-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_refd.py
executable file
·246 lines (212 loc) · 8.59 KB
/
train_refd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
"""
DISCLAIMER:
This code is provided "as-is" without any warranty of any kind, either expressed or implied,
including but not limited to the implied warranties of merchantability and fitness for a particular purpose.
The author assumes no liability for any damages or consequences resulting from the use of this code.
Use it at your own risk.
## Author: Adriana STAN
## December 2024
"""
import argparse
import json
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data.sampler as torch_sampler
from torch.utils.data import DataLoader
from tqdm import tqdm
from src import utils
from src.datasets.dataset import MLAADFDDataset
from src.models.w2v2_aasist import W2VAASIST
def parse_args():
parser = argparse.ArgumentParser("Training script parameters")
# Paths to features and output
parser.add_argument(
"-f",
"--path_to_features",
type=str,
default="./exp/preprocess_wav2vec2-base/",
help="Path to the previuosly extracted features",
)
parser.add_argument(
"--out_folder", type=str, default="./exp/trained_models/", help="Output folder"
)
# Training hyperparameters
parser.add_argument("--seed", type=int, help="random number seed", default=688)
parser.add_argument(
"--feat_dim",
type=int,
default=768,
help="Feature dimension from the wav2vec model",
)
parser.add_argument(
"--num_classes", type=int, default=24, help="Number of in domain classes"
)
parser.add_argument(
"--num_epochs", type=int, default=30, help="Number of epochs for training"
)
parser.add_argument(
"--batch_size", type=int, default=128, help="Batch size for training"
)
parser.add_argument("--lr", type=float, default=0.0005, help="learning rate")
parser.add_argument(
"--lr_decay", type=float, default=0.5, help="decay learning rate"
)
parser.add_argument("--interval", type=int, default=10, help="interval to decay lr")
parser.add_argument("--beta_1", type=float, default=0.9, help="bata_1 for Adam")
parser.add_argument("--beta_2", type=float, default=0.999, help="beta_2 for Adam")
parser.add_argument("--eps", type=float, default=1e-8, help="epsilon for Adam")
parser.add_argument("--num_workers", type=int, default=0, help="number of workers")
parser.add_argument(
"--base_loss",
type=str,
default="ce",
choices=["ce", "bce"],
help="Loss for basic training",
)
args = parser.parse_args()
# Set seeds
utils.set_seed(args.seed)
# Path for output data
if not os.path.exists(args.out_folder):
os.makedirs(args.out_folder)
# Folder for intermediate results
if not os.path.exists(os.path.join(args.out_folder, "checkpoint")):
os.makedirs(os.path.join(args.out_folder, "checkpoint"))
# Path for input data
assert os.path.exists(args.path_to_features)
# Save training arguments
with open(os.path.join(args.out_folder, "args.json"), "w") as file:
file.write(json.dumps(vars(args), sort_keys=True, separators=("\n", ":")))
cuda = torch.cuda.is_available()
print("Running on: ", "cuda" if cuda else "cpu")
args.device = torch.device("cuda" if cuda else "cpu")
return args
def train(args):
# Load the train and dev data
print("Loading training data...")
training_set = MLAADFDDataset(args.path_to_features, "train")
print("\nLoading dev data...")
dev_set = MLAADFDDataset(args.path_to_features, "dev", mode="known")
train_loader = DataLoader(
training_set,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
sampler=torch_sampler.SubsetRandomSampler(range(len(training_set))),
)
dev_loader = DataLoader(
dev_set,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
sampler=torch_sampler.SubsetRandomSampler(range(len(dev_set))),
)
# Setup the model
model = W2VAASIST(args.feat_dim, args.num_classes).to(args.device)
print(f"Training a {type(model).__name__} model for {args.num_epochs} epochs")
feat_optimizer = torch.optim.Adam(
model.parameters(),
lr=args.lr,
betas=(args.beta_1, args.beta_2),
eps=args.eps,
weight_decay=0.0005,
)
if args.base_loss == "ce":
criterion = nn.CrossEntropyLoss()
else:
criterion = nn.BCELoss()
prev_loss = 1e8
# Main training loop
for epoch_num in range(args.num_epochs):
model.train()
utils.adjust_learning_rate(args, args.lr, feat_optimizer, epoch_num)
epoch_bar = tqdm(train_loader, desc=f"Epoch [{epoch_num+1}/{args.num_epochs}]")
accuracy, train_loss = [], []
for iter_num, batch in enumerate(epoch_bar):
feat, audio, labels = batch
feat = feat.transpose(2, 3).to(args.device)
labels = labels.to(args.device)
mix_feat, y_a, y_b, lam = utils.mixup_data(
feat, labels, args.device, alpha=0.5
)
targets_a = torch.cat([labels, y_a])
targets_b = torch.cat([labels, y_b])
feat = torch.cat([feat, mix_feat], dim=0)
feats, feat_outputs = model(feat)
if args.base_loss == "bce":
feat_loss = criterion(feat_outputs, labels.unsqueeze(1).float())
else:
feat_loss = utils.regmix_criterion(
criterion, feat_outputs, targets_a, targets_b, lam
)
score = F.softmax(feat_outputs, dim=1) # [:, 0]
predicted_classes = np.argmax(score.detach().cpu().numpy(), axis=1)
correct_predictions = [
1 for k in range(len(labels)) if predicted_classes[k] == labels[k]
]
accuracy.append(sum(correct_predictions) / len(labels) * 100)
train_loss.append(feat_loss.item())
epoch_bar.set_postfix(
{
"train_loss": f"{sum(train_loss)/(iter_num+1):.4f}",
"acc": f"{sum(accuracy)/(iter_num+1):.2f}",
}
)
feat_optimizer.zero_grad()
feat_loss.backward()
feat_optimizer.step()
# Epoch eval
model.eval()
with torch.no_grad():
val_bar = tqdm(dev_loader, desc=f"Validation for epoch {epoch_num+1}")
accuracy, val_loss = [], []
for iter_num, batch in enumerate(val_bar):
feat, _, labels = batch
feat = feat.transpose(2, 3).to(args.device)
labels = labels.to(args.device)
feats, feat_outputs = model(feat)
if args.base_loss == "bce":
feat_loss = criterion(feat_outputs, labels.unsqueeze(1).float())
score = feat_outputs
else:
feat_loss = criterion(feat_outputs, labels)
score = F.softmax(feat_outputs, dim=1)
predicted_classes = np.argmax(score.detach().cpu().numpy(), axis=1)
correct_predictions = [
1 for k in range(len(labels)) if predicted_classes[k] == labels[k]
]
accuracy.append(sum(correct_predictions) / len(labels) * 100)
val_loss.append(feat_loss.item())
val_bar.set_postfix(
{
"val_loss": f"{sum(val_loss)/(iter_num+1):.4f}",
"val_acc": f"{sum(accuracy)/(iter_num+1):.2f}",
}
)
epoch_val_loss = sum(val_loss) / (iter_num + 1)
if epoch_val_loss < prev_loss:
# Save the checkpoint with better val_loss
checkpoint_path = os.path.join(
args.out_folder, "anti-spoofing_feat_model.pth"
)
print(f"[INFO] Saving model with better val_loss to {checkpoint_path}")
torch.save(model.state_dict(), checkpoint_path)
prev_loss = epoch_val_loss
elif (epoch_num + 1) % 10 == 0:
# Save the intermediate checkpoints just in case
checkpoint_path = os.path.join(
args.out_folder,
"checkpoint",
"anti-spoofing_feat_model_%02d.pth" % (epoch_num + 1),
)
print(
f"[INFO] Saving intermediate model at epoch {epoch_num+1} to {checkpoint_path}"
)
torch.save(model.state_dict(), checkpoint_path)
print("\n")
if __name__ == "__main__":
args = parse_args()
train(args)