From ee9acae833be3c084e9e61ade881a4d5caed1076 Mon Sep 17 00:00:00 2001 From: yhx-12243 Date: Sat, 18 Jan 2025 11:22:57 +0800 Subject: [PATCH] Update S132 (Duncan's space) (#1192) --- spaces/S000132/README.md | 28 +++++++++------------------- spaces/S000132/properties/P000017.md | 10 ---------- spaces/S000132/properties/P000023.md | 10 ---------- spaces/S000132/properties/P000026.md | 10 ---------- spaces/S000132/properties/P000048.md | 3 +-- spaces/S000132/properties/P000053.md | 10 ---------- spaces/S000132/properties/P000056.md | 10 ++++++++++ spaces/S000132/properties/P000058.md | 11 ----------- spaces/S000132/properties/P000065.md | 11 +++++++++++ spaces/S000132/properties/P000066.md | 12 ++++++++++++ spaces/S000132/properties/P000129.md | 7 ------- spaces/S000132/properties/P000184.md | 10 ++++++++++ 12 files changed, 53 insertions(+), 79 deletions(-) delete mode 100644 spaces/S000132/properties/P000017.md delete mode 100644 spaces/S000132/properties/P000023.md delete mode 100644 spaces/S000132/properties/P000026.md delete mode 100644 spaces/S000132/properties/P000053.md create mode 100644 spaces/S000132/properties/P000056.md delete mode 100644 spaces/S000132/properties/P000058.md create mode 100644 spaces/S000132/properties/P000065.md create mode 100644 spaces/S000132/properties/P000066.md delete mode 100644 spaces/S000132/properties/P000129.md create mode 100644 spaces/S000132/properties/P000184.md diff --git a/spaces/S000132/README.md b/spaces/S000132/README.md index 16ed399285..e2201a2a96 100644 --- a/spaces/S000132/README.md +++ b/spaces/S000132/README.md @@ -5,27 +5,17 @@ counterexamples_id: 136 refs: - doi: 10.1007/978-1-4612-6290-9 name: Counterexamples in Topology + - zb: "0085.03002" + name: A topology for sequences of integers I (R. L. Duncan) + - zb: "0109.03302" + name: A topology for sequences of integers I (R. L. Duncan) --- -Let $A$ be the set of all strictly increasing, infinite sequences of positive integers. For any $x\in A$, define $N(n,x)$ as the number of elements of $x$ less than $n$. Let $\delta (x) =\lim_{n\to\infty} \frac{N(n,x)}{n}$. Let $X$ be the subset of $A$ containing precisely the sequences, $x$, for which $\delta(x)$ exists. Now for any $x,y\in X$ define $k(x,y)$ to be the smallest index $i$ such that $x_i\neq y_i$. We define a metric $d(x,y)$ on $X$ as $$d(x,y)=\frac{1}{k(x,y)}+|\delta (x) - \delta (y)| \text{ with } d(x,x)=0.$$ Duncan's Space is the topology on $X$ induced by this metric. + +Let $A$ be the set of all strictly increasing, infinite sequences of positive integers. For any $x\in A$, define $N(n,x)$ as the number of elements of $x$ less than $n$. Let $\delta (x) =\lim_{n\to\infty} \frac{N(n,x)}{n}$. Let $X$ be the subset of $A$ containing precisely the sequences $x$ for which $\delta(x)$ exists. Now for any $x,y\in X$ define $k(x,y)$ to be the smallest index $i$ such that $x_i\neq y_i$. We define a metric $d(x,y)$ on $X$ as $$d(x,y)=\frac{1}{k(x,y)}+|\delta (x) - \delta (y)| \text{ with } d(x,x)=0.$$ Duncan's Space is the topology on $X$ induced by this metric. Defined as counterexample #136 ("Duncan's Space") in {{doi:10.1007/978-1-4612-6290-9}}. - +Introduced and studied by R. L. Duncan in +{{zb:0085.03002}} () +and {{zb:0109.03302}} (). diff --git a/spaces/S000132/properties/P000017.md b/spaces/S000132/properties/P000017.md deleted file mode 100644 index 292bcb764d..0000000000 --- a/spaces/S000132/properties/P000017.md +++ /dev/null @@ -1,10 +0,0 @@ ---- -space: S000132 -property: P000017 -value: false -refs: -- doi: 10.1007/978-1-4612-6290-9_6 - name: Counterexamples in Topology ---- - -See item #4 for space #136 in {{doi:10.1007/978-1-4612-6290-9_6}}. diff --git a/spaces/S000132/properties/P000023.md b/spaces/S000132/properties/P000023.md deleted file mode 100644 index aafe2d4d7b..0000000000 --- a/spaces/S000132/properties/P000023.md +++ /dev/null @@ -1,10 +0,0 @@ ---- -space: S000132 -property: P000023 -value: false -refs: -- doi: 10.1007/978-1-4612-6290-9_6 - name: Counterexamples in Topology ---- - -See item #3 for space #136 in {{doi:10.1007/978-1-4612-6290-9_6}}. diff --git a/spaces/S000132/properties/P000026.md b/spaces/S000132/properties/P000026.md deleted file mode 100644 index 0f3e3dc12d..0000000000 --- a/spaces/S000132/properties/P000026.md +++ /dev/null @@ -1,10 +0,0 @@ ---- -space: S000132 -property: P000026 -value: true -refs: -- doi: 10.1007/978-1-4612-6290-9_6 - name: Counterexamples in Topology ---- - -See item #5 for space #136 in {{doi:10.1007/978-1-4612-6290-9_6}}. diff --git a/spaces/S000132/properties/P000048.md b/spaces/S000132/properties/P000048.md index 029618ab57..b10837eab3 100644 --- a/spaces/S000132/properties/P000048.md +++ b/spaces/S000132/properties/P000048.md @@ -7,5 +7,4 @@ refs: name: Counterexamples in Topology --- -Asserted in the General Reference Chart for space #136 in -{{doi:10.1007/978-1-4612-6290-9_6}}. +See item #6 for space #136 in {{doi:10.1007/978-1-4612-6290-9_6}}. diff --git a/spaces/S000132/properties/P000053.md b/spaces/S000132/properties/P000053.md deleted file mode 100644 index 6aff647c96..0000000000 --- a/spaces/S000132/properties/P000053.md +++ /dev/null @@ -1,10 +0,0 @@ ---- -space: S000132 -property: P000053 -value: true -refs: -- doi: 10.1007/978-1-4612-6290-9_6 - name: Counterexamples in Topology ---- - -See item #6 for space #136 in {{doi:10.1007/978-1-4612-6290-9_6}}. diff --git a/spaces/S000132/properties/P000056.md b/spaces/S000132/properties/P000056.md new file mode 100644 index 0000000000..fd57400883 --- /dev/null +++ b/spaces/S000132/properties/P000056.md @@ -0,0 +1,10 @@ +--- +space: S000132 +property: P000056 +value: true +refs: +- doi: 10.2307/2309171 + name: A Topology for Sequences of Integers II (R. L. Duncan) +--- + +See Section 3 of {{doi:10.2307/2309171}}. diff --git a/spaces/S000132/properties/P000058.md b/spaces/S000132/properties/P000058.md deleted file mode 100644 index 31231d7fe0..0000000000 --- a/spaces/S000132/properties/P000058.md +++ /dev/null @@ -1,11 +0,0 @@ ---- -space: S000132 -property: P000058 -value: false -refs: -- doi: 10.1007/978-1-4612-6290-9_6 - name: Counterexamples in Topology ---- - -Asserted in the General Reference Chart for space #136 in -{{doi:10.1007/978-1-4612-6290-9_6}}. diff --git a/spaces/S000132/properties/P000065.md b/spaces/S000132/properties/P000065.md new file mode 100644 index 0000000000..dc938e4f94 --- /dev/null +++ b/spaces/S000132/properties/P000065.md @@ -0,0 +1,11 @@ +--- +space: S000132 +property: P000065 +value: true +refs: +- doi: 10.1007/978-1-4612-6290-9_6 + name: Counterexamples in Topology +--- + +It is easily seen that for every real number $\alpha\in[0,1]$ there is an element $x\in X$ with asymptotic density $\delta(x)=\alpha$. So $|X|\geq \mathfrak c$. +And on the other hand, $|X|\leq\aleph_0^{\aleph_0}=2^{\aleph_0}=\mathfrak c$. diff --git a/spaces/S000132/properties/P000066.md b/spaces/S000132/properties/P000066.md new file mode 100644 index 0000000000..830ead6f06 --- /dev/null +++ b/spaces/S000132/properties/P000066.md @@ -0,0 +1,12 @@ +--- +space: S000132 +property: P000066 +value: false +--- + +Similar to the proof of {S28|P66}, it is easily seen that for each finite sequence $t$, $\left[ t \right] := \left\{ x \in X \mid x \text{ extends } t \right\}$ is open in $X$. + +Now define the open cover $\mathcal U_n = \left\{ \left[ t \right] \mid t \in \omega^n \right\}$. +Given any finite subcollections $\mathcal F_n \subseteq \mathcal U_n$, we can choose $x_n$ such that $\left[ \left< x_1, \dots, x_n \right> \right] \notin \mathcal F_n$ and $x_n > 2 x_{n - 1}$. + +Then $x \in X$ since $\delta(x) = 0$ and $x \notin \bigcup_{n < \omega} \mathcal F_n$. diff --git a/spaces/S000132/properties/P000129.md b/spaces/S000132/properties/P000129.md deleted file mode 100644 index e2df9f992f..0000000000 --- a/spaces/S000132/properties/P000129.md +++ /dev/null @@ -1,7 +0,0 @@ ---- -space: S000132 -property: P000129 -value: false ---- - -The space is non-trivial by definition. diff --git a/spaces/S000132/properties/P000184.md b/spaces/S000132/properties/P000184.md new file mode 100644 index 0000000000..5127d06510 --- /dev/null +++ b/spaces/S000132/properties/P000184.md @@ -0,0 +1,10 @@ +--- +space: S000132 +property: P000184 +value: true +refs: +- doi: 10.2307/2309171 + name: A Topology for Sequences of Integers II (R. L. Duncan) +--- + +It is asserted in Section 4 of {{doi:10.2307/2309919}} that $S$ is homeomorphic to a certain subset of the plane, namely the graph of a function $\varphi(x)$.