forked from finegrain-ai/refiners
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpyproject.toml
144 lines (128 loc) · 3.48 KB
/
pyproject.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
[project]
name = "refiners"
version = "0.3.1"
description = "The simplest way to train and run adapters on top of foundation models"
authors = [{ name = "The Finegrain Team", email = "[email protected]" }]
license = "MIT"
dependencies = [
"torch>=2.1.1",
"safetensors>=0.4.0",
"pillow>=10.1.0",
"jaxtyping>=0.2.23",
"packaging>=23.2",
]
readme = "README.md"
requires-python = ">= 3.10"
classifiers = [
"Typing :: Typed",
"Intended Audience :: Developers",
"Intended Audience :: Science/Research",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Topic :: Software Development :: Libraries :: Python Modules",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"License :: OSI Approved :: MIT License",
]
[project.optional-dependencies]
training = [
"bitsandbytes>=0.41.2.post2",
"pydantic>=2.5.2",
"prodigyopt>=1.0",
"torchvision>=0.16.1",
"loguru>=0.7.2",
"wandb>=0.16.0",
"datasets>=2.15.0",
"tomli>=2.0.1",
]
test = [
"diffusers>=0.26.1",
"transformers>=4.35.2",
"piq>=0.8.0",
"invisible-watermark>=0.2.0",
"torchvision>=0.16.1",
# An unofficial Python package for Meta AI's Segment Anything Model:
# https://github.com/opengeos/segment-anything
"segment-anything-py>=1.0",
]
conversion = [
"diffusers>=0.26.1",
"transformers>=4.35.2",
"segment-anything-py>=1.0",
"requests>=2.26.0",
"tqdm>=4.62.3",
]
doc = [
# required by mkdocs to format the signatures
"black>=24.1.1",
"mkdocs-material>=9.5.6",
"mkdocstrings[python]>=0.24.0",
"mkdocs-literate-nav>=0.6.1",
]
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"
[tool.rye]
managed = true
dev-dependencies = [
"pyright==1.1.349",
"ruff>=0.2.0",
"docformatter>=1.7.5",
"pytest>=8.0.0",
"coverage>=7.4.1",
"typos>=1.18.2",
]
[tool.hatch.metadata]
allow-direct-references = true
[tool.rye.scripts]
lint = { chain = ["ruff format .", "ruff --fix ."] }
serve-docs = "mkdocs serve"
test-cov = "coverage run -m pytest"
# Work around for "Couldn't parse" errors due to e.g. opencv-python:
# https://github.com/nedbat/coveragepy/issues/1653
build-html-cov = { cmd = "coverage html", env = { PYTHONWARNINGS = "ignore:Couldn't parse::coverage.report_core" } }
serve-cov-report = { chain = [
"build-html-cov",
"python -m http.server 8080 -b 127.0.0.1 -d htmlcov",
] }
[tool.black]
line-length = 120
[tool.ruff]
src = ["src"] # see https://docs.astral.sh/ruff/settings/#src
line-length = 120
[tool.ruff.lint]
select = [
"I", # isort
]
ignore = [
"F722", # forward-annotation-syntax-error, because of Jaxtyping
"E731", # do-not-assign-lambda
]
[tool.ruff.lint.isort]
# Allow this kind of import on a single line:
#
# from torch import device as Device, dtype as DType
#
combine-as-imports = true
[tool.docformatter]
black = true
[tool.pyright]
include = ["src/refiners", "tests", "scripts"]
strict = ["*"]
exclude = ["**/__pycache__", "tests/weights"]
reportMissingTypeStubs = "warning"
[tool.coverage.run]
branch = true
source = ["src/refiners"]
# Also apply to HTML output, where appropriate
[tool.coverage.report]
ignore_errors = true # see `build-html-cov` for details
exclude_also = [
"def __repr__",
"raise NotImplementedError",
"if TYPE_CHECKING:",
"class .*\\bProtocol\\):",
"@(abc\\.)?abstractmethod",
]
[tool.typos.default]
extend-words = { adaptee = "adaptee" }
extend-ignore-identifiers-re = ["NDArray*"]