-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.cpp
executable file
·681 lines (530 loc) · 18 KB
/
utils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
#include "utils.h"
/*******************************************************************************
*/
std::pair<double,double> Utils::computeDeltaXY(
const std::vector< std::pair<double,double> >& real_scan_points,
const std::vector< std::pair<double,double> >& virtual_scan_points)
{
assert(real_scan_points.size() == virtual_scan_points.size());
unsigned int N = real_scan_points.size();
double delta_x = 0.0;
double delta_y = 0.0;
for (int i = 0; i < N; i++)
{
delta_x += real_scan_points[i].first - virtual_scan_points[i].first;
delta_y += real_scan_points[i].second - virtual_scan_points[i].second;
}
delta_x /= N;
delta_y /= N;
return std::make_pair(delta_x, delta_y);
}
/*******************************************************************************
*/
std::pair<double,double> Utils::computeDeltaXY(
const std::vector<double>& real_scan,
const std::tuple<double,double,double>& real_pose,
const std::vector<double>& virtual_scan,
const std::tuple<double,double,double>& virtual_pose)
{
assert(real_scan.size() == virtual_scan.size());
double rx0 = std::get<0>(real_pose);
double ry0 = std::get<1>(real_pose);
double rt0 = std::get<2>(real_pose);
double vx0 = std::get<0>(virtual_pose);
double vy0 = std::get<1>(virtual_pose);
double vt0 = std::get<2>(virtual_pose);
unsigned int N = real_scan.size();
double delta_x = 0.0;
double delta_y = 0.0;
for (int i = 0; i < real_scan.size(); i++)
{
double x_r = rx0 + real_scan[i]*cos(-M_PI + i*2*M_PI/N + rt0);
double y_r = ry0 + real_scan[i]*sin(-M_PI + i*2*M_PI/N + rt0);
double x_v = vx0 + virtual_scan[i]*cos(-M_PI + i*2*M_PI/N + vt0);
double y_v = vy0 + virtual_scan[i]*sin(-M_PI + i*2*M_PI/N + vt0);
delta_x += x_r - x_v;
delta_y += y_r - y_v;
}
//delta_x /= N;
//delta_y /= N;
return std::make_pair(delta_x, delta_y);
}
/*******************************************************************************
*/
std::vector< std::pair<double,double> > Utils::conjugate(
const std::vector< std::pair<double,double> >& vec)
{
#ifdef TIMES
std::chrono::high_resolution_clock::time_point start =
std::chrono::high_resolution_clock::now();
#endif
std::vector< std::pair<double,double> > ret_vector;
for (int i = 0; i < vec.size(); i++)
ret_vector.push_back(std::make_pair(vec[i].first, -vec[i].second));
#ifdef TIMES
std::chrono::high_resolution_clock::time_point end =
std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed =
std::chrono::duration_cast< std::chrono::duration<double> >(end-start);
printf("%f [conjugate]\n", elapsed.count());
#endif
return ret_vector;
}
/*******************************************************************************
*/
void Utils::diffScansPerRay(
const std::vector<double>& scan1, const std::vector<double>& scan2,
const double& inclusion_bound, std::vector<double>* diff,
std::vector<double>* diff_true)
{
assert (scan1.size() == scan2.size());
diff->clear();
diff_true->clear();
double eps = 0.000001;
if (inclusion_bound < 0.0001)
eps = 1.0;
#ifdef DEBUG
printf("inclusion_bound = %f\n", inclusion_bound + eps);
#endif
double d = 0.0;
for (unsigned int i = 0; i < scan1.size(); i++)
{
d = scan1[i] - scan2[i];
if (fabs(d) <= inclusion_bound + eps)
diff->push_back(d);
else
diff->push_back(0.0);
diff_true->push_back(d);
}
}
/*******************************************************************************
*/
void Utils::generatePose(
const std::tuple<double,double,double>& real_pose,
const double& dxy, const double& dt,
std::tuple<double,double,double>* virtual_pose)
{
assert(dxy >= 0);
assert(dt >= 0);
std::random_device rand_dev;
std::mt19937 generator_x(rand_dev());
std::mt19937 generator_y(rand_dev());
std::mt19937 generator_t(rand_dev());
std::mt19937 generator_sign(rand_dev());
std::uniform_real_distribution<double> distribution_x(-dxy, dxy);
std::uniform_real_distribution<double> distribution_y(-dxy, dxy);
std::uniform_real_distribution<double> distribution_t(-dt, dt);
double rx = distribution_x(generator_x);
double ry = distribution_y(generator_y);
double rt = distribution_t(generator_t);
std::get<0>(*virtual_pose) = std::get<0>(real_pose) + rx;
std::get<1>(*virtual_pose) = std::get<1>(real_pose) + ry;
std::get<2>(*virtual_pose) = std::get<2>(real_pose) + rt;
Utils::wrapAngle(&std::get<2>(*virtual_pose));
}
/*******************************************************************************
*/
bool Utils::generatePose(
const std::tuple<double,double,double>& base_pose,
const std::vector< std::pair<double,double> >& map,
const double& dxy, const double& dt, const double& dist_threshold,
const unsigned int& max_tries,
std::tuple<double,double,double>* real_pose)
{
assert(dxy >= 0.0);
assert(dt >= 0.0);
std::random_device rand_dev_x;
std::random_device rand_dev_y;
std::random_device rand_dev_t;
std::mt19937 generator_x(rand_dev_x());
std::mt19937 generator_y(rand_dev_y());
std::mt19937 generator_t(rand_dev_t());
std::uniform_real_distribution<double> distribution_x(-dxy, dxy);
std::uniform_real_distribution<double> distribution_y(-dxy, dxy);
std::uniform_real_distribution<double> distribution_t(-dt, dt);
// A temp real pose
std::tuple<double,double,double> real_pose_ass;
// Fill in the orientation regardless
double rt = distribution_t(generator_t);
std::get<2>(real_pose_ass) = std::get<2>(base_pose) + rt;
double t = std::get<2>(real_pose_ass);
Utils::wrapAngle(&t);
std::get<2>(real_pose_ass) = t;
// We assume that the lidar sensor is distanced from the closest obstacle
// by a certain amount (e.g. the radius of a circular base)
bool pose_found = false;
unsigned int failed_tries = 0;
while (!pose_found)
{
pose_found = true;
double rx = distribution_x(generator_x);
double ry = distribution_y(generator_y);
std::get<0>(real_pose_ass) = std::get<0>(base_pose) + rx;
std::get<1>(real_pose_ass) = std::get<1>(base_pose) + ry;
if (isPositionInMap(real_pose_ass, map))
{
for (unsigned int i = 0; i < map.size(); i++)
{
double dx = std::get<0>(real_pose_ass) - map[i].first;
double dy = std::get<1>(real_pose_ass) - map[i].second;
if (dx*dx + dy*dy < dist_threshold*dist_threshold)
{
pose_found = false;
break;
}
}
}
else pose_found = false;
if (!pose_found)
{
failed_tries++;
if (failed_tries > max_tries)
return false;
}
}
*real_pose = real_pose_ass;
// Verify distance threshold
std::vector< std::pair<double,double> > intersections =
X::find(real_pose_ass, map, map.size());
std::vector<double> real_scan;
points2scan(intersections, real_pose_ass, &real_scan);
unsigned int min_dist_idx =
std::min_element(real_scan.begin(), real_scan.end()) - real_scan.begin();
return real_scan[min_dist_idx] > dist_threshold;
}
/*******************************************************************************
*/
bool Utils::generatePoseWithinMap(
const std::vector< std::pair<double,double> >& map,
const double& dist_threshold,
const unsigned int& max_tries,
std::tuple<double,double,double>* pose)
{
// A temp real pose
std::tuple<double,double,double> real_pose_ass;
// Generate orientation
std::random_device rand_dev_t;
std::mt19937 generator_t(rand_dev_t());
std::uniform_real_distribution<double> distribution_t(-M_PI, M_PI);
// Fill in the orientation regardless
std::get<2>(real_pose_ass) = distribution_t(generator_t);
// Find the bounding box of the map
double max_x = -1000.0;
double min_x = +1000.0;
double max_y = -1000.0;
double min_y = +1000.0;
for (unsigned int i = 0; i < map.size(); i++)
{
if (map[i].first > max_x)
max_x = map[i].first;
if (map[i].first < min_x)
min_x = map[i].first;
if (map[i].second > max_y)
max_y = map[i].second;
if (map[i].second < min_y)
min_y = map[i].second;
}
std::random_device rand_dev_x;
std::random_device rand_dev_y;
std::mt19937 generator_x(rand_dev_x());
std::mt19937 generator_y(rand_dev_y());
std::uniform_real_distribution<double> distribution_x(min_x, max_x);
std::uniform_real_distribution<double> distribution_y(min_y, max_y);
// We assume that the lidar sensor is distanced from the closest obstacle
// by a certain amount (e.g. the radius of a circular base)
bool pose_found = false;
unsigned int failed_tries = 0;
while (!pose_found)
{
pose_found = true;
double rx = distribution_x(generator_x);
double ry = distribution_y(generator_y);
std::get<0>(real_pose_ass) = rx;
std::get<1>(real_pose_ass) = ry;
if (isPositionInMap(real_pose_ass, map))
{
for (unsigned int i = 0; i < map.size(); i++)
{
double dx = std::get<0>(real_pose_ass) - map[i].first;
double dy = std::get<1>(real_pose_ass) - map[i].second;
if (dx*dx + dy*dy < dist_threshold*dist_threshold)
{
pose_found = false;
break;
}
}
if (!pose_found)
{
failed_tries++;
if (failed_tries > max_tries)
return false;
}
}
else pose_found = false;
}
*pose = real_pose_ass;
// Verify distance threshold
std::vector< std::pair<double,double> > intersections =
X::find(real_pose_ass, map, map.size());
std::vector<double> real_scan;
points2scan(intersections, real_pose_ass, &real_scan);
unsigned int min_dist_idx =
std::min_element(real_scan.begin(), real_scan.end()) - real_scan.begin();
return real_scan[min_dist_idx] > dist_threshold;
}
/*******************************************************************************
*/
std::vector<double> Utils::innerProduct(
const std::vector<double>& vec1,
const std::vector<double>& vec2)
{
assert(vec1.size() == vec2.size());
std::vector<double> ret_vector;
for (int i = 0; i < vec1.size(); i++)
{
ret_vector.push_back(vec1[i] * vec2[i]);
}
return ret_vector;
}
/*******************************************************************************
*/
std::vector< std::pair<double, double> > Utils::innerProductComplex(
const std::vector< std::pair<double, double> >& vec1,
const std::vector< std::pair<double, double> >& vec2)
{
#ifdef TIMES
std::chrono::high_resolution_clock::time_point start =
std::chrono::high_resolution_clock::now();
#endif
assert(vec1.size() == vec2.size());
std::vector< std::pair<double, double> > ret_vector;
for (int i = 0; i < vec1.size(); i++)
{
double re =
vec1[i].first * vec2[i].first - vec1[i].second * vec2[i].second;
double im =
vec1[i].first * vec2[i].second + vec1[i].second * vec2[i].first;
ret_vector.push_back(std::make_pair(re,im));
}
#ifdef TIMES
std::chrono::high_resolution_clock::time_point end =
std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed =
std::chrono::duration_cast< std::chrono::duration<double> >(end-start);
printf("%f [innerProductComplex]\n", elapsed.count());
#endif
return ret_vector;
}
/*******************************************************************************
*/
bool Utils::isPositionInMap(
const std::tuple<double, double, double>& pose,
const std::vector< std::pair<double,double> >& map)
{
Point_2 point(std::get<0>(pose), std::get<1>(pose));
// Construct polygon from map
Polygon_2 poly;
for (int p = 0; p < map.size(); p++)
poly.push_back(Point_2(map[p].first, map[p].second));
poly.push_back(Point_2(map[map.size()-1].first, map[map.size()-1].second));
bool inside = false;
if(CGAL::bounded_side_2(poly.vertices_begin(),
poly.vertices_end(),
point, Kernel()) == CGAL::ON_BOUNDED_SIDE)
{
inside = true;
}
return inside;
}
/*******************************************************************************
*/
bool Utils::isPositionFartherThan(
const std::tuple<double, double, double>& pose,
const std::vector< std::pair<double,double> >& map,
const double& dist)
{
for (unsigned int i = 0; i < map.size(); i++)
{
double dx = std::get<0>(pose) - map[i].first;
double dy = std::get<1>(pose) - map[i].second;
double d = sqrt(dx*dx + dy*dy);
if (d < dist)
return false;
}
return true;
}
/*******************************************************************************
*/
std::pair<double,double> Utils::multiplyWithRotationMatrix(
const std::pair<double,double>& point, const double& angle)
{
double R11 = cos(angle);
double R12 = -sin(angle);
double R21 = -R12;
double R22 = R11;
double x = R11 * point.first + R12 * point.second;
double y = R21 * point.first + R22 * point.second;
return std::make_pair(x,y);
}
/*******************************************************************************
*/
std::vector< std::pair<double,double> > Utils::multiplyWithRotationMatrix(
const std::vector< std::pair<double,double> >& points,
const double& angle)
{
std::vector< std::pair<double,double> > return_vector;
for (int i = 0; i < points.size(); i++)
return_vector.push_back(multiplyWithRotationMatrix(points[i], angle));
return return_vector;
}
/*******************************************************************************
*/
double Utils::norm(const std::pair<double,double>& vec)
{
return sqrt(vec.first*vec.first + vec.second*vec.second);
}
/*******************************************************************************
*/
std::vector<double> Utils::norm(
const std::vector< std::pair<double,double> >& vec)
{
std::vector<double> ret_vector;
for (int i = 0; i < vec.size(); i++)
ret_vector.push_back(norm(vec[i]));
return ret_vector;
}
/*******************************************************************************
*/
double Utils::norm2(
const std::vector< std::pair<double,double> >& vec)
{
std::vector<double> ret_vector;
for (int i = 0; i < vec.size(); i++)
ret_vector.push_back(norm(vec[i]));
return accumulate(ret_vector.begin(), ret_vector.end(), 0.0);
}
/*******************************************************************************
*/
std::pair<double,double> Utils::pairDiff(
const std::pair<double,double>& pair1,
const std::pair<double,double>& pair2)
{
std::pair<double,double> ret_pair;
ret_pair.first = pair2.first - pair1.first;
ret_pair.second = pair2.second - pair1.second;
return ret_pair;
}
/*******************************************************************************
*/
void Utils::points2scan(
const std::vector< std::pair<double,double> >& points,
const std::tuple<double,double,double>& pose,
std::vector<double>* scan)
{
#ifdef TIMES
std::chrono::high_resolution_clock::time_point start =
std::chrono::high_resolution_clock::now();
#endif
scan->clear();
double px = std::get<0>(pose);
double py = std::get<1>(pose);
double dx = 0.0;
double dy = 0.0;
for (int i = 0; i < points.size(); i++)
{
dx = points[i].first - px;
dy = points[i].second - py;
scan->push_back(sqrt(dx*dx+dy*dy));
}
#ifdef TIMES
std::chrono::high_resolution_clock::time_point end =
std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed =
std::chrono::duration_cast< std::chrono::duration<double> >(end-start);
printf("%f [points2scan]\n", elapsed.count());
#endif
}
/*******************************************************************************
*/
void Utils::scan2points(
const std::vector<double>& scan,
const std::tuple<double,double,double> pose,
std::vector< std::pair<double,double> >* points,
const double& angle_span)
{
#ifdef TIMES
std::chrono::high_resolution_clock::time_point start =
std::chrono::high_resolution_clock::now();
#endif
points->clear();
double px = std::get<0>(pose);
double py = std::get<1>(pose);
double pt = std::get<2>(pose);
// The angle of the first ray (in the local coordinate system)
double sa = -angle_span/2;
for (int i = 0; i < scan.size(); i++)
{
double x =
px + scan[i] * cos(i * angle_span / scan.size() + pt + sa);
double y =
py + scan[i] * sin(i * angle_span / scan.size() + pt + sa);
points->push_back(std::make_pair(x,y));
}
#ifdef TIMES
std::chrono::high_resolution_clock::time_point end =
std::chrono::high_resolution_clock::now();
std::chrono::duration<double> elapsed =
std::chrono::duration_cast< std::chrono::duration<double> >(end-start);
printf("%f [scan2points]\n", elapsed.count());
#endif
}
/*******************************************************************************
*/
void Utils::scanFromPose(
const std::tuple<double,double,double>& pose,
const std::vector< std::pair<double,double> >& points,
const unsigned int& num_rays,
std::vector<double>* scan)
{
scan->clear();
std::vector< std::pair<double,double> > intersections =
X::find(pose, points, num_rays);
points2scan(intersections, pose, scan);
}
/*******************************************************************************
*/
int Utils::sgn(const double& a)
{
return (a > 0.0) - (a < 0.0);
}
/*******************************************************************************
*/
std::vector< std::pair<double,double> > Utils::vectorDiff(
const std::vector< std::pair<double,double> >& vec)
{
std::vector< std::pair<double,double> > ret_vector;
for (int i = 0; i < vec.size()-1; i++)
ret_vector.push_back(pairDiff(vec[i], vec[i+1]));
return ret_vector;
}
/*******************************************************************************
*/
std::pair<double,double> Utils::vectorStatistics(
const std::vector< double >& v)
{
double sum = std::accumulate(v.begin(), v.end(), 0.0);
double mean = sum / v.size();
std::vector<double> diff(v.size());
std::transform(v.begin(), v.end(), diff.begin(),
std::bind2nd(std::minus<double>(), mean));
double sq_sum =
std::inner_product(diff.begin(), diff.end(), diff.begin(), 0.0);
double stdev = std::sqrt(sq_sum / v.size());
return std::make_pair(mean, stdev);
}
/*******************************************************************************
*/
void Utils::wrapAngle(double* angle)
{
*angle = fmod(*angle + 5*M_PI, 2*M_PI) - M_PI;
}