-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpanosalnet.py
46 lines (36 loc) · 1.18 KB
/
panosalnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#TODO: load the panosalnet model, create salient map from input image
#input: model config file: panosalnet_test.prototxt
# model weight: 'panosalnet_iter_800.caffemodel
# input image: test.png
#output: salient map
import cv2
import numpy as np
import caffe
import timeit
FILE_MODEL_CONFIG = 'panosalnet_test.prototxt'
FILE_MODEL_WEIGHT = 'panosalnet_iter_800.caffemodel'
FILE_IMAGE = 'test.png'
def post_filter(_img):
result = np.copy(_img)
result[:3,:3] = _img.min()
result[:3, -3:] = _img.min()
result[-3:, :3] = _img.min()
result[-3:, -3:] = _img.min()
return result
net = caffe.Net(FILE_MODEL_CONFIG, caffe.TEST)
net.copy_from(FILE_MODEL_WEIGHT )
C, H, W = net.blobs['data1'].data[0].shape
img = cv2.imread(FILE_IMAGE)
mu = [ 104.00698793, 116.66876762, 122.67891434]
input_scale = 0.0078431372549
dat = cv2.resize(img, (W, H))
dat = dat.astype(np.float32)
dat -= np.array(mu)#mean values
dat *= input_scale
dat = dat.transpose((2,0,1))
net.blobs['data1'].data[0] = dat
net.forward(start='conv1')
salient = net.blobs['deconv1'].data[0][0]
salient = (salient * 1.0 - salient.min())
salient = (salient / salient.max()) * 255
salient = post_filter(salient)