forked from ShirAmir/dino-vit-features
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpart_cosegmentation.py
446 lines (401 loc) · 27.8 KB
/
part_cosegmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import argparse
import torch
from pathlib import Path
import torchvision.transforms
from torchvision import transforms
from extractor import ViTExtractor
from tqdm import tqdm
import numpy as np
import faiss
from PIL import Image
import matplotlib.pyplot as plt
from typing import List, Tuple
import pydensecrf.densecrf as dcrf
from matplotlib.colors import ListedColormap
def find_part_cosegmentation(image_paths: List[str], elbow: float = 0.975, load_size: int = 224, layer: int = 11,
facet: str = 'key', bin: bool = False, thresh: float = 0.065,
model_type: str = 'dino_vits8', stride: int = 4, votes_percentage: int = 75,
sample_interval: int = 100, low_res_saliency_maps: bool = True, num_parts: int = 4,
num_crop_augmentations: int = 0, three_stages: bool = False,
elbow_second_stage: float = 0.94, save_dir: str = None) -> Tuple[List[Image.Image],
List[Image.Image]]:
"""
finding cosegmentation of a set of images.
:param image_paths: a list of paths of all the images.
:param elbow: elbow coefficient to set number of clusters.
:param load_size: size of the smaller edge of loaded images. If None, does not resize.
:param layer: layer to extract descriptors from.
:param facet: facet to extract descriptors from.
:param bin: if True use a log-binning descriptor.
:param thresh: threshold of saliency maps to distinguish fg and bg.
:param model_type: type of model to extract descriptors from.
:param stride: stride of the model.
:param votes_percentage: the percentage of positive votes so a cluster will be considered salient.
:param sample_interval: sample every ith descriptor before applying clustering.
:param low_res_saliency_maps: Use saliency maps with lower resolution (dramatically reduces GPU RAM needs,
doesn't deteriorate performance).
:param num_parts: Number of parts of final output.
:param num_crop_augmentations: number of crop augmentations to apply on input images. Increases performance for
small sets with high variations.
:param three_stages: If true, uses three clustering stages - fg/bg, non-common objects, and parts. Increases
performance for small sets with high variations.
:param elbow_second_stage: elbow coefficient for clustering in the second stage.
:param save_dir: optional. if not None save intermediate results in this directory.
:return: a list of segmentation masks and a list of processed pil images.
"""
device = 'cuda' if torch.cuda.is_available() else 'cpu'
extractor = ViTExtractor(model_type, stride, device=device)
descriptors_list = []
saliency_maps_list = []
image_pil_list = []
num_patches_list = []
load_size_list = []
if low_res_saliency_maps:
saliency_extractor = ViTExtractor(model_type, stride=8, device=device)
else:
saliency_extractor = extractor
num_images = len(image_paths)
if save_dir is not None:
save_dir = Path(save_dir)
# create augmentations if needed
if num_crop_augmentations > 0:
augmentations_image_paths = []
augmentations_dir = save_dir / 'augs' if save_dir is not None else Path('augs')
augmentations_dir.mkdir(exist_ok=True, parents=True)
for image_path in image_paths:
image_batch, image_pil = extractor.preprocess(image_path, load_size)
flipped_image_pil = image_pil.transpose(Image.FLIP_LEFT_RIGHT)
crop_size = (int(image_batch.shape[2] * 0.95), int(image_batch.shape[3] * 0.95))
random_crop = torchvision.transforms.RandomCrop(size=crop_size)
for i in range(num_crop_augmentations):
random_crop_file_name = augmentations_dir / f'{Path(image_path).stem}_resized_aug_{i}.png'
random_crop(image_pil).save(random_crop_file_name)
random_crop_flipped_file_name = augmentations_dir / f'{Path(image_path).stem}_resized_flip_aug_{i}.png'
random_crop(flipped_image_pil).save(random_crop_flipped_file_name)
augmentations_image_paths.append(random_crop_file_name)
augmentations_image_paths.append(random_crop_flipped_file_name)
image_paths = image_paths + augmentations_image_paths
# extract descriptors and saliency maps for each image
for image_path in image_paths:
image_batch, image_pil = extractor.preprocess(image_path, load_size)
image_pil_list.append(image_pil)
descs = extractor.extract_descriptors(image_batch.to(device), layer, facet, bin).cpu().numpy()
curr_num_patches, curr_load_size = extractor.num_patches, extractor.load_size
num_patches_list.append(curr_num_patches)
load_size_list.append(curr_load_size)
descriptors_list.append(descs)
if low_res_saliency_maps:
if load_size is not None:
low_res_load_size = (curr_load_size[0] // 2, curr_load_size[1] // 2)
else:
low_res_load_size = curr_load_size
image_batch, _ = saliency_extractor.preprocess(image_path, low_res_load_size)
saliency_map = saliency_extractor.extract_saliency_maps(image_batch.to(device)).cpu().numpy()
curr_sal_num_patches, curr_sal_load_size = saliency_extractor.num_patches, saliency_extractor.load_size
if low_res_saliency_maps:
reshape_op = transforms.Resize(curr_num_patches, transforms.InterpolationMode.NEAREST)
saliency_map = np.array(reshape_op(Image.fromarray(saliency_map.reshape(curr_sal_num_patches)))).flatten()
else:
saliency_map = saliency_map[0]
saliency_maps_list.append(saliency_map)
# save saliency maps and resized images if needed (not for augmentations)
if save_dir is not None and not ('_aug_' in Path(image_path).stem):
fig, ax = plt.subplots()
ax.axis('off')
ax.imshow(saliency_maps_list[-1].reshape(num_patches_list[-1]), vmin=0, vmax=1, cmap='jet')
fig.savefig(save_dir / f'{Path(image_path).stem}_saliency_map.png', bbox_inches='tight', pad_inches=0)
plt.close(fig)
image_pil.save(save_dir / f'{Path(image_path).stem}_resized.png')
# cluster all images using k-means:
all_descriptors = np.ascontiguousarray(np.concatenate(descriptors_list, axis=2)[0, 0])
normalized_all_descriptors = all_descriptors.astype(np.float32)
faiss.normalize_L2(normalized_all_descriptors) # in-place operation
sampled_descriptors_list = [x[:, :, ::sample_interval, :] for x in descriptors_list]
all_sampled_descriptors = np.ascontiguousarray(np.concatenate(sampled_descriptors_list, axis=2)[0, 0])
normalized_all_sampled_descriptors = all_sampled_descriptors.astype(np.float32)
faiss.normalize_L2(normalized_all_sampled_descriptors) # in-place operation
sum_of_squared_dists = []
n_cluster_range = list(range(1, 15))
for n_clusters in n_cluster_range:
algorithm = faiss.Kmeans(d=normalized_all_sampled_descriptors.shape[1], k=n_clusters, niter=300, nredo=10)
algorithm.train(normalized_all_sampled_descriptors.astype(np.float32))
squared_distances, labels = algorithm.index.search(normalized_all_descriptors.astype(np.float32), 1)
objective = squared_distances.sum()
sum_of_squared_dists.append(objective / normalized_all_descriptors.shape[0])
if (len(sum_of_squared_dists) > 1 and sum_of_squared_dists[-1] > elbow * sum_of_squared_dists[-2]):
break
num_labels = np.max(n_clusters) + 1
num_descriptors_per_image = [num_patches[0]*num_patches[1] for num_patches in num_patches_list]
labels_per_image = np.split(labels, np.cumsum(num_descriptors_per_image)[:-1])
if save_dir is not None:
cmap = 'jet' if num_labels > 10 else 'tab10'
for image_path, num_patches, label_per_image in zip(image_paths, num_patches_list, labels_per_image):
if not ('_aug_' in Path(image_path).stem):
fig, ax = plt.subplots()
ax.axis('off')
ax.imshow(label_per_image.reshape(num_patches), vmin=0, vmax=num_labels-1, cmap=cmap)
fig.savefig(save_dir / f'{Path(image_path).stem}_clustering.png', bbox_inches='tight', pad_inches=0)
plt.close(fig)
# use saliency maps to vote for salient clusters (only original images vote, not augmentations)
votes = np.zeros(num_labels)
for image_path, image_labels, saliency_map in zip(image_paths, labels_per_image, saliency_maps_list):
if not ('_aug_' in Path(image_path).stem):
for label in range(num_labels):
label_saliency = saliency_map[image_labels[:, 0] == label].mean()
if label_saliency > thresh:
votes[label] += 1
salient_labels = np.where(votes >= np.ceil(num_images * votes_percentage / 100))[0]
# cluster all parts using k-means:
fg_masks = [np.isin(labels, salient_labels) for labels in labels_per_image] # get only foreground descriptors
fg_descriptor_list = [desc[:, :, fg_mask[:, 0], :] for fg_mask, desc in zip(fg_masks, descriptors_list)]
all_fg_descriptors = np.ascontiguousarray(np.concatenate(fg_descriptor_list, axis=2)[0, 0])
normalized_all_fg_descriptors = all_fg_descriptors.astype(np.float32)
faiss.normalize_L2(normalized_all_fg_descriptors) # in-place operation
sampled_fg_descriptors_list = [x[:, :, ::sample_interval, :] for x in fg_descriptor_list]
all_fg_sampled_descriptors = np.ascontiguousarray(np.concatenate(sampled_fg_descriptors_list, axis=2)[0, 0])
normalized_all_fg_sampled_descriptors = all_fg_sampled_descriptors.astype(np.float32)
faiss.normalize_L2(normalized_all_fg_sampled_descriptors) # in-place operation
sum_of_squared_dists = []
# if applying three stages, use elbow to determine number of clusters in second stage, otherwise use the specified
# number of parts.
n_cluster_range = list(range(1, 15)) if three_stages else [num_parts]
for n_clusters in n_cluster_range:
part_algorithm = faiss.Kmeans(d=normalized_all_fg_sampled_descriptors.shape[1], k=n_clusters, niter=300, nredo=10)
part_algorithm.train(normalized_all_fg_sampled_descriptors.astype(np.float32))
squared_distances, part_labels = part_algorithm.index.search(normalized_all_fg_descriptors.astype(np.float32), 1)
objective = squared_distances.sum()
sum_of_squared_dists.append(objective / normalized_all_fg_descriptors.shape[0])
if (len(sum_of_squared_dists) > 1 and sum_of_squared_dists[-1] > elbow_second_stage * sum_of_squared_dists[-2]):
break
part_num_labels = np.max(part_labels) + 1
parts_num_descriptors_per_image = [np.count_nonzero(mask) for mask in fg_masks]
part_labels_per_image = np.split(part_labels, np.cumsum(parts_num_descriptors_per_image))
# get smoothed parts using crf
part_segmentations = []
for img, num_patches, load_size, descs in zip(image_pil_list, num_patches_list, load_size_list, descriptors_list):
bg_centroids = tuple(i for i in range(algorithm.centroids.shape[0]) if not i in salient_labels)
curr_normalized_descs = descs[0, 0].astype(np.float32)
faiss.normalize_L2(curr_normalized_descs) # in-place operation
# distance to parts
dist_to_parts = ((curr_normalized_descs[:, None, :] - part_algorithm.centroids[None, ...]) ** 2
).sum(axis=2)
# dist to BG
dist_to_bg = ((curr_normalized_descs[:, None, :] - algorithm.centroids[None, bg_centroids, :]) ** 2
).sum(axis=2)
min_dist_to_bg = np.min(dist_to_bg, axis=1)[:, None]
d_to_cent = np.concatenate((dist_to_parts, min_dist_to_bg), axis=1).reshape(num_patches[0], num_patches[1],
part_num_labels + 1)
d_to_cent = d_to_cent - np.max(d_to_cent, axis=-1)[..., None]
upsample = torch.nn.Upsample(size=load_size)
u = np.array(upsample(torch.from_numpy(d_to_cent).permute(2, 0, 1)[None, ...])[0].permute(1, 2, 0))
d = dcrf.DenseCRF2D(u.shape[1], u.shape[0], u.shape[2])
d.setUnaryEnergy(np.ascontiguousarray(u.reshape(-1, u.shape[-1]).T))
compat = [50, 15]
d.addPairwiseGaussian(sxy=(3, 3), compat=compat[0], kernel=dcrf.DIAG_KERNEL,
normalization=dcrf.NORMALIZE_SYMMETRIC)
d.addPairwiseBilateral(sxy=5, srgb=13, rgbim=np.array(img), compat=compat[1], kernel=dcrf.DIAG_KERNEL,
normalization=dcrf.NORMALIZE_SYMMETRIC)
Q = d.inference(10)
final = np.argmax(Q, axis=0).reshape(load_size)
parts_float = final.astype(np.float32)
parts_float[parts_float == part_num_labels] = np.nan
part_segmentations.append(parts_float)
if three_stages: # if needed, apply third stage
# visualize second stage
if num_crop_augmentations > 0:
curr_part_segmentations, curr_image_pil_list = [], []
for image_path, part_seg, pil_image in zip(image_paths, part_segmentations, image_pil_list):
if not ('_aug_' in Path(image_path).stem):
curr_part_segmentations.append(part_seg)
curr_image_pil_list.append(pil_image)
else:
curr_part_segmentations, curr_image_pil_list = part_segmentations, image_pil_list
if save_dir is not None:
part_figs = draw_part_cosegmentation(part_num_labels, curr_part_segmentations, curr_image_pil_list)
for image, part_fig in zip(image_paths, part_figs):
part_fig.savefig(save_dir / f'{Path(image).stem}_vis_sec_stage.png', bbox_inches='tight', pad_inches=0)
plt.close('all')
# get labels after crf for each descriptor
smoothed_part_labels_per_image = []
for part_segment, num_patches in zip(part_segmentations, num_patches_list):
resized_part_segment = np.array(torch.nn.functional.interpolate(torch.from_numpy(part_segment)
[None, None, ...], size=num_patches,
mode='nearest')[0, 0])
smoothed_part_labels_per_image.append(resized_part_segment.flatten())
# take only parts that appear in all original images (otherwise they belong to non-common objects)
votes = np.zeros(part_num_labels)
for image_path, image_labels in zip(image_paths, smoothed_part_labels_per_image):
if not ('_aug_' in Path(image_path).stem):
unique_labels = np.unique(image_labels[~np.isnan(image_labels)]).astype(np.int32)
votes[unique_labels] += 1
common_labels = np.where(votes == num_images)[0]
# get labels after crf for each descriptor
common_parts_masks = []
for part_segment in smoothed_part_labels_per_image:
common_parts_masks.append(np.isin(part_segment, common_labels).flatten())
# cluster all final parts using k-means:
common_descriptor_list = [desc[:, :, mask, :] for mask, desc in zip(common_parts_masks, descriptors_list)]
all_common_descriptors = np.ascontiguousarray(np.concatenate(common_descriptor_list, axis=2)[0, 0])
normalized_all_common_descriptors = all_common_descriptors.astype(np.float32)
faiss.normalize_L2(normalized_all_common_descriptors) # in-place operation
sampled_common_descriptors_list = [x[:, :, ::sample_interval, :] for x in common_descriptor_list]
all_common_sampled_descriptors = np.ascontiguousarray(np.concatenate(sampled_common_descriptors_list,
axis=2)[0, 0])
normalized_all_common_sampled_descriptors = all_common_sampled_descriptors.astype(np.float32)
faiss.normalize_L2(normalized_all_common_sampled_descriptors) # in-place operation
common_part_algorithm = faiss.Kmeans(d=normalized_all_common_sampled_descriptors.shape[1], k=num_parts,
niter=300, nredo=10)
common_part_algorithm.train(normalized_all_common_sampled_descriptors.astype(np.float32))
_, common_part_labels = common_part_algorithm.index.search(normalized_all_common_descriptors.astype(np.float32), 1)
common_part_num_labels = np.max(common_part_labels) + 1
parts_num_descriptors_per_image = [np.count_nonzero(mask) for mask in common_parts_masks]
common_part_labels_per_image = np.split(common_part_labels, np.cumsum(parts_num_descriptors_per_image))
# get smoothed parts using crf
common_part_segmentations = []
for img, num_patches, load_size, descs in zip(image_pil_list, num_patches_list, load_size_list, descriptors_list):
bg_centroids_1 = tuple(i for i in range(algorithm.centroids.shape[0]) if not i in salient_labels)
bg_centroids_2 = tuple(i for i in range(part_algorithm.centroids.shape[0]) if not i in common_labels)
curr_normalized_descs = descs[0, 0].astype(np.float32)
faiss.normalize_L2(curr_normalized_descs) # in-place operation
# distance to parts
dist_to_parts = ((curr_normalized_descs[:, None, :] - common_part_algorithm.centroids[None, ...]) ** 2).sum(
axis=2)
# dist to BG
dist_to_bg_1 = ((curr_normalized_descs[:, None, :] -
algorithm.centroids[None, bg_centroids_1, :]) ** 2).sum(axis=2)
dist_to_bg_2 = ((curr_normalized_descs[:, None, :] -
part_algorithm.centroids[None, bg_centroids_2, :]) ** 2).sum(axis=2)
dist_to_bg = np.concatenate((dist_to_bg_1, dist_to_bg_2), axis=1)
min_dist_to_bg = np.min(dist_to_bg, axis=1)[:, None]
d_to_cent = np.concatenate((dist_to_parts, min_dist_to_bg), axis=1).reshape(num_patches[0], num_patches[1],
num_parts + 1)
d_to_cent = d_to_cent - np.max(d_to_cent, axis=-1)[..., None]
upsample = torch.nn.Upsample(size=load_size)
u = np.array(upsample(torch.from_numpy(d_to_cent).permute(2, 0, 1)[None, ...])[0].permute(1, 2, 0))
d = dcrf.DenseCRF2D(u.shape[1], u.shape[0], u.shape[2])
d.setUnaryEnergy(np.ascontiguousarray(u.reshape(-1, u.shape[-1]).T))
compat = [50, 15]
d.addPairwiseGaussian(sxy=(3, 3), compat=compat[0], kernel=dcrf.DIAG_KERNEL,
normalization=dcrf.NORMALIZE_SYMMETRIC)
d.addPairwiseBilateral(sxy=5, srgb=13, rgbim=np.array(img), compat=compat[1], kernel=dcrf.DIAG_KERNEL,
normalization=dcrf.NORMALIZE_SYMMETRIC)
Q = d.inference(10)
final = np.argmax(Q, axis=0).reshape(load_size)
common_parts_float = final.astype(np.float32)
common_parts_float[common_parts_float == num_parts] = np.nan
common_part_segmentations.append(common_parts_float)
# reassign third stage results as final results
part_segmentations = common_part_segmentations
# remove augmentation results if existing
if num_crop_augmentations > 0:
no_aug_part_segmentations, no_aug_image_pil_list = [], []
for image_path, part_seg, pil_image in zip(image_paths, part_segmentations, image_pil_list):
if not ('_aug_' in Path(image_path).stem):
no_aug_part_segmentations.append(part_seg)
no_aug_image_pil_list.append(pil_image)
part_segmentations = no_aug_part_segmentations
image_pil_list = no_aug_image_pil_list
return part_segmentations, image_pil_list
def draw_part_cosegmentation(num_parts: int, segmentation_parts: List[np.ndarray], pil_images: List[Image.Image]) -> List[plt.Figure]:
"""
Visualizes part cosegmentation results on chessboard background.
:param num_parts: number of object parts in all part cosegmentations.
:param segmentation_parts: list of binary segmentation masks
:param pil_images: list of corresponding images.
:return: list of figures with fg segment of each image and chessboard bg.
"""
figures = []
for parts_seg, pil_image in zip(segmentation_parts, pil_images):
current_mask = ~np.isnan(parts_seg) # np.isin(segmentation, segment_indexes)
stacked_mask = np.dstack(3 * [current_mask])
masked_image = np.array(pil_image)
masked_image[~stacked_mask] = 0
masked_image_transparent = np.concatenate((masked_image, 255. * current_mask.astype(np.uint8)[..., None]),
axis=-1)
# create chessboard bg
checkerboard_bg = np.zeros(masked_image.shape[:2])
checkerboard_edge = 10
checkerboard_bg[[x // checkerboard_edge % 2 == 0 for x in range(checkerboard_bg.shape[0])], :] = 1
checkerboard_bg[:, [x // checkerboard_edge % 2 == 1 for x in range(checkerboard_bg.shape[1])]] = \
1 - checkerboard_bg[:, [x // checkerboard_edge % 2 == 1 for x in range(checkerboard_bg.shape[1])]]
checkerboard_bg[checkerboard_bg == 0] = 0.75
checkerboard_bg = 255. * checkerboard_bg
# show
fig, ax = plt.subplots()
ax.axis('off')
color_list = ["red", "yellow", "blue", "lime", "darkviolet", "magenta", "cyan", "brown", "yellow"]
cmap = 'jet' if num_parts > 10 else ListedColormap(color_list[:num_parts])
ax.imshow(checkerboard_bg, cmap='gray', vmin=0, vmax=255)
ax.imshow(masked_image_transparent.astype(np.int32), vmin=0, vmax=255)
ax.imshow(parts_seg, cmap=cmap, vmin=0, vmax=num_parts - 1, alpha=0.5, interpolation='nearest')
figures.append(fig)
return figures
""" taken from https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse"""
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Facilitate ViT Descriptor cosegmentations.')
parser.add_argument('--root_dir', type=str, required=True, help='The root dir of image sets.')
parser.add_argument('--save_dir', type=str, required=True, help='The root save dir for image sets results.')
parser.add_argument('--load_size', default=None, type=int, help='load size of the input images. If None maintains'
'original image size, if int resizes each image'
'such that the smaller side is this number.')
parser.add_argument('--stride', default=4, type=int, help="""stride of first convolution layer.
small stride -> higher resolution.""")
parser.add_argument('--model_type', default='dino_vits8', type=str,
help="""type of model to extract.
Choose from [dino_vits8 | dino_vits16 | dino_vitb8 | dino_vitb16 | vit_small_patch8_224 |
vit_small_patch16_224 | vit_base_patch8_224 | vit_base_patch16_224]""")
parser.add_argument('--facet', default='key', type=str, help="""facet to create descriptors from.
options: ['key' | 'query' | 'value' | 'token']""")
parser.add_argument('--layer', default=11, type=int, help="layer to create descriptors from.")
parser.add_argument('--bin', default='False', type=str2bool, help="create a binned descriptor if True.")
parser.add_argument('--thresh', default=0.065, type=float, help='saliency maps threshold to distinguish fg / bg.')
parser.add_argument('--elbow', default=0.975, type=float, help='Elbow coefficient for setting number of clusters.')
parser.add_argument('--votes_percentage', default=75, type=int, help="percentage of votes needed for a cluster to "
"be considered salient.")
parser.add_argument('--sample_interval', default=100, type=int, help="sample every ith descriptor for training"
"clustering.")
parser.add_argument('--outliers_thresh', default=0.7, type=float, help="Threshold for removing outliers.")
parser.add_argument('--low_res_saliency_maps', default='True', type=str2bool, help="using low resolution saliency "
"maps. Reduces RAM needs.")
parser.add_argument('--num_parts', default=4, type=int, help="Number of common object parts.")
parser.add_argument('--num_crop_augmentations', default=0, type=int, help="If > 1, applies this number of random "
"crop augmentations taking 95% of the "
"original images and flip augmentations.")
parser.add_argument('--three_stages', default=False, type=str2bool, help="If true, use three clustering stages "
"instead of two. Useful for small sets "
"with a lot of distraction objects.")
parser.add_argument('--elbow_second_stage', default=0.94, type=float, help="Elbow coefficient for setting number "
"of clusters.")
args = parser.parse_args()
with torch.no_grad():
# prepare directories
root_dir = Path(args.root_dir)
sets_dir = [x for x in root_dir.iterdir() if x.is_dir()]
save_dir = Path(args.save_dir)
save_dir.mkdir(exist_ok=True, parents=True)
for set_dir in tqdm(sets_dir):
print(f"working on {set_dir}")
curr_images = [x for x in set_dir.iterdir() if x.suffix.lower() in ['.jpg', '.png', '.jpeg']]
curr_save_dir = save_dir / set_dir.name
curr_save_dir.mkdir(parents=True, exist_ok=True)
# computing part cosegmentation
parts_imgs, pil_images = find_part_cosegmentation(curr_images, args.elbow, args.load_size, args.layer,
args.facet, args.bin, args.thresh, args.model_type,
args.stride, args.votes_percentage, args.sample_interval,
args.low_res_saliency_maps, args.num_parts,
args.num_crop_augmentations, args.three_stages,
args.elbow_second_stage, curr_save_dir)
# saving part cosegmentations
part_figs = draw_part_cosegmentation(args.num_parts, parts_imgs, pil_images)
for image, part_fig in zip(curr_images, part_figs):
part_fig.savefig(curr_save_dir / f'{Path(image).stem}_vis.png', bbox_inches='tight', pad_inches=0)
plt.close('all')