forked from nanopony/keras-convautoencoder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
1100cars_sequential_keras-0.3.2.py
129 lines (110 loc) · 4.49 KB
/
1100cars_sequential_keras-0.3.2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
import pickle
import zipfile
import numpy as np
from keras.callbacks import EarlyStopping
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.layers.core import Dense, Activation, Dropout, Flatten, Reshape
from keras.models import Sequential
from autoencoder_layers import DependentDense, Deconvolution2D, DePool2D
from helpers import tile_raster_images, show_image, keras2rgb
def load_cars(split=0.8):
# Vehicle images are courtecy of German Aerospace Center (DLR)
# Remote Sensing Technology Institute, Photogrammetry and Image Analysis
# http://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-5431/9230_read-42467/
if not os.path.exists('./data/cars.pkl'):
print('Extracting cars dataset')
with zipfile.ZipFile('./data/cars.pkl.zip', "r") as z:
z.extractall("./data/")
with open('./data/cars.pkl', 'rb') as ff:
(X_data, y_data) = pickle.load(ff)
X_data = X_data.reshape(X_data.shape[0], 3, 32, 32)
l = int(split * X_data.shape[0])
X_train = X_data[:l]
X_test = X_data[l:]
return X_train, X_test
def build_model(nb_filters=32, nb_pool=2, nb_conv=3):
C_1 = 64
C_2 = 32
C_3 = 16
c1 = Convolution2D(C_1, nb_conv, nb_conv,
border_mode='same',
name='c1',
input_shape=(3, 32, 32))
mp1 = MaxPooling2D(pool_size=(nb_pool, nb_pool),
name='mp1')
c2 = Convolution2D(C_2, nb_conv, nb_conv,
border_mode='same',
name='c2')
mp2 = MaxPooling2D(pool_size=(nb_pool, nb_pool),
name='mp2')
c3 = Convolution2D(C_3, nb_conv, nb_conv,
border_mode='same',
name='c3')
mp3 = MaxPooling2D(pool_size=(nb_pool, nb_pool),
name='mp3')
d = Dense(100,
name='encoded')
model = Sequential()
# ====================================================
model.add(c1)
model.add(Activation('tanh'))
model.add(mp1)
# ====================================================
model.add(Dropout(0.25))
# ====================================================
model.add(c2)
model.add(Activation('tanh'))
model.add(mp2)
# ====================================================
model.add(c3)
model.add(Activation('tanh'))
model.add(mp3)
# ====================================================
model.add(Dropout(0.25))
# ====================================================
model.add(Flatten())
model.add(d)
model.add(Activation('tanh'))
# ====================================================
model.add(DependentDense(d.input_shape[1], d, input_shape=(d.output_shape[1],)))
model.add(Activation('tanh'))
model.add(Reshape((C_3, 4, 4)))
# ====================================================
model.add(DePool2D(mp3, size=(nb_pool, nb_pool)))
model.add(Deconvolution2D(c3, nb_out_channels=C_2, border_mode='same'))
model.add(Activation('tanh'))
# ====================================================
model.add(DePool2D(mp2, size=(nb_pool, nb_pool)))
model.add(Deconvolution2D(c2, nb_out_channels=C_1, border_mode='same'))
model.add(Activation('tanh'))
# ====================================================
model.add(DePool2D(mp1, size=(nb_pool, nb_pool)))
model.add(Deconvolution2D(c1, nb_out_channels=3, border_mode='same'))
model.add(Activation('tanh'))
# ====================================================
model.compile('adam', loss='mean_squared_error')
#model.compile('rmsprop', loss='mean_squared_error')
return model
if __name__ == '__main__':
X_train, X_test = load_cars()
model = build_model()
if not False:
model.summary()
model.fit(X_train, X_train, nb_epoch=5, batch_size=64,
validation_split=0.2,
callbacks=[EarlyStopping(patience=12)])
model.save_weights('./cars.neuro', overwrite=True)
else:
model.load_weights('./cars.neuro')
l = model.predict(X_test[:25, ...])
representations = np.clip(l, 0, 1)
_r = tile_raster_images(
X=keras2rgb(representations),
img_shape=(32, 32, 3), tile_shape=(5, 5),
tile_spacing=(1, 1))
_o = tile_raster_images(
X=keras2rgb(X_test),
img_shape=(32, 32, 3), tile_shape=(5, 5),
tile_spacing=(1, 1))
show_image([(_o, 'Source'), (_r, 'Representations')])