF9fXz311FOKjo7WkSNHrFCZ7bG3t08XlqW7l7EEBgZKko4dO5bbZdm0Dz74QH/++afmzJmTLqAAueXWrVuaNm2aypcvr6lTpxq+FwnLDy4sLExXr15V27ZtCctZcOrUKSUnJ6tRo0ZmYVmSnn76aUnSv//+a43SbE5YWJgkacyYMaawLEnu7u4aMWKEbt++zeV+4pRs5LLIyEhJkr+/f7p1qach7dixI1drAjKSP39+SSKo5FBycrLpCQKcIpd1Bw4c0MyZMzVhwgRVr17d2uXYrISEBC1dulQXLlyQs7Oz6tevr8cff9zaZdmUiIgIRUdHq0+fPkpKStLGjRsVFRUlV1dXNW/enEdp5lBISIgkqX///lauxDZUqlRJBQoU0O7duxUTEyMXFxfTuu+//16S5OfnZ63ybMqlS5ckyXAGOXXZ9u3bc7WmvIjAjFyV+uzq1GdZp+Xh4SEnJydmoJAnnD59Wlu2bFGpUqVUo0YNa5djUxISEjRz5kylpKTo2rVr2rp1q44ePao+ffrwS0wW3b59W8OHD1etWrU0atQoa5dj0y5evKiRI0eaLatfv74WL16sChUqWKkq23LgwAFJdz88bNKkif755x/TOnt7e40YMULvvvuulaqzbadOndLWrVvl6empVq1aWbscm1CsWDG99dZbmjhxop588km1b9/edA3ztm3b9MILL3DdbRa5u7tLkk6ePKlq1aqZrTt58qQkmf3//l9FYEauiomJkSSzTwPTcnZ2No0BrOXOnTsaOnSobt++rcmTJzPDnE0JCQmaNm2a6Xs7Ozu99NJLeuutt6xYlW15//33FRUVpS1btvD+y4E+ffqocePG8vHxkaOjo/755x/NnTtXK1asUMeOHbVz5045Oztbu8w8L/X01rlz56pOnTqKiIhQ1apVdejQIY0ePVpz5sxRhQoVNGjQICtXanuWLl2q5ORk9e7dm//Xs2HkyJEqU6aMXn75ZX322Wem5Y0bN9YzzzzDJQJZ1KpVK61atUqzZs1Ss2bNVKhQIUnS1atXNX/+fEl37zP0X8c1zACQRnJyskaMGKGdO3dqwIAB6tWrl7VLsjlOTk6Kjo7W1atX9fvvv+uDDz5QSEiIAgMD+UAsC/bu3auPP/5Yr732Gqew59D48ePl5+enEiVKqEiRIqpdu7YWLlyonj176vTp0/ryyy+tXaJNSE5OliQVKFBAS5cuVf369eXk5CRfX1998cUXsre315w5c6xcpe1JTk7W0qVLZWdnp759+1q7HJsybdo0DRkyRGPGjNHvv/+uM2fO6LvvvlN8fLwCAwN5JFIWde/eXU899ZR27dolX19fBQUF6ZVXXlGjRo1MHybyZAsCM3JZ6sxyRr8037hxI8PZZ+BhS05O1siRI/Xtt9+qR48emjVrlrVLsmn29vby9PTUoEGD9NFHH2n37t2aOXOmtcvK0xITEzV8+HDVqFFDr7zyirXLeWQNHDhQkrRnzx4rV2IbUn8u161bV6VLlzZb5+Pjo/Lly+v48eOKjo62QnW2a8uWLTpz5oyaNWum8uXLW7scm7FlyxYFBwdr8ODBeuWVV+Tp6SknJyc1btxYX3/9tfLnz6+JEydau0yb4ODgoJUrV2r8+PGyt7fXl19+qfXr16t9+/ama+uLFy9u5Sqtj/MVkKtSr12OiopS3bp1zdZdvHhRsbGxql+/vhUqw39d6szy119/rWeeeUbz58/nU1ULatGihaT/u/EfjMXGxpru9VCiRAnDMa1bt5YkffXVV6a7jyN7Uq/bu3nzppUrsQ1VqlSRpHR3JE6Vujw+Pj7XanoUcLOvB7N582ZJ0lNPPZVunYeHh6pUqaJDhw4pNjZWTk5OuV2ezSlYsKDGjx+v8ePHmy1PvdlXvXr1rFFWnkJgRq5q0qSJPvzwQ0VERKhbt25m61LvotukSRNrlIb/sLRhuWvXrlq4cCHXklnYhQsXJP3fncdhrGDBgurXr5/hup07dyoqKkrt2rVT8eLFeaxcDuzbt0+S6GEWpQaTo0ePplt3584dHTt2TI6OjsxEZcPVq1e1ceNGFS1alA++sikhIUFSxo+OunLliuzt7fl5k0PffvutJKX7ff2/iMCMXOXn56fy5ctr5cqVGjp0qOlZzNevX9eHH36oAgUKcM0oclXqadhff/21OnfurEWLFhGWH9Cff/4pb29vFSlSxGz5zZs39cYbb0j6v9lRGCtcuLA+/vhjw3XDhw9XVFSUxowZoyeeeCKXK7M9R48elZeXV7r349GjRzV58mRJ0jPPPGOFymxPhQoV5O/vr4iICIWEhJjNiM6aNUvXr19Xjx49uNFSNnz99ddKSEjQwIEDVbBgQWuXY1MaNWqkTz75RPPmzVPHjh3Nznz47LPPdPbsWTVq1Ii+ZtG9j+aSpLVr1+qrr75S/fr11aFDBytVlnfwLxtylYODg/73v/+pW7duCggIUNeuXeXk5KR169bp9OnTeueddwyfBYf0QkJCtGvXLknSkSNHJElLliwxnfLauHFjTvPKgmnTpmn58uVycnJS5cqVNWPGjHRjAgICTB/uIGOhoaGaN2+eGjVqJG9vbzk7O+vcuXP68ccfdfXqVTVu3FgjRoywdpn4j1i1apXmzZsnX19flS1bVkWKFNE///yjzZs3686dOxozZgxnNGXDzJkz1aZNG7388ssKCwsznfa6bds2lS1bVu+88461S7QpX331lSROx34QnTt31uLFi7Vz5049/vjjateunVxdXXXw4EFt27ZNhQsX1nvvvWftMm1Gq1at5OnpqapVq6pQoUL65ZdfFBkZqfLly+uLL75gEkEEZlhBs2bN9P333ys4OFihoaG6c+eOfHx8NGXKFHXt2tXa5dmMXbt2afny5WbLdu/erd27d5u+5wfx/Z06dUrS3WtHP/jgA8Mx3t7eBOYsePrpp3XhwgXt3btXe/fuVVxcnFxcXFSjRg1169ZNffv2ZQYKueapp57S0aNHdejQIe3atUs3b96Uu7u7WrdurRdeeEH+/v7WLtGmVKhQQT/99JPef/99hYeHKyIiQh4eHho8eLDGjh2b4TX3SO+XX37RkSNH1KBBA9WoUcPa5dicfPnymT6gDQ0N1cqVK5WQkKCSJUuqR48eevXVV9M9UxgZ69Kli9avX699+/bpzp07KleunF577TW9/PLL3Ij3/7OLjo5OsXYRAAAAAADkNdwCFgAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAAAAAAMEJgBAAAAADBAYAYAAAAAwACBGQAAAAAAAwRmAAD+w4KDg+Xm5qbhw4dbuxQAAPIcB2sXAAAALOf48eMKCQnRtm3bdPLkSUVHR6tIkSIqW7asGjZsqG7duqlJkybWLhMAAJtAYAYA4BGQlJSkyZMna/78+UpMTJQklStXTt7e3oqNjVVUVJR+//13ffbZZ/L19dXGjRutXDEAAHkfgRkAABuXkpKiAQMGaMOGDSpQoICCgoL0wgsvyMPDwzTm5s2b2rx5s2bNmqWdO3dasVoAAGwHgRkAABs3Z84cbdiwQfnz59e3334rPz+/dGOKFCmiTp06qWPHjvrggw+sUCUAALaHwAwAgA2Li4vThx9+KEkaNWqUYVhOy87OTkFBQVna98GDB7VhwwZt27ZNp0+f1uXLl+Xk5KSaNWvq2WefVa9evWRnZ5duu9u3b+uTTz5RaGio/v77b928eVNubm4qWbKkfH191bdvX9WtW9dsm7Vr1yokJEQHDx5UdHS0HB0dVbx4cdWtW1edO3dWhw4dstYQAAAsiMAMAIAN27x5s65duyZ7e3sNHTrUovseNWqUDhw4IBcXF5UqVUoeHh66cOGCtm/fru3btys8PFyffvqp2TZJSUnq2rWrduzYIUny9vZW5cqVde3aNR07dkxHjhyRm5ubWWB+9913TbPexYsXV40aNXT79m2dO3dOq1at0tmzZwnMAACrIDADAGDDdu3aJUmqXr26SpQoYdF9jxw5UjVq1JCPj4/Z8v3792vw4MFauXKl2rVrp27dupnWfffdd9qxY4fKlCmjb775RjVr1jStS0xM1E8//WQ2K33lyhXNmjVLDg4O+vTTT9WpUyez9QcOHNChQ4cs+roAAMgqnsMMAIANO3funCSpfPnyFt939+7d04VlSapfv75mzpwpSVq+fLnZur///luS1KlTJ7OwLEkODg5q3bq1WrVqZVp27NgxJSUl6bHHHlPnzp3TneJdt25d9e/f3yKvBwCA7GKGGQAAG3bjxg1JkpOT00PZ/6lTp7R69WodPHhQV65cUUJCgqS71ylLSjf7W7ZsWUnSli1b9O+//6p48eKZ7j91fFRUlH799VfVq1fP0i8BAIAHRmAGAMCGOTs7S5JiY2Mtvu8FCxbozTffNIVkI1evXjX7PiAgQFWqVNEff/yhGjVq6KmnnlLjxo315JNP6sknn1TBggXNxpcqVUo9e/bUihUr5O/vrwYNGqhp06Z64okn1KRJE7m5uVn8dQEAkFUEZgAAbFiZMmUkSSdOnLDofvfu3avx48dLkgYPHqzevXurYsWKcnZ2Vr58+XTixAnVrVtXiYmJZtsVLlxY3333naZNm6bVq1frxx9/1I8//ihJcnFxUf/+/TVhwgQVKVLEtM2cOXNUo0YNffnll9q3b5/27dsn6e4p3O3atdO7776rcuXKWfT1AQCQFVzDDACADWvcuLEk6c8//9Tly5cttt/Ua5M7deqkGTNmqH79+nJzc1O+fPkkpZ9ZTqt48eKaMWOG/vnnH+3atUuzZ89Whw4ddPPmTc2ZM0cjR440G58/f369/PLL+uWXX/T777/rs88+08CBA+Xk5KT169erc+fOD2UGHQCA+yEwAwBgw1q1aqWiRYsqOTlZCxcutNh+T548KUny9fU1XP/zzz/fdx92dnZ67LHH9Nxzz2nJkiVaunSpJCk0NDTDwO3p6amuXbtq1qxZ2rlzp1xcXHT8+HGFh4c/4CsBAODBEZgBALBhTk5OGj16tCTpo48+0tatWzMdn5KSYnrmcWYKFy4sSbp48WK6dfHx8Vq0aFG2a23YsKHp69S7e2emTJky8vb2liSdP38+28cDACCnCMwAANi4l19+We3atdOdO3fUvXt3vf/+++mCbnx8vMLCwtSyZUu9++67991nkyZNJEmffvqp9u/fb1p++fJlDRgwQGfPnjXcbs6cOfroo4906tQps+U3b97U1KlTJd29lrlSpUqS7t5Ne/z48Tpw4IBSUlJM45OTk/XNN9/ojz/+kHT3UVYAAOQ2bvoFAICNs7Oz05IlSzRp0iQtWrRI06dP14wZM1SuXDm5u7srNjZWJ0+eVHx8vCSpWbNm993ngAED9OWXX+qvv/5Sy5YtValSJRUpUkR//PGH7O3tNWPGDL388svptjtz5owWLFigt956S6VKlVLp0qWVkJCgEydOKC4uTg4ODpo9e7ZpBjs2NlYLFizQggUL5OLionLlyilfvnw6c+aM/v33X0nSkCFD9OSTT1qwYwAAZA2BGQCAR4CDg4OCg4M1ePBghYSEaNu2/9feHaIoFEVxHP5P1SYvmY125a1AwfqywWR2DTbXo9lxD2ISLrgAk9GZZhguyMC0+b58uOG0Xzjcz5RScrvd0uv1MhqNMplM0nVdptPp2/f6/X4Oh0O22232+31KKRkMBlksFtlsNq/vrH5arVZpmian0ynX6zWXyyXP5zPD4TBt22a9Xmc8Hr/m27bNbrfL8XjM+XxOKSWPxyNN02Q2m2W5XGY+n//ZngDgNz7u9/vX+zEAAAD4X9wwAwAAQIVgBgAAgArBDAAAABWCGQAAACoEMwAAAFQIZgAAAKgQzAAAAFAhmAEAAKBCMAMAAECFYAYAAIAKwQwAAAAVghkAAAAqBDMAAABUfAOxsI/eSQsDogAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -122,11 +126,18 @@ "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - " \r" - ] + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/10 [00:00" ] @@ -217,7 +228,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7QAAAH7CAYAAAD8VtM+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOIElEQVR4nO3deVxVdf7H8fcFRWK9jgpiiuI2amBWOhruaym5pOa0aJlmjZSiZi6MNZkNhplGmWaNVm6Nts24p/PTFAUtSwNGLQNTTCM3RDFE5f7+8MGdSEDgXLj34Ov5ePgIz/meez73A4Fvvud8jyUzM9MmAAAAAABMxs3ZBQAAAAAAUBYEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAYBozZ86U1WqV1WotdH9YWJisVqtGjx7ttBoAABWnirMLAACYV3x8vPr27VuqYx566CEtWLCgnCoCAAA3E2ZoAQAAHCgiIkJWq1URERHOLgUAKj1maAEADjFy5EiNHDnyhuO4TBPlKTk5udzPMXXqVE2dOrXczwMAuDECLQDAIWrWrKkWLVo4uwwAAHAT4ZJjAAAAAIApEWgBAE73+5Vpv/32Wz3zzDO6/fbbVbt2bVmtVmVmZpZ6bL7vvvtOzz77rFq3bq1bb71VderU0V133aXx48frwIEDxdaWv5rtzJkzJV1bCGvEiBEKDQ1VQECAgoODC4zPyMjQjBkz1KVLFwUHB6tmzZpq3Lix2rVrp2HDhum9997TqVOnytSn39eybds2PfLII2revLkCAwMVGhqqsWPH6vDhwyV6vZ9//lkvv/yyunTpogYNGiggIEDNmzfX0KFDtX79+lLVcqO+lNTx48c1ceJE3X777QoMDFSzZs304IMP6osvvijR8SVZ5fjKlSt6++231a1bN9WrV0/BwcHq0qWL3nrrLeXm5urIkSP297d8+fLrji9qlePRo0fLarVq586dkqSdO3fax+X/CQsLK3EvAAA3xiXHAACX8v777+u5557T5cuXHTL2zTff1IsvvqirV68W2J6amqrU1FQtWbJE06ZN0/jx4294vr///e+aPXu2bDabfZunp6f94127dunPf/6zzp07V+C4U6dO6dSpUzp48KDWrFkjm82mESNG3PB8xZk1a5ZmzpxZoJZjx45pyZIl+uijj7Ro0SL16dOnyONXrFihiRMn6uLFiwW2nzhxQmvXrtXatWvVp08fvfvuu/L29i62lhv1paQSEhL04IMPKisry77t559/1saNG7Vx40ZNmTKl1K/5e1lZWRo0aJC++uqrAtv37dunffv26dNPP9XcuXMNnwcAUDEItAAAl7F3716tWrVKQUFBeuaZZ3TXXXfJZrPpyy+/lIeHR6nHvv/++3r++eclXZtRjIqKUvv27SVJiYmJev3113X27FlNnz5dvr6+euKJJ4qsbe3atfrvf/+r5s2ba/To0brtttt06dIlff3115Kk3NxcjRgxQufOnZOPj4+GDx+uzp07q1atWrpy5YrS09O1Z88erVu3znCfNm/erG+++UYNGzbUuHHjFBYWpgsXLmjDhg1699139euvv2r48OH6v//7v0JnBFesWKHIyEhJUt26dfXkk0+qWbNmCggI0IkTJ/Txxx/rk08+0fr16/X000/r/fffL3NfSio9Pd0eZt3c3PToo4/q/vvvl5+fn1JSUhQXF6dXXnlFd9xxR6le9/dGjhxpD7Nt2rTRX/7yFzVq1EinTp3SqlWrtGrVKk2YMKFMr/38889rzJgxevrpp7V3717dcccdeuuttwqM+f3XMQDAGAItAMAhTp06pf37999wXP369Yuc8Tt48KCaNWumDRs2qHr16vbtf/rTn0o99syZM/rrX/8q6dqCVZs2bVLDhg0LjOvfv7969eqlX375Rc8//7z69eungICAQmv773//qw4dOujjjz8uMPsYHh4u6VpAPn78uCTp3XffVe/evQsc37p1a91///16+eWXr5vBLa1vvvlGoaGhWr9+vfz8/OzbO3bsqG7dumnIkCHKzc3VxIkT9fnnnxc49qefftLEiRMlSYMHD9b8+fMLhKxWrVqpd+/eCg8P17PPPqt//etf2rZtmzp37lxoLTfqS0lNmzbNPjP75ptv6pFHHrHvu+OOOzRgwAD17t1be/fuLdXr/ta6deu0efNmSdI999yjFStWyN3d3b6/R48eCgsLs/8SpLTq1KmjOnXqyMvLS5Lk5eXFQmkAUM64hxYA4BCLFi1SeHj4Df988803xb7O7NmzCwTUso5dtmyZsrOzJUkvvvhigTCbr0GDBnrppZckSb/++quWLFlS5Lnc3Nw0b968Ii+l/eWXX+wf588CF8ZisTjk0UVvvPFGgTCbr0ePHnrooYckSbt379a3335bYP/bb7+tixcvqmbNmnrjjTeKnDEcOXKk7rzzTknXelmUG/WlJDIyMrR27VpJUpcuXQqE2Xy+vr6Ki4sr8zkk6b333pN0bZY0Li6uQJjNl38/NgDAHAi0AACXUbduXXXo0MEhY7du3SpJ8vb21uDBg4scN3DgQHswzD+mMG3btlWDBg2K3F+7dm37x4UtJORILVq0sIfNwgwdOtT+8e8XU8q/5Llnz572mcSi5M+yfvnll0WOuVFfSiI+Pt5+j3NhYTbfXXfdpebNm5fpHFeuXLEv1tS5c+cCn6/fslgs+vOf/1ymcwAAKh6XHAMAHGLy5MmaOnWqode47bbbHDY2f/Xi0NDQYmcPPTw81LJlS+3YsaPYS6ZDQ0OLPV+7du3UsGFDpaWlaerUqVq1apUiIiIUHh6uO++809AM5u8VF2ala5fourm5KS8vT//973/t28+dO6e0tDRJ0ocffqgPP/ywROf77ezz792oLyXx277f6L3deeedN1yZujCHDx/Wr7/+Kkk3nIE1ep8uAKDiEGgBAC7D39/fYWPPnj0r6dr9szcSGBgo6Vrgs9lsslgspT5f1apV9c9//lPDhw/X/v37tXfvXvv9ntWqVdOf/vQnPfDAA3rwwQcNLwxUq1atYvd7enrK19dX586d05kzZ+zby/q4oPwgWJjSfM6Kkv+5km78+SrqHucb+e2jnG50jpJ8zQAAXAOBFgDgMgq7p9Ho2MLC6e/99nEzRs7XtGlTxcfHa/PmzVq/fr0SExN16NAhXbp0SfHx8YqPj9cbb7yhVatWFXpPb0mV9T399tFFo0aN0uOPP17mGvKV5nNWlN/WeqP3VpLP1Y2UpH8AAHMg0AIAKqXq1avr559/1smTJ284Nv+SWn9/f8Nhx93dXffee6/uvfdeSdLJkye1detWvffee0pMTNQPP/ygxx9/XNu2bSvzOYq7BFiScnJydOHCBUnSH/7wB/v2GjVq2D/Ozs52mRV4f7uw18mTJwtd7Oq3+8vitwtx3eg1yjqTDQCoeCwKBQColPIXD0pJSdGlS5eKHJebm6ukpCRJKpeAV6tWLQ0ZMkTr169X9+7dJUnffvut/V7WsrjRStH79u1TXl6epILvqUaNGqpbt64kadu2bfYxzvbbGm/03sr62J6QkBD7fcy/X/nZUefIxwwwAFQcAi0AoFLq2rWrpGszkZ9++mmR4/71r3/Zn3+af0x5sFgs6tSpk/3vp0+fLvNr7d+/X/v27Sty/28fs9OlS5cC+/Kfj/vTTz/pn//8Z5lrcKSOHTvaL10ubqGqvXv3luhZx4WpUqWKfdXmbdu26eeffy50nM1m08qVK8t0jnz5wTk3N9fQ6wAAboxACwColB555BF5e3tLuvYc2iNHjlw35siRI3r++eclSbfccoseffTRMp8vISFBqampRe7Py8uzX2ZssVgUHBxc5nNJ0tixY+2XFf/Wli1btGLFCklSmzZt1KpVq+uOu+WWWyRJU6ZMUWJiYrHnSUxM1I4dOwzVeiO1a9dWnz59JF2rv7CgfeHCBUVFRRk6z/DhwyVdC5pRUVEF7inON2/evBvO4N5I/iJjP/74o0Pu+QUAFI17aAEADnHq1KkSzZ55eHiocePG5V5PjRo19Pe//13jxo1TRkaGunbtqnHjxunuu++WJO3atUtz5861rwI8Y8aMMq+gK12b9Xv11VfVrl079erVS6GhoapZs6Zyc3P1448/aunSpYqPj5ck3XffffbQUxZ33HGH9u7dq86dOysqKkphYWHKzs7Whg0b9M477ygvL08eHh6aPXv2dcfWq1dPb7zxhp588kllZWWpb9++GjRokPr06aP69esrLy9PP//8s/bt26e1a9dq//79mjVrVomfD1xWL7/8sr744gudP39ekZGR+vLLL9W/f3/5+/srJSVFcXFxOnTokP29l0W/fv3UrVs3bdmyRZ9//rnuvfdeRUZGKiQkRKdPn9bKlSu1atUq3XXXXfr6668lle3y4bZt22r58uU6efKkoqOj9ec//9l+X3CVKlUM/zIDAPA/BFoAgEMsWrRIixYtuuG4evXqKTk5uQIqujYjl5WVpenTp+vMmTN64YUXrhvj7u6uadOm6YknnjB8vry8PCUkJCghIaHIMe3bt9ebb75p6Dy9evXSPffco1deeUVjx469br+np6f+8Y9/FPm81QceeECenp4aM2aMMjMztXLlymIvs/X19TVUb0nUr19fK1as0MMPP6zz589r8eLFWrx4cYExkyZNksViMXSP6+LFizVo0CB9/fXX+uqrr65b6blly5Z67bXX7Jdql+X5wQMHDtScOXP0448/asGCBVqwYIF9X0V+/QPAzYBACwCo1MaOHat77rlHCxcu1Pbt23X8+HFJUlBQkDp16qQnn3zSvoCUEVFRUWrdurW++OILffXVVzpx4oROnjwpm82mWrVqqVWrVho0aJAGDBjgkEWDpkyZorZt22rhwoXau3evzp49q4CAAPtMdKNGjYo9vm/fvurcubM++OAD/ec//9HBgwd15swZValSRTVq1FCzZs3Uvn179e3bt0Jm1KVr99ImJiZq7ty52rRpkzIyMmS1WnXHHXfoySefVPfu3TVz5kxD57Bardq4caP+8Y9/aOXKlfrhhx9ksVjUoEEDDRw4UKNHj9b3339vH1/cistF8fHx0aZNmzRnzhxt3bpV6enpunjxoqG6AQCFs2RmZnJzBwAAJpD/6JnJkydr6tSpzi2mElu5cqWeeuopSddWXTbyzGAAQPliUSgAAIDf+OSTTyRduw87JCTEydUAAIpDoAUAADeNEydOFHv575IlS7Rp0yZJ0p///GeeKQsALo57aAEAwE1j+/btio6O1sCBA9WhQwf7ys6HDx/WZ599prVr10qSatasqQkTJji5WgDAjRBoAQDATeX06dN699139e677xa6PzAwUCtXrlTNmjUruDIAQGkRaAEAwE2jZ8+emjt3rv7zn//ou+++06lTp3ThwgX5+/uradOmuvfeezVixIgKeVQRAMA4VjkGAAAAAJgSi0IBAAAAAEyJQAsAAAAAMCUCLQAAAADAlAi0KLGcnBylpaUpJyfH2aWYFj00hv4ZRw+No4fG0UNj6J9x9NA4emgM/XMcAi1K5erVq84uwfTooTH0zzh6aBw9NI4eGkP/jKOHxtFDY+ifYxBoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmZKpAu2bNGg0YMEAhISGqXbu2WrZsqZEjR+rYsWMFxmVlZSk6OlqhoaEKCAhQaGiooqOjlZWV5aTKAQAAAACOVsXZBZSEzWbT+PHj9f777yskJESDBg2Sj4+PTpw4oZ07dyo9PV1169aVJGVnZysiIkLJycnq2rWrBg8erJSUFM2fP1/x8fHauHGjvL29nfyOAAAAAABGmSLQLly4UO+//75GjRqlV155Re7u7gX2X7lyxf5xXFyckpOTFRUVpenTp9u3x8TEaNasWYqLi1N0dHSF1Q4AAAAAKB8uf8nxr7/+qtjYWDVo0EAzZ868LsxKUpUq13K5zWbT0qVL5ePjo0mTJhUYM2HCBFmtVi1btkw2m61CagcAAAAAlB+XD7Rbt27V2bNnFRERoatXr2r16tWaO3euFi9erLS0tAJjU1NTdeLECbVt2/a6y4o9PT0VHh6u48ePX3ccAAAAAMB8XP6S471790q6NgvboUMHHTp0yL7Pzc1NkZGRevnllyVdC7SS1LBhw0Jfq1GjRvZx+R8XJScnx3DtlU1ubm6B/6L06KEx9M84emgcPTSOHhpD/4yjh8bRQ2PoX9E8PT1LNd7lA+2pU6ckSfPmzdPtt9+uLVu2qGnTpkpKStK4ceM0b948hYSEaOTIkfZVjP39/Qt9LV9fX0kq0WrHx48f19WrVx30LiqXjIwMZ5dgevTQGPpnHD00jh4aRw+NoX/G0UPjzNzDNju8nFyBl6TzTq3gqw4XnXr+33N3dy9ycrIoLh9o8/LyJEkeHh5avny5goKCJEnh4eH64IMP1L59e82bN08jR4506Hnr1Knj0NerDHJzc5WRkaHAwEB5eHg4uxxToofG0D/j6KFx9NA4emgM/TOOHhpXOXp42tkFOF29evWcXYJhLh9o/fz8JEmtWrWyh9l8zZs3V4MGDZSWlqbMzEz72HPnzhX6WufPny/wmsUp7VT3zcTDw4P+GEQPjaF/xtFD4+ihcfTQGPpnHD00jh6aW2X43Ln8olBNmjSRVPRlxPnbc3Jy7PfFFrXoU/49tje6fxYAAAAA4Ppcfoa2Y8eOkqTvv//+un2XL19WWlqavL29VbNmTQUGBiooKEi7d+9WdnZ2gZWOc3JylJCQoKCgoFJflw0AAAAAcD0uP0MbEhKibt26KS0tTUuWLCmwb+7cuTp37pwiIiJUpUoVWSwWDRs2TBcuXNCsWbMKjJ0zZ44yMzM1bNgwWSyWinwLAAAAAIBy4PIztJL02muvqVevXho7dqzWrVunJk2aKCkpSdu3b1e9evU0Y8YM+9ioqCht2LBBcXFxSkpKUqtWrZSSkqLNmzcrLCxMUVFRTnwnAAAAAABHcfkZWunaLO3WrVv18MMPa9++fVq4cKHS0tI0atQobdmyRYGBgfax3t7eWrt2rSIjI3Xo0CHNmzdPBw4cUGRkpNauXVvgMmQAAAAAgHmZYoZWkurWrav58+eXaKy/v79iYmIUExNTzlUBAAAAAJzFFDO0AAAAAAD8HoEWAAAAAGBKBFoAAAAAgCkRaAEAAAAApkSgBQAAAACYEoEWAAAAAGBKBFoAAAAAgCkRaAEAAAAApkSgBQAAAACYEoEWAAAAAGBKBFoAAAAAgCkRaAEAAAAApkSgBQAAAACYEoEWAAAAAGBKBFoAAAAAgCkRaAEAAAAApkSgBQAAAACYEoEWAAAAAGBKBFoAAAAAgCkRaAEAAAAApkSgBQAAAACYEoEWAAAAAGBKBFoAAAAAgCkRaAEAAAAApkSgBQAAAACYEoEWAAAAAGBKBFoAAAAAgCkRaAEAAAAApkSgBQAAAACYEoEWAAAAAGBKBFoAAAAAgCkRaAEAAAAApkSgBQAAAACYEoEWAAAAAGBKBFoAAAAAgCkRaAEAAAAApkSgBQAAAACYEoEWAAAAAGBKBFoAAAAAgCkRaAEAAAAApkSgBQAAAACYEoEWAAAAAGBKBFoAAAAAgCkRaAEAAAAApkSgBQAAAACYEoEWAAAAAGBKBFoAAAAAgCkRaAEAAAAApkSgBQAAAACYkikCbVhYmKxWa6F/xo8ff934rKwsRUdHKzQ0VAEBAQoNDVV0dLSysrKcUD0AAAAAoDxUcXYBJeXn56fRo0dft/2OO+4o8Pfs7GxFREQoOTlZXbt21eDBg5WSkqL58+crPj5eGzdulLe3d0WVDQAAAAAoJ6YJtP7+/po6deoNx8XFxSk5OVlRUVGaPn26fXtMTIxmzZqluLg4RUdHl2epAAAAAIAKYIpLjkvKZrNp6dKl8vHx0aRJkwrsmzBhgqxWq5YtWyabzeakCgEAAAAAjmKaGdrc3FytWLFCJ06ckNVq1Z/+9CeFhYUVGJOamqoTJ06oe/fu111W7OnpqfDwcK1fv15paWlq1KhRRZYPAAAAAHAw0wTajIwMRUZGFtjWo0cPLVy4UDVq1JB0LdBKUsOGDQt9jfwQm5qaesNAm5OTY7TkSic3N7fAf1F69NAY+mccPTSOHhpHD42hf8bRQ+PoYeXgipnH09OzVONNEWiHDh2q9u3bq3nz5vLw8NB3332n2NhYbd68WQ899JA+//xzWSwW+yrG/v7+hb6Or6+vJJVotePjx4/r6tWrjnsTlUhGRoazSzA9emgM/TOOHhpHD42jh8bQP+PooXHm7qGXswtwuvT0dGeXUIC7u3uRk5NFMUWgnTx5coG/t27dWitXrlRERIQSExO1adMm3XPPPQ49Z506dRz6epVBbm6uMjIyFBgYKA8PD2eXY0r00Bj6Zxw9NI4eGkcPjaF/xtFD4ypHD087uwCnq1evnrNLMMwUgbYwbm5uevjhh5WYmKjdu3frnnvukZ+fnyTp3LlzhR5z/vx5SbKPK05pp7pvJh4eHvTHIHpoDP0zjh4aRw+No4fG0D/j6KFx9NDcKsPnztSrHOffO3vx4kVJ/7tHNi0trdDx+ffYsiAUAAAAAJifqQPt119/LUkKDg6WdC2oBgUFaffu3crOzi4wNicnRwkJCQoKCir1ddkAAAAAANfj8oH24MGDyszMvG57YmKi3nrrLVWrVk19+/aVJFksFg0bNkwXLlzQrFmzCoyfM2eOMjMzNWzYMFksloooHQAAAABQjlz+HtrPPvtMb7zxhjp16qTg4GBVq1ZNBw4c0JYtW+Tm5qa5c+cWuJk5KipKGzZsUFxcnJKSktSqVSulpKRo8+bNCgsLU1RUlBPfDQAAAADAUVw+0Hbs2FHff/+9vv32WyUkJCgnJ0cBAQEaOHCgIiMjdddddxUY7+3trbVr1yo2NlarV6/Wjh07FBgYqMjISE2ePFne3t5OeicAAAAAAEdy+UDboUMHdejQoVTH+Pv7KyYmRjExMeVUFQAAAADA2Vz+HloAAAAAAApDoAUAAAAAmBKBFgAAAABgSgRaAAAAAIApEWgBAAAAAKZEoAUAAAAAmBKBFgAAAABgSgRaAAAAAIApEWgBAAAAAKZEoAUAAAAAmBKBFgAAAABgSgRaAAAAAIApEWgBAAAAAKZEoAUAAAAAmBKBFgAAAABgSgRaAAAAAIApEWgBAAAAAKZEoAUAAAAAmBKBFgAAAABgSgRaAAAAAIApEWgBAAAAAKZEoAUAAAAAmBKBFgAAAABgSlWcXQAAAACA0rG+95OzS5DkJem0086e+fitTjs3XAcztAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMicf2AAAAoMI5/7EzPHIGqAyYoQUAAAAAmBKBFgAAAABgSgRaAAAAAIApEWgBAAAAAKZEoAUAAAAAmBKBFgAAAABgSgRaAAAAAIApEWgBAAAAAKZEoAUAAAAAmBKBFgAAAABgSgRaAAAAAIApEWgBAAAAAKZUxdkFADAX63s/ObkCL0mnnVpB5uO3OvX8AAAAuIYZWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmZMpAGxcXJ6vVKqvVqq+++qrQMVlZWYqOjlZoaKgCAgIUGhqq6OhoZWVlVXC1AAAAAIDyYLpA+9133ykmJkbe3t5FjsnOzlZERITmz5+vJk2aKDIyUs2aNdP8+fMVERGh7OzsCqwYAAAAAFAeTBVor169qtGjRys0NFQRERFFjouLi1NycrKioqL02Wef6cUXX9THH3+sSZMmKTk5WXFxcRVYNQAAAACgPJgq0L7++utKSUnRvHnz5O7uXugYm82mpUuXysfHR5MmTSqwb8KECbJarVq2bJlsNltFlAwAAAAAKCdVnF1ASe3fv1+xsbGaOHGimjdvXuS41NRUnThxQt27d7/usmRPT0+Fh4dr/fr1SktLU6NGjYp8nZycHIfVXlnk5uYW+C9Kjx5WDmb+/sDXoHH00Dh6aAz9qxzM/LPEVdBD41yxh56enqUab4pAe+XKFUVGRqpp06YaP358sWNTU1MlSQ0bNix0f36ITU1NLTbQHj9+XFevXi1jxZVbRkaGs0swPXP30MvZBThdenq6s0swzNxfg66BHhpHD40xf/9u7p8nxn+W3Nz9k+ihI7jav2nc3d2LzHFFMUWgfe2115SSkqL//Oc/qlq1arFj81cx9vf3L3S/r69vgXFFqVOnThkqrdxyc3OVkZGhwMBAeXh4OLscU6ocPTzt7AKcrl69es4uocwqx9egc9FD4+ihMZWnfzf3zxPjP0tu7v5J9NARzPxvmnwuH2iTk5M1e/ZsjRkzRq1ataqw85Z2qvtm4uHhQX8MoofmVhk+d3wNGkcPjaOHxtA/c+NzZxw9NK4y9NDlF4UaPXq0QkJCNGXKlBKN9/PzkySdO3eu0P3nz58vMA4AAAAAYE4uP0ObkpIiSQoMDCx0f8+ePSVJy5Yt03333We/LzYtLa3Q8fn32BZ3/ywAAAAAwPW5fKAdNmxYodsTEhKUmpqq3r17q2bNmgoODpZ0LagGBQVp9+7dys7OLrDScU5OjhISEhQUFFTqm40BAAAAAK7F5QPtm2++Wej20aNHKzU1VRMmTFCbNm3s2y0Wi4YNG6ZZs2Zp1qxZmj59un3fnDlzlJmZqSeffFIWi6XcawcAAAAAlB+XD7RlERUVpQ0bNiguLk5JSUlq1aqVUlJStHnzZoWFhSkqKsrZJQIAAAAADHL5RaHKwtvbW2vXrlVkZKQOHTqkefPm6cCBA4qMjNTatWsLXIYMAAAAADAn087QLliwQAsWLChyv7+/v2JiYhQTE1OBVQEAAAAAKkqlnKEFAAAAAFR+BFoAAAAAgCkRaAEAAAAApmTae2gBwKys7/3k5Aq8JJ122tkzH7/VaecGAACVCzO0AAAAAABTItACAAAAAEyJQAsAAAAAMCUCLQAAAADAlAi0AAAAAABTItACAAAAAEyJQAsAAAAAMCUCLQAAAADAlAi0AAAAAABTItACAAAAAEyJQAsAAAAAMCVDgfb222/XiBEjSjR25MiRatWqlZHTAQAAAABgV8XIwUePHlWdOnVKNDYjI0NHjx41cjoAACRJ1vd+cnIFXpJOO+3smY/fauh45/dPMnsPAQCuocIuOb5y5Yrc3LjCGQAAAADgGBWSMK9cuaK0tDRVr169Ik4HAAAAALgJlOqS4507d2rHjh0Fth07dkyxsbFFHpOTk6Ndu3bp1KlT6tmzZ9mqBAAAAADgd0oVaOPj4xUbGyuLxWLf9tNPPxUbaCXJZrPJy8tLzz77bNmqBAAAAADgd0oVaMPCwvTQQw/Z//7hhx+qVq1a6t69e6HjLRaLvLy8FBISov79++vWW1mAAQAAAADgGKUKtBEREYqIiLD//cMPP1TDhg01f/58hxcGAAAAAEBxDD2259tvv5Wnp6ejagEAAAAAoMQMBdrg4GBH1QEAAAAAQKkYCrS/df78eR0+fFjZ2dnKy8srclz79u0ddUoAAAAAwE3McKDdt2+fpk2bpsTERNlstmLHWiwWnT592ugpAQAAAAAwFmj37duniIgI/frrr7LZbKpWrZpq1qwpNzc3R9UHAAAAAEChDAXamTNn6uLFi2rTpo1mzZqlVq1aOagsAAAAAACKZyjQ7t69W56envrnP/+pP/zhD46qCQAAAACAGzJ0bfClS5fUpEkTwiwAAAAAoMIZCrQNGzbUxYsXHVULAAAAAAAlZijQPvzww0pLS1NSUpKj6gEAAAAAoEQMBdrRo0era9euevTRR7V7925H1QQAAAAAwA0ZWhRqzJgxqlmzpuLj49W7d2/ddtttaty4sby8vAodb7FYNG/ePCOnBAAAAABAksFAu2LFClksFtlsNklSSkqKUlJSihxPoAUAAAAAOIqhQDt58mRH1QEAAAAAQKkYCrRTpkxxVB0AAAAAAJSKoUWhAAAAAABwFgItAAAAAMCUDF1yvHPnzlIf0759eyOnBAAAAABAksFAe99998lisZR4vMVi0enTp42cEgAAAAAASQYDbd26dYsMtBcvXrSHVw8PDwUGBho5FQAAAAAABRgKtMnJycXuz8zM1D/+8Q/NnTtXjz76qCZOnGjkdAAAAAAA2BkKtDditVo1ceJENWzYUE888YRatGihPn36lOcpAQAAAAA3iQpZ5XjgwIEKCAjQvHnzKuJ0AAAAAICbQIU9tqdOnTpKSUmpqNMBAAAAACq5Cgm0eXl5SktL09WrVyvidAAAAACAm0C5B9rLly8rOjpa586dU4sWLcr7dAAAAACAm4ShRaGefvrpIvfZbDadPHlSSUlJOnnypCwWiyIjI0t9jszMTMXExGjv3r06cuSIMjMzVaNGDTVu3FhPPPGE+vXrd92jg7KysvTKK69o9erV+uWXXxQQEKB+/fppypQp8vPzK3UNAAAAAADXYyjQrlixQhaLRTabrdhx3t7eeuGFF3T//feX+hxnzpzR8uXL1bp1a0VERKh69eo6efKkNm7cqMcee0yPPfaY4uLi7OOzs7MVERGh5ORkde3aVYMHD1ZKSormz5+v+Ph4bdy4Ud7e3qWuAwAAAADgWgwF2smTJxe5z2KxyMvLS40aNVKnTp3k4+NTpnPUr19fR44cUZUqBUs9f/68evbsqQ8++EB/+ctf1Lx5c0lSXFyckpOTFRUVpenTp9vHx8TEaNasWYqLi1N0dHSZagEAAAAAuA5DgXbKlCmOqqNI7u7uhW739fVVt27ddPDgQaWlpal58+ay2WxaunSpfHx8NGnSpALjJ0yYoHfeeUfLli3T1KlTr7tMGQAAAABgLhX22B5Hy8nJ0fbt22WxWNSsWTNJUmpqqk6cOKG2bdted1mxp6enwsPDdfz4caWlpTmjZAAAAACAAxmaof29vLw8paen68KFC/Lx8VG9evXk5uaYzJyZmakFCxYoLy9Pp06d0ubNm3Xs2DFNnjxZjRo1knQt0EpSw4YNC32N347L/7goOTk5Dqm7MsnNzS3wX5QePawc+P5gDP0zjh4aZ+Ye8rOkcjDz16CroIfGuWIPPT09SzXeIYF23759eu2117R161ZdvHjRvt3Ly0vdu3fX+PHj1apVK0PnOHfunGJjY+1/r1q1qmbMmKFnnnnGvi0rK0uS5O/vX+hr+Pr6FhhXnOPHj/Pc3CJkZGQ4uwTTM3cPvZxdgNOlp6cbfIWbu4fG+yfRQ74GjXLM16FzmftniXSzfx3y/7Fx9NA4V/te6O7uXuTkZFEMB9qlS5fq2Wef1ZUrV65b7Tg7O1urV6/Whg0bNGfOHA0dOrTM56lfv74yMzN19epVHTt2TJ9++qlmzJih3bt36/33379u0Sij6tSp49DXqwxyc3OVkZGhwMBAeXh4OLscU6ocPTzt7AKcrl69egZf4ebuofH+SfSQr0GjHPN16ByV42eJdLN/HfL/sXH00Dgzfy/MZygFJiUlafz48bp69aruvvtujRkzRi1atFDt2rX1888/68CBA3rzzTeVkJCg8ePHq2XLlmrZsqWhgt3d3VW/fn2NHz9e7u7ueuGFF/TBBx9o5MiR9mfMnjt3rtBjz58/L0klehZtaae6byYeHh70xyB6aG587oyhf8bRQ+MqQw/5WWJufO6Mo4fGVYYeGrrBdd68ebp69aqefvpprV+/Xr1791b9+vVVrVo11a9fX/fee6/WrVunMWPG6MqVK5o3b56j6pYkde3aVZK0Y8cOSf+7R7aoRZ/y77G90f2zAAAAAADXZyjQ7ty5U/7+/vrb3/5W7Lhp06bJz89PO3fuNHK66/z888+SZL/cuFGjRgoKCtLu3buVnZ1dYGxOTo4SEhIUFBRU6uuyAQAAAACux1CgPXnypBo1aqSqVasWO87Dw0ONGzfWqVOnSn2OpKSkQi8hPnv2rF566SVJUo8ePSRJFotFw4YN04ULFzRr1qwC4+fMmaPMzEwNGzaMZ9ACAAAAQCVg6B5aHx+fEq+w98svv1z3bNiSWLFihZYuXaoOHTooODhYXl5eSk9P16ZNm3ThwgX169dPDzzwgH18VFSUNmzYoLi4OCUlJalVq1ZKSUnR5s2bFRYWpqioqFLXAAAAAABwPYYCbcuWLbV9+3atX79effr0KXLchg0bdOzYMXXu3LnU5+jfv7+ysrK0Z88eJSYm6uLFi6pevbratWunBx98UIMGDSow4+rt7a21a9cqNjZWq1ev1o4dOxQYGKjIyEhNnjy5TKEaAAAAAOB6DAXaoUOHatu2bXryySc1depUjRgxQrfccot9f05Ojt577z3NnDnTfjlwad199926++67S3WMv7+/YmJiFBMTU+rzAQAAAADMwVCgHTx4sNasWaPVq1fr+eef18yZM1W/fn0FBgYqIyNDR44c0cWLF2Wz2dS/f38NGjTIUXUDAAAAAG5yhhaFkqTFixdr8uTJ8vHxUXZ2tvbv36+tW7dq//79ys7Olo+Pj6ZMmaJFixY5ol4AAAAAACQZnKGVJHd3d02ZMkVjx45VYmKiDh06pAsXLsjHx0dNmzZVu3bt5OXl5YhaAQAAAACwMxxo83l5eal79+7q3r27o14SAAAAAIAilfqS40ceeUQNGjRQXFxcica//vrratCggYYPH17aUwEAAAAAUKRSBdq9e/dq/fr1qlu3rsaOHVuiY8aOHau6detq9erV2rdvX1lqBAAAAADgOqUKtB999JEsFosmTpxY4NmvxZ7AzU3PPfecbDabVq5cWaYiAQAAAAD4vVIF2sTERFWrVk333HNPqU7Sq1cvVatWTYmJiaU6DgAAAACAopQq0B4+fFjBwcG65ZZbSnWSW265RQ0aNNDhw4dLdRwAAAAAAEUpVaDNzs6Wr69vmU7k4+OjX3/9tUzHAgAAAADwe6V6bI/VatWZM2fKdKIzZ87Iz8+vTMcCAAC4Eut7Pzm5Ai9Jp51aQebjtzr1/AAglXKGNjg4WEeOHNHp06X7Bnrq1Cn9+OOPCg4OLtVxAAAAAAAUpVSBtkOHDrLZbFq8eHGpTrJ48WLZbDZ16tSpVMcBAAAAAFCUUgXa4cOHy83NTXPmzCnxisUJCQmaM2eOqlSpokcffbRMRQIAAAAA8HulCrQhISH6y1/+opycHA0YMECxsbFF3lN75swZvfLKKxo4cKByc3M1atQoNWzY0CFFAwAAAABQqkWhJOmll17Sjz/+qHXr1ik2NlazZ89Ws2bN1KBBA3l7eys7O1s//vijDh48qKtXr8pms6lPnz56+eWXy6N+AAAAAMBNqtSB1s3NTcuWLdObb76p119/XWfOnFFKSopSUlJksVhks9nsY6tXr65x48Zp7NixDi0aAAAAAIBSB9p8Y8aM0ciRI7V582YlJibq+PHjOn/+vHx8fFSnTh2Fh4erR48e8vb2dmS9AAAAAABIMhBoJcnLy0v9+/dX//79HVUPAAAAAAAlUqpFoQAAAAAAcBUEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKbl8oD1+/Ljmz5+v+++/X6GhoapVq5aaNm2qYcOGac+ePYUek5WVpejoaIWGhiogIEChoaGKjo5WVlZWBVcPAAAAACgvVZxdwI288847ev311xUSEqIuXbqoVq1aSk1N1bp167Ru3TotWrRI999/v318dna2IiIilJycrK5du2rw4MFKSUnR/PnzFR8fr40bN8rb29uJ7wgAAAAA4AguH2jvvPNOrV+/XuHh4QW2JyQkqH///powYYL69OmjatWqSZLi4uKUnJysqKgoTZ8+3T4+JiZGs2bNUlxcnKKjoyv0PQAAAAAAHM/lLznu16/fdWFWksLDw9WxY0edPXtW+/fvlyTZbDYtXbpUPj4+mjRpUoHxEyZMkNVq1bJly2Sz2SqkdgAAAABA+XH5QFucqlWrSpLc3d0lSampqTpx4oTatm173WXFnp6eCg8P1/Hjx5WWllbhtQIAAAAAHMvlLzkuSnp6ur744gsFBgbqtttuk3Qt0EpSw4YNCz2mUaNG9nH5HxclJyfHgdVWDrm5uQX+i9Kjh5UD3x+MoX/G0UPj6KFx9NAY+mccPTTOFXvo6elZqvGmDLSXL1/WU089pUuXLmn69On2Gdr8VYz9/f0LPc7X17fAuOIcP35cV69edVDFlUtGRoazSzA9c/fQy9kFOF16errBV7i5e2i8fxI95GvQKHpoHD00hv4ZRw+Nc8zPZMdxd3cvcnKyKKYLtHl5eXr66aeVkJCgxx57TA8++GC5nKdOnTrl8rpmlpubq4yMDAUGBsrDw8PZ5ZhS5ejhaWcX4HT16tUz+Ao3dw+N90+ih3wNGkUPjaOHxtA/4+ihcY75mexcpgq0NptNY8eO1apVqzRkyBDNnTu3wH4/Pz9J0rlz5wo9/vz58wXGFae0U903Ew8PD/pjED00Nz53xtA/4+ihcfTQOHpoDP0zjh4aVxl6aJpFofLy8vTMM89o2bJlGjx4sBYsWCA3t4Ll598XW9SiT/n32N7o/lkAAAAAgOszRaDNy8vTmDFjtHz5cg0cOFALFy603zf7W40aNVJQUJB2796t7OzsAvtycnKUkJCgoKCgUl+XDQAAAABwPS4faPNnZpcvX64BAwbonXfeKTTMSpLFYtGwYcN04cIFzZo1q8C+OXPmKDMzU8OGDZPFYqmI0gEAAAAA5cjl76GNjY3VihUr5OPjo8aNG+vVV1+9bkxERIRatmwpSYqKitKGDRsUFxenpKQktWrVSikpKdq8ebPCwsIUFRVV0W8BAAAAAFAOXD7QHj16VJJ04cIFzZ49u9AxwcHB9kDr7e2ttWvXKjY2VqtXr9aOHTsUGBioyMhITZ48Wd7e3hVWOwAAAACg/Lh8oF2wYIEWLFhQqmP8/f0VExOjmJiYcqoKAAAAAOBsLn8PLQAAAAAAhSHQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMqYqzC0DpWN/7yckVeEk67bSzZz5+q9PODQAAAMC1MEMLAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJR4bA9uKs5/7JHEo48AAAAAxzDFDO3KlSs1btw4denSRQEBAbJarVq+fHmR47OyshQdHa3Q0FAFBAQoNDRU0dHRysrKqsCqAQAAAADlyRQztC+//LLS09NVo0YNBQYGKj09vcix2dnZioiIUHJysrp27arBgwcrJSVF8+fPV3x8vDZu3Chvb+8KrB4AAAAAUB5MMUP75ptvKikpSampqRoxYkSxY+Pi4pScnKyoqCh99tlnevHFF/Xxxx9r0qRJSk5OVlxcXAVVDQAAAAAoT6YItF26dFFwcPANx9lsNi1dulQ+Pj6aNGlSgX0TJkyQ1WrVsmXLZLPZyqtUAAAAAEAFMcUlxyWVmpqqEydOqHv37tddVuzp6anw8HCtX79eaWlpatSoUbGvlZOTU56looz4vBhHD42jh8bQP+PooXH00Dh6aAz9M44eGueKPfT09CzV+EoXaCWpYcOGhe7PD7Gpqak3DLTHjx/X1atXHVugQ3g5uwCnKu7+6ZK5ufsn0UNHoIfGGO+fRA/5GjSKHhpHD42hf8bRQ+Mc8zPZcdzd3YvMckWpVIE2fxVjf3//Qvf7+voWGFecOnXqOK4wh3Le415cQb169Qy+ws3dP4keOgI9NMZ4/yR6yNegUfTQOHpoDP0zjh4a55ifyc5VqQKtI5V2qhsVg8+LcfTQOHpoDP0zjh4aRw+No4fG0D/j6KFxlaGHplgUqqT8/PwkSefOnSt0//nz5wuMAwAAAACYV6UKtPn3xaalpRW6P/8e2xvdPwsAAAAAcH2VLtAGBQVp9+7dys7OLrAvJydHCQkJCgoKKvWNxgAAAAAA11OpAq3FYtGwYcN04cIFzZo1q8C+OXPmKDMzU8OGDZPFYnFShQAAAAAARzHFolBLlixRYmKiJGn//v2SpKVLl2rHjh2SpIiICN13332SpKioKG3YsEFxcXFKSkpSq1atlJKSos2bNyssLExRUVHOeRMAAAAAAIcyRaBNTEzUhx9+WGDbrl27tGvXLklScHCwPdB6e3tr7dq1io2N1erVq7Vjxw4FBgYqMjJSkydPlre3d4XXDwAAAABwPFME2gULFmjBggUlHu/v76+YmBjFxMSUY1UAAAAAAGeqVPfQAgAAAABuHgRaAAAAAIApEWgBAAAAAKZEoAUAAAAAmBKBFgAAAABgSgRaAAAAAIApEWgBAAAAAKZEoAUAAAAAmBKBFgAAAABgSgRaAAAAAIApEWgBAAAAAKZEoAUAAAAAmBKBFgAAAABgSgRaAAAAAIApEWgBAAAAAKZEoAUAAAAAmBKBFgAAAABgSgRaAAAAAIApEWgBAAAAAKZEoAUAAAAAmBKBFgAAAABgSgRaAAAAAIApEWgBAAAAAKZEoAUAAAAAmBKBFgAAAABgSgRaAAAAAIApEWgBAAAAAKZEoAUAAAAAmBKBFgAAAABgSgRaAAAAAIApEWgBAAAAAKZEoAUAAAAAmBKBFgAAAABgSgRaAAAAAIApEWgBAAAAAKZEoAUAAAAAmBKBFgAAAABgSgRaAAAAAIApEWgBAAAAAKZEoAUAAAAAmBKBFgAAAABgSgRaAAAAAIApEWgBAAAAAKZEoAUAAAAAmBKBFgAAAABgSgRaAAAAAIApEWgBAAAAAKZEoAUAAAAAmBKBFgAAAABgSpU20H7zzTd64IEHVL9+fdWpU0fdunXTRx995OyyAAAAAAAOUsXZBZSH+Ph4DRo0SB4eHho4cKD8/Py0Zs0ajRo1SkePHtWzzz7r7BIBAAAAAAZVukB75coVjR07VhaLRevWrdPtt98uSZo8ebJ69eqlmTNnasCAAWrUqJGTKwUAAAAAGFHpAu327dt1+PBhPfLII/YwK0m+vr567rnnNGLECC1fvlwvvPCCE6ssuxrVKu1V4hWC/hlHD42jh8bRQ2Pon3H00Dh6aAz9M44eVg6WzMxMm7OLcKSXXnpJc+bM0aJFizRo0KAC+zIzM9WgQQO1bdtWn3/+uZMqBAAAAAA4QqX7tURqaqokFXpJsdVqVY0aNexjAAAAAADmVekCbVZWliTJz8+v0P2+vr72MQAAAAAA86p0gRYAAAAAcHOodIE2f2a2qFnY8+fPFzl7CwAAAAAwj0oXaPPvnS3sPtnMzEydPn2aR/YAAAAAQCVQ6QJt+/btJUlbtmy5bl/+tvwxAAAAAADzqnSP7bly5Ypat26tEydOaPPmzWrZsqWka5ca9+rVS4cOHdKuXbvUuHFjJ1cKAAAAADCi0s3QVqlSRW+88Yby8vLUp08fRUVFadq0aerQoYMOHDigKVOmEGZL6ZtvvtEDDzyg+vXrq06dOurWrZs++ugjZ5dlGitXrtS4cePUpUsXBQQEyGq1avny5c4uyzSOHz+u+fPn6/7771doaKhq1aqlpk2batiwYdqzZ4+zy3N5mZmZmjRpknr27KmmTZsqICBAzZs3V9++ffXvf/9bNlul+p1mhYmLi5PVapXVatVXX33l7HJMISwszN6z3/8ZP368s8szjTVr1mjAgAEKCQlR7dq11bJlS40cOVLHjh1zdmkubfny5UV+/eX/6devn7PLdHk2m02rV6/Wfffdpz/+8Y8KCgpS69atNW7cOP3444/OLs/l5eXl6Z133lGnTp0UFBSkevXqqU+fPlq/fr2zSzO1Ks4uoDx06tRJGzdu1MyZM/XZZ5/p8uXLatasmf76179qyJAhzi7PVOLj4zVo0CB5eHho4MCB8vPz05o1azRq1CgdPXpUzz77rLNLdHkvv/yy0tPTVaNGDQUGBio9Pd3ZJZnKO++8o9dff10hISHq0qWLatWqpdTUVK1bt07r1q3TokWLdP/99zu7TJd15swZLV++XK1bt1ZERISqV6+ukydPauPGjXrsscf02GOPKS4uztllmsp3332nmJgYeXt7Kzs729nlmIqfn59Gjx593fY77rjDCdWYi81m0/jx4/X+++8rJCREgwYNko+Pj06cOKGdO3cqPT1ddevWdXaZLissLEyTJ08udN/q1at14MABde/evYKrMp9p06bprbfeUu3atRURESFfX1+lpKTogw8+0CeffKLPP/9cLVq0cHaZLslms2n48OFavXq1QkJCNHToUOXm5mr9+vV6+OGHNWvWLD355JPOLtOUKt0lx3CcK1euqE2bNjp+/Lg2bdqk22+/XVLBy7d3797NIls38MUXX6hhw4YKDg7W3LlzNX36dL311lt65JFHnF2aKaxevVo1a9ZUeHh4ge0JCQnq37+/fHx8dPDgQVWrVs1JFbq2q1evymazqUqVgr+/PH/+vHr27KmDBw8qMTFRzZs3d1KF5nL16lX17NlTFotFjRo10qpVq7R582a1adPG2aW5vLCwMElScnKykysxp7fffltTpkzRqFGj9Morr8jd3b3A/itXrlz3/zluLDc3V82aNVNWVpb279+vgIAAZ5fksjIyMtS8eXPVrVtXO3bsKPDUkPnz5ys6OlqPPPKI3nrrLSdW6br+/e9/67HHHlO7du302Wef6ZZbbpEknT59Wl26dNEvv/yiL7/8UvXr13dypeZT6S45huNs375dhw8f1uDBg+1hVpJ8fX313HPP6cqVK1w6WwJdunRRcHCws8swrX79+l0XZiUpPDxcHTt21NmzZ7V//34nVGYO7u7uhf4j19fXV926dZMkpaWlVXRZpvX6668rJSVF8+bNuy5QAOXl119/VWxsrBo0aKCZM2cW+rVHmC2btWvX6syZM7rnnnsIszdw9OhR5eXlqV27dtc9AvOee+6RJJ06dcoZpZnCunXrJEkTJkywh1lJqlGjhiIjI3Xp0iX+XV1GfPdDkXbs2CFJ9n/0/lb+tp07d1ZoTcBvVa1aVZIIFmWQk5Oj7du3y2KxqFmzZs4uxxT279+v2NhYTZw4kRntMsrNzdWKFSt04sQJWa1W/elPf7LP3KJoW7du1dmzZ/Xwww/r6tWrWr9+vVJTU+Xv768uXbqoYcOGzi7RtJYuXSpJevTRR51cietr1KiRPDw8tGvXLp0/f16+vr72fZs2bZIkdezY0VnlubxffvlFkgqdgc3fFh8fX6E1VRYEWhQp/1m+hV1SbLVaVaNGjUKf9wtUhPT0dH3xxRcKDAzUbbfd5uxyXF5mZqYWLFigvLw8nTp1Sps3b9axY8c0efJkbhsogStXrigyMlJNmzZlASMDMjIyFBkZWWBbjx49tHDhQtWoUcNJVbm+vXv3Sro2C9uhQwcdOnTIvs/NzU2RkZF6+eWXnVWeaR09elTbtm1TnTp11KNHD2eX4/L+8Ic/6Pnnn9fzzz+vtm3bqnfv3vLx8dH+/fv1xRdfaPjw4XrqqaecXabLqlmzpiTpyJEj+uMf/1hg35EjRyRJP/zwQ4XXVRkQaFGkrKwsSbruspJ8vr6+On78eEWWBEiSLl++rKeeekqXLl3S9OnTmaEtgXPnzik2Ntb+96pVq2rGjBl65plnnFiVebz22mtKSUnRf/7zH/uVASidoUOHqn379mrevLk8PDz03XffKTY2Vps3b9ZDDz2kzz//XBaLxdlluqT8yzjnzZun22+/XVu2bFHTpk2VlJSkcePGad68eQoJCdHIkSOdXKm5LF++XHl5eXr44Yf5OVJCY8aMUe3atTV+/HgtWrTIvr1t27YaMmQI3x+L0aNHD3388ceaO3euOnXqJE9PT0nXFm9csGCBpGs/q1F63EMLwFTy8vL09NNPKyEhQY899pgefPBBZ5dkCvXr11dmZqZOnz6tb7/9VtHR0ZoxY4aGDRumK1euOLs8l5acnKzZs2drzJgxatWqlbPLMa3JkyerQ4cOqlGjhnx9fdW6dWutXLlSd999t7788kv7JYu4Xl5eniTJw8NDy5cv15133ikfHx+Fh4frgw8+kJubm+bNm+fkKs0lLy9Py5cvl8Vi0dChQ51djmm8+uqrioyM1Pjx4/Xf//5XP/30kzZu3KgrV66ob9++Wr16tbNLdFmDBw9Wx44dlZiYqPDwcD333HMaP3682rVrZ798m1+slA2BFkXKn5nNn6n9vfPnzxc5ewuUB5vNprFjx2rVqlUaMmSI5s6d6+ySTMfd3V3169fX+PHjNW3aNK1du1YffPCBs8tyaaNHj1ZISIimTJni7FIqHTc3Nz388MOSpN27dzu5GteV/7O2VatWCgoKKrCvefPmatCggQ4fPqzMzEwnVGdOW7du1bFjx9SpUyc1aNDA2eWYwrZt2/T3v/9do0aN0rPPPqtbb71V3t7eateunVauXKlbbrlF0dHRzi7TZVWpUkUff/yxpkyZIjc3N33wwQdas2aN+vTpoyVLlkgSt16UEYEWRcq/r66w+2TzZ3q49w4VJS8vT88884yWLVumwYMHa8GCBXJz41uYEV27dpX0vwXgULiUlBR9//33CgwMlNVqtf/58MMPJUk9e/aU1WrV2rVrnVypOeX/A+7ixYtOrsR1NWnSRJLk7+9f6P787Tk5ORVWk9mxGFTpFbfwU82aNdWiRQsdO3ZMp0+frujSTKNatWqaMmWK9uzZo19++UU//PCDXn/9dfstfDyTu2y4hxZFat++vebMmaMtW7Zo0KBBBfZt2bLFPgYob3l5eRozZoyWL1+ugQMHauHChVyW4wA///yzJB73cSPDhg0rdHtCQoJSU1PVu3dv1axZk8dzldHXX38tSfSvGPkB4vvvv79u3+XLl5WWliZvb2/7ojMo3pkzZ7R+/XpVr15d9913n7PLMY3c3FxJRT+aJ3+7h4dHhdVUWXz00UeSdN2/t1Ey/CsGRercubMaNGigjz/+WE899ZRatmwp6dqlxq+++qqqVKliv1QMKC/5M7MrVqzQgAED9M477xBmSyEpKUn169e/bmbn7NmzeumllySJ1T1v4M033yx0++jRo5WamqoJEyaoTZs2FVyVuRw8eFC1a9eW1WotsD0xMVFvvfWWqlWrpr59+zqnOBMICQlRt27dtGXLFi1ZsqTArOLcuXN17tw5DRkyhF9OldA///lP5ebm6vHHH1e1atWcXY5ptGvXTu+++67mz5+vfv36Ffi5smLFCqWlpalVq1YFHueDgrKysq67Xe/f//63li1bpjvvvJPvg2XEdz4UqUqVKnrjjTc0aNAg9enTR4MGDZKvr6/WrFmjI0eOaNq0aWrcuLGzy3R5S5YsUWJioqRrz7GUrl3qlH+ZZ0REBL8hLkZsbKxWrFghHx8fNW7cWK+++up1YyIiIuy/cEFBK1as0NKlS9WhQwcFBwfLy8tL6enp2rRpky5cuKB+/frpgQcecHaZqOQ+++wzvfHGG+rUqZOCg4NVrVo1HThwQFu2bJGbm5vmzp2revXqObtMl/baa6+pV69eGjt2rNatW6cmTZooKSlJ27dvV7169TRjxgxnl2gay5Ytk8TlxqU1YMAAvffee9qxY4fuuusu9e7dW1arVSkpKdq6dauqVaummTNnOrtMl9ajRw/deuutatq0qTw9PfX1119rx44datCggd5//31+YV9GBFoUq1OnTtq4caNmzpypzz77TJcvX1azZs3017/+VUOGDHF2eaaQmJhov9cu365du7Rr1y5J1y6zI9AW7ejRo5KkCxcuaPbs2YWOCQ4OJtAWoX///srKytKePXuUmJioixcvqnr16mrXrp0efPBBDRo0iEeloNx17NhR33//vb799lslJCQoJydHAQEBGjhwoCIjI3XXXXc5u0SXFxISoq1btyomJkb/93//py1btigwMFCjRo3SpEmTVKtWLWeXaApff/219u/fr7vuuotnmJeSu7u7PvnkE7399tv69NNP9cknnyg3N1cBAQF64IEHNH78eLVo0cLZZbq0+++/X2vWrNGePXt0+fJl1a9fXxMnTtTYsWNZaNUAS2Zmps3ZRQAAAAAAUFosEQoAAAAAMCUCLQAAAADAlAi0AAAAAABTItACAAAAAEyJQAsAAAAAMCUCLQAAAADAlAi0AAAAAABTItACAAAAAEyJQAsAAAAAMCUCLQAAJhMWFiar1ar4+HiHvebo0aNltVo1c+ZMh70mAADlrYqzCwAA4GYSERGhnTt3FthWrVo1+fn5KSAgQC1btlTHjh01YMAAeXl5OanK/zly5IhWrFghf39/RUZGOrscAAAKYIYWAAAnqFu3rtq1a6d27dopLCxM1atXV2pqqj788ENFRkaqWbNmWrx4caHHhoSEqEmTJg4NvLVr11aTJk1Uo0aNAtuPHj2q2NhYLViwwGHnAgDAUZihBQDACR555BFNnTq1wLbLly/ryy+/1Lx587RhwwZNmDBB33//vV555ZUC41avXu3wev72t7/pb3/7m8NfFwCA8sQMLQAALqJq1apq3769PvzwQ73wwguSpLfffrtcAiwAAJUBgRYAABc0YcIEde7cWZI0a9asAvuKWxQqLy9PixcvVqdOnRQUFKSGDRtqyJAh2rVrl44cOSKr1Sqr1XrdcYUtChUREaG+fftKktLT0+3H5v9x5KJUAACUBZccAwDgop566ilt27ZNKSkpOnr0qIKDg4sdb7PZ9MQTT+jTTz+VdO0+3Vq1amnXrl2KiIjQjBkzSnX+Fi1a6OzZs9q/f7+qVaumO+64o8B+Pz+/0r0hAAAcjEALAICLCg8Pl8Vikc1m0549e24YaBcvXqxPP/1Unp6eWrhwofr37y9JunTpkl588cVS3yP76quvKj4+Xn379lVAQIA2btxY5vcCAEB54JJjAABclNVqla+vryTpl19+KXaszWZTXFycJGnq1Kn2MCtdeyzQzJkz1bp16/IrFgAAJyDQAgDgwnx8fCRJFy5cKHbc999/r6NHj0qShg4dWuiYorYDAGBWBFoAAFxYfpDNn6ktyqFDhyRJderUue5ZsvlCQ0MdWxwAAE5GoAUAwEWdPXtWWVlZkqSAgIBix2ZnZ0v634xuYW4UigEAMBsCLQAALiohIcH+cZs2bYod6+3tLan4S5PPnz/vmMIAAHARBFoAAFzUwoULJUktW7ZU3bp1ix3bpEkTSdLx48d1+vTpQsekpKSUugaLxVLqYwAAqCgEWgAAXNCcOXO0fft2SdJzzz13w/FNmza1P9Zn2bJlhY4pantxvLy8JEk5OTmlPhYAgPJGoAUAwEVcuXJFCQkJeuihh/TSSy9JkkaPHq2+ffve8FiLxaKoqChJ0syZM7V69Wr7vkuXLmnq1Knas2dPqWsKCQmRxWLRyZMndeDAgVIfDwBAeari7AIAALgZLV++XNu2bZMkXb16VVlZWTp69Kh+/fVXSZKfn59efPFFjRgxosSvOWLECO3cuVOffvqpHn30UdWtW1cBAQH64YcflJ2drZdeekl//etf5eZW8t9nV69eXb169dLnn3+uzp07q3nz5vaFp2bOnKmWLVuW4l0DAOBYBFoAAJzg2LFjOnbsmCTJw8NDfn5+atiwocLCwtSpUycNGDDAfrlvSVksFv3jH/9Q+/bt9d577+mHH37QhQsX1KZNGz377LOyWq2SSr/a8cKFC/X3v/9dmzdv1oEDB5SbmytJOnfuXKleBwAAR7NkZmbanF0EAAAof//61780fPhwtWzZ0n5/LgAAZsY9tAAA3CSWLFkiSQoPD3dyJQAAOAaBFgCASmTu3LlKSkoqsO3cuXN67rnntGXLFlWtWlWPP/64k6oDAMCxuOQYAIBKpEOHDkpJSZGfn5/q16+vvLw8HTp0SLm5uXJzc9Ps2bNLtdAUAACujEALAEAl8sknn+jTTz9VUlKSzp49q9zcXNWqVUvt2rXT6NGj1bp1a2eXCACAwxBoAQAAAACmxD20AAAAAABTItACAAAAAEyJQAsAAAAAMCUCLQAAAADAlAi0AAAAAABTItACAAAAAEyJQAsAAAAAMCUCLQAAAADAlP4ffyA9JL20IqIAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7QAAAH7CAYAAAD8VtM+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABOY0lEQVR4nO3deVhWdf7/8RegiICAiZIbCqaZgprV193c0hRHHaWmUjOXqTBT1Byt0SJb0HHD3LLJcsnMNicNasYkFcUlM8V0ygQTUaM0kUARkPv3hz/uiVgEzg33ffD5uC4v5ZzPuc+bN7fii885n+OUlpZmEQAAAAAAJuNs7wIAAAAAACgPAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AADCNsLAw+fj4KDg4uMj9Pj4+8vHxUWRkpN1qAABUnmr2LgAAYF5xcXH605/+VKZjBgwYoHfffbeCKgIAADcTZmgBAABsKDg4WD4+PgoLC7N3KQBQ5TFDCwCwibFjx2rs2LE3HFerVq1KqAY3q7S0tAo/x4oVK7RixYoKPw8A4MYItAAAm/D19VWrVq3sXQYAALiJcMkxAAAAAMCUCLQAALv74z2Hhw8f1oQJE9S2bVvdeuut8vHxsV5KWpax+b7//ntNnTpVd999txo2bKgGDRrorrvu0uTJk/Xf//63xNr+uGpuXFycxowZo6CgINWrV0/+/v4Fxqempuqll15Sjx495O/vL19fX912223q2LGjRowYobffflvnz58vV5/+WMuOHTs0fPhw3XHHHfLz81NQUJAmTpyokydPlur1Tp06pVmzZqlr167y9/e3vsbYsWO1a9euEo/Lr2X9+vWSpE8//VR/+ctfdMcdd6hOnTrq2rVruT7H77//XmFhYWrdurX8/PzUunVrjRs3TgcPHizV8aVZ5fjy5cv6xz/+oc6dO6tBgwYKCAjQ/fffr3Xr1slisSguLs76OnFxcYWOL26V45CQEPn4+Oj06dOSpA0bNlhfJ/9XSEhIGboBALgRLjkGADiU1atXa9q0acrJybHJ2CVLligiIkLXrl0rsD0xMVGJiYlau3atZs2apfDw8Bue75VXXtH8+fNlsVis29zc3Kx/3rt3r/7yl7/o0qVLBY47f/68zp8/r++++06ffvqpLBaLxowZc8PzleQf//iHIiMjC9SSkpKitWvX6oMPPtCqVas0YMCAYo9fsWKFXnjhBWVnZxfYnpKSopSUFH300UcaPXq05s+fLxcXl2Jfx2KxKCwsTBs2bDD0+UjSpk2b9OSTT+rq1avWbWfOnNGHH36of/3rX1q4cKHhc5w5c0aDBg1SYmKiddvly5e1d+9e7d27V59++qmefPJJw+cBAFQOAi0AwGF88803ev/991W/fn1NmDBBd911lywWi/bv3y9XV9cyj129erVmzZol6frM3aRJk9SlSxdJ0p49exQVFaWLFy8qIiJCnp6eGjduXLG1ffrppzp69KjuuOMO6wzi1atX9fXXX0uSsrOzNWbMGF26dEmenp567LHHdO+996pu3brKzc3V6dOndeDAAUVHRxvu09atW3Xw4EEFBgYqPDxcwcHBysjI0GeffaZ//vOfunLlih577DFt27atyGelLl26VDNnzpQk3X777Ro7dqxuu+023XLLLTp16pTWrl2rbdu26e2335anp6deeumlYmtZsWKFjh49qg4dOmjs2LFq3ry5fvvtN/3www9l+pwOHjyov/71r8rNzZWrq6uefPJJ9evXT25ubvr666+1cOFCTZ06VbfffnvZmvU7OTk5evDBB61htnfv3ho9erQaNWqkM2fOaM2aNfr3v/+tCxculOv1ly1bpsuXL2vYsGE6d+6cBgwYYO1zPnd393LXDwAozCktLc1y42EAABT2++fQlnaV4yZNmsjDw6PAtuDgYOtlmi1bttRnn32m2rVrF3l8acdeuHBBbdq0UWZmpnx9ffWf//xHgYGBBcb8+OOP6tu3r37++WfVrFlThw8fVr169QqM8fHxsf65a9eu+vDDDwvMyubbsWOHBg8eLOn6pab9+/cvsn6LxaJLly4VeN3S+v0xQUFBiomJkZeXV4ExX3zxhR588EHl5eWpQ4cO+ve//11g//fff6+uXbsqJydHEydOVEREhJydC9+B9MILL2jx4sVydnbW/v37ddttt1n3nTp1Sm3btrV+/MADD2jlypVFvk5p9ezZU998841cXFz00UcfqUePHgX2nzt3Tn369NGZM2ckSY0bN9aRI0cKvU5+j6ZPn65nn322wL4VK1ZYt40ZM6bIGd9p06bpn//8p/XjLVu2qFu3bgXG5M9IF1dD/nv04YcfZjVkAKhg3EMLALCJVatWqXPnzjf8daN7IefPn19smC3L2PXr1yszM1OSFBERUSjMSlLTpk01e/ZsSdKVK1e0du3aYs/l7OyspUuXFhlmJennn3+2/jl/FrgoTk5O5Qqzf/Taa68VCrOS1KdPHz388MOSpH379unw4cMF9i9dulQ5OTlq1apVsWFWkmbOnKn69esrLy+vxMuJvby8tGDBAkNh9uDBg/rmm28kScOHDy8UZiWpfv36evnll8t9Dkl6++23JUl169Yt9rVmz56t+vXrGzoPAKDyEGgBAA6jUaNGpV5M6EZjv/zyS0mSh4eHQkNDix03dOhQazDMP6YoHTp0UNOmTYvdf+utt1r/nL9QUkVp1aqV2rdvX+z+ESNGWP+8ffv2Avs+++wzSdKf/vSnEkNo9erVdc8990iS9u/fX+y4+++/v8hgXRa/r3H48OHFjhs4cKC8vb3LdY6zZ8/q+PHjkqRBgwYVe+lvzZo1rTPtAADHR6AFANjE9OnTlZaWdsNff7x88/dat25d6vPdaGz+6sVBQUHFzqpKkqurq9q0aSNJOnbsWLHjgoKCSjxfx44drbPAzz77rHr27Kn58+crPj5eWVlZJR5bViWFWUm68847rWH16NGj1u3JycnWFZbnzp1baAXeP/7avHmzpIKzz39U1D26ZZXfd2dnZ7Vr167YcdWrV7d+rcrq96tZ//5y6aLceeed5ToHAKDysSgUAMBhlGX27UZjL168KEny9fW94Wv5+flJki5duiSLxSInJ6cyn6969ep677339Nhjj+nYsWP65ptvrJfR1qhRQ//3f/+nBx54QA899FChBa7Kqm7duiXud3NzU61atXTp0iX9+uuv1u3lfVzQ5cuXi91X3hnT38v/WtWqVUs1atQocewf73Eurd8/yulG74nSvGcAAI6BQAsAcBglPR6mvGOLCqflUZrztWjRQrt27dLWrVsVExOj+Ph4/fDDD7p69ari4uIUFxen1157Te+//36R9/SWVnk/p98/umjy5Ml64IEHSnVcSQG8LF+zG7HV1woAcPMg0AIAqqTatWvrp59+0i+//HLDsampqZKuzzYaDVXOzs7q16+f+vXrJ0n65Zdf9OWXX+rtt9/Wnj17dOLECY0ePVo7duwo9zlKugRYkrKysvTbb79Jkm655Rbr9jp16lj/7OLiolatWpW7BlvKXyQrPT1dV69eLXGW9kaf+43OId14prq8M9kAgMrHPbQAgCrpjjvukCR9++23unr1arHjsrOzlZCQIEkVEvDq1q2rBx98UDExMerdu7ck6fDhw0pKSir3a95opehDhw4pLy9PUsHPqUmTJtYFnPbs2VPu89tafo15eXk6dOhQseNyc3OLfExOabRs2dL65z+u/PxH+ZeKlxczzQBQeQi0AIAqqWfPnpKkzMxMffzxx8WO+9e//qX09PQCx1QEJycnde/e3frxhQsXyv1ax44dKzH4vfPOO9Y///4ROC4uLrr//vslSfHx8SW+RmX6fY0lPSLo008/LXAvbFk0bNjQ+izdzZs3F3tfcFZWlj755JNynSNf/iJk2dnZhl4HAHBjBFoAQJU0fPhweXh4SLr+HNpTp04VGnPq1CnNmjVL0vXHtTz66KPlPl98fLwSExOL3Z+Xl2e9zNjJyUn+/v7lPpckTZw4URkZGYW2x8bG6t1335Uk3XPPPYVWDZ48ebKqVasmi8Wi0aNH68cffyz2HBaLRZ999pm+/fZbQ7XeyF133WVdeXjdunXauXNnoTGpqamaOXOmofM89thjkq5fBl7ca82aNUvnzp0zdJ78RcZOnjxp6HUAADfGPbQAAJs4f/58iY+9yefq6mqdKatIderU0SuvvKLw8HClpqaqZ8+eCg8PV6dOnSRJe/fu1aJFi6yrAL/00kvlXkFXknbs2KF58+apY8eO6tu3r4KCguTr66vs7Gz9+OOPWrduneLi4iRdf55qfugpjzvvvFPffPON7r33Xk2aNEnBwcHKzMzUZ599pjfeeEN5eXlydXXV/PnzCx17xx136NVXX9Xf/vY3nTx5Ul27dtWIESPUq1cv+fn5KTs7W2fPntVXX32lzZs3Kzk5We+9994NH1tk1IIFC3T//fcrNzdXDzzwgMLCwtS3b1+5ubnp66+/1sKFC3X+/HkFBQWVO2A//vjjevfdd3Xs2DG99dZbSk5O1ujRo9WwYUOdPXtWa9as0b///W/ddddd+vrrryWV7/LhDh06KC4uTgcPHtSiRYvUp08f6w9X3Nzc1KBBg3LVDwAojEALALCJVatWadWqVTcc17hx43LfB1lWjz32mNLT0/Xiiy/q119/1fPPP19ojIuLi2bOnKlx48YZPl9eXp7i4+MVHx9f7JguXbpoyZIlhs7Tt29f9evXT3PmzNHEiRML7Xdzc9Obb75Z7PNWH3/8cXl4eOhvf/ubMjIy9Prrr+v1118vcqyzs7Pc3d0N1Vsad999t15//XWNHz9eV69eVVRUlKKioqz7q1WrpgULFmjv3r3lDrSurq7auHGjBg0apJMnT+qLL77QF198UWBMr169NH78eIWGhkpSic8wLs6YMWO0atUqXbx4US+++KJefPFF674uXbooOjq6XPUDAAoj0AIAqrSJEyeqX79+WrlypXbu3KmzZ89KkurXr6/u3bvr8ccfty4gZfQ8QUFB2rFjhxISEnTu3Dn98ssvslgsqlu3rtq1a6fQ0FANHjzYJosGzZgxQx06dNDKlSv1zTff6OLFi6pXr551JrpZs2YlHj98+HDdf//9evvttxUbG6vjx48rLS1Nrq6uqlevnlq2bKnu3btr0KBBatSokeF6SyM0NFRBQUFatGiRdu7cqQsXLsjX11cdOnTQU089pbvvvlt79+41dI7GjRtr165dWrp0qT755BOdPHlSrq6uatGihR566CGNHj1aMTEx1vH5i2iVRYMGDRQbG6uFCxdq9+7dOnv2rLKysgzVDQAomlNaWprF3kUAAIAby3/0zPTp0/Xss8/at5gqbN68eXrllVdUrVo1paSklGuWFgBQOVgUCgAA4P+zWCzatGmTJCkoKIgwCwAOjkALAABuGsnJycrNzS12/yuvvGJd3Oyhhx6qrLIAAOXEPbQAAOCmsXHjRq1Zs0bDhg1Tx44dVb9+feXm5ur48ePasGGDdSXqFi1aWB/zAwBwXARaAABwU0lJSdHixYu1ePHiIvffdtttev/997ncGABMgEALAABuGo888og8PDwUGxurpKQknT9/XleuXJGPj4+CgoI0cOBAjRgxQjVq1LB3qQCAUmCVYwAAAACAKbEoFAAAAADAlAi0AAAAAABTItACAAAAAEyJQItSy8rKUlJSkrKysuxdimnRQ2Pon3H00Dh6aBw9NIb+GUcPjaOHxtA/2yHQokyuXbtm7xJMjx4aQ/+Mo4fG0UPj6KEx9M84emgcPTSG/tkGgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEqmCrRbtmzRkCFDFBAQID8/P7Vp00Zjx45VSkpKgXHp6el67rnnFBQUpHr16ik4OFizZs1SRkaGnSoHAAAAANhaNXsXUBoWi0WTJ0/W6tWrFRAQoGHDhsnT01Pnzp3T7t27dfr0aTVq1EiSlJmZqZCQEB05ckS9evVSaGioEhIStGTJEu3evVsxMTFyc3Oz82cEAAAAADDKFIH29ddf1+rVqzVu3DjNnTtXLi4uBfbn5uZa/7x48WIdOXJE4eHhioiIsG6PiIhQVFSUli9frilTplRW6QAAAACACuLwlxxfuXJFc+fOVdOmTTVnzpxCYVaSqlW7nsstFovWrVsnT09PTZs2rcCYadOmydPTU2vXrq2UugEAAAAAFcvhZ2hjY2OVlpam4cOH69q1a4qJiVFiYqK8vb3Vo0cPBQYGWscmJibq3Llz6t27tzw8PAq8joeHhzp06KBt27YpJSXFeokyAAAAAMCcHD7QHjp0SJLk4uKiLl266MSJE9Z9zs7OGj9+vF5++WVJ1wOtpAIh9/cCAwO1bds2JSYm3jDQZmVl2aD6qiU7O7vA7yg7emgM/TOOHhpHD42jh8bQP+PooXH00Bj6V7yyrnfk8IH2/PnzkqRly5apbdu2io2NVYsWLZSQkKDw8HAtXbpUAQEBGjt2rNLT0yVJ3t7eRb6Wl5eXJFnHleTs2bO6du2ajT6LqiU1NdXeJZgePTSG/hlHD42jh8bRQ2Pon3H00Dgz9/CeXe52rsBd0m92reCrrpftev4/cnFxKXZysjgOH2jz8vIkSa6urlq/fr3q168vSercubNWr16trl27aunSpRo7dqxNz9ugQQObvl5VkJ2drdTUVPn5+cnV1dXe5ZgSPTSG/hlHD42jh8bRQ2Pon3H00Liq0cML9i7A7ho3bmzvEgxz+ECbP6varl07a5jN16pVKzVt2lRJSUlKS0uzjr106VKRr5U/M5s/riQ82qd4rq6u9McgemgM/TOOHhpHD42jh8bQP+PooXH00NyqwtfO4Vc5bt68uaTiLyPO356VlaVmzZpJkpKSkoocm789fxwAAAAAwLwcfoa2W7dukqTjx48X2peTk6OkpCR5eHjI19dXfn5+ql+/vvbt26fMzMwCKx1nZmZq3759atKkCSscAwAAAEAV4PAztAEBAerVq5eSkpIKPUN20aJFunTpkkJCQlStWjU5OTlp5MiRysjI0Lx58wqMnTdvnjIyMjRq1KjKLB8AAAAAUEEcfoZWkhYsWKC+fftq4sSJio6OVvPmzZWQkKCdO3eqcePGeumll6xjJ02apJiYGEVFRSkhIUFt27bV4cOHFRsbq/bt2yssLMyOnwkAAAAAwFYcfoZWuj5L++WXX+qRRx7RoUOHtHLlSiUlJemvf/2rYmNj5efnZx3r4eGh6OhohYWF6fjx41q6dKmOHz+uCRMm6JNPPlHNmjXt+JkAAAAAAGzFFDO0ktSoUSMtX768VGO9vb0VGRmpyMjICq4KAAAAAGAvppihBQAAAADgjwi0AAAAAABTItACAAAAAEyJQAsAAAAAMCUCLQAAAADAlAi0AAAAAABTItACAAAAAEyJQAsAAAAAMCUCLQAAAADAlAi0AAAAAABTItACAAAAAEyJQAsAAAAAMCUCLQAAAADAlAi0AAAAAABTItACAAAAAEyJQAsAAAAAMCUCLQAAAADAlAi0AAAAAABTItACAAAAAEyJQAsAAAAAMCUCLQAAAADAlAi0AAAAAABTItACAAAAAEyJQAsAAAAAMCUCLQAAAADAlAi0AAAAAABTItACAAAAAEyJQAsAAAAAMCUCLQAAAADAlAi0AAAAAABTItACAAAAAEyJQAsAAAAAMCUCLQAAAADAlAi0AAAAAABTItACAAAAAEyJQAsAAAAAMCUCLQAAAADAlAi0AAAAAABTItACAAAAAEyJQAsAAAAAMCUCLQAAAADAlAi0AAAAAABTItACAAAAAEyJQAsAAAAAMCUCLQAAAADAlAi0AAAAAABTItACAAAAAEyJQAsAAAAAMCUCLQAAAADAlEwRaIODg+Xj41Pkr5CQkELjr169qrlz56p9+/by8/NTy5YtNWnSJP3yyy92qB4AAAAAUBGq2buA0vLy8lJYWFih7f7+/gU+zsvL0yOPPKJt27bpnnvu0aBBg5SYmKi1a9dqx44d+uKLL+Tr61tZZQMAAAAAKohpAq23t7eeffbZG4579913tW3bNoWGhuqf//ynnJycJElvvfWWpkyZopdffllRUVEVXC0AAAAAoKKZ4pLjsli7dq0k6fnnn7eGWUkaPXq0mjZtqg8++EBXrlyxV3kAAAAAABsxTaDNzs7W+vXrtWDBAr3xxhs6cOBAoTFZWVk6cOCAmjdvXuhSZCcnJ/Xs2VOZmZn65ptvKqtsAAAAAEAFMc0lx6mpqXrqqacKbGvfvr1WrVqlgIAASdLJkyeVl5enwMDAIl8jf3tiYqI6d+5c4vmysrJsUHXVkp2dXeB3lB09NIb+GUcPjaOHxtFDY+ifcfTQOHpYNThi5nFzcyvTeFME2uHDh6tTp05q1aqVPDw8dOLECS1btkwbN27UoEGDFB8fr1q1aik9PV3S9ftti+Ll5SVJ1nElOXv2rK5du2a7T6IKSU1NtXcJpkcPjaF/xtFD4+ihcfTQGPpnHD00ztw9dLd3AXZ3+vRpe5dQgIuLS7GTk8UxRaCdMWNGgY/btGmjlStXSpI2btyoNWvWaMKECTY9Z4MGDWz6elVBdna2UlNT5efnJ1dXV3uXY0r00Bj6Zxw9NI4eGkcPjaF/xtFD46pGDy/YuwC7a9y4sb1LMMwUgbY4o0eP1saNG7Vv3z5NmDDBOgN76dKlIsfnz8zmjytJWae6byaurq70xyB6aAz9M44eGkcPjaOHxtA/4+ihcfTQ3KrC1840i0IVpU6dOpKky5cvS5KaNm0qZ2dnJSUlFTk+f3uzZs0qp0AAAAAAQIUxdaDNX+k4f0XjmjVr6q677tIPP/yg5OTkAmMtFou+/PJLeXh46M4776z0WgEAAAAAtuXwgfb48ePWGdg/bo+IiJAkhYaGWrePGjVKkjR79mxZLBbr9rfffls//vijHnjgAdWsWbNiiwYAAAAAVDiHv4f2o48+0vLly9W5c2c1btxY7u7uOnHihLZu3aqcnBxNmTJFXbp0sY5/5JFHtGnTJn344Yc6deqUunTpoqSkJG3ZskVNmjTRzJkz7fjZAAAAAABsxeEDbbdu3XT8+HElJCRoz549unz5surUqaP77rtP48aNU69evQqMd3Z21rvvvqtFixZp48aNWr58uWrXrq2RI0dq5syZ8vX1tdNnAgAAAACwJYcPtF27dlXXrl3LdEyNGjU0Y8aMQo/7AQAAAABUHQ5/Dy0AAAAAAEUh0AIAAAAATIlACwAAAAAwJQItAAAAAMCUCLQAAAAAAFMi0AIAAAAATIlACwAAAAAwJQItAAAAAMCUCLQAAAAAAFMi0AIAAAAATIlACwAAAAAwJQItAAAAAMCUCLQAAAAAAFMi0AIAAAAATIlACwAAAAAwJQItAAAAAMCUCLQAAAAAAFMi0AIAAAAATIlACwAAAAAwJQItAAAAAMCUCLQAAAAAAFMi0AIAAAAATIlACwAAAAAwpWr2LgAAAABA2fi8fcbeJUhyl3TBbmdPG93QbueG42CGFgAAAABgSgRaAAAAAIApEWgBAAAAAKZEoAUAAAAAmBKBFgAAAABgSgRaAAAAAIAp8dgeAAAAVDr7P3aGR84AVQEztAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJSq2bsAAObi8/YZO1fgLumCXStIG93QrucHAADAdczQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMiUALAAAAADAl0wbaqKgo+fj4yMfHR1999VWh/enp6XruuecUFBSkevXqKTg4WLNmzVJGRoYdqgUAAAAA2JopA+2xY8cUGRkpDw+PIvdnZmYqJCREy5cvV4sWLTR+/Hg1b95cS5Ys0aBBg5SVlVXJFQMAAAAAbM10gTYnJ0dhYWEKDg5WSEhIkWMWL16sI0eOKDw8XB9//LEiIiL08ccfKzw8XAcPHtTy5csruWoAAAAAgK2ZLtDOnz9f3333nZYuXSoXF5dC+y0Wi9atWydPT09NmzatwL5p06bJ09NTa9euraxyAQAAAAAVpJq9CyiLQ4cOacGCBXruuefUsmXLIsckJibq3Llz6t27d6FLkj08PNShQwdt27ZNKSkpatSoUbHn4rLkwrKzswv8jrKjh1WDmf994D1oHD00jh4aQ/+qBjN/L3EU9NA4R+yhm5tbmcabJtBevXrVeqnxpEmTih2XmJgoSQoMDCxyf2BgoLZt26bExMQSA+3Zs2d17do1Y0VXUampqfYuwfTM3UN3exdgd6dPn7Z3CYaZ+z3oGOihcfTQGPP37+b+fmL8e8nN3T+JHtqCo/2fxsXFpdgcVxzTBNpXX31ViYmJ2r59e5GXGudLT0+XJHl7exe538vLq8C44jRo0KCclVZd2dnZSk1NlZ+fn1xdXe1djilVjR5esHcBdte4cWN7l1BuVeM9aF/00Dh6aEzV6d/N/f3E+PeSm7t/Ej20BTP/nyafKQLt/v37tWTJEs2YMUOtWrWqlHOWdar7ZuLq6kp/DKKH5lYVvna8B42jh8bRQ2Pon7nxtTOOHhpXFXro8ItC5ebmKiwsTK1bt9bkyZNvOD5/BvbSpUtF7s+fmc0fBwAAAAAwJ4efoc3IyLDeF1u3bt0ix9x3332SpHfeece6WFRSUlKRY/O3N2vWzNalAgAAAAAqkcMH2ho1amjkyJFF7ouPj1diYqL69+8vX19f+fv7q1mzZqpfv7727dunzMzMAisdZ2Zmat++fWrSpEmJC0IBAAAAAByfwwfamjVrasmSJUXuCwsLU2JioqZMmaJ77rnHun3kyJH6xz/+oXnz5ikiIsK6fd68ecrIyNCUKVMqumwAAAAAQAVz+EBbHpMmTVJMTIyioqKUkJCgtm3b6vDhw4qNjVX79u0VFhZm7xIBAAAAAAY5/KJQ5eHh4aHo6GiFhYXp+PHjWrp0qY4fP64JEybok08+Uc2aNe1dIgAAAADAIFPP0K5YsUIrVqwocp+3t7ciIyMVGRlZyVUBAAAAACpDlZyhBQAAAABUfQRaAAAAAIApEWgBAAAAAKZk6ntoAcCMfN4+Y+cK3CVdsNvZ00Y3tNu5AQBA1cIMLQAAAADAlAi0AAAAAABTItACAAAAAEyJQAsAAAAAMCUCLQAAAADAlAi0AAAAAABTItACAAAAAEyJQAsAAAAAMCUCLQAAAADAlAi0AAAAAABTItACAAAAAEzJUKBt27atxowZU6qxY8eOVbt27YycDgAAAAAAq2pGDk5OTlaDBg1KNTY1NVXJyclGTgcAgCTJ5+0zdq7AXdIFu509bXRDQ8fbv3+S2XsIAHAMlXbJcW5urpyducIZAAAAAGAblZIwc3JylJiYqNq1a1fG6QAAAAAAN4EyXXK8e/du7dq1q8C2lJQUzZ07t9hjrly5oj179ujChQu67777ylclAAAAAAB/UKZAGxcXp7lz58rJycm67cyZMyUGWkmyWCxyd3fX1KlTy1clAAAAAAB/UKZAGxwcrIcfftj68YYNG1S3bl317t27yPFOTk5yd3dXQECABg8erIYNWYABAAAAAGAbZQq0ISEhCgkJsX68YcMGBQYGavny5TYvDAAAAACAkhh6bM/hw4fl5uZmq1oAAAAAACg1Q4HW39/fVnUAAAAAAFAmhgLt7/322286efKkMjIyZLFYih3XpUsXW50SAAAAAHATMxxoDx06pJkzZ2rPnj0lBlnp+iJRFy5cMHpKAAAAAACMBdpDhw4pJCREV65ckcViUY0aNeTr6ytnZ2db1QcAAAAAQJEMBdrIyEhdvnxZHTp00Ny5c9W2bVtb1QUAAAAAQIkMBdp9+/bJzc1NGzZsUO3atW1VEwAAAAAAN2To2uDs7Gw1b96cMAsAAAAAqHSGAm1AQIAuX75sq1oAAAAAACg1Q4H2kUceUVJSkhISEmxVDwAAAAAApWIo0IaFhalnz5569NFHtW/fPlvVBAAAAADADRlaFOrpp5+Wr6+v4uLi1L9/f7Vu3Vq33Xab3N3dixzv5OSkpUuXGjklAAAAAACSDAbad999V05OTrJYLJKkb7/9Vt9++22x4wm0AAAAAABbMRRop0+fbqs6AAAAAAAoE0OBdsaMGbaqAwAAAACAMjG0KBQAAAAAAPZCoAUAAAAAmJKhS453795d5mO6dOli5JQAAAAAAEgyGGgHDhwoJyenUo93cnLShQsXjJwSAAAAAABJBgNto0aNig20ly9ftoZXV1dX+fn5GTkVAAAAAAAFGAq0R44cKXF/Wlqa3nzzTS1atEiPPvqonnnmGSOnAwAAAADAylCgvREfHx8988wzCgwM1Lhx49SqVSsNGDCgIk8JAAAAALhJVMoqx0OHDlW9evW0bNmyyjgdAAAAAOAmUGmP7WnQoMENL1EGAAAAAKC0KiXQ5uXlKSkpSdeuXauM0wEAAAAAbgIVHmhzcnL03HPP6dKlS2rVqlVFnw4AAAAAcJMwtCjUU089Vew+i8WiX375RQkJCfrll1/k5ORU4vjiZGVlafbs2frmm2908uRJXbx4Ud7e3goICNDIkSP1l7/8RdWrVy9wTHp6uubMmaPNmzfr559/lp+fn4YMGaLp06fL09OzzDUAAAAAAByPoUD77rvvysnJSRaLpcRxHh4eev755zVkyJAynyMzM1NvvfWW2rdvr759+8rX11dpaWnaunWrJkyYoI8//lgffvihnJ2dreNDQkJ05MgR9erVS6GhoUpISNCSJUu0e/duxcTEyM3NrTyfLgAAAADAgRgKtNOnTy92n5OTk9zd3dWsWTN179693DOjtWvXVnJyslxdXQtsz83N1ZAhQxQbG6utW7eqX79+kqTFixfryJEjCg8PV0REhHV8RESEoqKitHz5ck2ZMqVctQAAAAAAHIehQDtjxgxb1VEsZ2fnQmFWkqpVq6aBAwdq165dSkpKknT9Mud169bJ09NT06ZNKzB+2rRpevPNN7V27VoCLQAAAABUAZX22B5by8vL07Zt2yTJuthUYmKizp07pw4dOsjDw6PAeA8PD3Xo0EE//vijUlJSKr1eAAAAAIBtGZqh/aPc3FwlJyfrt99+U61ateTv769q1WxziuzsbC1YsEAWi0UXL17Ujh07dPz4cQ0fPlz33nuvpOuBVpICAwOLfI3AwEBt27ZNiYmJatSoUYnny8rKskndVUl2dnaB31F29LBq4N8HY+ifcfTQODP3kO8lVYOZ34OOgh4a54g9LOt6RzZJmwcPHtS8efO0Y8eOAk1xc3NTz5499cwzz+jOO+80dI7s7GzNnTvX+rGTk5OefvppvfDCC9Zt6enpkiRvb+8iX8PLy6vAuJKcPXuW5+YWIzU11d4lmJ65e+hu7wLs7vTp0wZf4ebuofH+SfSQ96BRtnkf2pe5v5dIN/v7kL/HxtFD4xzt30IXF5diJyeLYzjQrlmzRs8884yuXbtWaLXjK1euKCYmRv/5z3+0YMECPfroo+U+j6enp9LS0pSXl6dz587p888/1+zZs/XVV1/p/ffft4ZVW2nQoIFNX68qyM7OVmpqqvz8/Iq8rxk3VjV6eMHeBdhd48aNDb7Czd1D4/2T6CHvQaNs8z60j6rxvUS62d+H/D02jh4aZ+Z/C/MZCrSHDx/W1KlTde3aNXXq1ElPP/20WrVqpVtvvVU//fSTjh07piVLlmjPnj2aMmWK2rZtq7Zt2xoq2NnZWQ0bNtTYsWNVp04dPfbYY1qwYIFefPFFa6i9dOlSkcfmz8yWJvzyaJ/iubq60h+D6KG58bUzhv4ZRw+Nqwo95HuJufG1M44eGlcVemhoUailS5fq2rVrmjBhgmJiYtS/f381adJENWrUUJMmTdS/f3/FxMTo6aef1rVr17Rs2TJb1S1J6tmzpyRp165dkqRmzZpJknXV4z/K354/DgAAAABgXoYCbXx8vLy9vfX888+XOG7WrFny8vLS7t27jZyukJ9++kmSVL16dUnXg2r9+vW1b98+ZWZmFhibmZmpffv2qUmTJjdcEAoAAAAA4PgMBdpffvlFzZo1swbK4lSvXl233Xabzp8/X+ZzfPfdd7p8+XKh7ZcvX9bf//53SdJ9990n6fpCUSNHjlRGRobmzZtXYPy8efOUkZGhUaNGlbkGAAAAAIDjMXQPraenZ6lX2EtNTS30bNjS2LRpk5YvX66OHTvK399ftWrV0tmzZ/XFF1/o119/VadOnTR+/Hjr+EmTJikmJkZRUVFKSEhQ27ZtdfjwYcXGxqp9+/YKCwsrcw0AAAAAAMdjKNC2adNGO3fuVExMjAYMGFDsuOjoaJ05c8b6vNiyuP/++/XTTz9p//792r9/vzIzM+Xl5aXWrVtr2LBhGjFiRIFn3Xp4eCg6Olpz5szRli1bFBcXJz8/P02YMEHTp09XzZo1y/W5AgAAAAAci6FAO2LECO3YsUOPP/64ZsyYoTFjxsjd/X/Pc7p8+bJWrVqluXPnWi8HLqs777yzzM+w9fb2VmRkpCIjI8t8PgAAAACAORgKtKGhodqyZYs2b96s559/Xq+++qr8/f1Vr149/fzzz0pOTlZWVpYsFosGDx6sYcOG2apuAAAAAMBNztCiUJL01ltvafr06fL09NSVK1f0/fffKy4uTt9//72uXLkiT09PzZgxQ6tWrbJFvQAAAAAASDI4QytJLi4umjFjhiZOnKg9e/bohx9+UEZGhjw9PdWiRQt17NixwGXIAAAAAADYguFAm8/d3V29e/dW7969bfWSAAAAAAAUq8yXHIeEhOiWW27RggULSjV+wYIFuuWWW/TnP/+5zMUBAAAAAFCcMgXa+Ph4xcfHq127dpo6dWqpjpk6daratWunHTt2aP/+/eUqEgAAAACAPypToP3oo4/k5OSkyZMnl+kkU6dOlcVi0QcffFCm4wAAAAAAKE6ZAu2+ffvk5uam++67r0wn6dOnj9zc3LRv374yHQcAAAAAQHHKFGiTk5Pl7+8vNze3Mp2kRo0aatKkiU6dOlWm4wAAAAAAKE6ZAm3+c2XLI/85tQAAAAAA2EKZHtvj4+OjCxculOtEFy5ckLe3d7mOBQAAcCQ+b5+xcwXuksr3fzJbSRvd0K7nBwCpjDO0+ZcN//LLL2U6yc8//6xTp06pSZMmZToOAAAAAIDilCnQduvWTZK0atWqMp1k1apVslgs6t69e5mOAwAAAACgOGUKtKNGjZKLi4uioqK0a9euUh0TFxenqKgoVatWTY8++mi5igQAAAAA4I/KFGibNm2qJ598UlevXtWwYcP06quvFntP7YULF/TKK68oNDRUOTk5evzxx9W0aVNb1AwAAAAAQNkWhZKkF198USdPnlR0dLTmz5+vhQsXqmXLlmratKk8PDyUmZmpH3/8Ud99953y8vJksVg0YMAAvfTSSxVRPwAAAADgJlXmQOvs7Kx33nlHS5Ys0aJFi3Tx4kUdPXpUR48elZOTkywWi3Vs7dq1FR4erokTJ9q0aAAAAAAAyhxo8z399NMaO3astm7dqj179ujs2bP67bffVKtWLTVo0ECdOnVSnz595OHhYct6AQAAAACQZCDQSpK7u7sGDx6swYMH26oeAAAAAABKpUyLQgEAAAAA4CgItAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAU3L4QHv27FktX75cf/7znxUUFKS6deuqRYsWGjlypA4cOFDkMenp6XruuecUFBSkevXqKTg4WLNmzVJGRkYlVw8AAAAAqCjV7F3AjbzxxhuKiopSQECAevbsKV9fXyUmJio6OlrR0dF68803NXToUOv4zMxMhYSE6MiRI+rVq5dCQ0OVkJCgJUuWaPfu3YqJiZGbm5sdPyMAAAAAgC04fKBt3769Pv30U3Xt2rXA9vj4eA0ePFhTpkxRSEiIatSoIUlavHixjhw5ovDwcEVERFjHR0REKCoqSsuXL9eUKVMq81MAAAAAAFQAh7/keNCgQYXCrCR17txZ3bp1U1pamo4dOyZJslgsWrdunTw9PTVt2rQC46dNmyZPT0+tXbu2UuoGAAAAAFQshw+0JalevbokycXFRZKUmJioc+fOqUOHDvLw8Cgw1sPDQx06dNCPP/6olJSUSq8VAAAAAGBbDn/JcXFOnz6t7du369Zbb1Xr1q0lXQ+0khQYGFjkMYGBgdq2bZsSExPVqFGjEl8/KyvLtgVXAdnZ2QV+R9nRw6qBfx+MoX/G0UPj6KFx9NAY+mccPTTOEXtY1vWOTBloc3Jy9MQTT+jq1auKiIiwztCmp6dLkry9vYs8zsvLq8C4kpw9e1bXrl2zUcVVS2pqqr1LMD1z99Dd3gXY3enTpw2+ws3dQ+P9k+gh70Gj6KFx9NAY+mccPTTONt+TbcfFxaXYycnimC7Q5uXlafz48YqPj9eoUaP00EMPVch5GjRoUCGva2bZ2dlKTU2Vn5+fXF1d7V2OKVWNHl6wdwF217hxY4OvcHP30Hj/JHrIe9AoemgcPTSG/hlHD42zzfdk+zJVoM3Ly9NTTz2lDz74QA8++KAWLVpUYH/+DOylS5eKPD5/ZjZ/XEl4tE/xXF1d6Y9B9NDc+NoZQ/+Mo4fG0UPj6KEx9M84emhcVeihaQJt/szse++9p9DQUK1YsULOzgXXtGrWrJkkKSkpqcjXyN+ePw4AAAAAYF6mWOX492F26NChWrlypfW+2d9r1qyZ6tevr3379ikzM7PAvszMTO3bt09NmjS54YJQAAAAAADH5/CBNv8y4/fee09DhgzRG2+8UWSYlSQnJyeNHDlSGRkZmjdvXoF98+bNU0ZGhkaNGlUZZQMAAAAAKpjDX3I8d+5cbdiwQZ6enrrtttsKBVVJCgkJUZs2bSRJkyZNUkxMjKKiopSQkKC2bdvq8OHDio2NVfv27RUWFlbZnwIAAAAAoAI4fKBNTk6WJGVkZGj+/PlFjvH397cGWg8PD0VHR2vOnDnasmWL4uLi5OfnpwkTJmj69OmqWbNmpdUOAAAAAKg4Dh9oV6xYoRUrVpTpGG9vb0VGRioyMrKCqgIAAAAA2JvD30MLAAAAAEBRCLQAAAAAAFMi0AIAAAAATIlACwAAAAAwJQItAAAAAMCUCLQAAAAAAFMi0AIAAAAATIlACwAAAAAwJQItAAAAAMCUCLQAAAAAAFMi0AIAAAAATIlACwAAAAAwJQItAAAAAMCUCLQAAAAAAFMi0AIAAAAATIlACwAAAAAwJQItAAAAAMCUCLQAAAAAAFMi0AIAAAAATIlACwAAAAAwJQItAAAAAMCUCLQAAAAAAFMi0AIAAAAATIlACwAAAAAwJQItAAAAAMCUCLQAAAAAAFMi0AIAAAAATIlACwAAAAAwJQItAAAAAMCUCLQAAAAAAFMi0AIAAAAATIlACwAAAAAwJQItAAAAAMCUCLQAAAAAAFMi0AIAAAAATIlACwAAAAAwJQItAAAAAMCUCLQAAAAAAFMi0AIAAAAATIlACwAAAAAwJQItAAAAAMCUCLQAAAAAAFOqZu8CUDY+b5+xcwXuki7Y7expoxva7dwAAAAAHAsztAAAAAAAUyLQAgAAAABMiUALAAAAADAlAi0AAAAAwJQItAAAAAAAUyLQAgAAAABMicf24KZi/8ceSTz6CAAAALANU8zQbty4UeHh4erRo4fq1asnHx8frV+/vtjx6enpeu655xQUFKR69eopODhYs2bNUkZGRiVWDQAAAACoSKaYoX355Zd1+vRp1alTR35+fjp9+nSxYzMzMxUSEqIjR46oV69eCg0NVUJCgpYsWaLdu3crJiZGbm5ulVg9AAAAAKAimGKGdsmSJUpISFBiYqLGjBlT4tjFixfryJEjCg8P18cff6yIiAh9/PHHCg8P18GDB7V8+fJKqhoAAAAAUJFMEWh79Oghf3//G46zWCxat26dPD09NW3atAL7pk2bJk9PT61du7aiygQAAAAAVCJTXHJcWomJiTp37px69+4tDw+PAvs8PDzUoUMHbdu2TSkpKWrUqFGJr5WVlVWRpaKc+LoYRw+No4fG0D/j6KFx9NA4emgM/TOOHhrniD0s6+2hVS7QSlJgYGCR+wMDA7Vt2zYlJibeMNCePXtW165ds3mNxrnbuwC7Kun+6dK5ufsn0UNboIfGGO+fRA95DxpFD42jh8bQP+PooXG2+Z5sOy4uLsVmueJUqUCbnp4uSfL29i5yv5eXV4FxJWnQoIHtCrMp+z3uxRE0btzY4Cvc3P2T6KEt0ENjjPdPooe8B42ih8bRQ2Pon3H00DjbfE+2ryoVaG2JlZAdE18X4+ihcfTQGPpnHD00jh4aRw+NoX/G0UPjqkIPTbEoVGnlz8BeunSpyP35M7P54wAAAAAA5lWlAm2zZs0kSUlJSUXuz9+ePw4AAAAAYF5VLtDWr19f+/btU2ZmZoF9mZmZ2rdvn5o0aXLDBaEAAAAAAI6vSgVaJycnjRw5UhkZGZo3b16BffPmzVNGRoZGjRplp+oAAAAAALZkikWh1q5dqz179kiSjh07Jklat26ddu3aJUnq1KmTHn30UUnSpEmTFBMTo6ioKCUkJKht27Y6fPiwYmNj1b59e4WFhdnnkwAAAAAA2JQpAu2ePXu0YcOGAtv27t2rvXv3Wj/OD7QeHh6Kjo7WnDlztGXLFsXFxcnPz08TJkzQ9OnTVbNmzUqtHQAAAABQMUwRaFesWKEVK1aUery3t7ciIyMVGRlZgVUBAAAAAOypSt1DCwAAAAC4eRBoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKVXZQHvw4EE98MAD8vf3V4MGDdSnTx9t2rTJ3mUBAAAAAGykmr0LqAg7d+7UsGHD5ObmpqFDh8rT01ObN2/W6NGjlZKSoqefftreJQIAAAAADKpygTY3N1eTJk2Ss7OzoqOj1aZNG0nS3/72N/Xu3VsvvfSSBg8eLH9/fztXCgAAAAAwosoF2p07d+rkyZMaPny4NcxKkre3t6ZMmaLx48drw4YNmj59uh2rLL86NarsVeKVgv4ZRw+No4fG0UNj6J9x9NA4emgM/TOOHlYNTmlpaRZ7F2FLs2fP1sKFC7Vq1SoNGzaswL7U1FTdfvvt6t69uzZv3mynCgEAAAAAtlDlfiyRmJgoSWrWrFmhfX5+fvL09FRSUlJllwUAAAAAsLEqF2jT09MlSV5eXkXur1WrlnUMAAAAAMC8qlygBQAAAADcHKpcoM2fmS1uFva3334rdvYWAAAAAGAeVS7Q5t87m38v7e+lpqYqIyNDgYGBlV0WAAAAAMDGqlyg7dKliyQpNja20L5t27YVGAMAAAAAMK8q99ie3Nxc3X333Tp37py2bt1qfRbtpUuX1Lt3byUnJ+urr75SkyZN7FwpAAAAAMCIKjdDW61aNb322mvKy8tTSEiIJk2apL///e/q2rWrTpw4oVmzZhFmy+jgwYN64IEH5O/vrwYNGqhPnz7atGmTvcsyjY0bNyo8PFw9evRQvXr15OPjo/Xr19u7LNM4e/asli9frj//+c8KCgpS3bp11aJFC40cOVIHDhywd3kOLysrS88995z69++vli1bys/PTy1atFC/fv30zjvvKCcnx94lmlZUVJR8fHzk4+Ojr776yt7lOLzg4GBrv/74KyQkxN7lmcaWLVs0ZMgQBQQEyM/PT23atNHYsWOVkpJi79Ic2vr164t9/+X/GjRokL3LdHgWi0WbN2/WwIEDdfvtt6t+/fq6++67FR4erh9//NHe5Tm8vLw8vfHGG+revbvq16+vxo0bq3///oqJibF3aaZWzd4FVITu3bvr888/V2RkpDZt2qScnBy1atVKL774ooYOHWrv8kxl586dGjZsmNzc3DR06FB5enpq8+bNGj16tFJSUvT000/bu0SH9/LLL+v06dOqU6eO/Pz8dPr0aXuXZCpvvPGGoqKiFBAQoJ49e8rX11eJiYmKjo5WdHS03nzzTf5elyAzM1NvvfWW2rdvr759+8rX11dpaWnaunWrJkyYoI8//lgffvihnJ2r3M83K9SxY8cUGRkpDw8PZWZm2rsc0/Dy8lJYWFih7f7+/naoxlwsFosmT56s1atXKyAgQMOGDZOnp6fOnTun3bt36/Tp02rUqJG9y3RYwcHBmj59epH7Nm/erP/+97/q3bt3JVdlPjNnztSyZct06623KiQkRLVq1dK3336rNWvW6KOPPtK///1vtWrVyt5lOiSLxaLHHntMmzdvVkBAgEaMGKHs7GzFxMTokUce0T/+8Q89/vjj9i7TlKrcJcewndzcXN1zzz06e/ZssZdvHzhwgP+I3MD27dsVGBgof39/LVq0SC+++KKWLVum4cOH27s0U9i8ebNuueUWde3atcD2+Ph4DR48WB4eHvr+++9Vo0YNO1Xo2PLy8pSbmytXV9cC23NzczVkyBDt2rVLGzduVL9+/exUofnk5OSoT58+ql69ugIDA/X+++9r69atuueee+xdmkMLDg6WJB05csTOlZjTihUr9Oyzz2rcuHGaO3euXFxcCuzPzc1VtWpVcp6iQmVnZ6tly5ZKT0/XsWPHVK9ePXuX5LBSU1N1xx13qGHDhtq1a5e8vb2t+5YtW6a///3vGj58uJYtW2bHKh3XJ598olGjRqljx47atGmTatasKUm6cOGCevTooZ9//ln79+/nStJy4EfyKNbOnTt18uRJhYaGWsOsJHl7e2vKlCnKzs7Whg0b7FihOfTo0YPQb8CgQYMKhVlJ6ty5s7p166a0tDQdO3bMDpWZg7Ozc6EwK12/PWPgwIGSpKSkpMouy9Tmz5+v7777TkuXLi0UKoCKcOXKFc2dO1dNmzbVnDlzinzfEWbLJzo6Wr/++qv69etHmL2B5ORk5eXlqWPHjgXCrCTdf//9kqTz58/bozRTiI6OliRNmTLFGmYlqU6dOho/fryuXr3KLWnlxL9+KNauXbskSb169Sq0L/+ynN27d1dqTcDvVa9eXZIIFeWQl5dnXfmdy8NK79ChQ1qwYIGee+45tWzZ0t7lmE52drbWr1+vn376SbVq1VL79u11991327sshxcbG6u0tDQNHz5c165dU0xMjBITE+Xt7a0ePXrwOEID1q5dK0l69NFH7VyJ42vWrJlcXV21d+9epaeny8vLy7rv888/lyTde++99irP4f3888+SVOQMbP62uLi4Sq2pqiDQolj5z/LNf7bv7/n5+cnT05OZHdjN6dOntX37dt16661q3bq1vctxeNnZ2VqwYIEsFosuXryoHTt26Pjx4xo+fDj/ASmlq1evKiwsTMHBwZo0aZK9yzGl1NRUPfXUUwW2tW/fXqtWrVJAQICdqnJ8hw4dknT9h3ddunTRiRMnrPucnZ01fvx4vfzyy3aqzrySk5O1Y8cONWzYUH369LF3OQ7vlltu0QsvvKCZM2fq//7v/zRgwADrPbQ7d+7UuHHjuAe0BHXq1JEknTp1SrfffnuBfadOnZKkAn+3UXoEWhQrPT1dkgr8BO73atWqZR0DVKacnBw98cQTunr1qiIiIpihLYXs7GzNnTvX+rGTk5OefvppvfDCC3asylxeffVVJSYmavv27bznymH48OHq1KmTWrVqJQ8PD504cULLli3Txo0bNWjQIMXHx6tWrVr2LtMh5V/GuWzZMrVt21axsbFq0aKFEhISFB4erqVLlyogIEBjx461c6Xmsn79euXl5enhhx/m73QpPfXUU2rQoIEmTpyot956y7q9U6dOCg0N5dL3EvTp00cfffSRFi1apO7du8vNzU2S9Ouvv2rFihWSrq9Tg7LjHloAppKXl6fx48crPj5eo0aN0kMPPWTvkkzB09NTaWlp+vXXX3X06FHNnz9fa9eu1cCBA/nBVCns379fS5Ys0TPPPMMl2uU0Y8YM3Xvvvapbt67c3d3Vpk0brVy5Un/5y190+vRprVmzxt4lOqy8vDxJkqurq9avX6/27dvL09NTnTt31urVq+Xs7KylS5fauUpzycvL0/r16+Xk5KQRI0bYuxzTmDt3rh5//HFNmTJFR48eVUpKij777DNlZWVp4MCBPH6mBA888IC6deumPXv2qHPnzpo2bZomT56sjh07Wn+YxxMHyoeuoVj5M7PF/Wf3t99+K3b2FqgIeXl5euqpp/TBBx/owQcf1KJFi+xdkuk4OzurYcOGGjt2rBYvXqy9e/dqwYIF9i7LoeXm5iosLEytW7fW5MmT7V1OlTN69GhJ0r59++xciePK/17brl071a9fv8C+Vq1aqWnTpjp58qTS0tLsUJ05bd++XSkpKerevbuaNm1q73JMYfv27YqMjNRf//pXTZ48WQ0bNpSnp6c6deqk9957T9WrV9fMmTPtXabDqlatmj788EPNmDFDzs7OWrNmjbZs2aIBAwZY7+X29fW1c5XmxHUBKFb+vbOJiYlq165dgX2pqanKyMhQ+/bt7VAZbkb5M7PvvfeeQkNDtWLFCn6SaVDPnj0l/W8BOBQtIyPDuqZA3bp1ixxz3333SZLeeecd6+rRKJ38+8ouX75s50ocV/PmzSWp0Mqy+fK3Z2VlVVpNZsdiUGW3detWSVK3bt0K7fPz81Pz5s2VkJCgjIwMeXp6VnZ5plCjRg3NmDFDM2bMKLA9fzGoO++80x5lmR6BFsXq0qWLFi5cqNjYWA0bNqzAvvzVUbt06WKP0nCT+X2YHTp0qFauXMn9Tjbw008/SfrfatEoWo0aNTRy5Mgi98XHxysxMVH9+/eXr68vj+gqhwMHDkgSvStBfoA4fvx4oX05OTlKSkqSh4cHszul9OuvvyomJka1a9fmB1BlkJ2dLan4R/NcuHBBzs7OfE8phw8++ECSCv1/G6VDoEWx7r33XjVt2lQffvihnnjiCeuzaC9duqSFCxfK1dWV+xdR4fIvM37vvfc0ZMgQvfHGG4TZMvjuu+/k7+8vd3f3AtsvX76sv//975L+N7uIotWsWVNLliwpcl9YWJgSExM1ZcoU3XPPPZVcmXkcP35cjRo1KvQ+PH78uCIiIiRJoaGhdqjMHAICAtSrVy/FxsZq7dq1BWYVFy1apEuXLunBBx9kQZ5Seu+995Sdna3Ro0erRo0a9i7HNDp27Kh//vOfWr58uQYNGlTgioG33npLZ86cUceOHelpCf74uCNJ+uSTT/TOO++offv2+tOf/mSnysyNf/lQrGrVqum1117TsGHDFBISoqFDh8rT01ObN2/W6dOn9dJLLxX5LC0UtHbtWu3Zs0eSdOzYMUnSunXrrJd5durUiUueSjB37lxt2LBBnp6euu222zRv3rxCY0JCQqw/cEFBmzZt0vLly9WxY0f5+/urVq1aOnv2rL744gv9+uuv6tSpk8aPH2/vMlHFffTRR1q+fLk6d+6sxo0by93dXSdOnNDWrVuVk5OjKVOmcMXPDSxYsEB9+/bVxIkTFR0dbb28c+fOnWrcuLFeeukle5doGu+8844kLjcuqyFDhmjVqlWKj4/X3Xffrf79+8vb21uHDx/Wzp07VbNmTb3yyiv2LtOh9enTRw0bNlSLFi3k5uamr7/+Wrt27VLTpk21evVqfmBfTgRalKh79+76/PPPFRkZqU2bNiknJ0etWrXSiy++qKFDh9q7PFPYs2ePNmzYUGDb3r17tXfvXuvHfFMtXnJysqTr9zHOnz+/yDH+/v4E2mLcf//9+umnn7R//37t379fmZmZ8vLyUuvWrTVs2DCNGDGCWR1UuG7duun48eNKSEjQnj17dPnyZdWpU0f33Xefxo0bp169etm7RIcXEBCgL7/8Uq+++qq2bdum2NhY+fn56a9//av+9re/FXt/Nwr6+uuvdezYMd111108w7yMXFxcrD8k3bRpkz788ENlZ2erXr16evDBBzV16tRCz1dFQX/+85+1ZcsWHThwQDk5OWrSpImeeeYZTZw4kYVWDXBKS0uz2LsIAAAAAADKiiVCAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAAAAAJgSgRYAAAAAYEoEWgAAAACAKRFoAQAAAACmRKAFAMBkgoOD5ePjo7i4OJu9ZmRkpHx8fBQWFmaz1wQAoKJVs3cBAADcTEJCQrR79+4C22rUqCEvLy/Vq1dPbdq0Ubdu3TRkyBC5u7vbqcqCIiMjJUlhYWHy8fGxbzEAAPwOgRYAADto1KiRGjVqJEnKzc1Venq6EhMTdfToUW3YsEEzZsxQRESExowZU+jYgIAAubm52TTw1qlTR82bN9ett95aaN/cuXMlSY888giBFgDgUJzS0tIs9i4CAICbRf4M7fTp0/Xss88W2JeTk6P9+/dr6dKl+uyzzyRJTz75pObMmWOPUq3yQ+zhw4fVpEkTu9YCAMDvcQ8tAAAOonr16urSpYs2bNig559/XpL0+uuva8uWLXauDAAAx0SgBQDAAU2ZMkU9evSQ9L9LfvPdaFGojz/+WP369VPDhg3l7++vkJAQff7555Kuz7b6+Pjo1KlTBY4palGo/G352rZtaz3ex8fHem8tAAD2wj20AAA4qCeeeELbt2/Xt99+q9OnT6tx48Y3POb555/Xa6+9JkmqW7euGjdurO+++04PPfRQoWB8I40aNVLHjh21d+9eSdKdd96pGjVqFNgPAIA9EWgBAHBQnTp1kpOTkywWi7766qsbBtr//Oc/eu211+Tk5KRXX31VTzzxhJydnXXt2jVFRUVp1qxZZTr/yJEjNXLkSOss7erVq7mHFgDgULjkGAAAB+Xj46NatWpJkn7++ecbjo+KipIkjRgxQmFhYXJ2vv5t3sXFRVOnTtXAgQMrrFYAAOyBQAsAgAPz9PSUJGVkZJQ4LiMjw3pp8KOPPlrkmFGjRtm2OAAA7IxACwCAA8sPsl5eXiWOS0pKUl5enqTri0YVpW3btrYtDgAAOyPQAgDgoC5evKj09HRJUr169Uocm5mZKUmqVq2a3NzcihyTP9sLAEBVQaAFAMBBxcfHW/98zz33lDjWw8NDkpSbm6usrKwix9zosmUAAMyGQAsAgINauXKlpOuXCjds2LDEsYGBgdZFoL799tsixyQkJNi2QAAA7IxACwCAA1q4cKF27twpSZo+ffoNx3t6eqpjx46SpHXr1hU5Zu3ateWqxd3dXZJ05cqVch0PAEBFIdACAOAgcnNzFR8fr4cfflizZ8+WJE2YMEEDBgwo1fHh4eGSrgfXlStXWheJunbtmhYvXqzNmzeXq66AgABJ0vbt28t1PAAAFaWavQsAAOBmtH79eu3YsUPS9cCZnp6u5ORk6yyot7e3Zs+eXaZH7fTt21cTJ07Ua6+9punTp2vBggVq3LixTp06pfPnz2vOnDmaMWOGpOvPpi2thx56SLNmzdKMGTP01ltvydfXV05OTnrkkUc0fPjwMnzWAADYFoEWAAA7SElJUUpKiiTJ1dVVXl5eCgwMVJs2bdS9e3cNGTJENWvWLPPrzp49W+3atdOKFSt09OhR/fDDD2rdurUWL16se++91xpoa9WqVerXfOqppyRJGzduVFJSko4fPy5J6tq1a5nrAwDAlpzS0tIs9i4CAABUvIMHD6pXr16qXbu2Tp48ae9yAAAwjHtoAQC4SeQvCtWpUyc7VwIAgG0QaAEAqEJWrVql+Ph4WSz/uwArKytL8+fP15o1ayRJjz/+uL3KAwDApriHFgCAKmTHjh2aOnWqfHx8FBAQoGvXrunEiRO6fPmyJGnKlCnq0aOHfYsEAMBGCLQAAFQhjz32mGrUqKEDBw4oMTFRV65c0S233KIePXpo7Nix6t27t71LBADAZlgUCgAAAABgStxDCwAAAAAwJQItAAAAAMCUCLQAAAAAAFMi0AIAAAAATIlACwAAAAAwJQItAAAAAMCUCLQAAAAAAFMi0AIAAAAATOn/AcQqVS6U0doTAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -254,7 +265,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.4" + "version": "3.12.5" } }, "nbformat": 4, diff --git a/examples/n-gram.ipynb b/examples/n-gram.ipynb index 54c9d6e..15c7394 100644 --- a/examples/n-gram.ipynb +++ b/examples/n-gram.ipynb @@ -39,8 +39,9 @@ "outputs": [], "source": [ "import micrograd_pp as mpp\n", - "import numpy as np\n", - "import numpy.typing as npt" + "import numpy.typing as npt\n", + "\n", + "np = mpp.numpy # `import numpy as np` will not work when using GPU" ] }, { @@ -324,7 +325,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.4" + "version": "3.12.5" } }, "nbformat": 4, diff --git a/examples/transformer.ipynb b/examples/transformer.ipynb index 1d259e0..2dced51 100644 --- a/examples/transformer.ipynb +++ b/examples/transformer.ipynb @@ -9,7 +9,8 @@ "\n", "This notebook trains a decoder-only transformer to perform next token prediction on the Tiny Shakespeare dataset.\n", "\n", - "This should at most be considered a purely educational exercise: since Micrograd++ does not yet support GPU training, the parameters are chosen to be fairly restrictive (e.g., short context, small validation set, etc.) to make CPU training tolerable." + "The parameters are chosen to make training fast (e.g., short context) and will not produce a performant model.\n", + "The interested reader should feel free to alter these to produce a larger model." ] }, { @@ -20,8 +21,9 @@ "outputs": [], "source": [ "import micrograd_pp as mpp\n", - "import numpy as np\n", - "import numpy.typing as npt" + "import numpy.typing as npt\n", + "\n", + "np = mpp.numpy # `import numpy as np` will not work when using GPU" ] }, { @@ -34,12 +36,12 @@ "CONTEXT_WIDTH = 32\n", "DROPOUT = 0.0\n", "EMBEDDING_DIM = 128\n", - "EVAL_FREQ = 500\n", + "EVAL_FREQ = 3_000\n", "HIDDEN_SIZE = EMBEDDING_DIM * 4\n", "LEARNING_RATE = 0.1\n", "NUM_BLOCKS = 3\n", "NUM_HEADS = 4\n", - "NUM_ITERS = 10_000\n", + "NUM_ITERS = 30_000\n", "TRAIN_BATCH_SIZE = 96\n", "TRAIN_FRAC = 0.99\n", "VAL_BATCH_SIZE = 4_096" @@ -142,7 +144,7 @@ " return self._output_proj(x) # (N, L, V)\n", "\n", "def loss(model: mpp.Module, indices: npt.NDArray, user_data: npt.NDArray) -> mpp.Expr:\n", - " \"\"\"Compute loss on a random batch.\"\"\"\n", + " \"\"\"Compute loss on a batch.\"\"\"\n", " x = np.stack([user_data[index - CONTEXT_WIDTH :index ] for index in indices]) # (N, L)\n", " y = np.stack([user_data[index - CONTEXT_WIDTH + 1:index + 1] for index in indices]) # (N, L)\n", " yhat = model(x).reshape((-1, vocab_size)) # (N * L, V)\n", @@ -168,7 +170,7 @@ " low = high\n", " return np.array(losses).mean()\n", "\n", - "def generate_sentence(model: mpp.Module, init: npt.NDArray | None = None, length: int = 64) -> str:\n", + "def generate_sentence(model: mpp.Module, init: npt.NDArray | None = None, length: int = 512) -> str:\n", " \"\"\"Use a learned decoder-only transformer to generate a sentence.\"\"\"\n", " with mpp.eval(), mpp.no_grad():\n", " if init is None:\n", @@ -198,10 +200,28 @@ "\n", "Uninitialized Embedding\n", "-----------------------\n", - "Loss: 4.411328242953009\n", - "Random sentence: oxNr\n", - "sMy,C\n", - "AIseiPmrraFfaFMWHwlHsiFjMA&fxRH,pNhixpRM$EEYSPsxPfEoD\n", + "Loss: 4.616665830144252\n", + "Random sentence: wWm\n", + "!YuG.b3xgXgfuNcXiw,PGmOW,xnxg.xgufo,xZTfiwLmXlpLWnm.g\n", + "gQxBzX,\n", + "!''c,cTBwgH,YfYw,?.gw.m'w'uYT,XRgmt nXX\n", + "kIhLD\n", + "EHr?JgOXC,!mztx,,,RakcYlZuXc,G?ZozU?wgu'z,?wg\n", + "z\n", + "Zg.'PXNT?xgN'XKiwwxmR,gJD,gGs Xbfw&R,XG.q.lfz,,\n", + "o,u'wWZLLzFSXGmnUTSw\n", + "LXXLLnzBcaiwXRguuFcggYX,;'ohcLR cpcYQx,gg&!IRiR,XsxxLwwh,tgwgHmkjYu\n", + "Gc,XbXB,ifxBuG,mpfg$&xm,g?RULmJlwU'XB'XbLwwjfB\n", + ",Wug&uug\n", + "B,LcX&N&XX\n", + "ByX,l! \n", + "k\n", + "D?Vr,l?HP,HcZzR?fu,iXYuufwx,tac,gDitN$!!m\n", + "uKtDqhm.ZR\n", + "LmTfx,bu''bf\n", + "O\n", + "ufOKGb-Ykm,m!W,Bu,L TcotB X'wccuaigl,$WgLBwBbfRXYlBJ&WmZugvXF&KXX?G\n", + ".z\n", "\n" ] } @@ -231,179 +251,254 @@ "\n", "Iteration 0\n", "------------------\n", - "Loss: 4.411328242953009\n", - "Random sentence: Lxs$DhMcWFQxPscUC$W!EosAUsANgL\n", - "vjY$NCRdDOqQqZuRICWC$EjNGboej&Pc!\n", + "Loss: 4.616665830144252\n", + "Random sentence: wG'swRgmGRDiwGYwmalYu g?BYcX\n", + "XlixXx'zJmXc.,I-MuUmuXgYmzN,xLgqNu.wl,cXm,?mGK,uK&Xbo,fRzXckuWXBfBuK,K,3wgguGtG$mZx,uLgex\n", + "'oK',kW\n", + "Mcm\n", + "u!fwu.muabuDhxgR'fzYlNDXP\n", + "guX,xG,BQ,Rdf,YXV,cTg'B,$x,zv.\n", + "wK$wz&BuldX$fWg\n", + ",KBfBuYli\n", + "G $mXguu,NiX,uTBwLmu:B.ww$vwS,mXxuB,WRDViRiDGlVPt-XmG,'vTBR,NKgm'Z\n", + "ZbumLXKw,?D,,mGLz yhqHjwmx,eG3$bStFRZtXlRi3fdfumUP'cVFg,BK&iKiLlxgqko,OTx,ntq,RKXYufVknlKn,MVyO'O'w-mZTKiLxB Yu'UIUBfQuwwWK.oG $iczmufU'wrG',xBKivwmRBilCjFjhBPwePuWg&3,Ml$l,mxg\n", + "Nhwov,gLg$B;Duc&X'CHwwtG!,DitXDt.w-aoRHXgge,nzVDXP&uUw\n", "\n", "\n", - "Iteration 500\n", + "Iteration 3000\n", "------------------\n", - "Loss: 2.533599337553858\n", - "Random sentence: GElaRKeeris, r t be ailll hee wotur:ye ed:\n", - "The,\n", - "$ y?Angrs;e ber \n", + "Loss: 2.0463488263845897\n", + "Random sentence: CRUMINAMELELVOCENTA:\n", + "Our I hangir, shall waing I befiste it unnt: en not hem ben starome not to for elier plese,\n", + "If bese, I'n cupasely tend ald thie, patiledn.\n", + "Pear at wit Fram wh me som kinequess. I bun stou!\n", + "Sin to that morrie met the was heasol un Ve,\n", + "Gry, Ratings:\n", + "'Sels for, sickinch, baddled kith\n", + "Tild bruck bemp-manes the trutist\n", + "I then not not semeren; thou wart hald in eward my yether.\n", + "Wath morreathem canstere, Decupe as a holy!\n", + "This woman you werver so's pon doun ton wheme,\n", + "Our the thereer then yren\n", "\n", "\n", - "Iteration 1000\n", + "Iteration 6000\n", "------------------\n", - "Loss: 2.3411745737318306\n", - "Random sentence: ANESTENYANCENGAET:\n", - "Whimy Whe:\n", - "Noorind Pind anir, neamig?\n", + "Loss: 1.8789769487645624\n", + "Random sentence: TRANUS:HORY IS:\n", + "So sunir' he\n", + "no? Yello boy, the sear 'ermblows hath nough'd;\n", + "Foir,\n", + "But sir, and four uncling lew; thou arm such\n", + "And crade the sestfest isure, I ass he conters he looke of mouch Edward your are comps.\n", "\n", + "MENEN:\n", + "Haure all becound you come, promout boss.\n", + "Ge Edward withichs thank not my\n", + "Bout: thought Salong and when Whickty he have capile of Sild, it the our of besen.\n", "\n", + "MONTA:\n", "\n", - "PYIG\n", + "SLIEXS:\n", + "Yet th thee being old cousin, like so be this worse:\n", + "Inas evers of mine.\n", "\n", + "QUEEN MENIO:\n", + "I'll not?\n", "\n", - "Iteration 1500\n", - "------------------\n", - "Loss: 2.2217165534240615\n", - "Random sentence: NULENUBELIUCER:\n", - "NRy theme?H my wheass as mpuges pulons.\n", + "KING EDWICHABRD:\n", "\n", - "YCDASTR\n", "\n", - "\n", - "Iteration 2000\n", + "Iteration 9000\n", "------------------\n", - "Loss: 2.1437060877395724\n", - "Random sentence: YUETV:\n", - "Diz ViBA freters be sire neeed.\n", + "Loss: 1.7874336620118776\n", + "Random sentence: LEONCEES:\n", + "OFider, my lord, I forsaid not.\n", + "Provost, gral ade heaven busine sorring of like our so life! slate.\n", "\n", - "VOREY Awhy lege\n", - "That shi\n", + "MINARENBIUS:\n", + "What will me?\n", "\n", + "KING RICATHAND:\n", + "Come, in think your battle\n", + "Richord citlence of findrise earge andry's body and cruded friend, I head,\n", + "'Tis sea u' say say their nor\n", + "five my missables brow my etchments\n", + "That devish mader himself womed caris afform\n", + "Then blood, no there, that dukes hare in have that shalt to you hurselved like on stup him have floth lius him his buriness,\n", + "That every nament s\n", "\n", - "Iteration 2500\n", - "------------------\n", - "Loss: 2.089483798097002\n", - "Random sentence: OQENGUEELEES:\n", - "AR I, Wean not gerd shall now amby hushe im.\n", - "And s\n", "\n", - "\n", - "Iteration 3000\n", + "Iteration 12000\n", "------------------\n", - "Loss: 2.072011124940682\n", - "Random sentence: LETYUGHE'R:\n", - "O, go shal, my sil; Sill be to dess,\n", - "shed fee acher,\n", - "\n", - "\n", - "Iteration 3500\n", + "Loss: 1.7266077093835357\n", + "Random sentence: ANGELLOUGHARD III:\n", + "Mision confall'd\n", + "merch'd to baxe\n", + "Hus cease ears a choled friends,\n", + "And sighdoney, for my out light\n", + "Of fields, a moure as ill will beer leave,\n", + "But prove see of a shack, 'That the be's that may his break cer words your hours' is his will Frane,--\n", + "And not that He lies, woe swill had his rese are slaight:\n", + "Be, I very condey are is guest.\n", + "\n", + "ISABELLA:\n", + "All lenemorshed more day, my doth in me,\n", + "Were upon'd of Nuner brearing of case one reson fwars. Frow't of Lord Haw be our vengean\n", + "While that you are\n", + "\n", + "\n", + "Iteration 15000\n", "------------------\n", - "Loss: 2.020927447962387\n", - "Random sentence: MICHARY:\n", - "He bard! nont, ins; all time in of my herdonds, are his\n", + "Loss: 1.6730787704937757\n", + "Random sentence: PELVER:\n", + "In Kathark'd. HERgonvy I have ancient\n", + "Then wichardles them to thee? kin he ome,\n", + "By sates too? or sincle. Then hands.\n", "\n", + "LORD HENRY VI:\n", + "A think of Prince own this?\n", "\n", - "Iteration 4000\n", - "------------------\n", - "Loss: 1.9881086504413765\n", - "Random sentence: NLARUDYIUB:\n", - "Pet so, in the the sehrouds retch,\n", - "My band, Brans an\n", + "Provost:\n", + "Yet,\n", + "Come, the suppon th me other once first.\n", "\n", + "CATESBY:\n", + "The kind it, if you, not fit is my sheeth:\n", + "Welcomes it.\n", "\n", - "Iteration 4500\n", - "------------------\n", - "Loss: 1.9580338393000023\n", - "Random sentence: TAUTELLENUS:\n", - "No goord thyssingies are.\n", + "BUCKINGHAM:\n", + "But, Thou dost thou half--\n", + "For your fot hear ewell ye\n", + "The it not soul be She home? marks, and\n", + "Mayor, master, and neither furning of woe\n", + "Of my foot. Angelo.\n", "\n", - "GRO:\n", - "Shall his irs ritot\n", + "CLARENCE:\n", + "I will must seasoes, if thou hads!\n", + "Broke,\n", "\n", "\n", - "Iteration 5000\n", + "Iteration 18000\n", "------------------\n", - "Loss: 1.958173437010472\n", - "Random sentence: Secounds sight, eye theak: as the the the Lords.\n", + "Loss: 1.660302514208628\n", + "Random sentence: KATHARINA:\n", + "It is't the king nor in Juliet? say,\n", + "'Who bold the with a gentle me.\n", + "\n", + "ROMEO:\n", + "I for my queen's heir coward, cousin,\n", + "you honesty, you lie tree to meet,\n", + "We broke thy ham; old God, sir, you say't,\n", + "help, yet him upon the account more\n", + "Is with answer's cry your annerby,\n", + "For this my call their bar their sit live. say, prifit\n", + "the cease you?\n", + "\n", + "Third Citizen:\n", + "Be with is not thee; fear, then, bite prove said the court,\n", + "But come soul-naw, and awry arm!\n", + "He a good eit! O emprected ours,\n", + "That you? defent not agiv\n", + "\n", + "\n", + "Iteration 21000\n", + "------------------\n", + "Loss: 1.6212410996272009\n", + "Random sentence: IVIRCLIUS:\n", + "What, that show to in min.\n", "\n", - "MNOUCESTER:\n", - "Ay\n", + "KING RICHARD II:\n", + "Hereford I.\n", "\n", + "VOLUMNIAD:\n", + "This viold year never it, having,\n", "\n", - "Iteration 5500\n", - "------------------\n", - "Loss: 1.9308816189733313\n", - "Random sentence: RISCAMIO:\n", + "ISABELLA:\n", + "Dear intershal. What's tenters, underfection\n", + "To sundance, men, to choins wall paracus.\n", + "May you depent her hand my more both\n", + "With aford her cament and sweeter.\n", "\n", - "RUTOUMER:\n", - "Wood their bown cleading: betougner the is,\n", + "CATESBY:\n", + "Thy know not to-mood.\n", "\n", + "KING HENRY VI:\n", + "O mind spents what my lord.\n", "\n", - "Iteration 6000\n", - "------------------\n", - "Loss: 1.911466234016684\n", - "Random sentence: MERKETANBE:\n", - "I well proy's onger beentlemance wan meather with ma\n", + "Second Mercy:\n", + "Henry returned to then that do back child.\n", "\n", + "First Lord:\n", + "I possess'd deal.\n", "\n", - "Iteration 6500\n", - "------------------\n", - "Loss: 1.9035973708617508\n", - "Random sentence: TyNLESTES:\n", - "It a seem'd enors where lend wherefore Cather death, \n", + "DUKE OF YORK:\n", + "Now to my sent good daughter receiveth all on my\n", "\n", "\n", - "Iteration 7000\n", + "Iteration 24000\n", "------------------\n", - "Loss: 1.8735182510486765\n", - "Random sentence: Turt:\n", - "Sign burid, then so golve butice't what, muy ever you\n", - "For \n", - "\n", + "Loss: 1.6104857896807314\n", + "Random sentence: SOMELLIA:\n", + "Prithat, sir, sir, ay, they dispatch undoin's say'st her.\n", "\n", - "Iteration 7500\n", - "------------------\n", - "Loss: 1.869562540186564\n", - "Random sentence: MARIS.BARDAP:\n", - "Ist feat breast-raid campts yield\n", - "A clrowd ans; wh\n", + "KING RICHARD III:\n", + "It wot not lets thyself! for what, night.\n", "\n", + "TRANIO:\n", + "He is you have well; what nature the and be broke;\n", + "Made you field'd, so honour purpose,\n", + "So think in my tongue heart-\n", + "Follow the vaintain which you tiestal affects: now lever for his\n", + "A vilet shall pickly to your losh:\n", + "What that wont them so brooke; but give your away,\n", + "Comford, his the fiery: that winters!\n", + "Com on, and she and he nature?\n", "\n", - "Iteration 8000\n", - "------------------\n", - "Loss: 1.85178764820606\n", - "Random sentence: SAMINDALY:\n", - "Godtilive not dide to fromptrator:\n", - "Father worrown inM\n", + "BRUTUS:\n", + "Chone unto this hastest, and\n", "\n", "\n", - "Iteration 8500\n", + "Iteration 27000\n", "------------------\n", - "Loss: 1.840864339445898\n", - "Random sentence: ANTELA:\n", - "Notio, or vosper of basband;\n", - "Wern thou grand my lord. Th\n", + "Loss: 1.5970872732121075\n", + "Random sentence: MENENIUS:\n", + "You this, be bed wither, speak me a foot\n", + "with ustart, lord, Prithee do me to have thes, they say news but\n", + "Upon aboy, if than their chield with gistence earth than heard that man are unjustiful,\n", + "Dispat him and right, friends, hell your the Ratch,\n", + "And tears framed to see to an our sork,\n", + "When hath was, unry from me. Lady antigation York!\n", + "These that cheers that oath\n", + "To fly me erbody, what, that he them,\n", + "Under was no mine rock sog so with the hand?\n", "\n", + "DUKE OF AUMERLE:\n", + "Nay, lords, mark'd, Camillo my now,\n", "\n", - "Iteration 9000\n", - "------------------\n", - "Loss: 1.8231779725821042\n", - "Random sentence: Set RIVINCEN York me his valousand\n", - "That iffock to upon him\n", - "Bode \n", "\n", "\n", - "Iteration 9500\n", + "Iteration 30000\n", "------------------\n", - "Loss: 1.815877081143661\n", - "Random sentence: DUivETH's all you that means him; for joys:\n", - "Sick he love.\n", - "Can I \n", + "Loss: 1.587523492528424\n", + "Random sentence: DUREGORE:\n", + "Threeches nothing wosts, and I cannot stones: I repart of withest but upon throat,\n", + "And makes for WARWICK:\n", + "Gram forth of his aunt\n", + "have his horse; I'll am I common block more than a grieves and sworn in the head of lady?\n", "\n", + "ISABELLA:\n", + "How my sope of Milate full even such as leave my officers.\n", "\n", - "Iteration 10000\n", - "------------------\n", - "Loss: 1.7962866239903075\n", - "Random sentence: First MARINA:\n", - "Gentleman.\n", + "GLOUCESTER:\n", + "Is woo although hath we are to deparch your chanced to urge your honour: morrow, unpiscase of other\n", + "Which ship ranches followers?\n", + "\n", + "Propostment:\n", + "Sent those inforcement.\n", "\n", - "HERRANIONE:\n", - "Well, me nile my men, whos\n", + "Teglimman:\n", + "He common harm of th\n", "\n" ] } @@ -447,7 +542,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.4" + "version": "3.12.5" } }, "nbformat": 4, diff --git a/src/micrograd_pp/__init__.py b/src/micrograd_pp/__init__.py index 1c9b330..cdde735 100644 --- a/src/micrograd_pp/__init__.py +++ b/src/micrograd_pp/__init__.py @@ -13,6 +13,7 @@ eval, is_eval, ) +from ._numpy import numpy from ._opt import SGD from . import datasets @@ -38,6 +39,7 @@ "is_eval", "is_grad_enabled", "maximum", + "numpy", "no_grad", "relu", "softmax", diff --git a/src/micrograd_pp/_expr.py b/src/micrograd_pp/_expr.py index 8551b2c..08f61c2 100644 --- a/src/micrograd_pp/_expr.py +++ b/src/micrograd_pp/_expr.py @@ -6,9 +6,9 @@ from collections import deque from typing import Any, Callable, Generator, Sequence -import numpy as np import numpy.typing as npt +from ._numpy import numpy as np from ._util import n_samples diff --git a/src/micrograd_pp/_func.py b/src/micrograd_pp/_func.py index fe1cd66..c509b48 100644 --- a/src/micrograd_pp/_func.py +++ b/src/micrograd_pp/_func.py @@ -1,8 +1,8 @@ from typing import Sequence -import numpy as np import numpy.typing as npt +from ._numpy import numpy as np from ._expr import Expr diff --git a/src/micrograd_pp/_nn.py b/src/micrograd_pp/_nn.py index a3b61f6..9452640 100644 --- a/src/micrograd_pp/_nn.py +++ b/src/micrograd_pp/_nn.py @@ -3,10 +3,10 @@ from collections.abc import Callable from typing import Any, Generator -import numpy as np import numpy.typing as npt from ._expr import Constant, Expr, Parameter, relu +from ._numpy import numpy as np from ._func import softmax from ._util import n_samples diff --git a/src/micrograd_pp/_numpy.py b/src/micrograd_pp/_numpy.py new file mode 100644 index 0000000..fdb4c97 --- /dev/null +++ b/src/micrograd_pp/_numpy.py @@ -0,0 +1,32 @@ +import os +import subprocess + + +def _cuda_is_available() -> bool: + """Uses nvidia-smi to check whether a CUDA-enabled GPU is available.""" + try: + result = subprocess.run(["nvidia-smi"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True) + return "CUDA" in result.stdout.decode() + except subprocess.CalledProcessError: + return False + + +def _get_env_as_int(name: str, default: int = 0) -> int: + env = os.environ.get(name, default) + try: + env_as_int = int(env) + except ValueError: + msg = f"Expected {name} to be an integer, got {env} instead" + raise ValueError(msg) + return env_as_int + + +if _get_env_as_int("MPP_GPU", default=_cuda_is_available()): + try: + import cupy as np + except ImportError: + import numpy as np +else: + import numpy as np + +numpy = np diff --git a/src/micrograd_pp/_util.py b/src/micrograd_pp/_util.py index f396e34..82184fc 100644 --- a/src/micrograd_pp/_util.py +++ b/src/micrograd_pp/_util.py @@ -1,9 +1,9 @@ -import numpy as np +from ._numpy import numpy as np def n_samples(dim: int | tuple[int, ...] | None, shape: tuple[int, ...]) -> int: if isinstance(dim, int): return shape[dim] if dim is None: - return np.prod(shape).item() - return np.prod([shape[d] for d in dim]).item() + return np.prod(np.array(shape)).item() + return np.prod(np.array([shape[d] for d in dim])).item() diff --git a/src/micrograd_pp/datasets/_mnist.py b/src/micrograd_pp/datasets/_mnist.py index feca2e0..367b152 100644 --- a/src/micrograd_pp/datasets/_mnist.py +++ b/src/micrograd_pp/datasets/_mnist.py @@ -5,9 +5,10 @@ import sys import urllib.request -import numpy as np import numpy.typing as npt +from .._numpy import numpy as np + def _compute_hash(file_path): with open(file_path, "rb") as file: diff --git a/tests/test_expr.py b/tests/test_expr.py index d175441..cfb48d1 100644 --- a/tests/test_expr.py +++ b/tests/test_expr.py @@ -1,11 +1,12 @@ import itertools from typing import Generator -import numpy as np import pytest import micrograd_pp as mpp +np = mpp.numpy + DIMS = [0, 1, 2, (0, 1), (0, 2), (1, 2), (0, 1, 2), None] diff --git a/tests/test_func.py b/tests/test_func.py index e420670..a0d4fc0 100644 --- a/tests/test_func.py +++ b/tests/test_func.py @@ -1,8 +1,9 @@ -import numpy as np import pytest import micrograd_pp as mpp +np = mpp.numpy + @pytest.mark.skipif(not pytest.importorskip("scipy.special"), reason="Unable to import scipy.special") def test_softmax() -> None: diff --git a/tests/test_mnist.py b/tests/test_mnist.py index 8180500..e38175d 100644 --- a/tests/test_mnist.py +++ b/tests/test_mnist.py @@ -1,8 +1,9 @@ -import numpy as np import pytest import micrograd_pp as mpp +np = mpp.numpy + @pytest.fixture(autouse=True) def run_before_and_after_tests(): diff --git a/tests/test_nn.py b/tests/test_nn.py index 8aed0b3..71d2657 100644 --- a/tests/test_nn.py +++ b/tests/test_nn.py @@ -1,10 +1,11 @@ from typing import Generator -import numpy as np import pytest import micrograd_pp as mpp +np = mpp.numpy + BATCH_SZ = 64 NUM_FEATURES = 10 SEQ_LEN = 5 diff --git a/tests/test_opt.py b/tests/test_opt.py index 9f87041..a603a3a 100644 --- a/tests/test_opt.py +++ b/tests/test_opt.py @@ -1,8 +1,9 @@ -import numpy as np import pytest import micrograd_pp as mpp +np = mpp.numpy + @pytest.fixture(autouse=True) def run_before_and_after_tests():