forked from ShirAmir/dino-vit-features
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpca.py
155 lines (138 loc) · 7.78 KB
/
pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import argparse
import PIL.Image
import numpy
import torch
from pathlib import Path
from extractor import ViTExtractor
from tqdm import tqdm
import numpy as np
from PIL import Image
from sklearn.decomposition import PCA
from typing import List, Tuple
def pca(image_paths, load_size: int = 224, layer: int = 11, facet: str = 'key', bin: bool = False, stride: int = 4,
model_type: str = 'dino_vits8', n_components: int = 4,
all_together: bool = True) -> List[Tuple[Image.Image, numpy.ndarray]]:
"""
finding pca of a set of images.
:param image_paths: a list of paths of all the images.
:param load_size: size of the smaller edge of loaded images. If None, does not resize.
:param layer: layer to extract descriptors from.
:param facet: facet to extract descriptors from.
:param bin: if True use a log-binning descriptor.
:param model_type: type of model to extract descriptors from.
:param stride: stride of the model.
:param n_components: number of pca components to produce.
:param all_together: if true apply pca on all images together.
:return: a list of lists containing an image and its principal components.
"""
device = 'cuda' if torch.cuda.is_available() else 'cpu'
extractor = ViTExtractor(model_type, stride, device=device)
descriptors_list = []
image_pil_list = []
num_patches_list = []
load_size_list = []
# extract descriptors and saliency maps for each image
for image_path in image_paths:
image_batch, image_pil = extractor.preprocess(image_path, load_size)
image_pil_list.append(image_pil)
descs = extractor.extract_descriptors(image_batch.to(device), layer, facet, bin, include_cls=False).cpu().numpy()
curr_num_patches, curr_load_size = extractor.num_patches, extractor.load_size
num_patches_list.append(curr_num_patches)
load_size_list.append(curr_load_size)
descriptors_list.append(descs)
if all_together:
descriptors = np.concatenate(descriptors_list, axis=2)[0, 0]
pca = PCA(n_components=n_components).fit(descriptors)
pca_descriptors = pca.transform(descriptors)
split_idxs = np.array([num_patches[0] * num_patches[1] for num_patches in num_patches_list])
split_idxs = np.cumsum(split_idxs)
pca_per_image = np.split(pca_descriptors, split_idxs[:-1], axis=0)
else:
pca_per_image = []
for descriptors in descriptors_list:
pca = PCA(n_components=n_components).fit(descriptors[0, 0])
pca_descriptors = pca.transform(descriptors[0, 0])
pca_per_image.append(pca_descriptors)
results = [(pil_image, img_pca.reshape((num_patches[0], num_patches[1], n_components))) for
(pil_image, img_pca, num_patches) in zip(image_pil_list, pca_per_image, num_patches_list)]
return results
def plot_pca(pil_image: Image.Image, pca_image: numpy.ndarray, save_dir: str, last_components_rgb: bool = True,
save_resized=True, save_prefix: str = ''):
"""
finding pca of a set of images.
:param pil_image: The original PIL image.
:param pca_image: A numpy tensor containing pca components of the image. HxWxn_components
:param save_dir: if None than show results.
:param last_components_rgb: If true save last 3 components as RGB image in addition to each component separately.
:param save_resized: If true save PCA components resized to original resolution.
:param save_prefix: optional. prefix to saving
:return: a list of lists containing an image and its principal components.
"""
save_dir = Path(save_dir)
save_dir.mkdir(exist_ok=True, parents=True)
pil_image_path = save_dir / f'{save_prefix}_orig_img.png'
pil_image.save(pil_image_path)
n_components = pca_image.shape[2]
for comp_idx in range(n_components):
comp = pca_image[:, :, comp_idx]
comp_min = comp.min(axis=(0, 1))
comp_max = comp.max(axis=(0, 1))
comp_img = (comp - comp_min) / (comp_max - comp_min)
comp_file_path = save_dir / f'{save_prefix}_{comp_idx}.png'
pca_pil = Image.fromarray((comp_img * 255).astype(np.uint8))
if save_resized:
pca_pil = pca_pil.resize(pil_image.size, resample=PIL.Image.NEAREST)
pca_pil.save(comp_file_path)
if last_components_rgb:
comp_idxs = f"{n_components-3}_{n_components-2}_{n_components-1}"
comp = pca_image[:, :, -3:]
comp_min = comp.min(axis=(0, 1))
comp_max = comp.max(axis=(0, 1))
comp_img = (comp - comp_min) / (comp_max - comp_min)
comp_file_path = save_dir / f'{save_prefix}_{comp_idxs}_rgb.png'
pca_pil = Image.fromarray((comp_img * 255).astype(np.uint8))
if save_resized:
pca_pil = pca_pil.resize(pil_image.size, resample=PIL.Image.NEAREST)
pca_pil.save(comp_file_path)
""" taken from https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse"""
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Facilitate ViT Descriptor PCA.')
parser.add_argument('--root_dir', type=str, required=True, help='The root dir of images.')
parser.add_argument('--save_dir', type=str, required=True, help='The root save dir for results.')
parser.add_argument('--load_size', default=224, type=int, help='load size of the input image.')
parser.add_argument('--stride', default=4, type=int, help="""stride of first convolution layer.
small stride -> higher resolution.""")
parser.add_argument('--model_type', default='dino_vits8', type=str,
help="""type of model to extract.
Choose from [dino_vits8 | dino_vits16 | dino_vitb8 | dino_vitb16 | vit_small_patch8_224 |
vit_small_patch16_224 | vit_base_patch8_224 | vit_base_patch16_224]""")
parser.add_argument('--facet', default='key', type=str, help="""facet to create descriptors from.
options: ['key' | 'query' | 'value' | 'token']""")
parser.add_argument('--layer', default=11, type=int, help="layer to create descriptors from.")
parser.add_argument('--bin', default='False', type=str2bool, help="create a binned descriptor if True.")
parser.add_argument('--n_components', default=4, type=int, help="number of pca components to produce.")
parser.add_argument('--last_components_rgb', default='True', type=str2bool, help="save last components as rgb image.")
parser.add_argument('--save_resized', default='True', type=str2bool, help="If true save pca in image resolution.")
parser.add_argument('--all_together', default='True', type=str2bool, help="If true apply pca on all images together.")
args = parser.parse_args()
with torch.no_grad():
# prepare directories
root_dir = Path(args.root_dir)
images_paths = [x for x in root_dir.iterdir() if x.suffix.lower() in ['.jpg', '.png', '.jpeg']]
save_dir = Path(args.save_dir)
save_dir.mkdir(exist_ok=True, parents=True)
pca_per_image = pca(images_paths, args.load_size, args.layer, args.facet, args.bin, args.stride, args.model_type,
args.n_components, args.all_together)
print("saving images")
for image_path, (pil_image, pca_image) in tqdm(zip(images_paths, pca_per_image)):
save_prefix = image_path.stem
plot_pca(pil_image, pca_image, str(save_dir), args.last_components_rgb, args.save_resized, save_prefix)