-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainModel_all.py
executable file
·281 lines (241 loc) · 9.71 KB
/
trainModel_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
'''
For BraTS 2018 training and validation.
after normalization image within 0 and 1, the mean of flair, t1, t1ce, t2 is [0.4484 0.4515 0.4502 0.4337]
the std of flair, t1, t1ce, t2 is [0.1923 0.1633 0.1675 0.2183]
'''
import torch
from torch.utils.data.dataset import Dataset
from torch.autograd import Variable
from torch.utils.data import DataLoader
import numpy as np
import os
from torchvision import transforms, utils
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
import time
from utils.jpu_net import JPUNet
import pandas as pd
# from utils.unet_vae import UNet
from scipy.ndimage import rotate
import nibabel as nib
import random
from skimage.transform import rescale, resize
import matplotlib.pyplot as plt
import csv
from scipy import ndimage
startTime = time.time()
rootDir = os.getcwd()
train_dataFolderDir = os.path.join(
rootDir, 'last_vae_309_uncertainty_orignal') # path to all patches
valid_dataFolderDir = os.path.join(
rootDir, 'last_vae_309_uncertainty_orignal') # path to all patches
train_info = os.path.join(
rootDir, 'training_data_classification_labels_3risk.csv')
# valid_info = os.path.join(rootDir, 'survival_evaluation.csv')
model_path = os.path.join(rootDir, 'models_mri_all/')
if os.path.isdir(model_path) == False:
os.mkdir(model_path)
BATCH_SIZE = 1
nTotalEpoch = 400
nStep = 400 # save model at every 3 iteration
in_channel = 3
nRow, nCol, nSlice = 160, 192, 128
ndf = 4
LR = 0.001
nClass = 3
outTextDir = os.path.join(rootDir, 'accu.txt')
if os.path.exists(outTextDir):
dFile = open(outTextDir, 'a') # apend the image into existing txt file
else:
dFile = open(outTextDir, 'w') # save the image into txt file
dFile.write("--------------*************----------------\n")
dFile.write(""+"Epoch" + "\t" + "T_Loss_old" + "\t" + "T_Loss_new" + "\n")
class DriveData(Dataset):
__xs = [] # image
__ys = [] # image
def __init__(self, dataFolderPath, list_info, pat_info, transform=None):
self.dataFolderPath = dataFolderPath
self.list_info = list_info
self.pat_info = pat_info
self.nClass = nClass
self.myTransform = transform
self.information = self.getPatient(pat_info)
# print(self.information)
with open(self.list_info) as f:
for idx, line in enumerate(f):
# get fused modality image name
pid = line.split()[0]
risk = self.information[pid]
self.__xs.append(line.split()[0])
self.__ys.append(risk)
def getPatient(self, pat_info):
dCSV = pd.read_csv(pat_info)
tempPatientList = dCSV.CPM_RadPath_2019_ID # only take training patient list
# tempAgeList = dCSV.age_in_days
all_patientList = tempPatientList.dropna() # remove NaN from the column
# ageList = tempAgeList.dropna() # remove NaN from the column
tempRiskList = dCSV.risk
riskList = tempRiskList.dropna() # remove NaN from the column
info_list = {}
for idx in range(0, len(all_patientList)):
pat_id = all_patientList[idx]
# age_id = ageList[idx]
if len(riskList) == 0:
nRisk = 0
else:
nRisk = riskList[idx]
temp = {pat_id: nRisk}
if len(info_list) == 0:
info_list = temp
else:
info_list.update(temp)
return info_list
def __getitem__(self, index):
# print('------------: ', index)
data_path = os.path.join(
self.dataFolderPath, self.__xs[index]+'_all_uncertainty.nii.gz')
features = nib.load(data_path).get_data()
nRisk = torch.from_numpy(np.array(self.__ys[index]).reshape([1]))
if self.myTransform is not None:
img = self.myTransform(img)
return features, nRisk
# Override to give PyTorch size of dataset
def __len__(self):
return len(self.__xs) # -*- coding: utf-8 -*-
transformations_train = None
trainPatchInfoPath = os.path.join(rootDir, 'trainList_all.txt')
train_dataset = DriveData(
train_dataFolderDir, trainPatchInfoPath, train_info, transformations_train)
train_loader = DataLoader(dataset=train_dataset,
batch_size=BATCH_SIZE, shuffle=True, num_workers=32)
# transformations_validation = None
# validationPatchInfoPath = os.path.join(rootDir, 'validList.txt')
# validation_dataset = DriveData(
# valid_dataFolderDir, validationPatchInfoPath, valid_info, transformations_validation)
# validation_loader = DataLoader(
# dataset=validation_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=32)
model = JPUNet(in_channel, nClass, ndf)
model = model.cuda()
optimizer = optim.Adam(model.parameters(), lr=0.0001)
criterion = nn.CrossEntropyLoss()
def train():
model.train()
train_loss = 0
train_dice = 0
nCorrectCount = 0
nTotalCount = 0
factor = 0.001
for batch_idx, (data, target) in enumerate(train_loader):
# index = (data == 0) # find index for background
data = data.type(torch.FloatTensor)
data = data/100
# data = data.view(data.size(0), in_channel, nX, nY, nZ)
# data = data + 0.01*torch.randn_like(data) # add noise
# data[index] = 0
target = target.type(torch.LongTensor)
target = target.view(-1)
data, target = Variable(data).cuda(), Variable(
target).cuda() # gpu version
optimizer.zero_grad()
# showImage(data, target) # show image
output, seLoss = model(data)
loss = criterion(output, target)
reg_loss = None
for param in model.parameters():
if reg_loss is None:
reg_loss = param.norm(2)
else:
reg_loss = reg_loss + param.norm(2)
_, predicted = torch.max(output.data, 1)
if predicted == target:
nCorrectCount = nCorrectCount + 1
nTotalCount = nTotalCount + 1
loss = loss + torch.sum(torch.abs(seLoss)) + factor*reg_loss
train_loss = train_loss+loss.data.cpu().numpy()
loss.backward()
optimizer.step()
train_dice = nCorrectCount/nTotalCount
print('.....Average training loss: %.4f, dice: %.4f' %
(train_loss/batch_idx, train_dice))
return train_loss/(batch_idx + 1), train_dice
def adjust_learning_rate(optimizer, LR, epoch):
for param_group in optimizer.param_groups:
lr = param_group['lr']
lr = LR * ((1-epoch/nTotalEpoch).__pow__(0.9))
param_group['lr'] = lr
print('......LR is %f at epoch %d.' % (param_group['lr'], epoch+1))
def computeRisk(target):
aMin = 31*10
aMax = 31*15
if target > aMax:
risk = 3
elif target < aMin:
risk = 1
else:
risk = 2
return risk
def test():
model.eval()
nCorrectCount = 0
nTotalCount = 0
valid_loss = 0
valid_dice = 0
for batch_idx, (data, age, target) in enumerate(validation_loader):
#data = image['image']
#target = image['labels']
data = data.type(torch.FloatTensor)
age = age.type(torch.FloatTensor)
target = target.type(torch.FloatTensor)
# data = data / 255.0
# data = (data-0.5)/0.5
# data[0:BATCH_SIZE, 0] = (data[0:BATCH_SIZE, 0] - 0.4484) / 0.1923
# data[0:BATCH_SIZE, 1] = (data[0:BATCH_SIZE, 1] - 0.4515) / 0.1633
# data[0:BATCH_SIZE, 2] = (data[0:BATCH_SIZE, 2] - 0.4502) / 0.1675
# data[0:BATCH_SIZE, 3] = (data[0:BATCH_SIZE, 3] - 0.4337) / 0.2183
data, age, target = Variable(data).cuda(), Variable(age).cuda(), Variable(
target).cuda() # gpu version
output = model(data, age)
tar_value = target.data.cpu().numpy()
out_value = output.data.cpu().numpy().astype(int)
tar_risk = computeRisk(tar_value)
out_risk = computeRisk(out_value)
if tar_risk == out_risk:
nCorrectCount = nCorrectCount + 1
nTotalCount = nTotalCount + 1
valid_loss = valid_loss + np.absolute(tar_value - out_value)
print('..........: target %d prediction: %d' % (tar_value, out_value))
valid_ave_loss = valid_loss/(batch_idx + 1)
valid_dice = nCorrectCount/nTotalCount
print('... Average validation acc: %.4f' % (valid_dice))
return valid_dice
nLoss = 1e15
nDice = 0
modelPath_stat = model_path+'model_checkpoint_'
for epoch in range(0, nTotalEpoch):
print('\n......Working on the %d epoch out of %d.' %
(epoch+1, nTotalEpoch))
# scheduler.step()
adjust_learning_rate(optimizer, LR, epoch) # adjust lr
train_ave_loss, train_ave_dice = train()
# valid_ave_dice = test()
# valid_dice_result, ' and old accuracy: ', nDice)
# dFile.write(str(epoch) + "\t" + str(np.round(nDice, 4))+"\t\t" +
# str(np.round(valid_ave_dice, 4)) + "\t" + "\n")
print('=====>The old train loss: %.4f new loss: %.4f, ....., old train dice: %.4f and new train dice: %.4f' %
(nLoss, train_ave_loss, nDice, train_ave_dice))
if train_ave_loss < nLoss:
nLoss = train_ave_loss # update the validation accuracy
print('*********The updated average train loss: %.4f, dice: %.4f' %
(train_ave_loss, train_ave_dice))
torch.save(model, os.path.join(
model_path, 'bestModel_' + str(epoch)))
# elif np.mod(epoch, nStep) == 0:
# torch.save({
# 'epoch': epoch,
# 'model_state_dict': model.state_dict(),
# 'optimizer_state_dict': optimizer.state_dict()
# }, os.path.join(model_path, 'model_checkpoint_' + tumor_type+'_'+view_type+'_'+str(bVAE)+'_'+str(epoch)))
endTime = time.time()
print('******* It takes %d seconds to complete*********' % (endTime-startTime))