-
Notifications
You must be signed in to change notification settings - Fork 0
/
sveCacheSim.py
429 lines (350 loc) · 16.1 KB
/
sveCacheSim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
#!/usr/bin/python
# Copyright (c) 2019, Arm Limited and Contributors.
#
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# USAGE:
# You can run a simulation as simple as sveCacheSim.simulation(None), which
# will run a simulation with the default 3-level cache hierarchy, and use the
# default 'medium'-sized Meabo trace. To do some model swapping, use one
# of the objects derived from SmartCache in CacheModels.py, e.g.
#
# stats, model = sveCacheSimm.simulation(CacheModels.Markov8StateSmartCache)
#
#
from collections import defaultdict
import os
import sys
import numpy as np
import pandas as pd
import time
import collections
import ntpath
import pickle
import PhaseDetector
from CacheModels import CacheHierarchy
def _run(trace, model, debug=False):
"""
The actual simulation driver function.
This function drives the simulation, but is typically called by
simulation(), and not by other outside code.
Parameters:
-----------
trace:
An object represting the trace to be simulated.
model:
The cache model used for simulation
debug:
Whether or not to print some debug output. (Default: False)
"""
# Check that we have a Phase Detector
if model.pd is None:
raise AssertionError('No phase detector attached to model')
# Get a place to store our stats about this run
stats = Stats(model.nlevels)
prog = ProgressBar(len(trace.VA))
# Main simulation loop
for idx,addr in enumerate(trace.VA):
# If no debugging, display a progressbar
if not debug:
prog.increment()
# Inform the Phase Detector of the instruction pointer
model.pd.access(trace.IP[idx])
# Check the top level cache for address `addr`. If it doesn't
# have it, it will automatically call the next level cache.
isHit, latency = model.cache_model[0].hasAddress(
addr, 0, IP=trace.IP[idx], isWrite=trace.isWrite[idx])
stats.total_cycles += latency
if isHit:
stats.total_hits += 1
# Check which cache level got the hit based on latency
for n in range(1, model.nlevels + 1):
stats.accessCount[n - 1] += 1
#if latency == data[n]["latency"]:
if latency == model.cache_model[n-1].config.latency:
stats.hitcount[n - 1] += 1
break
else:
stats.total_misses += 1
for n in range(1, model.nlevels + 1):
stats.accessCount[n - 1] += 1
if not debug:
prog.finish()
# Gather stats
stats.total_accesses = len(trace.VA)
for n in range(0, model.nlevels):
stats.evictCount[n] = model.cache_model[n].evictCounter
stats.prefEvictCount[n] = model.cache_model[n].prefEvictCounter
stats.hit_rate[n] = 1.0 * stats.hitcount[n] / stats.accessCount[n]
stats.miss_rate[n] = 1.0 * (stats.accessCount[n] - stats.hitcount[n]) / stats.accessCount[n]
stats.evict_rate[n] = 1.0 * model.cache_model[n].evictCounter / stats.accessCount[n]
stats.cache_trace[n] = model.cache_model[n].get_full_trace()
stats.phase_obj[n] = model.cache_model[n].phases
stats.phase_trace = model.pd.finalize()
return stats
def simulation(newmodel,
out_prefix=None,
debug=False,
trace_id = 'medium',
show_summary=True):
"""
Run a simulation.
This method provides a wrapper around the run function, and does
some things like load files for you, so you don't have to worry about where trace
files are located, and where the gold stats are.
This is the preferred method of running simulations.
Parameters:
-----------
newmodel:
An object deriving from CacheModels.SmartCache, or None, if you want to
run without model swapping.
out_prefix:
A prefix to use for storing the stats and model objects to files. If None, no files are
written.
debug:
Enable some debugging output. If false, a progress bar will be displayed instead. (Default: False)
trace_id:
One of 'small', 'medium', and 'large', representing one of the three included Meabo traces. (Default: 'medium')
show_summary:
Whether or not to show a short summary of the stats as they compare to the
stats in the gold files. (Default: True)
"""
# These Meabo traces should come with your distribution of this code.
trace_list = {'meabo_small':'../tracing/traces/meabo/meabo.i125.N512.P521.L1.log',
'meabo_medium':'../tracing/traces/meabo/meabo.i125.N512.P521.L2.log',
'meabo_large':'../tracing/traces/meabo/meabo.i125.N1536.P521.L3.log',
'pennant_small':'pennant.mp15.log',
'pennant_medium':'pennant.mp20.log',
'pennant_large':'pennant.mp22.log',
'lulesh_small':'lulesh.s10.i10.log',
'lulesh_medium':'lulesh.s10.i20.log',
'lulesh_large':'lulesh.s10.i30.log',
'slu_steam1':'../tracing/traces/SuperLU/ditersol.steam1.log',
'slu_steam2':'../tracing/traces/SuperLU/ditersol.steam2.log',
'slu_orsirr_1':'../tracing/traces/SuperLU/ditersol.orsirr_1.log',
'slu_orsirr_2':'../tracing/traces/SuperLU/ditersol.orsirr_2.log',
'slu_orsreg_1':'../tracing/traces/SuperLU/ditersol.orsreg_1.log',
'blackscholes-simdev':'../tracing/parsec-3.0/traces/simdev/memtrace.blackscholes.log',
'bodytrack-simdev':'../tracing/parsec-3.0/traces/simdev/memtrace.bodytrack.log',
'ferret-simdev':'../tracing/parsec-3.0/traces/simdev/memtrace.ferret.log',
'fluidanimate-simdev':'../tracing/parsec-3.0/traces/simdev/memtrace.fluidanimate.log',
'freqmine-simdev':'../tracing/parsec-3.0/traces/simdev/memtrace.freqmine.log',
'blackscholes-simsmall':'../tracing/parsec-3.0/traces/simsmall/memtrace.blackscholes.log',
'bodytrack-simsmall':'../tracing/parsec-3.0/traces/simsmall/memtrace.bodytrack.log',
'ferret-simsmall':'../tracing/parsec-3.0/traces/simsmall/memtrace.ferret.log',
'fluidanimate-simsmall':'../tracing/parsec-3.0/traces/simsmall/memtrace.fluidanimate.log',
'freqmine-simsmall':'../tracing/parsec-3.0/traces/simsmall/memtrace.freqmine.log',
}
# These represet the stats for a run with no model swapping.
#gold_list = {'small':'gold/stats_abs_small.pkl',
# 'medium':'gold/base_medium_stats.pkl',
# 'large':'gold/base_large_stats.pkl'}
gold_list = {'small':'gold_python3.7/base_small_stats.pkl',
'medium':'gold_python3.7/base_medium_stats.pkl',
'large':'gold_python3.7/base_large_stats.pkl'}
#TODO: FIX THIS
# trace_file = 'traces/{}'.format(trace_list[trace_id])
trace_file = trace_list[trace_id]
binary_list = {'meabo_small':'../tracing/traces/meabo/binary/meabo',
'meabo_medium':'../tracing/traces/meabo/binary/meabo',
'meabo_large':'../tracing/traces/meabo/binary/meabo',
'slu_steam1':'../tracing/traces/SuperLU/binary/ditersol',
'slu_steam2':'../tracing/traces/SuperLU/binary/ditersol',
'slu_orsirr_1':'../tracing/traces/SuperLU/binary/ditersol',
'slu_orsirr_2':'../tracing/traces/SuperLU/binary/ditersol',
'slu_orsreg_1':'../tracing/traces/SuperLU/binary/ditersol',
'blackscholes-simdev':'../tracing/parsec-3.0/binaries/blackscholes',
'bodytrack-simdev':'../tracing/parsec-3.0/binaries/bodytrack',
'ferret-simdev':'../tracing/parsec-3.0/binaries/ferret',
'fluidanimate-simdev':'../tracing/parsec-3.0/binaries/fluidanimate',
'freqmine-simdev':'../tracing/parsec-3.0/binaries/freqmine',
'blackscholes-simsmall':'../tracing/parsec-3.0/binaries/blackscholes',
'bodytrack-simsmall':'../tracing/parsec-3.0/binaries/bodytrack',
'ferret-simsmall':'../tracing/parsec-3.0/binaries/ferret',
'fluidanimate-simsmall':'../tracing/parsec-3.0/binaries/fluidanimate',
'freqmine-simsmall':'../tracing/parsec-3.0/binaries/freqmine',
}
binary_filename = binary_list[trace_id] if trace_id in binary_list else None
model_file = 'base-models/3-level.json'
if newmodel is not None:
model = CacheHierarchy(model_file, swap={0:newmodel}, binary_filename=binary_filename)
else:
model = CacheHierarchy(model_file, binary_filename=binary_filename)
# Get the traace and run the simulation
trace = traceToInts(trace_file, model, binary=True)
stats = _run(trace, model, debug=debug)
if show_summary:
gold_file = gold_list[trace_id]
print('Trace: {}'.format(ntpath.basename(trace_file)))
print_summary(stats, gold_file)
# Optionally save the stats and model objects to pickle files
if out_prefix is not None:
stats_file = '{}_stats.pkl'.format(out_prefix)
model_file = '{}_model.pkl'.format(out_prefix)
save_object(stats, stats_file)
save_object(model, model_file)
print('Wrote stats to: {}'.format(stats_file))
print('Wrote model to: {}'.format(model_file))
return stats, model
###################
# Utility Classes #
###################
class Stats:
"""An object for collecting stats about a simulation run.
Usage:
(1) Initialize your Stats object and specify the number of cache levels you have.
e.g. stats = Stats(3)
(2) Fill it with data as you see fit.
"""
def __init__(self, nlevels):
"""
Parameters
----------
nlevels:
The number of cache levels you are collecting stats for.
"""
self.nlevels = nlevels
self.hitcount = [0] * nlevels
self.accessCount = [0] * nlevels
self.evictCount = [0] * nlevels
self.prefEvictCount = [0] * nlevels
self.hit_rate = [0] * nlevels
self.miss_rate = [0] * nlevels
self.evict_rate = [0] * nlevels
self.total_hits = 0
self.total_misses = 0
self.total_cycles = 0
self.total_accesses = 0
self.cache_trace = [0] * nlevels
self.phase_trace = None
self.phase_stats = [0] * nlevels
self.phase_obj = [0] * nlevels
def print_stats(self, file=sys.stdout):
"""
Print the stats for this object.
WARNING - This does not print everything, for instance, it doesn't
print any phase info.
Parameters:
-----------
file:
The file you would like to print the stats to (default: sys.stdout)
"""
file.write("========\n{}\n========\n".format(run_name))
for n in range(0, self.nlevels):
file.write("l{} Hits\t\t{}\n".format(n + 1, self.hitcount[n]))
file.write("l{} Accesses\t{}\n".format(n + 1, self.accessCount[n]))
file.write("l{} Evicts\t{}\n".format( n + 1, self.evictCount[n]))
file.write("l{} Hit Rate\t{:.2%}\n".format( n + 1, self.hit_rate[n]))
file.write("l{} Miss Rate\t{:.2%}\n".format(n + 1, self.miss_rate[n]))
file.write("l{} Evict Rate\t{:.2%}\n\n".format( n + 1, self.evict_rate[n]))
file.write("Total Accesses\t{}\n".format(self.total_accesses))
file.write("Total Hits\t{}\n".format(self.total_hits))
file.write("Total Misses\t{}\n".format(self.total_misses))
file.write("Total Cycles\t{}\n".format(self.total_cycles))
class ProgressBar:
"""
A simple progress bar.
Usage:
(1) Initialize your progress bar by creating it and specifiying the number of iterations
e.g. pbar = ProgressBar(200)
(2) Call increment on the bar every iteration of your loop
e.g. for i in range(200):
pbar.increment()
(3) Call finish after your are done with your loop to display the total elapsed time
e.g. pbar.finish()
"""
def _minutes_string(seconds):
"""
Converts seconds into mm:ss format and returns
this as a string.
Parameters
----------
seconds:
The values to be converted to minutes and seconds
"""
minutes = int(seconds / 60)
seconds = int(seconds - minutes * 60)
return '{}:{:02}'.format(minutes, seconds)
def __init__(self, maxidx, bar_length=40):
"""
Parameters
----------
maxidx:
The number of loop iterations you will be doing
bar_length:
The length of the bar (in number of characters) (default 40)
"""
self.bar_length = bar_length
self.bar_progress = 0
self.time_start = time.perf_counter()
self.maxidx = maxidx
self.idx = 0
def increment(self):
"""
Call this every iteration of your loop to update the progress bar.
"""
if self.idx > self.bar_progress * self.maxidx/self.bar_length:
time_now = time.perf_counter()
time_per_it = (time_now - self.time_start) / self.idx
time_left = (self.maxidx - self.idx) * time_per_it
self.bar_progress += 1
print('[' + 'x'*(self.bar_progress) + ' '*(self.bar_length-self.bar_progress) + ']'+ ' [ETA: {}]'.format(ProgressBar._minutes_string(time_left)) + ' '*10, end='\r')
self.idx += 1
def finish(self):
"""
Call this after you are done with the progress bar.
"""
print('[' + 'x'*(self.bar_length) + ']' + ' [Elapsed: {}]'.format(ProgressBar._minutes_string(time.perf_counter()-self.time_start)) + ' '*10)
class _Trace:
"""
A class representing a trace of an application.
"""
def __init__(self, IP, VA, isWrite):
"""
Parameters:
-----------
IP:
A list of instruction pointers
VA:
A list of virtual addresses
isWrite:
Whether or not each access is a write (True=>write, False=>read)
"""
self.IP = IP # instruction pointer
self.VA = VA # virtual address
self.isWrite = isWrite
#####################
# Utility Functions #
#####################
def traceToInts(filename, model, zip_trace=False, binary=False):
# TODO: actually do something with the sizes of the accesses
dt = np.dtype([('isWrite', '?'), ('pad', 'S7'), ('VA', 'u8'), ('size', 'u8'), ('IP', 'u8')])
data = np.fromfile(filename, dtype=dt)
df = pd.DataFrame(data)
return _Trace(df['IP'], df['VA'], df['isWrite'])
def save_object(obj, filename):
with open(filename, 'wb') as output: # Overwrites any existing file.
pickle.dump(obj, output, pickle.HIGHEST_PROTOCOL)
def load_object(filename):
with (open(filename, "rb")) as file:
return pickle.load(file)
def print_summary(stats, gold):
with (open(gold, "rb")) as file:
stats_abs = pickle.load(file)
print('Summary:')
for i in range(len(stats.hit_rate)):
print(' L{} percent change in hit count: {:.2f}%'.format(i+1, 100*(stats.hitcount[i]-stats_abs.hitcount[i])/stats_abs.hitcount[i]))
pct = (stats.total_cycles - stats_abs.total_cycles) / stats_abs.total_cycles * 100
print(' Percent change in cycles: {:.2f}%'.format(pct))