diff --git a/.github/workflows/main.yml b/.github/workflows/main.yml index 11151c0c..1c3986ba 100644 --- a/.github/workflows/main.yml +++ b/.github/workflows/main.yml @@ -7,7 +7,7 @@ on: jobs: build: - if: github.repository_owner == 'pluralitybook' + if: ${{ github.repository_owner == 'pluralitybook' || github.repository_owner == 'audreyt' }} runs-on: ubuntu-latest permissions: contents: write diff --git a/ReadMe.md b/ReadMe.md index 05539e65..412039f4 100644 --- a/ReadMe.md +++ b/ReadMe.md @@ -16,7 +16,7 @@ To cite this text, you can use this bibtex as a sample @online{plurality2023, title={Plurality: The Future of Collaborative Technology and Democracy}, - author={Tang, Audrey and Weyl, Glen and {the Plurality Community}}, + author={Weyl, E. Glen and Tang, Audrey and {the Plurality Community}}, year={2023}, url={https://github.com/pluralitybook/plurality/blob/main/contents/english}, publisher={GitHub}, diff --git a/contents/english/0-0-endorsements.md b/contents/english/0-0-endorsements.md index cdc64dc6..8aa2d49e 100644 --- a/contents/english/0-0-endorsements.md +++ b/contents/english/0-0-endorsements.md @@ -1,3 +1,3 @@ -# Credits +# Endorsements -Placeholder for credits for contributions across a diversity of domains that helped create the book. Contributors will be highlighted in line with their social capital and the type of their contribution will be showcased. Coming soon after the finalization of the English print edition text. \ No newline at end of file +This space is reserved for a collection of endorsements from esteemed figures across various fields, whose words will underscore the significance and impact of this work. diff --git a/contents/english/0-2-finding-your-dao.md b/contents/english/0-2-finding-your-dao.md index 9dc818cd..e2714d87 100644 --- a/contents/english/0-2-finding-your-dao.md +++ b/contents/english/0-2-finding-your-dao.md @@ -1,4 +1,4 @@ -**Finding Your Dao** +# Finding Your Dao As we discuss in the book, linear book narratives have a significant disadvantage of forcing every reader down a single learning path. While the online version avoids this through the extensive use of hyperlinks, those who hold a physical copy will find this more challenging to navigate. To partially alleviate this problem, we have structured the text in a "circular" manner, where readers can start at a variety of points, read from there and circle back to the "earlier" material at the end. diff --git a/contents/english/2-0-information-technology-and-democracy-a-widening-gulf.md b/contents/english/2-0-information-technology-and-democracy-a-widening-gulf.md index 79d15e2f..8804e9d8 100644 --- a/contents/english/2-0-information-technology-and-democracy-a-widening-gulf.md +++ b/contents/english/2-0-information-technology-and-democracy-a-widening-gulf.md @@ -118,7 +118,6 @@ This reflects, with an extensive lag, the shift in investments made by public se There is a definite geopolitical context to the disposition of democracies to technology. Research on the evolution of innovation over history and time suggests that the changing attitudes of Western democracies to public technology investment have been moderated by geopolitical competitive pressures from eastward autocratic rivals[^NavigatingtheGeopoliticsofInnovation]. In the United States, for instance, the first and second phases of the innovation age (Industry 1.0 and Industry 2.0 respectively) which featured the emergence of such technologies as the steam engine, rail transport, the telegraph, and the assembly line were driven by the private sector in a relatively less intense geopolitical context in the pre-War era, an era of relative American isolation from global politics. However, the third phase (Industry 3.0), enabled by such technologies as semiconductors and the Internet, occurred in the context of intense geopolitics – the Cold War. Thus, driven by geopolitical exigencies, the 20th-century innovations were led by the government through such national institutional frameworks as the Defense Advanced Research Projects Agency (DARPA) as well as regional alliances of democracies such as the North Atlantic Treaty Organization (NATO). With the end of the Cold War and the subsequent collapse of an autocratic adversary, the geopolitical drivers of innovation waned in intensity, leading to a reduction in incentives for public investments in technology. About three decades later, the rise of China as a formidable challenger to the West’s innovation leadership and the resurgence of an empire-seeking Russia have reawakened the United States and other Western democracies to the urgency of innovation leadership in an era of exponential technologies loosely described as the fourth industrial revolution or Industry 4.0. Hence, we see such recent, somewhat corrective, public spending by the United States government through such institutional mechanisms as the National Science Foundation to bolster America's leadership in emerging technologies such as artificial intelligence [^WhiteHouse2024Budget]. This geopolitically driven attitude of the United States towards technology investment - an attitude that is reactive or proactive to the presence or otherwise of a rising or formidable adversary - leans towards what was described by Robert Atkinson as “digital realpolitik”[^RobertAtkinson]. -[^RobertAtkinson]: [url](https://www2.itif.org/2021-us-grand-strategy-global-digital-economy.pdf). ### Ideologies of the Twenty-First Century @@ -201,57 +200,56 @@ Technology and democracy are trapped between two sides of a widening gulf. That Another path is possible. Technology and democracy can be each other’s greatest allies. In fact, as we will argue, large-scale “Digital Democracy” is a dream we have only begun to imagine, one that requires unprecedented technology to have any chance of being realized. By reimagining our future, shifting public investments, research agendas, and private development, we can build that future. In the rest of this book, we hope to show you how. -[^NarrowCorridor]: Acemoglu, Daron, and James A Robinson. The Narrow Corridor: States, Societies, and the Fate of Liberty. New York: Penguin Books, 2020. +[^NarrowCorridor]: Daron Acemoglu, and James A Robinson, _The Narrow Corridor: States, Societies, and the Fate of Liberty_. (New York: Penguin Books, 2020). [^Tocqueville]: Such relationships differ from those established in markets, which are based on bilateral, transactional exchange in a “universal” currency, as they denominate value in units based on local value and trust. -[^OutInTheCountry]: Gray, Mary. “Out in the Country: Youth, Media, and Queer Visibility in Rural America.” psycnet.apa.org, 2009. https://psycnet.apa.org/record/2009-19902-000. See also O’Day, Emily B., and Richard G. Heimberg. “Social Media Use, Social Anxiety, and Loneliness: A Systematic Review.” Computers in Human Behavior Reports 3, no. 100070 (January 2021). https://doi.org/10.1016/j.chbr.2021.100070; and see also Allcott, Hunt, Luca Braghieri, Sarah Eichmeyer, and Matthew Gentzkow. “The Welfare Effects of Social Media.” American Economic Review 110, no. 3 (March 1, 2020): 629–76. https://doi.org/10.1257/aer.20190658. -[^GhostWork]: Siddharth Suri, and Mary L Gray. Ghost Work: How to Stop Silicon Valley from Building a New Global Underclass. Houghton Mifflin Harcourt, 2019. -[^PolarizationResearch]: Levitsky, Steven, and Daniel Ziblatt. How Democracies Die. New York: Broadway Books, 2018.; See also Mounk, Yascha. The People vs. Democracy: Why Our Freedom Is in Danger and How to Save It. Cambridge, Massachusetts: Harvard University Press, 2018; Sunstein, Cass R. #Republic: Divided Democracy in the Age of Social Media. Princeton, New Jersey: Princeton University Press, 2017; Kathleen Hall Jamieson, and Joseph N Cappella. Echo Chamber: Rush Limbaugh and the Conservative Media Establishment. Oxford; New York: Oxford University Press, 2008. -[^FinancialInnovation]: Simsek, Alp. “The Macroeconomics of Financial Speculation.” Annual Review of Economics 13, no. 1 (May 11, 2021). https://doi.org/10.1146/annurev-economics-092120-050543. -[^CryptoChallenges]: McKenzie, Ben, and Jacob Silverman. Easy Money: Cryptocurrency, Casino Capitalism, and the Golden Age of Fraud. Abrams, 2023; "Financial Stability Board. “Regulation, Supervision and Oversight of Crypto-Asset Activities and Markets Consultative Document,” 2022. https://www.fsb.org/wp-content/uploads/P111022-3.pdf; "Lacurci, Greg. “Cryptocurrency Poses a Significant Risk of Tax Evasion.” CNBC, May 31, 2021. https://www.cnbc.com/2021/05/31/cryptocurrency-poses-a-significant-risk-of-tax-evasion.html; Trozze, Arianna, Josh Kamps, Eray Arda Akartuna, Florian J. Hetzel, Bennett Kleinberg, Toby Davies, and Shane D. Johnson. “Cryptocurrencies and Future Financial Crime.” Crime Science 11, no. 1 (January 5, 2022). https://doi.org/10.1186/s40163-021-00163-8; Baer, Katherine , Ruud De Mooij, Shafik Hebous, and Michael Keen. “Crypto Poses Significant Tax Problems—and They Could Get Worse.” IMF, July 5, 2023. https://www.imf.org/en/Blogs/Articles/2023/07/05/crypto-poses-significant-tax-problems-and-they-could-get-worse; and “Crypto-Assets: Implications for Financial Stability, Monetary Policy, and Payments and Market Infrastructures.” ECB Occasional Paper, no. 223 (May 17, 2019). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3391055. -[^TechnologySocietyImpact]: Harris, Tristan. “Ethics for Designers — How Technology Hijacks People’s Minds — from a Magician and Google’s Design Ethicist.” Ethics for Designers, March 4, 2017. https://www.ethicsfordesigners.com/articles/how-technology-hijacks-peoples-minds; https://www.youtube.com/watch?v=7LqaotiGWjQ; and Daniel Schmachtenberger. “Explorations on the Future of Civilization,” n.d. https://civilizationemerging.com/. -[^SurveillanceCapitalism]: Zuboff, Shoshana. The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power. New York, NY: PublicAffairs, 2019; O’neil, Cathy. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. New York: Crown, 2016; Evangelos Simoudis. The Big Data Opportunity in Our Driverless Future. Menlo Park, Ca: Corporate Innovators, Llc, 2017; Aghion, Philippe, Benjamin Jones, and Charles Jones. “Artificial Intelligence and Economic Growth,” 2017. https://web.stanford.edu/~chadj/AI.pdf; Ford, Martin. Rise of the Robots: Technology and the Threat of a Jobless Future. New York: Basic Books, 2015; Lee, Kai-Fu. AI Superpowers China, Silicon Valley, and the New World Order. Boston Houghton Mifflin Harcourt, 2018; Brin, David. The Transparent Society: Will Technology Force Us to Choose between Privacy and Freedom? New York: Basic Books, 1999; Noble, Safiya Umoja. Algorithms of Oppression: How Search Engines Reinforce Racism. New York: New York University Press, 2018; and Eubanks, Virginia. Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. New York, NY: St. Martin’s Press, 2018. -[^AIChallenges]: Broussard, Meredith. Artificial Unintelligence. The MIT Press, 2018. https://doi.org/10.7551/mitpress/11022.001.0001; O’neil, Cathy. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. New York: Crown, 2016; Benjamin, Ruha. “Race after Technology: Abolitionist Tools for the New Jim Code.” Social Forces 98, no. 4 (December 23, 2019). https://doi.org/10.1093/sf/soz162; Margolin, Victor. The Politics of the Artificial: Essays on Design and Design Studies. Chicago: The University of Chicago Press, 2002. -[^AIandInequality]: Acemoglu, Daron, and Pascual Restrepo. “The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment.” American Economic Review 108, no. 6 (June 2018): 1488–1542. https://doi.org/10.1257/aer.20160696; Haskel, Jonathan, and Stian Westlake. “Capitalism without Capital: The Rise of the Intangible Economy (an Excerpt).” Journal of Economic Sociology 22, no. 1 (2021): 61–70. https://doi.org/10.17323/1726-3247-2021-1-61-70; and Agrawal, Ajay, Joshua Gans, Avi Goldfarb, and Catherine Tucker. The Economics of Artificial Intelligence. University of Chicago Press, 2024. -[^MarketPower]: De Loecker, Jan, Jan Eeckhout, and Gabriel Unger. “The Rise of Market Power and the Macroeconomic Implications.” The Quarterly Journal of Economics 135, no. 2 (January 23, 2020): 561–644. https://doi.org/10.1093/qje/qjz041; Barrios, John Manuel, Yael V. Hochberg, and Hanyi Yi. “The Cost of Convenience: Ridehailing and Traffic Fatalities.” SSRN Electronic Journal, 2019. https://doi.org/10.2139/ssrn.3361227; and Kristal, Tali. “The Capitalist Machine: Computerization, Workers’ Power, and the Decline in Labor’s Share within U.S. Industries.” American Sociological Review 78, no. 3 (May 29, 2013): 361–89. https://doi.org/10.1177/0003122413481351. -[^AuthoritarianTech]: Lee, Kai-Fu. AI Superpowers China, Silicon Valley, and the New World Order. Boston Houghton Mifflin Harcourt, 2018; Dickson, Bruce J. The Dictator’s Dilemma: The Chinese Communist Party’s Strategy for Survival. Oxford, England; New York, New York: Oxford University Press, 2016; Couldry, Nick, and Ulises A. Mejias. “Data Colonialism: Rethinking Big Data’s Relation to the Contemporary Subject.” Television & New Media 20, no. 4 (September 2, 2019): 336–49. Feldstein, Steven. The Rise of Digital Repression: How Technology Is Reshaping Power, Politics, and Resistance. New York, Ny: Oxford University Press, 2021. -[^SocialMovements]: Etter, Michael, and Oana Brindusa Albu. “Activists in the Dark: Social Media Algorithms and Collective Action in Two Social Movement Organizations.” Organization 28, no. 1 (September 29, 2020): 135050842096153. https://doi.org/10.1177/1350508420961532. +[^OutInTheCountry]: Mary Gray, “Out in the Country: Youth, Media, and Queer Visibility in Rural America,” American Psychological Association, 2009, https://psycnet.apa.org/record/2009-19902-000. See also O’Day, Emily B., and Richard G. Heimberg, “Social Media Use, Social Anxiety, and Loneliness: A Systematic Review,” _Computers in Human Behavior Reports 3_, no. 100070 (January 2021), https://doi.org/10.1016/j.chbr.2021.100070; and see also Hunt Allcott, Luca Braghieri, Sarah Eichmeyer, and Matthew Gentzkow, “The Welfare Effects of Social Media,” _American Economic Review_ 110, no. 3 (March 1, 2020): 629–76. https://doi.org/10.1257/aer.20190658. +[^GhostWork]: Siddharth Suri, and Mary L Gray, _Ghost Work: How to Stop Silicon Valley from Building a New Global Underclass_, (Boston: Houghton Mifflin Harcourt, 2019). +[^PolarizationResearch]: Steven Levitsky, and Daniel Ziblatt. _How Democracies Die_, (New York: Broadway Books, 2018).; See also Yascha Mounk, _The People vs. Democracy: Why Our Freedom Is in Danger and How to Save It_, (Cambridge, Massachusetts: Harvard University Press, 2018); Cass Sunstein, _#Republic: Divided Democracy in the Age of Social Media_, (Princeton, New Jersey: Princeton University Press, 2017; Kathleen Jamieson, and Joseph Cappella, _Echo Chamber: Rush Limbaugh and the Conservative Media Establishment_, (Oxford, New York: Oxford University Press, 2008). +[^FinancialInnovation]: Alp Simsek, “The Macroeconomics of Financial Speculation,” Annual Review of Economics 13, no. 1 (May 11, 2021), https://doi.org/10.1146/annurev-economics-092120-050543. +[^CryptoChallenges]: Ben McKenzie, and Jacob Silverman, _Easy Money: Cryptocurrency, Casino Capitalism, and the Golden Age of Fraud_, (New York: Abrams, 2023); "Financial Stability Board, “Regulation, Supervision and Oversight of Crypto-Asset Activities and Markets Consultative Document,” 2022, https://www.fsb.org/wp-content/uploads/P111022-3.pdf; Greg Lacurci, “Cryptocurrency Poses a Significant Risk of Tax Evasion,” _CNBC_, May 31, 2021, https://www.cnbc.com/2021/05/31/cryptocurrency-poses-a-significant-risk-of-tax-evasion.html; Arianna Trozze, Josh Kamps, Eray Akartuna, Florian Hetzel, Bennett Kleinberg, Toby Davies, and Shane Johnson, “Cryptocurrencies and Future Financial Crime,” _Crime Science_ 11, no. 1 (January 5, 2022), https://doi.org/10.1186/s40163-021-00163-8; Baer, Katherine, Ruud De Mooij, Shafik Hebous, and Michael Keen, “Crypto Poses Significant Tax Problems—and They Could Get Worse,” _IMF_, July 5, 2023, https://www.imf.org/en/Blogs/Articles/2023/07/05/crypto-poses-significant-tax-problems-and-they-could-get-worse; and “Crypto-Assets: Implications for Financial Stability, Monetary Policy, and Payments and Market Infrastructures.” _ECB Occasional Paper_, no. 223 (May 17, 2019), https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3391055. +[^TechnologySocietyImpact]: Tristan Harris, “Ethics for Designers — How Technology Hijacks People’s Minds — from a Magician and Google’s Design Ethicist,” Ethics for Designers, March 4, 2017, https://www.ethicsfordesigners.com/articles/how-technology-hijacks-peoples-minds; https://www.youtube.com/watch?v=7LqaotiGWjQ; and Daniel Schmachtenberger, “Explorations on the Future of Civilization,” n.d. https://civilizationemerging.com/. +[^SurveillanceCapitalism]: Shoshana Zuboff, _The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power_, (New York, NY: PublicAffairs, 2019); Cathy O’neil, _Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy_, (New York: Crown, 2016); Evangelos Simoudis, _The Big Data Opportunity in Our Driverless Future_. (Menlo Park, Ca: Corporate Innovators, Llc, 2017); Philippe Aghion, Benjamin Jones, and Charles Jones, “Artificial Intelligence and Economic Growth,” 2017, https://web.stanford.edu/~chadj/AI.pdf; Ford, Martin, _Rise of the Robots: Technology and the Threat of a Jobless Future_, (New York: Basic Books, 2015); Kai-Fu Lee, _AI Superpowers China, Silicon Valley, and the New World Order_, (Boston: Houghton Mifflin Harcourt, 2018); David Brin, _The Transparent Society: Will Technology Force Us to Choose between Privacy and Freedom?_ (New York: Basic Books, 1999); Safiya Noble, _Algorithms of Oppression: How Search Engines Reinforce Racism_ (New York: New York University Press, 2018); and Virginia Eubanks, _Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor_, (New York: St. Martin’s Press, 2018). +[^AIChallenges]: Meredith Broussard. _Artificial Unintelligence_: (Boston: The MIT Press, 2018), https://doi.org/10.7551/mitpress/11022.001.0001; Cathy O’neil, _Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy_, (New York: Crown, 2016); Ruha Benjamin, “Race after Technology: Abolitionist Tools for the New Jim Code,” _Social Forces_ 98, no. 4 (December 23, 2019), https://doi.org/10.1093/sf/soz162; Victor Margolin, _The Politics of the Artificial: Essays on Design and Design Studies_, (Chicago: The University of Chicago Press, 2002). +[^AIandInequality]: Daron Acemoglu, and Pascual Restrepo, “The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment,” _American Economic Review_ 108, no. 6 (June 2018): 1488–1542. https://doi.org/10.1257/aer.20160696; Jonathan Haskel, and Stian Westlake, “Capitalism without Capital: The Rise of the Intangible Economy (an Excerpt),” _Journal of Economic Sociology_ 22, no. 1 (2021): 61–70, https://doi.org/10.17323/1726-3247-2021-1-61-70; Ajay Agrawal, Joshua Gans, Avi Goldfarb, and Catherine Tucker, _The Economics of Artificial Intelligence_, (Illinois: University of Chicago Press, 2024). +[^MarketPower]: Jan De Loecker, Jan Eeckhout, and Gabriel Unger. “The Rise of Market Power and the Macroeconomic Implications,” _The Quarterly Journal of Economics_ 135, no. 2 (January 23, 2020): 561–644, https://doi.org/10.1093/qje/qjz041; John Barrios, Yael V. Hochberg, and Hanyi Yi. “The Cost of Convenience: Ridehailing and Traffic Fatalities,” SSRN Electronic Journal, 2019, https://doi.org/10.2139/ssrn.3361227; and Tali Kristal, “The Capitalist Machine: Computerization, Workers’ Power, and the Decline in Labor’s Share within U.S. Industries,” _American Sociological Review_ 78, no. 3 (May 29, 2013): 361–89. https://doi.org/10.1177/0003122413481351. +[^AuthoritarianTech]: Kai-Fu Lee, _AI Superpowers China, Silicon Valley, and the New World Order_, (Boston Houghton Mifflin Harcourt, 2018); Bruce Dickson, _The Dictator’s Dilemma: The Chinese Communist Party’s Strategy for Survival_, (Oxford, England, New York: Oxford University Press, 2016); Nick Couldry, and Ulises Mejias, “Data Colonialism: Rethinking Big Data’s Relation to the Contemporary Subject,” _Television & New Media_ 20, no. 4 (September 2, 2019): 336–49. Steven Feldstein, _The Rise of Digital Repression: How Technology Is Reshaping Power, Politics, and Resistance_, (New York: Oxford University Press, 2021).[^SocialMovements]: Michael Etter and Oana Albu, “Activists in the Dark: Social Media Algorithms and Collective Action in Two Social Movement Organizations.” _Organization_ 28, no. 1 (September 29, 2020): 135050842096153. https://doi.org/10.1177/1350508420961532. [^JackDorsey]: Jack Dorsey (@Jack) “Donate via #Bitcoin to help #EndSARS 🇳🇬…,” X, October 14, 2020, 10.05pm, https://twitter.com/jack/status/1316485283777519620? -[^TwitterEndSARS]: Amaize, Ohimai. “How Twitter Amplified the Divisions That Derailed Nigeria’s #EndSARS Movement.” Slate Magazine, April 20, 2021. https://slate.com/technology/2021/04/endsars-nigeria-twitter-jack-dorsey-feminist-coalition.html. -[^DemocracyTechHostility]: See OpenForumEurope.org. European Commission published a study on the impact of open source software (OSS). Strict control of data in the EU has led to a lack of competition and innovation, as well as an increased risk of the market. However, we can see more investments in OSS in response to the steps of innovation in many eastern European countries. If the West fails to maintain and keep its investment in digital tech, it will experience huge losses in the future. For instance, we see the importance of digital OSS in the war between Ukraine and Russia. -[^PublicOpinionTech]: “Views of Big Tech Worsen; Public Wants More Regulation.” Gallup.com, February 18, 2021. https://news.gallup.com/poll/329666/views-big-tech-worsen-public-wants-regulation.aspx; but see also European Commission. “Europeans Strongly Support Science and Technology according to New Eurobarometer Survey,” September 23, 2021. https://ec.europa.eu/commission/presscorner/detail/en/IP_21_4645. -[^TechInvestmentDecline]: See Fredrik Erixon, and Björn Weigel. The Innovation Illusion: How so Little Is Created by so Many Working so Hard. New Haven: Yale University Press, 2017 and "Gordon, Robert J. The Rise and Fall of American Growth: The U.S. Standard of Living since the Civil War. Princeton; Oxford Princeton University Press, 2017." -See also "Benedikt, Carl, and Michael Osborne. “The Future of Employment: How Susceptible Are Jobs to Computerisation.” The Oxford Martin Programme on Technology and Employment, 2013. https://www.oxfordmartin.ox.ac.uk/downloads/academic/future-of-employment.pdf.; -"Brynjolfsson, Erik, and Andrew McAfee. The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies. New York: W.W. Norton & Company, 2014.; https://edisciplinas.usp.br/pluginfile.php/4312922/mod_resource/content/2/Erik%20-%20The%20Second%20Machine%20Age.pdf.; -Calestous Juma. Innovation and Its Enemies: Why People Resist New Technologies. New York: Oxford University Press, 2019.; +[^TwitterEndSARS]: Ohimai Amaize, _How Twitter Amplified the Divisions That Derailed Nigeria’s #EndSARS Movement_, Slate Magazine, April 20, 2021, https://slate.com/technology/2021/04/endsars-nigeria-twitter-jack-dorsey-feminist-coalition.html. +[^DemocracyTechHostility]: European Commission published a study on the impact of open source software (OSS). Strict control of data in the EU has led to a lack of competition and innovation, as well as an increased risk of the market. However, we can see more investments in OSS in response to the steps of innovation in many eastern European countries. If the West fails to maintain and keep its investment in digital tech, it will experience huge losses in the future. For instance, we see the importance of digital OSS in the war between Ukraine and Russia. For more on Europe's digital position, see "Open Technologies for Europe's Digital Decade," OpenForumEurope, n.d, https://openforumeurope.org/. +[^PublicOpinionTech]: “Views of Big Tech Worsen; Public Wants More Regulation,” Gallup.com, February 18, 2021, https://news.gallup.com/poll/329666/views-big-tech-worsen-public-wants-regulation.aspx; but see also “Europeans Strongly Support Science and Technology according to New Eurobarometer Survey,” European Commission, September 23, 2021, https://ec.europa.eu/commission/presscorner/detail/en/IP_21_4645. +[^TechInvestmentDecline]: See Fredrik Erixon, and Björn Weigel, _The Innovation Illusion: How so Little Is Created by so Many Working so Hard_, (New Haven: Yale University Press, 2017) and Robert Gordon, The Rise and Fall of American Growth: The U.S. Standard of Living since the Civil War, (Princeton; Oxford Princeton University Press, 2017). +See also Carl Benedikt, and Michael Osborne, “The Future of Employment: How Susceptible Are Jobs to Computerisation,” The Oxford Martin Programme on Technology and Employment, 2013. https://www.oxfordmartin.ox.ac.uk/downloads/academic/future-of-employment.pdf. +Erik Brynjolfsson, and Andrew McAfee, _The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies_, (New York: W.W. Norton & Company, 2014). +Calestous Juma. Innovation and Its Enemies: Why People Resist New Technologies. (New York: Oxford University Press, 2019). Paul De Grauwe, and Anna Asbury. The Limits of the Market: The Pendulum between Government and Market. Oxford: Oxford University Press, 2019. -For data sources, see OECD. “Gross Domestic Spending on R&D,” 2022. https://data.oecd.org/rd/gross-domestic-spending-on-r-d.htm.; -OECD. “OECD Main Science and Technology Indicators,” March 2022. https://web-archive.oecd.org/2022-04-05/629283-msti-highlights-march-2022.pdf.; and Eurostat. “R&D Expenditure,” n.d. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=R%26D_expenditure&oldid=590306. +For data sources, see “Gross Domestic Spending on R&D,” 2022. https://data.oecd.org/rd/gross-domestic-spending-on-r-d.htm.; +OECD. “OECD Main Science and Technology Indicators,” OECD, March 2022. https://web-archive.oecd.org/2022-04-05/629283-msti-highlights-march-2022.pdf.; and “R&D Expenditure,” Eurostat, n.d., https://ec.europa.eu/eurostat/statistics-explained/index.php?title=R%26D_expenditure&oldid=590306. [^PublicInterestTech]: For example, even public interest open source code is mostly invested in by private actors, though recently the US Government has made some efforts to support that sector with the launch of code.gov. -[^AltmanInterview]: The New York Times. “Transcript: Ezra Klein Interviews Sam Altman.” June 11, 2021, sec. Podcasts. https://www.nytimes.com/2021/06/11/podcasts/transcript-ezra-klein-interviews-sam-altman.html. -[^TechStrategyPRC]: Crawford, Emily. “Made in China 2025: The Industrial Plan That China Doesn’t Want Anyone Talking About.” FRONTLINE. Frontline PBS, May 7, 2019. https://www.pbs.org/wgbh/frontline/article/made-in-china-2025-the-industrial-plan-that-china-doesnt-want-anyone-talking-about/. Reghunadhan, Ramnath. “Innovation in China: Challenging the Global Science and Technology System.” Asian Affairs 50, no. 4 (August 8, 2019): 656–57. https://doi.org/10.1080/03068374.2019.1663076. -[^DigitalDisconnect]: See Robert Waterman Mcchesney. Digital Disconnect: How Capitalism Is Turning the Internet against Democracy. New York; London: The New Press, 2013. See also "Hindman, Matthew Scott. The Internet Trap: How the Digital Economy Builds Monopolies and Undermines Democracy. Princeton, New Jersey: Princeton University Press, 2018.; Segal, Adam M. The Hacked World Order: How Nations Fight, Trade, Maneuver, and Manipulate in the Digital Age. New York Publicaffairs September, 2017.; Stengel, Richard. Information Wars: How We Lost the Global Battle against Disinformation and What We Can Do about It. S.L.: Grove Press Atlantic Mo, 2020.; and Wu, Tim. The Attention Merchants: The Epic Scramble to Get inside Our Heads. New York: Vintage Books, 2017. -[^TechInvestmentPRC]: See Creemers, Rogier, Hunter Dorwart, Kevin Neville, Kendra Schaefer, Johanna Costigan, and Graham Webster. “Translation: 14th Five-Year Plan for National Informatization – Dec. 2021.” DigiChina, January 24, 2022. https://digichina.stanford.edu/work/translation-14th-five-year-plan-for-national-informatization-dec-2021/. -[^SingleRating]: See, for, instance, John, Alun, Samuel Shen, and Tom Wilson. “China’s Top Regulators Ban Crypto Trading and Mining, Sending Bitcoin Tumbling.” Reuters, September 24, 2021, sec. China. https://www.reuters.com/world/china/china-central-bank-vows-crackdown-cryptocurrency-trading-2021-09-24/. See also “China’s Social Credit System,” n.d. https://www.bertelsmann-stiftung.de/fileadmin/files/aam/Asia-Book_A_03_China_Social_Credit_System.pdf. -[^ScienceFiction]: Newitz, Annalee. The Future of Another Timeline. Tor Books, 2019; Doctorow, Cory. Walkaway. Tor Books, 2017; Older, Malka. Infomocracy. Tor.com, 2016; Alderman, Naomi. The Power. Viking, 2017; Liu, Cixin. The Three-Body Problem. Tor Books, 2014; Bacigalupi, Paolo. The Windup Girl. Start Publishing LLC, 2009; Stephenson, Neal. The Diamond Age. Spectra, 2003; Gibson, William. The Peripheral. New York: Berkley, 2019; Stephenson, Neal. Snow Crash. Spectra, 1993. -[^STS]: "The Technological Society" by Jacques Ellul (1964). "The Social Shaping of Technology" by Donald A. MacKenzie and Judy Wajcman (2018); "The Cybernetic Brain: Sketches of Another Future" by Andrew Pickering (2010); "The Social Construction of Technological Systems: New Directions in the Sociology and History of Technology" by Wiebe E. Bijker, Thomas P. Hughes, and Trevor Pinch (2012); "The Philosophy of Science and Technology Studies" by Steve Fuller (2006); "Technics and Civilization" by Lewis Mumford (2010) -[^PowerProgress]: Acemoglu, Daron, and Simon Johnson. Power and Progress: Our Thousand-Year Struggle over Technology and Prosperity. PublicAffairs, 2023. -[^GartnerReport]: According to a report by the research and advisory company Gartner, worldwide government spending on AI is expected to reach 37 billion in 2021, a 22.4% increase from the previous year. - China leads the world in AI investment: Chinese companies invested 25 billion in AI in 2017, compared to 9.7 billion in the US. In 2021, the US Senate passed a 250 billion bill that includes $52 billion for semiconductor research and development, which is expected to boost the country's AI capabilities. Additionally, in the same year, the European Union announced an 8.3 billion investment in artificial intelligence, cybersecurity, and supercomputers as part of its Digital Decade plan. In 2021, the Bank of Japan started experimenting with central bank digital currency (CBDC) and China's central bank launched a digital yuan trial program in several cities. -[^LickliderReflection]: Dertouzos, Michael L, and Joel Moses. The Computer Age: A Twenty-Year View. Cambridge, Mass.: MIT Press, 1980. -[^NavigatingtheGeopoliticsofInnovation]: Omoakhalen, Omoaholo. “Navigating the Geopolitics of Innovation: Policy and Strategy Imperatives for the 21st Century Africa.” Remake Africa Consulting, 2023. https://remakeafrica.com/wp-content/uploads/2023/12/Navigating_the_Geopolitics_of_Innovation.pdf. +[^AltmanInterview]: “Transcript: Ezra Klein Interviews Sam Altman,” _The New York Times_, June 11, 2021, sec. Podcasts. https://www.nytimes.com/2021/06/11/podcasts/transcript-ezra-klein-interviews-sam-altman.html. +[^TechStrategyPRC]: Emily Crawford, “Made in China 2025: The Industrial Plan That China Doesn’t Want Anyone Talking About,” _Frontline PBS_, May 7, 2019. https://www.pbs.org/wgbh/frontline/article/made-in-china-2025-the-industrial-plan-that-china-doesnt-want-anyone-talking-about/; Ramnath Reghunadhan, “Innovation in China: Challenging the Global Science and Technology System,” Asian Affairs 50, no. 4 (August 8, 2019): 656–57. https://doi.org/10.1080/03068374.2019.1663076. +[^DigitalDisconnect]: See Robert Mcchesney, _Digital Disconnect: How Capitalism Is Turning the Internet against Democracy_, (New York; London: The New Press, 2013). See also Matthew Hindman, _The Internet Trap: How the Digital Economy Builds Monopolies and Undermines Democracy_, (Princeton, New Jersey: Princeton University Press, 2018); Adam Segal, _The Hacked World Order: How Nations Fight, Trade, Maneuver, and Manipulate in the Digital Age_, (New York: Publicaffairs, September, 2017); Richard Stengel, _Information Wars: How We Lost the Global Battle against Disinformation and What We Can Do about It_, (St. Louis: Grove Press Atlantic, 2020); and Tim Wu, _The Attention Merchants: The Epic Scramble to Get inside Our Heads_, (New York: Vintage Books, 2017). +[^TechInvestmentPRC]: See Rogier Creemers, Hunter Dorwart, Kevin Neville, Kendra Schaefer, Johanna Costigan, and Graham Webster, “Translation: 14th Five-Year Plan for National Informatization – Dec. 2021.” _DigiChina_, January 24, 2022, https://digichina.stanford.edu/work/translation-14th-five-year-plan-for-national-informatization-dec-2021/. +[^SingleRating]: See, for, instance, John, Alun, Samuel Shen, and Tom Wilson. “China’s Top Regulators Ban Crypto Trading and Mining, Sending Bitcoin Tumbling.” _Reuters_, September 24, 2021, https://www.reuters.com/world/china/china-central-bank-vows-crackdown-cryptocurrency-trading-2021-09-24/. See also Bernhard Bartsch, Martin Gottske, and Christian Eisenberg, “China’s Social Credit System,” n.d., https://www.bertelsmann-stiftung.de/fileadmin/files/aam/Asia-Book_A_03_China_Social_Credit_System.pdf. +[^ScienceFiction]: Annalee Newitz, _The Future of Another Timeline_. (New York: Tor Books, 2019; Cory Doctorow, _Walkaway_, (New York: Tor Books, 2017); Malka Older, _Infomocracy_, (New York: Tor Books, 2016); Naomi Alderman, _The Power_, Viking, 2017; Cixin Liu, _The Three-Body Problem_. (New York: Tor Books, 2014); Paolo Bacigalupi, _The Windup Girl_, (New York: Start Publishing LLC, 2009); Neal Stephenson, _The Diamond Age_. (New York, Spectra, 2003); William Gibson, _The Peripheral_, (New York: Berkley, 2019); Neal Stephenson, _Snow Crash_, (New York: Spectra, 1993). +[^STS]: Jacques Ellul, _The Technological Society_, (New York: Vintage Books, 1964). Paul Hoch, Donald MacKenzie, and Judy Wajcman, “The Social Shaping of Technology,” Technology and Culture 28, no. 1 (January 1987): 132. https://doi.org/10.2307/3105489; Andrew Pickering, “The Cybernetic Brain: Sketches of Another Future.” _Kybernetes_ 40, no. 1/2 (March 15, 2011). https://doi.org/10.1108/k.2011.06740aae.001; Deborah Douglas, Wiebe E. Bijker, Thomas P. Hughes, and Trevor Pinch, _The Social Construction of Technological Systems: New Directions in the Sociology and History of Technology_, (Boston: MIT Press, 2012), available at: https://www.jstor.org/stable/j.ctt5vjrsq." +[^PowerProgress]: Daron Acemoglu, and Simon Johnson, _Power and Progress: Our Thousand-Year Struggle over Technology and Prosperity_, (New York: PublicAffairs, 2023). +[^GartnerReport]: According to a report by the research and advisory company, Gartner, worldwide government spending on AI is expected to reach 37 billion in 2021, a 22.4% increase from the previous year. - China leads the world in AI investment: Chinese companies invested 25 billion in AI in 2017, compared to 9.7 billion in the US. In 2021, the US Senate passed a 250 billion bill that includes $52 billion for semiconductor research and development, which is expected to boost the country's AI capabilities. Additionally, in the same year, the European Union announced an 8.3 billion investment in artificial intelligence, cybersecurity, and supercomputers as part of its Digital Decade plan. In 2021, the Bank of Japan started experimenting with central bank digital currency (CBDC) and China's central bank launched a digital yuan trial program in several cities. +[^LickliderReflection]: Michael Dertouzos, and Joel Moses, _The Computer Age: A Twenty-Year View_, (Cambridge, Mass: MIT Press, 1980). +[^NavigatingtheGeopoliticsofInnovation]: Omoaholo Omoakhalen, “Navigating the Geopolitics of Innovation: Policy and Strategy Imperatives for the 21st Century Africa,” _Remake Africa_ December 2023, https://remakeafrica.com/wp-content/uploads/2023/12/Navigating_the_Geopolitics_of_Innovation.pdf. [^WhiteHouse2024Budget]: The White House. “Fact Sheet: President Biden’s 2024 Budget Invests in American Science, Technology, and Innovation to Achieve Our Nation’s Greatest Aspirations.” OSTP, March 13, 2023. https://www.whitehouse.gov/ostp/news-updates/2023/03/13/fy24-budget-fact-sheet-rd-innovation/. -Robert Atkinson. “A U.S. Grand Strategy for the Global Digital Economy.” Information Technology and Innovation Foundation, 2021, as cited in Omoakhalen, Omoaholo. “Navigating the Geopolitics of Innovation: Policy and Strategy Imperatives for the 21st Century Africa.” Remake Africa Consulting, 2023. https://remakeafrica.com/wp-content/uploads/2023/12/Navigating_the_Geopolitics_of_Innovation.pdf. -[^AcemogluRestrepoStudy]: Acemoglu, Daron, and Pascual Restrepo. “Automation and New Tasks: How Technology Displaces and Reinstates Labor.” Journal of Economic Perspectives 33, no. 2 (May 2019): 3–30. https://doi.org/10.1257/jep.33.2.3. Note that the precise Golden Age-Digital Stagnation cutoff differs across these studies, but it is always somewhere during the 1970s or 1980s. -[^PosnerWeylBook]: Posner, Eric A, E Glen Weyl, and Vitalik Buterin. Radical Markets: Uprooting Capitalism and Democracy for a Just Society. Princeton: Princeton University Press, 2019. -[^PhilipponBook]: Philippon, Thomas. The Great Reversal: How America Gave up on Free Markets. Cambridge, Massachusetts: The Belknap Press Of Harvard University Press, 2019; Tepper, Jonathan. The Myth of Capitalism: Monopolies and the Death of Competition. Wiley Uuuu-Uuuu, 2018. -[^CambridgeDemocracySurvey]: Lewsey, Fred. “Global Dissatisfaction with Democracy at a Record High.” University of Cambridge, January 29, 2020. https://www.cam.ac.uk/stories/dissatisfactiondemocracy. -[^EdelmanTrustBarometer]: . According to the 2021 Edelman Trust Barometer, only 57% of global respondents trust technology as a reliable source of information. This represents a decline of 4 points from the previous year's survey. A 2020 survey by Pew Research Center found that 72% of Americans believe that social media companies have too much power and influence over the news that people see. Additionally, 51% of respondents said they were very or somewhat concerned about the role of technology in political polarization. A 2019 survey by the Center for the Governance of AI at the University of Oxford found that only 33% of Americans believe that tech companies are generally trustworthy. In a 2020 survey of 9,000 people in nine countries, conducted by Ipsos MORI, only 30% of respondents said that they trust social media companies to behave responsibly with their data. -These data points suggest that there is a growing sense of skepticism and concern about the role of technology in society, including its impact on democracy. See Wike, Richard, Laura Silver, Janell Fetterolf, Christine Huang, Sarah Austin, Laura Clancy, and Sneha Gubbala. “Social Media Seen as Mostly Good for Democracy across Many Nations, but U.S. Is a Major Outlier.” Pew Research Center’s Global Attitudes Project. Pew Research Center, December 6, 2022. https://www.pewresearch.org/global/2022/12/06/social-media-seen-as-mostly-good-for-democracy-across-many-nations-but-u-s-is-a-major-outlier/. +[^RobertAtkinson]: Robert Atkinson, “A U.S. Grand Strategy for the Global Digital Economy,” Information Technology and Innovation Foundation, 2021, as cited in Omoaholo Omoakhalen, “Navigating the Geopolitics of Innovation: Policy and Strategy Imperatives for the 21st Century Africa,” _Remake Africa_, https://remakeafrica.com/wp-content/uploads/2023/12/Navigating_the_Geopolitics_of_Innovation.pdf. +[^AcemogluRestrepoStudy]: Daron Acemoglu, and Pascual Restrepo, “Automation and New Tasks: How Technology Displaces and Reinstates Labor.” _Journal of Economic Perspectives_ 33, no. 2 (May 2019): 3–30. https://doi.org/10.1257/jep.33.2.3. Note that the precise Golden Age-Digital Stagnation cutoff differs across these studies, but it is always somewhere during the 1970s or 1980s. +[^PosnerWeylBook]: Eric Posner, Glen Weyl, and Vitalik Buterin, _Radical Markets: Uprooting Capitalism and Democracy for a Just Society_, (Princeton: Princeton University Press, 2019). +[^PhilipponBook]: Thomas Philippon, _The Great Reversal: How America Gave up on Free Markets_, (Cambridge, Massachusetts: The Belknap Press Of Harvard University Press, 2019); Jonathan Tepper, _The Myth of Capitalism: Monopolies and the Death of Competition_, New York: Harper Business, 2018). +[^CambridgeDemocracySurvey]: Fred Lewsey, “Global Dissatisfaction with Democracy at a Record High,” _University of Cambridge_, January 29, 2020, https://www.cam.ac.uk/stories/dissatisfactiondemocracy. +[^EdelmanTrustBarometer]: According to the 2021 Edelman Trust Barometer, only 57% of global respondents trust technology as a reliable source of information. This represents a decline of 4 points from the previous year's survey. A 2020 survey by Pew Research Center found that 72% of Americans believe that social media companies have too much power and influence over the news that people see. Additionally, 51% of respondents said they were very or somewhat concerned about the role of technology in political polarization. A 2019 survey by the Center for the Governance of AI at the University of Oxford found that only 33% of Americans believe that tech companies are generally trustworthy. In a 2020 survey of 9,000 people in nine countries, conducted by Ipsos MORI, only 30% of respondents said that they trust social media companies to behave responsibly with their data. +These data points suggest that there is a growing sense of skepticism and concern about the role of technology in society, including its impact on democracy. See Richard Wike, Laura Silver, Janell Fetterolf, Christine Huang, Sarah Austin, Laura Clancy, and Sneha Gubbala. “Social Media Seen as Mostly Good for Democracy across Many Nations, but U.S. Is a Major Outlier,” _Pew Research Center_, December 6, 2022, https://www.pewresearch.org/global/2022/12/06/social-media-seen-as-mostly-good-for-democracy-across-many-nations-but-u-s-is-a-major-outlier/. Pew Research shows ordinary citizens see social media as both a constructive and destructive component of political life, and overall most believe it has actually had a positive impact on democracy. Across the countries polled, a median of 57% say social media has been more of a good thing for their democracy, with 35% saying it has been a bad thing. There are substantial cross-national differences on this question, however, and the United States is a clear outlier: Just 34% of U.S. adults think social media has been good for democracy, while 64% say it has had a bad impact. In fact, the U.S. is an outlier on a number of measures, with larger shares of Americans seeing social media as divisive. -See OAIC. “Australian Community Attitudes to Privacy Survey 2020 Prepared for the Office of the Australian Information Commissioner by Lonergan Research,” 2020. https://www.oaic.gov.au/__data/assets/pdf_file/0015/2373/australian-community-attitudes-to-privacy-survey-2020.pdf. +See OAIC, “Australian Community Attitudes to Privacy Survey 2020 Prepared for the Office of the Australian Information Commissioner by Lonergan Research,” 2020, https://www.oaic.gov.au/__data/assets/pdf_file/0015/2373/australian-community-attitudes-to-privacy-survey-2020.pdf. Many consumer respondents to a recent Australian survey (58%) admitted they do not understand what firms do with the data they collect, and 49% feel unable to protect their data due to a lack of knowledge or time, as well as the complexity of the processes involved (OAIC, 2020). -“Twitter, Facebook, YouTube, and Instagram are critical in disseminating the rapid and far-reaching spread of information,” a systematic review by WHO explains. See -See World Health Organization. “Infodemics and Misinformation Negatively Affect People’s Health Behaviours.” www.who.int, September 1, 2022. https://www.who.int/europe/news/item/01-09-2022-infodemics-and-misinformation-negatively-affect-people-s-health-behaviours--new-who-review-finds. The repercussions of misinformation on social media include such negative effects as “an increase in erroneous interpretation of scientific knowledge, opinion polarization, escalating fear and panic or decreased access to health care”. See Anderson, Janna, and Lee Rainie. “Conerns about Democracy in the Digital Age.” Pew Research Center: Internet, Science & Tech, February 21, 2020. https://www.pewresearch.org/internet/2020/02/21/concerns-about-democracy-in-the-digital-age/. -[^GallupInstitutionConfidence]: Gallup. “Confidence in Institutions.” Gallup, n.d. https://news.gallup.com/poll/1597/confidence-institutions.aspx. -[^TrustInPublicInstitutions]: United Nations Department of Economic and Social Affairs. “Trust in Public Institutions: Trends and Implications for Economic Security,” n.d. https://social.desa.un.org/publications/trust-in-public-institutions-trends-and-implications-for-economic-security. See also Kolczynska, Marta, Paul-Christian Bürkner, Lauren Kennedy, and Aki Vehtari. “Modeling Public Opinion over Time and Space: Trust in State Institutions in Europe, 1989-2019.” SocArXiv (OSF Preprints), August 11, 2020. https://doi.org/10.31235/osf.io/3v5g7. -[^RussianDigitalControl]: Stolyarov, Gleb , and Gabrielle Tétrault-Farber. “‘Face Control’: Russian Police Go Digital against Protesters.” Reuters, February 11, 2021, sec. Technology News. https://www.reuters.com/article/us-russia-politics-navalny-tech-idUSKBN2AB1U2. See also Krutov, Mark, Maria Chernova, and Robert Coalson. “Russia Unveils a New Tactic to Deter Dissent: CCTV and a ‘Knock on the Door,’ Days Later.” Radio Free Europe/Radio Liberty, April 28, 2021, sec. Russia. https://www.rferl.org/a/russia-dissent-cctv-detentions-days-later-strategy/31227889.html. -[^RussianDraftEvaders]: Kruope, Anastasiia. “Russia Uses Facial Recognition to Hunt down Draft Evaders.” Human Rights Watch, October 26, 2022. https://www.hrw.org/news/2022/10/26/russia-uses-facial-recognition-hunt-down-draft-evaders. +“Twitter, Facebook, YouTube, and Instagram are critical in disseminating the rapid and far-reaching spread of information,” a systematic review by WHO explains. +See World Health Organization, “Infodemics and Misinformation Negatively Affect People’s Health Behaviours,” September 1, 2022. https://www.who.int/europe/news/item/01-09-2022-infodemics-and-misinformation-negatively-affect-people-s-health-behaviours--new-who-review-finds. The repercussions of misinformation on social media include such negative effects as “an increase in erroneous interpretation of scientific knowledge, opinion polarization, escalating fear and panic or decreased access to health care”. See Janna Anderson, and Lee Rainie, “Concerns about Democracy in the Digital Age,” _Pew Research Center_, February 21, 2020. https://www.pewresearch.org/internet/2020/02/21/concerns-about-democracy-in-the-digital-age/. +[^GallupInstitutionConfidence]: Gallup, “Confidence in Institutions,” n.d., https://news.gallup.com/poll/1597/confidence-institutions.aspx. +[^TrustInPublicInstitutions]: United Nations Department of Economic and Social Affairs, “Trust in Public Institutions: Trends and Implications for Economic Security,” n.d., https://social.desa.un.org/publications/trust-in-public-institutions-trends-and-implications-for-economic-security. See also Marta Kolczynska, Paul-Christian Bürkner, Lauren Kennedy, and Aki Vehtari, “Modeling Public Opinion over Time and Space: Trust in State Institutions in Europe, 1989-2019,” _SocArXiv_, August 11, 2020. https://doi.org/10.31235/osf.io/3v5g7. +[^RussianDigitalControl]: Gleb Stolyarov, and Gabrielle Tétrault-Farber, “‘Face Control’: Russian Police Go Digital against Protesters,” _Reuters_, February 11, 2021, https://www.reuters.com/article/us-russia-politics-navalny-tech-idUSKBN2AB1U2. See also Mark Krutov, Maria Chernova, and Robert Coalson, “Russia Unveils a New Tactic to Deter Dissent: CCTV and a ‘Knock on the Door,’ Days Later,” _Radio Free Europe/Radio Liberty_, April 28, 2021, https://www.rferl.org/a/russia-dissent-cctv-detentions-days-later-strategy/31227889.html. +[^RussianDraftEvaders]: Anastasiia Kruope, “Russia Uses Facial Recognition to Hunt down Draft Evaders,” _Human Rights Watch_, October 26, 2022, https://www.hrw.org/news/2022/10/26/russia-uses-facial-recognition-hunt-down-draft-evaders. diff --git a/contents/english/2-1-a-view-from-yushan.md b/contents/english/2-1-a-view-from-yushan.md index b8b99402..4d9c7760 100644 --- a/contents/english/2-1-a-view-from-yushan.md +++ b/contents/english/2-1-a-view-from-yushan.md @@ -10,12 +10,12 @@ Standing at the summit of East Asia's highest peak, Yushan (Jade Mountain), one Today, with a voter turnout rate over 70%[^twelectionv], second-highest religious diversity in the world[^ReligiousDiversityIndex], and 90% of global supply capacity for advanced chips, Taiwan has broken through geographic constraints and demonstrated the resilience of a democratic society to collaborate with its region and the world. -[^twelectionv]: https://db.cec.gov.tw/ElecTable/Election?type=President -[^ReligiousDiversityIndex]: https://www.pewresearch.org/religion/2014/04/04/global-religious-diversity/ +[^twelectionv]: “Billing Profile Information,” Central Election Commission, n.d, https://db.cec.gov.tw/ElecTable/Election?type=President. +[^ReligiousDiversityIndex]: Joseph Liu, “Global Religious Diversity,” _Pew Research Center_, April 4, 2014. https://www.pewresearch.org/religion/2014/04/04/global-religious-diversity/. Taiwan's ability to achieve among the world's lowest fatality rates without any lockdowns during the Covid crisis — while maintaining among the fastest economic growth rates in the world — show the results of the plural spirit of Taiwan's information society. Whether it's a map of masks or a social safety distance, these are all manifestations of technologies for collaborative diversity, deeply rooted in daily life.[^ExcessDeaths] -[^ExcessDeaths]: https://www.economist.com/graphic-detail/coronavirus-excess-deaths-tracker +[^ExcessDeaths]: “Tracking Covid-19 Excess Deaths across Countries,” The Economist, October 20, 2021. https://www.economist.com/graphic-detail/coronavirus-excess-deaths-tracker. ### Place of convergence @@ -27,7 +27,7 @@ Perhaps most importantly, the movement led to a deeper and more lasting shift in Almost a decade after these events, the other primary author of this book visited to witness the general election held January 13, 2024, which launched a "year of elections" in which more people than ever before will vote and followed hot on the heels of the "year of AI", when generative models like GPT burst into the public consciousness. Many expect these models to turbocharge information manipulation and interference by authoritarian actors. This election seemed a test case, with a more concerted, better-funded adversary focused on a small population than anywhere in the world.[^VDemInfo] And, as that other author walked the streets of Taipei that night, he saw no shortage of divisions for such attacks to exploit. At the rally of the ruling Democratic Progressive Party (DPP) he found not a single official flag, only placards of the island, the party's signature green color and occasional rainbow flags 🏳️‍🌈. At the rally of the opposition Kuomintang (KMT or Nationalist) party, he saw only the flag of the Republic of China (ROC) 🇹🇼. It made him imagine how much more extreme the divisions of his American home would be if Democrats waved a historical British flag and Republicans the stars and stripes. -[^VDemInfo]:CITE VDEM REPORT HERE +[^VDemInfo]: “Disinformation in Taiwan: International versus Domestic Perpetrators,” V-Dem, 2020. https://v-dem.net/weekly_graph/disinformation-in-taiwan-international-versus. Yet, despite these extreme divides and harnessing the technologies developed partly as a result of the Sunflower movement, the January 13 election has become a positive model to the world, with the candidate of the party opposed by the authoritarian adversary outperforming opinion polls, calm prevailing after the election and a largely consensual outcome being reached across the society. This capacity to harness technology and social organization to channel widely divergent attitudes towards shared progress was most sharply manifested in the decade of work following the Sunflower movement. Yet it has far deeper historical roots, roots that come from different starting points and converge on this fateful decade of digital democracy. @@ -37,25 +37,25 @@ The divergent identities emphasized by the DPP and KMT correspond to different f Taiwan's history is one of contested space, with war, rebellion, colonizers, decolonization, and national independence narratives at every turn. Like many islands in the South China Sea, indigenous peoples in Taiwan encountered larger imperial powers, such as the Spanish, the Japanese, and the Dutch, through colonial expansion. By the seventeenth century, the Dutch settled in the southern part of the island while the Spanish settled in the northern region; both of these settlements were ports intended for trade, while much of the island remained inaccessible due to terrain and indigenous peoples violently opposing colonial control.[^JJ1] -[^JJ1]: Teng, Emma. *Taiwan's Imagined Geography: Chinese Colonial Travel Writing and Pictures, 1683-1895*. Cambridge, Mass.: Harvard University Asia Center, 2004, 33. +[^JJ1]: Emma Teng, *Taiwan's Imagined Geography: Chinese Colonial Travel Writing and Pictures, 1683-1895*, (Cambridge, Mass.: Harvard University Asia Center, 2004), 33. South China Sea merchants (or pirates, depending on how you encountered them), all hailing from Japan, China, and Southeast Asia, also settled on the island or used the ports. In 1662, Zheng Chenggong, or Koxinga, in open rebellion against the newly established Qing dynasty (1644-1911), forcibly removed the Dutch from their seat of power in the southern region and continued his campaign against the Qing from Taiwan.[^JJ2] By 1683, the Zheng family-led rebellion was defeated, and Taiwan came nominally under the control of the Qing. -[^JJ2]: Teng, *Taiwan's Imagined Geography,* 1-2. +[^JJ2]: Emma Teng, *Taiwan's Imagined Geography: Chinese Colonial Travel Writing and Pictures, 1683-1895*, (Cambridge, Mass.: Harvard University Asia Center, 2004), 33, 1-2. Little more than two hundred years later, in 1895, Qing dynasty's defeat in the Sino-Japanese war set in motion two sequences of events that would define the modern history of Taiwan. First, Qing ceded Taiwan and its immediately surrounding islands to Japan, marking the beginning of a half-century of Japanese colonial rule in Taiwan. Second, this defeat fueled the rise of a nationalist movement that created the ROC. [^NationalismRoots] We must follow each of these strands as they diverge. -[^NationalismRoots]: Zhao, Suisheng (2023). The dragon roars back : transformational leaders and dynamics of Chinese foreign policy. Stanford, California: Stanford University Press. p. 132. +[^NationalismRoots]: Suisheng Zhao, _The Dragon Roars Back: Transformational Leaders and Dynamics of Chinese Foreign Policy_, (Stanford, California: Stanford University Press, 2022), 132. In Taiwan, Japanese occupation marked the beginning of the democracy movement. Governor Tang Jingsong took advantage of the change in leadership to establish an independent Formosa Republic, which was in turn suppressed at the cost of 12,000 lives in a 36,000-square-kilometer island. During Japanese colonial rule, the policy of "dōka" (assimilation) once again attempted to incorporate the Taiwanese into the Japanese cultural and linguistic system. The policy in the Japanese Empire acted to thoroughly integrate language, governmental structure, urban construction, and the education of Taiwan's elite and intelligentsia with Japan's, including bringing many to Japan for education. Despite the enormous efforts and funds invested by the Japanese empire, Taiwan's resistance and identity remained. Different ethnic groups were considered more or less "civilized"; the less civilized a group of people was, the harsher and more violent the Japanese government was, thus creating fundamentally different experiences for indigenous Hokkien and Hakka people under Japanese control.[^JJ10] -[^JJ10]: Jacobs, J. Bruce. *Democratizing Taiwan*, Boston: BRILL, 2012, 22. +[^JJ10]: Jeffrey Jacobs, *Democratizing Taiwan*, (Boston: Brill, 2012), 22. The rise of the global anti-colonial movement and the Taishō democratic reforms within Japan at the beginning of the 20th century provided intellectuals and activists in Taiwan with the ideological foundation for self-determination. Local elections in held in 1935 that included a small fraction of property-owning men as electors provided a first taste of democratic participation at least to Taiwanese elites, encouraging the pursuit of greater autonomy and expression.[^JJ11] -[^JJ11]: Esarey, Ashley. “Overview: Democratization and Nation Building in Taiwan” in *Taiwan in Dynamic Transition: Nation Building and Democratization*. Edited by Thomas B. Gold, University of Washington Press, 2020, 24 +[^JJ11]: Ashley Esarey, “Overview: Democratization and Nation Building in Taiwan” in *Taiwan in Dynamic Transition: Nation Building and Democratization*, edited by Thomas Gold, (Seattle: University of Washington Press, 2020), 24 ### Tridemism @@ -63,7 +63,7 @@ Across the Taiwan strait, a young, American-educated, Christian doctor and activ The first principle is 民族/Minzú (literally "civil clan"), which is typically translated as "nationalism". However, perhaps more notable was its emphasis on ethnic pluralism (五族共和) reflected in the original flag of the ROC[^ROC1912Flag], which included colors for each of the major ethnicities at the time. The second is 民權/Minquán (literally "civil rights"), usually translated as "democracy" and articulated as a combination of rights of election, recall, initiative and referendum and division of powers among five "Yuans" (the Legislative, Executive and Judicial of the European tradition plus the Control and Examination divisions of the Confucian tradition). -[^ROC1912Flag]: https://commons.wikimedia.org/wiki/File:Flag_of_China_(1912%E2%80%931928).svg +[^ROC1912Flag]: "Flag of China (1912–1928)," n.d. Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Flag_of_China_(1912%E2%80%931928).svg. The third is 民生/Mínshēng (literally "civil livelihood"), usually translated as "socialism", draws from a variety of economic philosophies, including the ideas of Henry George, an American political economist known for his advocacy of land rights equality, anti-monopoly stances, and support for cooperative enterprises. We will discuss these ideas much more extensively in the next part of the book. @@ -73,7 +73,7 @@ That year he also met another crucial influence on the ideas of the ROC, a disci On the one hand, this fluid, experimental and emergent approach shared much with Taoist traditions popular among democratic opponents of Qing and warlord monarchy.[^TaoDewey] On the other hand, unlike many more imperialistic foreign observers, Dewey advocated the ROC following its own path of "collaborative problem solving" as the axis of modern experimental model schools. This led Dewey to become something of a bridge between the ROC and the West, especially the US, giving over 200 lectures in China while writing monthly columns on his experiences for emerging outlets such as *The New Republic*. In the process, he helped forge a deep and enduring connection between the ROC and the US. -[^TaoDewey]: Shusterman "Pragmatism and East Asian Thought" +[^TaoDewey]: Richard Shusterman, “Pragmatism and East‐Asian Thought,” _Metaphilosophy_ 35, no. 1-2 (2004): 13, https://www.academia.edu/3125320/_Pragmatism_and_East_Asian_Thought_. The roughly concurrent success of the Russian revolution brought financial support and military training to the previously marginal Chinese Communist Party (CCP). While inspired by a different, Marxist vision of socialism, Sun allied with the communists to unify the country. This effort, nearly successful at the time of his death in 1925, has made Sun the "Father of the Nation" for the nationalists and the "Forerunner of the Revolution" for the communists. @@ -83,17 +83,17 @@ That moment of unity was, however, short-lived, with the communists (under Mao Z At the conclusion of the war, Chiang was nominally "Chairman of the National Government of China" and thus received Taiwan from the allies upon Japanese defeat. This change was initially welcomed by the people of Taiwan, who had been inspired by the democratic ideals of Sun.[^JJ13] This excitement was short-lived, however. While the intellectual discussion of democracy flourished in newspapers and periodicals, the reality under the ROC was anything but. The end of the WWII brought an immediate renewal of civil war, during which a corruption-riddled ROC government increasingly took its fury at its increasing defeat out on the one subject population it securely control on Taiwan, culminating in the incident of February 28, 1947; tens of thousands were killed in the aftermath.[^JJ14] -[^JJ13]: Louzon Victor. “From Japanese Soldiers to Chinese Rebels: Colonial Hegemony, War Experience, and Spontaneous Remobilization during the 1947 Taiwanese Rebellion.” *The Journal of Asian Studies* 77, no. 1 (2018): 168. +[^JJ13]: Louzon Victor. “From Japanese Soldiers to Chinese Rebels: Colonial Hegemony, War Experience, and Spontaneous Remobilization during the 1947 Taiwanese Rebellion,” *The Journal of Asian Studies* 77, no. 1 (2018): 168. -[^JJ14]: Hsu, *The Construction of National Identity, 48.* +[^JJ14]: Chien-Jung Hsu, _The Construction of National Identity in Taiwan’s Media, 1896-2012_, (Leiden: Brill, 2014), 48. -In 1949, having been defeated by communists, Chiang and two million ROC citizens fully relocated to Taiwan, declaring it the home of "free China", while simultaneously imposing on the eight million native, primarily Taigi- and Hakka-speaking population military rule that came to be known as the "White Terror". Acting as dictator, Chiang positioned the ROC to the world as the true representatives of China. Internally, people in Taiwan experienced a violent outsider government, one that had swiftly taken control of the island and began to suppress any sign of Taiwanese identity systematically and ruthlessly.[^JJ15] +In 1949, having been defeated by communists, Chiang and two million ROC soldiers and civilians relocated to Taiwan, declaring it the home of "free China", while simultaneously imposing martial law on the eight million native, primarily Taigi- and Hakka-speaking population that came to be known as the "White Terror". Acting as dictator, Chiang positioned the ROC to the world as the true representatives of China. Internally, people in Taiwan experienced a violent outsider government, one that had swiftly taken control of the island and began to suppress any sign of Taiwanese identity systematically and ruthlessly.[^JJ15] -[^JJ15]: Hsu, *The Construction of National Identity,* 71. +[^JJ15]: Chien-Jung Hsu, _The Construction of National Identity in Taiwan’s Media, 1896-2012_, (Leiden: Brill, 2014), 71. At the same time, the government whose official ideology was Tridemism began sowing many seeds of social reform that would eventually sprout into democratic movements in Taiwan. Given his lack of ties to the island and its local elites, Chiang was able to impose the Rural Land Reform, including a rent reduction to 37.5% in 1949, the release of public land in 1951 and the breaking up of large estates in the 1953 policy of "land to the tiller". This was extended to impose a Georgist land value tax in 1977, the details of which we will describe later. Together, as many scholars have argued, these reforms laid an egalitarian economic foundation that proved critical to Taiwan's later social and economic development.[^AsiaWorks] -[^AsiaWorks]: Studwell *How Asia Works* +[^AsiaWorks]: Joe Studwell, "How Asia Works: Success and Failure in the World’s Most Dynamic Region," (London: Profile, 2013). Another outgrowth of Tridemism was a focus on cooperative enterprise, enshrined in Articles 145 of the ROC Constitution, which states that "private wealth and privately-operated enterprises, the State shall restrict them by law if they are deemed detrimental to a balanced development... Cooperative enterprises... and foreign trade shall receive encouragement." While influenced by Georgist ideas, this support for industrial cooperatives and participative production also drew heavily on traditions of agricultural and industrial cooperation developed during the Japanese colonial rule, further influenced by American thinkers like Edward Deming who emphasized the empowerment of line workers in improving production under the US occupation of Japan that he worked for. @@ -101,13 +101,13 @@ Together these influences fostered the development of a robust civil and coopera Taiwan's education system was similarly influenced by the intellectual ferment of the early ROC period, with Dewey's student Hu fleeing to Taiwan alongside the KMT that he sometimes feuded with. As President of the national research institute Academia Sinica and a leading intellectual, Hu became a central influence on the development of Taiwan's educational system. His fusion of Confucian traditions with Deweyian pragmatism, egalitarianism and democracy helped shape Taiwanese education into the envy of the world, topping world league tables on a range of benchmarks.[^TaiwanEd] -[^TaiwanEd]: https://taiwantoday.tw/news.php?unit=12,29,33,45&post=22731 +[^TaiwanEd]: “John Dewey and Free China,” Taiwan Today, January 1, 2003, https://taiwantoday.tw/news.php?unit=12. ### Coming of democracy The 1960s, in step with the American Civil Rights movement, saw an outburst of demands against the KMT and Chiang Kai-Shek for Taiwan’s independence and a truly democratic government. Taiwan-born National Taiwan University Professor Peng Ming-min (1921-2022) and two of his students, Hsieh Tsung-min and Wei Ting-chao, circulated the Taiwan Self-Salvation Manifesto, which called for a freed and independent Taiwan, decrying the ROC as an illegitimate government.[^JJ18] Though this moment ended with Peng being arrested and escaping to Sweden, then living in America in exile for 22 years, the manifesto sparked a national conversation that further spurred democratic advocates to demand access to national elections. -[^JJ18]: Esarey “Democratization and Nation Building in Taiwan” in *Taiwan in Dynamic Transition,* 28. +[^JJ18]: Ryan Dunch, and Ashley Esarey, _Taiwan in Dynamic Transition: Nation-Building and Democratization_, (Seattle: University Of Washington Press, 2020), 28. The United Nations was central to the ROC's early identity under the White Terror as it was not only one of the founding members of the UN, but also the only Asian permanent member of the Security Council. This prominent international role was the leading irritant to the People's Republic of China (PRC) regime, preventing it from participating in international affairs and leading the CCP to change its position from supporting Taiwanese independence to an ideological focus on conquering Taiwan. However, as the US sought to contain its failures in Vietnam, President Richard Nixon secretly pursued accommodation with the PRC, including supporting an Albanian-sponsored Resolution 2758 by the General Assembly on October 25, 1971 that transferred recognition of China from the ROC to the PRC, finally culminating in Nixon's visit to PRC in 1972. As a result, the ROC "withdrew" from the UN, transforming its identity and international standing. @@ -117,13 +117,13 @@ Internally, this change in identity undermined much of the rationale for the Whi Taiwan's weakened international position also allowed dissidents exiled during the White Terror to put increasing pressure on Chiang's son and successor Chiang Ching-Kuo. The liberalization of Taiwan under the younger Chiang in the 1980s created an environment where democratic action, protests, essays, songs, and art reflected the growing belief for general elections. Those who called for democracy were still in exile or jailed, but their relatives and friends began to run for local and national political offices.[^JJ22] -[^JJ22]: Esarey, “Democratization and Nation Building in Taiwan” in *Taiwan in Dynamic Transition,* 31. +[^JJ22]: Ryan Dunch, and Ashley Esarey, _Taiwan in Dynamic Transition: Nation-Building and Democratization_, (Seattle: University Of Washington Press, 2020), 31. ### Vibrant democratic generation In 1984, Chiang Ching-Kuo selected Lee Teng-hui (1923-2020) as the first Taiwan-born vice president. This choice signaled a change in the political landscape of Taiwan, and earnest negotiations began on democratic reform of the ROC government.[^JJ23] -[^JJ23]: Jones, *Democratizing Taiwan*, 62. +[^JJ23]: Jeffrey Jacobs, *Democratizing Taiwan*, (Boston: Brill, 2012), 62. Lee became President in 1988 and quickly instituted a range of democratic reforms, calling for the direct election of the President and vesting the sovereignty of the country in the "citizens of the Free Area" of the ROC (those living on the Taiwan islands). This led him to become the first directly elected President in 1996, just a few months after the Bill Gates's "Internet Tidal Wave" memo heralded the mainstream arrival of the internet age. @@ -139,6 +139,6 @@ Yet despite this deep and persistent division that fueled the Sunflower movement In addition to this ideological overlap, the two sides have both benefited from and been immersed in the central role the island has come to play in the global electronics industry. As the center of the semiconductor and smartphone supply chain, and the fastest internet in the world[^Statista], no country is more thoroughly immersed in the digital world than is Taiwan. -[^Statista]: https://www.taiwannews.com.tw/en/news/5025449 +[^Statista]: Taiwan News, “Taiwan Has No. 1 Fastest Internet in World,” October 23, 2023. https://www.taiwannews.com.tw/en/news/5025449. This combination of an overlapping consensus on plural, complex, free, world-facing democracy, where digital tools are easily available to help navigate the resulting ambiguity, has allowed Taiwan to become, in the last decade, the world's leading example of digital democracy. diff --git a/contents/english/2-2-the-life-of-a-digital-democracy.md b/contents/english/2-2-the-life-of-a-digital-democracy.md index e1b08d5e..5c142845 100644 --- a/contents/english/2-2-the-life-of-a-digital-democracy.md +++ b/contents/english/2-2-the-life-of-a-digital-democracy.md @@ -139,38 +139,38 @@ It is important to note, however, that Taiwan performed much less impressively d Another slow-burning crisis that may illustrate this challenge is climate change. While Taiwan has joined many other countries in enshrining its 2050 net zero ambitions into law and has won praise for its plans to reach this goal, its progress thus far has been modest.[^climate] More broadly, Taiwan has a strong but not outstanding record on environmental protection.[^epi] -[^climate]: https://eciu.net/netzerotracker, https://eastasiaforum.org/2023/08/12/taiwans-pioneering-pathway-to-net-zero-carbon-emissions/#:~:text=In%202022%2C%20Taiwan%20unveiled%20its,supported%20by%2012%20key%20strategies. -[^epi]: https://epi.yale.edu/epi-results/2022/component/epi +[^climate]: “Net Zero Tracker,” Energy & Climate Intelligence Unit, 2023. https://eciu.net/netzerotracker. +[^epi]: “2022 EPI Results,” Environmental Performance Index, 2022, https://epi.yale.edu/epi-results/2022/component/epi. Taiwan nonetheless exhibits unusually high levels of participation and trust in institutions, particularly in its democracy. Voter turnout is among the highest in the world outside countries where voting is compulsory.[^turnout] 91% consider democracy to be at least "fairly good", a sharp contrast to the dramatic declines in recent years in support for democracy even in many long-established democracies.[^demsupp] -[^turnout]: https://www.pewresearch.org/short-reads/2022/11/01/turnout-in-u-s-has-soared-in-recent-elections-but-by-some-measures-still-trails-that-of-many-other-countries/ +[^turnout]: Drew DeSilver, “Turnout in U.S. Has Soared in Recent Elections but by Some Measures Still Trails that of Many Other Countries.” Pew Research Center, November 1, 2022. https://www.pewresearch.org/short-reads/2022/11/01/turnout-in-u-s-has-soared-in-recent-elections-but-by-some-measures-still-trails-that-of-many-other-countries/. -[^demsupp]: https://bti-project.org/en/reports/country-report/TWN +[^demsupp]: “Taiwan Country Report Report,” BTI Transformation Index, n.d., https://bti-project.org/en/reports/country-report/TWN. In short, while like all countries it has key limitations, Taiwan is deserves a leading place among global exemplars that it is too rarely afforded. Admiration for Scandinavian countries is a constant refrain on the left in the West, as is praise for Singapore on the right. While all these jurisdictions have important lessons and in fact many important points of overlap with Taiwan, few places offer the breadth of promise in addressing todays leading challenges that Taiwan does and appeal across the typical divides as it does. As an economically free, vibrantly participatory liberal democracy Taiwan both has something to offer all points on the political spectrum of the West and holds arguably the most compelling example available to those looking to leapfrog the practices of increasingly ailing Western democracies. This is especially true given its starting point: without abundant natural resources or strategic position, in a fragile geopolitical setting, with a deeply divided rather than homogeneous and robust sized population and only democratizing a few decades ago, rising from abject poverty in less than a century. It will doubtless take decades of study to understand the precise causal connections between Taiwan's unique and dramatic digital democratic practices and the range of success it has found in confronting today's most vexing challenges. Yet given this appeal, in the interim, it seems critical to articulate as so many have done for Scandinavia and Singapore, the generalizable philosophy behind the strategies of the world's most admired digital democracy. It is to that task that the rest of this book is devoted. -[^IMFgdp]:https://www.imf.org/external/datamapper/NGDPDPC@WEO/ADVEC/WEOWORLD/TWN/CHN -[^TradingEcon]: (https://tradingeconomics.com/country-list/exports) -[^taxtake]: https://kidb.adb.org/economies/taipeichina, https://www.oecd.org/tax/revenue-statistics-united-states.pdf -[^WB]: https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG, https://www.imf.org/external/datamapper/NGDPDPC@WEO/ADVEC/WEOWORLD/TWN/CHN -[^EconFreedom]:https://www.heritage.org/index/ -[^Inequalitycritique]: https://www.journals.uchicago.edu/doi/abs/10.1086/728741?journalCode=jpe +[^IMFgdp]: “GDP per Capita, Current Prices,” International Monetary Fund, n.d., https://www.imf.org/external/datamapper/NGDPDPC@WEO/ADVEC/WEOWORLD/TWN/CHN. +[^TradingEcon]: “Exports,” Trading Economics, n.d., https://tradingeconomics.com/country-list/exports. +[^taxtake]: “Key Indicators Database,” Asian Development Bank, n.d., https://kidb.adb.org/economies/taipeichina; “Revenue Statistics 2015 - the United States,” OECD, 2015, https://www.oecd.org/tax/revenue-statistics-united-states.pdf. +[^WB]: “GDP Growth (Annual %),” World Bank, 2023. https://data.worldbank.org/indicator/ny.gdp.mktp.kd.zg; “GDP per Capita, Current Prices,” International Monetary Fund, n.d., https://www.imf.org/external/datamapper/NGDPDPC@WEO/ADVEC/WEOWORLD/TWN/CHN. +[^EconFreedom]: “Index of Economic Freedom.” The Heritage Foundation, 2023. https://www.heritage.org/index/. +[^Inequalitycritique]: Gerald Auten, and David Splinter, “Income Inequality in the United States: Using Tax Data to Measure Long-Term Trends,” _Journal of Political Economy_, November 14, 2023. https://doi.org/10.1086/728741. [^CapitalShare]: The most interesting statistic we woudl like to report on is labor's share of income and its trends in Taiwan. However, to our knowledge no persuasive and internationally comparable study of this exists. We hope to see more research on this soon. -[^Loneliness]:https://www.hindawi.com/journals/hsc/2023/7726692/; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8392793/ -[^Addiction]: https://www.taipeitimes.com/News/biz/archives/2020/02/04/2003730302, https://www.cbsnews.com/pittsburgh/news/study-finds-nearly-57-of-americans-admit-to-being-addicted-to-their-phones/ -[^drugs]: https://drugabusestatistics.org/ https://journals.lww.com/co-psychiatry/fulltext/2020/07000/new_psychoactive_substances_in_taiwan__challenges.4.aspx -[^GivingUp]: https://heinonline.org/HOL/LandingPage?handle=hein.journals/fora99&div=123&id=&page= -[^religionTaiwan]: https://www.ait.org.tw/2022-report-on-international-religious-freedom-taiwan/#:~:text=According%20to%20a%20survey%20by,23.9%20percent%20identifying%20as%20nonbelievers. -[^wikireligion]: https://en.wikipedia.org/wiki/Religion_in_Taiwan -[^demrank]:https://en.wikipedia.org/wiki/Democracy_indices#:~:text=Democracy%20indices%20are%20quantitative%20and,to%20various%20definitions%20of%20democracy. -[^polarization]:https://www.pewresearch.org/global/2021/10/13/diversity-and-division-in-advanced-economies/; https://www.cambridge.org/core/journals/american-political-science-review/article/patterns-of-affective-polarization-toward-parties-and-leaders-across-the-democratic-world/E1C891801A4CB1DEBE2AACE6446F6845; -[^disinfovolume]: CITE NEEDED. -[^Disinfo]:https://www.cambridge.org/core/services/aop-cambridge-core/content/view/655F8D3BBD3B48FC2B0F474B8D4B7457/S030574102100134Xa.pdf/reactions_to_chinalinked_fake_news_experimental_evidence_from_taiwan.pdf -[^crime]: https://www.numbeo.com/crime/rankings_by_country.jsp -[^crimevus]: https://www.statista.com/statistics/319861/taiwan-crime-rate/#:~:text=In%202022%2C%20around%201%2C139%20crimes,people%20in%20the%20previous%20year, https://counciloncj.org/year-end-2023-crime-trends/#:~:text=Most%20violent%20offenses%20remained%20elevated,by%2093%25%20during%20that%20period. -[^Freedom]: https://freedomhouse.org/report/freedom-world -[^EIU]: https://www.eiu.com/n/campaigns/democracy-index-2023 +[^Loneliness]: S. Schroyen, N. Janssen, L. A. Duffner, M. Veenstra, E. Pyrovolaki, E. Salmon, and S. Adam, “Prevalence of Loneliness in Older Adults: A Scoping Review.” _Health & Social Care in the Community 2023_ (September 14, 2023): e7726692. https://doi.org/10.1155/2023/7726692. +[^Addiction]: “More than Half of Teens Admit Phone Addiction .” Taipei Times, February 4, 2020. https://www.taipeitimes.com/News/biz/archives/2020/02/04/2003730302; “Study Finds Nearly 57% of Americans Admit to Being Addicted to Their Phones - CBS Pittsburgh.” CBS News, August 30, 2023. https://www.cbsnews.com/pittsburgh/news/study-finds-nearly-57-of-americans-admit-to-being-addicted-to-their-phones/. +[^drugs]: “NCDAS: Substance Abuse and Addiction Statistics [2020],” National Center for Drug Abuse Statistics, 2020, https://drugabusestatistics.org/; Ling-Yi Feng, and Jih-Heng Li, “New Psychoactive Substances in Taiwan,” _Current Opinion in Psychiatry_ 33, no. 4 (March 2020): 1, https://doi.org/10.1097/yco.0000000000000604. +[^GivingUp]: Ronald Inglehart, “Giving up on God: The Global Decline of Religion,” _Foreign Affairs_ 99 (2020): 110. https://heinonline.org/HOL/LandingPage?handle=hein.journals/fora99&div=123&id=&page=. +[^religionTaiwan]: “2022 Report on International Religious Freedom: Taiwan,” American Institute in Taiwan, June 8, 2023, https://www.ait.org.tw/2022-report-on-international-religious-freedom-taiwan/#:~:text=According%20to%20a%20survey%20by. +[^wikireligion]: “Religion in Taiwan,” Wikipedia, Wikimedia Foundation, January 12, 2020. https://en.wikipedia.org/wiki/Religion_in_Taiwan. +[^demrank]: “Democracy Indices,” Wikipedia, Wikimedia Foundation, March 5, 2024. https://en.wikipedia.org/wiki/Democracy_indices#:~:text=Democracy%20indices%20are%20quantitative%20and.. +[^polarization]: Laura Silver, Janell Fetterolf, and Aidan Connaughton, “Diversity and Division in Advanced Economies,” Pew Research Center, October 13, 2021, https://www.pewresearch.org/global/2021/10/13/diversity-and-division-in-advanced-economies/.; +[^disinfovolume]: Adrian Rauchfleisch, Tzu-Hsuan Tseng, Jo-Ju Kao, and Yi-Ting Liu, “Taiwan’s Public Discourse about Disinformation: The Role of Journalism, Academia, and Politics,” _Journalism Practice_ 17, no. 10 (August 18, 2022): 1–21, https://doi.org/10.1080/17512786.2022.2110928. +[^Disinfo]: Fin Bauer, and Kimberly Wilson, “Reactions to China-Linked Fake News: Experimental Evidence from Taiwan,” The China Quarterly 249 (March 2022): 1–26. https://doi.org/10.1017/S030574102100134X. +[^crime]: “Crime Index by Country,” Numbeo, 2023, https://www.numbeo.com/crime/rankings_by_country.jsp. +[^crimevus]: “Taiwan: Crime Rate,” Statista, n.d, https://www.statista.com/statistics/319861/taiwan-crime-rate/#:~:text=In%202022%2C%20around%201%2C139%20crimes. +[^Freedom]: “Freedom in the World,” Freedom House, 2023, https://freedomhouse.org/report/freedom-world. +[^EIU]: “Democracy Index 2023,” Economist Intelligence Unit, n.d., https://www.eiu.com/n/campaigns/democracy-index-2023. diff --git "a/contents/english/3-0-what-is-\342\277\273.md" "b/contents/english/3-0-what-is-\342\277\273.md" index 7727503f..65c7e417 100644 --- "a/contents/english/3-0-what-is-\342\277\273.md" +++ "b/contents/english/3-0-what-is-\342\277\273.md" @@ -30,10 +30,8 @@ None of these existing words perfectly captures this idea set, and thus, in some -[^Arendt]: Hanna Arendt, The Human Condition (1958). - -[^Allen]: [Toward a Connected Society](https://doi.org/10.1515/9781400881260-006), 2016 - -[^Audrey]: [Interview with Azeem Azhar](https://sayit.pdis.nat.gov.tw/2020-10-07-interview-with-azeem-azhar#s433950), 2020 +[^Arendt]: Hannah Arendt, _The Human Condition_, (Chicago: University of Chicago Press, 1958). +[^Allen]: Danielle Allen, “Chapter 2: Toward a Connected Society,” in In Our Compelling Interests, (Princeton: Princeton University Press, 2018), https://doi.org/10.1515/9781400881260-006. +[^Audrey]: “View Section: 2020-10-07 Interview with Azeem Azhar,” SayIt, https://sayit.pdis.nat.gov.tw/2020-10-07-interview-with-azeem-azhar#s433950., 2020 diff --git "a/contents/english/3-1-living-in-a-\342\277\273-world.md" "b/contents/english/3-1-living-in-a-\342\277\273-world.md" index 2d7703f7..d4b0171c 100644 --- "a/contents/english/3-1-living-in-a-\342\277\273-world.md" +++ "b/contents/english/3-1-living-in-a-\342\277\273-world.md" @@ -104,20 +104,19 @@ In the libertarian vision, the sovereignty of the atomistic individual (or in so But these cannot be the only paths forward. ⿻ science has shown us the power of harnessing a ⿻ understanding of the world to build physical technology. We have to ask what a society and information technology built on an analogous understanding of human societies would look like. Luckily, the twentieth century saw the systematic development of such a vision, from philosophical and social scientific foundations to the beginnings of technological expression. While that path (dao) of development is today somewhat forgotten, we will rediscover it in the next chapter. -[^LifeAsJoy]: “Life as Joy, Duty, End” -[^RelationalReality]: https://www.theguardian.com/books/2022/sep/05/the-big-idea-why-relationships-are-the-key-to-existence -[^MultilevelSelection]: Wilson, David Sloan et al. “Multilevel Selection Theory and Major Evolutionary Transitions.” Current Directions in Psychological Science 17 (2008): 6 - 9. +[^LifeAsJoy]: Harper’s Magazine. “Holmes – Life as Art,” May 2, 2009. https://harpers.org/2009/05/holmes-life-as-art/. +[^RelationalReality]: Carlo Rovelli, “The Big Idea: Why Relationships Are the Key to Existence.” The Guardian, September 5, 2022, sec. Books. https://www.theguardian.com/books/2022/sep/05/the-big-idea-why-relationships-are-the-key-to-existence. +[^MultilevelSelection]: David Wilson, Mark Vugt, and Rick O’Gorman, “Multilevel Selection Theory and Major Evolutionary Transitions.” _Current Directions in Psychological Science_ 17, no. 1 (February 2008): 6–9. https://doi.org/10.1111/j.1467-8721.2008.00538.x. [^NeuroscienceComplexity]: Here are some examples of these properties in neuroscience: **Sensitivity**: In neuroscience, sensitivity refers to the ability of the brain to detect and respond to small changes in its environment. One example of sensitivity in the brain is the phenomenon of synaptic plasticity, which is the ability of synapses (connections between neurons) to change in strength in response to activity. This sensitivity allows the brain to adapt and learn from experience. **Chaos**: Chaos is a property of complex systems that exhibit unpredictable behavior even though they are deterministic. In neuroscience, chaos has been observed in the activity of neurons in the brain. For example, studies have shown that the firing patterns of individual neurons can be highly irregular and chaotic, with no discernible pattern or rhythm. This chaotic activity may play a role in information processing and communication within the brain. **Sensitivity and chaos together:** Sensitivity and chaos can also interact in the brain to produce complex and adaptive behavior. For example, studies have shown that the brain can exhibit sensitivity to small changes in sensory input, but this sensitivity can also lead to chaotic activity in neural networks. However, this chaotic activity can be controlled and harnessed to produce adaptive behavior, such as in the case of motor control and coordination. The brain's ability to integrate sensitivity and chaos in this way is a hallmark of its remarkable complexity and adaptability. [^AssemblageTheory]: In assemblage theory, as articulated by Manuel DeLanda, entities are understood as complex structures formed from the symbiotic relationship between heterogeneous components, rather than being reducible to their individual parts. Its central thesis is that people do not act exclusively by themselves, and instead human action requires complex socio-material interdependencies. DeLanda's perspective shifts the focus from inherent qualities of entities to the dynamic processes and interactions that give rise to emergent properties within networks of relations. His book "A New Philosophy of Society: Assemblage Theory and Social Complexity" (2006) is a good starting point. -[^SocialDynamics]: Page, S. E. (2007). The difference: How the power of diversity creates better groups, firms, schools, and societies. Princeton University Press.; Hidalgo, C. A. (2015). Why information grows: The evolution of order, from atoms to economies. Basic Books.; Acemoglu, D., & Linn, J. (2004). Market size in innovation: Theory and evidence from the pharmaceutical industry. The Quarterly Journal of Economics, 119(3), 1049-1090.; Mercier, H., & Sperber, D. (2017). The enigma of reason. Harvard University Press.; Pentland, A. (2014). Social physics: How good ideas spread—the lessons from a new science. Penguin. Putnam, R. D. (2000). Bowling alone: The collapse and revival of American community. Simon and Schuster. Granovetter, M. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 1360-1380. Uzzi, B. (1997). Social structure and competition in interfirm networks: The paradox of embeddedness. Administrative Science Quarterly, 42(1), 35-67.; Burt, R. S. (1992). Structural holes: The social structure of competition. Harvard University Press.; McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27(1), 415-444. -[^SciSciField]: See a summary in Fortunato et al. (2018) -[^TopicBiasInScience]: Rzhetsky, Andrey, et al. "Choosing experiments to accelerate collective discovery." Proceedings of the National Academy of Sciences 112.47 (2015): 14569-14574. -[^CentralizedScientificCommunity]: Danchev, Valentin, Andrey Rzhetsky, and James A. Evans. "Centralized scientific communities are less likely to generate replicable results." Elife 8 (2019): e43094. -[^PredictRobustScience]: Belikov, Alexander V., Andrey Rzhetsky, and James Evans. "Prediction of robust scientific facts from literature." Nature Machine Intelligence 4.5 (2022): 445-454. -[^TeamScience]: Wu, Lingfei, Dashun Wang, and James A. Evans. "Large teams develop and small teams disrupt science and technology." Nature 566.7744 (2019): 378-382. -[^DisconnectionDiscordInnovation]: Lin, Yiling, James A. Evans, and Lingfei Wu. "New directions in science emerge from disconnection and discord." Journal of Informetrics 16.1 (2022): 101234. -[^SurpriseInnovation]: Shi, Feng, and James Evans. "Surprising combinations of research contents and contexts are related to impact and emerge with scientific outsiders from distant disciplines." Nature Communications 14.1 (2023): 1641. -[^ScientificInnovation]: Foster, Jacob G., Andrey Rzhetsky, and James A. Evans. "Tradition and innovation in scientists’ research strategies." American sociological review 80.5 (2015): 875-908. -[^ScienceMetrics]: Clauset, Aaron, Daniel B. Larremore, and Roberta Sinatra. "Data-driven predictions in the science of science." Science 355.6324 (2017): 477-480. -[^AccelerateScienceAI]: Sourati, Jamshid, and James A. Evans. "Accelerating science with human-aware artificial intelligence." Nature Human Behaviour 7.10 (2023): 1682-1696. +[^SocialDynamics]: Scott Page, _The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies_, (Princeton: Princeton University Press, 2007; César Hidalgo, _Why Information Grows: The Evolution of Order, from Atoms to Economies_, (New York: Basic Books, 2015); Daron Acemoglu, and Joshua Linn, “Market Size in Innovation: Theory and Evidence from the Pharmaceutical Industry,” _Library Union Catalog of Bavaria_, (Berlin and Brandenburg: B3Kat Repository, October 1, 2003), https://doi.org/10.3386/w10038; Mark Granovetter, “The Strength of Weak Ties,” _American Journal of Sociology_ 78, no. 6 (May 1973): 1360–80; Brian Uzzi, “Social Structure and Competition in Interfirm Networks: The Paradox of Embeddedness,” Administrative Science Quarterly 42, no. 1 (March 1997): 35–67. https://doi.org/10.2307/2393808; Jonathan Michie, and Ronald S. Burt, “Structural Holes: The Social Structure of Competition,” _The Economic Journal_ 104, no. 424 (May 1994): 685. https://doi.org/10.2307/2234645; McPherson, Miller, Lynn Smith-Lovin, and James M Cook. “Birds of a Feather: Homophily in Social Networks.” Annual Review of Sociology 27, no. 1 (August 2001): 415–44. +[^TopicBiasInScience]: Andrey Rzhetsky, Jacob Foster, Ian Foster, and James Evans, “Choosing Experiments to Accelerate Collective Discovery,” _Proceedings of the National Academy of Sciences_ 112, no. 47 (November 9, 2015): 14569–74. https://doi.org/10.1073/pnas.1509757112. +[^CentralizedScientificCommunity]: Valentin Danchev, Andrey Rzhetsky, and James A Evans, “Centralized Scientific Communities Are Less Likely to Generate Replicable Results.” _ELife_ 8 (July 2, 2019), https://doi.org/10.7554/elife.43094. +[^PredictRobustScience]: Alexander Belikov, Andrey Rzhetsky, and James Evans, "Prediction of robust scientific facts from literature," _Nature Machine Intelligence_ 4.5 (2022): 445-454. +[^TeamScience]: Lingfei Wu, Dashun Wang, and James Evans, "Large teams develop and small teams disrupt science and technology," _Nature_ 566.7744 (2019): 378-382. +[^DisconnectionDiscordInnovation]: Yiling Lin, James Evans, and Lingfei Wu, "New directions in science emerge from disconnection and discord," _Journal of Informetrics_ 16.1 (2022): 101234. +[^SurpriseInnovation]: Feng Shi, and James Evans, "Surprising combinations of research contents and contexts are related to impact and emerge with scientific outsiders from distant disciplines," Nature Communications 14.1 (2023): 1641. +[^ScientificInnovation]: Jacob Foster, Andrey Rzhetsky, and James A. Evans, "Tradition and Innovation in Scientists’ Research Strategies," _American Sociological Review_ 80.5 (2015): 875-908. +[^ScienceMetrics]: Aaron Clauset, Daniel Larremore, and Roberta Sinatra, "Data-driven predictions in the science of science," _Science_ 355.6324 (2017): 477-480. +[^AccelerateScienceAI]: Jamshid Sourati, and James Evans, "Accelerating science with human-aware artificial intelligence," _Nature Human Behaviour_ 7.10 (2023): 1682-1696. diff --git a/contents/english/4-1-identity-and-personhood.md b/contents/english/4-1-identity-and-personhood.md index 8e7bff8d..04a91ee1 100644 --- a/contents/english/4-1-identity-and-personhood.md +++ b/contents/english/4-1-identity-and-personhood.md @@ -2,7 +2,7 @@ In the swiftly moving line, a sense of hope melded with palpable anxiety. The big screen above reiterated the criticality of the evacuation credentials. Mulu, a well-respected figure in her crumbling community, was on the cusp of a pivotal moment. Climate change had left her homeland in tatters, and she aspired to find solace and clear skies for her daughters in a new land. -As Mulu stepped forward, her past-rich and vibrant-flashed before her. She feared an uncertain future, mainly for her daughters, who faced potential stagnation. The government official, welcoming and friendly, asked her to scan the code for the Common European Asylum System procedure. +As Mulu stepped forward, her past—rich and vibrant—flashed before her. She feared an uncertain future, mainly for her daughters, who faced potential stagnation. The government official, welcoming and friendly, asked her to scan the code for the Common European Asylum System procedure. Her nearly defunct phone loaded a page with a few straightforward questions. @@ -30,19 +30,19 @@ The same acceptance embraced her daughters, welcoming them to a new beginning. W Just as the most fundamental rights are those to life, personhood and citizenship, the most fundamental protocols for a network society are those that establish and protect participant identities. It is impossible to secure any right or provide any service without a definition of who or what is entitled to these. Without a reasonably secure identity foundation, any voting system, for example, will be captured by whoever can produce the most false credentials, degenerating into a plutocracy. There is a famous New Yorker Cartoon from 1993 "On the Internet, nobody knows you're a dog", so famous it has its own [wikipedia page](https://en.wikipedia.org/wiki/On_the_Internet,_nobody_knows_you%27re_a_dog); to the extent this is true, we should expect attempts at online democracy to, quite literally, go to the dogs. This is dramatized in many "Web3" communities that have relied heavily on pseudonymity or even anonymity and have thus often been captured by the interests of those with access to physical and financial resources. -Thus, identity systems are central to digital life and gate access to most online activities: social media accounts, electronic commerce, government services, employment and subscriptions. What each of these systems can offer depends intimately on *how richly* it can establish user identity. Systems that can only determine that a user is a person will not, for example, be able to offer free benefits without ensuring that person has not already signed up for this offer. Systems that can determine a user is unique but nothing else can only offer services that can legally and practical be made available to every person on the planet. Given the ease of attacks online, only what can be established about a person can securely exist online. +Thus, identity systems are central to digital life and gate access to most online activities: social media accounts, electronic commerce, government services, employment and subscriptions. What each of these systems can offer depends intimately on *how richly* it can establish user identity. Systems that can only determine that a user is a person will not, for example, be able to offer free benefits without ensuring that person has not already signed up for this offer. Systems that can determine a user is unique but nothing else can only offer services that can legally and practically be made available to every person on the planet. Given the ease of attacks online, only what can be established about a person can securely exist online. At the same time, many of the simplest ways to establish undermine it, especially online. A password is often used to establish an identity, but unless such authentication is conducted with great care it can reveal the password, making it useless for authentication in the future as attackers will be able to impersonate them. "Privacy" is often dismissed as "nice to have" and especially useful for those who "have something to hide". But in identity systems, the protection of private information is the very core of utility. Any useful identity system has to be judged on its ability to simultaneously establish and protect identities. To see how this challenge plays out, it is important to keep in mind the several interlocking elements of identity systems: -- Creation: Enrolling in an identity system involves establishing an account and getting assigned an identifier. Differnet types of systems have different requirements and requirements for enrollment related to how confident the system owner has in the identifying information presented by an individual (called [Levels of Assurance](https://id4d.worldbank.org/guide/levels-assurance-loas)) ICAO have developed a Guide to [Evidence of Identity](https://www.icao.int/Security/FAL/TRIP/Documents/ICAO%20Guidance%20on%20Evidence%20of%20Identity.pdf). +- Creation: Enrolling in an identity system involves establishing an account and getting assigned an identifier. Different types of systems have different requirements for enrollment related to how confident the system owner is in the identifying information presented by an individual (called [Levels of Assurance](https://id4d.worldbank.org/guide/levels-assurance-loas)) ICAO have developed a Guide to [Evidence of Identity](https://www.icao.int/Security/FAL/TRIP/Documents/ICAO%20Guidance%20on%20Evidence%20of%20Identity.pdf). - Access: To access the account on an on-going basis, the participant uses a simpler process, such as presenting a password, a key or a multi-factor authentication. - Linkage: As the participant engages with the systems that their account gives them access to, many of their interactions are recorded by the system and form part of the record of who the system understand them to be, information that can later be used for other account functions. - Graph: Among these data that accumulate about a user, many are interactive with other accounts. For example, two users may harness the system to exchange messages or participate together in events. These create data that belong to multiple accounts and thus a "social graph" of connections. - Recovery: Passwords and keys get lost and two-factor authentication systems break down. Most identity systems have a way to recover lost or stolen credentials, using secret information, access to external identity tokens or social relationships. -- Federation: Just as a participants creating an account draw on (often verified) information about them that came from external sources, so too do most accounts allow the information contained in them to be at least partially used to create accounts in other systems. +- Federation: Just as a participants creating an account draw on (often verified) information about them that came from external sources, so too do most accounts—allowing the information contained in them to be at least partially used to create accounts in other systems. In this chapter, we discuss the operation of existing digital identity systems and the limits to how they navigate the dual imperatives of establishment and protection. We then discuss a number of important, but limited, on-going initiatives around the world to address these problems. Next we illustrate how to build on and extend this important work more ambitiously to empower a more ⿻ future. Finally, we highlight how, because of the fundamental role of identity, it connects to and entangles with other fundamental protocols and rights, especially rights of association that we focus on in the next chapter. diff --git a/contents/english/5-0-collaborative-technology-and-democracy.md b/contents/english/5-0-collaborative-technology-and-democracy.md index b9e86976..1c915412 100644 --- a/contents/english/5-0-collaborative-technology-and-democracy.md +++ b/contents/english/5-0-collaborative-technology-and-democracy.md @@ -16,7 +16,7 @@ While a human rights operating system is the foundation, the point of the system While we have titled this section of the book "democracy", what we plan to describe goes well beyond many conventional descriptions of democracy as a system of governance of nations. Instead, to build ⿻ on top of fundamental social protocols, we must explore the full range of ways in which applications can facilitate collaboration and cooperation, the working of several entities (people or groups) together towards a common goal. Yet even these phrase miss something crucial that we focus on: the power that working together has to create something greater than the sum of what the parts working together could have created separately. -Mathematically, this idea is known as "supermodularity" and captures the classic idea from Aristotle that "the whole is greater than the sum of the parts". Given our emphasis on diversity, what "greater" means here is context specific, defined by the norms and values of the individuals and communities coming together. Furthermore, our focus is less on people or groups *per se* than on the fabric running through and separating them, social difference. Thus, what we will describe in this part of the book is, most precisely, the way how technology can empower supermodularity across social difference or, more colloquially, "collaboration across diversity". +Mathematically, this idea is known as "supermodularity" and captures the classic idea from Aristotle that "the whole is greater than the sum of the parts". An early example of the quantitative application of supermodularity is the idea of "comparative advantage", the first comprehensive description of which that we are aware of presented by the English economist David Ricardo in 1817.[^Ricardo] "Comparative advantage" says, roughly, that overall welfare will be maximized when all trading partners specialize in making their most efficient product, even when some other partner can make *everything* more efficiently. Comparative advantage is understood as an 'economic law' stating in effect that there are guaranteed gains from diversity that can be realized through the market mechanism. This idea has been extremely influential in neoliberal economics (see Social Markets 05-07), although later iterations are more sophisticated than the Ricardian version. Given our emphasis on diversity, however, what "gains" means here is context specific, and will be defined by the norms and values of the individuals and communities coming together. Furthermore, our focus is less on people or groups *per se* than on the fabric running through and separating them, social difference. Thus, what we will describe in this part of the book is, most precisely, the way how technology can empower supermodularity across social difference or, more colloquially, "collaboration across diversity". In this chapter, which lays out the framework for the rest of this part of the book, will highlight why collaboration across diversity is such a fundamental and ambitious goal. We then define a range of different domains where it can be pursued based on a spectrum of depth and breadth. Next we highlight a framework for design in the space that navigates between the dangers of premature optimization and chaotic experimentation. Yet harnessing the potential of collaboration across diversity also holds the risk of reducing the diversity available for future collaboration. To guard against this we discuss the necessity of *regenerating* diversity. We round out this chapter by describing the structure followed in each subsequent chapter in this part. @@ -67,13 +67,11 @@ One rough way to think about quantifying the differences between these interacti The natural trade-off, however, that is the reason capitalism has not been superseded by universal intimacy is that high bandwidth communication is challenging to establish among large and diverse groups. Thinner and shallower collaboration scales more easily. While the simplest notion of scale is the number of people involved, this is a simplistic and reductive shorthand. Breadth is best understood in terms of inclusion across lines of social and cultural distance rather than simply large numbers of people. - The trade-off between breadth and depth of collaboration represented as points along a production possibilities frontier, which it is the goal of ⿻ to push outwards. +We can see there being a full spectrum of depth and breadth, representing the trade-off between the two. Economists often describe technologies by "production possibilities frontiers" (PPF) illustrating the currently possible trade-offs between two desirable things that are in tension. In the figure, we plot this spectrum of cooperation as such a PPF, grouping different specific modalities that we study below into broad categories of "communities" with rich but narrow communication, "states" with intermediate on both and "commodities" with thin but broad cooperative modes. The goal of ⿻ is to push this frontier outward at every point along it, as we have illustrated in these seven points, each becoming a technologically-enhanced extension[^KojinKaratani]. -We can see there being a full spectrum of depth and breadth, representing the trade-off between the two. Economists often describe technologies by "production possibilities frontiers" (PPF) illustrating the currently possible trade-offs between two desirable things that are in tension. In the figure, we plot this spectrum of cooperation as such a PPF, grouping different specific modalities that we study below into broad categories of "communities" with rich but narrow communication, "states" with intermediate on both and "commodities" with thin but broad cooperative modes. The goal of ⿻ is to push this frontier outward at every point along it, as we have illustrated in these seven points, each becoming a technologically-enhanced extension. - -The trade-off between breadth and depth of collaboration represented as points along a production possibilities frontier, which it is the goal of ⿻ to push outwards. +[^KojinKaratani]: This tripartite division of modes of exchange into communities, state, and commodities is inspired by the work of Kojin Karatani in The Structure of World History (2014). Karatani proposes a new mode of exchange, labeled "X", which seeks to transcend the limitations of previous modes by fostering global networks of reciprocity and cooperation. One example illustrating this trade-off is common in political science: the debate over the value of deliberation compared to voting in democratic polities. High quality deliberation is traditionally thought to only be feasible in small groups and thus require processes of selection of a small group to represent a larger population such as representative government elections or sortition (choosing participants at random), but is believed to lead to richer collaboration, more complete airing of participant perspectives and therefore better eventual collective choices. On the other hand, voting can involve much larger and more diverse populations at much lower cost, but comes at the cost of each participant providing thin signals of their perspectives in the form (usually) of assent for one among a predetermined list of options. @@ -118,6 +116,6 @@ None of this is inevitable and of course there are many stories of intersections In this part of the book we will (far from exhaustively) explore a range of approaches to collaboration across difference and how further advances to ⿻ can extend and build on them. Each chapter will begin, as this one did, with an illustration of technology near the cutting edge of what is possible that is in use today. It will then describe the landscape of approaches that are common and emerging in its area. Next it will highlight the promise of future developments that are being research, as well as risks these tools might pose to ⿻ (such as homogenization) and approaches to mitigating them, including by harnessing tools described in other chapters. We hope that the wide range of approaches we highlight draws out not just the substance of ⿻, but also the consistency of its approach with its substance. Only a ⿻ complementary and networked directions can support the development of a ⿻ future. - +[^Ricardo]: On the Principles of Political Economy and Taxation, London, John Murray, 1817. [^Disanalogy]: One possible disanalogy is that the Second Law of Thermodynamics implies that in a long-term and broad scope sense, regeneration can never succeed. Whether the same applies to diversity is less clear, though given how long term the relevance of the Second Law is, the analogy is quite strong for practical purposes. In the long run, we're all dead. [^Levi]: Cite Levi-Strauss here diff --git a/contents/english/5-4-augmented-deliberation.md b/contents/english/5-4-augmented-deliberation.md index f3206d1b..878d1817 100644 --- a/contents/english/5-4-augmented-deliberation.md +++ b/contents/english/5-4-augmented-deliberation.md @@ -20,7 +20,7 @@ The oldest, typically richest and still most common form of conversations is the The next oldest and most common communicative form is writing. While far less interactive, writing enables words to travel across much greater distances and time. Typically conceived as capturing the voice of a single "author", written communications can spread broadly, even globally, with the aid of printing and translation. They can endure for thousands of years, allowing for a "broadcast" of messages much farther than amphitheaters or loudspeakers can achieve. -This underscores a crucial trade-off: the richness and immediacy of in-person discussions versus the extensive reach and permanence of the written word. Many platforms strive to blend elements of both in-person and written communication by creating a network where in-person conversations serve as links among individuals who are physically and socially proximate, and writing serves as a bridge, connecting people who are geographically distant from each other. The World Cafe [^WorldCafe] or Open Space Technology [^OpenSpace] methods, where dozens or even thousands of people convene and participate in small groups for dialogue, while the written notes from those small clusters are synthesized and distributed broadly. Other examples include many constitutional and rule-making processes, book clubs, editorial boards for publications, focus groups, surveys, and other research processes, etc. A typical pattern is that a group deliberates on writing that is then submitted to another deliberative group that results in another document that is then sent back, and so on. One might recognize this in legal tradition via oral and written arguments, as well as the academic peer review process. +This underscores a crucial trade-off: the richness and immediacy of in-person discussions versus the extensive reach and permanence of the written word. Many platforms strive to blend elements of both in-person and written communication by creating a network where in-person conversations serve as links among individuals who are physically and socially proximate, and writing serves as a bridge, connecting people who are geographically distant from each other. The World Cafe [^WorldCafe] or Open Space Technology [^OpenSpaceTechnnology] methods, where dozens or even thousands of people convene and participate in small groups for dialogue, while the written notes from those small clusters are synthesized and distributed broadly. Other examples include many constitutional and rule-making processes, book clubs, editorial boards for publications, focus groups, surveys, and other research processes, etc. A typical pattern is that a group deliberates on writing that is then submitted to another deliberative group that results in another document that is then sent back, and so on. One might recognize this in legal tradition via oral and written arguments, as well as the academic peer review process. One of the most fundamental challenges this variety of forms tries to navigate is the trade-off between diversity and bandwidth [^TradeoffDiversity]. On the one hand, when we attempt to engage individuals with vastly diverse perspectives in conversations, the discussions could become less efficient, lengthy, costly, and time-consuming. This often means that they have trouble yielding definite and timely outcomes, the "analysis paralysis" often bemoaned in corporate settings and complaint (sometimes attributed to Oscar Wilde) that "socialism takes too many evenings". @@ -73,7 +73,7 @@ In a similar spirit, one can imagine harnessing and advancing elements of the de Such dynamic representations of social life could also dramatically improve how we approach representation and selection of participants for deeper deliberation, such as in person or in rich immersive shared realities. With a richer accounting of relevant social differences, it may be possible to move beyond geography or simple demographics and skills as groups that need to be represented. Instead, it may be possible to increasingly use the full intersectional richness of identity as a basis for considering inclusion and representation. Constituencies defined this way could participate in elections or, instead of sortition, protocols could be devised to choose the maximally diverse committees for a deliberation by, for example, choosing a collection of participants that minimizes how marginalized from representation the most marginalized participants are based on known social connections and affiliations. Such an approach could achieve many of the benefits of sortition, administration and election simultaneously, especially if combined with some of the liquid democracy approaches that we discuss in the voting chapter below. -It may be possible to, in some cases, even more radically re-imagine the idea of representation. LLMs can be "fine-tuned" to increasingly accurately mimic the ideas and styles of individuals [^LLMFineTune]. One can imagine training a model on the text of a community of people and thus, rather than representing one person's perspective, it could operate as a fairly direct collective representative, possibly as an aid, complement or check on the discretion of a person intended to represent that group. +It may be possible to, in some cases, even more radically re-imagine the idea of representation. LLMs can be "fine-tuned" to increasingly accurately mimic the ideas and styles of individuals [^LLMFinetune]. One can imagine training a model on the text of a community of people and thus, rather than representing one person's perspective, it could operate as a fairly direct collective representative, possibly as an aid, complement or check on the discretion of a person intended to represent that group. diff --git a/contents/english/6-3-media.md b/contents/english/6-3-media.md index 746c605d..16e91157 100644 --- a/contents/english/6-3-media.md +++ b/contents/english/6-3-media.md @@ -47,7 +47,7 @@ While many Americans look back with nostalgia on the history of the press, the e The "Deliberation" chapter above suggests a natural strategy. Social media algorithms could "communities" based both on patterns of behavior internal to the platform (e.g. views, likes, responses, propagation, choices to join) and on external data such as social science or group explicit self-identification (more on this below). For each such community, the algorithms could highlight "common content" (commonly agreed facts and values) of the group that span the divides internally, as well as important points of division within the community. Content could then be highlighted to citizens of the communities within this social context, making clear which content is rough consensus in which communities that citizen is a member and which content is divisive, as well as offering opportunities for the citizen to explore content that is consensus on the other side of each divide from the one she is on within that community. -Such a design would continue to offer individuals and communities the agency social media affords them to respectively shape their own intersectional identities and self-govern. Yet at the same time it would avoid the rampant "false consensus" effect where netizens come to believe that extreme or idiosyncratic views are widely shared, fueling demonization of those who do not share them and a feeling of resentment when associated political outcomes are not achieved or "⿻istic ignorance" where netizens are unable to act collectively on "silent majority" views. Furthermore, and perhaps most importantly, it would reshape the incentives of journalist and other creators away from divisive content and towards stories that bring us together. Furthermore, it is relevant beyond "hard journalism" *per se* as many other cultural forms (e.g. music) benefit from audiences who want to share cultural objects and fandom with other. +Such a design would continue to offer individuals and communities the agency social media affords them to respectively shape their own intersectional identities and self-govern. Yet at the same time it would avoid the rampant "false consensus" effect where netizens come to believe that extreme or idiosyncratic views are widely shared, fueling demonization of those who do not share them and a feeling of resentment when associated political outcomes are not achieved or "⿻istic ignorance" where netizens are unable to act collectively on "silent majority" views.[^Note] Furthermore, and perhaps most importantly, it would reshape the incentives of journalists and other creators away from divisive content and towards stories that bring us together. It is relevant beyond "hard journalism" *per se* as many other cultural forms (e.g. music) benefit from audiences who want to share cultural objects and fandom with others. ### ⿻ public media @@ -65,6 +65,7 @@ This might play out in a variety of ways, but a simple one would be for particip Overall, the examples above show how ⿻ can empower a new pro-social, ⿻ media environment: one where we can connect deeply with others from very different from us, where people come together to tell their stories in authoritative and verifiable ways without compromising community or individual privacy and where we come to understand what unites and divides us in the interests of the dynamism and solidarity of all our communities. +[^Note]: An example of false consensus is that many observers believe SARS-Cov-2 escaped from a laboratory ('lab leak' hypothesis). The rationalist web site Rootclaim (https://www.rootclaim.com/) even assessed 'lab leak' at 89% probability (~8 to 1 in favour). Subsequently, educated laypersons were exposed to the evidence (e.g. Pekar et al., Science 377, 960–966, 2022 and Worobey et al., Science 377, 951–959, 2022.) in over 18 hours of adversarial debate and found posterior probabilities on the order of ~800 to 1 *against* lab leak, implying a Bayes factor of ~100,000 to 1 against lab leak. Despite the strength of the evidence, the lab leak claim persists since not only does zoonosis lack emotional resonance but it also requires hard work to evaluate and offers no cathartic pay-off. Similarly, due to ⿻istic ignorance, despite the fact that more than 81 million people in the United States voted for Joe Biden in 2020, a small crowd of several thousand highly motivated individuals almost succeeded in disrupting the Electoral College vote count on 6 January 2021. [^Publicmedia]: https://reutersinstitute.politics.ox.ac.uk/sites/default/files/2017-11/Public%20support%20for%20Media.pdf [^Religiousmedia]: https://www.causeiq.com/directory/grants/grants-for-religious-media-organizations/ [^Twitterrev]: https://www.statista.com/statistics/271337/twitters-advertising-revenue-worldwide/ diff --git "a/contents/traditional-mandarin/00-00-\345\220\215\345\256\266\346\216\250\350\226\246.md" "b/contents/traditional-mandarin/00-00-\345\220\215\345\256\266\346\216\250\350\226\246.md" new file mode 100644 index 00000000..e1cfef55 --- /dev/null +++ "b/contents/traditional-mandarin/00-00-\345\220\215\345\256\266\346\216\250\350\226\246.md" @@ -0,0 +1,3 @@ +# 名家推薦 + +本頁預留給各領域傑出人士,他們的推薦語將彰顯本書的重要性和影響力。 diff --git "a/contents/traditional-mandarin/00-00-\351\227\234\346\226\274\344\275\234\350\200\205\347\276\244.md" "b/contents/traditional-mandarin/00-01-\351\227\234\346\226\274\344\275\234\350\200\205\347\276\244.md" similarity index 100% rename from "contents/traditional-mandarin/00-00-\351\227\234\346\226\274\344\275\234\350\200\205\347\276\244.md" rename to "contents/traditional-mandarin/00-01-\351\227\234\346\226\274\344\275\234\350\200\205\347\276\244.md" diff --git "a/contents/traditional-mandarin/00-01-\346\211\276\345\210\260\344\275\240\347\232\204\351\201\223\350\267\257.md" "b/contents/traditional-mandarin/00-02-\346\211\276\345\210\260\344\275\240\347\232\204\351\201\223\350\267\257.md" similarity index 98% rename from "contents/traditional-mandarin/00-01-\346\211\276\345\210\260\344\275\240\347\232\204\351\201\223\350\267\257.md" rename to "contents/traditional-mandarin/00-02-\346\211\276\345\210\260\344\275\240\347\232\204\351\201\223\350\267\257.md" index b567a4d0..fc22cec5 100644 --- "a/contents/traditional-mandarin/00-01-\346\211\276\345\210\260\344\275\240\347\232\204\351\201\223\350\267\257.md" +++ "b/contents/traditional-mandarin/00-02-\346\211\276\345\210\260\344\275\240\347\232\204\351\201\223\350\267\257.md" @@ -1,4 +1,4 @@ -**找到你的道路** +# 找到你的道路 正如我們在書中所討論的,線性的書籍敘事有個顯著的缺點,就是強迫每個讀者走上單一的學習道路。雖然本書的線上版本通過大量使用超連結來避免這個問題,但實體版比較不容易為讀者導航。為了部分緩解這個問題,我們以「循環」的方式構建文本,讀者可以從各種起點開始閱讀,之後再回到「更早」的材料。 diff --git "a/contents/traditional-mandarin/00-03-\350\207\264\350\254\235.md" "b/contents/traditional-mandarin/00-03-\350\207\264\350\254\235.md" new file mode 100644 index 00000000..809b7bf3 --- /dev/null +++ "b/contents/traditional-mandarin/00-03-\350\207\264\350\254\235.md" @@ -0,0 +1,3 @@ +# 致謝 + +此處預留位置,用來感謝那些在不同領域中做出貢獻、幫助創作本書的人們。貢獻者們將根據他們的社會資本與貢獻類型來列名。英文印刷版文本定稿之後,致謝部分的內容很快就會補上。 diff --git "a/contents/traditional-mandarin/02-01-\347\216\211\345\261\261\350\246\226\351\207\216.md" "b/contents/traditional-mandarin/02-01-\347\216\211\345\261\261\350\246\226\351\207\216.md" index 30c133a9..35416b00 100644 --- "a/contents/traditional-mandarin/02-01-\347\216\211\345\261\261\350\246\226\351\207\216.md" +++ "b/contents/traditional-mandarin/02-01-\347\216\211\345\261\261\350\246\226\351\207\216.md" @@ -30,8 +30,7 @@ ### 臺灣的歷史脈絡 -民進黨和國民黨所強調的各異身份,對應著「這個地方是什麼」的不同側面和想像。這與臺灣島名的另一種詞源產生了共鳴:西拉雅語「tayw-an」意為「人-土地」。對於國民黨(常被稱為「藍營」)來說,臺灣的特色是大部分人都說漢語,包括華語、台語和客語。有些人甚至認為, -比起中华人民共和国(以下簡稱為簡體「中国」),臺灣在民族史上更「華」,80% 以上的人以華語為主要語言(中国為 70%),40% 以上的人信奉道教等傳統宗教(中国不到 20%),憲法基於三民主義(下文將介紹)而非外來的馬克思主義。然而,對於那些受民進黨(通常被稱為「綠營」)觀點影響的人來說,臺灣是歷史多元、跨文化的島嶼,在清朝統治下作為邊疆只經過了兩個世紀,如今應該成為自主決定其未來的中心。因此,為了理解這些分歧,我們必須簡要追溯這座島嶼和民國政府的歷史。 +民進黨和國民黨所強調的各異身份,對應著「這個地方是什麼」的不同側面和想像。這與臺灣島名的另一種詞源產生了共鳴:西拉雅語「tayw-an」意為「人-土地」。對於國民黨(常被稱為「藍營」)來說,臺灣的特色是大部分人都說漢語,包括華語、台語和客語。有些人甚至認為,比起中华人民共和国(以下簡稱為簡體「中国」),臺灣在民族史上更「華」,80% 以上的人以華語為主要語言(中国為 70%),40% 以上的人信奉道教等傳統宗教(中国不到 20%),憲法基於三民主義(下文將介紹)而非外來的馬克思主義。然而,對於那些受民進黨(通常被稱為「綠營」)觀點影響的人來說,臺灣是歷史多元、跨文化的島嶼,在清朝統治下作為邊疆只經過了兩個世紀,如今應該成為自主決定其未來的中心。因此,為了理解這些分歧,我們必須簡要追溯這座島嶼和民國政府的歷史。 臺灣的歷史,是一場關於爭議空間的故事,在每個轉折處都有戰爭、叛亂、殖民者、去殖民化,以及國家獨立的敘事。如同南海許多島嶼一樣,臺灣原住民族在殖民擴張中遭遇了諸如西班牙、日本、和荷蘭等帝國的勢力。到了十七世紀,荷蘭人在島嶼的南部定居,而西班牙人則定居在北部;這兩處定居點均為貿易港口,同時大部分的島嶼由於地形險峻及原住民對殖民統治的激烈抵抗,仍然難以接近。[^JJ1] @@ -85,7 +84,7 @@ [^JJ14]: Hsu, *The Construction of National Identity, 48.* -1949 年,蔣介石被共產黨擊敗,帶著民國 200 萬公民全部遷往臺灣,宣佈臺灣成為「自由中國」的家園,同時對 800 萬主要講台語和客語的本土人口實行軍事統治,這就是後來的「白色恐怖」。蔣介石作為獨裁者,將民國對外定位為中國的真正代表。對內,臺灣人民經歷了外來政權的暴力,這個政府迅速控制了臺灣島,並開始系統、無情地鎮壓任何臺灣身份的跡象。[^JJ15] +1949 年,蔣介石被共產黨擊敗,帶著民國 200 萬軍民遷往臺灣,宣佈臺灣成為「自由中國」的家園,同時對 800 萬主要講台語和客語的本土人口實施戒嚴,這就是後來的「白色恐怖」。蔣介石作為獨裁者,將民國對外定位為中國的真正代表。對內,臺灣人民經歷了外來政權的暴力,這個政府迅速控制了臺灣島,並開始系統、無情地鎮壓任何臺灣身份的跡象。[^JJ15] [^JJ15]: Hsu, *The Construction of National Identity,* 71. diff --git "a/contents/traditional-mandarin/02-02-\346\225\270\344\275\215\346\260\221\344\270\273\347\232\204\346\227\245\345\270\270.md" "b/contents/traditional-mandarin/02-02-\346\225\270\344\275\215\346\260\221\344\270\273\347\232\204\346\227\245\345\270\270.md" index eac2f3a8..2fa5a02d 100644 --- "a/contents/traditional-mandarin/02-02-\346\225\270\344\275\215\346\260\221\344\270\273\347\232\204\346\227\245\345\270\270.md" +++ "b/contents/traditional-mandarin/02-02-\346\225\270\344\275\215\346\260\221\344\270\273\347\232\204\346\227\245\345\270\270.md" @@ -57,7 +57,7 @@ vTaiwan 的目的是為積極的參與者,提供實驗性、高品質溝通、 黑客松的組成團隊,是公務員、第三部門、學者、活動和技術專家組成的混合隊伍,從問題的結構、跨利益關係人的溝通、新資訊技術的互接、開放政府資料的應用,在長達數月的黑客松過程裡共創共學,並在 PDIS 支持下組成資料聯盟,透過集體協商來處理海洋污染、空氣品質監測、野火預警系統,和一系列不平等議題。 -總統盃運用平方投票,我們將在下文《05-06 投票》討論。這種模式,使得每個人都有可能支援某個獲勝者,然而,如果有人非常強烈地支援某個項專案,也能替該專案帶來巨大的推動力,從而使眾多參與者至少成為部分獲勝者。總統向卓越團隊頒發的投影機獎座,也對於開放社群帶來了相當程度的政治授權。 +總統盃運用平方投票,我們將在下文《05-06 投票》討論。這種模式,使得每個人都有可能支援某個獲勝者,然而,如果有人非常強烈地支援某項專案,也能替該專案帶來巨大的推動力,從而使眾多參與者至少成為部分獲勝者。總統向卓越團隊頒發的投影機獎座,也對於開放社群帶來了相當程度的政治授權。 近年來,這種做法已經擴展到技術解決方案範疇之外。「點子松(ideathon)」站在 2040 未來視角,結合群眾參與,促使各界投入推測設計的活動。「公益創新.徵案100」也採用了平方募資(詳見《05-06 社會市場》),來資助富有公共價值的專案。 diff --git "a/contents/traditional-mandarin/03-01-\346\264\273\345\234\250\342\277\273\344\270\226\347\225\214.md" "b/contents/traditional-mandarin/03-01-\346\264\273\345\234\250\342\277\273\344\270\226\347\225\214.md" index d87c6a16..71abb394 100644 --- "a/contents/traditional-mandarin/03-01-\346\264\273\345\234\250\342\277\273\344\270\226\347\225\214.md" +++ "b/contents/traditional-mandarin/03-01-\346\264\273\345\234\250\342\277\273\344\270\226\347\225\214.md" @@ -36,7 +36,7 @@ 儘管這些方法有些侷限,然而它們都造就了不可忽視的巨大成功。牛頓力學解釋了一系列現象,並激發工業革命的技術;達爾文主義是現代生物學的基礎;經濟學一直是對公共政策影響最大的社會科學;邱奇-圖靈(Church-Turing)的“通用計算”願景幫助也啟發了關於通用電腦的想法且普及至今。 -這些方法,正是我們在前一章中討論的「專家統治」和「放任主義」世界觀的立基,儘管它們有各自偏重的部分。AT 專注一元論固有的理性和其中科學的統一性,試圖驅使技術,讓社會生活理性化。放任主義專注於原子(個人化)本質上的分裂,試圖為這裡面的相互作用(比如,自然選擇和市場過程)建立一套 "自然法則" 模型。如此而言,雖然專家統治和放任主義看起來是對立的,但它們是在「共同的科學世界觀」中相互對立。 +這些方法,正是我們在前一章中討論的「專家統治」和「放任主義」世界觀的立基,儘管它們有各自偏重的部分。「專家統治」專注一元論固有的理性和其中科學的統一性,試圖驅使技術,讓社會生活理性化。「放任主義」專注於原子(個人化)本質上的分裂,試圖為這裡面的相互作用(比如,自然選擇和市場過程)建立一套 "自然法則" 模型。如此而言,雖然專家統治和放任主義看起來是對立的,但它們是在「共同的科學世界觀」中相互對立。 就共同世界觀激發的一切而言,二十世紀的科學已揭示了它們的侷限性。相對論,更別提量子力學,早已顛覆了牛頓的宇宙。哥德爾定理和各種後續出現的研究已打破了數學的統一性和完整性,一系列非歐幾里得幾何現在對科學至關重要。 diff --git "a/contents/traditional-mandarin/04-00-\346\254\212\345\210\251\343\200\201\344\275\234\346\245\255\347\263\273\347\265\261\350\210\207\346\225\270\344\275\215\350\207\252\347\224\261.md" "b/contents/traditional-mandarin/04-00-\346\254\212\345\210\251\343\200\201\344\275\234\346\245\255\347\263\273\347\265\261\350\210\207\346\225\270\344\275\215\350\207\252\347\224\261.md" index 42070746..b2f6ba8d 100644 --- "a/contents/traditional-mandarin/04-00-\346\254\212\345\210\251\343\200\201\344\275\234\346\245\255\347\263\273\347\265\261\350\210\207\346\225\270\344\275\215\350\207\252\347\224\261.md" +++ "b/contents/traditional-mandarin/04-00-\346\254\212\345\210\251\343\200\201\344\275\234\346\245\255\347\263\273\347\265\261\350\210\207\346\225\270\344\275\215\350\207\252\347\224\261.md" @@ -63,7 +63,7 @@ OS 的發展日新月異,目的是為了支援尚未完全實現的功能。 #### 與一元論的對比 -權利和 OS,作為動態、網絡式和具適應性的基礎,支持著民主的集體自我探索與應用環境進化。這個觀點與 ES 和 AT 等一元論下的政治、技術願景,形成了鮮明對比。ES 的基礎是一套固有、"永恆不變"、明確定義於歷史中的權利(側重於個人私有財產,以及防止任何與這些私產衝突的 "暴力" 活動),並主張應盡可能徹底、完全地將這些權利,從其他權利及各種社會文化脈絡、執法方式與意義抽離,透過技術系統使其不受更動,並防止社會力量干預。AT 的基礎是設計符合 "客觀"、"效用" 或 "社會福利" 功能理想的技術系統,用來 "對齊" 和優化這些價值。ES 的願景觀點下看到的權利,是絕對式、易定義、靜態和普世的;AT 的觀點則認為它們是實現可定義的社會利益過程中,無關緊要的障礙。 +權利和 OS,作為動態、網絡式和具適應性的基礎,支持著民主的集體自我探索與應用環境進化。這個觀點與「放任主義」、「專家統治」等一元論下的政治、技術願景,形成了鮮明對比。放任主義的基礎,是一套固有、"永恆不變"、明確定義於歷史中的權利(側重於個人私有財產,以及防止任何與這些私產衝突的 "暴力" 活動),並主張應盡可能徹底、完全地將這些權利,從其他權利及各種社會文化脈絡、執法方式與意義抽離,透過技術系統使其不受更動,並防止社會力量干預。專家統治的基礎是設計符合 "客觀"、"效用" 或 "社會福利" 功能理想的技術系統,用來 "對齊" 和優化這些價值。放任主義的願景下看到的權利,是絕對式、易定義、靜態和普世的;專家統治的觀點則認為它們是實現可定義的社會利益過程中,無關緊要的障礙。 ### 數位自由 @@ -73,4 +73,4 @@ OS 的發展日新月異,目的是為了支援尚未完全實現的功能。 然而,正如《我們遺忘的道》篇章中強調的,這項計畫可說才剛剛開始。即使在富裕國家,大多數人也無法將自然的網路功能,視為線上體驗的基本成份。我們缺乏原生、非專屬的身分識別協定,來保護線上的生命權和人格權;缺乏協定來允許自由結社、線上溝通與組織團體;缺乏支持商業行為的支付協定;也缺乏安全共享數位資產(如算力、記憶體和資料)的協定,來許可數位世界中的財產權和契約權。這些服務幾乎都由國家政府,或更常見的私人企業所控制,幾乎達到壟斷的狀態。如果我們想要權利在數位世界中具有任何意義,就必須改變這種狀況。 -幸運的是,這樣的情形已經逐漸改變。過去十年的發展,已經適時的承擔起網際網路「缺失層」的重任。這些工作包括 「web3」和「分散式資訊網」生態、歐洲的 Gaia-X 資料共享框架、各式數位原生貨幣和支付系統的開發,以及最突出的,是對 "數位公共建設" 不斷增長的投資 -- 印度在過去十年中開發的 "India stack" 就是一個例子。這些努力往往資金不足、在不同國家和意識形態間顯得支離破碎、往往野心不足,或是受到 AT 和 ES 意識型態的誤導。然而,它們共同形塑了建設多元宇宙的堅韌基礎。接下來,我們將展示出如何在這些專案的基礎上建設、為它們的未來投資,摸索出走向多元未來的路徑。 +幸運的是,這樣的情形已經逐漸改變。過去十年的發展,已經適時的承擔起網際網路「缺失層」的重任。這些工作包括 「web3」和「分散式資訊網」生態、歐洲的 Gaia-X 資料共享框架、各式數位原生貨幣和支付系統的開發,以及最突出的,是對 "數位公共建設" 不斷增長的投資 -- 印度在過去十年中開發的 "India stack" 就是一個例子。這些努力往往資金不足、在不同國家和意識形態間顯得支離破碎、往往野心不足,或是受到放任主義和專家統治意識型態的誤導。然而,它們共同形塑了建設多元宇宙的堅韌基礎。接下來,我們將展示出如何在這些專案的基礎上建設、為它們的未來投資,摸索出走向多元未來的路徑。 diff --git "a/contents/traditional-mandarin/05-00-\345\215\224\344\275\234\346\212\200\350\241\223\350\210\207\346\260\221\344\270\273.md" "b/contents/traditional-mandarin/05-00-\345\215\224\344\275\234\346\212\200\350\241\223\350\210\207\346\260\221\344\270\273.md" index 395b0009..a4160f02 100644 --- "a/contents/traditional-mandarin/05-00-\345\215\224\344\275\234\346\212\200\350\241\223\350\210\207\346\260\221\344\270\273.md" +++ "b/contents/traditional-mandarin/05-00-\345\215\224\344\275\234\346\212\200\350\241\223\350\210\207\346\260\221\344\270\273.md" @@ -7,7 +7,7 @@ --- -這本書的創作目的,是在行動中演示與描繪多元宇宙:實際行動,而不只是描述。因此,本書的編寫使用了我們在本章節中介紹的許多工具。文稿使用 Git 協定存儲和更新,也就是開源工程師用來管理軟體版本的協定。稿件在「公眾領域貢獻宣告」(Creative Commons 0)授權下自由共享,這意味著創建該文本的社群,對其中的任何內容都不保留任何權利,並且可以自由、重複使用。在撰寫本書時,來自世界各地的數十位跨領域專家做出了貢獻,我們希望在出版前能有更多的貢獻者參與其中,體現我們在《協作技術與民主》章節中描述的做法。 +這本書的創作目的,是在行動中演示與描繪⿻:實際行動,而不只是描述。因此,本書的編寫使用了我們在本章節中介紹的許多工具。文稿使用 Git 協定存儲和更新,也就是開源工程師用來管理軟體版本的協定。稿件在「公眾領域貢獻宣告」(Creative Commons 0)授權下自由共享,這意味著創建該文本的社群,對其中的任何內容都不保留任何權利,並且可以自由、重複使用。在撰寫本書時,來自世界各地的數十位跨領域專家做出了貢獻,我們希望在出版前能有更多的貢獻者參與其中,體現我們在《協作技術與民主》章節中描述的做法。 社群通過使用我們在下方的《投票》一章中描述的先進投票程序,和預測市場的混合方式,集體批准對文本的更改。貢獻者通過社區貨幣和群體身份代幣獲得認可,而社群貨幣和群體身分代幣,又可被用於投票和確定本書未決問題的優先次序。這些優先事項反過來亦決定了那些針對這些挑戰做出貢獻的人所獲得的量化認可。有爭議的問題通過我們在下文《商議》和《投票》章節中討論的各種工具得以解決。本書由社群翻譯,並使用了我們在《行政管理》一章中討論的許多跨語言和次文化工具。 @@ -74,19 +74,21 @@ 團結和文化之所以如此具有挑戰性,是因為它們阻礙的並不是關於資訊或目標的具象協議,而是溝通、相互理解以及將他人視為能夠且值得進行這樣交流的夥伴的能力。雖然它們在抽象意義上,與信念和價值觀相關,然而在實際上,團結和文化在人類發展過程中,先於信念和價值觀:在我們有意識地持有任何觀點或追求任何目標的前面,我們先一步意識到我們的家庭和那些將會保護我們的人,並學會了溝通。作為如此基礎性的存在,它們是最難被安全調整或改動的,通常需要共享生命形塑的經歷,或藉由強烈的親密關係來重塑。 -要克服差異,除了本身的難度之外,還蘊含著一個重要的風險。為了協作而橋接差異,往往會侵蝕這些差異,在運用的同時也削弱了它們未來的潛力。雖然這對於防範衝突的對抗來說或許是可取的,但對於未來多樣性的生產力來看,則是重要的成本。一個典型的案例是,全球化既帶來了貿易收益,如飲食的多樣化,同時也可能使文化同質化,從而可能減少未來關係到此種收益的機會。因此「多元宇宙」的一個關鍵問題是,不僅要促進多樣協作,亦需要多樣增生,確保在如此的過程中,通過創造新的社交異質,來強化多樣性。 - -一個很自然的類比是熵系統。所謂的「低熵」系統,指的是那些由不太可能分化的部分組成的系統,例如兩個具有不同熱量的區域,或者沒有與大氣中富含的氧氣發生反應的複雜碳氫化合物。所有產生「能量」的系統,都是通過利用這種低熵("多樣性")來產生功率 ; 這種系統還具有可避免通過爆炸("衝突")進行「不受控制」釋放熱量的好處。然而,每次運用低熵時,都會消除它的能量來源,進而導致需要不斷地尋找新的「能源」。試圖在可再生能源的基礎上發展「再生經濟」的目的,是通過確保低熵源的不斷補充,來避免這一陷阱(至少暫時如此)[^Disanalogy]。同樣地,我們必須以追尋可再生的多元宇宙為目標,在利用現存的多樣性的同時,增生出新的多樣性。 +要克服差異,除了本身的難度之外,還蘊含著一個重要的風險。為了協作而橋接差異,往往會侵蝕這些差異,在運用的同時也削弱了它們未來的潛力。雖然這對於防範衝突的對抗來說或許是可取的,但對於未來多樣性的生產力來看,則是重要的成本。一個典型的案例是,全球化既帶來了貿易收益,如飲食的多樣化,同時也可能使文化同質化,從而可能減少未來關係到此種收益的機會。因此「多元宇宙」的一個關鍵問題是,不僅要促進多樣協作,亦需要多樣增生,確保在如此的過程中,通過創造新的社交異質,來強化多樣性。這也與能源系統類似;能源系統必須確保不僅收穫能源,而且要再生能源,以實現永續增長。 ### 深度-廣度光譜 -由於「協作」與「多樣性」之間存在的張力,在深度和廣度軸線上,自然會出現一系列進行不同取捨的方法。有些方法旨在實現深入、豐富的協作,但代價是將這樣的協作限制在小型、同質的社群裡。雖然我們會持續探討如何量、及量化到什麼幅度才有意義,但我們可以用一組固定參與者的超模程度,來概括協作的「深度」:根據參與者的標準,他們的集體創造成果,比起分別所能創造的程度超出了多少。愛情或其他深層連接的關係,是最深層次的關係之一,因為它們能夠帶來生命、意義和繁衍的根本性轉化,而這些轉化是參與其中的人永遠無法獨自理解的。然而,這種關係通常僅限於少數人之間,他們通常有許多相似之處。 +由於「協作」與「多樣性」之間存在的張力,在深度和廣度軸線上,自然會出現一系列進行不同取捨的方法。有些方法旨在實現深入、豐富的協作,但代價是將這樣的協作限制在小型、同質的社群裡。我們可以用一組固定參與者的超模程度,來概括協作的「深度」:根據參與者的標準,他們的集體創造成果,比起分別所能創造的程度超出了多少。愛情或其他深層連接的關係,是最深層次的關係之一,因為它們能夠帶來生命、意義和繁衍的根本性轉化,而這些轉化是參與其中的人永遠無法獨自理解的。另一方面,以市場爲基礎的資本主義充斥着膚淺的、交易性的、往往是匿名的交易,這些交易帶來了微薄的收益,卻遠不及親密關係所帶來的深度聯繫。 + +要量化這些互動模式之間的差異,一個粗略的思考方法是用資訊科學的「頻寬」概念。 資本主義傾向於將一切簡化爲單維度的數值(純量):金錢。另一方面,親密關係通常不僅讓所有感官都沉浸其中,而且還會觸及「本體感覺」,即對自己身體和存在的內部感覺,神經科學家認爲這種感覺佔所有感覺輸入的絕大部分。中間模式介於兩者之間,激發結構化的符號形式,或有限的感官集合。 -其他的方式,旨在允許包括非常多樣化、大量人群及組織的廣泛協作,但代價是協作程度較為表面而薄弱。規模和數量固然重要,但廣度最好從社會和文化空間距離的角度來理解:「廣度」旨在跨越經常阻礙聯繫與協力的界限,來實現高度包容性。 +然而,資本主義之所以沒有被普遍的親密關係所取代,一個自然的權衡因素是,要在龐大而多樣化的群體中建立高頻寬的交流,很富有挑戰性。薄而淺的協作更容易擴大規模。規模和數量固然重要,但廣度最好從社會和文化空間距離的角度來理解:「廣度」旨在跨越經常阻礙聯繫與協力的界限,來實現高度包容性。 -「多元宇宙」的目標,是減輕這種取捨,使得在任何給定多樣性的水準上,都可實現更大規模的協作;並且在任何深度的協作中,實行更大的多樣性。事實上,深度和廣度間存在著完整的光譜範疇,代表兩者間的取捨協調。經濟學家經常通過「生產可能性曲線」(PPF)來說明技術,來揭示出在兩種可取事物處於緊張狀況下時,各種可能的選項。因此,我們在圖中展示了協作的廣度與深度的生產可能性曲線,曲線上的各個點標註了當前和發展中的技術領域,我們將在本書中他處、各章中探討這些節點。正如我們在這七個點中所展示的那樣,多元性的目標是沿著這個邊界上的每個節點,向外推進。 +協作廣度和深度之間的取捨,表現為「生產可能性曲線」邊界上的各個點,而⿻的目標,就是將這些點向外推。 -協作廣度和深度之間的取捨,表現為「生產可能性曲線」邊界上的各個點,而多元性的目標,就是將這些點向外推。 +我們可以看到,深度和廣度之間存在完整的光譜,代表了兩者之間的權衡。經濟學家經常通過「生產可能性曲線」(PPF)來說明技術,來揭示出在兩種可取事物處於緊張狀況下時,各種可能的選項。在圖中,我們將這一系列的合作方式,繪製成這樣一個 PPF,並將我們在下文中研究的不同具體模式歸爲幾大類:交流豐富但範圍狹窄的「社群」、二者均處於中間狀態的「國家」以及合作模式單薄但範圍廣泛的「商品」。⿻的目標是將這個邊界的每一點都向外推進,正如我們在這七個點中所說明的那樣,每一點都成爲技術上增強的延伸[^KojinKaratani]。 + +[^KojinKaratani]: 將交換模式分爲社群、國家和商品的方式,是受到柄谷行人(Kojin Karatani)《世界史的結構》所啓發。柄谷提出了名爲「X」的新交換模式,旨在通過流動的全球網絡,來構建深層次的互惠協作方式,超越以往模式的局限。 這種取捨,在政治科學中很常見的例子是:在民主政體中,關於審議與投票的價值辯論。傳統上,人們認為只有在小團體中,可進行高品質的商討,因此需要選擇某個小團體來代表更大的受眾,比如代議民主式選舉,或抽籤式民主(隨機選擇參與者)。人們相信這樣做可以帶來更豐富的合作、更全面地浮出參與者的觀點,從而做出更好的最終集體選擇。另一方面,投票可以涉及更大更多樣化的人群,成本也低得多,但代價是每位參與者以(通常是)同意預先確定的選項清單中的某個選項的形式,提供來自他們觀點的單薄信號。 @@ -126,6 +128,4 @@ 在本書的這一章,我們將探討一系列(但遠非全部)跨越差異的協作方式,以及如何在這些方式的基礎上,持續推進多元宇宙。每一章的開頭都會像本章一樣,介紹目前正在使用的、接近最尖端的技術;然後介紹該領域常見的、新興的方式。接下來,將強調正在研究的未來發展的前景,以及這些工具可能對多元宇宙帶來的風險(例如:同質化)和因應風險的方法,包括利用其他章節中介紹的工具。我們希望,我們所強調的各種方式,不僅能顯示出多元宇宙的重要特質,還能體現多元方法與其本質的一致性。只有多元互補和網絡化的方向,才能支持多元未來的發展。 -[^Disanalogy]: 熱力學第二定律意味著,從長期和最廣泛的意義上講,沒有永恆成功的再生。至於多樣性是否也是如此,就不太清楚了,不過考慮到第二定律關聯到的漫長期程,這種類比在實際應用中還是很有說服力的。畢竟,長遠看來,我們早已不在。 - [^Levi]: 在此引用李維·史特勞斯(Levi-Strauss)。 diff --git "a/contents/traditional-mandarin/05-03-\345\211\265\346\204\217\345\215\224\344\275\234.md" "b/contents/traditional-mandarin/05-03-\345\211\265\346\204\217\345\215\224\344\275\234.md" new file mode 100644 index 00000000..c2cff08a --- /dev/null +++ "b/contents/traditional-mandarin/05-03-\345\211\265\346\204\217\345\215\224\344\275\234.md" @@ -0,0 +1,74 @@ +# 創意協作 + +西元前 79 年,維蘇威火山的大爆發引起了一場災難,讓羅馬城市龐貝和赫庫蘭尼姆城被埋在一起,伴隨著他們的還有一批來自公元前一、二世紀的 1,800 卷莎草紙,若非如此,這些珍貴文獻恐怕早就隨著時間而損毀。這些卷軸包含了古代世界具有重要意義的哲學和文學遺跡,一直吸引著學者們的目光。從 18 世紀開始,人們開始嘗試展開這些卷軸,但常常以脆弱的碳化文件的毀壞告終。然而,現代成像技術為探索開闢了新的途徑,2023 年「維蘇威挑戰賽」就是很好的例子,它位於歷史、科技和協作解決問題的交叉點上。只要有電腦,就可以通過虛擬展開掃描卷軸,來贏得一系列獎項。 + +為了避免資訊孤島化,主辦單位引入了每兩個月頒發一次的小型「進步獎」,要求參與者以開源方式發佈他們的程式碼或研究成果,以豐富整個社群的共享知識庫。值得注意的貢獻包括 Seth Parker 等人在 Brent Seales 實驗室開發的「體積製圖師」(Volume Cartographer),以及 Casey Handmer 辨認出形成字母的獨特「裂紋」模式。Youssef Nader 接著利用領域適應技術,對這些發現進行了研究。隨著競賽的進行,其結構促成了一個動態環境,獲獎者不僅分享他們的發現和方法,還能將獎金再投資到增強設備和改進技術上。這種環境也證明了有利於形成新的合作關係,正如大獎得主所體現的那樣。 + +2023 年 3 月公佈的大獎獎金為 70 萬美元,標準是破解 4 段各 140 個字符的文字,至少要恢復 85% 的字符。由 21 歲的大學生、SpaceX 公司實習生 Luke Farritor(他幫助 Nader 博士生在柏林完善他的技術)、以及剛從蘇黎世聯邦理工學院獲得機器人學碩士學位的 Julian Schilliger 組成的團隊,共享了突破性的勝利,超出預期地恢復了額外的 11 列文字,其中包含 2,000 多個字符。每位團隊成員,都將他們的專業知識和早期成就帶到了這個協作努力中。他們的成功不僅標誌著重要的學術里程碑,而且推動了整個數位考古學領域向前發展。 + +--- + +藝術表達通過音樂、視覺藝術、戲劇、建築、電影,甚至是烹飪等媒介,是形成定義社會群體共享文化的最強大、最標準的基礎之一。儘管不如完整的多感官共享體驗那樣引人入勝,但它們可以傳播得更遠,並以比口語交流更豐富的方式,完全吸引一種甚至更多的感官體驗。今天,由於數位工具和平臺的結合,地理、專業甚至觀眾的界限正在消失,這些工具和平臺開啟了創意協作的大門。本章探討這些技術如何促進新的協作創作時代,其特點是前所未有的易接近性、即時互動和共享的創意空間。我們將看到藝術家、教育工作者和企業家如何利用眾包和線上平臺的力量,打破障礙,拓展創作過程。這些技術不僅連接個人,而且促進了一個比以往任何時候都更具包容性、活力和拓展性的共享創作過程。 + +### 當今的創意協作 + +藝術共同創作並非新鮮事。幾千年來,音樂家、舞者和演員都組成團體。一些最經典的文學作品,如《聖經》、《博伽梵歌》和《荷馬史詩》,幾乎可以肯定是由許多人在幾代人的時間裡共同完成的。電影的製作人員名單之所以有時令人分心地長,其來有自。 + +然而,這些定義文化的協作專案,傳統上非常緩慢且昂貴,限制了輸出的可及性和創作過程中的參與。例如,合著傳統上需要數月、數年甚至數代人的重述、改編、重寫等,才能實現連貫且易於理解的敘事。龐大的現場娛樂產業證明了將團隊空運到世界各地向不同觀眾展示創意協作體驗的開銷。其他形式的聯合創意,如上文強調的科學合作,傳統上發生在大型的實體共址實驗室中,如洛斯阿拉莫斯國家實驗室。 + +然而,早期成為網際網路結構一部分的⿻技術,由泰德·納爾遜等人設想,正如我們在「失落的道」中強調的那樣,已經改變了協作創意實踐和分享的可能性。 + +- 線上協作平臺:Slack、Asana 和 Notion 等工具通過讓團隊能夠實時協作,無論地理位置如何,都徹底改變了工作空間。這些平臺通過提供溝通、專案管理和文件共享的基礎設施,支持從軟體開發到行銷活動等廣泛的創意專案。它們說明了數位工作空間如何提高生產力並在團隊成員之間培養社區意識。 +- 基於雲端的創意軟體:Adobe Creative Cloud、Autodesk 和 GitHub 為設計師、工程師和開發人員提供了複雜的工具,可以同時處理共享專案。這項技術允許實時反饋和迭代,縮短了從概念到創作的時間,實現了更流暢、更動態的創作過程。更突出的是,協作文字處理軟件(如 Google Docs)實現了不同地域的許多人實時協作編輯。 +- 開源專案:一些最雄心勃勃的創意協作,發生在開源共同編輯專案中,如維基百科,數千人在那裡共同創建日益標準化的內容。GitHub 和 GitLab 等平臺為軟體開發提供了類似的共同開發,而 Hugging Face 等平臺則允許用於 AI 模型的開發。這種協作模式利用全球社區的集體智慧,通過不同的意見和觀點加速創新和提高軟體品質。 +- 遠程藝術協作:藝術家和創作者使用 Twitch、Patreon 和 Discord 等平臺進行專案協作、分享他們的創作過程並與觀眾實時互動。這些平臺使藝術家能夠與其他藝術家和粉絲共同創作,打破創作者和觀眾之間的障礙,培養圍繞創作過程的參與文化。 +- 教育協作:Coursera、edX 和可汗學院等在線教育平臺將來自全球的教育工作者和學習者聚集在一起。它們支持協作式學習體驗、同伴反饋和小組專案,使教育更易於獲取,並培養全球學習社區。 +- 眾包創新:Kickstarter 和 Indiegogo 等平臺使企業家能夠與公眾合作,為新產品和專案提供資金和完善。這種協作模式邀請廣大受眾的投入和支持,驗證想法並確保它們滿足潛在用戶的需求和願望。 + +展望未來,隨著我們向前邁進,協作創新的可能性可以在廣度和深度上不斷增加,利用更大(甚至是全球)社區的集體智慧、多元觀點和獨特貢獻而蓬勃發展,重新定義創新、藝術、科學和教育的界限。 + +### 明日的創意協作 + +在⿻實踐的邊界,我們已經看到了一個世界,在這個世界中,由先進運算模型輔助的即時全球協作成為常態,將創作過程推向包容性和創新的新高度。赫庫蘭尼姆卷軸的故事,體現了協作創新的本質——連接過去與未來、融合不同專業知識,來照亮未知領域。它標誌性地開啟了我們的探索之旅,提醒我們在每個偉大發現的核心,都蘊含著協作的精神,這種精神不斷推動人類向前發展,超越我們想像力的極限。維蘇威挑戰賽及其獲獎者並非特例,而是一種常見模式。以 2009 年的 Netflix 大獎為例,它提供 100 萬美元獎金給能夠在推薦電影的演算法方面,超越內部演算法 10% 的團隊。這個獎項競賽歷時兩年半之久,最終只有當領先的團隊放棄單打獨鬥,而是與其他不同團隊及其多樣化演算法結合時,才取得成功[^1]。人們甚至可以用這個概念來重新想像神經網絡作為社交網絡,模擬具有不同觀點的人之間的多樣性和爭議。可以說,這種對多個觀點的同步模擬,正是可能解釋其在廣泛任務中日益佔據主導地位的原因[^2]。 + +我們在各種新興實踐中,看到了這個未來的開端: + +- 合成樂器和生成藝術:20 世紀 80 年代興起的電子音樂形式以能夠通過電子方式合成各種聲音配置為基礎,這在過去需要精心編排的樂器或根本不可能實現。今天,我們看到了一場更加激進的革命的萌芽,因為生成式基礎模型(GFM)越來越多地被藝術家用來讓更廣泛的人群,合成令人眼花繚亂的體驗。例如,頂尖藝術家 Holly Herndon、Mat Dryhurst 及其合作者利用 GFM,讓他們能夠用不在場的歷史人物或其他人的聲音唱歌,並讓其他人用他們的聲音簽名。藝術家和音樂家勞麗·安德森使用各種模型生成能夠以歷史風格和智慧談論當代問題的文本。一代「生成式藝術家」探索了這些模型中交織的創造力,以從集體心理中提取元素。在這個專案中,我們以簡單的方式混合了許多參與者的語音樣本,創建了用我們共同的聲音朗讀的音訊版本。 +- 跨文化協作:語言和文化誤解曾經是跨越廣泛不同背景的創意協作的主要障礙,而 GFM 越來越能夠不僅翻譯語言,還能翻譯文化風格,使音樂、電影等領域的融合日益富有成效。 +- 異星藝術:雖然 GFM 可以模仿和自動化人類產生想法的方式,但我們可以追求生成「異星智慧」,將我們的思想引向人類不太可能識別的方向,從而為跨多樣性的協作生成新的素材[^3]。例如,谷歌 DeepMind 最初訓練 AlphaGo 模仿人類在圍棋比賽中的策略。相反,他們的下一個版本 AlphaGo Zero 僅針對其他模型對手(如自身)進行訓練,生成了令人不安但有效的「異星」策略,讓許多圍棋大師感到驚訝。研究表明,與這些多樣化的 AI 策略互動增加了人類圍棋人群的新穎性和多樣性[^4]。如果將這種方法應用於文化領域而非遊戲,我們可能會發現新的藝術形式出現,首先激發「敬畏」或與異星機器智能產生共鳴,然後反饋以在人類中激發新的藝術形式,正如「與東方的相遇」對於在西方創造現代藝術至關重要一樣。 +- 用於創意測試的數位分身和模擬:先進的模擬和數位分身技術將使創意團隊能夠在真實環境的虛擬複製品中測試和完善他們的想法。憑藉 GFM 驅動的、準確模仿人類行為的數位分身,我們可以以前所未有的速度和規模,進行矽基社會實驗。例如,通過在矽基社交媒體平臺上部署不同的動態消息演算法,並讓模擬人類社交媒體使用者的大型語言模型(LLM)彼此互動,來探索和測試這些替代演算法對宏觀社會結果的影響,例如衝突和兩極化[^5]。 + +在明日,我們期待數位工具能夠釋放心靈交響,在 GFM 和即時高頻寬遠端同步的放大和協調下。然而,這僅僅是人類數位協作盛大協奏曲的前奏。當我們運用這些數位工具拓展創意協作的空間時,我們會發現自己正身處一場不斷演進的舞蹈,其中科技不僅助我們一臂之力,更重塑了我們的視角,促進了多元想法和人才的快速整合。我們不僅見證了新創意過程的興起;我們正參與這場全球包容、跨領域的文藝復興的誕生,它有望為世世代代重新定義創意與解題的版圖。 + +### 創造性合作的前沿 + +在技術的協助和放大下,「心靈交響樂」將超越單純的思想和創作交流,邁向由集體意識重新定義創造力的領域。 + +- 心靈感應式創意交流:隨著後符號通信技術的進步,合作者將能夠在心靈與心靈之間直接交流想法、願景和創作衝動。這種心靈感應式的交流將使創作者能夠繞過語言和肢體表達的限制,形成一種瞬間共鳴和深入直觀的合作形式。 +- 跨物種合作專案:將通信技術擴展到非人類視角將開闢創造力的新領域。合作可以擴展到其他智慧物種(如海豚、章魚),將它們的感知和經驗納入創造過程。這些專案可能會帶來前所未有的藝術和創新形式,立足於對我們的星球及其居民更全面的瞭解。 +- 遺產和時空旅行合作:通過創建數位遺產和身臨其境的體驗,人們可以在自己的意識中進行時空旅行,未來的合作者不僅可以與同時代的人合作,還可以與過去和未來的人合作。這種時空合作,可以將不同時代的見解帶入對話中,用多種視角和跨代積累的智慧豐富創作過程。 +- 應對全球挑戰的集體創造力:人類面臨的挑戰將由統一的創造力來應對,因為協作平臺使全世界的個人都能貢獻自己的想法和解決方案。這種集體創造力將有助於解決氣候變化等問題,利用不同視角和創新思維的力量,創造可持續和有影響力的解決方案。 + +當我們踏上這條合作之路時,人類已經準備好重新定義創造力本身。在未來,創造力不僅是共同的努力,也是共同的體驗,它將參與者連接進集體想像和創新的網絡中。然而,當我們接近人類潛能的頂峰,當合作天才的交響樂達到頂峰時,我們也必須探索其倫理因素和局限性。 + +### 創意合作的局限 + +創意協作的未來,雖然蘊含著開創新協作典範的潛力,但也存在一系列的局限性和倫理難題。當我們展望創意協作的頂峰,技術消除距離、語言甚至個人認知的障礙,潛在的反烏托邦式結果的陰影也隨之瀰漫開來。Dave Eggers 的經典作品《圓圈》(The Circle)就強調了不斷分享創意的危險,因為這種分享會侵蝕作為天才創意源泉的自我意識。當我們追求越來越多的合作時,我們必須時刻警惕以下情況: + +1. 失去隱私和自主權:在未來,每一個想法、創意和創作衝動都可以即時分享,私人思想的神聖性岌岌可危。在不斷受到監視、被迫分享生活方方面面的社會中,創意合作也有可能變得具有侵犯性,因為不斷要求開放會扼殺個人的創造力和自主性。 +2. 創造力的同質化:隨著協作平臺變得越來越複雜,旨在提高協同效應的演算法,有可能導致創意的同質化。這可能會抑制真正的創新,因為獨特的視角和非傳統的想法會被抹平,轉而支持共識和演算法的可預測性。這突顯了探索衆包平臺和 AI 設計的迫切性,這些平臺和 AI 可獎勵對新穎、異質想法的探索和連接。例如,衆包創新和共同創造過程可以進一步通過 AI 來促進,AI 可以為平臺中較少聯繫的現有想法和社區搭建橋樑[^6]。 +3. 過度依賴技術:未來的合作可能會嚴重依賴技術界面和 GFM 驅動的流程,有可能導致在創意過程中人類技能和直覺的貶值。這種過度依賴有可能造成對技術在社會互動和驗證方面的依賴,從而引發對傳統創意技能萎縮的擔憂。 +4. 數位鴻溝與不平等:在一個因技術和資訊獲取而分層的社會中,未來的創意合作可能會加劇現有的不平等。有能力使用尖端合作平臺的人將比沒有能力使用平臺的人擁有明顯優勢,這可能會拉大擁有技術的人與沒有技術的人之間的差距,並在有能力使用這些平臺的社會階層中壟斷創造力。 +5. 操縱、剝削和崩潰:創意內容和創意被企業過度利用的可能性是一個重大問題。隨著創意合作越來越多地發生在企業擁有的數位平臺上,知識產權被共用、貨幣化或被用於監控和操縱的風險與日俱增,威脅著創意過程的完整性。這種陷阱降低了對創造力的激勵,有可能扼殺創造力和多樣性這隻鵝,而創造力和多樣性,正是訓練 GFMs 的金蛋。 +6. 侵蝕文化多樣性:在以創意合作以全球平臺為中介的世界裏,本地文化表現形式和少數羣體的聲音有可能被主流敘事所掩蓋。這可能導致創意產出中的文化多樣性被稀釋,最終形成中和不同意見和多樣性的單一文化。 + +在應對這些挑戰時,未來的創意合作必須在運用技術的巨大潛力提高人類創造力,與確保不以犧牲隱私、自主性和文化多樣性為代價之間,取得微妙的平衡。這趟旅程的核心,是利用開源技術和⿻原則。開源平臺本質上鼓勵透明度和集體所有權,抵消了專有系統中可能出現的隱藏壟斷和共謀的風險。我們在下文中強調的許多經濟和治理模型,可以用來進一步增強開源模式。Holly Herndon、Joseph Gordon-Levitt 和 will.i.am 等領先的⿻藝術家,已經開始不僅倡導利用 GFM,並且確保其設計能夠為創作者提供歸屬、讚美和賦權,使他們的生計能夠永續。 + +此外,文化同質化的許多風險,來自於單一媒介對更廣泛生活的侵蝕,以及各種感官限制。為了保有創意,我們必須提供空間給創造力所依賴的更深層次的親密聯繫和思考。幸運的是,這正是我們在前幾章中討論過的更加親近的技術,所能發揮的作用,它們能確保源源不斷的共享音樂和藝術混搭,不會擠佔作為物質和文化再生產基礎的深層關係。 + +[^1]: Scott E. Page, _The diversity bonus: How great teams pay off in the knowledge economy_ (Princeton, NJ: Princeton University Press, 2019). +[^2]: James Evans. "外星 AI 的案例",_TedxChicago2024_,2023 年 10 月 6 日,[https://www.youtube.com/watch?v=87zET-4IQws](https://www.youtube.com/watch?v=87zET-4IQws)。 +[^3]: Jamshid Sourati and James Evans, "Complementary artificial intelligence designed to augment human discovery," _arXiv preprint arXiv:2207.00902_ (2022), [https://doi.org/10.48550/arXiv.2207.00902](https://doi.org/10.48550/arXiv.2207.00902). +[^4]: Minkyu Shin, Jin Kim, Bas van Opheusden, and Thomas L. Griffiths, "Superhuman artificial intelligence can improve human decision-making by increasing novelty," _Proceedings of the National Academy of Sciences_ 120, no. 12 (2023): e2214840120, [https://doi.org/10.1073/pnas.2214840120](https://doi.org/10.1073/pnas.2214840120). +[^5]: Petter Törnberg、Diliara Valeeva、Justus Uitermark 和 Christopher Bail。"使用大型語言模型模擬社交媒體以評估替代動態消息演算法》,_arXiv preprint arXiv:2310.05984_ (2023), [https://doi.org/10.48550/arXiv.2310.05984](https://doi.org/10.48550/arXiv.2310.05984). +[^6]: Feng Shi and James Evans, "Surprising combinations of research contents and contexts are related to impact and emerge with scientific outsiders from distant disciplines," _Nature Communications_ 14, no: 1641, [https://doi.org/10.1038/s41467-023-36741-4](https://doi.org/10.1038/s41467-023-36741-4). diff --git "a/contents/traditional-mandarin/05-06-\342\277\273\346\212\225\347\245\250.md" "b/contents/traditional-mandarin/05-06-\342\277\273\346\212\225\347\245\250.md" index 23ea6b07..613efec5 100644 --- "a/contents/traditional-mandarin/05-06-\342\277\273\346\212\225\347\245\250.md" +++ "b/contents/traditional-mandarin/05-06-\342\277\273\346\212\225\347\245\250.md" @@ -71,7 +71,7 @@ 即使是這些高度靈活、適應性高、可達成妥協的方式,也會有個自然而然的擔憂,那就是妥協本身,可能會將多樣性(嬰兒),與衝突(洗澡水)一起倒掉。然而,像特徵投票或精密的流動式民主制度,它們最有趣的特性之一,就是可能有助於形成新型的聯盟和代表。如果說一人一票的規則是為了避免衝突、讓支持率更高的一方以非暴力的方式奪取權力,那麼這些制度,則有助於傳播一種更精緻的衝突理論。現有的社會分化不斷強化衝突,各群體往往居於穩定多數,或是穩定少數。而新興的制度,透過「相關性折扣」來降低既有關連群體的支持度,可以避免強化現有衝突,並且創造出跨越現有界限的新分歧。因此產生的多樣性,可望與妥協消滅的多樣性取得平衡,但其方向是避免鞏固長期存在的分歧。 -然而,儘管投票具有這些優勢,不過,即使是最豐富的投票形式,也僅是在表達和決定對其他社會進程已經提出的決策的偏好。上述方法的某些組合,可望徹底改變我們對投票的理解,就像電腦徹底改變了珠算一樣。然而,如果讓這種潛力蒙蔽了我們,讓我們誤信它們可以取代前幾章所描述的、更豐富的交流和協作設計的需要,那將從根本上損害人性的豐富性。只有在我們勾勒出的創新協作、審議、想像和行政制度的背景下,集體決策才有意義。 +然而,儘管投票具有這些優勢,不過,即使是最豐富的投票形式,也僅是在表達和決定對其他社會進程已經提出的決策的偏好。上述方法的某些組合,可望徹底改變我們對投票的理解,就像電腦徹底改變了珠算一樣。然而,如果讓這種潛力蒙蔽了我們,讓我們誤信它們可以取代前幾章所描述的、更豐富的交流和協作設計的需要,那將從根本上損害人性的豐富性。只有在我們勾勒出的創意協作、審議、想像和行政制度的背景下,集體決策才有意義。 在可見的未來,投票系統不太可能超越各國目前的邊界。支持上述部分內容的多元身份系統的要求顯示了,雖然在可以想像新興跨國組合中的投票,但投票系統不可能在短期內真正達到全球的正當性。要想真正地實現全球範圍的多樣性,我們就必須轉向重新構想最薄弱的、所有合作的基礎:市場經濟。 diff --git "a/contents/traditional-mandarin/05-07-\347\244\276\346\234\203\345\270\202\345\240\264.md" "b/contents/traditional-mandarin/05-07-\347\244\276\346\234\203\345\270\202\345\240\264.md" index 37e2d235..71bc017c 100644 --- "a/contents/traditional-mandarin/05-07-\347\244\276\346\234\203\345\270\202\345\240\264.md" +++ "b/contents/traditional-mandarin/05-07-\347\244\276\346\234\203\345\270\202\345\240\264.md" @@ -14,6 +14,14 @@ 為了克服此一問題,一些新的配對平台,比如 GitCoin Grants,使用「多元募資」公式,將贊助者、小額捐贈者和資助者連接起來。該公式不僅考慮所獲資金的總額,也考慮其來源在個人貢獻者和相關社會群體中的多樣性。這些平台已成為 OSS 重要資金來源(籌集了數億美元的資金),尤其是在與 web3 有關的領域,在臺灣也是如此,包括對本書的支持,並且越來越多地被應用於 OSS 之外的領域(例如環境、本地企業發展等)。 +![image](https://raw.githubusercontent.com/pluralitybook/plurality/main/figs/gitcoin_matching.png) + +Gitcoin 上的貢獻正是由上述多元募資範式所支持,在資金池中進行配對,這是一種更具多元性的資助公式,在於它可以跨越社會距離而增加許多小額捐款。 + +![image](https://raw.githubusercontent.com/pluralitybook/plurality/main/figs/gitcoin_projectpage.png) + +參考 Gitcoin「 ⿻ 書」的項目頁,截至 2024 年 2 月 2 日止,這個項目從來自世界各地 87 位貢獻者那裡獲得了 332.84 美元的資助。 + 與全球資本主義相比,沒有任何機構能在更廣泛的社會多樣性中,將更多的人聯繫在一起,進行協作交流。國際治理的權限和力量有限,這嚴重限制了通過投票和審議提供跨國公共財的能力。然而,萬能的美元,在地球上的大多數角落都受到重視。資本流動和技術投資塑造了全球各地的生活;國際貿易等商業協議是最強而有力的協議之一,且受到幾乎是普世的尊重,私有產權在地球上已成為比「法治」的其他任何特徵,都更為一致的模式。自蘇聯解體以來,雖然國界幾乎沒有改變,也幾乎沒有新的國家誕生,但像Google 和 Meta 這樣的公司,在全球範圍內的地位,可說已經超過了絕大部份的民族國家。 與此同時,儘管市場模式成為精緻的金融和企業結構的基礎,然而,市場本身卻可說是人類合作模式中最簡單的架構。儘管正如我們即將要讀到的那樣,市場可以被更廣泛地應用,但市場之所以有價值的論點,是建立在一對買賣雙方之間的雙邊交易的動機之上。每一組買賣雙方,各自都代表著眾多處境相似、也同樣無能為力的買賣雙方,他們參與交易的所有效果,都受到一套預先決定的私有財產權的約束,從而避免了對非交易方造成任何外溢後果。任何新興、驚人、群體層面的效應、超模與共享財、異質性、資訊多樣性等概念,都被貼上「不完全」或「摩擦」的標籤,被認為阻礙了市場自然、理想的運作。 diff --git "a/contents/traditional-mandarin/08-\347\260\241\344\273\213.md" "b/contents/traditional-mandarin/08-\347\260\241\344\273\213.md" new file mode 100644 index 00000000..e6ef3b43 --- /dev/null +++ "b/contents/traditional-mandarin/08-\347\260\241\344\273\213.md" @@ -0,0 +1 @@ +數位科技正在威脅我們自由開放的社會,透過兩極化、不平等、孤獨和恐懼將其撕裂。但在一個敏銳、多元而政治分歧的東亞島嶼上,情況卻有所不同。在佔領臺灣國會數週之後的十年間,這個充滿韌性的島嶼實現了包容、科技驅動的成長,在沒有封城的情況下克服了疫情,在沒有下架的情況下克服了爭議訊息,並且信任人民去應對共同的挑戰,如環境保護,同時利用創新文化來「黑克政府」。在這本書中,數位政委唐鳳及其合作者們──臺灣國際知名數位民主的建築師們──分享了他們成功的秘訣。多元宇宙運用數位工具,不是為了取代人類或信任,而是為了利用社會多樣性中相同的潛在能量,這種能量可能爆發衝突,但卻能用於進步、成長和美麗。從親密的數位賦權心靈感應,到建立在社交網絡而非金錢之上的全球貿易,多元宇宙提供了工具,從根本豐富關係,同時確保我們不會落下任何人。因此,多元宇宙有望改變從醫療到媒體的每個領域,正如它的寫作方式所示:作為來自全球各地聲音開放、自治協作的合唱。作者群在這個公開可用的文本上的工作表明──正如其所述──從虔誠的非洲農民到好萊塢名人,每個人都可以幫助建立更加充滿活力、和諧與包容的世界。 diff --git a/figs/PPF.zh-Hant.png b/figs/PPF.zh-Hant.png index 00f9e0b5..b6cd2274 100644 Binary files a/figs/PPF.zh-Hant.png and b/figs/PPF.zh-Hant.png differ diff --git a/figs/data/tech_vc_funding/crypto_vc.png b/figs/data/tech_vc_funding/crypto_vc.png new file mode 100644 index 00000000..1717e0ea Binary files /dev/null and b/figs/data/tech_vc_funding/crypto_vc.png differ diff --git a/figs/data/tech_vc_funding/readme.md b/figs/data/tech_vc_funding/readme.md new file mode 100644 index 00000000..fe057383 --- /dev/null +++ b/figs/data/tech_vc_funding/readme.md @@ -0,0 +1,8 @@ +# VC Deals: AI and Blockchain vs Other Tech + +Sources: +- [NVCA](https://nvca.org/pitchbook-nvca-venture-monitor/) and [data](https://nvca.org/wp-content/uploads/2024/01/Q4_2023_PitchBook-NVCA_Venture_Monitor_Summary_XLS.xlsx) +- [Pitchbook](https://pitchbook.com/news/reports/q4-2023-crypto-report) +- [Galaxy Digital Research](https://www.galaxy.com/research/insights/2021-crypto-vcs-biggest-year-ever/) + +The data represents annual VC funding from the US for AI and other tech, and (global) VC funding for blockchain and crypto. No data is available prior to 2017 from these sources for AI/ML or blockchain/crypto. \ No newline at end of file diff --git a/figs/data/tech_vc_funding/tech_vc_funding.csv b/figs/data/tech_vc_funding/tech_vc_funding.csv new file mode 100644 index 00000000..d3b790ef --- /dev/null +++ b/figs/data/tech_vc_funding/tech_vc_funding.csv @@ -0,0 +1,12 @@ +Year,Crypto (Global),AI/ML (US),Tech (US) +,,,38.00 +,,,59.00 +,,,68.80 +,,,69.70 +2017,0.92,15.50,72.00 +2018,5.30,26.90,125.50 +2019,3.20,31.80,120.70 +2020,4.20,39.10,143.40 +2021,24.80,80.20,304.80 +2022,29.20,54.40,208.60 +2023,9.30,62.60,146.50 \ No newline at end of file diff --git a/figs/data/tech_vc_funding/tech_vc_funding.ipynb b/figs/data/tech_vc_funding/tech_vc_funding.ipynb new file mode 100644 index 00000000..e9b3c7fc --- /dev/null +++ b/figs/data/tech_vc_funding/tech_vc_funding.ipynb @@ -0,0 +1,214 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "da30bb97", + "metadata": {}, + "outputs": [], + "source": [ + "from matplotlib.ticker import FuncFormatter\n", + "import pandas as pd\n", + "\n", + "import sys\n", + "sys.path.append('../_styling/')\n", + "from style import prep_plot, BLACK, GRAY1, GRAY2, GRAY3" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "1c65df62", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
YearCrypto (Global)AI/ML (US)Tech (US)
42017.00.9215.572.0
52018.05.3026.9125.5
62019.03.2031.8120.7
72020.04.2039.1143.4
82021.024.8080.2304.8
92022.029.2054.4208.6
102023.09.3062.6146.5
\n", + "
" + ], + "text/plain": [ + " Year Crypto (Global) AI/ML (US) Tech (US)\n", + "4 2017.0 0.92 15.5 72.0\n", + "5 2018.0 5.30 26.9 125.5\n", + "6 2019.0 3.20 31.8 120.7\n", + "7 2020.0 4.20 39.1 143.4\n", + "8 2021.0 24.80 80.2 304.8\n", + "9 2022.0 29.20 54.4 208.6\n", + "10 2023.0 9.30 62.6 146.5" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv(\"tech_vc_funding.csv\")\n", + "df.dropna(inplace=True)\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "bd30b8ce", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAADbsAAAWECAYAAABREDiyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAEzlAABM5QF1zvCVAAEAAElEQVR4nOzdd1zV5f//8SdbEVwoorhHmuYqy0GOzG3OSM0c4C5t5ycrK3eaWTmypWmSA/e2nDjTXJmzFDVURFNQQJT9+8Of7y9v5gGBg/q4327ePue63td1vV8H4Rz63M7Tl01iYmKiAAAAAAAAAAAAAAAAAAAAAAAAAACwIltrFwAAAAAAAAAAAAAAAAAAAAAAAAAAAGE3AAAAAAAAAAAAAAAAAAAAAAAAAIDVEXYDAAAAAAAAAAAAAAAAAAAAAAAAAFgdYTcAAAAAAAAAAAAAAAAAAAAAAAAAgNURdgMAAAAAAAAAAAAAAAAAAAAAAAAAWB1hNwAAAAAAAAAAAAAAAAAAAAAAAACA1RF2AwAAAAAAAAAAAAAAAAAAAAAAAABYHWE3AAAAAAAAAAAAAAAAAAAAAAAAAIDVEXYDAAAAAAAAAAAAAAAAAAAAAAAAAFgdYTcAAAAAAAAAAAAAAAAAAAAAAAAAgNURdgMAAAAAAAAAAAAAAAAAAAAAAAAAWB1hNwAAAAAAAAAAAAAAAAAAAAAAAACA1RF2AwAAAAAAAAAAAAAAAAAAAAAAAABYHWE3AAAAAAAAAAAAAAAAAAAAAAAAAIDVEXYDAAAAAAAAAAAAAAAAAAAAAAAAAFgdYTcAAAAAAAAAAAAAAAAAAAAAAAAAgNURdgMAAAAAAAAAAAAAAAAAAAAAAAAAWB1hNwAAAAAAAAAAAAAAAAAAAAAAAACA1RF2AwAAAAAAAAAAAAAAAAAAAAAAAABYHWE3AAAAAAAAAAAAAAAAAAAAAAAAAIDVEXYDAAAAAAAAAAAAAAAAAAAAAAAAAFgdYTcAAAAAAAAAAAAAAAAAAAAAAAAAgNURdgMAAAAAAAAAAAAAAAAAAAAAAAAAWB1hNwAAAAAAAAAAAAAAAAAAAAAAAACA1RF2AwAAAAAAAAAAAAAAAAAAAAAAAABYHWE3AAAAAAAAAAAAAAAAAAAAAAAAAIDVEXYDAAAAAAAAAAAAAAAAAAAAAAAAAFgdYTcAAAAAAAAAAAAAAAAAAAAAAAAAgNURdgMAAAAAAAAAAAAAAAAAAAAAAAAAWB1hNwAAAAAAAAAAAAAAAAAAAAAAAACA1RF2AwAAAAAAAAAAAAAAAAAAAAAAAABYHWE3AAAAAAAAAAAAAAAAAAAAAAAAAIDVEXYDAAAAAAAAAAAAAAAAAAAAAAAAAFgdYTcAAAAAAAAAAAAAAAAAAAAAAAAAgNURdgMAAAAAAAAAAAAAAAAAAAAAAAAAWB1hNwAAAAAAAAAAAAAAAAAAAAAAAACA1RF2AwAAAAAAAAAAAAAAAAAAAAAAAABYHWE3AAAAAAAAAAAAAAAAAAAAAAAAAIDVEXYDAAAAAAAAAAAAAAAAAAAAAAAAAFgdYTcAAAAAAAAAAAAAAAAAAAAAAAAAgNURdgMAAAAAAAAAAAAAAAAAAAAAAAAAWB1hNwAAAAAAAAAAAAAAAAAAAAAAAACA1RF2AwAAAAAAAAAAAAAAAAAAAAAAAABYHWE3AAAAAAAAAAAAAAAAAAAAAAAAAIDVEXYDAAAAAAAAAAAAAAAAAAAAAAAAAFgdYTcAAAAAAAAAAAAAAAAAAAAAAAAAgNXZW7sAPDguXryoZcuWSZIKFiwoX19fK1cEAAAAAAAAAAAAAAAAAAAAAACQPvIQwIPDJjExMdHaReDBsHfvXr3yyiuSJE9PT+3YscPKFQEAAAAAAAAAAAAAAAAAAAAAAKSPPATw4LC1dgEAAAAAAAAAAAAAAAAAAAAAAAAAABB2A/KYSpUqGX+WLl1q7XIAAAAAAAAAAAAAAAAAAAAAAMADaurUqUZGoUmTJtYuB8gQYTcAAAAAAAAAAAAAAAAAAAAAAAAAgNURdgMAAAAAAAAAAAAAAAAAAAAAAAAAWJ29tQtA3hYXF6fff/9da9as0bJly4z5S5cuaeDAgerQoYNatWqlfPny5cj9t2/frn79+umNN97Qm2++men90dHRWrNmjTZt2qSjR48qLCxMjo6O8vDw0NNPP62XXnpJtWvXvq8aIyIitGzZMgUEBOjkyZO6ceOGnJ2dVbp0aTVo0EDdunVTlSpV7useAAAAAAAAAAAAAAAAAAAAAADAcjmZh7hy5YpWrlypTZs2KTg4WGFhYSpWrJjKlCmjdu3aqUOHDipUqFCWaz98+LCWLVum/fv3KyQkRDExMSpatKieeOIJtWzZUh06dJCTk1OWzwfyMpvExMREaxeBvOnkyZMaMWKEjh07lu66UqVKafz48WrSpEm23j88PFxt27ZVSEhIlsJuAQEB+uijjxQSEpLuuhYtWmjcuHEqXrx4ps5PTEzUihUrNHbsWIWHh6e7tlu3bvrwww/l6uqa4bmVKlUyHk+aNEne3t6ZqgsAAAAAAAAAAAAAAAAAAAAAgEdZTuUhEhISNGfOHH3xxReKiYlJc52rq6vGjBmjjh07ZqruK1euaOTIkdq6dWu660qWLKnPPvtMjRs3zvDMqVOnatq0aZIkT09P7dixI1M1AbnN1toFIG/avXu3unbtmuELuyQFBwfL19dXP/74Y7bWMG7cuAyDammZPXu2+vfvb9H+zZs3q3Pnzjp9+rTF5yckJGjcuHEaPnx4hkE3SVq8eLG6deumK1euWHwPAAAAAAAAAAAAAAAAAAAAAACQOTmVh0hMTNT777+vCRMmpBt0k6SIiAi9/fbbRsjMEn///bc6d+6cYdBNki5fviwfHx/NnTvX4vOBB4W9tQtA3hMYGKhXX33V9OLr4uKixo0bq1y5crK3t9elS5e0detW3bx501gzceJEOTs765VXXrnvGrZu3WpqE5oZ/v7+mjBhgmnu2WefVYcOHVSuXDlFRUXp1KlTmj9/vi5duiRJCgkJUZ8+fbRixQp5eHhkeI+vvvrK9KZga2urVq1aqXXr1vL09NTNmzd15MgRLViwQKGhoZKkf/75R3379tXSpUvl4uKSpecGAAAAAAAAAAAAAAAAAAAAAABSl5N5iNmzZ2v58uXG2NHRUd7e3mrWrJmKFi2qq1evauPGjVq1apUSExMl3e2qVqVKFbVt2zbdui9fvqw+ffro2rVrxlypUqXUs2dPVa9eXc7OzgoKCtKaNWu0c+dOY83YsWPl4uIib29vy79IQB5nk3jvJwj4/wYPHqzNmzcb4zZt2uizzz5TwYIFTevu3Lmjzz//XD///LMx5+joqJUrV6pq1apZvv+NGzfUtm1bXb161Zh744039Oabb2a49++//1anTp0UGxsr6e6b0tdff63nnnsuxdrY2FiNHTtW8+fPN+aeeuopLVq0SLa2aTc93L59u/r162eM3d3d9e2336pOnTop1t66dUvvvvuuNm3aZMx17NhRX331VZrnV6pUyXg8adIk3nQAAAAAAAAAAAAAAAAAAAAAALBATuUhbty4oWeffVa3b9+WJBUqVEi//PKLqlevnmLt7t27NWDAACNw5+Hhoe3bt8vePvV+VQkJCerevbsOHTpkzPXs2VMff/yxHB0dU6wPCAjQm2++qcjISEmSg4ODVq1alWaOY+rUqUaHOU9PT+3YsSPVdUBekXaiB4+kiIgIbdu2zRi7u7vryy+/TPHCLkn58uXTJ598oiFDhhhzMTExmjhx4n3VMHbsWFPQzVKJiYkaOXKkEXSzs7PT7NmzUw26SXdf0EePHq2XX37ZmDt48KCWLFmS5j2io6P1ySefGGMXFxctWLAg1aCbJBUoUEAzZ85U06ZNjbnVq1dr165dmXlqAAAAAAAAAAAAAAAAAAAAAAAgHTmZh9i0aZMRdJOk0aNHpxp0kyQvLy9Ts5+QkBDt378/zbr9/f1NQbdXXnlFY8eOTTXoJknNmjXT7NmzZWdnJ+luI6CPP/5Y9MLCw4KwG0zOnTun+Ph4Y9ysWTM5OTmlu+edd95RjRo1jPGtW7dMLT8zY+PGjVq5cmWW9u7atcv0Av/666+rXr166e6xsbHRyJEjVaFCBWPum2++MQJzyS1fvlwXL140xqNGjTLtTY2tra0mT56swoULG3NTp07ljQQAAAAAAAAAAAAAAAAAAAAAgGySk3mIkydPGo8LFy6stm3bpntujx490tyfVGxsrL755htjXLlyZX300Ufpni1J9erV02uvvWaMDx48qN27d2e4D3gQEHaDSUJCgmlcqFChDPfY2dlp9OjRcnR01HvvvaeFCxemmSBOT2hoqEaOHJnpfffMmTPHeFykSBH169fPon358uXTG2+8YYwvXbqkTZs2pViXmJiouXPnGuPKlSurU6dOFt3Dzc1N/fv3N8aHDh3S0aNHLdoLAAAAAAAAAAAAAAAAAAAAAADSl5N5iDt37hiPy5YtK3t7+3TPLVy4sIoWLZrq/qQ2btyoy5cvG+PXX389w4DePQMGDDA9x6SZCuBBRtgNJsWLFzeNz58/b9G+unXrKiAgQK+++qrRCjOzRo0apevXr0uSGjRokKm9oaGh2rVrlzF+6aWXVKBAAYv3t2/fXsWKFTPGq1evTrHm1KlTOnPmjDHu06ePbG0t/xHq1auX6Q0ttXsAAAAAAAAAAAAAAAAAAAAAAIDMy8k8hJubm/E4PDw8wzMTEhIUGRlpjJPmFZJas2aN8bh48eIZdoxLysXFRS+99JIx3rVrl0JDQy3eD+RVhN1gUrJkSZUoUcIYBwQEmAJe6Um6L7PWr1+vdevWSbrbaW3ChAmZ2r9r1y5Tu9EWLVpkar+dnZ2aN29ujHfv3q24uDjTmoCAANP4+eefz9Q9ChYsqPr16xvj7du3Z2o/AAAAAAAAAAAAAAAAAAAAAABIXU7mIerWrWs8Pn/+vM6ePZvu+h07digmJsYYP/nkkynWxMbGmpr+NG/ePNPNh1q2bGk8jouL0+7duzO1H8iL0u+biEeOra2tunTpou+++07S3RfPgQMHavbs2apYsWKO3PPatWv69NNPjfE777yjcuXKZeqMQ4cOGY+dnZ1Vp06dTNfh5eWlxYsXS5KioqJ08uRJ1axZM9V7VKpUSR4eHlm6x703j7Nnzyo0NNTUmjQ9hw4d0oIFC3TgwAFduXJFtra2cnd3V+3atdW2bVu1aNHCoje2SpUqGY8nTZokb29vhYeHy9/fX2vXrtWFCxcUHR0tT09PNWnSRAMGDMjSc80u3t7e2X7mb7/9ptu3b0uS8ufPL0ny9PTUqVOnsv1eAAAAAAAAAAAAAAAAAAAAAJBXDBw4UMeOHZMk/fPPP5LuNnZ56qmnsv1eS5cuzfYz05OTeYhGjRrJ3d1dV69elSR99NFHmjt3rpycnFKsvXHjhsaNG2eMa9WqZfoc/z2nTp0yPtd+7x6ZVbduXeXPn9845+DBg+rQoYNFeyMjI+Xv76/ffvtN//zzj6KiouTq6qqKFSuqcePGevHFF+Xp6ZnhOVOnTtW0adMk3f1c/o4dOyRJ+/fvl5+fn44cOaKrV6/KxcVFTzzxhF588UW1b99eNjY2mX6+eDQQdkMKQ4YM0cqVKxUSEiJJCgoKUseOHTVkyBD5+PjIxcUl2+6VmJioTz/91GiVWatWLfn4+GT6nNOnTxuPK1WqlOk0syRVqVLFND5z5owp7Jb0Ho899limz0/tHoGBgRmG3eLj4zVmzBj98ssvKa4FBQUpKChIa9asUZUqVTR16lRVrVo1UzWdPn1agwYNUlBQUIraAgMD5e/vrxkzZqhp06aZOje7HD58ONvPvHXrlhITEyXJaA176dKlbL8PAAAAAAAAAAAAAAAAAAAAAOQlx44d0969e01zt27dypHPbVtDTuUh8uXLp48//livv/66JOmPP/5Qt27d9MEHH+iZZ56Rra2tYmNjFRAQoAkTJhifz3dwcNAnn3ySarAraUZBylpOwc7OTpUqVTICjJZ2sjt27JgGDRqkK1eumOZv3LihQ4cO6dChQ/rmm280aNAgvfnmm7K3tzx+lJCQoC+//FLffvutaT40NFQ7duzQjh07tGrVKk2fPl358uWz+Fw8OmytXQDyHldXV82aNUsFCxY05m7fvq2vvvpKXl5eGjNmTIYtNy21Zs0a/frrr5LuvohPnDgxS0G1pEGlChUqZKmW8uXLm8YXL140HsfHx+vy5ctprrVU8touXLiQ7vqEhAS9/vrrqQbdkjt9+rS6du2q1atXW1xPRESEfHx8UgTdkoqKitKQIUP0999/W3wuAAAAAAAAAAAAAAAAAAAAAAC5LSfzEO3atdPIkSNla3s3inPs2DG98sorql27tpo0aaLatWtryJAhxufznZyc9OWXX6pu3bqpnpe8YUtWcwpJu9YlzUGkZf/+/erZs2eKoFtycXFxmjlzpvr06aObN29aXM9PP/2UIuiW3NatWzVixAiLz8Sjhc5uSNXjjz+upUuXaujQoaa0cGRkpH7++Wf9/PPP8vLyko+Pj5577rkstY/877//NHr0aGP82muvZbor2T1hYWHG40KFCmXpDCcnJzk7OysqKkrS3UTyPZGRkYqLizPGhQsXztI9kteW0Qv+woUL9ddff0mS8ufPrw4dOqhp06Zyd3fX9evXdezYMa1YscJ4k7tz546GDx+u0qVL68knn8ywnm+++UZhYWEqUaKEXn75ZdWpU0cuLi4KDAzUvHnzdPz4cUlSTEyMRo8erQULFmTlaQMAAAAAAAAAAAAActiJEyesXQKSqV69urVLAAAAAADgkZSTeQhfX1/VqVNHffv21a1btyTdbTBzL4dwT+XKlfXNN9+ocuXKaZ6VNAdRoEABOTo6WlxHUklzCklzEKm5ffu23n33XaP2xx9/XN7e3nrsscdka2urixcvauPGjQoICFB8fLwkad++fRo+fLi+++47I+iX3nOaMmWKJKlFixZq3769SpcuraioKG3fvl2//PKLYmJiJN1tntSjRw81aNAgS88bDy/CbkhTpUqVtGrVKs2dO1ezZs1SaGio6fru3bu1e/du1axZU5988olF4ap7EhMTNXLkSOOFtEqVKhoyZEiWa71z547xOKttRaW7bxD33mSSvtncvn07xbqsnp9U8je05O4F3WrXrq1p06apdOnSpustW7bUsGHD9PXXX+u7776TdDc9/frrr2vDhg2mNHpqwsLC9Mwzz+jbb781Bfjq1q2rDh06yNfXV/v27ZN09w0qMDBQlSpVsui5AgAAAAAAAAAAAAAAAAAAAABgDTmVh/j33381efJkIyyWljNnzujLL7/UmDFjVKxYsVTXJM0pZDWjkHxv8uxDcve+Dg4ODhoxYoT69u2bIuzn7e2t48eP680339S5c+ckSVu2bNGcOXPUv3//dM+PioqSra2tpk2bpvbt25uuPfvss2rcuLF8fX2NuQULFhB2QwqE3ZAuJycnDR48WH369NGGDRu0YMECHT582LTm6NGj6tatm958800NGzbMolTzypUrtXnzZkmSra2tJk6cmOUU8sOuUqVKmjdvXpohPgcHBw0fPlxOTk6aOnWqJCkkJETz5s3TsGHD0j3bxcVF06dPT7VTnZOTk0aOHKkOHToYc/v27cv1sFtaLVvvx7///mukzAEAAAAAAAAAAAAAAAAAAADgUVagQIEc+dy2tWV3HuLAgQPq16+fKej29NNPq2nTpipWrJhCQkL066+/6tSpU5Kk3377TYcOHdLChQtVoUKFnHmSWTRmzBh169Ytzes1atTQggUL1LFjR/3333+SpBkzZqhbt25ydXVN9+wBAwakCLrd06RJE7Vo0cLIk/zxxx9KTEzMVHc9PPwIu8Ei+fPnV9euXdW1a1f99ddf+vnnn7Vu3TrFxsZKutup7euvv9bNmzf10UcfpftCExISojFjxhjje20870e+fPkUGRkpScb/ZkXSNx1nZ2fjcf78+dNcl9Xzk98jLZMnT7aoW92wYcP022+/GW+My5Yt09ChQ9P9u2jTpk2aKXFJql69uooVK6Zr165Jks6fP59hHdlt6dKl2X6mq6vrfX2fAAAAAAAAAAAAAAAAAAAAAMDD4rHHHsuRz23nFdmRh7hw4YIGDBhgZALc3Nz01VdfycvLy7Ru2LBhWr16tUaOHKmoqCj9999/6tOnj9avX58iJJY0p5DVjELyvcmzD6lp2rRpukG3e9zd3TV69Gi99tprkqTw8HBt2bJFnTt3Tndf7969M7z/vbDbf//9p6ioqPvqbIeHj621C8CDp1atWpoyZYo2bNig+vXrm67NmTNHGzduTHNvYmKiPvroI4WHh0uSypYtq7fffvu+aypSpIjx+ObNm1k6Izo6WlFRUcY4abezAgUKyM7OzhjfuHEjS/dIXluhQoUy3FO7dm2Lzra1tdXLL79sjIOCghQcHJzunmrVqmV4bqlSpYzHERERFtUCAAAAAAAAAAAAAAAAAAAAAEBek9U8xPjx443P07u4uGjBggUpgm6SZGNjo06dOunHH380MgjBwcGaPn16irVJcxC3bt1STExMlp5T0pxC0hxEWjIKoyX1/PPPy93d3Rjv2bMn3fWurq6mDEJqSpYsaRrfy5cA9xB2Q5ZVqFBB8+bNS5HKnThxohITE1Pds3TpUgUEBBjj8ePHW5Qczoinp6fx+Ny5c1k6I3nXstKlSxuP7e3tTS+4We1wlry2MmXKpLu+aNGimTr/mWeeMY3PnDmT7vqM2odKd7vm3RMXF5epegAAAAAAAAAAAAAAAAAAAAAAyGsyk4cIDg7Wpk2bjPE777yjypUrp3t+gwYN5OPjY4z9/f0VHR1tWpM0ByFlPadw9uxZ43HSHERakof80mNvb6+nnnrKGAcGBqa7PrMZBUmKj4+3uB48Ggi74b7Y29tr0qRJeuKJJ4y5oKAgHT16NMXa4OBgjRs3zhh3795djRo1ypY6qlSpYjwODAzM0ovd6dOnTePkbz5J7/HPP/9k+vzU7lGpUqV01ydPLGck+fqsdrlLKrUWrAAAAAAAAAAAAAAAAAAAAAAAPMgszUMkbfjj5OQkb29vi87v1auX8TgyMlJ//PGH6XrSjIKUtZxCfHy8KYCWUQhPkpydnTN1Dw8PD+NxRhkFS/IHZBSQEcJuSOHgwYNptt5Mjb29vfr27WuaO3XqlGmcmJioDz74QJGRkZLuvjh27NhRJ06cSPNPUqldT9qi88knnzQeR0VF6c8//7S4/nt2795tPHZ2dtbjjz9uup70HoGBgQoJCbmve1SsWDHTndsAAAAAAAAAAAAAAAAAAAAAAEDqciIPceHCBeNxuXLlVKBAAYvOLlOmjClYlvQcSapWrZry589vjPfs2WNx3fccPnxYt2/fNsZJu7ABDyp7axeAvOPatWuaNGmSli9frpIlS6pZs2ZydHS0aG+NGjVSnJXUokWLtGvXLmMcFRWlV155xeLaNm/erM2bN5vmtm/fbrTY9PLykp2dndHRbfPmzZl6kY6Pj9fWrVuNcaNGjWRvb/7xaNq0qb744gtjvGXLlkw9h/DwcO3bt88YN2nSJMM9ly9ftvj81NYXLlw4U/sBAAAAAAAAAAAAAAAAAAAAAHjQ5GQe4saNG8ZjBwcHi2uysbExrU96zr2zvLy8jKzEtm3bFB8fLzs7O4vvkTRnYWdnJy8vrwz3REVFZaq7W9JGQWQUkBvo7AbDL7/8ouXLl0u6G5qaN29els9K+oJ88eJFffbZZ/ddX3rc3NxML8pLlixRVFSUxfvXrVtnekPq0KFDijWPP/64KlWqZIz9/PyUkJBg8T3mz5+vuLi4dO+RXGhoqMXnS0rR1tSSFqQAAAAAAAAAAAAAAAAAAAAAADzIcioPIUlFixY1Hl+6dEmJiYkWnRMREaGbN28a4yJFiqRYkzRXcPXqVf36668W1xkZGaklS5YYYy8vL1OtaUnaxCcjcXFxOnjwoDFOmqkAcgphNxh69+5taoH59ddf699//7Vob/J19zquJSQkaMSIEbp161b2FZoGHx8f43FYWJjmzJlj0b7o6GjNmDHDGJcsWVKtWrVKsc7GxsZ0j9OnT2vNmjUW3SMsLEyzZ882xnXr1lXt2rUt2nvkyBGL1iUkJGjhwoXGuFy5cipZsqRFewEAAAAAAAAAAAAAAAAAAAAAeFDlRB7inscee8x4fOPGDe3Zs8eic9etW5fmOfe0atVKHh4exnj69OmKjo626PyffvrJ1C3O19fXon1+fn4WrZOkLVu26OrVq8a4UaNGFu8FsoqwGwxubm4aMGCAMb59+7YGDhyYolVmalatWmUaP/nkk5IkW1tb/fLLLwoMDMz0n6TeeOONFNeTv4E0adJEdevWNcbTpk0zJYjTMm7cONP9hg4dmma70hdffFGenp7G+JNPPtH58+fTPT8hIUHvvfeewsLCjLk333xTNjY2GdYmScOHD1dkZGSG66ZPn65Tp04Z465du1p8DwAAAAAAAAAAAAAAAAAAAAAAHlQ5kYe4p3nz5qaMweeff647d+6ke+b169f1zTffGOMSJUqY8g73ODo6aujQocb49OnTmjBhQoY1HzhwwNT0p27dumrcuHGG+yRp+/bt8vf3z3Dd1atX9emnnxrjggUL6vnnn7foHsD9IOwGk6FDh6pWrVrGODAwUD169NA///yT5p4FCxaYWmU2btxYJUqUyNE6U2NjY6Nx48YZLUPj4uLUr18/bdu2LdX1sbGx+vTTT7VgwQJj7sknn1T37t3TvIeTk5PGjBljjCMjI/Xyyy+n2X3t1q1bGjp0qAICAoy5Dh06WPwmIt39O+jdu7cuXryY5vOYPHmypk2bZswVK1ZMffr0sfgeAAAAAAAAAAAAAAAAAAAAAAA8yHIqD+Hq6mrqmnbs2DG9+uqrun79eqpnBgUFqV+/fgoODjbmXn/9ddnaph7h6dGjhykI98svv+iTTz5RbGxsqusDAgLUv39/xcfHS5IcHBw0fvz4TDXL+eSTTzR37lwlJiamev3YsWN6+eWX9d9//xlzQ4YMkYuLi8X3ALLK3toFIG9xcHDQ9OnT1bNnT126dEnS3WRwx44d1bJlS7Vo0UKenp5KSEhQUFCQ1q5dq507dxr7nZyc9MEHH1irfFWrVk2jRo3SRx99JOluGG3AgAFq3LixXnjhBZUvX15RUVE6efKkFixYYAqQFS9eXNOmTUvzDeSeZs2a6dVXX9W3334r6W5a2dvbW61bt1arVq3k6emp8PBwHTlyRPPnz1doaKixt0qVKho7dqzFz6ds2bIKCgrSX3/9pTZt2qhDhw5q1qyZ3N3ddf36dR09elQrVqww/q6ku6G/iRMnqmDBghbfBwAAAAAAAAAAAAAAAAAAAACAB1lO5iFee+01bd26VadPn5Yk7dixQ61bt1bXrl1Vv359FS1aVFevXtWOHTu0evVqRUVFGXu9vLzUrVu3NOu2tbXVtGnT1LlzZyNAN3/+fG3btk09e/ZUjRo15OzsrKCgIK1Zs0Y7duww7R87dqyqVq1q0deoQIECcnJyUmhoqMaOHatly5bpxRdfVNWqVWVra6sLFy5o06ZN2rZtmxGmk6SnnnpK/fr1s+gewP0i7IYUSpcurUWLFsnHx0eBgYGS7nYPW79+vdavX5/mPhsbG40ZM8biF8mc0qNHD0VGRuqzzz4z5nbu3Gl6E0rOw8NDc+fOVcmSJS26xzvvvKPbt29r7ty5kqSEhARt2LBBGzZsSHPPY489pjlz5sjV1dWyJ6K7yecNGzZo586dun37thYvXqzFixenud7W1lYTJkzQc889Z/E9AAAAAAAAAAAAAAAAAAAAAAB4GORUHsLFxUWzZs1S7969FRQUJEkKCwvT7NmzNXv27DTPrVOnjmbMmCE7O7t06y5VqpT8/Pzk4+Ojq1evSpKCg4P1xRdfpLtv5MiReumll9Jdk1ThwoX12WefqX///oqNjdWJEyd04sSJdPc88cQT+u677+Tg4GDxfYD7kX4LKzyySpUqpdWrV+vVV1+VvX3GmcjixYvr559/lre3dy5Ul7EBAwZo9uzZ8vDwyHBtixYttGLFClWpUsXi821tbTVy5EhNnjzZog5q3bp10+LFiy2qJyk7Ozt9++236ty5c4Zry5cvr19++SVTb1QAAAAAAAAAAAAAAAAAAAAAADxMcioPUbp0aa1cuVIdO3bM8Ex7e3v17dtXCxYssChzIElVq1bVypUr1bx58wzXenh4aM6cOfL19bXo7KS8vLw0e/Zsubm5pbvOzs5Offr00cKFC1W0aNFM3wfIKjq7IU358uXTe++9pz59+mjt2rUaP3686Xrp0qVVrVo1NWvWTB07dlSBAgWsVGnqmjVrpq1bt2r16tXavHmzjh49qtDQUDk6OqpkyZJ6+umn5e3trTp16mTpfBsbG3Xt2lUtW7bUsmXLFBAQoBMnTujmzZvKnz+/SpcurQYNGqh79+6ZCtIllz9/fk2ZMkUvv/yyFi5cqP379+vq1auysbFRiRIlVKtWLbVt21YtW7a06I0YAAAAAAAAAAAAAAAAAAAAAICHWU7lIQoVKqSvvvpKQ4YM0cqVK7V7924FBwcrIiJChQoVUtmyZdW4cWN17dpVZcqUyXTdJUqU0I8//qjDhw9r6dKlOnDggC5fvqyYmBgVLVpUNWvWVMuWLdWhQwc5OTll+vx7vLy8tGXLFi1cuFAbN27U6dOnFRUVJVdXV1WsWFFeXl7y9vbO0nMA7pdNYmJiorWLwINh7969euWVVyRJnp6e2rFjh5UrArLG1dVVkZGRpjkXFxdFRERYqSIAAAAAAAAAAAAAuD8nTpywdglIpnr16tYuAQAAAACAFBo2bKi9e/ea5ho0aKDff//dShXlDvIQwIPD1toFAAAAAAAAAAAAAAAAAAAAAAAAAABA2A0AAAAAAAAAAAAAAAAAAAAAAAAAYHWE3QAAAAAAAAAAAAAAAAAAAAAAAAAAVmdv7QLw4ChdurTeeOMNSVLBggWtXA3w4IqJiVFERIQiIyMVFxen+Ph4JSQkWLssAAAAwOpsbW1lZ2cne3t7ubi4yNXVVY6OjtYuCwAAAAAAAAAAAAAAAA848hDAg4OwGyxWunRpvfnmm9YuA3ggxcbGKjw8XOHh4bpz5461ywEAAADypPj4eMXHxysmJkZRUVG6evWq8uXLp4IFC6pgwYJycHCwdokAAAAAAAAAAAAAAAB4AJGHAB4chN0AIIfduXNHQUFBio+Pt3YpAAAAwAPnzp07unPnjq5fv66yZcsqX7581i4JAAAAAAAAAAAAAAAAAJBDbK1dAAA8zAi6AQAAANkjPj5eQUFBdEoGAAAAAAAAAAAAAAAAgIcYYTcAyCEE3QAAAIDsReANAAAAAAAAAAAAAAAAAB5uhN0AIAfExsYSdAMAAABywL3AW2xsrLVLAQAAAAAAAAAAAAAAAABkM3trFwAAD6Pw8PBMB91sbGxyqBoAAAAg70tMTLR4bXx8vMLDw+Xm5paDFQEAAAAAAAAAAAAAAAAAchthNwDIAeHh4RmucXNzk6urq5ycnGRjY0PYDQAAAI+0xMREJSYmKjo6WhEREbp+/Xq66wm7AQAAAAAAAAAAAAAAAMDDh7AbAGSzmJgY3blzJ83rzs7OKlOmjGxtbXOxKgAAACBvu/cPQOTPn1/58+dXsWLFdOHCBUVFRaW6/s6dO4qNjZWDg0MuVwoAAAAAAAAAAAAAAAAAyCkkLQAgm0VERKR7naAbAAAAkDFbW1uVKVMm3TWWdFQGAAAAAAAAAAAAAAAAADw4SFsAQDaLjIxM85qbmxtBNwAAAMBCtra2cnNzS/N6er97AwAAAAAAAAAAAAAAAAAePCQuACCbxcXFpXnN1dU1FysBAAAAHnzp/Q6d3u/eAAAAAAAAAAAAAAAAAIAHD2E3AMhm8fHxaV5zcnLKxUoAAACAB196v0On97s3AAAAAAAAAAAAAAAAAODBQ9gNALJZQkJCmtdsbGxysRIAAADgwZfe79Dp/e4NAAAAAAAAAAAAAAAAAHjwEHYDgFxiY2ND2A0AAADIJH6PBgAAAAAAAAAAAAAAAIBHB2E3AAAAAAAAAAAAAAAAAAAAAAAAAIDVEXYDAAAAAAAAAAAAAAAAAAAAAAAAAFgdYTcAAAAAAAAAAAAAAAAAAAAAAAAAgNURdgMAAAAAAAAAAAAAAAAAAAAAAAAAWB1hNwAAAAAAAAAAAAAAAAAAAAAAAACA1RF2AwAAAAAAAAAAAAAAAAAAAAAAAABYHWE3AAAAAAAAAAAAAAAAAAAAAAAAAIDVEXYDAAAAAAAAAAAAAAAAAAAAAAAAAFidvbULAAAAAJCxhIQE7dq1S3/88YcuX74sW1tbPf744+rcubOKFi1q7fIAAAAAAAAAAAAAAAAAAACA+0ZnNwAAgIfA0qVLValSJePP2LFj01x78eJF09oXXnghFytFVgQGBqpt27by9fXVt99+q5UrV2r58uUaP368mjRpolmzZlm7xDxrzpw5pu/3qVOnWrskIM/au3ev6edl8ODB1i4JAAAAAAAAAAAAAAAAAPCIIewGAAAA5GHBwcHy9vbWmTNnUr1++/ZtLViwQDExMblcGQAAAAAAAAAAAAAAAAAAAJC9CLsBAAAAedjYsWMVHh6e5nVbW1tNnjxZjo6OuVgVAAAAAAAAAAAAAAAAAAAAkP3srV0AAAAAgNRdv35dmzZtMs2NHj1aXbp0UXBwsL788ktVqFBBTz31lJUqBAAAAAAAAAAAAAAAAAAAALIPYTcAAB5hISEh2r59uw4cOKDAwEBduHBBt27dUmxsrJydnVW0aFGVK1dONWvWVIMGDVS/fn3Z2/PrA9K2YMECffzxx6a5VatW6YknnsjW+yQkJOj5559XUFCQMVe/fn0tWLAg02eFhoZq27Zt2r9/v06fPq0LFy4oMjJSMTExcnJykouLi9zd3VWxYkXVqlVLTZs2VeXKlbPz6aRpx44dSkxMNMZeXl7q1auXJKlKlSr6+uuvc6WOR8ny5cs1depU3bhxQy1atNCoUaPk6upq7bIAAAAAAAAAAAAAAAAAAAAeCXxaHQCAR9D+/fs1ffp07dmzxxSkSSoyMlKRkZEKCgrSzp07NXPmTLm5ualnz57q378/4Q+kqnPnzvriiy908+ZNY+6XX37RxIkTs/U+27dvNwXdJMnX1zdTZxw4cEA//vijtm3bpvj4+FTX3LlzR3fu3NG1a9d04sQJrV27VhMmTNAzzzyj3r17q3Xr1rKzs8vy88jIhQsXTONGjRqZxk5OTjl270fRwYMHNXz4cGO8cuVK5cuXT+PHj7diVQAAAAAAAAAAAAAAAAAAAI8OW2sXAAAAcs+JEyfUr18/9ejRQ7t3704z6JaW69eva/r06Xruuec0a9YsRUdH51CleFA5OzurR48eprnVq1crLCwsW+/j5+dnGpctW1bNmze3aG9QUJAGDRqk7t27a/PmzWkG3dLzxx9/6PXXX1ePHj109uzZTO+3VGhoqGlcsmTJHLsXpMOHD6eYO3TokBUqAQAAAAAAAAAAAAAAAAAAeDTR2Q0AgEfEwoULNXr0aMXGxqZ6PX/+/KpUqZKKFCkiJycnRURE6NKlS7p48WKKtWFhYfrss8/066+/aubMmXJ3d8/p8vEA6d27t2bNmmWEyKKjo7VkyRINGjQoW84/f/68tm/fbprr27evRR3W1q5dq48++kiRkZGpXndwcFClSpVUrFgxOTk56ebNmwoNDdW5c+dSDYceOnRI7du314YNG1S+fPksPZ/03Lp1yzTOly9ftt8D/6devXqysbEx/V0//fTTVqzowbN06VJdunTJGPfs2VPFixe3YkX3b86cOQoPDzfGQ4YMoasiAAAAAAAAAAAAAAAAAAA5hLAbAAAPudjYWI0ZM0YLFixIca1QoULq1q2b2rVrpxo1aqQaFrp586a2bdumZcuWac+ePaZrhw8fVqdOnfTtt9+qTp06OfUU8IApWbKk2rZtq7Vr1xpz8+fPV//+/S0KpGVk/vz5prGLi4tefPHFDPd9//33+vzzz1PM29raql27durSpYsaNmyYaoglIiJChw8f1urVq7VhwwbduXPHuBYTE6OoqKgsPJPMs7GxyZX7PKrq1KmjL774Ql999ZVu3LihVq1a6X//+5+1y3qgLF++XPv27TPGLVu2fCjCbkkDfL6+voTdAAAAAAAAAAAAAAAAAADIIbbWLgAAAOSchIQEDR8+PEXQzdbWVoMHD9b27ds1YsQI1apVK80QUqFChdS5c2f5+fnJ399fVapUMV2/evWq+vTpo7/++ivHngcePL6+vqbxxYsXFRAQcN/nRkVFaenSpaa5bt26ydXVNd19s2fPTjXo1rBhQ/3222+aOnWqmjVrlmaAxdXVVU2aNNEXX3yhXbt2qVevXrK15Vfph1Hnzp21fft2HTlyRJMnT5aLi4u1SwIAAAAAAAAAAAAAAAAAAHhk8AldAAAeYlOnTtWaNWtMc0WLFtXChQv1v//9L8OAUHL16tXTqlWr5O3tbZq/deuWBg4cqP/+++++a8bDoU6dOqpbt65pzs/P777PXb16tcLDw42xra2t+vTpk+6egIAATZgwIcX8e++9p3nz5qlixYqZqqFIkSIaPXq0/P395e7unqm9AAAAAAAAAAAAAAAAAAAAANJG2A0AgIfU/v379c0335jmihUrJn9/f9WrVy/L5zo5OWnixIkpOnddu3ZNw4cPV2JiYpbPxsMl+ffIzp07dfbs2Syfl5iYmCIw17JlS5UpUybNPWFhYRo+fHiK+UmTJunVV1+9r+5sTz75pFauXKny5ctn+QwAAAAAAAAAAAAAAAAAAAAA/4ewGwAAD6G4uDh98sknpuCZo6Ojvv/++0x3sUqNjY2NPvzwQ7Vo0cI0v3PnTv3222/3fT4eDq1bt1bJkiVNc7/88kuWzztw4IBOnTplmuvXr1+6e6ZMmaLQ0FDT3FtvvZWiO2FWlShRQj///LMKFy6cLecBAAAAAAAAAAAAAAAAAAAAjzLCbgAAPITWr1+vf/75xzQ3bNgw1alTJ9vuYWtrqwkTJqhIkSKm+a+//loJCQnZdh88uOzt7dWnTx/T3LJly3Tr1q0snTdv3jzTuEaNGnrqqafSXH/x4kUtXrzYNFevXj299tprWbp/WkqXLq1SpUpl65kAAAAAAAAAAAAAAAAAAADAo4iwGwAAD6GffvrJNPb09NTAgQOz/T5ubm566623THOnT5/Wrl27sv1eeDB1795d+fPnN8aRkZFauXJlps+5cuWKNm7caJrr16+fbGxs0twzb948xcfHm+ZGjx4tOzu7TN8fAAAAAAAAAAAAAAAAAAAAQM6zt3YBAICUoqKidObMGWuXAQtVrlxZzs7O1i7DEBgYqKNHj5rm+vfvL0dHxxy530svvaRp06bp+vXrxtzKlSvVpEkTSdL27dvVr18/45q9vb127dql4sWLW3yPIUOGaNOmTca4TZs2+uabb9JcHxcXp+3bt2vz5s06duyYLly4oKioKOXLl09ubm6qVq2annvuObVt21aurq4W1TB16lRNmzbNGI8cOVK+vr46d+6cpk+fru3btysyMlJubm6qVauWXn75ZTVt2jTN886fP68tW7Zox44dCgkJ0fXr1xUZGalChQqpaNGiqlOnjpo1a6ZmzZrJycnJohrzokKFCsnb21t+fn7GnJ+fn3r27JluUC25RYsWKS4uzhi7u7urXbt2aa5PSEjQmjVrTHMtWrRQtWrVMlG99bzwwgs6efJkivlXX301xdykSZPk7e1tjPfu3atXXnnFGLdo0ULff/+9RfetU6eOIiIijHFgYGCaa3v27Kl9+/YZ4zVr1qh69epKTEzUwYMHtXDhQh09elTBwcGys7NTyZIl1bhxY/Xs2VMVKlSwqJ7UXLhwQWvXrtWePXt05swZ3bhxQzY2NnJ3d1etWrX0wgsvqEWLFrK1zdq/65H8a799+3aVLl06zfVNmjTRpUuXjPHhw4dVsGBBJSQkaOfOnfL399epU6d0+fJl5c+fX6VLl1bTpk3Vq1cvlShRIks1StLff/+ttWvX6sCBAzpz5ozCw8Pl4OAgDw8P1a1bV126dFHDhg2Nn7OxY8dq7ty5xv7k3zdZtXTpUr3//vtpXu/QoYPx+PHHH9fatWvTPe/GjRv69ddftWPHDp08eVLXrl1TdHS0XFxcVKZMGdWsWVMtW7bUs88+m2PB1eSv98nVrVvXeJzRz1dOvB+l5tSpU1q/fr0OHDigwMBAhYeHy97eXm5ubipbtqwaNmyo5s2bq2rVqlm+R0REhBYsWKBNmzbp9OnTiomJUYkSJVS+fHl17txZbdq0Ub58+bJ8PgAAAAAAAAAAAAAAAAAAEmE3AMiTzpw5oy5duli7DFhoxYoVqlWrlrXLMOzYscM0trW11QsvvJBj93NyclLbtm31yy+/mGpISEiQra2tmjRposqVKxsBzri4OC1btkxDhgyx6PwrV65o69atpjlfX9801//222+aOHGigoKCUly7deuWbt26paCgIG3cuFGfffaZXn/9dfn4+GQpGLNr1y4NGTJEt2/fNtW7adMmbdmyRVu3blWZMmVMew4fPqypU6dq586dqZ557do1Xbt2Tf/8848WL16sMmXK6IMPPlDr1q0zXV9e0bdvX1PY7fTp09q7d68aNmxo0f6YmBgtXLjQNNerV690A5ynTp3S1atXTXO8rua8yMhIvfvuu9q8eXOKa6dPn9bp06c1b948vfXWWxoyZEimAo9Xr17VxIkTtWbNGiUkJKS4fuHCBV24cEHr1q1TjRo19OWXX6py5cr39Xyy6urVqxo6dKgOHTpkmo+JidHNmzd1/PhxzZkzR6NGjcp04OzcuXMaN26cAgICUlyLi4vTuXPndO7cOS1fvlyNGjXS5MmT5eHhcT9PJ1dERUVpxowZ8vPzU1RUVIrrN2/e1M2bN3Xs2DEtXLhQFSpU0PDhw/P0a2NuvB/9/fffmjBhQqodVWNiYhQVFaULFy5o9+7d+uKLL9S4cWO9++67qlmzZqaey6FDhzRkyBBTsF36v5+7nTt3atq0afr222/vK1AHAAAAAAAAAAAAAAAAAEDW2h0AAIA86+DBg6ZxrVq15ObmlqP3bNasmWkcFhams2fPSpJsbGzk4+Njuu7v759qWCU1S5cuVXx8vDGuVauWnnrqqRTr4uLiNHLkSL322mupBgtSEx4ervHjx2vIkCGKjo62aM89Bw8e1KBBg0xBt6ReeeUVU9Dt5s2bGj58uLy9vdMMuqXmwoULeu2110xhsQdNhQoV9Nxzz5nmMvN8fvvtN/3333/G2MnJSS+//HK6ew4cOGAa29raqnHjxhbfE5kXGxurgQMHphp0SyouLk5ffPFFup2zkvv999/Vpk0brVq1yqLXjuPHj6tr164pwma5ISIiQq+88kqG9759+7bef/99LV261OKzV69erfbt26cadEvNnj171KVLF507d87ie1jD33//rfbt2+v7779PNeiWmnPnzum1117Te++9l+nX75yWW+9Hc+fOVadOnVINuqVl586d6t69u3799VeL9+zYsUO9evVKEXRL7t9//5W3t3ee/34DAAAAAAAAAAAAAAAAAORtdHYDAOAhcy9kdk/16tVz/J41atRItY57XZW6dOmiKVOmKCwsTJIUFBSk33//XV5eXumem5CQoMWLF5vmfH19U3SDSkxM1AcffKDly5enOMPFxUXlypVT8eLFFRERoX///VfXrl0zrdmyZYveffddTZ8+3eJOUxs2bJAk5cuXTzVq1FDBggUVGBiooKAgubm56Z133jGtv3HjhtavX5/iHEdHR1WpUkVubm6ysbHRlStXdP78ed25c8e0btSoUapUqZIaNWpkUX15ja+vr7Zt22aMN23apODgYJUqVSrDvcmDcZ07d1bRokXT3ZM8bFG+fHkVKFAgExVbV6NGjVSuXLkUgRQ7Ozu1bNnSNOfp6ZmbpaVp5syZ+uOPP4xx5cqVVapUKcXHx+vkyZMKDQ01rZ8xY4aaNGmiunXrpnvu7t271b9/f8XGxqa4VrRoUZUtW1aFCxfW5cuXdfbsWWPdrVu3NHDgwEx3TrtfY8aMMV6HbW1tVbVqVZUoUUK3b9/W8ePHFRkZaVo/atQo1a9fP0UXyOSWL1+u4cOHp3rN3d1dpUuXVsGCBXX58mX9/fffxrWrV6+qX79+ql+//n0+s9R5enqqTZs2xjj592zZsmWN96HUvlePHTumV155JcXXRZKKFy9uPK+QkBAFBQWlCBivWLFCV65c0axZs+Tk5JQdT0mVK1dO9zk1atRIBQsWlKQUnV1z6/3oyy+/1DfffJNi3s7OTmXKlJGnp6fs7Ox0/fp1nT59WjExMcaa6OhozZs3z/Qc0xIaGqp3333XCOAVKlRIlStXVqFChXTlyhWdPHnSFECNiorSiBEjtHDhwix1TAUAAAAAAAAAAAAAAAAAgLAbAAAPmcuXL5vGpUuXzvF7Fi9eXE5OTqZuNMHBwcbjfPny6eWXX9bMmTONuUWLFmUYdtu9e7cuXrxojD08PNS2bdsU6xYtWpQiWFClShUNGzZMLVu2NAUgEhIS9Pvvv2vSpEk6fvy4Mb9hwwatWLFCXbt2teAZ31WvXj3NmDFDxYsXl3Q35LBu3TrZ2toaQYh7ypUrp7ffflufffaZJKlx48bq3bu3nn322RQBjTt37mj58uUaP368KfT23XffPbBht0aNGqlq1apGCCchIUELFizQe++9l+6+EydOpOhWmLxTYGqS/xxkFCTKaz788ENJ0vDhw03f2zNmzFCrVq2sVVa67nV0a9eund555x1VqFDBuBYfH6+lS5dq1KhRRugmISFB3377rX744Yc0zwwODtbQoUNTBN2aN28uHx8fNWzY0BSouXbtmvz9/TVz5kzduXNHN27c0KxZs7LzaWbo3tehV69eGjJkiEqWLGlci46O1uzZs/Xll18qMTFR0t0Obz/99JM+/fTTNM88evSoPvjggxTznTt3Vu/evVW7dm1TMOry5cuaNWuWfvnlF8XFxSkoKMjiDmOZ1bBhQzVs2NAY9+zZU/v27TPG33zzTZqh62vXrql///4pgm7t2rWTj4+PnnzySdPzun37ttauXavvvvtO58+fN+b37NmjUaNGGa+v96t9+/Zq3769MW7SpIkuXbpkek7JX+PvyY33oxUrVqQIurm4uGjgwIHq1q2b3N3dTddu376tPXv2yM/PL1OdRSUZHQrd3Nw0cuRItWnTRo6Ojsb14OBgjRgxQrt37zbmDhw4oEOHDqlevXqZuhcAAAAAAAAAAAAAAAAAAJLEP7UOAMBDJioqyjR2dXXN8Xva2NikuE/yOnr37i0HBwdjvGnTphQdbZLz9/c3jfv06WM6Q5Ju3rypzz//3DTXsmVLLV++XC+88EKKIJmtra28vLy0dOlStWvXznRtypQpqXaPSsv06dONoJt09+vwwgsvpDj3Hh8fH7Vv315+fn6aO3eunn/++VQ7EeXLl089e/ZMEdzYv3+/qTvPg8TGxka+vr6mOX9/f1NAMjXJu7o1btxYjz32WIb3s8bPAaT+/ftr2rRppqCbdLfbVPfu3TV27FjT/NatW3Xz5s00zxs9erQiIiJM50yYMEE//PCDvLy8UnSOKlasmIYOHaqVK1eqfPny9/+Esujjjz/W6NGjTUE3SXJyctJrr72mYcOGmeZXr15t6o6VVEJCgj744APFxcUZcwUKFND333+vKVOmqE6dOik6gJUsWVIff/yx/Pz8VLhw4ex5Ujlg9OjRpvcBR0dHff7555o+fbqeeuqpFM8rf/78eumll7Rq1aoUr7OLFy9WQEBAbpSdptx4P7p69apGjRplmqtatapWrVqlYcOGpQi6SXe/bs8//7zmzp2rH3/8UW5ubpl6Xu7u7lq9erU6duxoCrpJUqlSpfTjjz8anVzvSd4NDwAAAAAAAAAAAAAAAAAASxF2AwAAucLd3d3UKSc2NlbLli1Lc/21a9e0adMmY5w/f3517949xbpFixYpPDzcGJcvX15ffvmlnJ2d063nXqgiaSAmJCREW7duteTpSFKqoYL02Nvba9q0aRZ3Z2vXrp1cXFyMcUxMjMLCwjJ1z7ykY8eOKlq0qDEODQ3V+vXr01x/48YNrV692jRnSVc3WEfFihU1fPjwFAGlpLp27SpPT09jnJiYqMOHD6e69sSJE0aXtHs++OADde/ePd17SHc7af3444+mn5/c0qhRI/Xt2zfdNQMGDFD+/PmN8Y0bN3T27NlU127ZskUnT540zU2ePFktWrTIsJZnnnlG3333nezt815D72PHjqX4+R89erRefPHFDPe6uLjo66+/Vv369U3zU6ZMMTrmWUNuvB999913pk54RYsW1Zw5cywOdzZv3lz+/v6ZCryNGTNGHh4eaV53cnLSwIEDTXMHDhyw+HwAAAAAAAAAAAAAAAAAAJIi7AYAwEMm+Yfqk34oPqckJiaaui+lVock9evXzzT29/dPM5iwbNkyUyejF198MdUORWvXrjWN//e//2UYLLgnf/78KbqNJQ/XpCV5h7mcYG9vn6IzVGY6z+U1Tk5O6tmzp2kueee2pJYuXao7d+4Y44oVK6pJkyYW3Sv590Dy709kP29v7wx/LmxtbVOEPS9dupTq2lWrVpnGjRo1ylTYsWLFivrwww8tXp9devTokWEYz8XFRXXq1DHNXbx4MdW1yb8O3bp1U+vWrS2u5+mnn1avXr0sXp9bFi1aZBo3b95cL730ksX77ezs9OWXX5o6jZ04cUJ//fVXttWYWTn9fhQdHZ0iJD527FiVKFEiU3VWqFBB7733nsXrmzdvnuEaLy8v0zijzq0AAAAAAAAAAAAAAAAAAKSFsBsAAA+Z5OGotAIU2enatWuKjo42zZUqVSrFuho1apg68fz777/au3dvinUJCQny9/c3zaUWcgkLC9OJEyeMsYuLi5o1a5ap2pN/QP/gwYMW7UsteGep+Ph4HThwQD/++KM+/fRTvfXWW/rf//6nCRMmyN/fX8HBwcbavNiR6X706tXLFIg6cuRIquGUhIQEzZ8/3zTn6+srW1vLfn1N3oXowoULWagWmfH4449btC5pZzfpblez1OzZs8c07tevX4YhsuS6du2aqfXZwdKvQ+nSpU3jmzdvpliTmJio3bt3m+aSB6IsMWDAgEzvyWnJu5b17ds303+/Hh4eKYJ/lgaWs1tuvB/t37/fFGAvWbKkWrZsmfliJZUrV87itXZ2dhmu8fDwMK27fv16luoCAAAAAAAAAAAAAAAAAODh+vQ0AABQpUqV9PfffxvjpB++zynHjx9PMVexYsVU1/r6+mrfvn3GeNGiRWrYsKFpzd69e/Xvv/8a4+bNm6tChQopzjpz5oxpHBkZqerVq2eq9uQuXryo2NjYDDtUDR48ONNnJyYmavHixZo5c2aGIcRmzZrpnXfeyfQ98rrixYvrhRde0IoVK4w5Pz8/TZ482bRu+/btCgoKMsaFChVS586dLb5P8u+/c+fO6datWypQoEDWCkeGihYtatG65H8HSTs4Jp1L+vNta2ub4nXCErnRgTE5S78OyTt+pda1MSQkROHh4ca4RIkSqlKlSqZrSh6CtrZr167pypUrxrhQoUIpOv5Zql27dlqzZo0xzo33vNTkxvtR8vfa1q1bWxREux8tWrSwaJ2NjY3y589vhPFiYmJysiwAAAAAAAAAAAAAAAAAwEOMzm4AADxknnzySdP4yJEjCg0NzdF7BgQEmMZFihRJM+zWvHlzlS1b1hhv3LgxRX2WdHWT7gYmslt8fLypc052iY2N1dChQ/Xhhx9a1G0vICBAXbt21cmTJ7O9FmtL3plq7dq1KboA+fn5mcYvv/xyinBQep566inTODExUTt27MhkpcgMS7vuWdK9KyIiwhSWKVWqlPLly5elulxcXLK0L6uy8+uQ/DWufPnyme5+lheFhISYxqVLl7b465Zc0vcTSaYQXW7Kjfej5F+35M/d2h6G700AAAAAAAAAAAAAAAAAgPXR2Q0A8qDKlSubuh4hb6tcubK1SzBp2rSpxo0bZ4wTEhK0bt069e7dO0fuFx0drQ0bNqSoIa3ggp2dnXx8fDRmzBhJd7u/LF++XAMGDJAkhYaGauPGjcb6qlWrptnx586dO9nxFFKIiopSkSJFsvXMUaNG6bfffsvUntQ6Xj0MatSoofr16xsd/mJiYrRkyRINGTJEknT+/Hlt377dWG9nZ6devXpl6h7VqlWTu7u7rl69asytXLlSbdu2zYZngJx2+/Zt0zgzQcfkXFxcciTAmhuSv8Y9LJ0Jk//9urm5Zfms5Htv3bqV5bPuR268H2Xn1w0AAAAAAAAAAAAAAAAAgLyKsBsA5EHOzs6qVauWtcvAA6pixYqqWbOmjh49aszNmjVLPXr0kIODQ7bfb9myZSk62nTq1CndPd7e3vrqq68UEREhSVq0aJH69+8vGxsbLV++3NTRqV+/fml2i0mt01ObNm0y+xRScHJyuu8zkjp27JgWLVpkmvPw8JCPj48aNWokT09PFShQQLdv31ZoaKj+/vtvHTp0SOvWrdPly5eztZa8wsfHxwi7SdL8+fM1YMAA2dvba/78+aa1bdu2VcmSJTN1vp2dnTp06KDZs2cbc5s3b9apU6dUrVq1+yseOS5//vymcVRUVJbPelCDblLK1zhrBbmyW/K/3+SdHTMj+V5rBQJz4/0oO79uAAAAAAAAAAAAAAAAAADkVYTdAAB4CPXr109vv/22Mb548aJmz55tdM7KLmFhYfrqq69Mc1WqVNGzzz6b7r4CBQqoe/fumjVrliTp3Llz+uOPP/TMM8/I39/fWOfm5qYOHTqkeU6xYsVM46efflrffPNNZp9Gjlu1apVpXL16dc2fP18FCxY0zTs4OKhgwYIqX768Wrdurffff19VqlTJzVJzzfPPP6+yZcsqKChIkhQcHKytW7fq2Wef1ZIlS0xrfX19s3SPPn36aO7cuYqPjzfmPv30Uy1YsEB2dnZZL/4hlpiYaO0SJEkFCxaUo6OjEXy9fPmy7ty5k2qgKCMPctitePHipvG///5rpUqyl4eHh2l88eJFJSQkpNkRND3JvybJz84tufF+lPy53Xv9BAAAAAAAAAAAAAAAAADgYZL5TxMCAIA8r127dilCUlOnTtVff/2VbfdISEjQRx99pNDQUNP8m2++aVFgoW/fvqbAkb+/v/bv36+zZ88ac7169Uq3y1qlSpVM4yNHjuTJzkeHDx82jYcPH54i6JaarAQ/HhR2dnbq06ePac7Pz0+rV682Ov5JUt26dVWnTp0s3aN06dLq1q2bae7AgQP69ttvs3ReWi5duqTg4OBsPfN+2Nub/z0LS7ui3blzJ88Ew+zs7EyvYfHx8fr9998zfU5cXFx2lpXrSpQooUKFChnjkJAQnT59OtPnhIWFZWdZ961YsWKm4NbNmze1e/fuLJ21fv1607hGjRr3VVtW5cb70RNPPGEa//rrr6YwLwAAAAAAAAAAAAAAAAAAD4OH9xPUAAA8wuzt7TVmzBjZ2NgYczExMRo0aJDOnz9/3+cnJiZq0qRJ+u2330zzzz77rNq0aWPRGaVKlTKt3bBhg77//ntj7OjoqJ49e6Z7RtGiRVW1alVjHBMToy1btlh0/6QOHTqkmzdvZnqfpZIHAqtVq2bRvv/++y8nyskzvL295eLiYoz37Nmj6dOnm9ZktavbPe+++66KFi1qmvvqq6+0fPny+zr3nqtXr6pv3766ceNGtpyXHZKGoyTpwoULFu37+++/c6KcLPPy8jKN586dm+nOcytWrMjOknKdjY1Niq/DnDlzMn3O3Llzs6mi7PP888+bxln5+w0ODtbGjRvTPTe35Mb7Ub169eTq6mqMQ0JCUrwPWyo7fhcAAAAAAAAAAAAAAAAAACAnEHYDAOAh9cwzz+jVV181zf3333/q1q1bik5jmREdHa2PPvpIs2bNMs0XLVpUkydPNgXsMtKvXz/jcUxMjAICAoxxp06dVKxYsQzPaN++vWk8ZcqUTHXTOX36tHx8fNSiRQstXbpUCQkJFu+1lKOjo2l85coVi/Yl/xo/bFxdXVN0XgsJCTEelyxZUq1bt76vexQpUkSTJ09OMT98+HDNmjUr0+GapI4cOaLOnTvr3Llz91NititVqpSpK+CFCxdMHRPTsmjRopwsK9M6depkGu/atUs///yzxfvPnTuncePGZXdZua5Lly6msb+/vzZt2mTx/gMHDui7777L7rLu28svv2waBwQEaOHChRbvj4uL01tvvaWYmBhjrkaNGqpZs2a21ZhZOf1+5OTkpJdeesk098knn+jy5cuZqvP06dOpvi4CAAAAAAAAAAAAAAAAAJAXEHYDAOAh9tZbb6ldu3amuevXr6t79+6aMmWKIiMjM3XeoUOH1LVrV/n7+5vmnZ2d9eOPP8rd3T1T59WpU0d169ZN9ZqlHb169OihAgUKGOOLFy/q3XffVVRUVIZ7jxw5on79+unWrVsKDQ3V+++/nyMBgEqVKpnG8+bNyzBktXr1as2ePTvba8lr+vTpYwpmJb9mb29/3/do1qyZPvzwwxTzn332mXx9fTPd4ejmzZsaO3asXnrpJYuDi7mpQIECevzxx01zX331Vbrfc1u2bNHixYtzurRMqVatmlq2bGma++yzz7RkyZIMf34CAwM1cODATL/G5UXNmjVTjRo1THPvvfeetm3bluHew4cPa+jQoYqLi8up8rLs8ccf1wsvvGCaGzNmTIr3l9RERERo2LBhOnjwoGn+vffey1TgOrvlxvvRoEGDTN3dwsLC1LdvXwUGBlpU4+bNm9WzZ0+FhYVZtB4AAAAAAAAAAAAAAAAAgNxG2A0AgIeYnZ2dpkyZkqJ7Vnx8vGbOnKlmzZpp8uTJOnbsmOLj41M9Izw8XKtXr5aPj49eeuklnTp1ynS9ePHimjt3rurUqZOlGpN2d7vHy8tLVatWtWi/m5ub3nrrLdPcpk2b9NJLL+nXX381df25JzAwUJ999pm6deum4OBg01mWhuwyo3nz5qbx8uXL9fHHH+vatWup1va///1Pb7/99n11HXtQlClTJkWgSZLy58+v7t27Z9t9+vfvr+HDh6eY37lzp1q1aqV33nlHO3fuVHR0dKr7b926pd27d+uDDz7Qs88+q7lz56b5M5MXJO8Gtn79en388ceKiIgwzd+4cUPTpk1L0QUyr/jkk09MwZ64uDiNGDFCQ4YM0b59+1J0vrp+/bq+//77PNlxL6tsbW01YcIEU/AzMjJSAwYM0Pvvv6+jR4+meK0IDg7W5MmT1aNHj1RfZ/KKTz75RMWLFzfGsbGx+vDDD/X666/r1KlTKZ5XdHS01q5dq44dO6bobte9e3c1adIkV+pOS268HxUvXlyjRo1KcUaXLl30ww8/6MaNGyn23L59W1u3bpWPj48GDx6s0NDQLD0/AAAAAAAAAAAAAAAAAAByw/23ygAAAHmao6OjJkyYoJo1a2r06NGmDj9hYWH67rvv9N1338nZ2VmVK1dW4cKF5ejoqIiICF2+fFlBQUFpnl2nTh1988038vDwyHJ9rVq1UqlSpUwf8s9s4MzHx0f79+/Xxo0bjblTp05p6NChcnV1VdmyZeXu7q7IyEgFBwfr0qVLKc5wcXHRTz/9lOnudJZ44YUX9O2335rCNwsXLpS/v7+qVaumEiVKKDo6WhcvXjR9ve3s7PJ0oCq7+Pr66rfffjPNeXt7q1ChQtl6nyFDhsjT01MjR440dfyKj4/XqlWrtGrVKjk4OKhy5coqVqyYnJycFB4ertDQUJ09ezZFsOoeR0dHOTs7Z2ut98vb21uzZs1SSEiIMbdw4UItX75ctWrVkqurq65du6ZTp04ZAZyGDRvq6NGjeaobWqlSpTRjxgz179/f9Nq1efNmbd68WUWLFlW5cuVUuHBhhYSE6MyZM4qNjTXWFSpUSN7e3g98l8QnnnhC48eP1/vvv2+aX7p0qZYuXSoPDw+VLl1aBQoUUHBwsAIDA03fr2XLllX9+vW1ZMmS3C49XW5ubpo9e7Z69uxp+r5bv3691q9fr5IlS6py5cpycnJSaGioTp06lWqXtEaNGunTTz/NzdLTlBvvR507d9b58+c1ffp0Y+7WrVuaNGmSvvjiC1WtWlUeHh6Kj4/XtWvXdPr06VSDdgAAAAAAAAAAAAAAAAAA5EWE3QAAeATY2NioZ8+eql27tiZPnqydO3emWBMVFaW//vrLovMKFy6swYMHq2/fvnJycrqv2uzt7dW3b1999tlnkqQKFSqoadOmmTrD1tZWX3/9td555x39+uuvpmsRERE6fvy4jh8/nub+smXL6rvvvrO4m1xmOTk56ccff5S3t7ep605CQoJOnDihEydOpNhjb2+v8ePHa+7cuTp58mSO1JVX1KtXTzVq1DD9HfXt2zdH7tWhQwfVrl1bY8aM0bZt21Jcj42NzdTXu27dupo0aZLKly+fjVXeP1dXV02ZMkW+vr6mkEt0dLT279+fYr27u7smT56stm3b5maZFnn22Wf1008/aejQoSk604WGhqbZpcrZ2Vk//PCDjh49mhtl5jhvb2/Z29vrgw8+SBFcCgkJMQUbk7oXKJs/f35ulJlpNWrU0OLFizVkyJAU4erLly/r8uXL6e7v3LmzJkyYcN/vRdklt96P3nrrLRUuXFgTJ040BTzj4+PTfF+5x8nJSX369LHwGQEAAAAAAAAAAAAAAAAAkLtsrV0AAADIPTVq1NDcuXO1cOFCeXl5ycbGJlP7ixYtqmHDhikgIECDBg3KtnBB9+7dVaBAAUl3u3zZ2mb+VxQnJyfNmDFDY8aMUZEiRSza4+LioldffVXr1q3LsaDbPRUqVJC/v7/q1KmT4doqVapozpw58vb2ztGa8gobGxv169fPGDdv3lwVKlTIsfuVLVtWs2bN0sKFC/X888/Lzs4u02c8+eSTmjp1qvz9/VWpUqUcqPL+NWjQQLNmzZKbm1u666pUqaIFCxaoZMmSuVRZ5nl5eenXX39V+/btLXrdevzxx7V06VLVq1cvF6rLPZ07d9batWvVuHFji9bXr19fK1euVMWKFXO4svtTtWpVrVu3ToMHD1b+/Pkt2lOhQgXNnDlTU6ZMyTNBt3ty6/3Ix8dHq1atkpeXl8W1NWnSREuWLFGbNm0s3gMAAAAAAAAAAAAAAAAAQG6isxsAAI+gZ555RvPmzVNISIgCAgJ04MABnTlzRpcuXVJkZKTi4uKUP39+FS1aVOXKlVPNmjXVoEEDNWjQQPb22f/rg6urq7y9vbVy5Up16dIly+fY2NjolVdeUadOnbRhwwZt3bpVJ06c0LVr1xQbGytnZ2eVKlVK1apV07PPPquWLVvK1dU1G59J+ipXrqzFixdr69atWr16tY4fP66QkBA5ODioRIkSeuqpp/Tcc89lOYD1IGvXrp0mTpyo//77Tz4+Prlyz2eeeUbPPPOMrl+/roCAAO3fv1///POPLly4oMjISMXGxsrBwUGurq5yd3dXhQoV9MQTT6hZs2Y5Ho7MLl5eXtqyZYsWLFigzZs369y5c4qMjJS7u7sqVaokb29vtWrVSg4ODtYuNUMeHh6aNm2a3nnnHa1du1Z79+7VmTNndOPGDdnY2Kh48eKqXbu22rdvr5YtWz60P0OVKlUyOj6uW7dO+/fv19mzZxUeHi57e3t5eHiobt266ty5synUHBcXZzonJ17L74ezs7P+97//aeDAgfr111+1Y8cOnTx5UteuXVN0dLQKFCigsmXLqmbNmmrZsqUaN26cp/+Oc+v9qGrVqpo3b55Onjyp9evX6+DBgzpz5ozx/eDm5qayZcuqYcOGev755x+Y1y4AAAAAAAAAAAAAAAAAwKPLJjExMdHaRQBAbnJ1dVVkZKRpzsXFRREREdly/qlTp5TaS6uNjY2qVauWLfcAHkb//vuvli5dqnfffdfapcBKZsyYofXr12vdunWZ7joIIH1vv/22Vq9ebYx/+OEHPf/881asCMgcfscGAAAAAADI2IkTJ6xdApKpXr26tUsAAAAAACCFhg0bau/evaa5Bg0a6Pfff7dSRQBglrf+OX8AAPDIKleunIYNG2btMmBFL7/8ssqWLUvQDUjC29tbf/31lzFesWKFatSokelzzp49axqXKFHivmsDAAAAAAAAAAAAAAAAAADIbrbWLgAAAOAeJycna5cAK3Jzc1PHjh2tXQaQpxQqVEjx8fHGn8DAwEyfERoaavoXne3s7FS5cuXsLBMAAAAAAAAAAAAAAAAAACBbEHYDAAAAgDzq8ccfN42XLVuW6TPmz5+vhIQEY1y/fn3ly5fvvmsDAAAAAAAAAAAAAAAAAADIboTdAAAAACCPat68uWm8a9cubdy40eL9R44c0cyZM01znTt3zo7SAAAAAAAAAAAAAAAAAAAAsh1hNwAAAADIo+rWrasnnnjCNPfee+9p9+7dGe49fvy4XnvtNcXExBhz5cqVU6dOnbK9TgAAAAAAAAAAAAAAAAAAgOxA2A0AAAAA8igbGxt9/PHHsrX9v/90u3Xrlvr27atRo0bp9OnTKfZcvnxZX331lV588UWFhISYzpo0aZLs7e1zpXYAAAAAAAAAAAAAAAAAAIDM4lOOAAAAAJCH1atXTyNGjNCECROMucTERPn5+cnPz09lypRRyZIllT9/fgUHByswMFAJCQkpzhk1apSefvrp3CwdAAAAAAAAAAAAAAAAAAAgUwi7AQAAAEAe179/fzk4OGj8+PGKi4szXbtw4YIuXLiQ5l4HBweNGTNG3bp1y+kyAQAAAAAAAAAAAAAAAAAA7outtQsAAAAAAGSsT58+WrFihRo0aGDxnmeffVarV68m6AYAAAAAAAAAAAAAAAAAAB4IdHYDAAAAgAdE9erVNX/+fJ06dUq//fab9u/fr3PnziksLExxcXFydXVVxYoVVb9+fbVv316PP/64tUsGAAAAAAAAAAAAAAAAAACwGGE3AAAAAHjAVKtWTdWqVbN2GQAAAAAAAAAAAAAAAAAAANnK1toFAAAAAAAAAAAAAAAAAAAAAAAAAABA2A0AAAAAAAAAAAAAAAAAAAAAAAAAYHWE3QAAAAAAAAAAAAAAAAAAAAAAAAAAVkfYDQAAAAAAAAAAAAAAAAAAAAAAAABgdYTdAAAAAAAAAAAAAAAAAAAAAAAAAABWR9gNAAAAAAAAAAAAAAAAAAAAAAAAAGB1hN0AAAAAAAAAAAAAAAAAAAAAAAAAAFZH2A0AAAAAAAAAAAAAAAAAAAAAAAAAYHWE3QAAAAAAAAAAAAAAAAAAAAAAAAAAVkfYDQAAAAAAAAAAAAAAAAAAAAAAAABgdYTdAAAAAAAAAAAAAAAAAAAAAAAAAABWR9gNAAAAAAAAAAAAAAAAAAAAAAAAAGB1hN0AAAAAAAAAAAAAAAAAAAAAAAAAAFZH2A0AAAAAAAAAAAAAAAAAAAAAAAAAYHWE3QAAAAAAAAAAAAAAAAAAAAAAAAAAVkfYDQAAAAAAAAAAAAAAAAAAAAAAAABgdYTdAAAAAAAAAAAAAAAAAAAAAAAAAABWR9gNAAAAAAAAAAAAAAAAAAAAAAAAAGB1hN0AAAAAAAAAAAAAAAAAAAAAAAAAAFZH2A0AAAAAAAAAAAAAAAAAAAAAAAAAYHWE3QAAAAAAAAAAAAAAAAAAAAAAAAAAVkfYDQAAAAAAAAAAAAAAAAAAAAAAAABgdYTdAAAAAAAAAAAAAAAAAAAAAAAAAABWZ2/tAgAAAPK62NhYbd26VX/++aeuXLkiR0dH1apVS506dVKBAgWsXR4AAAAAAAAAAAAAAAAAAAAAPBQIuwEAAKTj4MGDeuONNxQSEmKaX7Jkib744guNGjVKHTt2tFJ1edvYsWM1d+5cYzxp0iR5e3tbryAAAAAAAAAAAAAAAAAAAAAAeZqttQsAAADIq44ePapevXqlCLrdc/PmTS1atCiXqwIAAAAAAAAAAAAAAAAAAACAhxNhNwAAgFQkJibqo48+UkxMTJprnJ2d9dlnn+ViVQAAAAAAAAAAAAAAAAAAAADw8LK3dgF4MF28eFHLli2TJBUsWFC+vr5WrggAgOx1/PhxHT9+3Bg7ODjo66+/VpMmTXT27FmNHTtWnTp1Urly5axYJQAAAAAAAAAAAAAAAAAAADJCBgJ4cBB2Q5ZcvHhR06ZNkyR5enryQg/kkuXLl1u7hEde165drV1Cmj7//HN9//33xtjBwUE7d+5U8eLFs/U+kZGR8vLyUmRkpDHXtWtXTZ48OdNnXb58Wdu2bdPBgwd15swZXbp0Sbdu3VJcXJwcHR1VuHBhFS9eXJUrV1bdunXVtGlTlS5dOjufTpq2bdtmGnfp0kVt2rSRJD3xxBOaNWuWXFxccqWWR0FiYqJ++OEHzZ07V7GxserUqZNGjBghBwcHa5cGAAAAAAAAAAAAAAAAAAAecGQggAcHYTcAAB4SvXr10qxZsxQfHy9Jio2N1aJFi/T6669n631WrlxpCrpJytQv/ImJiQoICNCsWbO0d+/eNNfduXNHISEhCgkJ0dGjR7VixQrZ2NjoueeeU+/evdW4cWPZ2Nhk+Xlk5MKFC6Zxo0aNTGNXV9ccu/ejaO3atfr888+N8dy5c1WsWDG9+uqrVqwKAAAAAAAAAAAAAAAAAAAAQG6ytXYBAMwqVapk/Fm6dKm1ywHwAClVqpTReeyehQsXKjY2NtvukZiYKD8/P9Nc/fr1Vb16dYv2nzhxQt26ddOAAQPSDbqld/+tW7fK19dXgwcP1pUrVzJ9hqXCwsJM45IlS+bYvSAdPHgwxdyhQ4esUAkAAAAAAAAAAAAAAAAAAMDDYe/evaaMwsWLF61dEpAhOrsBAPAQ8fX11bp164zxlStXtGnTJrVr1y5bzv/999915swZ01y/fv0y3JeYmKi5c+dq0qRJaYbvnJycVKVKFRUpUkT29va6efOmrl27pqCgoFTXb9myRX/88Yd2796tAgUKZP7JZODWrVumcb58+bL9Hvg/zzzzTIogZb169axUzYNpzpw5Cg8PN8ZDhgyRk5OTFSvCg4DvGwAAAAAAAAAAAAAAAAAAkJcQdgMA4CFSt25d1a1bV4cPHzbm/Pz8si3sljyMVLZsWT333HPp7klISNDo0aP1yy+/pLjm6OioLl26qHPnznryySdlb5/yV5OwsDDt379fK1eu1JYtWxQXF2dci4iIUHx8fBafTebY2tIQNye1bdtWI0aM0E8//aTY2Fh16dJF/fv3t3ZZD5Q5c+bo0qVLxtjX15fQEjLE9w0AAAAAAAAAAAAAAAAAAMhLCLvBYnFxcfr999+1Zs0aLVu2zJi/dOmSBg4cqA4dOqhVq1ZZ6nyTkJCgvXv3atmyZTp+/LhCQkIUHR0tNzc31axZU506dVKrVq2yFDTYtm2bBgwYkOl9/fv314cffpjhuoiICC1btkwBAQE6efKkbty4IWdnZ5UuXVoNGjRQt27dVKVKlUzfHwCyysfHxxR2++OPP3Tq1ClVq1btvs4NDg7W5s2bTXN9+/aVnZ1dmnsSExM1duzYVINu7du31wcffKCSJUume98iRYqoVatWatWqlYKDgzVp0iStXbs2a08CeZaNjY0GDhyogQMHWrsUAAAAAAAAAAAAAAAAAADwEMiODMTw4cO1fPnybKvJx8dHH3/8cbprLl26pEWLFmnPnj06f/68IiMjVbBgQVWpUkWNGzdWt27d5Obmlm01AXkNYTdY5OTJkxoxYoSOHTuW6vWtW7dq69atKlWqlMaPH68mTZpYfPbFixf17rvv6sCBAymuXb58WZcvX9bGjRtVt25dzZgxQx4eHpmq/Y8//sjUekslJiZqxYoVGjt2rMLDw03XwsPDdeLECZ04cUI//fSTunXrpg8//FCurq45UgsAJNW6dWt5eHgoJCTEmPPz89P48ePv69wFCxYoISHBGLu4uMjb2zvdPQsXLtS8efNMcw4ODho/frxefPHFTNdQqlQpTZ06VR06dNC7776ryMjITJ8BAAAAAAAAAAAAAAAAAACAh1tOZiCyyt7eXv3790/zenR0tKZOnapZs2YpPj7edC00NFT79u3Tvn37NGPGDL333nvq27dvlhoKAXkd39XI0O7du9W1a9c0X+STCg4Olq+vr3788UeLzj579qw6dOiQatAtucOHD6tjx476999/LTr7nv3792dqvSUSEhI0btw4DR8+PEXQLTWLFy9Wt27ddOXKlWyvBQCSc3BwUJ8+fUxzq1at0s2bN7N8ZnR0tPz9/U1z3bt3l4uLS5p7zp07p7Fjx6ao7ccff8xS0C2pFi1aaNmyZSpatOh9nQMAAAAAAAAAAAAAAAAAAICHS05mIO7HCy+8oFKlSqV6LSIiQn379tX333+fIuiW3J07dzRu3Di9/fbbiomJyYlSAauisxvSFRgYqFdffdX0Auji4qLGjRurXLlysre316VLl7R161ZTiGLixIlydnbWK6+8kubZkZGRGjRokCksVrZsWfXq1Us1a9aUra2tAgMDNX/+fB0/flySdP36db355ptavHixHB0dM6z/9u3bOnr0qDHu3bu3unXrZtFzTy9A8dVXX2nu3LnG2NbWVq1atVLr1q3l6empmzdv6siRI1qwYIFCQ0MlSf/884/69u2rpUuXphsOAYDs0KNHD02fPl23b9+WdPf1cNmyZerXr1+Wzlu/fr3xeibdfd1LHqhLbvTo0Sl+gZ4wYYIaN26cpRqSq1y5subMmSN7e36dAQAAAAAAAAAAAAAAAAAAQPZnIN5++235+vpmqZZx48Zp3759xnjQoEGprouNjdXgwYNNjX4KFCigl156Sc8884yKFSumK1euaOfOnVq5cqXx3NauXSsHBwdNnjxZNjY2WaoRyIv4dDjS9fnnn+vWrVvGuE2bNvrss89UsGBB07o7d+7o888/188//2zMjRs3TvXq1VPVqlVTPdvPz0/nzp0zxu3atdPkyZOVL18+Y65evXrq2rWr3n77bW3YsEGSdPToUa1bt05dunTJsP7Dhw8rLi7OGLdu3VrVq1fPcF96tm/frpkzZxpjd3d3ffvtt6pTp45pXfPmzTVo0CC9++672rRpkyTp9OnT+vjjj/XVV1/dVw0AkJFChQrpxRdf1C+//GLM+fn5ycfHJ0vtiv38/EzjVq1aqXTp0mmuP3DggHbu3Gma69ixo7p27Zrpe6fniSeeyNbzAAAAAAAAAAAAAAAAAAAA8ODK7gxEqVKl0uzGlp6LFy/qwIEDxvi5555LM1vx9ddfm0JxTz75pL799lsVK1bMtK5du3YaPHiwBg0apMDAQEnSihUrVK9ePfXo0SPTNQJ5VeY/7Y5HRkREhLZt22aM3d3d9eWXX6Z4kZekfPny6ZNPPtGQIUOMuZiYGE2cODHN81etWmU8rly5sqZMmWIKut3j4OCg8ePHy9nZ2Zjz9/e36DkkTTY7Ojqqbt26Fu1LS3R0tD755BNj7OLiogULFqQIut1ToEABzZw5U02bNjXmVq9erV27dt1XHQBgib59+5rGQUFB2rFjR6bP+euvv3TkyBHTXEb/QsWcOXNM43z58umjjz7K9L0BAAAAAAAAAAAAAAAAAAAAS+R0BiIzZs+erfj4eGOc9D5J/fPPP5o1a5YxrlGjhvz8/FIE3e4pX768Fi1aJA8PD2Nu0qRJun79erbUDeQFdHZDms6dO2d6cW3WrJmcnJzS3fPOO+9o586dOn78uCTp1q1biomJkaOjo2ldVFSUTp8+bYxffvnlFGuSKlSokJ599llt3LhR0t3gRWJiYoatNv/44w/jce3atVMN02XG8uXLdfHiRWM8atQoVahQId09tra2mjx5slq1aqUbN25IkqZOnSovLy9ahQLIURUrVtRzzz1n+qXdz89PzZo1y9Q5ybu61axZU0899VSa68PDw7V161bTXI8ePdL8pTuvqVOnjiIiIlLMd+jQIcXc/Pnz1aBBA2O8dOlSvf/++8bYx8dHH3/8cYb3DA8PNwWyPT090w0mNmnSRJcuXTLGhw8fVsGCBZWQkKCdO3fK399fp06d0uXLl5U/f36VLl1aTZs2Va9evVSiRIkM60nL33//rbVr1+rAgQM6c+aMwsPD5eDgIA8PD9WtW1ddunRRw4YNs/z+lvxrf+9fHUlLpUqVjMeurq76888/Jd39j83Nmzdr6dKlCgwM1NWrV+Xi4qJy5cqpefPm6tWrV6r/4WqJxMRE/fnnn9qwYYMOHTqkc+fOKSIiQvny5ZOnp6eefvppeXt7q1atWsaewYMHa/PmzcY4+fdNVk2dOlXTpk1L83rS76kWLVro+++/T/e8K1euaP369dq9e7f+/vtvhYaGKi4uTq6uripfvrxq166tNm3aqF69elb7HebKlSvasGGDqcb4+HgVLVpUHh4eevrpp9W4cWM1bNgwwy6WqX3/JCQkaNGiRZo/f74CAwPl6OiocuXKqVmzZurfv78+/vhjrV+/3thXpEgR7d69O8Pfke+5fv26vLy8FBsba8z98MMPev755yXd/Zd8kv4jCY8//rjWrl1rjM+dO6clS5bo999/17lz5xQVFSVnZ2eVLVtWtWrVUuvWreXl5ZXuc38Uv28AAAAAAAAAAAAAAAAAPBpyMgORGWFhYVqyZIkxfvLJJ1WvXr1U186cOVNxcXGS7jb4mTZtWoa5h6JFi+qLL75Qr169JN39HOqcOXP03nvvZblmIC8h7IY0JSQkmMaFChXKcI+dnZ1Gjx6tnj176o033tCgQYNkZ2eXYl10dLSee+45Y5xeaOKesmXLmvZfv3493eBETEyM8aF3SXrmmWcyvEd6EhMTNXfuXGNcuXJlderUyaK9bm5u6t+/v6ZMmSJJOnTokI4ePWr6IDwA5ARfX19T2G379u06f/68ypcvb9H+69evm4IW985ML7Cwd+9excTEmOY6d+5scc3ImqtXr2ro0KE6dOiQaT4mJkY3b97U8ePHNWfOHI0aNUre3t6ZOvvcuXMaN26cAgICUlyLi4vTuXPndO7cOS1fvlyNGjXS5MmTTf9iSG4KDAzU0KFDTaF6SQoNDVVoaKgOHz6sn376SVOmTDGFiizx119/aezYsSm+xtLd/7j9559/9M8//2j+/Pl64YUXNHbs2CyH6nJTWFiYvvjiCy1btswUwkp6PSwsTIcPH9bcuXNVs2ZNffDBB6pfv36eqTEkJEQhISH6888/9eOPP6pKlSp644031K5dO4vvER0drWHDhpnCurGxsTpx4oROnDih//77T3379jWF3cLCwrRp0ya98MILFt1j5cqVpvrLli1rUQA5Ojpan3/+ufz8/Ez/R4x0918iOn78uI4fP66FCxeqSpUq+vDDD9WkSROLasqqB+H7BgAAAAAAAAAAAAAAAMCjJSczEJnxyy+/6Pbt28Z48ODBqa67cuWK1q1bZ4y9vb0t/oxvw4YN9eyzz2rXrl2S7v5D/K+//rrF/3g7kJel3+4Aj7TixYubxufPn7doX926dRUQEKBXX301zRf5IkWKaNasWcafmjVrZnhu8g/22tunn9U8duyY7ty5Y4zv94O1p06d0pkzZ4xxnz59MuwYklSvXr1MNa9evfq+6gEASzRq1EhVqlQxxomJiVqwYIHF+5csWWIKrrm7u6tt27bp7jlw4IBpXKxYMT3xxBMW3xOZFxERoVdeeSXVEFZSt2/f1vvvv6+lS5dafPbq1avVvn37VINuqdmzZ4+6dOmic+fOWXyP7BIcHKyXX345RdAtubCwMA0aNMj4D7yMJCYmatasWXrxxRcz/Brfs3btWr300ku6du2aReutZd++fWrVqpUWLVqUamApNUePHlXPnj31+eefp/g/BnJCVmo8ffq0Xn/9dYvbyScmJuqNN95I0ZXynvz58+uNN97QU089leL1zN/f3+J7JP2XeiSpd+/eGf6fIlFRUfLx8dHcuXNT/D6cmtOnT8vX11fjx4+3aH1WPAjfNwAAAAAAAAAAAAAAAAAePTmZgbDU7du3NW/ePGNcuXJlNW/ePNW169evN32eqm/fvpm6l4+Pj/E4PDxcO3bsyFyxQB5FZzekqWTJkipRooSuXLkiSQoICNCZM2dUuXLlDPeWKFEi2+s5cuSI8djDwyPDlPX+/fuNx/b29qpbt+593T/5h/yff/75TO0vWLCg6tevr927d0u6211p5MiR91UTAGTExsZG/fr10wcffGDMLVmyRG+99ZacnZ3T3RsfH6/58+eb5nr37p1hW+bk/2Hw+OOPp9sJLq95/vnndefOHf3666+m+bJly6p69eqmuaJFi+ZmaWkaM2aMzp49K0mytbVV1apVVaJECd2+fVvHjx9XZGSkaf2oUaNUv359lSlTJt1zly9fruHDh6d6zd3dXaVLl5arq6suXbqkwMBAJSYmSrrbZa5fv3652sEpMTFR7733nq5fvy7pbivvxx57TO7u7goPD9fRo0cVHR1trI+Li9Pw4cP122+/Zdh9bcaMGfr6669Tvebp6SlPT0/lz59fQUFBppDfmTNn9Oqrr1r0L8NkReXKldWmTRtjnPx7tlGjRsZzS62bbEBAgIYMGZJqWKlUqVLy9PRUvnz5dPnyZQUFBaXo2Pj999/r6tWrmjx5co79jKdXY8mSJeXp6SlXV1fduHFDZ86cUUREhGnNjz/+qBEjRmR4n8jISG3evFnS3Z/1ChUq6Pbt2/rzzz8VExOjYcOGqVSpUpLu/p8DSVu979mzR//++6/KlSuX7j0OHz5sCmI6Oztn2GUxMTFRI0aM0B9//GGaL1WqlMqXL6/ExERdvnxZ//77r/Hzd89PP/2kyMhITZgwwfT38yh83wAAAAAAAAAAAAAAAAB4NOWFDMSyZcsUGhpqjAcOHJhmk53t27cbj8uXL29RnUk1atRIzs7OioqKMs5r2bJlFqoG8hbCbkiTra2tunTpou+++06SFBsbq4EDB2r27NmqWLFirtZy4MABUyeVzp07Z/jh2KQfCq5Zs6b27duntWvX6tChQwoJCZGtra1Kliypp59+Wt27d1edOnXSPS/p/StVqiQPD49MPw8vLy8j7Hb27FmFhoZaHJQ4dOiQFixYoAMHDujKlSuytbWVu7u7ateurbZt26pFixYWpcgrVapkPJ40aZK8vb0VHh4uf39/rV27VhcuXFB0dLQ8PT3VpEkTDRgwIEvPNbtk9CHwrEjaEhZ4FHTs2FGTJ082fnEODw/X6tWr1aNHj3T3bd26VcHBwcbYyckpwz2SdPnyZdO4bNmyWajaeqZMmSJJ6tmzp/bt22fMf/PNNynCbnnFvZBOr169NGTIEJUsWdK4Fh0drdmzZ+vLL780wjC3b9/WTz/9pE8//TTNM48ePWoKSd7TuXNn9e7dW7Vr1za9F1+8eFF+fn6aM2eO4uPjFRQUpKCgoOx6ihmKjIzUvn37ZGtrq6FDh6pv374qUqSI6fqUKVNM/1rK1atXtWTJEvXv3z/Nczdv3pwi6GZra6vevXurR48eeuyxx0zXzp49q5kzZ2rFihWSZHEnuKxo37692rdvb4ybNGmiS5cuGeNvvvkmzSDfmTNnNGzYMFNgycbGRt27d1efPn1UtWpV0/qbN29q+fLl+uGHH3T16lVjfsWKFSpfvryGDRuWXU8rwxq7deumPn36qFq1aqb18fHxOnbsmBYuXKiVK1da3HHsHltbW02aNEldunQxvrf/++8//fDDD/L19TXWtWvXThMnTjR17VuyZIkpAJea5F3dunTpkmHQ8tSpUzp16pQxbt26tQYPHqxatWqZfv6Cg4O1dOlSff/996bOxosXL1aNGjXUq1cvY+5h/74BAAAAAAAAAAAAAAAAkHn//PNPjnxue+nSpdl+ZnqsnYGIi4vTrFmzjLGHh4c6duyY6tqEhAQdPnzYGDdq1CjT93NyclK9evWMjm4HDx60eG9CQoLWr1+vlStX6ujRowoLC1O+fPlUtmxZ1atXT126dFHt2rUzPGfv3r165ZVXjPH27dtVunRp/fvvv/Lz89OOHTsUHBwsBwcHVahQQW3atFHv3r2VP3/+TD9fPDoIuyFdQ4YM0cqVKxUSEiJJCgoKUseOHTVkyBD5+PjIxcUlx2v4+++/TR+E9fDw0KBBg9LdEx8frwMHDhjjP//8UwMGDEix7ty5czp37pwWL/5/7N13XNXl///x52EIIoh750jNHKU4SxNHrvTjxj1J0yzNhn7KyjJNy8xP7ixz7z1ylts0zZWaG9wLByagKALn94df3j/ezHPgAI7H/XbzduO6znVd79eB4wHxPM9rkVq2bKnhw4fLzc0twTNjd+KI+8J2W5UsWdI0DgwMTDbsFhUVpaFDh2rOnDnxbosJEvz6668qWbKkxo4dG+9Fxsk5ffq0evXqFS+QEBgYqMDAQC1cuFATJkxQrVq17DrXUWJ/A3eU2K1egWeBu7u7OnbsqAkTJhhzs2fPVrt27ZIMDs+ePds0btmypU0B3bt375rGXl5edlaMlBg8eLCpHXUMNzc3vfPOO4qIiND48eON+VWrVmnw4MEJvltIdHS0Bg0apMjISGMuS5Ys+t///qd69eoleP1ChQpp0KBBql+/vt555x2jw1p6mzRpUoLvSuLp6akvv/xSoaGhRhBNklauXJlo2C08PDxeF9Y8efJowoQJqlSpUoJ7nn/+eX3//feqV6+ePvjgg3hdrR4H0dHR+u9//2sKf3t7e+uHH35I9Pu9t7e3/P391bRpU7333numIOj48eNVr169eOGz9K7R2dlZ5cuXV/ny5dWjRw8NHDhQR44csfmanTp1UqtWrUxzuXPn1meffWaac3NzU6dOnTR27FhjbsmSJerfv79cXV0TPPvu3btas2aNaa5Lly421+bk5KSvv/5abdu2TfB5u0CBAnrvvffUuHFjvfPOOwoMDDRu+/bbb9WgQQPlyZPH5usl5El43AAAAAAAAAAAAAAAAABImbt376bJ67YzQkZmINavX6+LFy8a4x49eihTpkwJrr127ZrCwsKMcWoyCjFht7NnzyoqKirZJjrBwcF6++2344Xj7t69q+PHj+v48eOaPXu26tWrp5EjRypbtmx21bRhwwZ99NFHptebhYeH69ChQzp06JAWLFigmTNn6rnnnrPrXDw7Eu6FCPwfLy8v/fLLL6buDuHh4frhhx9Uo0YNDR06VGfOnHHoNaOjoxUSEqL9+/dr6NChatGihW7cuCFJyp49u2bOnClvb+8kzzh58qTpiT+mk01Sli9frs6dO+vff/+Nd1tUVJSpU1HRokVtuzNxFCtWzDSO/Y0sIdHR0erXr1+CQbe4Tp8+rVatWmnVqlU21xMaGqru3bsn2Xnn3r17evvtt3Xy5EmbzwXw+OnUqZMphHHixAlTKDiuwMBAoxNljG7duqVZfUid6tWrJ/v16dmzp+ldMP79999Ev4dv2rRJx48fN82NGjUq0aBbbJUrV9bEiRPl4pL+76nQtm3bZNtv9+vXzzQ+fvx4vIBmjAULFhg/g0iSq6urfvzxx0SDbrE1atRIo0aNsqHq9Pf777/r0KFDxthisWjcuHE2Bdtz5cqlKVOmmDrFRkZG6ocffnhsapQe/eN97ty5Nn2tYrRo0cLmtR07djT9AuLGjRvasmVLouvXrFljepy99tpr8d4EISn//e9/kw0oS1KJEiU0ZcqUeD+7T5061eZrJeZJeNwAAAAAAAAAAAAAAAAAQEZkIKRHmYWff/7ZGHt7e6tdu3aJrr906ZJpHDdrYKvYHesePnyooKCgJNffuHFD7du3t6kL3MaNG9W0adN4rylNyt9//61+/fqZgm5xnT9/Xt26ddO9e/dsPhfPFsJuSFbp0qW1ZMmSeC/IDQsL08yZM1W/fn117dpVmzdvtilUlpzFixfLx8dHbdu21cyZM42OKFWqVNGiRYtUokSJZM/466+/jI8LFy6sHj166LvvvtP06dO1ZMkSTZo0SX369FHu3LlN+w4cOKAvvvgi3nlhYWGm7jb2JpNjxA3p3blzJ8n18+fP14YNGyRJmTNnVtu2bTVx4kQtXrxYkydPVt++fVWwYEFj/f379zVw4EAdOHDApnomTpyoa9euKW/evHr//fc1Y8YMLVmyRCNHjlTZsmWNdREREfrqq69svZsAHkN58uRRkyZNTHOzZs1KdH3crm41a9a0+R0jsmTJYhqHhobaWCVSqn379smGYDw9PVWhQgXTXNx/KMVYuXKlady2bVs1bNjQ5nqqVKmSbBfWtNC+fftk1xQpUkSFCxc2xtHR0aZAe2xxPw99+/aN9zlMyn/+8x+bAoLpbf78+aZx586d9dprr9m8P0uWLBo9erRpbtOmTbp+/bpD6pNSX6P0qE57Aof2dMfNlStXvOfUhQsXJrp+0aJFprE94eFq1aol2KE4MUWKFIn38+yqVatS3dn2SXjcAAAAAAAAAAAAAAAAAICU/hkISdq1a5eOHj1qjDt37hzvNbWx3b592zROriFQYuLuS6j5T2xDhw5VYGCgpEevL3733Xf1yy+/aNGiRRo3bpzatWtn6n535coV9erVK169iRkyZIiioqJUtmxZDR06VPPnz9eCBQv08ccfK1euXMa68+fPa8qUKTbeSzxrCLvBJsWLF9fKlSv13//+Vzly5Ih3+86dO/XWW2+pZcuWNgetErN58+Z4c9WrV9fEiRNNqeOk7N27V4ULF9aECRO0adMmffrpp2rdurV8fX3l4+Ojhg0basCAAdq2bZs6d+5s2rtmzRojYBYjbqo4qW86SYm7L7kk8uHDhyVJ5cuX1/r16/XNN9+oUaNGqlixourXr68PPvhAmzZt0ttvv23siYyMVL9+/RQSEpJsPbdv31bVqlW1du1a9evXTzVr1pSPj4/8/Py0ePFiVatWzVi7Z88e45sagCeTv7+/afzbb78l+O4NYWFhWr58eZJ7k5IvXz7TOKnukXCM0qVL27SuUKFCpnFCoWur1Rqvq589X/8Y3bt3t3tPar344os2rYsdFJcS/oddSEiIjhw5YoxdXFzUpUsXu2vKiNBfUsLDw/Xnn3+a5lLStfGll16Sj4+PMbZarUl2NrOHo2qUHgW/bBW786Et4j7Gt2/fritXrsRbd/r0aR08eNAYFy5c2OYOddKjNvbJhVnjatq0qXLmzGmMr1+/rlOnTtl1RmxPwuMGAAAAAAAAAAAAAAAAAGJLzwyEJFNwy83NTV27dk1y/f37903j2AEze6Q0o9C6dWtt3rxZH374oerUqaNKlSqpSZMmGjFihDZv3qzatWsbe65cuaKPP/7Ypnpu376t7t27a/ny5erUqZOqVq1qNFFYvny56bVt8+fPd1jYEE8Xl4wuAE8ONzc39e7dW127dtW6des0b9480wt3JenIkSNq27at+vfvr759+9r9wlxJqly5sjZu3Gia27Vrl2rXrq1evXqpd+/eypQpU5Jn+Pj4aPTo0XJ3d0/2Pn311Vdyc3PT1KlTjfnx48erQYMGKarf0YoXL65Zs2Yl+s3L1dVVAwcOlJubm8aOHStJunbtmmbNmqW+ffsmebanp6fGjx+fYKc6Nzc3ff7552ratKkxt2fPHhUvXjzldyYFYr8g2lHOnz+vqKgoh58LPO7KlSunqlWrGt0vIyMjtWDBAvXv39+0bsWKFQoLCzPGxYsXV82aNW2+Ttw2yseOHZPVan0snlOfVgn9IywhHh4epvHDhw/jrbl27ZopMJ03b95472xii9j/GEkPnp6ecnNzs2lt3H/Yxe7eGiNuMOjll19O0bum2NMJLj2cPHnSdH9Lly6d4tbnTZo0Mf0seOzYsVTXJzm2Rlt5eXnZvadcuXKqXLmy9u3bJ+lRl8ClS5eqX79+pnWLFy82jbt06SJnZ2ebr1O9enW7a3NxcVH16tX166+/GnOnTp2yORAa15PwuAEAAAAAAAAAAAAAAACQclmyZEmT121ntPTKQBw7dkw7duwwxm3btjV1MXvctGjRQiNHjkz0vubMmVM///yzunXrZrxR+qZNm7Rv3z5Vrlw5ybN9fHz06aefJvg6uQIFCqhPnz76+uuvJUk3btzQ2bNnbW6KhGcHYTfYLXPmzGrVqpVatWqlw4cPa+bMmVqzZo3xgnmr1aoxY8bozp07+uyzz+x+sm/btq0qVqyoy5cva+/evVq9erVCQkJ07949jRkzRrt379bkyZOTfFFyz5497brmgAEDtHnzZp09e1aSdPz4cZ05c8YIdsXt9HH37l27zk9sX9zQQUJGjRplU0q7b9++2rBhg06cOCFJWrp0qd59990kP/+NGjVK8ptomTJllCtXLt28eVOSdO7cuWTrcLQlS5Y4/EwvLy9TkAd4lvj7+xthN+nROyL06dPHCBFbrVbNnj3btKd79+5ycrK9GWylSpVMAeJbt27pyJEjevnll1NZPRJj69fHlu/JMc/5MYoWLfpEBBUdXWPcz0NKgz32hJrSQ9xujoULF07xWc8995xpfO3atRSfFZsja0xr3bt3N8JukrRo0SK98847xtc9IiLC1CnTw8NDfn5+dl3D3o5zMeI+ZuM+pu3xJDxuAAAAAAAAAAAAAAAAAKTcCy+8kCav235cpHUGInZXNycnJ/Xo0SPZPXEb+6T09e0pySgMGzYs2fvo7Oys//3vf/L19TU+T0uXLk027NaxY8ckXzvp6+trGp87d46wG+Kx/ZXrQAJefvlljR49WuvWrVO1atVMt02fPl2//fab3Wd6e3urUqVKatasmYYNG6atW7eqWbNmxu27d+/Wp59+6tB2lZkyZVL79u1Nc3v37jU+zpIli+kJ999//03Rde7cuWMa29Ihpnz58jad7eTkpA4dOhjjCxcu6MqVK0nusaW7R4ECBYyPQ0NDbaoFwOPr9ddfNwUNbty4oQ0bNhjjP//8UwEBAcbY29tbLVu2tOsar776arwOnCtWrEhZwUh3cdtix+2C9qwIDw83jW35x9+TIG578tR04Iu7N7nW57ZyZI1prX79+sqfP78xvnLliv744w9jvHnzZgUHBxvjVq1aKWvWrOlSW9zHbGq+Pk/C4wYAAAAAAAAAAAAAAAAAbOHoDMSlS5e0Zs0aY9ykSZN4bwqekOzZs5vGcbMGtoq7L1u2bEmuf+ONN2x+TWSePHlUv359Y7xr165k9ySXUYidT5CkkJAQm2rBs4WwGxyiWLFimjVrllq0aGGa//bbb1MdSvP29tbo0aPVuHFjY27t2rXauXNnqs6Nq2bNmqZxTJc3SXJxcTE9qaa0w1nsM6X4nS3iypEjh13nV61a1TSOHVhJSFLd8WLEToxHRkbaVQ+Ax4+zs7O6detmmovdyS1uV7cOHTrY3VUoa9asqlu3rmlu4cKFqeoqhPQT951CUtrN9EkX93H/tARy4v4D9datWyk+K+5eRwUCHVljWnNxcVGXLl1McwsXLkzwY0nx1qaluI/Z1Hx9noTHDQAAAAAAAAAAAAAAAADYw1EZiKlTpyoqKsoY9+rVy6Z9hQoVMo3jZg1sdebMGeNjV1dX5c2bN8n1cQN+yYmdUbh06VK8pgpxJZdRiPs6VTIKSAhhNziMi4uLRo4cqXLlyhlzFy5c0JEjR1J9tpOTk7744gtTd7Vly5al+tzYkksIlyxZ0vj41KlTKbrG6dOnTePixYsnuT52pxBbxF2f0nR3bPa2YAXw+PPz85Onp6cx3r9/v44ePaorV65o48aNxryLi4s6d+6comv4+/ubxvfv39fw4cNTVvATzNZ/7ERHR6dxJbbLnTu3aXz+/PkMqiRj5cqVyzROadDdkZ1oHSFfvnym8YULF1J8Vty99v7ckhhH1pge2rVrZ/rH96ZNm3Tz5k1duXJFO3bsMOZfe+01lShRwu7zk/vFQGLiPmbjPqbt8SQ8bgAAAAAAAAAAAAAAAADAXqnNQNy+fVuLFy82xjVr1lSZMmVs2psvXz7T63kdkVEoVqyYKXOREHtfsxX39WPJdWJLLn9APgG2IOyGJO3fv9+uNpwuLi7xOgadOHHCIbXkzp1bPj4+xvjQoUMOOTcxbm5upnHFihWNjwMDA3Xt2jW7z4zdje7555+3u3MbADiCl5eX2rRpY5qbM2eO5s2bZwpdvfHGGykOIVSuXDlex8xVq1ZpxYoVKTovMf/8889j1XHL1dXVNA4PD7dp3+PUuSpv3rzy9vY2xteuXYsX1rbF7du3HVlWuitVqpRpfPjw4RS1yj558qSjSnKIUqVKmR6nx48fN72riz3Wrl1rGpctWzZVtcVwZI3pIVu2bGrZsqUxjoyM1NKlS7V06VJT2DHuz8i2sqXte1xRUVHx9sV9TNvjSXjcAAAAAAAAAAAAAAAAAICUvhmIOXPmmF4r+vbbb9t8XScnJ1M+IiWvFXvw4IH27dtnjCtVqmT3GcDjiLAbEnTz5k0NHDhQbdu21dChQxUREWHz3rgvWL1586bD6ordUjMoKCjBNVarNUWtLK9fv24a58yZ0zSuVauWabxp0ya7zg8JCdGePXuMsa+vb7J7rl69atc14q7Pli2bXfsBPDu6du1qemeElStXasGCBaY1cbuz2evLL79UpkyZTHODBg0yBX9TIyAgQP7+/o9V++KsWbOaxrZ2P3JUMNwRLBaLatSoYZqbPn263efMmDHDQRVlDC8vL5UvX94YP3z4UHPmzLH7nClTpjiyrFRzd3dX9erVTXMzZ860+5zDhw/r4MGDxtjJyUl16tRJdX2S42qUUt6Rz15xf9GxYMEC07v1FC5cON7PkraaNm2a3R0CV69ebfoZPG/evKYuxfZ6Eh43AAAAAAAAAAAAAAAAAJ5t6Z2BCA8P16xZs4xx+fLlVa1aNdsLljmjcO7cOQUEBNi1f9euXaamEWmRUYjbJCjua2WBtEDYDQmaM2eOli1bJunRk1nsJ2F7xe1ys379er3wwgvGH3tS0//++6/xcUIv+r127Zr8/f31yy+/2F1n7CCa9OhFybGVLl1axYsXN8azZ882dUBKzty5c02BjKZNmya7Jzg42ObzJemvv/4yjUuUKGHXfgDPjsKFC6t+/frG+MGDB6ZOXBUrVjQFfVKiWLFiGjx4sGkuIiJCPXv21KpVq1J19pYtW+Tn52f382Rai/u94+DBg8l2A7NarVq4cGFalmW32F2qJGnhwoX6/fffbd6/b98+TZ482dFlpbsWLVqYxuPHj7ers+yaNWsc3s3QETp27Ggaz5kzR1u3brV5f2hoqD744APTXP369ZUrVy5HlCcp9TVKj+r86KOPHFZTUkqWLKnXXnvNGF+4cEGXL182xl26dEm2NXxi/vzzT02bNs3m9RcvXtRXX31lmmvevLmcnFL3T78n4XEDAAAAAAAAAAAAAAAA4NmVlhmIhCxdutT0OtbevXubGlHY4o033jC9tsvemmO/abmXl5dNb8oeNzeRnNgZheeee07u7u527QdSgrAbEtSlSxdlzpzZGI8ZM0bnz5+3aW/cdYUKFTKN8+XLp6ioKOPP33//bdO5Dx480D///GOM8+fPb7p99erVaty4sXbs2KGxY8fafK4kRUdHa+nSpcbYYrGYXrAcM9e9e3djfPr0af366682nX/79m1NnTrVGPv4+NgcIrH1RfXR0dGaP3++MS5SpEi8zxEAxJZU57bUdnWL0aFDB3Xt2tU0FxERoQ8++EAfffRRvK6ayQkKCtJHH32knj17KjQ01CE1OlKxYsWUPXt2Y/zgwQNNmjQpyT1z5sxxWLc7R6ldu3a8dykZMGCAtmzZkuzegwcP6t13332sOu6lVJs2bZQnTx5jHBERoT59+pg6UyVm8+bN+uSTT9KyvBR7/fXXTa3PJal///42da29fv26evToYeqY5uLiov79+z82NUrSqVOn1KlTJ7t+Hkyt2D8nxubh4SE/P79UnT1y5EgtWbIk2XVnzpzRW2+9pTt37piu36NHj1RdX3oyHjcAAAAAAAAAAAAAAAAAnl1pmYGIKzIy0tSgp1ixYqpXr54d1T6SL18+vfHGG8Z48eLFNte8Z88e7dixwxh36tRJbm5uye5bt26dqRtcUq5fv25qlvDqq6/atA9ILcJuSFDOnDnVs2dPYxweHq633nrL1FktMStXrjSNK1asaBqXK1fOFARYsGCBgoKCkj133rx5phfuVq1a1XT74cOHjdsjIiL01ltv6ciRI8meKz3quhb7xdCvvfaacubMGW9d69atVbBgQWP8xRdfmF60m5Do6GgNGDDA1DGpf//+Nqe2Bw4cqLCwsGTXjR8/XidOnDDGrVq1sjsZDuDZUqVKlXiBJkkqUKCAGjRo4JBrWCwWDR48WJ07d45324oVK1S7dm0NHjxY+/btSzQcdefOHW3evFn9+vVTrVq1HstOWTGcnJzidQObMmWKxo4dqwcPHpjmg4KCNGTIEA0ZMiT9CrSRk5OTRowYIRcXF2MuLCxMPXv21Mcff6wjR47E67B65coVjRo1Su3bt7epffeTIHPmzPr6669Nc0FBQWrXrp1GjBihwMDAeHsCAwP12Wef6a233rL5H4PpzWKxaOTIkfLw8DDmwsLC1KtXLw0ePDjBfyjfvXtXCxYsUNOmTbV//37Tbf3791epUqXStcaEfv6KiorSoUOH9Mknn6hZs2Y6evSoQ2tKTq1atVS0aNF4861atUp12/aoqCh9/PHH6tevX4I/3165ckUTJkxQs2bNdPr0adNtn3zyiUO6pz0JjxsAAAAAAAAAAAAAAAAAz660zEDEtX79el28eNEYv/XWW3J2drav4P/z7rvvGnsjIiLUr1+/eK85jSs4OFgffvihMfby8rKr0cXnn38e73WgcUVGRurDDz/Uw4cPjbnWrVvbfA0gNVySX4Jn1bvvvqtt27bp8OHDkh69eLt9+/YaN26cXnjhhQT3zJs3T+vXrzfGNWvWVN68eU1rXFxc1KFDB6PTzZ07d9S9e3dNmjRJxYoVS/DcDRs26LvvvjPNdejQwTT+8MMPtXPnTiPwFRwcrPbt22vgwIHq3Lmz6QX7MaxWq2bMmKFvvvnGNP/RRx8lWIebm5uGDh1qdMcICwtThw4dNHny5AQ7td29e1cDBgzQ1q1bjbmmTZuqZs2aCZ6fkMDAQHXp0kXjx49PMCH+8OFDjRkzRpMnTzbmcuXKFa+TEgDEZbFY5O/vrwEDBpjmu3btmuBzZko5OTlpyJAhKlq0qEaOHGn6offBgweaN2+e5s2bJ3d3d5UsWVI5cuSQs7Oz7ty5o5s3byb5DhWenp4p/sdBWnnzzTe1aNEi3b1715gbN26cpk2bpnLlyilz5swKCgrSiRMnFB0dLUlq0KCBfvvtt4wqOUHlypXT8OHD9fHHH5vmlyxZoiVLlihfvnwqVKiQsmTJoitXrigwMNC4P5JUuHBhVatWTYsXL07v0h3q9ddfV//+/TV27FhjLioqSlOnTtXUqVNVqFAhFSxYUJkyZdLFixfjhbB8fHyULVs2m7ripafixYtrwoQJ6t27t+nvZMzfxyJFiqhIkSJydXXVzZs3dfz4cUVERMQ7p2XLlurTp0+G1uji4qLbt28rICAgQzs+Ojk5qUOHDvF+ruzSpUuKz3zxxRf1/PPPa+3atZKktWvXau3atSpYsKCKFCkiSbp69arOnTuX4C8e2rRpo44dO6b4+nE9CY8bAAAAAAAAAAAAAAAAAM+utMpAxGa1WvXzzz8b4zx58sRrlGCPUqVKqWfPnvrpp58kSUePHlXnzp31448/JvhG5+fOnVOvXr107do1Y+7jjz+2603RV65cKRcXF3311Vembngxbt26pYEDB+rPP/805nx9fVW5cmV77hqQYoTdkChXV1eNHz9eHTt21OXLlyVJp0+fVrNmzVS/fn3Vq1dPBQsWVHR0tC5cuKDVq1eb2mC6ublp0KBBCZ7dp08frV271nhB+KlTp9SkSRM1adJEvr6+yp8/v6KionThwgWtWbPGdK4k9ejRQy+99JJpzt3dXb/88ov8/PyMJ+779+9r2LBhmjlzppo1a6by5csre/bsCg4OVkBAgJYtW6aAgADTOe+99168s2OrXbu2+vTpox9//FHSo9acfn5+atiwoRo0aKCCBQsqJCREhw4d0ty5cxUcHGzsLVmypIYNG5bUp92kcOHCunDhgg4fPqxGjRqpadOmql27tvLkyaNbt27pyJEjWr58ufH1kR6FV7799ttUdxAB8Gxo3LixRo4cqRs3bkiSPDw81K5dO4dfJyZYV61aNX3xxRc6ePBgvDX379+3uSOnJNWtW1fDhg1TlixZHFlqqhUoUEDDhg0zvWOG9CggvXv37njrS5YsqcGDBz92YTdJ8vPzk4uLiwYNGhQvsHLt2jXTP5Riy5kzp6ZOnaq5c+emR5lprl+/fnJzc9OoUaPiBYouXbqkS5cuJbjv+eef1+TJk/XZZ5+lR5l2q1WrlmbOnKm+ffuafl6RHrVkT64Veq9evTRw4MA07STriBrT0/Hjx03jmjVrqkSJEik+L6abWlBQkKkz2uXLl00//yWka9eu+vzzzx3+9XkSHjcAAAAAAAAAAAAAAAAAnk1pmYGIsWvXLh09etQY+/v7y83NLVV1f/DBB/r777+1Z88eSdKBAwf0+uuvy8/PT9WqVVOuXLkUFBSk7du3a8WKFabXdLZo0ULt27e3+VoxGYWlS5fqjz/+UJs2beTj4yMvLy9du3ZNu3bt0urVqxUWFmbsyZEjh4YPH56q+wjYg7AbklSoUCEtWLBA3bt3V2BgoKRHncRiukokxmKxaOjQoSpVqlSCt3t4eGjGjBnq0KGDrl69KulRd59ly5Zp2bJlSdbUuHHjeF1mYuTPn1+LFi3S22+/rWPHjhnzFy5c0IQJE5I8V3oUonvvvfeSXffhhx8qPDxcM2bMkCRFR0dr3bp1WrduXaJ7XnjhBU2fPl1eXl7Jnh/j7bff1rp167Rjxw6Fh4dr0aJFWrRoUaLrnZycNGLECNWpU8fmawB4trm5ualz58764YcfJD1qL5yWYdkyZcpo0aJF2rp1q3755Rfjh3J7+Pr6qnv37vL19X1swxLNmzeXxWLR4MGDTT/sx1WlShVNmDBBmTJlSsfq7NOiRQu99NJLGjZsWLzweUKqVaum77//XgUKFEiH6tKHxWJR7969VbVqVQ0bNkyHDh1Kdk+jRo00YsQIeXt7p0OFKVetWjVt2LBB33//vZYuXarIyMhk95QrV06ffvqpqlWrlg4VmmtctmyZqaNYYkqWLKn+/fvrjTfeSIcKH7lx44bWrFljmnNEp10PDw/Nnj1b33zzjebOnWvqoJiQ559/Xp9++mma/jz4JDxuAAAAAAAAAAAAAAAAADyb0ioDEWPKlCnGx15eXurQoUOqa3Z1ddXkyZPVq1cv7d27V9KjJgszZswwMgsJadKkib755hu7Xk87atQovf/++7p69aqCgoKSzVnkyJFDU6dOfapeF4rHH2E3JKtAgQJatWqVJkyYoClTpiT7YtbcuXNr9OjRqlGjRpLrnnvuOa1evVrDhg3TypUr43VKiStLliz6+OOP1aFDBzk5OSW6rmDBglq0aJF++uknTZs2TXfv3k3yXOlROvnTTz9V/fr1k10rPQqVff755ypbtqyGDRumkJCQJNe3bdtWn376qV1BN0lydnbWjz/+qM8//1wrVqxIcm3RokU1YsQIXkAMwG4dOnTQxIkTFRERoW7duqX59ZycnFS3bl3VrVtXV65c0datW7Vv3z4FBATo8uXLunv3riIjI5UpUyZ5e3srd+7cKlGihMqXL6/atWurSJEiaV6jIzRr1kyvvvqq5syZoy1btujixYu6f/++8uXLpxdffFHt2rWTr6+vnJyckv0+ktGKFy+uGTNm6Pjx41qzZo327t2rM2fOKCQkRC4uLsqXL598fHzUokUL1ahR47ENIaaWj4+Pli5dqv3792v9+vU6cOCAzp07p7CwMLm5ualgwYKqXLmy/Pz8VKFCBWNf3J+dXFwerx/Bc+TIoREjRui9997T2rVrtXPnTp08eVLBwcGKjIyUl5eXihYtqgoVKqhhw4aqUqVKun+NY9e4bt067dy5UydOnNDt27cVFRWlHDlyKF++fKpSpYp8fX316quvJvnzYlqYP3++KYhXuHBh1apVyyFnu7m5aciQIerSpYsWLVqk3bt369y5c7p37548PDz03HPP6eWXX1aDBg2M55W09iQ8bgAAAAAAAAAAAAAAAAA8m9IqA3Hs2DFT44BOnTrZnRFITNasWTVz5kyNGTNGU6dOVVRUVKJr3d3d9dFHH6l79+52v14sX758WrBggfr27asjR44kubZmzZoaPny4ChYsaNc1gNSyWJNLGAGxXL9+XatXr47XgrJQoUJ68cUXVbt2bTVr1kxZsmSx69xz585p5cqV2rNnj86dO6fbt28rU6ZMyp07t4oWLaqGDRuqfv36ypYtm13nBgcH6/fff9f27dt16tQpBQcHKzQ0VFmzZlXu3LlVsWJF1apVS6+//rqcnZ3tOjtGaGioli5dqq1bt+rYsWO6c+eOMmfOrEKFCumVV15Ru3btVLJkSZvPK168uPHxyJEj5efnJ0nat2+f5s+fr7179+r69euyWCzKmzevXn75Zb3xxhuqX7++TS+eT+z8xHTs2NHovNSqVSuNGjXK5vvyuPLy8orXacnT01OhoaEOOf/EiRMJhjctFotefPFFh1wDcLRBgwbp5s2bpnebAOAYbdq00YEDB4zx2rVrk33nFzxZIiIi5Ovrqxs3bhhzn3/+ufz9/e0659KlS6aAXOnSpbV69WqH1Qk8yfgZGwAAAAAAIHnHjh3L6BIQR5kyZTK6BAAAAAAA4nn11Ve1e/du09wrr7yiP//8M4MqSluOzEB88MEHWrVqlSQpU6ZM2r59u3Lnzu3wmi9duqQFCxZo165dxpvye3t7q0SJEvL19VXbtm2VM2dOm87avXu3OnXqZIy3bdumQoUKKSoqSmvWrNHKlSt15MgR/fvvv3Jzc9Nzzz2nypUrq3nz5qpUqVKKz0+KvZkGPHsIuyFFYj8hFSxYUNu3b8/gigDbEXYD4jt58qRu3bql6tWrZ3QpwGOjevXqunnzpjHeu3evvL297TrDarWqatWqCg4ONub2799vd4Afj7eVK1fqww8/NMYeHh7atWuX3e/YQ9gNSBw/YwMAAAAAACSPsNvjh7AbAAAAAOBx9KyF3WKQgQCeHPb1KwQAAE+lUqVKEXQD4siaNauioqKMPwEBAXafcezYMVPQLV++fATdnkIzZ840jVu1auWw1vQAAAAAAAAAAAAAAAAAAADPEsJuAAAAQAJKly5tGi9dutTuM2bNmmUa+/r6pqomPH7+/vtvHTp0yDTXpUuXDKoGAAAAAAAAAAAAAAAAAADgyUbYDQAAAEhAnTp1TOPly5fHCzUl5ffff9eSJUtMcy1atHBEaXiMxO3qVrNmTZUoUSKDqgEAAAAAAAAAAAAAAAAAAHiyuWR0AXgyFSpUSO+9954kKWvWrBlcDQAAgOM1aNBAefPmVVBQkCQpIiJCffr00S+//KIyZcokuXfnzp0aMGCAaa5atWqqVq1amtWL9Hf9+nWtXbvWNNetW7cMqgYAAAAAAAAAAAAAAAAAkBgyEMCTg7AbUqRQoULq379/RpcBAACQZtzd3fXJJ5/ogw8+MOaCgoLUunVrvfXWW2rXrp0KFixo2nP27FnNnDlTs2fPNs1nzpxZw4cPT5e6kX7mzZunyMhIY1y4cGHVqlUrAysCAAAAAAAAAAAAAAAAACSEDATw5CDsBgAAACSiWbNmOnjwoGbNmmXMRUREaOLEiZo4caKKFi2q/Pnzy8XFRZcuXdLZs2fjneHs7KwxY8aoWLFi6Vk60tiDBw80b94801zXrl3l5OSUQRUBAAAAAAAAAAAAAAAAAAA8+Qi7AQAAAEkYPHiwPDw8NHny5Hi3nTt3TufOnUt0r6enp8aMGaM6deqkYYXICGvXrtWtW7eMsYeHh/z8/DKwIgAAAAAAAAAAAAAAAAAAgCcfbQcAAACAJDg5OWngwIGaO3euypYta9Mei8Wixo0ba926dQTdnkJWq1UzZ840zbVu3VpeXl4ZVBEAAAAAAAAAAAAAAAAAAMDTgc5uAAAAgA1eeeUVrVy5UgcOHNDGjRt14MABnT17VqGhoYqOjpa3t7dKlCih6tWr6z//+Y+KFi2a0SUjjRw8eFBHjhwxzXXp0iWDqgEAAAAAAAAAAAAAAAAAAHh6EHYDAAAAbGSxWFSpUiVVqlQpo0tBBqpYsaICAwMdfm6hQoXS5FwAAAAAAAAAAAAAAAAAAIAnhVNGFwAAAAAAAAAAAAAAAAAAAAAAAAAAAGE3AAAAAAAAAAAAAAAAAAAAAAAAAECGI+wGAAAAAAAAAAAAAAAAAAAAAAAAAMhwhN0AAAAAAAAAAAAAAAAAAAAAAAAAABmOsBsAAAAAAAAAAAAAAAAAAAAAAAAAIMMRdgMAAAAAAAAAAAAAAAAAAAAAAAAAZDjCbgAAAAAAAAAAAAAAAAAAAAAAAACADEfYDQAAAAAAAAAAAAAAAAAAAAAAAACQ4Qi7AQAAAAAAAAAAAAAAAAAAAAAAAAAyHGE3AAAAAAAAAAAAAAAAAAAAAAAAAECGI+wGAAAAAAAAAAAAAAAAAAAAAAAAAMhwhN0AAAAAAAAAAAAAAAAAAAAAAAAAABmOsBsAAAAAAAAAAAAAAAAAAAAAAAAAIMMRdgMAAAAAAAAAAAAAAAAAAAAAAAAAZDjCbgAAAAAAAAAAAAAAAAAAAAAAAACADEfYDQAAAAAAAAAAAAAAAAAAAAAAAACQ4Qi7AQAAAAAAAAAAAAAAAAAAAAAAAAAyHGE3AAAAAAAAAAAAAAAAAAAAAAAAAECGI+wGAAAAAAAAAAAAAAAAAAAAAAAAAMhwhN0AAAAAAAAAAAAAAAAAAAAAAAAAABmOsBsAAAAAAAAAAAAAAAAAAAAAAAAAIMMRdgMAAAAAAAAAAAAAAAAAAAAAAAAAZDjCbgAAAAAAAAAAAAAAAAAAAAAAAACADOeS0QUAAAA87h4+fKjNmzfr77//VlBQkDJlyqSXX35ZzZs3V5YsWTK6PAAAAAAAAAAAAAAAAAAAAAB4KhB2AwAASML+/fv13nvv6dq1a6b5xYsX6/vvv9eQIUPUrFmzDKru8TZs2DDNmDHDGI8cOVJ+fn4ZVxAAAAAAAAAAAAAAAAAAAACAx5pTRhcAAADwuDpy5Ig6d+4cL+gW486dO1qwYEE6VwUAAAAAAAAAAAAAAAAAAAAATyfCbgAAAAmwWq367LPPFBERkegaDw8PffPNN+lYFYDE3L9/X3v37s3oMgAAAAAAAAAAAAAAAAAAAJAKLhldAADAdseOHcvoEp55ZcqUyegSkE6OHj2qo0ePGmNXV1eNGTNGvr6+OnPmjIYNG6bmzZurSJEiGVglgBjLly/XmjVrNGfOnIwuBQAAAAAAAAAAAAAAAAAAAClE2A0AgKfEd999p59++skYu7q6aseOHcqdO7dDrxMWFqYaNWooLCzMmGvVqpVGjRpl91lXr17Vli1btH//fgUEBOjy5cu6e/euIiMjlSlTJmXLlk25c+dWiRIl5OPjo1q1aqlQoUKOvDuJ2rJli2ncsmVLNWrUSJJUrlw5/fLLL/L09EyXWp4FVqtVP//8s2bMmKGHDx+qefPm+uSTT+Tq6prRpeEJYLVaNWPGDAUEBOj48eMqXbq0Q8719fXV5cuXjfHcuXP1yiuvOORsAAAAAAAAAAAAAAAAAAAAxEfYDQCAp0Tnzp31yy+/KCoqSpL08OFDLViwQP369XPodVasWGEKukmSv7+/zfutVqu2bt2qX375Rbt370503f3793Xt2jVdu3ZNR44c0fLly2WxWFSnTh116dJFNWvWlMViSfH9SM7FixdN4+rVq5vGXl5eaXbtZ9Hq1av13XffGeMZM2YoV65c6tOnTwZWhSfF9u3bFRAQIEmaPn266bEEAAAAAAAAAAAAAAAAAACAJ4dTRhcAAAAco0CBAkbnsRjz58/Xw4cPHXYNq9Wq2bNnm+aqVaumMmXK2LT/2LFjatu2rXr27Jlk0C2p62/evFn+/v7q3bu3goKC7D7DVrdv3zaN8+fPn2bXgrR///54cwcOHMiASvAkmj59uvHxr7/+qps3b2ZgNQAAAAAAAAAAAAAAAAAAAEgpwm4AADxF4nZYCwoK0u+//+6w8//880+je1KMN998M9l9VqtV06dPV6tWrRINMLm5ualcuXKqWbOm6tSpo4oVK6pw4cKJnrlp0yY1bNhQd+/ete9O2Cjuue7u7mlyHTxStWrVeHOVK1fOgEqeXNOnT9fYsWONPw8ePMjoktLFqVOntGPHDmMcERGhOXPmZGBFAAAAAAAAAAAAAAAAAAAASCmXjC4AAAA4jo+Pj3x8fHTw4EFjbvbs2WrcuLFDzo/b1a1w4cKqU6dOknuio6P11VdfJRg+yZQpk1q2bKkWLVqoYsWKcnGJ/6PJ7du3tXfvXq1YsUKbNm1SZGSkcVtoaKiioqJSeG/s4+TEewSkpTfeeEOffPKJpk2bpocPH6ply5bq0aNHRpf1RJk+fbouX75sjP39/eXm5paBFaWP2F3dYsydO1d9+vR5Ju4/AAAAAAAAAAAAAAAAAADA04SwGwAAT5nu3bubwm5//fWXTpw4oRdffDFV5165ckUbN240zXXr1k3Ozs6J7rFarRo2bFiCQbcmTZpo0KBByp8/f5LXzZ49uxo0aKAGDRroypUrGjlypFavXp2yO4HHlsVi0VtvvaW33noro0vBE+TWrVtasWJFvPng4GCtXLlSbdu2Tf+iAAAAAAAAAAAAAAAAAAAAkGK0KAEA4CnTsGFD5cuXzzQXtyNbSsybN0/R0dHG2NPTU35+fknumT9/vmbNmmWac3V11Xfffadx48YlG3SLq0CBAho7dqx++ukneXp62rUXwNNn3rx5ioiISPC26dOny2q1pnNFAAAAAAAAAAAAAAAAAAAASA3CbgAAPGVcXV3VtWtX09zKlSt1586dFJ/54MEDLVy40DTXrl27JANnZ8+e1bBhw+LVNmXKFLVu3TrFtUhSvXr1tHTpUuXIkSNV5wB4cj148CBe18jYQd9Tp05p586d6V0WAAAAAAAAAAAAAAAAAAAAUoGwGwAAT6H27dsrc+bMxjg8PFxLly5N8Xlr165VcHCwMXZycooXqIvrq6++itdxacSIEapZs2aK64itRIkSmj59ulxcXBxyHoAny+rVq3Xz5k1jXL16dfXr18+0Ztq0aeldFgAAAAAAAAAAAAAAAAAAAFKBsBsAAE8hb2/veN3TZs+erejo6BSdN3v2bNO4QYMGKlSoUKLr9+3bpx07dpjmmjVrplatWqXo+okpV66cPDw8HHomgMef1WrV9OnTTXNdunRRs2bNlDVrVmNu27ZtCgwMTO/yAAAAAAAAAAAAAAAAAAAAkEKE3QAAeEp169bNNL5w4YK2b99u9zmHDx/WoUOHTHP+/v5J7okbQnF3d9dnn31m97UBICG7d+/W8ePHjXH+/PlVt25deXh4qE2bNqa1cZ+PAAAAAAAAAAAAAAAAAAAA8PhyyegCAABA2nj++edVp04dbdmyxZibPXu2ateubdc5cbu6vfTSS6pUqVKi60NCQrR582bTXPv27ZUrVy67rptRKlSooNDQ0HjzTZs2jTc3d+5cvfLKK8Z4yZIl+vjjj41x9+7dNXjw4GSvGRISIh8fH2NcsGDBJIOJvr6+unz5sjE+ePCgsmbNqujoaO3YsUMLFy7UiRMndPXqVWXOnFmFChVSrVq11LlzZ+XNmzfZehJz8uRJrV69Wvv27VNAQIBCQkLk6uqqfPnyycfHRy1bttSrr74qi8WSovPjfu6T68hVvHhx42MvLy/9/fffkqSIiAht3LhRS5YsUWBgoK5fvy5PT08VKVJEdevWVefOnU3dv+xhtVr1999/a926dTpw4IDOnj2r0NBQubu7q2DBgqpSpYr8/Pz08ssvG3t69+6tjRs3GuO4j5uUGjt2rMaNG5fo7bEfU/Xq1dNPP/2U5HlBQUFau3atdu7cqZMnTyo4OFiRkZHy8vJS0aJFVb58eTVq1EiVK1dO8dfYUeIG2Dp16iQXl0f/tOnYsaOmTZsmq9UqSVq+fLk++ugjZc+ePd3rBAAAAAAAAAAAAAAAAAAAgH0IuwEA8BTz9/c3hd22bdumc+fOqWjRojbtv3XrllavXh3vzKSCLrt371ZERIRprkWLFjbXjJS5fv263n33XR04cMA0HxERoTt37ujo0aOaPn26hgwZIj8/P7vOPnv2rL7++mtt3bo13m2RkZE6e/aszp49q2XLlql69eoaNWqU8uXLl5q7k2KBgYF69913dfr0adN8cHCwgoODdfDgQU2bNk2jR49WrVq17Dr78OHDGjZsWLzPsSTdvXtXp06d0qlTpzR37lz95z//0bBhw1IcqktPt2/f1vfff6+lS5fq4cOHCd5++/ZtHTx4UDNmzNBLL72kQYMGqVq1ahlQ7aPHY+xAbaZMmdS2bVtjXLRoUdWqVct4vN6/f1/z58/XO++8k96lAgAAAAAAAAAAAAAAAAAAwE5OGV0AAABIO9WrV1fJkiWNsdVq1bx582zev3jxYlNwLU+ePHrjjTeS3LNv3z7TOFeuXCpXrpzN14T9QkND1alTpwRDWLGFh4fr448/1pIlS2w+e9WqVWrSpEmCQbeE7Nq1Sy1bttTZs2dtvoajXLlyRR06dIgXdIvr9u3b6tWrl/744w+bzrVarfrll1/UunXrZD/HMVavXq02bdro5s2bNq3PKHv27FGDBg20YMGCBINuCTly5Ig6duyo7777TtHR0WlcYXwzZ840urZJUpMmTZQzZ07Tmi5dupjGs2fPjhfCBQAAAAAAAAAAAAAAAAAAwOOHzm4AADzFLBaL3nzzTQ0aNMiYW7x4sd5//315eHgkuTcqKkpz5841zXXp0kWZMmVKct+5c+dM49KlSyfZCe5x8/rrr+v+/ftav369ab5w4cIqU6aMaS5HjhzpWVqihg4dqjNnzkiSnJycVKpUKeXNm1fh4eE6evSowsLCTOuHDBmiatWq6bnnnkvy3GXLlmngwIEJ3pYnTx4VKlRIXl5eunz5sgIDA40A0vXr1/Xmm2+ma+cvq9WqAQMG6NatW5Iedft64YUXlCdPHoWEhOjIkSN68OCBsT4yMlIDBw7Uhg0bku2+NmHCBI0ZMybB2woWLKiCBQsqc+bMunDhginkFxAQoD59+sjb2zv1dzABJUqUUKNGjYxx3Mds9erVjfv28ssvx9u/detWvf322wmG3AoUKKCCBQvK3d1dV69e1YULF+KFxX766Sddv35do0aNSre/43fu3IkX1owbbJMkX19fFS5cWBcuXJD06DG5du1aukwCAAAAAAAAAAAAAAAAAAA85gi7AQDwlGvWrJlGjRql4OBgSVJISIhWrVql9u3bJ7lv8+bNunLlijF2c3NLdo8kXb161TQuXLhwCqrOOKNHj5YkdezYUXv27DHmJ06cGC/s9rjYuHGjJKlz5856++23lT9/fuO2Bw8eaOrUqfrf//5nhNHCw8M1bdo0ffnll4meeeTIEVNIMkaLFi3UpUsXlS9f3hRwunTpkmbPnq3p06crKipKFy5cMIJG6SEsLEx79uyRk5OT3n33XXXr1k3Zs2c33T569GjNmjXLmLt+/boWL16sHj16JHruxo0b4wXdnJyc1KVLF7Vv314vvPCC6bYzZ85o0qRJWr58uSTZ3AkuJZo0aaImTZoYY19fX12+fNkYT5w4MdEgX0BAgPr27WsKulksFrVr105du3ZVqVKlTOvv3LmjZcuW6eeff9b169eN+eXLl6to0aLq27evo+5WkhYsWKDw8HBjXL58eZUvXz7eupiv0fDhw425adOmqXnz5k9U+BYAAAAAAAAAAAAAAAAAAOBZ45TRBQAAgLTl7u6ujh07muZmz55tBJ8SM3v2bNO4ZcuWNnUyu3v3rmns5eVlY6VIjcGDB+urr74yBd2kRyHFd955J14YadWqVYqOjk7wrOjoaA0aNEiRkZHGXJYsWfTTTz9p9OjRqlChQrzAUKFChTRo0CDNmzdPOXPmdNC9st+kSZP0/vvvm4JukuTp6akvv/xSLVu2NM2vXLky0bPCw8P1+eefm+by5MmjBQsW6IsvvogXdJOk559/Xt9//70mTpyYbBfEjBIdHa3//ve/ptCYt7e3pk6dquHDh8cLusXc7u/vr19//TVex77x48frxIkTaV73w4cPTWFFKeGubjFat26tzJkzG+OjR49q7969aVYfAAAAAAAAAAAAAAAAAAAAUo+wGwAAz4BOnTrJ1dXVGJ84cUL79u1LdH1gYKB27txpmuvWrVua1YfUqV69erJfn549e5qCP//++6/OnDmT4NpNmzbp+PHjprlRo0apXr16ydZSuXJlTZw4US4u6d9AuG3btqpfv36Sa/r162caHz9+PF5AM8aCBQt048YNY+zq6qoff/xRlSpVSraWRo0aadSoUTZUnf5+//13HTp0yBhbLBaNGzdOtWrVSnZvrly5NGXKFBUvXtyYi4yM1A8//JAmtca2fv16Xbt2zRjnyJFDjRs3TnS9t7e3mjdvbpqbNm1amtUHAAAAAAAAAAAAAAAAAACA1CPsBgDAMyBPnjxq0qSJaS5uh6TY4nZ1q1mzZoJdrBKSJUsW0zg0NNTGKpFS7du3j9dpLS5PT09VqFDBNHfp0qUE18btdta2bVs1bNjQ5nqqVKmiXr162bzeUdq3b5/smiJFiqhw4cLGODo6WlevXk1wbdzPQ9++feN9DpPyn//8x6aAYHqbP3++ady5c2e99tprNu/PkiWLRo8ebZrbtGmTrl+/7pD6EmK1WjV9+nTTXLt27eTm5pbkvrid3zZu3Kjz5887vD4AAAAAAAAAAAAAAAAAAAA4BmE3AACeEf7+/qbxb7/9pqCgoHjrwsLCtHz58iT3JiVfvnym8YULF+yoEilRunRpm9YVKlTINL5z5068NVarNV5XP3u+/jG6d+9u957UevHFF21aV7BgQdP433//jbcmJCRER44cMcYuLi7xglO2yIjQX1LCw8P1559/muZS0rXxpZdeko+PjzG2Wq3asmVLqutLzIEDB0zd6JycnNSxY8dk97344ouqWrWqMbZarZo5c2aa1AgAAAAAAAAAAAAAAAAAAIDUc8noAgAAQPooV66cqlatqr/++kuSFBkZqQULFqh///6mdStWrFBYWJgxLl68uGrWrGnzdYoVK2YaHzt2TFarNdnOY0i5HDly2LTOw8PDNH748GG8NdeuXVNISIgxzps3r0qWLGl3TTlz5rR7T2p4enom2+UrRtzug5GRkfHWnDp1yjR++eWX5e3tbXdd9nSCSw8nT5403d/SpUvH+ztrqyZNmujgwYPG+NixY6muLzFxu7pFR0fb9bwU25IlS/TBBx/Iy8vLEaUBAAAAAAAAAAAAAAAAAADAgejsBgDAMyRuh6758+crIiLCGFutVs2ePdu0pnv37nJysv1HhkqVKpnGt27dMnXIguPZ+vWxJXB48+ZN07ho0aJPRFDR0TXG/TykNBDm7OzsiHIcJm43x8KFC6f4rOeee840vnbtWorPSsqlS5e0YcMGh5139+5dLVy40GHnAQAAAAAAAAAAAAAAAAAAwHEIuwEA8Ax5/fXXTQGVGzdumEIkf/75pwICAoyxt7e3WrZsadc1Xn31VWXKlMk0t2LFipQVjHR3//590zhuF7RnRXh4uGkctyvek+revXumcWo68MXdG/dsR5k1a5aio6MdfmZCHf0AAAAAAAAAAAAAAAAAAACQsVwyugAAAJB+nJ2d1a1bN3399dfG3OzZs9W0aVPj49g6dOigzJkz23WNrFmzqm7dulq/fr0xt3DhQr3zzjvKlStXKqpHenB3dzeN7969m0GVZKy4j/u0CnKlt7ihvVu3bqX4rLh70yIQGBYWlmAXtkaNGtl1TlBQkA4ePGiML1++rN9++02NGzdOdY0AAAAAAAAAAAAAAAAAAABwHMJuAAA8Y/z8/DRmzBiFhYVJkvbv36+jR48qe/bs2rhxo7HOxcVFnTt3TtE1/P39TWG3+/fva/jw4frhhx9SV/wTxmq12rTO0V2rUiN37tym8fnz5zOokowVN5h57ty5FJ1j62MgveTLl880vnDhQorPirs3f/78KT4rMYsXLzaeqyTJy8tLu3btSlGwrl+/flq7dq0xnjZtGmE3AAAAAAAAAAAAAAAAAACAx4xTRhcAAADSl5eXl9q0aWOamzNnjubNm2cKXb3xxhspDq9UrlxZNWvWNM2tWrVKK1asSNF5ifnnn38eq45brq6upnF4eLhN+1LTXcvR8ubNK29vb2N87do1nT592u5zbt++7ciy0l2pUqVM48OHDyskJMTuc06ePOmokhyiVKlSpsfp8ePHdebMmRSdFTs4Jklly5ZNVW1xRUVFadasWaa5Nm3apLiDXJcuXUzjgwcP6u+//05peQAAAAAAAAAAAAAAAAAAAEgDhN0AAHgGde3aVRaLxRivXLlSCxYsMK3x9/dP1TW+/PJLZcqUyTQ3aNAg7dy5M1XnxggICJC/v78iIyMdcp4jZM2a1TS2tWvWiRMn0qKcFLFYLKpRo4Zpbvr06XafM2PGDAdVlDG8vLxUvnx5Y/zw4UPNmTPH7nOmTJniyLJSzd3dXdWrVzfNzZw50+5zDh8+rIMHDxpjJycn1alTJ9X1xbZx48Z4f4c6duyY4vOqVKkSL8Q4bdq0FJ8HAAAAAAAAAAAAAAAAAAAAxyPsBgDAM6hw4cKqX7++MX7w4IGpE1fFihVNQZ+UKFasmAYPHmyai4iIUM+ePbVq1apUnb1lyxb5+fkpODg4Vec4WuHChU3jgwcPJtsNzGq1auHChWlZlt1atmxpGi9cuFC///67zfv37dunyZMnO7qsdNeiRQvTePz48Tp06JDN+9esWePwboaOEDcwNmfOHG3dutXm/aGhofrggw9Mc/Xr11euXLkcUZ4hbsjS19dXxYoVS/F5FoslXne39evX68qVKyk+EwAAAAAAAAAAAAAAAAAAAI5F2A0AgGdUUp3bUtvVLUaHDh3UtWtX01xERIQ++OADffTRR7p+/bpd5wUFBemjjz5Sz549FRoa6pAaHalYsWLKnj27MX7w4IEmTZqU5J45c+Y4rNudo9SuXVtly5Y1zQ0YMEBbtmxJdu/Bgwf17rvvPlYd91KqTZs2ypMnjzGOiIhQnz59TB3NErN582Z98sknaVleir3++uvy8fExzfXv31+bNm1Kdu/169fVo0cPnTt3zphzcXFR//79HVrjkSNHtHfvXtNc3OeSlGjevLm8vLyMcVRUlGbNmpXqcwEAAAAAAAAAAAAAAAAAAOAYhN0AAHhGValSJV6gSZIKFCigBg0aOOQaFotFgwcPVufOnePdtmLFCtWuXVuDBw/Wvn37Eg1H3blzR5s3b1a/fv1Uq1atx7JTVgwnJ6d43cCmTJmisWPH6sGDB6b5oKAgDRkyREOGDEm/Am3k5OSkESNGyMXFxZgLCwtTz5499fHHH+vIkSOyWq2mPVeuXNGoUaPUvn173bx5M71LThOZM2fW119/bZoLCgpSu3btNGLECAUGBsbbExgYqM8++0xvvfWW7t27l16l2sVisWjkyJHy8PAw5sLCwtSrVy8NHjxY58+fj7fn7t27WrBggZo2bar9+/ebbuvfv79KlSrl0BrjdnV77rnn5Ovrm+pzPTw81KZNG9PcwoULdffu3VSfDQAAAAAAAAAAAAAAAAAAgNRzSX4JAAB4GlksFvn7+2vAgAGm+a5du5pCTqnl5OSkIUOGqGjRoho5cqQePnxo3PbgwQPNmzdP8+bNk7u7u0qWLKkcOXLI2dlZd+7c0c2bNxMM3sTw9PSUs7Ozw2p1hDfffFOLFi0yhWfGjRunadOmqVy5csqcObOCgoJ04sQJRUdHS5IaNGig3377LaNKTlC5cuU0fPhwffzxx6b5JUuWaMmSJcqXL58KFSqkLFmy6MqVKwoMDDTujyQVLlxY1apV0+LFi9O7dId6/fXX1b9/f40dO9aYi4qK0tSpUzV16lQVKlRIBQsWVKZMmXTx4kVTxzNJ8vHxUbZs2WzqipeeihcvrgkTJqh3796mv5Mxfx+LFCmiIkWKyNXVVTdv3tTx48cVERER75yWLVuqT58+Dq3t2rVrWrNmjWmuU6dODvu73qlTJ02bNs0Yh4SEaOnSpQ7pHAcAAAAAAAAAAAAAAAAAAIDUobMbAADPsMaNGyt37tzG2MPDQ+3atXP4dWKCdcuWLZOPj0+Ca+7fv68jR45o27Zt2rx5s/bv359k0K1u3brasGGDsmTJ4vB6U6NAgQIaNmxYvPmwsDDt3r1bW7Zs0bFjx4xgWMmSJTV48OD0LtMmfn5+Gj16tDJlyhTvtmvXrmnfvn3atm2bTp8+bQq65cyZU1OnTn3svjYp1a9fP/33v/+VxWKJd9ulS5e0Z88e7dixI17Q7fnnn9fkyZMfu0BmjFq1amnmzJnKkSNHvNvOnz+v7du3a9OmTTp06FCCQbdevXrpu+++S/Dzkhpz5swxdXp0c3OTn5+fw84vWrSoatWqZZqbMWOG6TEMAAAAAAAAAAAAAAAAAACAjEHYDQCAZ5ibm5s6d+5sjFu3bq2sWbOm2fXKlCmjRYsWacqUKapWrVqKzvD19dW0adP0888/K1++fA6u0DGaN2+uH374QZ6enkmuq1KliubMmZPsuozUokULrV69WjVr1rRpfbVq1bRixQo9//zzaVxZ+rFYLOrdu7cWL16s8uXL27SnUaNGWrJkiXLlypXG1aVOtWrVtGHDBrVr187mjo7lypXTvHnz9PHHH8vJybH/nAgPD9f8+fNNc82aNVP27Nkdep0uXbqYxufPn9fmzZsdeg0AAAAAAAAAAAAAAAAAAADYz7ZXtAIAgKdWhw4dNHHiREVERKhbt25pfj0nJyfVrVtXdevW1ZUrV7R161bt27dPAQEBunz5su7evavIyEhlypRJ3t7eyp07t0qUKKHy5curdu3aKlKkSJrX6AjNmjXTq6++qjlz5mjLli26ePGi7t+/r3z58unFF19Uu3bt5OvrKycnJ4WEhGR0uUkqXry4ZsyYoePHj2vNmjXau3evzpw5o5CQELm4uChfvnzy8fFRixYtVKNGDYd3+npc+Pj4aOnSpdq/f7/Wr1+vAwcO6Ny5cwoLC5Obm5sKFiyoypUry8/PTxUqVDD2xe5SJsnmUFl6yZEjh0aMGKH33ntPa9eu1c6dO3Xy5EkFBwcrMjJSXl5eKlq0qCpUqKCGDRuqSpUqafY1Xr58uf7991/TXOxArqPUqlVLhQsX1oULF4y5adOmqV69eg6/FgAAAAAAAAAAAAAAAAAAAGxnsVqt1owuAgDSk5eXl8LCwkxznp6eCg0Ndcj5J06cUEJPrRaLRS+++KJDrgE42qBBg3Tz5k1NmTIlo0sBnjpt2rTRgQMHjPHatWtVqlSpDKwIAJ48/IwNAAAAAACQvGPHjmV0CYijTJkyGV0CAAAAAADxvPrqq9q9e7dp7pVXXtGff/6ZQRUBgNnj1VYCAABkiO7du+vWrVsZXQbwWKlevbpu3rxpjPfu3Stvb2+7zrBarTp37pxpLm/evI4oDwAAAAAAAAAAAAAAAAAAAHjqOGV0AQAAIOOVKlVK1atXz+gygMdK1qxZFRUVZfwJCAiw+4xjx44pODjYGOfLl0/ZsmVzYJUAAAAAAAAAAAAAAAAAAADA04OwGwAAAJCA0qVLm8ZLly61+4xZs2aZxr6+vqmqCQAAAAAAAAAAAAAAAAAAAHiaEXYDAAAAElCnTh3TePny5Tp06JDN+3///XctWbLENNeiRQtHlAYAAAAAAAAAAAAAAAAAAAA8lQi7AQAAAAlo0KCB8ubNa4wjIiLUp08fHTt2LNm9O3fu1IABA0xz1apVU7Vq1RxeJwAAAAAAAAAAAAAAAAAAAPC0IOwGAAAAJMDd3V2ffPKJaS4oKEitW7fW//73P12+fDnenrNnz2rIkCHq2rWrwsLCjPnMmTNr+PDhaV4zAAAAAAAAAAAAAAAAAAAA8CRzyegCAAAAgMdVs2bNdPDgQc2aNcuYi4iI0MSJEzVx4kQVLVpU+fPnl4uLiy5duqSzZ8/GO8PZ2VljxoxRsWLF0rN0AAAAAAAAAAAAAAAAAAAA4IlD2A0AAABIwuDBg+Xh4aHJkyfHu+3cuXM6d+5cons9PT01ZswY1alTJw0rBAAAAAAAAAAAAAAAAAAAAJ4OThldAAAAAPA4c3Jy0sCBAzV37lyVLVvWpj0Wi0WNGzfWunXrCLoBAAAAAAAAAAAAAAAAAAAANqKzGwAAAGCDV155RStXrtSBAwe0ceNGHThwQGfPnlVoaKiio6Pl7e2tEiVKqHr16vrPf/6jokWLZnTJAAAAAAAAAAAAAAAAAAAAwBOFsBsAAABgI4vFokqVKqlSpUoZXQoAAAAAAAAAAAAAAAAAAADw1HHK6AIAAAAAAAAAAAAAAAAAAAAAAAAAACDsBgAAAAAAAAAAAAAAAAAAAAAAAADIcITdAAAAAAAAAAAAAAAAAAAAAAAAAAAZziWjCwAAAAAAAAAAAAAAAAAAAAAAPH2OHTuW0SUgjjJlymR0CQAAJInObgAAAAAAAAAAAAAAAAAAAAAAAACADEfYDQAAAAAAAAAAAAAAAAAAAAAAAACQ4Qi7AQAAAAAAAAAAAAAAAAAAAAAAAAAyHGE3AAAAAAAAAAAAAAAAAAAAAAAAAECGI+wGAOnEarXKarVmdBkAAADAE4WfowEAAAAAAAAAAAAAAADg2UHYDQAczMkp8adWXqQLAAAA2Cepn6GT+tkbAAAAAAAAAAAAAAAAAPDk4VVhAOBgzs7Oid724MGDdKwEAAAAePIl9TN0Uj97AwAAAAAAAAAAAAAAAACePITdAMDBXFxcEr0tNDQ0HSsBAAAAnnxJ/Qyd1M/eAAAAAAAAAAAAAAAAAIAnD2E3AHAwT0/PRG+7deuWoqOj07EaAAAA4MkVHR2tW7duJXp7Uj97AwAAAAAAAAAAAAAAAACePITdAMDBvLy8krz94sWLBN4AAACAZERHR+vixYtJrsmaNWs6VQMAAAAAAAAAAAAAAAAASA8uGV0AADxtMmXKJHd3d92/fz/B2+/du6eTJ08qZ86c8vLykpubmywWiywWSzpXCgAAADw+rFarrFarHjx4oNDQ0CQ7ukmSu7u7XF1d06k6AAAAAAAAAAAAAAAAAEB6IOwGAGkga9asiYbdYty6dcv0Al7CbgAAAHiWWa1Wu9bT1Q0AAAAAAAAAAAAAAAAAnj6E3QAgDWTNmlW3bt1SVFSUzXvsfXEvAAAA8KxydnYm7AYAAAAAAAAAAAAAAAAATyGnjC4AAJ5Grq6uKly4sJydnTO6FAAAAOCp4uzsrMKFC8vV1TWjSwEAAAAAAAAAAAAAAAAAOBhhNwBII+7u7gTeAAAAAAeKCbq5u7tndCkAAAAAAAAAAAAAAAAAgDRA2A0A0hCBNwAAAMAxCLoBAAAAAAAAAAAAAAAAwNPPJaMLwJPn0qVLWrp0qSQpa9as8vf3z+CKgMebu7u7ihUrppCQEIWEhOj+/fsZXRIAAADwxHB3d1fWrFmVNWtWubq6ZnQ5AAAAAAAAj53Q0FCdO3dOoaGhypo1q5yceN9jAAAAAACAuMhBAE8Owm6w26VLlzRu3DhJUsGCBXmSB2zg6uqqnDlzKmfOnHr48KFCQkIUFhamyMhIRUVFKTo6OqNLBAAAADKck5OTnJ2d5eLiIk9PTwJuAAAAAAAASQgKCtKXX36pbdu2KSIiQvXr15eXl5cqVKig8uXLE3oDAAAAAACIhRwE8OQg7AYA6Sx28A0AAAAAAAAAAAAA7HXs2DG9+eabunHjhmk+NDRUO3bs0MmTJ1WvXj3lypUrgyoEAAAAAAAAgJQh7JaAu3fv6s8//1RgYKCCg4N1584dWa1Wu8+xWCz69ttv06BCPM3Gjh1rSoxv3749gysCAAAAAAAAAAAAADwuLl26lGDQLbbr169r4cKFqlq1qipVqkSXNwAAAAAAAKh48eLGxyNHjpSfn18GVgMkjrBbLDdu3NA333yjdevWKTIyMlVnWa1Wwm4AAAAAAAAAAAAAAMBhbt++LX9//ySDbjGioqKMN/qtX7++cubMmQ4VAgAAAAAAAEDqEHb7P6dOnVK7du0UFhaWoi5uAAAAAAAAAAAAAAAAaeX+/fvq1auXzpw5Y9e+69eva8GCBapWrZoqVqxIlzcAAAAAAAAAjzXCbpLu3r2r3r17KzQ0VJJksVhSfebTFpiLjIzUn3/+qV9//VVLly415i9fvqy33npLTZs2VYMGDeTu7m732dHR0dq9e7eWLl2qo0eP6tq1a3rw4IFy5sypl156Sc2bN1eDBg1S/Av306dPa+HChdqzZ48uXbqke/fuKVu2bCpdurTq1Kmj1q1by9PTM0Vnxzh48KCWLl2qvXv36tq1a4qIiFCOHDlUrlw51a9fX02bNpWbm1uqrgEAAAAAAAAAAAAAeDZFRUXp/fff14EDB1K8f9euXUaXtxw5cji4QgAAAAAAgMdPWuYgEjNr1ix99dVXxjhr1qxavXq1ChYsaPdZoaGhWrp0qbZu3arjx4/r33//lYeHhwoVKqRXXnlFbdu2VcmSJR1WO1ImLb8GHh4e8vT0VNGiRVW6dGnVrl1br7zyilxcnu44mMX6tKWyUmDWrFkaOnSoKeSWmk+LxWKR1WqVxWLR6dOnHVFihjp+/Lg++eQT/fPPP0muK1CggIYPHy5fX1+bz7506ZI++ugj7du3L8l1Pj4+mjBhgvLly2fz2aGhofr666+1ZMmSJNd5e3vryy+/VPPmzW0+O0ZQUJA+//xzbd68Ocl1+fPn1zfffKOaNWsme+bYsWM1btw4SVLBggW1fft2u+tC0ry8vBQWFmaa8/T0NAKvAAAAAAAAAAAAAPC4sFqtGjJkiObMmZPkuvr169t0nrOzs1555RX5+PjQ5S2NlSlTJqNLAAAAADLcsWPHMroExMG/VfDqq69q9+7dprlXXnlFf/75ZwZVlDbSMgeRmJMnT6pFixaKiIgw5n788Uc1aNDArnOsVquWL1+uYcOGKSQkJMm1bdu21aeffiovL69kzy1evLjx8ciRI+Xn52dXXUhYiRIl0vwasfNO+fLl0zvvvKP27ds7pNnX44jfWkratGmT8bHVajUF3SwWi91/niY7d+5Uq1atkn2Cl6QrV67I399fU6ZMsensM2fOqGnTpskG3aRHndOaNWum8+fP23T21atX1aZNm2SDbpJ0584dffjhhxoxYoSio6NtOl/6/9+Ikgu6xdTTvXt3zZgxw+bzAQAAAAAAAAAAAAD46aefkg262SMqKko7d+7UkiVLFBwc7LBzAQAAAAAAHhdpmYNIzP379/X++++bgm7du3e3O+gWHR2tr7/+WgMHDkw26CZJixYtUtu2bRUUFGR3zXCclGSP7PkTk3WyWq26evWqvvjiC3Xp0uWp/f3e0923zkanT5+OF1JzVJe3J1lgYKD69OljerL19PRUzZo1VaRIEbm4uOjy5cvavHmz7ty5Y6z59ttv5eHhoU6dOiV6dlhYmHr16mV68i1cuLA6d+6sl156SU5OTgoMDNTcuXN19OhRSdKtW7fUv39/LVq0SJkyZUr07NDQUHXv3l0BAQHGXI4cOdS+fXtVqFBB2bJl0+XLl/X7779r/fr1RsBt6tSp8vDw0Pvvv5/s5+bq1avq2rWrbt68acwVKFBAHTt2VJkyZeTh4aELFy7o119/1Y4dO4w1w4YNk6enJwloAAAAAAAAAAAAAECyli1bplGjRqXJ2deuXdP8+fP16quvysfH56l7c18AAAAAAPBsSsscRFK+/fZbnTp1yhiXK1dO//3vf+0+54cffjA12XFyclKDBg3UsGFDFSxYUHfu3NGhQ4c0b948I+h06tQpdevWTUuWLJGnp2eK6kfqpUX2KOZ3dnF/d2e1WrVnzx517NhRc+fOVc6cOR1+7YxE2E3S7du3TeOYB4HVapWnp6cKFCigbNmyZUBlGeu7777T3bt3jXGjRo30zTffKGvWrKZ19+/f13fffaeZM2cac19//bUqV66sUqVKJXj27NmzdfbsWWPcuHFjjRo1Su7u7sZc5cqV1apVK33wwQdat26dJOnIkSNas2aNWrZsmWjdn3/+uSnoVq9ePY0ePdr0pF2pUiU1a9ZMhw8fVu/evXX9+nVJ0vjx41WpUiXVrFkz0fOjo6P13nvvmYJuHTt21ODBg00hvCpVqqh169baunWr+vfvr7CwMKO+l156KdHPDQAAAAAAAAAAAAAAO3bs0KBBg9L0GlFRUfrjjz8UGBioevXqKXv27Gl6PQAAAAAAgLSWljmIxGzZskWzZ882xp6enho3bpzc3NzsOmfbtm2aNGmSMc6TJ49+/PFHVahQwbSubt266tWrlz766CP9/vvvkh41gRo8eLB++OEHu66Jx1tCAbrY3d4CAwP1/vvva9asWU/Vm1lZrM9q27JYSpcurcjISGNstVqVO3duDRkyRPXq1ZOzs3MGVpcxQkNDValSJUVFRUl69CS5devWJJ9sR40apcmTJxtjX19fTZ8+PcG1jRo10unTpyVJJUqU0K+//ppot7Y7d+7otdde07179yQ9CpEtWLAgwbU7duxQ9+7djXHt2rU1ZcoUOTk5JVr32bNn1bx5c+Mb2nPPPacNGzYkel/nz5+vzz//3Bh36tRJQ4cOTfR8Sdq3b586duxofD4rVaqkhQsXJvhkMnbsWI0bN06SVLBgQW3fvj3Js2E/Ly8vI3wYw9PTU6GhoRlUEQAAAAAAAAAAAAD8f//88486duxoemFWcurXr5+qa7q4uOjVV19VhQoVnqoXxmSkMmXKZHQJAAAAQIY7duxYRpeAOPi3Cl599VXt3r3bNPfKK6/ozz//zKCKHCetcxAJuXHjhho3bmx0WZOkcePGqUmTJnbV/uDBAzVo0ECXLl2S9Oj17StWrFCxYsUS3RMdHa2ePXtq27ZtxtzMmTP12muvJbi+ePHixscjR46Un5+fXTUiYSVKlDD9Pi1uTCup37XZszbu+pjAm8Vi0bfffqvWrVvbU/ZjLfEE0DMkR44cxscxX+jhw4erYcOGz2TQTXoUAIt5gpcehcaSSxV/+OGHKlu2rDG+e/euqfVnjHv37hlBN0nq0KFDokE3SfL29jY92R4+fDjBdKrVatXYsWONcY4cOfT9998nGXSTpGLFiumLL74wxhcvXtTy5csTXPvw4UNNnDjRGJcoUUKfffZZkudLj7rUvfPOO8Z4//792rlzZ7L7AAAAAAAAAAAAAADPlosXL6pnz552Bd0kydXVNVXXjYyM1I4dO7R06VL9+++/qToLAAAAAAAgI6RlDiIh0dHRGjhwoCno1qlTJ7uDbpK0bNkyI+gmSUOGDEky6CZJTk5OGjVqlLJly2bMjR07NsG8BdKW1Wo1/sQWE0hL7E/ccFtSa2POS+j8CRMmpO0dTGeE3SSVLVs23gPq1VdfzaBqHg/R0dGmsbe3d7J7nJ2d9dVXXylTpkwaMGCA5s+fn2CI7cGDB6pTp47xp1KlSsmeXbhwYdP+W7duxVtz+PBhHTx40Bj37NlT2bNnT/ZsSWrZsqWef/55YzxjxowEn+B/++03Xb161Rj369fP5taiPXv2NH0e7Ul7AwAAAAAAAAAAAACefsHBwfL399eNGzfs2pc7d2516tRJ9evXt/n/sBNz5coVzZs3T3///TcvjAIAAAAAAE+UtMxBJGTGjBnasWOHMS5durRNzXTislqtmjFjhjEuUaKEmjdvbtPenDlzqkePHsb4wIEDOnLkiN01IOUCAgIUEBCgo0ePqmnTppIehdBigmglS5bU999/r127dunYsWPavn27vv/+e7344oumwJvFYlHz5s119OhRBQQE6OTJk9q1a5fmzZunzp07y93d3Vgnmbu8Xbp0KV7HxicZYTdJjRs3jjcXO837LMqdO7dpfO7cOZv2+fj4aOvWrerTp0+iXfGyZ8+uX375xfjz0ksvJXtu3K+Hi4tLvDW//vqr8bGrq6s6dOhgU83So29QXbt2NcanT5/WiRMnkrxG7ty59cYbb9h8DU9PT7Vp08YY//HHH6YENwAAAAAAAAAAAADg2RUeHq5evXrp7Nmzdu3LkiWLpk2bpqxZs6p06dLq1KmTihYtmqpaIiMjtX37di1btowubwAAAAAA4ImRljmIuI4dO6ZRo0YZYw8PD40fPz5Fb0R04sQJBQQEGOOuXbvKycn2uE/nzp1NGYtVq1bZXQNSJyoqSm+//bZWr15thNykR3mlVatWqUWLFsqTJ48yZcqkAgUKqEWLFlq2bJneeOMNI/BmtVq1atUqvfPOO4qKipKzs7Py5MmjqlWrasiQIVq1apWKFy+eYEc4Sdq+fXt63+00Q9hNUtOmTVWmTBnT3P79+zOomsdD/vz5lTdvXmO8detW05NnUmLvc5RDhw4ZH+fLly/BhPXWrVuNj6tVq6asWbPadY169eqZxtu2bTONHz58qD/++MMY161b1+ZvZDHq169vfBwZGamdO3fatR8AAAAAAAAAAAAA8PSJiorS+++/r4MHD9q1z8XFRZMmTTK95sHT01PNmjVTvXr1bH4X8sRcvnxZ8+fP16FDh+jyBgAAAAAAHnvplYMIDw/XBx98oIiICGNu2LBhKlasmO3FxhI7CyFJr7/+ul37s2bNqmrVqhnjuFkIpL1x48Zpx44dpt+hPffccxo1apRcXV0T3JMpUyaNGjVKRYoUkSQj8LZ9+3aNHz8+3vpixYrp559/lpeXl7E+tr///ttB9ybjEXbTo65eU6ZMUf78+SU9auU3atQo3b9/P4MryzhOTk5q2bKlMX748KHeeustnTlzJt1r2bdvnw4cOGCMW7RoEe8vZXBwsOnd7apXr273dfLnz6/ixYsb47iBxxMnTig8PDxV1/Dx8VHmzJkTvUZSwsLCNHXqVLVt21YVKlTQCy+8oEqVKqlNmzYaN26cLl++bNM5Y8eOVfHixVW8eHH5+voa83v37tV7772nWrVqqXTp0qpSpYr8/f21evVq/tMCAAAAAAAAAAAAANKI1WrVV199pY0bN9q999tvv9Vrr72W4G1lypRRp06djBfLpNTDhw+1bds2LV++XHfu3EnVWQAAAAAAAGkpvXIQI0aMMIXocuTIoRUrVqhy5cp68cUXVb16dXXv3l1LlizRgwcPkj0vdl6iePHiypcvn9011ahRw/j4zJkzCg4OtnnvgQMHNGDAANWuXVulS5dW2bJlVadOHb3//vvasGGDoqKibDonJqdQvHhxLVmyRJIUEhKiKVOmqHnz5qpYsaLKli2rBg0a6Ouvv9a1a9fsu5OPqatXr+rnn3+WxWIxAmsWi0Vdu3ZNttOfu7u7OnfubGQ2Yvb//PPPunr1arz1hQsXVtu2bU0Zj5g958+fd+wdy0AuyS95Mly5ciXVZ4wePVpfffWVTpw4oRMnTqhy5crq3bu3ypUrp1KlSqXozAIFCqS6rozy9ttva8WKFcYTyIULF9SsWTO9/fbb6t69uzw9PdO8hpMnT6pv377GOF++fOrVq1e8dXHT1i+88EKKrleyZEkFBgYmeObp06dTfQ1nZ2cVL15c//zzT4LXSMw///yjXr16KSgoyDT/77//6sCBAzpw4IAmTpyoXr16qX///qYWpMmJjo7W//73P/3444+m+eDgYG3fvl3bt2/XypUrNX78eLm7u9t8rqP4+fk5/MzYoUUAAAAAAAAAAAAAyEg//vij5s6da/e+gQMHml68lRAvLy81b95cR48e1Y4dO0zvNm6vS5cuad68eXrttddUrly5eG9SCwAAAAAAnlynTp1Kk9dtxwSe0lNa5yB+//13zZs3zzQXHBysHTt2GOOgoCAFBQVpx44dmjx5sr799ltVrlw50TNjZxVSk4WILTAwUDly5EhyT1RUlIYOHao5c+bEu+3ChQu6cOGCfv31V5UsWVJjx461O1dz+vRp9erVSxcuXIhXW2BgoBYuXKgJEyaoVq1adp37uFmyZIkePnwY7/dlVapUsWl/pUqV4s09fPhQS5YsUb9+/eLdVrt2bU2dOjXe/NP0RlVPTdjN19fX4b9IvX//vsaNG5fi/RaLRadOnXJgRenLy8tLv/zyizp27KiQkBBJj0JCP/zwg6ZMmaLWrVurc+fOev755x12zejoaIWFhen06dNas2aN5s+fb/yyPXv27Jo5c6a8vb3j7bt06ZJpXLRo0RRdP3bb0CtXrigqKkrOzs6SFK9zWkqv8fzzzxtht7h1J2Tv3r3q0aOH7t69m+S6yMhITZo0Sfv379ePP/6Y4OcpIdOmTYsXdItr8+bN+uSTTzRmzBibznSkgwcPOvzM6Ohoh58JAAAAAAAAAAAAAPZaunSpRo8ebfe+Ll26qHfv3javL1u2rAoXLqxNmzbFe3GRPR4+fKgtW7YoICBAr7/+urJmzZriswAAAAAAwOPj7t27afK67YyQljmIa9euadCgQXbtOXv2rLp06aKJEyeqbt268W6PiooydfByRBZCki5evJhk2Co6Olr9+vXThg0bkj379OnTatWqlb755hs1a9bMpnpCQ0PVvXv3JLu33bt3zwgnprRB1eNg586dCc4n19UthoeHR4Lzf/zxR4Jht8Q6/6Xmja4eN09N2E2SqQ1fasUE5xx55pOodOnSWrJkid59911TWjgsLEwzZ87UzJkzVaNGDXXv3l116tRJdeBw8eLF+vTTT+PNV6lSRSNGjEj0G8q///5rGmfLli1F148dEIuMjNTdu3eNX87fvn3buC1LlizKlClTqq8Rt+64wsPD9dFHHxlBt9KlS8vPz08vvPCCnJycdOnSJf3222/aunWr0Rp0z549GjhwoCZPniwnJ6ckz799+7bxHyf16tVTkyZNVKhQId27d0/btm3TnDlzjCe8X3/9Ve3bt9crr7ySovsNAAAAAAAAAAAAAPj/tm/fnuD/jyenQYMGGjx4sN3/P+/l5aUWLVron3/+0R9//JGqF79cvHjR1OUNAAAAAADgcZIWOQir1aqBAweacgWSVL58ebVo0ULFihVT5syZdeXKFW3btk1r1641fv8SERGh9957TytWrFCJEiVM+8PCwhQZGWmMHZGFkJLv8jV//nwdPnxYkpQ5c2Y1bdpUtWrVUp48eXTr1i39888/Wr58udE06P79+xo4cKAKFSqkihUrJlvPxIkTdfv2beXNm1cdOnRQhQoV5OnpqcDAQM2aNUtHjx6V9Ohz89VXX8XrlvckCQgISPAxdPHixXhf74RcvHjRNLZYLLJarQoMDExwfWhoaILz7u7uNlT7ZHiqwm6O6uxmtVpltVplsVhSfObTFJIrXry4Vq5cqRkzZuiXX35RcHCw6fadO3dq586deumll/TFF1/Y9MSVmM2bN8ebq169usaMGaOcOXMmui88PNw0zpIlS4quH3ffvXv3jLBb7Guk9Py4e+PWHVfM59rV1VWffPKJunXrFu8x6efnp6NHj6p///46e/asJGnTpk2aPn26evTokeT59+7dk5OTk8aNG6cmTZqYbnvttddUs2ZN+fv7G3Pz5s0j7AYAAAAAAAAAAAAAqXTkyBG9++67phcy2aJSpUr64Ycf5OzsnOJrlytXzujyFveFNPaIiIjQ5s2bjS5vXl5eKT4LAAAAAADA0Rydg1ixYoV27dpljLNkyaKRI0fqjTfeiLe2WbNm+uijj9S3b18dOnRI0qPswCeffKLFixebMgFpmYVISkzQrXz58ho3bpwKFSpkur1+/frq27evxowZo8mTJ0t61FCoX79+WrdunZGzSMzt27dVtWpV/fjjj6YAn4+Pj5o2bSp/f3/t2bNH0qOGP4GBgSpevLhN9/Vxk1j4bP369apTp06y+9euXWvXuTGPqbiS+5o8SZJu+/QEigmqpeZPas96Grm5ual3797avn27Ro0aJR8fn3hrjhw5orZt22r8+PEp/jxUrlw53tyuXbtUu3ZtjR8//qlqq2iPoUOHqnv37omGL8uWLat58+Ypd+7cxtyECRMSfXKLrWfPnvGCbjF8fX1Vr149Y/zXX389tY9xAAAAAAAAAAAAAEgPFy9eVM+ePZN9wVFcxYsX188//+yQd2jOmjWrWrRooTp16sjV1TVVZ124cEFz58413o0bAAAAAADgceGoHER0dLTGjx9vjJ2dnTV9+vQEg24xChQooPnz56ts2bLG3MGDB02BuYxWvHhxzZo1K17QLYarq6sGDhyo/v37G3PXrl3TrFmzkj3b09NT48ePT7BTnZubmz7//HPTXEzw7UkU9/d1MZ3ZVqxYob///jvJvfv27dPKlSsTzIok9HvAqKioeF3wYpp9FS5c2P7iH1NPVWc3pL3MmTOrVatWatWqlQ4fPqyZM2dqzZo1evjwoaRHf0nGjBmjO3fu6LPPPrO7M17btm1VsWJFXb58WXv37tXq1asVEhKie/fuacyYMdq9e7cmT54c7x3hMmfObBrfvXtXmTJlsvv+3b171zT28PBI8Bpx16X0GnHrTkitWrXUtm3bZNflyZNHX331ld555x1JUkhIiDZt2qQWLVokua9Lly7JXn/jxo2SpBs3bujevXup6mxnr4R+oEit8+fPKyoqyuHnAgAAAAAAAAAAAEBSgoOD5e/vr5s3b9q1L0+ePJo+fXqCLw5KKYvFopdeesno8nbp0qUUnxUREaFNmzYpICBAdevWpcsbAAAAAABPmCxZsqTJ67YfF6nNQezfv1/nz583xr169VKlSpWSva6bm5t++OEHNWzY0AjSrVq1SjVq1DDVFltKswpJZSESM2rUKHl6eia7rm/fvtqwYYNOnDghSVq6dKnefffdJPMijRo1Uq5cuRK9vUyZMsqVK5fxe7Jz584lW8fjqlChQjp58qQRcrNYLLJYLIqKitKbb76p77//XnXr1o23b8OGDfrkk08UHR1t2hvzWIkbQoyMjNTgwYN1+vRp0/oYpUuXTts7mo6eurCbveEqpNzLL7+s0aNHq2/fvvrss89MSdrp06erSpUqatiwoV1nent7q1KlSqpUqZKaNWumAQMGaMiQIVq1apUkaffu3fr00081btw409c67i/0//33X2XPnt3u+3Tnzh3jYxcXF1OoK/Z5d+/eVURERIoCdbGvYct/RCQXRovt9ddfV548eXT9+nVJj7riJRV28/LyUoECBZI8M3/+/KZxSEhIuobdlixZ4vAzvby8FBYW5vBzAQAAAAAAAAAAACAx4eHh6tWrl86ePWvXPk9PT02dOlUFCxZMk7q8vb3VsmVLHTlyRDt37jRe5JUS58+f19y5c+Xr66syZco4sEoAAAAAAJCWXnjhhTR53fbjKCU5iN27dxsfOzk5qXPnzjZfr3jx4nrttde0Y8cOSdIff/xhuj1LlixydnY2mrn8+++/9t4lSeacgvTodz7JKV++vE1nOzk5qUOHDvryyy8lSRcuXNCVK1eS/H3Viy++mOy5BQoUMMJuoaGhNtXyOKpQoYJOnjxpjGPCahaLRSEhIerdu7eKFy8uHx8f5cyZU7du3dK+fft07ty5eAG3GBaLxQigXrlyRfPmzdPq1at1+fJl0zVie/XVV9PqLqY7p4wuwJGsVutj8+dZUqxYMc2aNSteqOrbb79N9efC29tbo0ePVuPGjY25tWvXaufOnaZ1cROrKU31xv5PhQIFCsjZ2dkYx30iTuk1zpw5Y3ycWLvP2KpVq2bz2S4uLqaEeGBgYJLrbXk3vbitL+mIBgAAAAAAAAAAAAD2iYyM1Pvvv6+DBw/atc/FxUWTJk1K8+CYxWLRyy+/rI4dO6Y6VBcREaGNGzdq1apVvAkpAAAAAAB4bNmTgzh9+rTxcenSpZUvXz67rlWrVi3j42vXrikiIsIYu7i4mBrYOCILIUnPPfdckutz5Mhh1/lVq1Y1jQMCApJcb29WITIy0q56HieNGjVK9LaYIFtAQICWLFmin376SUuWLNHZs2fjdWaL64033pAknTx5UpMnT9bly5dNe+I2kIr9OHvSPTWd3ebOnZvRJTzTXFxcNHLkSAUEBOiff/6R9Cite+TIEb388supOtvJyUlffPGFNmzYYAStli1bptdee81YU6JECdOeU6dOqU6dOnZfK/Y3obhnlixZMt41XnjhBbvOj4qKMgXQ4l4jIba0D40t9jfOuOnsuGzphEi3RAAAAAAAAAAAAABIOavVqiFDhmjjxo127x05cqRq1KiRBlUlzNvbW61atdKhQ4e0a9euVL3I6Ny5c0aXt9KlSzuwSgAAAAAAAMewNQcR+3X5sYNptor75kK3b99W3rx5jXHJkiV18eJFSY9yCikROwshPeool5T8+fPbdX7c9cllFWzxtGQVXnvtNZUoUUKBgYGmLm0xwbSYudghytj3PXYnuJg9pUqVSvD3gnG7wMWs9/f3l6ura1rdxXT31ITd7Ol+Bdvs379ft27dUoMGDWxa7+Liom7dumngwIHG3IkTJ1IddpOk3Llzy8fHR/v27ZMkHTp0yHR7jhw5VKxYMSONvGvXLvXu3duua1y9etUURIvdIU161EYzc+bMCg8PN67xn//8x65rHDx40Nif0DUAAAAAAAAAAAAAAE+XSZMmaf78+Xbv++9//xvvncXTg8ViUYUKFVS0aFFt3LhRV65cSfFZDx480O+//66AgADVrVtXWbJkcWClAAAAAAAA8aVFDsLJycn4OCUBrbh7XFzMUZ6KFStq8+bNkqTAwEBdu3bN7u5xO3fuND5+/vnn7e7chpSzWCwaPHiwunXrFu9rHTvIFlfcDoKxffnllwnOxz3PYrHo+eefV48ePVJU++PKKfkleNbcvHlTAwcOVNu2bTV06FBTi8zklC1bNt5ZjhI7uRwUFBTv9tgtF/fs2aPQ0FC7zt+0aZNp7Ovraxq7urqakrFbtmwxOs3ZKvY79Tk7O9v0Dnz37t2z6xrXrl0zPs6WLZtdewEAAAAAAAAAAAAAjrNkyRL973//s3tf165d1atXrzSoyHbZsmVT69atVbNmzXgvwLLX2bNnNWfOHJ04ccJB1QEAAAAAAJilZQ4idnAsJW8MdPXqVeNjV1dXZc2a1XR77CyEFD/bkJyQkBDt2bPHGMfNQiRXky3irierYFajRg298847pm5uscV0dov9J7bY6z/88ENVqVIl0WvFrLVarcqWLZsmTZokNzc3B96bjEfYDfHMmTNHy5Ytk/ToCWnWrFkpPituG8T169frhRdeMP789ttvNp/177//Gh8nlGBt2rSp8fHDhw81b948m8+Oiooy3c/ixYurdOnSSV7j+vXrWr9+vc3XCAsL0+LFi41xjRo1bEpLx/6mk5zIyEjt37/fGCfXehQAAAAAAAAAAAAAkDa2bdumTz/91O59DRs21Oeff56idwl3NIvFIh8fH3Xo0EH58+dP1VkPHjzQb7/9ptWrV+vu3bsOqhAAAAAAAOCRtMxBlCpVyvj4xIkTdjcF+uOPP4yPS5YsGe/80qVLm177P3v2bEVHR9t8/ty5cxUZGWmMY+ceEhMcHGzz+ZL0119/mcYlSpSwa/+z4MMPP9Tbb79t6r6WUPAtRuzbYwJw77//vvr06ZPoNWIH3UqUKKH58+c/lbkRwm6Ip0uXLsqcObMxHjNmjM6fP2/T3rjrChUqZBrny5dPUVFRxp+///7bpnMfPHigf/75xxgn9Ev08uXLq3z58sZ46tSppoBcUlasWKHAwEBj3L179wSfUBo0aGBqBzp+/Hg9ePDApmtMmzbNVI+/v79N+2bPnm3TOulRgvv69evGuHr16jbvBQAAAAAAAAAAAAA4xpEjR9S3b19FRUXZta9y5cr63//+J2dn5zSqLGWyZ88uPz8/vfbaa6mu7cyZM5o7d65OnjzpoOoAAAAAAADSNgcRu/NaZGSkXY15zp8/ry1btiR4VgyLxaLu3bsb49OnT+vXX3+16fzbt29r6tSpxtjHx8eUq0jKoUOHbFoXHR2t+fPnG+MiRYqk+o2RnlYDBgzQ5MmTlTdvXlMHt9jBttgBuJg1hQoV0vTp09W3b99Ez45ZmydPHn3yySdauXLlUxs6JOz2f8LCwjR+/PgE/8ycOTNeKvbhw4eaNm1agusnTpyohw8fZtA9Sb2cOXOqZ8+exjg8PFxvvfWWTcGxlStXmsYVK1Y0jcuVK6fs2bMb4wULFigoKCjZc+fNm6c7d+4Y46pVq8ZbY7FY1L9/f2N869YtDRw4MNlE89mzZzV06FBjXKhQIbVu3TrBtZkyZdK7775rjE+fPq0RI0YkW/++ffs0YcIEY+zj46OaNWsmu0969G5/CxcuTHbd9evX9eWXXxrjrFmz6vXXX7fpGgAAAAAAAAAAAAAAx7hw4YJ69Oihe/fu2bWvRIkS+umnn+Tu7p5GlaWOxWJRxYoV1aFDB9ObxKbE/fv3tWHDBq1Zs8buzxMAAAAAAEBC0jIH8cILL8jHx8cYT5o0yaag2IMHD/T+++8bmQZnZ2e1a9cuwbWtW7dWwYIFjfEXX3yhc+fOJXl+dHS0BgwYoNu3bxtz/fv3T7STWFwDBw5UWFhYsuvGjx+vEydOGONWrVrZfI1nUb169bR582aNGDFCNWvWVObMmY2gWuw/Hh4eql27tkaNGqXff/890YxJtmzZ9MYbb+i9997TvHnztGPHDvXs2VNubm7pfM/Sj0tGF/C4GDt2rGbMmBFv3sPDQ4sXL5aTkzkX6OrqqmrVqqldu3YJdvZ68OCBPvzww7QqN829++672rZtmw4fPixJCgwMVPv27TVu3Di98MILCe6ZN2+e1q9fb4xr1qypvHnzmta4uLioQ4cOmjRpkiTpzp076t69uyZNmqRixYoleO6GDRv03XffmeY6dOiQ4NpatWqpSZMmWrNmjSRp8+bNeuedd/T999/L09Mz3vrDhw+rd+/epifoYcOGJfmXvn379lq2bJkOHjwo6VG7U6vVqsGDB8drJypJW7duVf/+/Y137HN1ddXw4cPtenL/4osvFB4erm7duiW4759//lH//v1148YNY+7tt99O8D4DAAAAAAAAAAAAANLGrVu35O/vr1u3btm1L0+ePJo+fbqyZcuWNoU5UI4cOeTn56eDBw9q9+7ddneviy0wMFBXrlxRrVq1En0tAgAAAAAAgK3SKgdhsVj08ccfq3379pIeNU/q2rWrvv/+e9WvXz/Bc69du6Z+/foZtUhS586d9dxzzyW43s3NTUOHDlWPHj0kPWro1KFDB02ePDnBTm13797VgAEDtHXrVmOuadOmNjflkR59frp06aLx48fH62YXcz/HjBmjyZMnG3O5cuVS165dbb7GsypTpkxq27at2rZtK6vVqitXrig4OFgPHjyQm5ubcubMqfz589uUK/Hx8dH48ePToerHB2E3SSEhIUYbyZgWgdKjJ6T//ve/iT6plS1bVgMHDtSwYcNksVhMe6dPn66ePXsqa9asaVt8GnF1ddX48ePVsWNHXb58WdKjLmbNmjVT/fr1Va9ePRUsWFDR0dG6cOGCVq9erR07dhj73dzcNGjQoATP7tOnj9auXWukjE+dOqUmTZqoSZMm8vX1Vf78+RUVFaULFy5ozZo1pnMlqUePHnrppZcSrX348OE6ceKEAgMDJUm///676tSpo/bt28vHx0fe3t66fPmyNm7cqHXr1pk6v/Xt21e+vr5Jfm6cnJw0btw4tWjRwvgPirlz52rLli3q2LGjypYtKw8PD124cEG//vqrtm/fbto/bNgwlSpVKslrxMiSJYvc3NwUHBysYcOGaenSpWrdurVKlSolJycnXbx4Ub///ru2bNli+g+ESpUq6c0337TpGgAAAAAAAAAAAACA1AsPD1evXr2SfcftuDw9PTVt2jQVKFAgbQpLA05OTqpUqZKKFi2qjRs3KigoKMVnhYeHa/369QoICFDt2rXl4eHhwEoBAAAAAMCzJC1zEFWqVNG7776riRMnSnoURnv77bdVsWJFNWvWTMWKFZO7u7uuXLmiP/74Q6tXrzY1VipTpowGDBiQZP21a9dWnz599OOPP0qSrl+/Lj8/PzVs2FANGjRQwYIFFRISokOHDmnu3LkKDg429pYsWVLDhg2z+XNVuHBhXbhwQYcPH1ajRo3UtGlT1a5dW3ny5NGtW7d05MgRLV++3Pg8So8yNt9+++0Tm5PJKBaLRQULFjR17kPSCLtJxpOIxWIxUpFWq1V58+ZNtEVkjE6dOmnKlCkKCgoy7b1//75WrlypLl26pHn9aaVQoUJasGCBunfvbgTHHj58qLVr12rt2rWJ7rNYLBo6dGiigS4PDw/NmDFDHTp00NWrVyU96oS3bNkyLVu2LMmaGjdurI8//jjJNV5eXpo5c6a6d++ugIAASVJwcLDRTS4xPXr0UP/+/ZNcE6NAgQKaPXu2unfvruvXr0uSrly5ou+//z7JfZ9//rnatGlj0zWkR+0mv/nmG/Xo0UMPHz7UsWPHdOzYsST3lCtXTpMnT06wyxwAAAAAAAAAAAAAwPEiIyPVv39//f3333btc3V11aRJk1S6dOm0KSyN5cyZU23atNGBAwe0Z8+eVHV5CwgI0OXLl1W7dm2VLFnSgVUCAAAAAIBnSVrlICTpgw8+UHh4uKZNm2bMHThwQAcOHEiypjJlymjq1Kk2vcnPhx9+qPDwcM2YMUOSFB0drXXr1mndunWJ7nnhhRc0ffp0eXl5JXt+jLffflvr1q3Tjh07FB4erkWLFmnRokWJrndyctKIESNUp04dm68BpJRTRhfwOPjrr79MY6vVKovFoiZNmsjFJek8oIuLi5o3b27q6pbYuU+iAgUKaNWqVerTp0+ynwtJyp07t2bOnCk/P78k1z333HNavXq1WrRoYVPbxSxZsmjo0KEaO3asnJ2dk12fP39+LV68WK1bt052rbe3t0aPHq1BgwbJycn2vxKlSpXSihUrVLdu3WTX5suXT9OnT5e/v7/N58eoUaOGpk6dqpw5cya5ztnZWV27dtX8+fOVI0cOu68DAAAAAAAAAAAAALCf1WrVF198oU2bNtm997vvvlONGjXSoKr04+TkpMqVK6t9+/bKkydPqs4KDw83XrwVHh7uoAoBAAAAAMCzJq1yEBaLRZ999pnGjx+vfPnyJXuui4uL/P39tXDhQpt/b+Lk5KTPP/9co0aNsqmDWtu2bbVo0SKb6onN2dlZP/74o1q0aJHs2qJFi2rOnDl2Nf4BUoPObpL++eefBANXVatWtWl/lSpV9NNPPxlji8Uiq9Wq48ePO6zGjOTu7q4BAwaoa9euWr16tYYPH266vVChQnrxxRdVu3ZtNWvWTFmyZLHp3GzZsmn06NHq16+fVq5cqT179ujcuXO6ffu2MmXKpNy5c6to0aJq2LCh6tevr2zZstlVd9asWfXdd9+pZ8+eWrRokXbv3q1Lly4pPDxc3t7eKlOmjGrXri0/Pz95enradXaMvHnzasqUKTp48KCWLFmiffv26erVq4qIiFCOHDn00ksvqX79+mratKnc3NxSdA3pUeBt06ZNmj9/vn777TedPn1a9+7dk5eXl55//nnVqFFDfn5+eu6551J8DQAAAAAAAAAAAACA/SZMmKCFCxfave/jjz9Ws2bN0qCijJEzZ061bdtW+/fv119//ZWqLm+nT5/WpUuXVKdOHZUoUcKBVQIAAAAAgGdFWuUgJKlx48b/j737jo6q4NY4/E4qJaHX0EWKKEWkihSlhlBD7wSkSREpAUQQKVKlC0gLCNKkt4AgIkhHRLoU6UgNJbSEJHP/4Ga+DEkgk5lhEvJ71ppFzsnZe/Z488FlmPdsVa5cWZs3b9aWLVt07Ngx3bhxQ2FhYUqdOrXy5cuncuXKqX79+vLy8rJ4doPBIF9fX1WtWlUrVqzQ9u3bdeLECd2/f1/JkydX9uzZVaZMGTVp0kT58uWzuH+k5MmT67vvvlOzZs20ePFiHThwQDdv3pTBYFDmzJlVpEgReXt7q2rVqnEKDeJ/QkJCdOrUKd2+fVvBwcGKiIiIVx9fX18bT5Y4GIwxrSRLYkqWLKl79+6ZjiM3u23YsEH58+d/Zf2ZM2fk7e1tFpgzGo1KkyaNDh48aI+RHWrv3r1q0aKFJClbtmzasWOHgycCLOPp6amHDx+anfPw8FBwcLCDJgIAAAAAAAAAAACQGC1fvlz9+vWzuK5NmzYaNGhQjDfmja8TJ07YrJe1bt++rS1btujWrVtW98qfP78qVaqkZMmS2WCy16tQoUKOHgEAAABwuIT0dxU8x99VULZsWe3du9fsXJkyZbRnzx4HTfR6kIPA67Bjxw4FBARoz549Vt0MKtKZM2dsMFXiQ7RS0oMHD2I8b+2bygRnAAAAAAAAAAAAAAB4M23fvl1ffvmlxXXe3t4aOHCgTYNuCU2GDBnUpEkTHTx4UPv374/3nasl6fTp06Ytb3nz5rXhlAAAAAAAAIBthIWFqV+/flq7dq2k5wu0rPUmv3/4Kk6OHiAhcHV1jfH8lStX4lR/7do1i/oCAAAAAAAAAAAAAIDE68iRI+rWrZvFd2cuWbKkvvvuOzk7O9tpsoTDyclJpUqVUpMmTZQhQwarej1+/FgbNmzQL7/8oqdPn9poQgAAAAAAAMA2Bg0apDVr1shoNMpoNMpgMFj1SOoIu0lKlSpVjOe3bt0ap/rt27fHeD516tTxHQkAAAAAAAAAAAAAACRAFy9eVPv27fXkyROL6vLly6cffvhB7u7udposYcqYMaOaNGmi0qVLy8nJuo+pnDp1Sj/99JP+/fdfG00HAAAAAAAAWOfYsWP6+eefo4XVIoNvlj4guTh6gIQgd+7cunnzpukHymAwyGg0at26derSpYuyZ88ea+2tW7e0evVqs+RkZAozV65cdp/dEbJnz64ePXpIij0oCAAAAAAAAAAAAADAm+bOnTvy8/NTUFCQRXWZM2fW3Llzk+xNc52dnVW6dGnlyZNHW7du1e3bt+Pd69GjR1q/fr0KFiyoihUrJrnwIAAAAAAAiB9yELCXlStXmr4mrGYbhN0kvffee9q/f7+k/wXVJOnx48fq2bOn5syZE+Mbzk+fPlWfPn0UHBxsCshFDb299957r+cFvGbZs2fX559/7ugxAAAAAAAAAAAAAAB4bR4/fqwOHTro4sWLFtV5eHho7ty58vLystNkiUemTJnUpEkT7d+/X3/++aciIiLi3evUqVO6cuWKPvnkE+XOndt2QwIAAAAAgDcSOQjYy4EDB8yyRJFiOoe4cXL0AAlB+fLlzY6jhtb+/vtv+fr6av369Xry5IkkKSQkRL/++qsaN26s3bt3m4JuL6pQoYL9hwcAAAAAAAAAAAAAAHYVFhamHj166O+//7aoztXVVTNmzFDBggXtNFni4+zsrLJly6pRo0ZKnz69Vb0ePnyotWvXauvWrQoJCbHRhAAAAAAAAEDcXb9+Pdq5yEyS0WiM1yOpY7ObpLJlyypz5sy6efOmKbgWGXgzGo26ePGivvjiC0nP77j28OFDSf9bLxj5Qxg1dZkpUyaVLVv2Nb8SAAAAAAAAAAAAAABgS0ajUYMHD9Zvv/1mce2YMWP47EAsMmfOrKZNm2r//v06ePCgVR/iOXHihC5duqTKlSsrV65cNpwSAAAAAAAAeLng4GDT11EzSfny5ZOvr69y5syp1KlTs+nNAoTdJLm4uKhNmzYaM2aM2Q9P1A1vkW+qRv0hlBRtq1tkTdu2beXs7PwapgcAAAAAAAAAAAAAAPYydepULV261OK6AQMGqE6dOnaY6M0RueXtrbfe0pYtWxQUFBTvXg8fPtSaNWv07rvvqnz58nJzc7PhpAAAAAAAAEDM0qZNq9u3b0v6X6bI19dXo0aNIuAWT06OHiChaNOmjXLkyCFJ0QJvkediesS03S1Hjhxq06bNa34FAAAAAAAAAAAAAADAlpYtW6aJEydaXNe2bVu1b9/e9gO9oTJnzqxmzZrpgw8+sPoDQMePH9fChQt16dIlG00HAAAAAAAAxC5z5sxmS7QkqVu3bgTdrEDY7f+5u7tr4sSJcnF5vuzuxcBb5COm46jb31xcXDRx4kTuEAYAAAAAAAAAAAAAQCL222+/6auvvrK4rmbNmho4cCAfZrGQs7OzypUrp0aNGilt2rRW9Xr48KFWr16tbdu2KTQ01EYTAgAAAAAAANFVqFAh2rksWbI4YJI3B2G3KIoWLaoJEybIyen5f5bI7W1RvZi2jCnoVqRIkdczMAAAAAAAAAAAAAAAsLkjR46oe/fuCg8Pt6iuVKlSGjdunOlzB7BclixZ1KxZMxUvXtzqwOCxY8f0008/6fLlyzaaDgAAAAAAADDXoEEDOTs7m527fv26g6Z5M/Du6gtq1KihefPmKX369Gab22J7SM+DbhkzZtT8+fNVvXp1R44PAAAAAAAAAAAAAACscOHCBbVv315PnjyxqC5fvnyaMWOG3N3d7TRZ0uHi4qKPPvpIDRo0UJo0aazqFRwcrFWrVum3335jyxsAAAAAAABsLleuXOrVq5eMRqMpZ7RixQoHT5W4EXaLQdmyZbVlyxZ17NhRqVOnltFojPWRJk0ade7cWb/88otKly7t6NEBAAAAAAAAAAAAAEA83b59W35+fgoKCrKoLkuWLJo7d65Sp05tp8mSJi8vLzVv3lzvv/++1Vvejh49qkWLFrHlDQAAAAAAADbXsWNHderUyZQ1mj59upYuXWpawgXLGIz8l3upZ8+e6eDBgzp69Khu3Lihx48fK0WKFMqSJYsKFy6sEiVKyMXFxdFjArCAp6enHj58aHbOw8NDwcHBDpoIAAAAAAAAAAAAgKM9fvxYLVq00JEjRyyq8/Dw0LJly1SgQAE7TRY3J06ccOjz29u1a9e0ZcsW3b9/3+peRYoUUbly5eTq6mqDyWJXqFAhu/YHAAAAEoM3/e8qiRF/V0HZsmW1d+9es3NlypTRnj17HDQRkLj169fP9PX+/ftNN1syGAzKlCmTChcurFSpUll8MyeDwaBRo0bZdNbEgpTWK7i6uqps2bIqW7aso0cBAAAAAAAAlW3mfgABAABJREFUAAAAAAB2EBYWpu7du1scdHNzc9OMGTMcHnRLCiK3vO3Zs0eHDx+2qteRI0d08eJFValSRdmyZbPNgAAAAAAAAEiSVqxYES3IZjAYZDQadePGDd28edPinkajMUmH3ZwcPQAAAAAAAAAAAAAAAICjGI1GDRo0SNu3b7e4dsyYMdw89zVydXVVhQoV1KBBA6VOndqqXvfv39eKFSv0+++/69mzZzaaEAAAAAAAAEmV0WiU0Wg0HRsMBlPozdJHUsdmtzgICwvT5cuXFRwcrKdPnypZsmQqUqSI6fv37t1TmjRpHDcgAAAAAAAAAAAAAACIlylTpmjZsmUW13355ZeqXbu2HSbCq2TLlk3NmzfX7t279ffff1vV6++//9aFCxdUtWpVeXl52WhCAAAAAAAAJDWR292iBtYiA2+WSuqBN8Jusbh//76WLFmiX375RSdOnFBYWJjpewaDQadPnzYdT506VadOndKYMWN44xMAAAAAAAAAAAAAgERi6dKlmjRpksV17dq1U/v27e0wEeLK1dVVFStWVN68ebV161Y9ePAg3r0it7wVK1ZMZcuWlYsLH6cBAAAAAACAZWIKqMUntBafcNybxsnRAyRE8+fPV4UKFTRu3DgdOXJEz549e+lKwL1792rv3r1q0KCBjh075qCpAQAAAAAAAAAAAABAXG3btk2DBg2yuK5mzZoaMGCAHSZCfGTPnl3NmzdX4cKFrepjNBr1119/adGiRbp27ZqNpgMAAAAAAEBSEbnFzdoHCLuZCQsLU69evTR8+HA9evTIFGx72Q/N3bt3derUKRkMBt26dUt+fn66ePGiA6YHAAAAAAAAAAAAAABx8ffff6tHjx4KDw+3qK506dIaN26cnJz4uEVC4ubmpo8//lj169eXp6enVb3u3bunFStW6I8//lBYWJiNJgQAAAAAAMCb7sUlW9Y8kjoXRw+QkIwYMUJr166VFH3tX2To7UX79+83fW0wGHT37l11795dq1atkrOzs30HBgAAAAAAAAAAAAAAFrlw4YI+/fRTPXnyxKK6fPnyacaMGXJ3d7fTZLBWjhw51KJFC/3xxx86duxYvPsYjUYdOnRI58+fV5UqVZQ1a1YbTgkAAAAAAIA3SalSpRw9whuHsNv/2717txYsWGAWaItLGnLPnj3Rzp08eVI//fSTWrdubdMZAQAAAAAAAAAAAABA/N2+fVt+fn4KCgqyqC5LliwKCAhQqlSp7DQZbMXNzU2ffPKJ3n77bf36668KDg6Od6+7d+9q+fLlKl68uMqUKcNNjwEAAAAAABDNokWLHD3CG8fJ0QMkFGPHjjV9HXXtn8FgiHGjW6S9e/eafd9gMMhoNGrOnDmKiIiw38AAAAAAAAAAAAAAACDOHj16pE8//VSXLl2yqM7T01Nz585lu1cikzNnTrVo0ULvvvuuVX2MRqP+/PNPLV68WNevX7fRdAAAAAAAAABiQ9hN0vHjx3X06FFTUC1SZIjtZRveChQoYPp+1OuuXbumAwcO2GliAAAAAAAAAAAAAAAQV8+ePVP37t119OhRi+rc3Nw0Y8YMFShQwE6TwZ7c3NxUuXJl1alTRx4eHlb1CgoK0s8//6zdu3crPDzcRhMCAAAAAAAAeBFhN0nbt283O47c5mY0GuXi4qLSpUvHWjtp0iR17txZRqMx2ga4HTt22GNcAAAAAAAAAAAAAAAQR0ajUYMGDdLvv/9uce24ceNUpkwZO0yF1yl37txq0aKFChUqZFUfo9GogwcPasmSJbpx44aNpgMAAAAAAAAQFWE3SYcOHTJ9HXW7W7169bR371799NNPL63v1auXihUrFm0D3PHjx20/LAAAAAAAAAAAAAAAiLNJkybp559/trhu4MCB8vHxscNEcAR3d3dVqVLFJlve7ty5o59//ll79uxhyxsAAAAAAABgYy6OHiAhuHDhgmkrW+SGto8++kjjxo2LU72Tk5OaNWumw4cPS/pfYO7ChQt2mhgAAAAAAAAAAAAAALzK4sWLNWXKFIvr2rdvr3bt2tlhIjha5Ja3HTt26OTJk/HuExERoQMHDujff/9V1apVlSlTJhtOCQAAAAAAAEc6e/asRo0apf3798tgMOjDDz+Uv7+/8uTJE+3alStX2m0OX19fu/VOyAi76fkdt17UpUsXi3qULFky2rl79+7FdyQAAAAAAAAAAAAAAGCFbdu2afDgwRbX+fj4qH///naYCAmFu7u7qlatqrffflvbtm3To0eP4t3rzp07WrZsmUqUKKGSJUvK2dnZhpMCAAAAAADgdbt48aIaNWqkhw8fymg0SpK2bNmigwcPauXKlcqRI4fZ9f7+/qYFXLaWVMNuTo4eICF4/PhxtHOFChWyqEfmzJmjnXvy5Em8ZwIAAAAAAAAAAAAAAPFz+PBhde/eXRERERbVlS5dWmPHjpWTEx+nSAry5MmjFi1aqGDBglb1iYiI0P79+7V06VLdunXLRtMBAAAAAADAEcaPH6/g4GBJksFgMAXZ7t27pwkTJsRaZzQabfpIynh3VpKrq2u0c5b+YMR0l6+Y+gIAAAAAAAAAAAAAAPs5f/68OnTooKdPn1pUlz9/fs2YMUPu7u52mgwJUbJkyVStWjXVqlVLKVKksKrX7du3tXTpUu3fv9/ioCUAAAAAAAAShl27dkXb1GYwGGQ0GrVz585Y6yKDcbZ4JHUujh4gIUiZMqVCQ0PNzp07d07FihWLc49Tp05FO+fh4WHtaAAAAAAAAAAAAAAAII5u376tdu3aKSgoyKK6LFmyaO7cuUqVKpWdJkNC99Zbb8nLy0u///67/vnnn3j3iYiI0N69e3Xu3Dk5OzvrnXfeseGUAAAAAAAAsLeoy7CMRqNZ+Ozhw4ex1tlqGxthNza7SZJy5MgR7Ydq8eLFFvX48ccfTV9H/jDnyJHDJvMBAAAAAAAAAAAAAICXe/Tokdq3b69Lly5ZVJcqVSoFBAQoa9asdpoMiUWyZMlUvXp1+fj4KHny5Fb1unXrlurXr68pU6bo2bNnNpoQAAAAAAAA9vbWW29FOxeZE3r77bdjrWOrm+0QdpPMftgiVwuuXLlS8+bNe2Wt0WjUhAkTtHXr1mg/VAULFrT1qAAAAAAAAAAAAAAA4AXPnj1Tt27ddOzYMYvq3NzcNGPGDOXPn99OkyExyps3r1q2bKl8+fJZ1efZs2eaOHGiGjRoYNW2OAAAAAAAALw+LVu2NC3UiswJRf7aqlWrWOuMRqPNHkmdi6MHSAg+/PBDrVixQtL/0pZGo1EjRozQ+vXr5evrG63m7Nmz2rt3r5YtW6aTJ0+a1UYqV67c63kBAAAAAAAAAAAAAAAkUUajUQMHDtSOHTssqjMYDBo3bpxKly5tp8mQmCVPnlze3t56++23tX37dj158iTevY4fP666deuqe/fu6tSpk1xc+LgOAAAAAABAQtWsWTMdP35cS5YsMTvfunVrNW7cONr1pUqVel2jJRkGI5E/PXjwQB9++KFCQkIkmQfeIsNrL/5nevF81JCb0WhUqlSptHv3biVLlux1vAQAFvD09NTDhw/Nznl4eCg4ONhBEwEAAAAAAAAAAACIrwkTJmjq1KkW13311Vfy8/Ozw0SOceLECUeP8MZ6/Pixtm/frrNnz1pUt2XLlmjnChcurDFjxrBNEAAAAEkGf1dJeAoVKuToEeBgZcuW1d69e83OlSlTRnv27HHQREDCdOTIEe3bt09OTk4qU6aM3n33XUePlGQ4OXqAhCBVqlSqW7euWaAtauAtpjxg1POR10Wta9asGUE3AAAAAAAAAAAAAADsaNGiRfEKun366advVNAN9pUiRQrVrFlTNWrUUPLkya3qdfToUdWtW1czZsxQWFiYjSYEAAAAAACArRUpUkQdOnRQ+/btCbq9ZoTd/l/Pnj2VMmVKSeZb2wwGg9nWtkiR51/cACdJ6dOnV+fOnV/P4AAAAAAAAAAAAAAAJEFbt27V119/bXFdrVq11K9fPztMhDdd/vz51aJFC+XNm9eqPqGhoRo7dqwaN25s8bY4AAAAAAAA4E1H2O3/ZcyYUd9++63ZtjZJr9zsFjXoZjQa5ezsrIkTJ8rT0/P1DQ8AAAAAAAAAAAAAQBLy119/6fPPP1dERIRFdWXKlNGYMWPk5MTHJRA/KVKkkI+Pj6pXr65kyZJZ1evvv/9W7dq1NXPmTIWHh9toQgAAAAAAACBx493bKHx8fDR48GCzwFtMW90iRf2+0WiUi4uLJkyYoDJlyryWeQEAAAAAAAAAAAAASGrOnz+vDh066OnTpxbVFShQQDNmzJC7u7udJkNSUqBAAbVo0UJvvfWWVX1CQ0M1evRoNWnSRP/++6+NpgMAAAAAAAASLxdHD5DQtG7dWrlz59aAAQN048YNSXpp4C0yGPfWW29p3LhxKlKkyGuZEwAAAAAAAAAAAACApObWrVvy8/PT3bt3LarLmjWr5s6dK09PTztNhqQoZcqUqlWrlk6dOqXff/9dISEh8e71119/qVatWurVq5f8/Pzk7Oxsw0kBAAAAAADwMvv373f0CDEqVaqUo0dwCMJuMahQoYK2bdumZcuWac2aNTp8+HCM1xkMBpUqVUoNGjRQ3bp15eLCf04AAAAAAAAAAAAAAOzh4cOHat++vS5fvmxRXapUqTR37lxlyZLFTpMhqStYsKBy5Mihbdu26fz58/HuExISopEjR2rz5s0aM2aM8uTJY8MpAQAAAAAAEJvmzZu/dFGWIxgMBp0+fdrRYzgE6axYuLu7q1WrVmrVqpWCg4N1+vRp3b59W0+ePFHy5MmVMWNGFShQQClTpnT0qAAAAAAAAAAAAAAAvNGePXumbt266fjx4xbVubm5aebMmcqfP7+dJgOeS5kypWrXrq2TJ09qx44dVm15O3TokHx8fNS3b1+1adNGTk5ONpwUAAAAAAAAsTEajY4eASLsFieenp764IMPHD0GAAAAAAAAAAAAAABJjtFo1JdffqmdO3daVGcwGDR+/HiVLFnSTpMB0b3zzjumLW/WCAkJ0fDhw7V582aNGjVKuXPnts2AAAAAAAAAiFVC2e6W1EN3hN0kFS9ePNo5g8Gg9evXK2vWrA6YCAAAAAAAAAAAAAAASNL48eO1cuVKi+u++uoreXt722Ei4OU8PDxUp04d5c2bV8OHD9fDhw/j3evAgQPy8fGRv7+/WrVqxZY3AAAAAAAAO0oIIbOEErhzJN4Bk/TgwQMFBwfrwYMHZo+E8EMKAAAAAAAAAAAAAEBStWjRIk2bNs3iug4dOqht27a2HwiwQKNGjRQYGKjy5ctb1efp06caOnSoWrZsqUuXLtloOgAAAAAAACBhIuwWhcFgIAEJAAAAAAAAAAAAAEACsGXLFn399dcW19WpU0f+/v52mAiwnJeXlwICAvTtt9/Kw8PDql779u2Tj4+PFixYoIiICBtNCAAAAAAAgEiRuSJrHnHtG9t1IOwGAAAAAAAAAAAAAAASmEOHDunzzz+3ONBTtmxZjR49Wk5OfBwCCYfBYFCTJk0UGBiocuXKWdXr8ePHGjJkiFq1aqUrV67YaEIAAAAAAAAYjUabPKKKDLbFdF1MobeYeiRFLo4e4HUICAjQ/PnzX3ld5A9E5A9SxYoVlS1btng/r8Fg0G+//RbvegAAAAAAAAAAAAAAkpp///1XHTp0UEhIiEV1BQsW1PTp0+Xm5manyQDreHl5af78+Vq8eLFGjRqlR48exbvX3r17VbNmTfXv31/NmjXjrt8AAAAAAABW+P33363uERERoalTp2rFihWm92oic0p169bVhx9+qIwZM+rWrVvavXu31qxZYxaGMxgM8vX1Vbdu3ZL8zbySRNgtODj4lXezipp8jPzaaDRadRcs3kgEAAAAAAAAAAAAACDubt26JT8/P927d8+iOi8vL82dO1eenp72GQywEYPBoObNm6tChQrq37+/9uzZE+9ejx490qBBg7Rp0yaNHDnSqhs6AwAAAAAAJGW2eF9l8ODBWrlypVl47b333tPMmTOVKVMms2sbNGggf39/dezYUcePHzfVrFy5Uq6urho+fLjV8yRmSSrqF5l4fPFh6fVxeQAAAAAAAAAAAAAAgLh7+PCh2rdvb/FNaVOnTq2AgABlzpzZTpMBtpc9e3b9+OOPGjp0qFKkSGFVr127dqlmzZpasmSJ2c2eAQAAAAAA8HosWrRIixYtMntvJk2aNDEG3SJlzpxZP/zwg9KkSSNJpsDb0qVL9dNPP72OsROsJBV2sxRvAAIAAAAAAAAAAAAAYH/Pnj1Tt27ddPz4cYvq3NzcNHPmTL399tt2mgywHycnJ7Vo0UIbN25U6dKlrer18OFDDRw4UH5+frp27ZqNJgQAAAAAAMCr3L9/X2PHjjUtz4rc6taiRYtYg26RsmTJohYtWpjyS5H1Y8eO1b17917D9AlTkgu7GY3GaA9Lr3/VAwAAAAAAAAAAAAAAxI3RaNSAAQO0c+dOi+oMBoMmTJigEiVK2Gky4PXIkSOHFi5cqK+//lrJkye3qtfOnTvl7e2tZcuW8RkWAAAAAACA12DlypUKDg6Odr5ChQpxqo/pukePHmnVqlVWz5ZYJbmwW2RSMurDkmvj8gAAAAAAAAAAAAAAAHHz3XffxeuDG4MHD1aNGjXsMBHw+jk5Oal169basGGDSpYsaVWvhw8fasCAAWrXrp3+++8/G00IAAAAAACAmPz2228xnk+dOnWc6tOkSRPj+W3btsV3pEQvSYXdLN3EFp+tbmx3AwAAAAAAAAAAAAAgbhYuXKjp06dbXNexY0e1bt3aDhMBjpUrVy4tWrRIgwYNUrJkyazqtWPHDnl7e2v58uV8lgUAAAAAAMBO/vnnnxgXZ129ejVO9S9eZzAYZDQadfr0aZvMlxi5OHqA18HPz08NGjSI8XtGo1GVKlUy/TBE/XXhwoXKnj37a54WAAAAAAAAAAAAAIA33y+//KIhQ4ZYXFe3bl317dvX9gMBCYSTk5Patm2rihUrql+/fvrzzz/j3Ss4OFj9+vXTpk2bNGLECGXOnNmGkwIAAAAAAOD+/fsxng8MDFSFChVeWb9582aL+iYFSSLs5unpKU9PT4vrcuTIIS8vLztMBAAAAAAAAAAAAABA0vXnn3+qZ8+eFm+b+vDDDzVq1Cg5OTnZaTIg4ciTJ48WL16s+fPna9y4cQoJCYl3r99++001atTQoEGDVL9+/RjvNg4AAAAAAADLubu76/Hjx6bjyCVcq1evVosWLfTee+/FWnv06FGtXLkyxvdq3Nzc7DJvYsC7v1HwRh4AAAAAAAAAAAAAAPZ17tw5dezY0eLgzjvvvKNp06Yl6Q95IOlxdnZWu3bttH79er3//vtW9Xrw4IH69u2rTp066ebNmzaaEAAAAAAAIGnLmjWr6evIm3sZDAY9e/ZMn376qQ4ePBhj3YEDB9ShQwc9e/bMrDby16S8vCtJbHaLixfvFmfp3eMAAAAAAAAAAAAAAMDL3bx5U35+frp3755FdV5eXpozZ448PT3tMxiQwL311ltaunSp5s6dq/Hjxys0NDTevX799VcdPHhQX3/9terUqcPNoQEAAAAAAKxQrFgxnT171vQeS9TA2+3bt9WsWTOVLl1aZcqUUfr06XXnzh3t3btX+/btk9FoNG2Ci8pgMKhYsWKv+6UkGITdJP31118xnvfw8HjNkwAAAAAAAAAAAAAA8GYKDg5W+/btdfXqVYvqUqdOrYCAAGXOnNlOkwGJg7Ozszp06KBPPvlE/v7+Onz4cLx73b9/X7169dLGjRs1fPhwZcyY0XaDAgAAAAAAJCHe3t5avnx5jN+LDLLt27dP+/btM/teZNAtNtWrV7fpnImJk6MHSAg8PT1jfHDnKgAAAAAAAAAAAAAArBcaGqquXbvqxIkTFtW5u7tr5syZevvtt+00GZD45M2bV0uXLpW/v7/c3Nys6rV161bVqFFDa9eujXYHcQAAAAAAALxahQoVlDdvXkkyyyFF3fBmNBqjPWLaBBf5a548eVSpUqXX+CoSFsJuAAAAAAAAAAAAAADAboxGowYMGKBdu3ZZVGcwGDRhwgSVKFHCTpMBiZeLi4s6deqktWvXqkiRIlb1unfvnr744gt17dpVt2/fttGEAAAAAAAASYPBYNCgQYNivJFQ1GDbi4/I7714vSQNGjQoSS/wIuwGAAAAAAAAAAAAAADsZty4cVq9erXFdYMHD1b16tVtPxDwBsmXL59+/vln9enTR66urlb12rx5s7y9vbVhwwYbTQcAAAAAAJA0fPTRR+rUqZNZsC2qmDa7RRV1q1vHjh1Vvnz51zZ7QuTi6AEAAAAAAAAAAAAAAMCbacGCBZoxY4bFdZ07d1br1q3tMBHw5nFxcVGXLl30ySefyN/fX8eOHYt3r6CgIPXo0UObNm3SkCFDlD59ehtOCiCxOHHihKNHQAwKFSrk6BEAAAAAvESfPn0UEhKiefPmmQXeYtr4FilqKM5oNMrPz099+/a1+6wJHZvdAAAAAAAAAAAAAACAzW3evFnffPONxXX16tVTnz597DAR8GYrUKCAli9fri+++MLqLW8bN25UjRo1tGnTJhtNBwAAAAAA8GYzGAz66quvNH78eKVOndoUcosMvsX0iNzyliZNGk2YMEEDBw508KtIGAi7AQAAAAAAAAAAAAAAmzp48KC++OKLl961OCblypXTyJEjze5oDCDuXF1d1a1bN61evdrqDUBBQUHq2rWrevTooaCgIBtNCAAAAAAA8GarU6eOfvvtN/Xp00cFChQwBdpiehQqVEj+/v767bffVLt2bUePnmC4OHoAAAAAAAAAAAAAAADw5jh79qw6duyokJAQi+oKFSqk77//Xm5ubnaaDEg6ChYsqJUrV2rGjBmaOnWqwsLC4t1rw4YN2rt3r4YNG6bq1avbcEoAAAAAAIA3k6enpzp37qzOnTvr3r17OnPmjIKCgvTkyRMlT55c6dKlU/78+ZU6dWpHj5ogEXYDAAAAAAAAAAAAAAA2cePGDfn5+en+/fsW1WXLlk1z5syRp6ennSYDkh5XV1d1795dlStXVt++fXXq1Kl497pz544+++wz1alTR4MHD1batGltOCkAAAAAAMCbK02aNCpZsqSjx0hUnBw9AAAAAAAAAAAAAAAASPyCg4PVvn17Xbt2zaK6NGnSKCAgQJkyZbLTZEDSVqhQIa1atUrdu3eXs7OzVb3Wrl0rb29vbd261UbTAQAAAAAAAOYIuwEAAAAAAAAAAAAAAKuEhoaqa9euOnnypEV17u7u+uGHH5Q3b147TQZAktzc3NSzZ0+tXLlSBQoUsKrXrVu31KlTJ/Xu3dviLY4AAAAAAADAq7g4egAAAAAAAAAAAAAAAJB4RUREqH///tq1a5dFdU5OTpo4caJKlChhp8kAvOi9997TqlWrNHXqVP3www8KDw+Pd6/Vq1dr9+7dGjFihD755BMbTgkAAAAAAJD43b59W3fu3FFwcLAiIiLi1aNUqVI2nipxIOwGAAAAAAAAAAAAAADibdy4cVqzZo3FdUOGDFG1atXsMBGAl3F3d1fv3r1VtWpV+fv768yZM/HudfPmTXXo0EG+vr4aNGiQUqVKZcNJAQAAAAAAEpfTp09rwYIF2rZtm27evGlVL4PBoNOnT9tossTFydEDAAAAAAAAAAAAAACAxOnHH3/UDz/8YHFdly5d1KJFCztMBCCuihQpojVr1qhLly5ycrLuI0QrV66Ut7e3tm/fbpvhAAAAAAAAEpkJEyaodu3aWrJkiW7cuCGj0Wj1I6ki7AYAAAAAAAAAAAAAACy2efNmDR061OK6+vXrq3fv3naYCICl3N3d1adPHy1fvlx58+a1qtf169fVvn179e/fX8HBwTaaEAAAAAAAIOGbMGGCvv/+e4WHh8toNMpgMFj1SOoIuwEAAAAAAAAAAAAAAIscPHhQPXv2tPjuwuXLl9fIkSP5wAaQwBQtWlTr1q1Tx44drd7y9vPPP6tGjRrauXOnjaYDAAAAAABIuC5cuKAZM2ZEC6uxzS3+XBw9QEIXGhqqffv26ejRo7px44YePnyolClTKnPmzCpcuLDKlCkjNzc3R48JAAAAAAAAAAAAAMBrcfbsWXXs2FGhoaEW1b377ruaOnWqXF1d7TQZAGu4u7urX79+qlatmvz9/fXvv//Gu9f169fVtm1bNWnSRAMGDJCnp6cNJwUAAAAAAEg4li5dqvDwcLOQG6xD2C0W9+/f1/Tp07Vs2TIFBwfHep2Hh4eaNGmiLl26KHXq1K9xQgAAAAAAAAAAAAAAXq8bN27Iz89P9+/ft6gue/bsmjNnjjw8POw0GQBbef/997Vu3TpNmDBBc+bMseoDWkuXLtXOnTs1atQolStXzoZTAgAAAAAAJAz79u0zfR31fZTI8Bss5+ToARKiXbt2qWrVqpozZ44ePHjw0vWAwcHBmjNnjqpWrapdu3Y5enQAAAAAAAAAAAAAAOwiODhY7dq107Vr1yyqS5MmjQICApQxY0Y7TQbA1pIlS6YBAwZo6dKlyp07t1W9rl27ptatW+urr77Sw4cPbTMgAAAAAABAAnH16tVowbaoW97i80jq2Oz2grVr16pv374KDw+XFLckpdFoVFBQkNq1a6dx48apdu3a9h4TAAAAAAAAAAAAAIDXJjQ0VF26dNGpU6csqnN3d9esWbP01ltv2WkyAPb0wQcfaP369Ro/frwCAgKs+rDV4sWLtWPHDo0cOZItbwAAAAAA4I3x4MED09cGg8EUWEubNq18fHyUI0cOpU6dmk1vFiDsFsWBAwdMQbeoP0Qve6POYDCYrg0PD1efPn2UNWtWlShRwu7zAgAAAAAAAAAAAABgbxEREerXr5/27NljUZ2Tk5MmTZqk4sWL22kyAK9D8uTJNXDgQFWvXl3+/v66ePFivHtdvXpVrVu3VsuWLeXv76+UKVPacFIAAAAAAIDXz8PDQ/fu3ZP0PH9kMBhUsWJFff/993J3d3fscImUk6MHSCgeP36snj17mgXdXlz/FxlsezEIF3mNwWBQeHi4vvjiCz158uT1vgAAAAAAAAAAAAAAAOxg7NixWrt2rcV133zzjapWrWqHiQA4QokSJbRhwwa1bdvW6l4LFy6Uj4+P9u7da/1gAAAAAAAADpQlS5ZoS7b69etH0M0KhN3+36xZs3Tjxg2zoFukFwNuMZ2Lev3169c1a9YsO08MAAAAAAAAAAAAAIB9zZs3TzNnzrS47rPPPlPz5s3tMBEAR0qePLkGDRqkRYsWKWfOnFb1unz5slq0aKEhQ4bo8ePHNpoQAAAAAADg9SpdunS0c7lz5379g7xBCLtJCgkJ0cKFC2MNukVub3NyclL69Onl7OxsOhdTCM5oNGrBggUKCQl5ra8DAAAAAAAAAAAAAABb2bRpk4YPH25xna+vr3r16mWHiQAkFKVLl9aGDRvUqlUrq3stWLBAPj4+2r9/vw0mAwAAAAAAeL0aNmwY7dydO3ccMMmbg7CbpB07duju3buS/hd0ixp8K1++vBYvXqyTJ09q7969OnHihJYsWaJKlSqZBd6ihuTu3bunHTt2vOZXAgAAAAAAAAAAAACA9Q4cOKAvvvjC7N/B46J8+fL69ttvo904FsCbJ0WKFBoyZIgWLlyo7NmzW9Xr0qVLat68uYYNG6YnT57YaEIAAAAAAAD7K1iwoNq2bWv2XmpgYKADJ0r8CLtJ2rlzp9lx5HY2g8Ggdu3aae7cuSpZsqScnJ7/53JyclKJEiU0e/ZstWvXLsYNbzH1BQAAAAAAAAAAAAAgoTtz5ow6duyo0NBQi+reffddTZ06Va6urnaaDEBCVLZsWW3cuFEtWrSwqo/RaNS8efPk4+OjgwcP2mg6AAAAAAAA++vXr598fHwkPX+PY/z48frjjz8cPFXi5eLoARKCEydOmL6ODLpJUqFChdS/f/+X3nGuX79+pm1vL14XtS8AAAAAAAAAAAAAAAnd9evX5efnpwcPHlhUlyNHDs2ZM0ceHh52mgxAQpYyZUoNHTpU1atXV//+/XXt2rV497p48aKaNm2qdu3aqVevXkqWLJkNJwUAAAAAALCtKVOmSJLy5s2rXLly6eLFi3ry5In8/PxUrFgxFS1aVKlSpXppNik23bt3t/W4iQJhN0mXLl2K9kNjMBjUsmVL0za32Dg7O6tly5b68ssvzWqNRqMuX75sl3kBAAAAAAAAAAAAALC14OBgtWvXTv/9959FdWnTplVAQIAyZsxop8kAJBblypXTxo0bNWrUKC1ZsiTefYxGo+bMmaNt27ZpzJgxKl68uA2nBAAAAAAAsJ1JkybFmEkyGo06fPiwDh8+HO/eSTXs9vIkVxLx8OHDGM8XKlQoTvXvvvtujOeDg4PjPRMAAAAAAAAAAAAAAK9LSEiIOnfurH/++ceiumTJkmnWrFnKkyePnSYDkNh4enpqxIgRmjdvnrJmzWpVr/Pnz6tJkyYaOXKknj59aqMJAQAAAAAAbM9oNMpoNJqOIwNv8X0kZYTdJEVERMR43sUlbovvYrsutr4AAAAAAAAAAAAAACQUERER6tevn/bu3WtRnZOTkyZNmqT333/fTpMBSMzKly+vwMBANW7c2Ko+ERERmj17turUqWPVndABAAAAAADsyWAwmDa8RQbWIs9Z+kjqCLtJSpkyZYznz58/H6f6f//916K+AAAAAAAAAAAAAAAkFKNHj9a6dessrvvmm29UpUoVO0wE4E3h6empkSNHau7cucqSJYtVvc6dO6dGjRppzJgxCgkJsdGEAAAAAAAAthHTRjY2usUPYTdJXl5eMf5ArFixIk71y5cvNzuO7OXl5WX9cAAAAAAAAAAAAAAA2ElAQIBmz55tcV3Xrl3VvHlzO0wE4E1UsWJFBQYGqmHDhlb1iYiI0A8//KC6devqyJEjNpoOAAAAAADAevHd4sZWt+gIu0nKnz+/6evINYFGo1Hbt2+PFmR70fLly/X777+baiIZDAazvgAAAAAAAAAAAAAAJCQbN27UiBEjLK5r0KCBvvjiCztMBOBNlipVKo0ePVqzZ89W5syZrep15swZNWzYUOPGjWPLGwAAAAAAwBvGxdEDJARly5bVmjVrTMdRA28DBgzQhQsX1KFDB6VOndp0TXBwsGbPnq3p06fHmpwsW7as3WcHAAAAAAAAAAAAAMBS+/btU+/evc1u6hoXFSpU0IgRI7jDMIB4+/jjjxUYGKhhw4Zp1apV8e4THh6u6dOn69dff9WYMWNUuHBhG04JAAAAAAAQN15eXrxfamOE3SR98skncnV1VVhYmCnkFjXw9sMPPyggIECFChVShgwZFBQUpBMnTujp06dm10X94XR1dVXlypUd+KoAAAAAAAAAAAAAAIju9OnT6ty5s0JDQy2qe++99zR16lS5urraaTIASUXq1Kk1btw4eXt7a+DAgbp161a8e50+fVoNGjRQ586d1a1bN7m5udlwUgAAAAAAgJfbsWOHo0d44zg5eoCEIF26dPLx8Yl2x7qoQbaQkBAdPnxYW7du1aFDh/TkyROz779YU6tWLaVNm/Z1vxQAAAAAAAAAAAAAAGL133//yc/PTw8ePLCoLkeOHJozZ45Spkxpp8kAJEWVK1fWpk2bVK9ePav6hIeH6/vvv1f9+vV1/Phx2wwHAAAAAAAAhyDs9v969eold3d3STLb0BYZXou68S3quUhRv3Zzc1PPnj1f2+wAAAAAAAAAAAAAALzKgwcP1K5dO12/ft2iunTp0ikgIEAZMmSw02QAkrI0adLou+++04wZM6z+febUqVPy9fXVpEmTLN5eCQAAAAAAgISBsNv/8/Lykr+/f7TtbpJM5yIDbpHBtsjgW9TrDAaD+vXrJy8vr9czOAAAAAAAAAAAAAAArxASEqLOnTvr9OnTFtUlS5ZMs2bNUp48eew0GQA8V7VqVW3atEm1a9e2qk9YWJgmT56sBg0a6OTJkzaaDgAAAAAAAK8LYbco2rRpo6ZNm8a4uS3qVrcXQ25Rr2vatKlat279WucGAAAAAAAAAAAAACA2ERER8vf31759+yyqc3Jy0uTJk1WsWDH7DAYAL0ibNq0mTpyoadOmKV26dFb1OnHihOrVq6cpU6bo2bNnNpoQAAAAAAAA9ubi6AESmmHDhilNmjSaMWNGtMBbbCKDb126dFGvXr3sPSIAAAAAAAAAAAAAAHE2atQorV+/3uK6oUOHqnLlynaYCABernr16ipRooSGDBmijRs3xrtPWFiYJk6cqC1btmjs2LEqUKCADacEAAAAAACQVq5cabfevr6+duudkBF2e4HBYFCfPn1Uvnx5jRo1SkePHo32/ahb3SSpcOHC6t+/v0qXLv06RwUAAAAAAAAAAAAA4KXmzp2rOXPmWFzXrVs3NWvWzA4TAUDcpE+fXlOmTFHNmjU1ePBgBQUFxbvX8ePHVbduXXXv3l2dOnWSiwsfmQIAAAAAALbh7+8fp0Vb8UHYDWZKly6tVatW6dixY9q6dauOHTum69ev69GjR0qRIoUyZ86swoULq0qVKipcuLCjxwUAAAAAAAAAAAAAwMyGDRs0YsQIi+saNmyonj172n4gAIgHb29vlSxZUkOGDFFgYGC8+zx79kzjx4/XL7/8ojFjxrDlDQAAAAAA2NSLi7WsZa8AXWJA2O0V3nvvPb333nuOHgMAAAAAAAAAAAAAgDjbt2+f+vTpY3FdxYoVNXz48CT9QQoACU+GDBk0depUbdiwQV9//bXu3r0b717Hjh1TvXr11KNHD3Xo0IEtbwAAAAAAwCZs+Z6qrYNziQ3v1kiaN29ejOcbNWqklClTvt5hAAAAAAAAAAAAAACwwj///KNOnTopNDTUorrChQtrypQpcnV1tdNkAGAdHx8flS5dWoMGDdIvv/wS7z6hoaEaN26cactbvnz5bDglAAAAAABIimwVUONGZITdJCnWu9JVq1aNsBsAAAAAAAAAAAAAINH477//1K5dOwUHB1tUlzNnTs2ePZt/IweQ4GXIkEHTpk3TunXr9M033+jevXvx7nXkyBHVqVNHPXv21KeffipnZ2fbDQoAAAAAAIB4cXL0AAmJ0Wg0PQAAAAAAAAAAAAAASEwePHigdu3a6fr16xbVpUuXTnPnzlWGDBnsNBkA2JbBYFCdOnW0adMmValSxapeoaGhGjNmjJo0aaJz587ZaEIAAAAAAJDUGAyGeD+i9gCb3cxE/lAQdnu5K1euaMWKFZKkVKlSyc/Pz8ETAQAAAAAAAAAAAEDSFhISos6dO+v06dMW1SVPnlyzZ89Wnjx57DQZANhPxowZNWPGDK1Zs0ZDhw7V/fv3493rr7/+Uq1atdS7d2/5+fmx5Q0AAAAA3jDkIGBP1uaQDAYDy7uiSBJht1OnTunEiROvvM5oNJqlIFesWKFs2bJZ9dy+vr5W1SdEV65c0eTJkyVJ2bJl4zd5AAAAAAAAAAAAAHCgiIgI9enTR/v27bOozsnJSZMnT1bRokXtNBkA2J/BYFC9evVUtmxZffXVV9q2bVu8e4WGhmrkyJHavHmzxowZQxAYAAAAAN4g5CBgL2fPno1X3f3793X48GFNmzZNf/75pwwGg/LkyaPvv/9e+fLls/GUiUuSCLv98ssvmjJlykuviUw/Rv018jcya7yJYTcAAAAAAAAAAAAAQMIxcuRIbdy40eK6YcOG6ZNPPrHDRADw+mXOnFkzZ87UqlWrNHToUAUHB8e716FDh+Tj46M+ffqoTZs2bHkDAAAAAAA2lzp1alWsWFEfffSR2rRpo7179+r8+fNq2LChfv75Z+XPn9/RIzqMk6MHeF0i1/nF9IhPTVweQHzkzZvX9Fi+fLmjxwEAAAAAAAAAAACQgM2ZM0dz5861uK5Hjx5q2rSpHSYCAMcxGAzy9fXVpk2bVKlSJat6hYSEaMSIEWrevLkuXLhgk/kAAAAAAHCU5s2bm3IKffv2dfQ4iMLZ2Vk9e/Y0HT969Ehdu3ZVSEiI44ZysCQTdpOev6EV08PS6+PyAAAAAAAAAAAAAADAntatW6dvv/3W4rrGjRurR48edpgIABKGLFmyaPbs2Ro9erQ8PDys6nXw4EH5+Pho3rx5ioiIsNGEAAAAAAAA//Puu++aHV+4cEGbNm1y0DSOl6TCblLM29osuZaNbgAAAAAAAAAAAAAAR9u7d6/8/f0trqtUqZKGDRvGTVwBvPEMBoMaNmyowMBAlS9f3qpeT58+1bBhw9SiRQtdunTJRhMCAAAAAAA8FxYWFu3c6tWrX/8gCYSLowd43WJ6wz62gBpv7v9PWFiY9uzZo3Xr1mnFihWm81evXlWHDh1Uu3ZtVatWTcmSJbO499OnT7V+/Xpt3bpVJ0+e1O3bt2U0GpUhQwblyJFDVatWVa1atZQhQ4Z4zf7bb7/p008/tbiuffv2+vLLL195XXBwsFasWKHt27fr5MmTunfvnlKkSKHs2bOrTJkyaty4sfLlyxef0QEAAAAAAAAAAAAgmn/++UedO3dWaGioRXVFihTRlClT5OKS5D4qACAJ8/LyUkBAgJYtW6Zvv/1WDx8+jHev/fv3q2bNmurXr59atGghJ6ckd59xAAAAAEhU7JmDCA4OVvHixS3eAv7ee+9pzZo1cZp9y5YtCgwM1OHDh3Xr1i25uLgoY8aMKl68uOrXr68PP/yQ3MsbYtu2baavDQaDjEajLly44LiBHCxJvYNt6dY1trQ9d/LkSfXv31/Hjh2L8fvbtm3Ttm3b5OXlpREjRqhChQpx7r1161YNHjxYN27ciPa9q1ev6urVq9q7d6/Gjx+vbt26qX379nJ2drZo/v3791t0fVwZjUatWrVKw4YN04MHD8y+9+DBA504cUInTpzQ3Llz1bhxY3355Zfy9PS0yywAAAAAAAAAAAAAkoZr166pXbt2Cg4OtqguZ86cmjVrllKkSGGnyQAg4TIYDGrSpInKly+v/v37a9euXfHu9eTJEw0ZMkSBgYEaPXq0cuTIYcNJAQAAAAC2Ys8chCT9+eefFgfd4urvv/+Wv7+/zp49a3Y+NDRUFy9e1MWLF7Vq1Sp98MEHGj16tPLkyWOXOWB/9+7d0+rVqzVx4sRowcWbN286aCrHSxJht3feeUe+vr6xfn/lypWm5GPUX0uWLKns2bO/xkkTnl27dunTTz+N0x0Br127Jj8/P/Xv318dOnR45fUzZ87U6NGj4zTHo0ePNHr0aB07dkzjxo2Tm5tbnOok6cCBA3G+Nq4iIiI0YsQIzZs3L07XL1u2TIcPH9a8efOUOXNmm88DAAAAAAAAAAAA4M13//59tWvXTtevX7eoLl26dAoICFCGDBnsNBkAJA5eXl6aP3++lixZopEjR+rRo0fx7rVv3z7VrFlT/fv3V7NmzdjyBgAAAAAJiD1zEJHskVOQpPXr16tPnz569uzZK6/9888/Vb9+fc2aNUslS5a0yzx4tUqVKllcYzQadf/+fdN7E5HLuqIG3lxckkTkK0ZJ4pVXrVpVVatWjfX7K1eujPH8uHHj5OXlZa+xErxz586pS5cuZr/Be3h4qHz58sqVK5dcXFx09epVbdu2Tffv3zddM2rUKKVIkUItWrSItffGjRujBd3effddNWzYUG+99ZaSJ0+uy5cvKzAwUFu3bjVds2HDBmXIkEGDBw+O02t48uSJjh49ajpu1aqVGjduHKfadOnSxfq9CRMmmAXdnJycVK1aNVWvXl3ZsmXT/fv39ffff2vRokUKCgqSJJ0+fVpt2rTR8uXL5eHhEacZAAAAAAAAAAAAAECSQkJC1LlzZ505c8aiuuTJk2v27NnKnTu3fQYDgETGYDCoWbNmpi1ve/bsiXevx48fa/Dgwdq0aZNGjRqlbNmy2XBSAAAAAEB82DMHEdX+/ftNXxcrVkzDhg2LU12yZMli/d6OHTv0xRdfmG2MK1asmBo0aKC33npL4eHhOnPmjJYsWWJ6nzA4OFjt2rXTzz//rIIFC8ZpBtjWlStXTIu34ium+pdlWt50SSLsFlcvrvxL6saMGWN2B6saNWpo5MiRSpUqldl1T58+1ZgxYzR//nzTueHDh6tEiRIqUKBAtL7BwcH6+uuvTccGg0EDBw5U27Ztzf5v8MEHH6hevXr6448/1K1bNwUHB0uS5s+fL29v7zglj//66y+FhYWZjqtXr65ChQrF4dXH7vfff9e0adNMx5kyZdL06dNVrFgxs+s++eQTdezYUb1799aWLVskSWfOnNGgQYM0YcIEq2YAAAAAAAAAAAAAkHRERESoT58+Zh+giQtnZ2dNmTJFRYsWtdNkAJB4Zc+eXT/++KMWL16sUaNG6fHjx/HutXv3bnl7e2vAgAFq2rQpn0ECAAAAAAeyVw7ixdqoS3nKly9vdU7h5s2b+vzzz01BN1dXVw0dOlSNGjUy+3tmuXLl1KZNG33//femXMLjx4/VpUsXbdy4UcmTJ7dqDsSfrd4PMBqNMhgMSfp9XSdHD5BQGI1G0wPPA2m//fab6ThTpkwaP358tN/gpefJ4sGDB6tz586mc6GhoRo1alSMvZcsWWLadiZJPXr0kJ+fX6z/w/7oo480depUs3PTp0+P0+uIuhrUzc1N77//fpzqYhMSEmK2Vc7Dw0OLFi2KFnSLlDJlSk2bNk0VK1Y0nVu7dq3++OMPq+YAAAAAAAAAAAAAkDQYjUaNGDFCGzdutLh2+PDh+vjjj+0wFQC8GZycnNSiRQtt3LhRpUuXtqrXo0eP9NVXX6lt27a6du2ajSYEAAAAAFjCnjmIqA4fPqxnz56ZjkuVKmXl5NK3336rBw8emI7HjRunxo0bx5izMBgM6tatm/r27Ws6d+nSJbOlPkgcXpZlqly5sgMmShgIu0lq27ZttEebNm3k4eHh6NEc5vz58woPDzcdV6pUSe7u7i+t6dWrl959913T8aNHj8xWf0Zas2aN6eusWbOqU6dOr5zno48+Mvsf6h9//GH2G3lsot7ZsGjRoi9d+RkXK1eu1JUrV0zHQ4YMUZ48eV5a4+TkpLFjxypNmjSmc5MmTSJYCQAAAAAAAAAAAOCV5syZo3nz5llc9/nnn6tx48a2HwgA3kA5cuTQwoUL9fXXX1t9B/w//vhD3t7eWrZsGZ8NAQAAAIDXzJ45iKhsvZTn7NmzWr9+vem4UaNGqlWr1ivrOnbsaHbzlvnz5+vevXtWzYL4ixpci+sjqshgo8Fg0Ntvvy0fHx9HvIwEgbCbpK+++irGR0zp3aQicvVlpNSpU7+yxtnZWd98843c3NzUp08fLV68WG5ubmbX3L17VydPnjQdV69e/ZV/eESqVq2a6evw8HCztZ8xCQ0N1eHDh03H1qaljUaj2T8ivf3226pbt26catOnT6/27dubjg8dOvTK+QEAAAAAAAAAAAAkbevWrdPIkSMtrmvcuLG6d+9uh4kA4M3l5OSk1q1ba8OGDSpZsqRVvR4+fKgBAwaoXbt2+u+//2w0IQAAAADgVeyVg3hR1KU8RYoUsfrGKT/++KMp+OTq6qoePXrEqc7JyUm9evUyHT969EjLli2zahbEn8FgsOohPc+tZMiQQT/88IOcnJJu5CvpvnK8VMaMGc2OL1y4EKe6999/X9u3b1eXLl3k7Owc7fvnzp0zOy5TpkycZ8qcObPZ8e3bt196/bFjx/T06VPTcdTEcnycOnVKZ8+eNR23bt3aot88WrZsKRcXF9Px2rVrrZoHAAAAAAAAAAAAwJtr9+7d6tu3r8V1H3/8sYYNG2b6cAQAwDK5cuXSokWLNGjQICVLlsyqXjt27JC3t7eWL1/OljcAAAAAeA3slYOI6tmzZ/rrr79Mx9Yu5QkLC1NgYKDpuGrVqvLy8opzfYkSJVS4cGHT8bp166yaB/EXn81uUR9OTk6qU6eO1q9fr5w5czr65TiUy6svQVKUNWtWZc6cWTdu3JAkbd++XWfPntXbb7/9ytoXQ2lR3bx5M87Xvuj+/ftmx696QzHqalAXFxerV4Nu377d7Lhy5coW1adKlUqlS5fWrl27JEm///67vvrqK6tmAgAAAAAAAAAAAPDmOXXqlLp06aJnz55ZVFe0aFFNnjzZ7CacAADLOTk5qW3btqpYsaL69eunP//8M969goOD1a9fPwUGBmrEiBHKkiWLDScFAAAAAERlrxxEVMePH9eTJ09Mx9Yu5Tly5IiCgoJMx1WrVrW4R9WqVXX06FFJ0okTJ3Tr1q1owT/YT3wDj05OTvLw8FDGjBlVuHBhVaxY0aKMzZuMd7gRIycnJ9WvX18zZsyQ9Dx93KFDB82ZM0dvvfVWvPvmzp1bn332mek4e/bsca49cuSI2XGePHleen3U1aCFCxfWvn37tH79eh06dEjXr1+Xk5OTsmbNqpIlS6pJkyYqVqzYS/sdOnTI9HXevHnj9eZjuXLlTGG3f//9V0FBQUqXLl2cag8dOqRFixbp4MGDunHjhpycnJQpUyYVLVpU3t7eqlKlyitT5JGzRxo9erQaNmyoBw8eaOnSpVq/fr0uX76skJAQZcuWTRUqVNCnn37KG60AAAAAAAAAAADAa3Lt2jW1a9dODx8+tKguV65cmjlzplKkSGGnyQAg6cmTJ48WL16s+fPna9y4cQoJCYl3r+3bt6tGjRoaNGiQfH192cAJAAAAAHZgrxxEVFFzCi4uLkqWLJmGDx+uvXv36uLFiwoNDVWGDBlUpEgR1a1bV9WqVZOTk1Os/aLmFCTpww8/tHimcuXKafz48abjP//8UzVq1IhT7ZUrV7RgwQLt3LlTly5dUlhYmNKmTauCBQuqSpUqqlu3rjw8PF7Zp3nz5tq3b58kydfXV2PHjlVYWJg2btyoZcuW6ezZs7p//77Sp0+vUqVKqU2bNipatKjFrzUhWrRokaNHeOMQdkOsOnfurNWrV+v69euSpEuXLqlOnTrq3Lmz2rZtG6ffsF5UqFAhFSpUyOK6sLAwbdiwwXScIUOGl6arw8PDdfDgQdPx4cOH9emnn0a77vz58zp//ryWLVum+vXra8SIEXJ3d4+x55kzZ0xf58+f3+LXIEn58uUzOz537twrw27h4eEaOnSoFi5cGO17ly5d0qVLl7Ru3Trly5dPkyZNUoECBSya6cyZM+rYsaMuXboUbbZz585p6dKlmjp1qipWrGhRX1tp2LChzXtGTdIDAAAAAAAAAAAACcX9+/fVrl07052n4ypdunQKCAhQhgwZ7DQZACRdzs7OateunSpVqiR/f3/99ddf8e4VHBwsf39/bdq0ScOHD+du7QAAAAASjNOnT9vlc9vLly+3ec9XsUcOIqoDBw6Yvg4LC1OTJk2iXXP9+nVdv35dv/zyiwoXLqxp06bJy8srxn5Rcwrp0qWL13t8URfiRPaMS9ht+fLlGjRokEJDQ83O37x5Uzdv3tSOHTv03Xffafjw4apZs6ZFMwUHB6t79+7auXOn2fn//vtPa9as0Zo1a9SzZ09169YtQdwQ5uzZs/r666/Vt2/fVy5Sgv0RdkOsPD09NXv2bDVv3lwPHjyQ9DwkNGHCBM2aNUsNGjRQy5YtbZZwfpklS5aY/rCRpLp167403fzPP/+Y3enQaDS+8jlWrVqlixcvatasWUqTJo3Z98LDw/Xff/+ZjnPnzh334aN4cRvd5cuXVbJkyVivj4iIUPfu3bV58+ZX9j5z5ox8fX01cuRI1alTJ07zBAcHq23btmb/bV/0+PFj0x/4lgbpbMGaN4ljExERYfOeAAAAAAAAAAAAgDVCQkLUqVMnsw+3xEWKFCk0Z84c5cqVy06TAQAk6a233tLSpUs1d+5cjR8/PtoHAS2xbds2eXt7a/Dgwapbt26C+FAfAAAAgKTt0aNHdvnctiPYMwcRERFhtpQnLo4ePSpfX1/NmTNH7777brTvX7lyxfR1fHMKnp6eypw5s+kmWlF7xiYgIEDDhw9/5XX3799X9+7ddejQIQ0cODBOf4c1Go3q3bt3tKDbiyZOnKgMGTKoWbNmr+xpb/3799fhw4fVqFEj1a9fX3379lXGjBkdPVaSRdgNL/XOO+9o+fLl6tq1q9k/qjx8+FDz58/X/PnzVa5cObVt21Yff/yxXd58u3TpksaOHWs6Tp48ufz8/F5aE3U1aM6cOVW1alUVKFBAGTNmlKenp27evKmjR49q+fLlunXrlunaQ4cOafDgwZo8ebJZv4cPHyosLMx0/GIYLq5Sp05tdnz//v2XXr948WIdOXJE0vPXXbt2bVWsWFGZMmXSnTt3dOzYMa1atUpXr16VJD19+lR9+/ZV9uzZVbx48VfO8/333+vu3bvKnDmzmjVrpmLFisnDw0Pnzp3Tjz/+qOPHj0uSQkND9c0337BeEwAAAAAAAAAAALCDiIgI9e7d2+yu0HHh7OysKVOmqEiRInaaDAAQlbOzszp06KBPPvlE/v7+Onz4cLx73b9/X71791ZgYKCGDx/OB+gAAAAAwIbslYM4ffq0KUCXKlUqVatWTcWKFVOmTJmULl063bt3T//++69WrFihf/75x1R369YtdevWTRs2bFCKFCnMet67d8/0dXxzCpHzRIbdovaMyalTp7RmzRpJksFgUIUKFVSrVi3lzJlTjx8/1rlz57R27VpTlkF6Ho7LkiWLPv3001fOsn37dt29e1fJkiVTgwYNVLFiRaVPn143btzQmjVrzJYBjRo1SrVq1ZKnp2c8XrVt7Ny5U4cPH5bBYJDRaNSqVau0efNmde/eXW3atJGrq+tL62NbVjRnzhz+vh9PhN3wSnnz5tWaNWs0b948zZ49W0FBQWbf37Vrl3bt2qXChQtr8ODBcQpZxdWjR4/UpUsXsy1tnTt3VtasWV9ad+DAAeXMmVP+/v6qXr16jFvgqlevru7du+vbb7/VwoULTec3bNggHx8fVa9e3XTuyZMnZrUpU6aM1+t5se7x48cvvT7yD4eiRYtq8uTJyp49u9n3q1atqm7dumnixImaMWOGpOerULt3767AwEClSpXqpf3v3r2rUqVKafr06WZ/ML7//vuqXbu2/Pz8tG/fPknSvn37dO7cuWgrTgEAAAAAAAAAAADEn9Fo1PDhwxUYGGhx7YgRI1SpUiXbDwUAeKm8efNq2bJlmj17tiZOnGjVlretW7fq4MGD+vrrr1W7dm22vAEAAACAjdgjB7F//355eHjos88+U6tWraIF1yTp448/Vrt27fTzzz/r66+/Nv2d8dKlSxo3bpwGDx5sdn3UrEJ8cwqS5OHhEWPPmJw4cUKSlCFDBk2cOFFly5Y1+36FChXk5+entWvXatCgQaY8x5gxY1SiRAkVK1bspf3v3r2rjBkzav78+SpQoIDZ96pXr65x48Zp+vTpkp4HENetW6fmzZvH6XXaw9q1a01fRwbeHj16pLVr16pJkyavDLudOHHCVBf112fPntl79DdW9AQQEAN3d3d16tRJO3bs0NixY/X+++9Hu+bo0aNq3LixpkyZIqPRaPVzhoaGqmvXrjp16pTp3DvvvBOnJPD777+vwMBAeXt7xxh0i+Tu7q5vvvlG7du3Nztvq9dgC3nz5tWPP/4YLegWydXVVX379tXnn39uOnf9+nX9+OOPr+zt4eGhKVOmxJgAd3d311dffWV2LjL4BgAAAAAAAAAAAMA2Zs+erfnz51tc17NnTzVq1MgOEwEA4sLZ2VmdOnXS2rVrrd6wee/ePX3xxRf67LPPdPv2bRtNCAAAAACwdQ4iRYoU2rx5szp16hRj0C2SwWAw9Yxq8eLFCebvfcmSJdP8+fOjBd2iqlOnjqZNm2bKZISHh+u7776LU/9Ro0ZFC7pF6tGjh9KlS2c6dnRO4dChQ9FuPmMwGOTv7+/QjXNJGZvdYJHkyZPL19dXvr6+OnLkiObPn68NGzaYEqdGo1ETJ07U/fv3NXDgwHjfbSoiIkJ9+/bVzp07TefSpk2rGTNmKFmyZK+sj0sgLqo+ffpo27ZtOn/+vCTp5MmT+vfff01bzJInT252/aNHjyzqH1vdy/6AizR27FizlHVsunXrps2bN5vCgStWrFDXrl1f+n+DGjVqKEOGDLF+v1ChQsqQIYPpD9QLFy68cg5bi+n/obDWxYsXFR4ebvO+AAAAAAAAAAAAgCXWrl2rUaNGWVzXpEkTdevWzQ4TAQAslS9fPv3888+aPXu2Jk2aZNWWt19++UUHDhzQN998Ix8fHxtOCQAAAAAvlzJlSrt8bjuhsFUOomHDhhY9b5UqVdSgQQOtWLFC0vOFQL/88ovZFrOoWYX45hQkmbavvdgzNj169FDBggVfeV25cuXUsmVL0zKe3bt369q1a/Ly8oq1JkeOHKpYsWKs33dzc1PZsmW1YcMGSY7JKUR169atGM9nyZLFoj5sa7cdwm6ItyJFiui7775Tt27dNHDgQLM0bUBAgEqWLKnq1atb3NdoNGro0KFav3696Vzy5Mk1Y8aMWLebWcvNzU1NmzbVyJEjTecOHDhgCrulTJlSzs7OpoDUvXv34vU89+/fNztOnTr1K2uKFi0ap95OTk5q1qyZvv76a0nP15xeu3ZN2bJli7UmLn84eXl5mcJuwcHBcZrFlpYvX27znp6enmZ/mAMAAAAAAAAAAACv2+7du+Xv729x3SeffKKhQ4fywQkASEBcXFzUuXNnffzxx/L399exY8fi3evu3bvq0aOHAgMD9c033yh9+vQ2nBQAAAAAYpY/f367fG47IbJXDiI2rVq1MoXdpOc5hahhtzRp0pi+jm9OQZIePHgQY8/YNG7cOM69mzdvbgq7SdKePXvUoEGDWK8vUKDAK9+/jBqWizq7I4SFhcV4fs2aNerdu3ec+xiNRt63tRHCbrBanjx59OOPP6pfv35avXq16fyoUaNUrVo1i//HOmXKFC1YsMB07O7urpkzZ6pEiRK2GjlG5cuXNwu7RW55k56/Kenl5aXLly9Lin9yOGpP6Xli+WWiruaMi1KlSpkdnz179qVht7is1Iy6SS+238QBAAAAAAAAAAAAxN3JkyfVpUsX052j46pYsWKaNGmSXFz4p34ASIgKFCig5cuXa+bMmZoyZYrFv89HFRgYqH379mno0KHy9va24ZQAAAAAAMn2OYjYvPfee0qbNq3u3r0rKXqmIOpCoPjmFB4+fKgbN27E2DM2adOmjXP/fPnyKV26dAoKCpIknTt37qXXW5pTiFxK5CgZM2bUtWvXJP0vsGY0GjVjxgz9/fff+uijj5QuXTo5OTlZ1HfFihUvzXPEha+vr1X1iRXvgMMmXFxcNHr0aJ09e9Z0d6pLly7p6NGjKlKkSJz7LFy4UJMmTTIdu7m5afr06frwww9tPvOLXlyj+WI6OF++fKaw2+nTp+P1HGfOnDE7jtwcF5usWbNa1P/F61/cJBcfJIsBAAAAAAAAAAAA27l69aratWunhw8fWlSXO3duzZw5UylSpLDTZAAAW3B1dVXXrl1VuXJl+fv76/jx4/HuFRQUpG7dusnHx0dDhgyx+KbJAAAAAICXs1UO4mUMBoOyZs1qCrvFlFOIFBQUpNu3bytDhgwWPcfZs2dj7WkrWbJkMYXdXpVTiEsGISHlFDJlyqSrV6+aZjIajaZf9+zZoz179ryyR9SayF8nT55s9WxJNexmWawQScqff/6pX375Jc7Xu7i4qE2bNmbnTp06Fef69evXa8iQIaZjZ2dnTZ48WRUrVoxzD1tyd3c3Oy5evLjp63Pnzun69esW99y1a5fp67feeos3IQEAAAAAAAAAAIAk5N69e2rXrp1u3rxpUV369OkVEBCg9OnT22kyAICtFSxYUCtWrFDPnj2t3si5YcMG1ahRQ5s3b7bRdAAAAADw5nrdOYi4iBrsellOQZJ2795tcf+oOQVJ+uCDDyzukZRVqFAhxvORG95e9YhNXGrj0zcpIOyGaG7fvq2+ffuqcePGGjp0qEJDQ+Nc++6770brFRc7d+5Unz59TP+DdHJy0vjx41W1atW4D/7/jEajwsLCLK578R+UXvyHohdDd7/++qtF/R88eKB9+/aZjmP7DTGq//77z6LnePH6NGnSWFQPAAAAAAAAAAAAwD5CQkLUqVOnaHdZfpUUKVJo9uzZypkzp50mAwDYi6urq7p3765Vq1bpnXfesarXnTt39Nlnn6lnz56mbQAAAAAAgP95HTmIZ8+exWu2GzdumL5+cWFO4cKFlTZtWtPxli1bLO6/detW09fvvPOOMmbMGI8pXy7qsqA3LadQu3btGM8bjUYZDIZXPmITl1pLeyYVhN0QzcKFC7Vy5UpJz8NTP/74Y7x7ubq6vvKaw4cP67PPPjP7jX/UqFGqVauWxc93/fp1+fn5afbs2RbXRg2iSYr2j0XvvPOO8ubNazpesGCBIiIi4tz/p59+MgvhxfYbYlSRaz7jav/+/WbHb7/9tkX1AAAAAAAAAAAAAGwvPDxcvXr10sGDBy2qc3Z21tSpU1WkSBE7TQYAeB0KFSqklStXqkePHlZveVu3bp1q1KgRrw8/AgAAAMCbzJ45iJCQEH377bfq1KmTxRu3zp07ZxaeezGn4OrqKm9vb9Pxli1bdO3atTj3P3TokI4cOWI6jktOQZJFN1I5c+aMWbYhaq7iTZA7d275+fmZhdsiOWKzGwi7IQatWrVS8uTJTccTJ07UxYsX41T74nXZs2d/6fVnz55V+/bt9fjxY9O5YcOGqUGDBhZM/Nz69etVs2ZN7dy5U5MmTdLhw4fjXBsREaEVK1aYjg0Ggz766COzawwGg9q2bWs6PnPmjNatWxen/nfv3tWcOXNMx++//76KFi0ap9q///47TtdFRERo8eLFpuNcuXIpa9ascaoFAAAAAAAAAAAAYB9Go1HDhw/Xpk2bLK799ttvVbFiRTtMBQB43dzc3PT5559rxYoVKlCggFW9bt++rc6dO6t37966d++ebQYEAAAAgETOXjmIEydOqG7dupozZ45+//13zZs3z6K5li9fbnZcqVKlaNe0bt3a9PWzZ880ZcqUOPWOiIjQd999ZzpOkSKFGjduHKfaZcuWxek6SVq0aJHZcdmyZeNcm1j07dtXZcuWNYXNbLGFja1u8WfdrYLeEDH9ZmELBoNBKVKkkIeHh3Lnzq2CBQuqUqVKypMnj12ez1bSp0+vTz/91PQb5JMnT9ShQwctW7bslesm16xZY3ZcvHjxWK+9du2a2rRpY/am21dffaXmzZvHa+4jR47o/v37kqTQ0FB16NBBc+fOVeHChV9Z+9NPP5mF4z766COlT58+2nUNGjTQjBkzdPXqVUnS4MGDVbRoUeXOnTvW3hEREerTp49Z8vnzzz+P829Cffv21cqVK+Xh4fHS66ZMmaJTp06Zjn19ffmNDgAAAAAAAAAAAHCwWbNmxesu0l988YUaNmxoh4kAAI703nvvafXq1Zo6dapmzJih8PDwePdavXq1du/erREjRuiTTz6x4ZQAAAAAkPjYKwdx7do1nTlzxnT87bffytPTM07v3R0/flxz5841HadJkybaUh5Jypcvn2rVqqX169dLeh5EK1++vGrWrPnS/rNmzdLevXtNx23atFHatGlfOZckTZ48WRUqVNA777zz0ut27dqlhQsXmo4//PDDN3Ipj5ubm+bPn69p06YpICDAlE2xBlva4o+wm6QrV67IYDDY7QfJYDDo0KFDkp7/xla0aFF9/vnnKl++vF2ezxa6du2q33//3bTO8ty5c2ratKkmT56s/Pnzx1izaNEis7sRli9fXpkzZ47x2qCgILVp00bXr183nevbt6/8/PziPXOvXr20a9cuU+ArKChITZs2Vd++fdWyZUu5uET/cTcajZo3b55Gjhxpdr53794xPoe7u7uGDh2q9u3bS5IePnyoZs2aacaMGTFuanv06JH69Omj7du3m87Vrl3bov/bnzt3Tq1atdKUKVNi3JT37NkzTZw4UTNmzDCdy5Ahg1m6GwAAAAAAAAAAAMDrt2bNGo0ePdriumbNmqlr1652mAgAkBC4ubmpV69eqlKlivz9/c0+NGmpmzdvqkOHDvL19dWgQYOUKlUqG04KAAAAAImLPXIQVapUUdOmTbVkyRJJz5fh9OvXT0eOHFHv3r2VOnXqGPvu2bNHPXr0UFhYmNl8KVOmjPH6gQMHaseOHXrw4IGk5/mIR48eqVGjRtGuNRqNmj59utlWt5w5c1r0nuLTp0/Vpk0bTZo0KdZNbWvXrtWgQYMUEREh6Xk2pmfPnnF+jsTGyclJ3bp1U6dOnfTHH3/o9OnTunnzpoKDg19at3LlSlMmKeqvJUuWjDEDglcj7BaFPbZgGY3GaCG6w4cPq127dqpfv76GDRsmd3d3mz+vtVxdXTVlyhQ1b97ctMXszJkzqlOnjqpWraoqVaooW7ZsioiI0KVLl7R+/Xrt3LnTVO/u7q4BAwbE2Pvhw4dq3769/v33X9O5GjVqqEKFCjpx4kScZ0yXLp2yZMliOk6WLJlmz56thg0bmkJ0T58+1bBhwzR//nzVqVNHRYsWVdq0aRUUFKSzZ89q5cqVOnv2rFnfHj16vHQbXKVKldSlSxdNnz5d0vM3DRs2bKjq1aurWrVqypYtmx48eKC///5bP/30k4KCgky1+fLl07Bhw+L8GnPmzKlLly7pyJEjqlGjhmrXrq1KlSopU6ZMunPnjo4ePapVq1aZ/m8kPf85HjVqFG9eAgAAAAAAAAAAAA60a9cu9evXz+K6KlWqaMiQIXb592sAQMJSpEgRrVmzRlOmTNEPP/xg+vBgfKxcuVK7du3SiBEj9PHHH9twSgAAAABIPOyVgxgyZIiuXLmiP/74w3Tup59+0rp161SrVi19+OGHypw5sx49eqTLly9r48aN2rNnj1mPcuXKqWXLlrHOnilTJk2cOFGffvqpIiIi9OzZM/Xv319LlixRgwYN9NZbbyk8PFxnz57V4sWLzW6ckiJFCk2fPl3JkyeP03+n7Nmz6+rVq7pz545atWqlihUrysfHRzlz5tSTJ0909uxZrVu3Tn///bdZXceOHfXBBx/E6TkSM1dXV3388cdx/vv1ypUrJUXPJI0bN05eXl42ny8pIOxmZzH9A0RkAG7VqlW6cuWK5syZE+ffVF6n7Nmza8mSJWrbtq3OnTsn6fkWsY0bN2rjxo2x1hkMBg0dOlQFChSI9r2QkBB99tlnpqR0pE2bNpmloeOibdu2GjRokNm5rFmzatmyZercubNZcO7SpUuaOnXqK3u2b99ePXr0eOV1vXr10pMnTzRv3jxJz9PZgYGBCgwMjLUmf/78CggIkKen5yv7R+rcubMCAwO1c+dOPXnyRMuWLdOyZctivd7JyUnffvstb1oCAAAAAAAAAAAADnTixAl99tlnevbsmUV177//viZOnCgXF/4pHwCSCnd3d/Xp00dVq1aVv79/tJs2W+LGjRv69NNP1bBhQ3311VcWfUYFAAAAAN4U9shBuLq6asaMGfryyy+1du1a0/kHDx5o0aJFWrRo0UtnKl26tL7//nu5ubm99LqKFStq/Pjx6tu3r+m9xcOHD+vw4cOx1nh4eGjWrFkqWLDgS3tHVapUKeXKlUsTJkyQ0WjU9u3btX379pfWNGrUSH369InzcyQ1Ly7JgnWcHD1AQhIZQrP3w2AwmFYTHjhwINYNaAmBl5eX1q5dqy5dusTpH1QyZsyo+fPnq2HDhtG+Fx4ert69e2vXrl32GNUkW7ZsWrZsmbp37x7ris8X5cyZ0/SHT1zukOjk5KSvvvpKY8eOjdMGtcaNG2vZsmVmm+jiwtnZWdOnT1e9evVeeW3u3Lm1cOHCGNeUAgAAAAAAAAAAAHg9rl69qvbt2+vhw4cW1eXOnVszZ85MkDdKBQDYX9GiRbV27Vp16tRJTk7WfaRr+fLlqlGjhnbs2GGj6QAAAAAgcbFlDiJS8uTJNX78eI0dO1bZsmWL0xyenp7q06ePFixYEOcbktSuXVtLlizR22+//cprP/jgA61evVqlSpWKU++ounbtqi+//PKVATxPT08NGzZMI0eOtPrvq2+qgQMHRnt8+eWXSp06taNHS7S4HVwUkSGnmBKVsW1oi8t1L9ZE1kUG3jZs2KDatWurcuXK8Rnb7pIlS6Y+ffqodevWWr9+vUaMGGH2/ezZs6tgwYKqVKmS6tSpE2PAzGg0asiQIS/dfGZLyZMnV8+ePdW6dWtt2bJFO3bs0OnTpxUUFKTg4GClSpVKGTNmVPHixVWxYkVVrlxZzs7OFj2HwWCQr6+vqlatqhUrVmj79u06ceKE7t+/r+TJkyt79uwqU6aMmjRponz58ln1Wr777js1a9ZMixcv1oEDB3Tz5k0ZDAZlzpxZRYoUkbe3t6pWrcodHgEAAAAAAAAAAAAHunfvnvz8/HTz5k2L6jJkyKCAgAClS5fOTpMBABIDd3d3+fv7m7a8/fvvv/Hudf36dfn5+alx48b68ssv2fIGAAAAIMmxRQ7iRZEZAh8fH23fvl2///67Dh8+rDt37ujevXtKliyZ0qVLp/fee08ffvihateuLQ8PD4tnL1asmDZs2KBffvlFgYGBOnz4sG7fvi1nZ2dlzJhRH3zwgerVq6dy5crFadlPbK+lffv2qlq1qhYuXKgdO3bo8uXLCgsLU9q0aVWwYEF98sknql+/Pn+nfAU/Pz9Hj/DGMRjZlffSxGtcAnBx/U/44vVRj9955x2tW7cu7kM70N69e9WiRQtJz7eocRcoJDaenp7R7qTp4eGh4OBgB00EAAAAAAAAAACAxO7p06dq3bq1/vzzT4vqUqRIoUWLFqlw4cJ2mgxJxYkTJxw9Al5QqFAhR4+AROzp06eaMGGC5syZE+fPJsUma9asGjVqlD766CMbTYc3HX+mJEz8uQIgseLPlYSHP1NQtmxZ7d271+xcmTJltGfPHgdN9HqQgwASD9ZASfr9998lSeHh4ZowYYLWrVsXLZjWqFEjlS1bVmnTptWtW7d04MAB/fzzz5L+t6HNYDCoTp06+vzzz+Xs7KywsDDduXNHFy5c0KZNm/Tbb7+ZXR9ZI0mnTp3SkSNHVKRIkdf98gEAAAAAAAAAAAAAVggPD1evXr0sDrq5uLho6tSpBN0AANEkS5ZMAwYMULVq1eTv768LFy7Eu9d///2nNm3aqGnTphowYEC8tgoAAAAAAAC8Lk6OHiAhyJYtm7Jly6bvv/9e69evN4XRJKlUqVI6dOiQRo4cqTp16qh8+fLy9fXVyJEjdfDgQZUqVcoUWjMajVq7dq2mT5+ubNmyKVeuXCpevLh8fX01c+ZMLVq0SJkyZZKkGFdFRobhAAAAAAAAAAAAAACJg9Fo1LBhw7R582aLa7/99ltVrFjRDlMBAN4UH3zwgdavX6927drF+HkjSyxZskQ1a9bUrl27bDQdAAAAAACA7RF2+3/z58/XihUrzM5lyJBBM2bMUKpUqWKsSZMmjaZNm6aMGTNK+t/GtuXLl2vBggXRri9ZsqR++OEHubq6mq6P6tChQ7Z4KQAAAAAAAAAAAACA12TmzJkx/vvwq/Tu3VsNGjSww0QAgDdN8uTJNXDgQC1ZskS5cuWyqtfVq1fVunVrDR48WI8ePbLRhAAAAAAAALZD2E3S3bt3NX78eFP4LHJTW6tWrWINukVKkyaNWrZsadoEFxl4++6773Tv3r1o17/33nvy9fU1XR+15vz587Z7UXaUPXt29ejRQz169JCfn5+jxwEAAAAAAAAAAAAAh1i1apXGjBljcV3z5s3VpUsXO0wEAHiTlShRQhs2bFDbtm2t7vXTTz+pZs2a2rNnj/WDAQAAAEAiQA4CSDwIu+n5P0DEdKeicuXKxan+ww8/jHbu0aNHWrVqVYzXV69ePcbzMYXjEqLs2bPr888/1+eff85v8gAAAAAAAAAAAACSpD/++EP9+/e3uK5KlSoaMmSI6WasAABYInny5Bo0aJAWLVqknDlzWtXrypUratmypYYMGaLHjx/baEIAAAAASJjIQQCJB2E3Sb/99luM5z09PeNUH9v2t23btsV43svLK8bzT58+jdPzAQAAAAAAAAAAAAAc5/jx4/rss88UFhZmUd3777+viRMnytnZ2U6TAQCSitKlS2vDhg1q1aqV1b0WLFggHx8f7d+/3waTAQAAAAAAWIewm6TTp0/HeNe8//77L071L15nMBhkNBr1zz//xHh9bKE2d3f3OD0fAAAAAAAAAAAAAMAxrly5ovbt2+vRo0cW1eXJk0ezZs1S8uTJ7TQZACCpSZEihYYMGaKFCxcqe/bsVvW6dOmSmjVrpqFDh7LlDQAAAAAAOBRhN0n379+P8fzWrVvjVB/bdQ8ePIjx/IkTJ2I87+HhEafnAwAAAAAAAAAAAAC8fnfv3pWfn59u3bplUV2GDBkUEBCgtGnT2mkyAEBSVrZsWW3cuFEtWrSwutf8+fNVq1YtHTx40AaTAQAAAAAAWI6wmyQ3Nzez48jNbD///LPOnz//0tozZ87o559/jnEznKura4w1y5YtMzs2Go0yGAzKkSOHhZMDAAAAAAAAAAAAAF6Hp0+fqmPHjvr3338tqkuZMqXmzJnDvwcDAOwqZcqUGjp0qBYsWKBs2bJZ1evixYtq2rSpRowYoSdPnthoQgAAAAAAgLgh7CYpS5Yspq+NRqOk54G3p0+fys/PT6dOnYqx7ujRo2rfvr1CQkLMaiNlzZo1Ws3kyZP1119/mQJ1UeXPn9+q1wEAAAAAAAAAAAAAsL3w8HD17NlThw4dsqjOxcVF33//vd577z07TQYAgLkPP/xQGzduVLNmzazqYzQaNXfuXNWqVUt//vmnjaYDAAAAAAB4NRdHD5AQFC5cWP/++69pO1vkpjWDwaArV66oTp06+uijj/TBBx8offr0unPnjg4cOKBdu3aZro0aXIs8V6RIEUlSUFCQNm/erNWrV+vQoUMxBt0kqXTp0q/nBQMAAAAAAAAAAAAA4sRoNGro0KHasmWLxbUjR45U+fLl7TAVAACx8/Dw0PDhw1WjRg31799f//33X7x7XbhwQU2aNFH79u31xRdfKFmyZDacFAAAAAAAIDrCbpKqVaumNWvWmJ2LGniLiIjQzp07tXPnzhiveVlfSfr77781aNAgU8gtsiZqbYoUKVS5cmVbvSQAAAAAAAAAAAAAgA388MMPWrhwocV1ffr0ka+vrx0mAgAgbj766CMFBgbq22+/1bJly+Ldx2g0avbs2dq2bZvGjBmj999/34ZTAgAAAAAAmHNy9AAJQeXKleXl5SXJPIAWuX0tMqT24iPqJrgXa7Nnz64qVapEe67YtsA1bdpUKVKksP2LAwAAAAAAAAAAAADEy8qVKzV27FiL61q2bKnOnTvbYSIAACzj6empkSNHKiAgQFmyZLGq17///qvGjRtr9OjRCgkJsdGEAAAAAAAA5gi7SXJxcVG/fv3MQmiRogbZXnxEht5evN5gMGjAgAFycor+nzemYFzGjBnVrVs3W74kAAAAAAAAAAAAAIAVdu7cqQEDBlhcV7VqVQ0ePNjs34QBAHC0ChUqaNOmTWrUqJFVfSIiIjRz5kzVqVNHR44csdF0AAAAAAAA/0PY7f/5+PioQYMGprDaixveYnpEFXm9wWBQ8+bNVa1atVifK+pGuGTJkmnKlCny9PS0w6sCAAAAAAAAAAAAAFjq+PHj6tq1q8LCwiyqK168uCZOnChnZ2c7TQYAQPx5enpq1KhRmj17tjJnzmxVr7Nnz6pBgwYaN24cW94AAAAAAIBNEXaLYvjw4apdu3a0bW4vE/Uao9Gohg0b6uuvv37p9ZHXpk+fXnPnztUHH3xgo1cAAAAAAAAAAAAAALDG5cuX1b59ez169MiiurfeekszZ85UsmTJ7DQZAAC28fHHHyswMFC+vr5W9YmIiND06dNVt25dtrwBAAAAAN44oaGhCg4OfukjNDTUYf3eZC6OHiAhcXV11fjx41WsWDGNGzdOT548iVPgzWg0KmXKlBowYICaNm360uskyc3NTY0bN1aPHj2ULl06m74GAAAAAAAAAAAAAED8BAUFyc/PT7du3bKoLmPGjAoICFDatGntNBkAALaVOnVqjR07Vt7e3ho4cKBu3rwZ715nzpxRw4YN1blzZ3Xr1k1ubm42nBQAAAAAgNcvNDRU9evX1+nTp2O9JleuXFqyZIkyZMgQp573799XkyZNdPny5VivyZ8/v1atWpXk/27NZrcXGAwGtWnTRtu3b9dnn32mPHnyyGg0xvrImzevPv/8c/3++++xBt3c3d1VuHBh+fr6asyYMdq3b5+GDBlC0A0AAAAAAAAAAAAAEognT56oY8eOOn/+vEV1KVOm1Jw5c5Q9e3Y7TQYAgP188sknCgwMVL169azqEx4eru+//1716tXTsWPHbDMcAAAAAAAOMnHiRP3zzz+xZolSpUqlgICAOAfdpP/dNC1lypSx9j19+rQmTpxovxeWSBiMkevGEKugoCCdOXNGd+/e1dOnT5UsWTKlS5dO+fLl4858QCLk6emphw8fmp3z8PBQcHCwgyYCAAAAAAAAAACAI4WHh+uzzz7T1q1bLapzcXHRnDlz9NFHH9lpMiDuTpw44egR8IJChQo5egTAIlu2bNFXX32l27dvW9XHxcVFXbp00WeffZbk70SfWPFnSsLEnysAEiv+XEl4+DMFZcuW1d69e83OlSlTRnv27HHQREDCcuHCBVWrVk0xxa2MRqMMBoNmzZqlSpUqxav/5s2b1bVrVxkMhhj7Ozk5afPmzcqTJ0+8+r8J2OwWB+nSpVPp0qVVo0YN1atXTzVq1FCpUqUIugEAAAAAAAAAAABAImc0GvXNN99YHHSTpFGjRhF0AwC8MapWrapNmzapTp06VvUJCwvTlClT5Ovrq5MnT9poOgAAAAAAXo+ZM2cqIiJCkkwb1yK/NhgM8vb2jnfQTZKqV6+uSpUqmfWNGqwzGo2aOXNm/F/AG4CwGwAAAAAAAAAAAAAgyZo+fbp++ukni+v69u2r+vXr22EiAAAcJ23atJowYYKmTZum9OnTW9Xr5MmTqlevniZPnqxnz57ZaEIAAAAAAOznzp07WrVqVYxb1yJ98cUXVj9Pr169YjxvMBhkNBq1evVqqzevJ2aE3QAAAAAAAAAAAAAASdKKFSv03XffWVzXqlUrderUyQ4TAQCQMFSvXl2bNm2Sj4+PVX3CwsI0adIkNWjQQKdOnbLRdAAAAAAA2Mevv/5qumFL5La1yACawWBQ2bJllSdPHqufp1ChQipevLipb9Tnk57/fXrr1q1WP09i5eLoARKy27dv686dOwoODjatILRUqVKlbDwVAAAAAAAAAAAAAMBaO3bs0JdffmlxXbVq1TRo0KCX3tkXAIA3Qbp06TR58mR5e3tr8ODBCgoKinev48ePq169eurWrZs6deokV1dXG04KAAAAAIBt/Pnnny/9fsWKFW32XJUrV9ahQ4deOkvTpk1t9nyJCWG3F5w+fVoLFizQtm3bdPPmTat6GQwGnT592kaTAQAAAAAAAAAAAABs4ejRo+ratavCwsIsqvvggw80YcIEOTs722kyAAASHm9vb5UsWVJDhgxRYGBgvPs8e/ZMEyZM0JYtWzRmzBgVKFDAhlMCAAAAAGC9f/7556XfL168uM2e64MPPoj1e0ajUWfOnLHZcyU2To4eICGZMGGCateurSVLlujGjRsyGo1WPwAAAAAAAAAAAAAACcfly5f16aef6vHjxxbV5c2bVz/88IOSJUtmp8kAAEi4MmTIoKlTp2ry5MlKmzatVb2OHTumevXqafr06RYHzwEAAAAAsKcbN27IYDDE+n0vLy+bPVf27NljPB/5/NevX7fZcyU2hN3+34QJE/T9998rPDxcRqNRBoPBqgcAAAAAAAAAAAAAIGEJCgqSn5+fbt++bVFdpkyZFBAQYPWH+wEASOx8fHy0adMmVatWzao+oaGhGjdunBo1apSk71QPAAAAAEhYgoODX/r91KlT2+y50qRJY9UsbzLCbpIuXLigGTNmRAursc0NAAAAAAAAAAAAAN4MT548UceOHXX+/HmL6jw8PDRnzhxly5bNTpMBAJC4ZMiQQdOmTdOECRNe+cG8Vzly5Ijq1KmjH374gS1vAAAAAACHCwkJeen3nZ2dbfZcr+r17Nkzmz1XYkPYTdLSpUsVHh5uOia0BgAAAAAAAAAAAABvjrCwMPXs2VN//fWXRXUuLi6aNm2aChUqZKfJAABInAwGg+rUqaNNmzapSpUqVvUKDQ3VmDFj1KRJE507d85GEwIAAAAAYDl3d/eXfv/evXs2e65X9XJzc7PZcyU2hN0k7du3z/R11JBb1E1vljwAAAAAAAAAAAAAAAmD0WjUkCFDtHXrVotrR48erXLlytlhKgAA3gwZM2bUjBkz9N133yl16tRW9Tp8+LBq1aqlWbNmmd24HAAAAACA1yVFihQv/f6ZM2ds9lyv6pU8eXKbPVdiQ9hN0tWrV6OF1CKPI7e8WfoAAAAAAAAAAAAAADjetGnTtHjxYovr/P39Va9ePdsPBADAG8ZgMKhevXoKDAzUJ598YlWv0NBQjRo1Sk2aNNH58+dtNCEAAAAAAHGTJUuWl2aCdu/ebbPniq1X5PNnzZrVZs+V2Lg4eoCE4MGDB6avDQaDKbCWNm1a+fj4KEeOHEqdOjVb2wAAAAAAAAAAAAAgEVm+fLnGjx9vcV2rVq3UsWNHO0wEAMCbK3PmzJo5c6ZWrVqloUOHKjg4ON69/vrrL/n4+KhPnz5q06aNnJ2dbTgpAAAAAAAxy5kzp06cOBHtfGTWaO3aterVq5ecnKzbPRYeHq61a9fGmlMyGAzKmTOnVc+RmBF2k+Th4aF79+5Jep6ANBgMqlixor7//nu5u7s7djgAAAAAAAAAAAAAgMV+//13ffnllxbXVa9eXYMGDeJmqAAAxIPBYJCvr68+/PBDDRw4UNu3b493r5CQEI0YMUKbNm3S6NGjlSdPHtsNCgAAAABADAoXLqxNmzaZnYvMGUnSf//9p5UrV6phw4ZWPc+KFSt07do1U4gutlmSKuuihG+ImNYM9uvXj6AbAAAAAAAAAAAAACRCR48eVbdu3RQeHm5RXYkSJTR+/Hi2xwAAYKUsWbJo9uzZGj16tDw8PKzq9eeff6pWrVoKCAhQRESEjSYEAAAAACC6kiVLxvq9yGDa6NGjde3atXg/x5UrVzR69OhX3nDtZbO86Qi7SSpdunS0c7lz5379gwAAAAAAAAAAAAAArHLp0iW1b99ejx8/tqju7bff1g8//KBkyZLZaTIAAJIWg8Gghg0batOmTapQoYJVvZ4+farhw4erRYsWunjxoo0mBAAAAADAXLFixZQ+fXpJMgujRV2wdffuXXXo0EG3b9+2uP+tW7fUvn173b9/P1rfqM+XPn16vf/++xb3f1MQdpNiXB94584dB0wCAAAAAAAAAAAAAIivO3fuyM/Pz+J/782UKZMCAgKUJk0a+wwGAEASljVrVs2dO1cjR460esvb/v375ePjox9//JEtbwAAAAAAm3NyclLt2rXNQmiRjEajDAaDDAaD/vnnH/n6+urgwYNx7r1nzx7Vr19f586dM22Ji+05ateu/crNb28ywm6SChYsqLZt25r9oAQGBjpwIgAAAAAAAAAAAACAJZ48eaKOHTvqwoULFtV5eHho7ty58vLyss9gAABABoNBjRs3VmBgoD766COrej158kTffPONWrZsqcuXL9toQgAAAAAAnmvVqpUpaPZi4Cwyd2QwGHTt2jU1a9ZMn332mbZv366QkJBovUJCQrRt2zZ17NhRrVu31vXr12N8zqjPYzAY1KpVK1u9nETJxdEDJBT9+vXTrVu3tGHDBhmNRo0fP1758uWz+s0VAAAAAAAAAAAAAIB9hYWF6fPPP9fhw4ctqnN1ddW0adP0zjvv2GcwAABgxsvLS/PmzdOSJUs0cuRIPXr0KN699u3bp5o1a6p///5q1qyZnJy47zsAAAAAwHq5cuVSw4YN9fPPP8e4XS3qhjej0agtW7Zoy5YtcnZ2Vo4cOZQmTRpJ0r1793Tp0iXTZvLIusivY+vboEED5cyZ034vMBEg7CZpypQpkqS8efMqV65cunjxop48eSI/Pz8VK1ZMRYsWVapUqeK1ArB79+62HhcAAAAAAAAAAAAA8P+MRqO+/vpr/frrrxbXjhkzRuXKlbPDVAAAIDYGg0HNmjVThQoV1L9/f+3evTvevR4/fqzBgwcrMDBQo0aNUvbs2W04KQAAAAAgqerVq5d++eUXPXjwwBRqi+rFwJv0/KZs58+fjzXQ9qrzkpQqVSr17t3b5q8nsSHsJmnSpEnRgmyRP3CHDx+2+O5/URF2AwAAAAAAAAAAAAD7+f7777VkyRKL6/r166c6derYYSIAABAX2bJl048//qjFixdr5MiRevz4cbx77dmzx2zLW3xuag4AAAAAQKSMGTNq2LBh6tGjR6x/x4wMrb34/Vedj62XwWDQ8OHDlSFDBmtGfyOwuz0Ko9Fo9sMTGXiL7wMAAAAAAAAAAAAAYD/Lly/XhAkTLK5r06aNOnToYIeJAACAJQwGg5o3b66NGzeqTJkyVvV69OiRBg0apLZt2+ratWs2mhAAAAAAkFTVrFlTXbt2NdviFpOYskhRr31ZxijyOoPBoK5du8rb29uGryDxIuwWRdQfqMgfpshzlj4AAAAAAAAAAAAAAPazfft2ffnllxbXeXt7a+DAgfy7LgAACUiOHDm0YMECDRkyRMmTJ7eq1x9//CFvb28tXbqUG5YD/8fefUZHVX5vH78mCQmEhF4jiDTpRUF6ld6RJkUhdKQI8kOaFKlSRCmCqEAo0pTeRHqVopQE6UWpoZckBEib54VP5p9JgUwyh7TvZ61Z5Jw5+753cGQIM9dsAAAAAPHy2WefqWvXrjFOa4vI1kFaEfNLXbt21YABA+zae1JG2C2C6B5ITHQDAAAAAAAAAAAAgMTFx8dHffv2VWhoqE117733nqZNmyZHR0eDOgMAAHHl4OCgjz/+WJs3b1a5cuXitVZAQICGDx+uzp07M+UNAAAAABAvw4YN06hRo+Tk5CQp6uQ2W4XXm81mOTk5afTo0Ro6dKi92k0WCLtFENcpbkx1AwAAAAAAAAAAAIDX4+rVq+rWrZuePXtmU13BggX1ww8/yMXFxaDOAACAPeTJk0dLly7VyJEjlTp16nittX//fjVo0EC//vorH2IOAAAAAIizjh07atWqVSpRooTVlLfYZIkiXxc+aKtEiRJatWqVPv7449f1bSQZhN0AAAAAAAAAAAAAAEnCgwcP1LlzZz148MCmuuzZs2vBggVKnz69QZ0BAAB7cnBwkKenpzZv3qyyZcvGa62AgAANHTpUXbt21e3bt+3UIQAAAAAgpSlWrJhWr16t6dOnq0iRIpbQWkzht4ghuIjXFilSRN9++61Wr16tYsWKJeS3lGg5JXQDiYGHhwcT2QAAAAAAAAAAAAAgEQsMDFT37t119epVm+rc3Ny0YMECeXh4GNQZAAAwyltvvaVly5Zp8eLFmjp1ql68eBHntfbu3av69etr5MiRatGiBe8XAwAAAADYzGQyqXHjxmrcuLHOnTunLVu26M8//9Tff/+tZ8+eRVuTJk0aFStWTO+9954aNGigokWLvuaukx7CbpL27duX0C0AAAAAAAAAAAAAAGIQEhKi/v37y9vb26a6VKlS6fvvv1fhwoUN6gwAABjN0dFRnTt3Vo0aNTR48GAdP348zmv5+/tr8ODB+u233zRhwgRlz57djp0CAAAAAFKSwoULW/3b871793Tv3j09e/ZMZrNZrq6uypIli7Jly5aAXSZNDgndAAAAAAAAAAAAAAAAMTGbzRo1apR27dplc+2UKVNUqVIlA7oCAACvW968ebVixQoNGzZMzs7O8Vpr9+7dql+/vtauXSuz2WynDgEAAAAAyUVwcLDNNVmzZlXRokVVpkwZlS1bVkWLFiXoFkeE3QAAAAAAAAAAAAAAidZ3332nlStX2lw3bNgwNW3a1ICOAABAQnF0dFS3bt20adMmlS5dOl5r+fn5adCgQerVq5fu3btnnwYBAAAAAMnC+++/r2XLlikoKCihW0mRCLsBAAAAAAAAAAAAABKlX375RdOnT7e5ztPTU127drV/QwAAIFHInz+/fvnlFw0ePDjeU9527Nih+vXra8OGDUx5AwAAAABIknx9fTV69GjVrFlTS5Ys0YsXLxK6pRSFsBsAAAAAAAAAAAAAINHZvXu3RowYYXNdw4YN9cUXX8hkMhnQFQAASCwcHR3Vs2dPbdiwQSVLlozXWo8fP9Znn32m3r176/79+3bqEAAAAACQ1N25c0djx45VjRo15OXlpefPnyd0SymCU0I3YJT79+/ru+++05EjR+Tg4KBKlSrpk08+UaZMmaJce/ToUcP6KFeunGFrAwAAAAAAAAAAAEBy5OPjo379+ik0NNSmunLlyunrr7+WgwOf+woAQEpRsGBB/frrr5o3b55mzJihoKCgOK+1bds2/fnnn/ryyy/VqFEjwvMAAAAAkMKZTCaZzWbdu3dPEydO1Ny5c9W9e3e1b99erq6uCd1esmUyJ8PZ6/fv31eLFi3k6+trGS1vMpmUK1curV69OkrgrUCBAob8w4TJZNKFCxfsvi6A+HF3d1dAQIDVOTc3N/n7+ydQRwAAAAAAAAAAAAj377//qnXr1nr48KFNdQULFtTKlSuVPn16gzoDErczZ84kdAuIpGjRogndApDinD9/XoMHD9bff/8d77Xq16+vMWPGKEuWLHboLGnhOSVx4nkFQFLF80riw3MKKlasqMOHD1udq1Chgg4dOpRAHQGJT3Q5o4j5pAwZMqhbt2766KOPlDZt2oRoMVlLlh9n98033+jWrVtWDySz2awbN27o22+/jbHObDbb/QYAAAAAAAAAAAAAiJ379++rc+fONgfdcuTIoQULFhB0AwAghStUqJBWrVqlgQMHKlWqVPFaa+vWrWrQoIG2bNlip+4AAAAAAElNxGyQyWSy5JMePXqkr7/+WtWqVdPs2bMZvGNnyTLstmvXLsuDKDxJGf6A2rFjR4x1EWviewMAAAAAAAAAAAAAxF5gYKC6d++ua9eu2VTn5uamBQsWyMPDw6DOAABAUpIqVSr16dNH69atU7FixeK11sOHD9WvXz/169fP5jA+AAAAACD5iCn09uTJE02fPl3Vq1fXrFmz5Ofnl8CdJg/JMuz2+PFjy9eRp6tFvC8yprkBAAAAAAAAAAAAwOsXEhKifv36ycfHx6Y6Z2dnzZ07V4UKFTKoMwAAkFQVLlxYq1ev1oABA+Tk5BSvtbZs2aL69evr999/t1N3AAAAAICkKKbQm5+fn2bOnKlq1arp22+/fWl2Ca+WLMNuuXLlitN9THUDAAAAAAAAAAAAgNfLbDZr5MiR2rNnj821U6ZMUcWKFe3fFAAASBZSpUqlfv36ae3atSpSpEi81nrw4IF69+6tAQMG6NGjR3bqEAAAAACQmMWUE4op9BYQEKA5c+aoevXq+vrrr5kSHkfJMuzWqlUrqwdNOJPJpNatWydUWwAAAAAAAAAAAACASGbNmqVffvnF5rrhw4erSZMmBnQEAACSm6JFi2rNmjX69NNP4z3lbePGjapfv762b99up+4AAAAAAIlNvXr15ODgECXQFjn4FlPo7enTp/rhhx9UvXp1TZo0Sffv33/t30NSFr+f3BOpbt266ejRo9q3b5/V+Vq1aqlr165Rrvfw8GAiGwAAAAAAAAAAAAC8ZitXrtSMGTNsruvSpUu0r/0CAADExNnZWf3791etWrU0ePBgnT9/Ps5r3b9/X7169VKzZs00atQoZciQwX6NAgAAAAAS3OzZs3Xv3j2tXLlSK1eulK+vryTrSW/hIbeIX0e+/9mzZ5o/f75+/vlntWvXTt27d1e2bNle83eT9JjMEX93kxGz2aytW7fqyJEjMplMqlixourUqUOoDYDc3d0VEBBgdc7NzU3+/v4J1BEAAAAAAAAAAEDKs3v3bvXs2VOhoaE21TVs2FAzZsyQg4ODQZ0BSdOZM2cSugVEUrRo0YRuAUAMgoKC9N1332nu3Lk2/10ksqxZs2rChAmqVauWnbpLeDynJE48rwBIqnheSXx4TkHFihV1+PBhq3MVKlTQoUOHEqgjIHELCwvTnj17tGzZMu3du1dms9kqmxRdLCu6+00mk1KlSqUPP/xQPXr0UM6cOY1vPolKtmE3AIgJYTcAAAAAAAAAAICE5e3trQ4dOujZs2c21ZUvX15eXl5ycXExqDMg6eINpIkPbyAFEr9Tp07p888/18WLF+O91gcffKCRI0cqffr0dugsYfGckjjxvAIgqeJ5JfHhOQWE3YC4u3XrlpYvX65Vq1bp3r17kqIPtoWLKfTm5OSk1q1bq1evXvLw8HgNnSctfNQdAAAAAAAAAAAAAOC1+ffff9WtWzebg24FCxbU3LlzCboBAAC7KVGihNavX69PPvkk3lNj165dqwYNGmj37t126g4AAAAAkNh4eHjof//7n/bv369Zs2apUqVKMpvNVkG2yAG3yPeZzWYFBwdr+fLlqlWrlr744gtdv349Qb6fxIqwGwAAAAAAAAAAAADgtbh//746d+6shw8f2lSXI0cOeXl5KV26dAZ1BgAAUioXFxcNGjRIq1evVsGCBeO11p07d9StWzcNGTJEfn5+duoQAAAAAJDYODk5qUGDBlq8eLG2b9+uLl26KH369JZwW3iwLTz49rLQ2y+//KI6depo6NCh+vfffxPwu0o8CLsBAAAAAAAAAAAAAAz39OlTdevWTdeuXbOpzt3dXQsWLFDOnDkN6gwAAEAqWbKk1q9fr549e8Z7ytuqVavUoEED7d27107dAQAAAAASq7x582r48OE6ePCgvv76a5UpUybGaW8xhd5CQkK0evVq1atXT4MGDdKVK1cS7PtJDEzm8N+lJO7WrVsJ3UK0PDw8EroFAJG4u7srICDA6pybm5v8/f0TqCMAAAAAAAAAAIDkLTg4WD179rT5Dd/Ozs7y8vJShQoVDOoMSD7OnDmT0C0gkqJFiyZ0CwDi6OTJkxo8eLAuX74c77XatGmj4cOHy93d3Q6dvR48pyROPK8ASKp4Xkl8eE5BxYoVdfjwYatzFSpU0KFDhxKoIyD5OX/+vJYvX65169ZFyS5EFB6CkxQlBNeoUSP16dNHBQoUMLzfxCbZhN0KFChg9R85MTCZTLpw4UJCtwEgEsJuAAAAAAAAAAAAr4/ZbNawYcP066+/2lw7c+ZMNWrUyICugOSHN5AmPryBFEjanj9/runTp2vevHmK71vscuTIoUmTJqlq1ap26s5YPKckTjyvAEiqeF5JfHhOAWE34PUJDAzUxo0bNW3aND169EiSov0ZM6bQmyTVr19fX375pTJnzvwaOk4c4jdvPZEJH+eXmG4AAAAAAAAAAAAAkJLNmDEjTkG3L774gqAbAABIMKlTp9bQoUO1cuVK5c2bN15r3b59W56enho+fDgfxgwAAAAAKURAQIDWrl2rxYsXvzToFn4+csjNbDarcuXK6tSpU4oKukmSU0I3YE+JabIbQTcAAAAAAAAAAAAAKd2KFSs0a9Ysm+u6du2qLl26GNARAACAbcqUKaNNmzbpm2++0YIFC+L1vrCVK1dq//79mjRpkipXrmzHLgEAAAAAicXp06e1bNkybdy4Uc+ePZP06oxRxICbJFWvXl19+/bVO++8Y2yziVSyCrtJiSNklphCdwAAAAAAAAAAAACQEHbt2qWRI0faXNeoUSMNHTrUgI4AAADiJnXq1Bo+fLjq1q2rwYMH6+rVq3Fe69atW+rYsaPat2+vIUOGyM3NzY6dAgAAAAASwvPnz7Vp0yYtW7ZMp06dkmSdbzKZTFHyThGzR+H31apVS3369FHJkiVfQ9eJV7ILuwEAAAAAAAAAAAAAEtbJkyfVr18/hYWF2VRXvnx5TZ06VQ4ODgZ1BgAAEHdly5bV5s2b9fXXX2vRokXx+mD2ZcuWad++fZo0aZIqVqxoxy4BAAAAAK/LxYsXtXz5cq1du1YBAQGS/i+4Fl2YLabz9erVU58+fVS0aNHX0Xail+zCbvaYqhbdP0JEt25srwMAAAAAAAAAAACAlOKff/5R9+7d9fz5c5vq3n77bc2dO1cuLi4GdQYAABB/adKk0ciRI1WvXj0NGTJE165di/NaN27c0EcffaSPP/5Yn3/+udKmTWvHTgEAAAAARggKCtLWrVu1fPly/fXXX5JeHWaL7rzJZFKjRo3Uu3dvFSpU6DV0nnQkq7BbfD4pJyYve5CF3xfxvBE9AAAAAAAAAAAAAEBScP/+fXXp0kUPHz60qS5HjhxasGCB0qVLZ1BnAAAA9lWuXDlt3rxZU6dO1eLFi+O11pIlS7Rnzx5NnjxZ5cuXt1OHAAAAAAB7unr1qlasWKFVq1bp8ePHkl49xS26+xwcHNS0aVP17t1b+fPnN77xJCjZhN2WLl1ql3XWrFmj1atXR3kwZc+eXZUrV1bWrFl17949HTx4UHfu3LGE3sJTlS1atFCLFi3s0gsAAAAAAAAAAAAAJBVPnz5V165dbZ5uki5dOnl5eSlnzpwGdQYAAGAMV1dXjR492jLl7caNG3Fe6/r162rfvr06deqkQYMGydXV1Y6dAgAAAADiIjQ0VDt27NDy5ct18OBBSbGb4hbdfY6OjmrevLk++eQTvfXWW8Y2nsQlm7CbPT7R5vvvv9eaNWusJrblypVLP/zwQ7QjAc+fP6+ePXvq5s2blsDbmjVrlCdPHvXu3Tve/QAAAAAAAAAAAABAUhAcHKy+ffvq77//tqnO2dlZc+fO1dtvv21QZwAAAMarUKGCtmzZoilTpujnn3+O11qLFi3S7t27NWXKFL333nt26hAAAAAAYItbt27pl19+0S+//KJ79+5Jit0Ut+jud3JyUosWLfTJJ58od+7cBneePDgkdAOJxe+//65p06ZZjs1ms9KkSaMFCxZEG3STpEKFCmn+/PlycXGRJEvg7dtvv9Xvv//+WvoGAAAAAAAAAAAAgIRkNps1YsQI7du3z6Y6k8mkr7/+2i4fbAoAAJDQ0qZNqzFjxmjJkiV644034rXWtWvX1K5dO40fP17Pnj2zU4cAAAAAgNiqXr26Zs+erbt378psNstsNstkMlkN14puklvE+52cnNShQwft2rVLEydOJOhmA8Jukp49e6YxY8ZYjsMfhG3btlW+fPleWps/f361bdvWKqFpNps1evRo/qEBAAAAAAAAAAAAQLI3ffp0rVq1yua6L774Qo0aNTKgIwAAgIRTqVIlbdmyRe3atYvXOmazWV5eXmrcuLGOHTtmp+4AAAAAALERMSMUfgsPuL0q5JYqVSp17NhRu3fv1pgxY+Th4fHa+0/qCLtJ2rBhg+7evWs1KlCSateuHav6OnXqRDn34MEDbdiwwS79AQAAAAAAAAAAAEBitGzZMn333Xc213Xr1k2dO3c2oCMAAICE5+bmpvHjx2vRokXKmTNnvNb6999/9eGHH2rixIl6/vy5nToEAAAAAMRWdAE3KWrIzcXFRV26dNHevXs1atQo5ciR43W3mmwQdpO0ffv2aM9nzZo1VvUxXbdt27Y49wQAAAAAAAAAAAAAidmOHTs0evRom+saN26sIUOGGNARAABA4lKlShX99ttvatOmTbzWMZvNmj9/vpo0aaITJ07YqTsAAAAAwKvEJuSWJk0a9ejRQ3v37tXw4cNjnUVCzAi7STp79myUqW6SdOfOnVjVR74ufDzh2bNn7dIfAAAAAAAAAAAAACQmJ06cUP/+/RUWFmZTXYUKFTRlyhQ5OPBSNQAASBnc3d311VdfycvLK96f6n/lyhW1adNGkydP1osXL+zUIQAAAAAgNiKH3FxdXdW7d2/t3btXgwcPVubMmRO4w+SDVxAkPXz4MNrzu3btilX97t27oz3/6NGjOPcEAAAAAAAAAAAAAInRP//8o+7du+v58+c21RUqVEhz586Vi4uLQZ0BAAAkXtWqVdPWrVvVunXreK0TFhamH3/8UU2bNpW3t7edugMAAAAAxCRyyM3NzU2ffvqp9u/fr4EDBypjxowJ3GHyQ9hNkpOTk9Vx+GS2X375RdeuXXtp7dWrV7Vy5cpoJ8M5OjratU8AAAAAAAAAAAAASEj37t1T586dbf7gz5w5c2rBggVyd3c3qDMAAIDEz93dXZMmTdK8efOUPXv2eK116dIltWrVSlOnTmXKGwAAAAAYJGLILX369Bo4cKD27dunTz/9VOnSpUvg7pIvwm6SsmXLZvnabDZbvn769Km6d++uf//9N9q68E8sfPr0aZRaSfH+BwkAAAAAAAAAAAAASCwCAgLUtWtXXb9+3aa6dOnSacGCBcqRI4dBnQEAACQtNWvW1G+//aYWLVrEa52wsDDNnTtXzZo1k4+Pj526AwAAAACEM5vNypAhgz7//HPt3btXvXv35kPdXgOnV1+S/JUsWVJXr161SlyGf3358mU1btxYjRs3VoUKFZQ5c2Y9ePBAhw8f1qZNm/TixQvLJLhw4fUlSpRIkO8HAAAAAAAAAAAAAOwpODhYffv21enTp22qc3Z21o8//qi3337boM4AAACSpvTp02vq1Klq0KCBvvjiC929ezfOa128eFGtWrVSz5491bdvX7m4uNixUwAAAABImTJnzqwePXqoXbt2SpMmTUK3k6IQdpNUt25dbdy40epcxMDb8+fPtXr1aq1evTrKNdL/jSWMrE6dOgZ0CwAAAAAAAAAAAACvj9ls1vDhw7V//36b6kwmk7755hu99957BnUGAACQ9L3//vv67bffNG7cOK1bty7O64SGhmrOnDnasWOHpk6dquLFi9uvSQAAAABIYUaOHKm2bdvyYSIJxCGhG0gMateurZw5c0qyDq6FB97CJ7dFvkW8L3JttmzZVLdu3df7jQAAAAAAAAAAAACAnX3zzTdas2aNzXUjRoxQgwYNDOgIAAAgecmQIYOmTZumH374QVmzZo3XWhcuXFCLFi00ffp0BQUF2alDAAAAAEhZOnXqRNAtARF2k5QqVSp9/vnnltBaRBGDbJFvEe+PeL3JZNLgwYOVKlUq45sHAAAAAAAAAAAAAIMsW7ZMc+bMsbmue/fu8vT0tH9DAAAAyVjt2rX122+/qWnTpvFaJzQ0VLNmzVKLFi105swZO3UHAAAAAMDrQdjt/2vatKmaN29uNbEtXHRT3cJv4cKvN5lMatq0qZo1a/bavwcAAAAAAAAAAAAAsJft27dr9OjRNtc1bdpUgwcPNqAjAACA5C9jxoz69ttvNWfOHGXOnDlea509e1YffPCBZs6cqeDgYDt1CAAAAACAsQi7RTBx4kTVrVs3yjS3l4k85a1u3bqaNGmS4b0CAAAAAAAAAAAAgFGOHz+u/v37KywszKa6ihUravLkyXJw4KVoAACA+KhXr562bt2qxo0bx2udkJAQzZgxQy1atNDZs2ft1B0AAAAAAMbhFYYInJ2d9d1332ngwIFycnKKEnqL7ib9F3JzcnLSoEGDNGvWLKVKlSohvw0AAAAAAAAAAAAAiLMrV66oR48eevHihU11hQsX1vfffy9nZ2eDOgMAAEhZMmXKpBkzZmj27NnKlClTvNY6c+aMPvjgA82aNYspbwAAAACARI2wWyQODg7q3bu3tm3bprZt2yp9+vQym80x3jJkyKAOHTpox44d6tWrF59QCAAAAAAAAAAAACDJunfvnjp37qxHjx7ZVOfh4aEFCxbI3d3doM4AAABSrvr162vr1q1q2LBhvNYJDg7W9OnT1bJlS50/f95O3QEAAAAAYF9OCd1AYpU7d26NHz9eY8aM0blz53ThwgU9fPhQz549U5o0aZQpUya9/fbbKly4sBwdHRO6XQAAAAAAAAAAAACIl4CAAHXt2lU3btywqS5dunRasGCBsmfPblBnAAAAyJw5s2bNmqX69etr9OjRNn84QUSnT59Ws2bN9Omnn6pHjx5ycuJthAAAAACAxIOfUl/B0dFRxYoVU7FixRK6FQAAAAAAAAAAAAAwRHBwsPr27avTp0/bVOfs7Kwff/xRBQsWNKgzAAAARNSoUSOVL19eo0aN0u+//x7ndYKDgzVt2jRt27ZNU6dO5e9zAAAAAIBEwyGhGwAAAAAAAAAAAAAAJByz2axhw4Zp//79NtWZTCZ9++23eu+99wzqDAAAANHJkiWLZs+erenTpytDhgzxWuvUqVNq2rSpfvjhB4WEhNinQQAAAAAA4oGwGwAAAAAAAAAAAACkYNOmTdPatWttrhs1apTq169vQEcAAAB4FZPJpCZNmmjr1q2qXbt2vNYKCgrSlClT1KZNG126dMlOHQIAAAAAEDdOCd1AYhcQECB/f3+ZzeY41Xt4eNi5IwAAAAAAAAAAAACwj6VLl+r777+3ua5Hjx7q2LGjAR0BAADAFlmzZtXcuXO1YcMGjRkzRk+ePInzWt7e3mrSpIm++OILvfPOOzKZTHbsFAAAAACA2CHsFsmDBw+0atUq7dq1S2fOnNHz58/jvJbJZNKFCxfs2B0AAAAAAAAAAAAA2Me2bdv05Zdf2lzXrFkzff755/ZvCAAAAHFiMpnUrFkzVaxYUSNGjNDOnTvjvFZQUJAOHDigy5cvq3bt2sqYMaMdOwUAAAAA4NUIu0Xw66+/avz48QoMDJSkOE9zAwAAAAAAAAAAAIDE7NixYxowYIDCwsJsqqtUqZImTZokBwcHgzoDAABAXGXLlk0//PCD1q5dq3HjxsnPzy/Oa/n6+mrp0qUqWLCgSpcurezZs9uxUwAAAAAAYsYrEP/fsmXLNHz4cD19+lRms1lms1kmkynONwAAAAAAAAAAAABIjK5cuaIePXroxYsXNtUVKVJEc+bMkbOzs0GdAQAAIL5MJpNatGih3377TTVq1IjXWmFhYTp//rxWrlypX375RefPn7f5wxIAAAAAALAVYTdJd+/e1YQJE6IE3CRZgm+23AAAAAAAAAAAAAAgMbp79646d+6sx48f21Tn4eGh+fPny93d3ZjGAAAAYFc5cuTQvHnzNHnyZLm5ucV7vdu3b+v333/XwoUL9eeff+rZs2d26BIAAAAAgKgIu0lasWKFXrx4EW3ADQAAAAAAAAAAAACSA39/f3Xt2lU3btywqS59+vTy8vJS9uzZDeoMAAAARjCZTGrVqpW2bt2qatWq2WXNgIAAHTp0SAsWLNCOHTt0//59u6wLAAAAAEA4p4RuIDH4448/LF9HDLiFh98AAAAAAAAAAAAAICkLCgpSnz59dObMGZvqXFxc9OOPP6pAgQIGdQYAAACj5cyZUwsWLNCvv/6qCRMmKCAgIN5rhoaG6syZMzpz5oxy5cqlUqVKKV++fLznDgAAAECKFBQUpE2bNkV7n7Ozsxo2bCgHh/+bVxYcHKzffvtNISEhUa53dHRU06ZNU/TPV4TdJF29ejXKgyDilDcAAAAAAAAAAAAASKrMZrOGDRumgwcP2lRnMpn07bffqmzZsgZ1BgAAgNfFZDKpTZs2qlKlioYNG6YDBw7Ybe0bN27oxo0bSpcunUqWLKlixYrJxcXFbusDAAAAQGL3008/afr06VHOOzk5ycvLyyroJkmpUqVS+vTp1b1792hzS48ePZKnp6dB3SZ+hN0kPX782PJ1xJCbk5OTqlSpoty5cytDhgwpOhUJAAAAAAAAAAAAIGmaNm2a1q1bZ3PdqFGjVK9ePfs3BAAAgATj4eGhhQsXasWKFfrqq6/09OlTu63t5+enAwcO6MiRIypcuLBKlSqlTJky2W19AAAAAEiMnj17pp9++ilKaM1kMqlPnz6qUKFCtHXVq1dX79699d1330W5b9asWWrbtq1Sp05tSM+JHWE3Sa6urvLz85P0X8jNZDKpdOnSmjNnjrJly5bA3QEAAAAAAAAAAABA3CxZskTff/+9zXW9evVSx44dDegIAAAACc1kMqldu3aqVq2ahg4dqj/++MOu6wcHB+vUqVM6deqU8uTJo1KlSilPnjx82DwAAACAZOm3335TQECA1c88ZrNZGTJkULdu3V5a27NnTy1dutRqiJfZbJafn582bdqkVq1aGdV2oubw6kuSv+zZs0dJUI4aNYqgGwAAAAAAAAAAAIAk6/fff9eYMWNsrmvevLkGDRpkQEcAAABITN544w0tXrxY48aNU9q0aQ3Z4+rVq9qwYYOWLFkib29vBQUFGbIPAAAAACSUw4cPWx2HD+Fq2LDhKyezpUmTRk2aNImSaYpu3ZSEyW6SSpUqpQsXLlidK1y4cAJ1k7jduHFDq1evliSlS5dOnTt3TuCOAAAAAAAAAAAAAET2119/6bPPPov2BfKXqVy5sr766iumbgAAAKQQJpNJ7du3V506dTRv3jz98ssvhuzz+PFj7d27V4cOHVLRokVVqlQppU+f3pC9AAAAgOiQhYBRfHx8ov039YoVK8aqvmLFilq8eLHVObPZrL///tsu/SVFTHaT1LJlyyjn/P39E6CTxO/GjRuaOXOmZs6cKS8vr4RuBwAAAAAAAAAAAEAkly5dUo8ePfTixQub6ooWLarZs2fL2dnZoM4AAACQWGXNmlXDhg3TgQMHVLNmTWXKlMmQfYKCgnTy5EktXrxYmzZt0vXr1w3ZBwAAAIiMLASM8vDhw2jP582bN1b1b775ptVxeHDuwYMH8WssCSPsJqls2bJq1KiR1aca7t69OwE7AgAAAAAAAAAAAADb3blzR507d9aTJ09sqnvjjTc0f/58ubu7G9QZAAAAkoK0adOqRIkS6tChg5o3b6633nrLkH3MZrOuXLmitWvXaunSpfr7778VEhJiyF4AAAAAYCQ/P79oz6dKlSpW9TFdFxAQEOeekjrCbv/fxIkT9e6770r67wfpyZMn68KFCwncFVKiGTNmKH/+/MqfP7+qVauW0O0AAAAAAAAAAAAgifD391fXrl1169Ytm+oyZMggLy8vZcuWzaDOAAAAkNSYTCa9+eabatq0qTp27KhSpUoZNgH4wYMH2rVrlxYsWKCDBw/K39/fkH0AAACAlK5atWqWrMKMGTMSup1kw9HRMdrzvr6+saqP6ToHh5Qb+XJK6AYSgzVr1kiSWrZsqQcPHujq1at69OiRmjdvrnr16qlkyZJKly6dZRSgLVq0aGHvdgEAAAAAAAAAAADASlBQkPr06aOzZ8/aVOfi4qIffvhB+fPnN6gzAAAAJHUZMmRQ9erVVbFiRZ05c0be3t42TxKOjefPn+vYsWM6ceKE8ufPr1KlSsnDw8Pu+wAAAACAPbm5uenhw4dRzu/du1eVK1d+Zf0ff/wR7Xl3d/d495ZUEXaTNHjw4ChBNpPJpKCgIG3atEmbNm2K89qE3QAAAAAAAAAAAAAYKSwsTEOHDtXBgwdtqnNwcND06dNVtmxZgzoDAABAcuLs7KzSpUurVKlS+ueff+Tt7a3r16/bfZ+wsDBdvHhRFy9eVLZs2VSqVCm9/fbbMU5LAAAAAICElCdPHj148MCSSzKZTDKbzVqzZo169uypzJkzx1jr7++vNWvWWGWazGazZdp2SkXYLQKz2Wx1HP4Ai6u4TIJLjEJCQnTo0CFt3LhRq1evtpy/efOmunfvriZNmqhu3bpKnTq1zWs/f/5cmzZt0o4dO3T27Fndv39fZrNZWbJkUe7cuVWnTh01btxYWbJkiXP/Fy9e1MqVK3XkyBHduHFDgYGBypAhg4oUKaKaNWuqZcuWcnNzi/P6knTixAmtXr1af/75p27fvq2goCBlypRJxYsXV506ddSkSRO5uLjEaw8AAAAAAAAAAAAgOl9//bXWr19vc93o0aNVt25dAzoCAABAcmYymZQvXz7ly5dPDx48kLe3t86dO6eQkBC773X37l1t375dBw8eVIkSJVS8eHGlTZvW7vsAAAAgeTIyCxEbe/fuVZcuXfTpp5+qf//+Nte/ePFCGzdu1Pbt23Xq1Ck9evRIzs7OypEjh9577z21bt1apUqVMqBz2KJIkSI6fvy4pP8LqknSkydPNGTIEM2ZM0fOzs5R6sxms0aPHq179+5Z8ksRc0hFihR5Pd9AIkTYLYLwB4XZbLY8SOIaWItPSC4xOXv2rIYOHaq///472vt37dqlXbt2ycPDQxMmTFC1atVivfaOHTs0atQo3blzJ8p9N2/e1M2bN3X48GF988036tu3r7p27WrTp/P4+/tr/PjxWrVqVZT77t+/r/3792v//v2aMWOGRo8erWbNmsV67XB37tzRiBEjtGvXrij33b59W7dv39aOHTs0ffp0ffXVV6patarNewAAAAAAAAAAAAAxWbx4sX744Qeb6z755BN99NFHBnQEAACAlCRz5sx6//33ValSJZ0+fVo+Pj7y9/e3+z6BgYE6cuSI/vrrLxUsWFClSpVS9uzZ7b4PAAAAkg8jsxCx4efnp+HDh8e5fs+ePfriiy90+/Ztq/NBQUG6dOmSLl26pOXLl6t27doaP368smbNGt+WEUdVqlTR0qVLLcfheSSz2ay9e/fqo48+0vDhw1W6dGnLNefOndPUqVO1b9++GAd1ValS5XW0nyg5JHQDiUl4yC3ysa235OLgwYNq0aJFjH+4R3Tr1i117txZP/30U6zW/vHHH9WzZ89og26RPX36VJMnT9Znn32moKCgWK3v6+ur1q1bRxt0i+zJkycaOHCgJk6cqLCwsFitL0nnz59X8+bNow26RdePp6enFi5cGOv1AQAAAAAAAAAAgJf5/fffNXbsWJvrPvjgA/3vf/8zoCMAAACkVKlTp1aZMmXUqVMnNWjQQB4eHobsExoaqnPnzmnlypX69ddfdeHCBZve8wUAAICUwcgsRGyNHz8+SlAttubPn6+uXbvGqn7Hjh1q3ry5Ll68GKe9EH/VqlVThgwZJFkP4QoPsZ04cUKtW7dWuXLl1KRJE1WsWFFNmjTRvn37rDJIEYd1pU+f3u4BzKSEyW6I1uXLl/XJJ59Yhcvc3NxUtWpV5cmTR05OTrp586Z27dqlJ0+eWK6ZNGmSXF1d1aFDhxjX3rJliyZPnmx1rlixYmrVqpXy5cunNGnS6Pr16/rtt9+0Y8cOyzWbN29WlixZNGrUqJf27u/vL09PT126dMlyLlOmTGrbtq1Kly6tDBky6ObNm9q+fbu2bt1q+ceO+fPny9XVVQMGDHjl74+vr686duyo+/fvW855eHioffv2Klq0qFxdXXXt2jVt3LhR+/fvt1wzbtw4ubm5qVWrVq/cAwAAAAAAAAAAAIjJX3/9pQEDBtj8YZxVq1bVV199ZfWiOQAAAGAvDg4OKliwoAoWLKi7d+/K29tbFy5cUGhoqN338vX1la+vr9zc3FSyZEkVK1ZMadKksfs+AAAASFqMzELE1q5du7R69eo41a5cuVITJ060OlelShU1adJEefLkUWBgoM6dO6elS5fq5s2bkqTbt2+rY8eOWrt2rXLkyBHv/mEbFxcXtW3bVnPnzrX6t/eIgTdJevjwoR4+fGhVG3mqW3hNu3bt5OLi8nq+gUTIZE5Oo8jiqECBAnZ/MSf8AZZU07E9e/a0CprVr19fX331ldKlS2d13fPnzzVlyhQtWrTIcs7Z2Vnr1q1ToUKFoqzr7++v999/3/I/qMlk0hdffCFPT89o/xscOHBAffv2tRptv2LFCr333nsx9t6/f39t2rTJcly7dm1NmzZNbm5uUa718fFRz549dffuXcu5hQsXqmrVqjGuHxYWpg8//FDHjx+3nGvfvr1GjhwpZ2fnKNfv2bNH/fv3V0BAgCQpVapUWr9+fbS/P5I0Y8YMzZw5U5L0xhtvaN++fTH2grhxd3e3/PcI5+bmZvU4AwAAAAAAAAAASKwuXbqkNm3aWL0RIzaKFSumZcuWRfu6GYCk78yZMwndAiIpWrRoQrcAAHFi7+eUwMBA/f333zp16pSePn1q17UjcnR0VOHChVWqVCllyZLFsH0SCs8rAJIqflZJfHhOQcWKFXX48GGrcxUqVNChQ4cSqCP7MioLEVuPHz9WgwYNrDIKn376qfr37//K2vPnz6tZs2YKDg6W9N973KdPn66aNWtGuTY4OFjjxo3T0qVLLefKlCmjFStWyMHBIdr1q1WrZgnIxbYnxI6/v79q165tycrENLEtPGsU8TjiNWazWZkzZ9bOnTtT9L/lR/8IToHMZrNdb0mZv7+/du/ebTnOli2bvvnmmyh/uEv/jZ8fNWqUevXqZTkXFBSkSZMmRbv2ihUrrJKon376qTp37hxj2LBKlSr67rvvrM59//33Mfa+f/9+q6BbjRo19P3338f4P3nJkiW1bNkypU2b1nJu5MiRevHiRYx7rFy50iro1qFDB40bNy7aoFt4D/Pnz5ejo6Ok/55URo4cmeQfJwAAAAAAAAAAAHj97ty5o86dO9scdMuVK5fmz5+fol8cBwAAQMJwdXVVuXLl5Onpqbp16yp79uyG7BMaGqrTp09r2bJlWrNmjS5fvsx7tAAAAFIYI7MQsTVu3DiroFtsmc1mjRgxwhJ0c3R01Pz586MNukn/DeEZM2aM2rVrZzl37Ngx/frrr3FrHPHi7u6uyZMnRwmvSbLKGUUMtUX+eSU8CDd16tQU/2/5TgndQGJw6dKlhG4hUfnnn3+sxsbXqFHjleMPBw4cqP379+v06dOSpKdPnyooKChKAGz9+vWWr3PmzKmePXu+sp8qVaqoVq1a2rlzp6T/pr35+flFecIxm82aMWOG5ThTpkz6+uuvY0wlh8ubN69GjRqlIUOGSJKuX7+utWvXqm3btlGuDQ4O1uzZsy3HBQoU0BdffPHK76Fs2bLq3bu3Zs2aJem/J5GDBw+qSpUqr6wFAAAAAAAAAAAApP/eqNGlSxfdunXLproMGTLIy8tLWbNmNagzAAAA4NXCJ68VLlxYvr6+8vb21qVLlxQWFmb3vW7cuKEbN24oXbp0KlWqlIoWLfrK98ABAAAg6TMyCxEb27Zt07p162yuk/7LSUQcytOvXz+VLVv2pTUmk0kjRozQ4cOH9c8//0iSZs+erRYtWihVqlRx6gNxV6NGDY0YMULjx4+XyWSyCrZF/DWiyNeMHDlS1apVe00dJ15MdkMUkf/xIH369K+scXR01JgxY+Ts7KxBgwZp+fLlUf5wf/Tokc6ePWs5rlevXqz/AaFu3bqWr0NDQ3Xq1Kko1/j4+OjEiROW427duiljxoyxWv+DDz5Qvnz5LMcLFy6M9g+Sbdu2ydfX13Lcr1+/WH8P3bp1s/q99PLyilUdAAAAAAAAAAAAEBQUpN69e+vcuXM21bm4uOinn36yei0MAAAASGg5c+ZU/fr15enpqffee09p0qQxZB8/Pz/t379fCxYs0J49e/To0SND9gEAAEDiYFQWIjYePnyoESNG2FwXLmK+IGPGjOrSpUus6lKnTq1PP/3Ucnzz5k1t3749zn0gfjw9PTV16lS5uLhYTXOL6Sb9F3RLkyaNvvnmG3Xs2DEh2080CLshisif6Pjvv//Gqu6dd97Rnj179Mknn8jR0THK/ZcvX7Y6rlChQqx7ijy6/v79+1Gu2bhxo+XrVKlSWY3jfBVHR0erPxQuXrwY7QuFEffImjWrGjRoEOs93Nzc1Lp1a8vxgQMH9PDhw1jXAwAAAAAAAAAAIGUKCwvT0KFD9ccff9hU5+DgoOnTp+vdd981qDMAAAAgftzc3FSxYkV17txZtWvXVpYsWQzZJzg4WD4+PlqyZInWr1+vf//9N9oPQwcAAEDSZlQWIja+/PJLPXjwQJJtWQnpv6DcgQMHLMetW7dW2rRpY13fqFEjq79Lb9iwwab9YV8ffPCBtmzZooYNG8rBwUFmsznGm4ODg5o0aaItW7aoadOmCd16ouGU0A0g8cmZM6eyZ8+uO3fuSJL27NmjS5cuqUCBAq+sjRxKi+ju3buxvjayJ0+eWB2nTp06yjV79uyxfF2+fHmlS5cu1utLUu3atfXll19ajvfu3asiRYpYjoODg62eQN5//32bn8jq1KmjefPmSZJCQkJ08OBBNWnSxKY1AAAAAAAAAAAAkLJMnTpV69evt7luzJgxqlu3rgEdAQAAAPbl5OSkokWLqmjRorpx44a8vb115coVQwJpV69e1dWrV5UxY0aVKlVKhQsXjtPkDgAAACQ+RmUhXmXLli3avHmzpP+yDhMnTtT7778f6/oDBw4oNDTUcly7dm2b9nd0dNT777+vX375RZJ08OBBhYSEyMmJyFBCefPNNzVz5kzdv39fe/bs0alTp3T79m0FBgbK1dVVOXPmVPHixVWzZk1lzpw5odtNdHjkIgoHBwd98MEHmjt3rqT/Ql7du3fX/PnzlS9fvjiv+9Zbb6l3796W41y5csW61sfHx+o4b968VscPHz7UP//8YzmuVKmSzf3lzJlT+fPnt0ygO3bsmNX9586d07Nnz+K1xzvvvKM0adJY1jl27Fisw24BAQFauXKlfv/9d124cEGBgYFyd3dXvnz5VLVqVbVs2VJvvPHGK9eZMWOGZs6cKUl64403tG/fPknSn3/+qSVLlsjb21t3796Vm5ubihcvrpYtW6pRo0aWEZkAAAAAAAAAAAB4fRYuXKgff/zR5rrevXurffv2BnQEAAAAGCtXrlzKlSuX/Pz85OPjo9OnT+vFixd23+fRo0fas2eP/vjjDxUrVkwlS5ZU+vTp7b4PAAAAXh+jshAvc//+fY0ePdpyPHDgQOXJk8emNY4fP2752tXVVaVLl7a5j8qVK1vCboGBgTp79qxKlCgRq9rz589r6dKlOnTokG7evCmz2awsWbKoWLFiqlevnho2bCgXF5dXrlOtWjXdvHlTkvTpp5+qf//+ev78udasWaO1a9fq33//VUBAgHLkyKGKFSuqa9euyp8/v83fa1KSJUsWtWrVSq1atUroVpIUwm6Sjh49atja5cqVM2xtI/Xq1Uvr1q3T7du3JUnXrl1T06ZN1atXL3l6esrNzc3mNcM/ecdWISEhlpSz9N//7JGT1ZcuXbI6fvvtt23eR5IKFixoCbtFXvPixYvx3sPR0VH58+fX33//He0eMfn777/Vo0cPS8I83OPHj3X8+HEdP35cs2fPVo8ePdS/f3+bEthhYWH65ptv9P3331udf/jwofbt26d9+/Zp/fr1mjVrVrQT9YxmxB/qEUOLAAAAAAAAAAAAidXWrVs1fvx4m+tatGihgQMHGtARAAAA8PqkS5dOVapUUfny5XXu3DmdPHlSjx49svs+QUFBOnHihE6ePKm8efOqVKlSyp07t933AQAASMwuXLhgyPu2V61aZfc1X8WILERMzGazRo8erYcPH0qSSpYsKU9PT5vXiZhVyJ8/vxwdHW1eo2DBglbHly5demXYzWw2a86cOZo+fbrCwsKs7rt165Zu3bql7du36+uvv9a0adNUoUIFm3q6ffu2evbsaclPhLt27ZquXbum1atXa/z48WrdurVN6yL5I+wmqX379oZMrTKZTLpw4YLd130d3N3dNW/ePLVv315+fn6S/gsIffvtt/rpp5/UsmVLffTRR4almyNasWKF5YlGkpo1ayYHBwera27cuGF1/NZbb8Vpr4gT427duqXQ0FDLE0V4wji+e+TLl8/yh3XkvqPz559/qmvXrnr69OlLrwsJCdGcOXN07Ngxff/997H+lKEFCxZECbpFtmvXLg0dOlTTp0+P1Zr2dOLECbuvGfmJGAAAAAAAAAAAILH5888/9dlnn8lsNttUV7VqVU2cONGQ1z8BAACAhJAqVSqVKFFCxYsX17Vr1+Tt7a1///3X7vuYzWZduXJFV65cUebMmVW6dGkVKlTIpg8eBwAASKqePn1qyPu2E8LrzEJs3LhRW7dulfTf31snTZoUp6BaxKxCxEyDLSLnG2KTVZgwYYK8vLxeed3t27f18ccfa8iQIerWrVus+gkODlaPHj10+vTpGK8JCQnR0KFDlT17dlWrVi1W6yJl4KewCGx9oSi5K1KkiFatWqU+ffpYJYUDAgK0aNEiLVq0SJUrV5anp6dq1qxpyAtm165d09SpUy3HadKkUefOnaNc9/jxY6vjDBkyxGm/iAGxkJAQPX36VOnSpZMkq08FSps2rZydneO9R+S+I3v27Jn+97//WYJuRYoUUatWrfT222/LwcFBN27c0LZt27Rnzx6FhoZKko4cOaLPP/9cc+fOjRIKjOzRo0eaNm2aJKl27dpq1KiRcuXKpcDAQO3du1c///yzgoKCJP33RNy2bVub09gAAAAAAAAAAACwzcWLF9WjRw/L6zSxVaxYMX333XdKlSqVQZ0BAAAACcdkMilPnjzKkyePHj16JB8fH505c0bBwcF23+vBgwfauXOnDh48qOLFi6tEiRJyd3e3+z4AAAAwxuvIQty7d09jxoyxHPfu3VuFChWKU78RswqxHXoTmYuLi1xdXRUYGCjp1VmFPXv2yMfHR5Lk5OSkunXrqm7duvLw8JCfn5/Onz+vtWvX6tKlS5L+Gzjz1VdfKVeuXKpfv/4r+1mxYoUePXqkdOnSqW3btipfvrwyZMig69eva8WKFTp8+LDl2lGjRmnnzp1xCgoa6e7duzp+/LhMJpPKlCmjLFmyJHRLKQZhtwjsGdZKLsG5/Pnza/369Vq4cKHmzZtnGa8Z7uDBgzp48KBKlCihUaNG6d1337Xb3k+fPtUnn3yigIAAy7levXopZ86cUa599uyZ1XHatGnjtGfkusDAQEvYLeIecV0/cm3kviML//1OlSqVhg4dqk6dOkV5nLZq1UqnT59W//799c8//0iSdu7cKS8vL3Xt2vWl6wcGBsrBwUEzZ85Uo0aNrO6rUqWKqlatahUuXLZsGWE3AAAAAAAAAAAAA92+fVudO3e2fOJwbOXKlUvz58+Xm5ubQZ0BAAAAiUfGjBlVvXp1VaxYUWfOnJG3t7eePHli932eP3+uv/76S8ePH1f+/PlVqlQpeXh42H0fAAAA2J+RWQiz2awRI0ZYAmUFCxZUr1694tzr8+fPLV/H599406ZNawm7hf8ak/Cg21tvvaXvvvtORYoUsbq/Zs2a6tmzpxYuXKgpU6ZYPpxtyJAhKl68uHLlyvXS9R89eqSCBQtqwYIFVn+HLl26tBo1aqRBgwZp/fr1kqTr16/rwIEDql69um3fsIHmzp2rGTNmKCQkRNJ/gcD//e9/0U6269ChgyE9mEwm/fzzz4asndgRdovAXgE1IyacJSQXFxf17NlTHTt21G+//aZly5ZFGVF66tQptWnTRv3791ffvn3j/XsQFBSkPn366Ny5c5ZzRYoUifXIy+Rm7NixatOmTYz3FytWTMuWLVPTpk117949SdJ3332nNm3avPIThbp16xYl6BauWrVqql27tnbs2CFJOnr0qMxmc7J7jAMAAAAAAAAAACQG/v7+6tq1q3x9fW2qy5gxo7y8vJQ1a1aDOgMAAAASJ2dnZ5UuXVqlSpXSP//8I29vb12/ft3u+4SFhenixYu6ePGismXLptKlS6tgwYKJbvIEAAAArBmVhVi3bp3lPfYODg6aNGmSnJ2dDfkejJQ5c2YtXbpUOXLkiPZ+k8mkzp07y93dXUOGDJH033S82bNn66uvvnrp2iaTSTNnzoz2wyIcHBw0fPhwbd682RImO3r0aKIJu23ZskVff/211bng4GBNnjxZuXPnVr169azuO3LkiN0zFik9t0HYDbGWJk0atWjRQi1atJCPj48WLVqkzZs3W8bAm81mTZ8+XU+ePNEXX3wR5/+xwsLC9Pnnn2v//v2WcxkzZtTcuXOVOnXqGHuL6OnTp3F6snj69KnVsaura7R7RL4urntE7js61atXf2nQLVy2bNk0ZswY9e7dW5Lk5+ennTt3qnnz5i+t+/jjj1+5f/gT8b179xQYGBivyXa2euedd+y+5tWrVxUaGmr3dQEAAAAAAAAAAOLqxYsX6tWrl9WHQcZG6tSp9dNPPylfvnwGdQYAAAAkfiaTSfny5VO+fPn04MEDnTx5UufPn7e8cdae7t69q23btunAgQMqUaKESpQoYfU+MwAAgKQobdq0hrxvO7GwZxbi9u3bGjt2rOW4c+fOKl26dLz6S506tQICAiTJ8mtcRMwqxObvqKNHj44x6BZRq1attG3bNu3cuVOStGnTJn355ZdycXGJsaZ8+fJ6++23Y7w/S5YsKl68uE6ePClJ+vfff1/Zx+syb948SVEHYZnNZv34449Rwm4R77eHlBxyC0fYLYL4PCDCH5Qp5UFVsmRJTZs2TX379tUXX3yhI0eOWO7z8vLSe++9F+P/wC9jNps1duxYbdq0yXIuTZo0mjt37kvHXGbIkMHq+PHjx8qYMaPN+0ccZe/k5GQV6oq43tOnTxUUFBSnQF3EPSL3HZ1XhdEiqlWrlrJly6a7d+9Kkv7444+Xht3c3d2jTUpHlDNnTqtjPz+/1xp2W7Vqld3XdHd3j9dfAgAAAAAAAAAAAOwpLCxMQ4YM0eHDh22qc3Bw0IwZM5L1m1AAAAAAW2XOnFm1atVSpUqVdPr0afn4+BjyXqHAwEAdOXJEf/31lwoWLKhSpUope/bsdt8HAADgdXj77bcNed92YhSfLITZbNYXX3whPz8/SdKbb76pzz77LN49ZcyY0fJ31oh5A1u8ePFCgYGBluPYZBXq1q0b6/XbtWtnCbsFBgbq5MmTKl++fIzXFy5c+JVrenh4WMJu4b+nicG5c+cs2aDIE9Ze9oF1KSVP9Do4JHQDiYXZbI7zTZLVA9leacykIG/evFq8eHGUQNWkSZPi9Pswa9YsLVmyxHLs4uKiH3/8UWXLln1pXeQgXFxTvf/884/law8PD6sx82+88YZd9rhy5Yrl65cF+MK97AkgMicnJ5UpU8ZyfPny5Zde7+7u/so1I0/TYyIaAAAAAAAAAACAfU2ePFkbN260uW7MmDGqXbu2AR0BAAAASV+aNGlUtmxZeXp6qkGDBlE+9NteQkNDde7cOa1cuVK//vqrLl68qLCwMEP2AgAAgP3EJQuxatUq7dmzx3I8YcIEpUmTJt69RMwqRMw02CJyviE2WYVUqVLFev1y5cpZHdsjqxBxMlxiyim8bCjSy37P4pNLipxRSumY7CZp7969NteYzWY9efJE3t7emj9/vq5evSqTyaS8efNqypQpypo1qwGdJk5OTk6aPHmyLl26pL///luSdO3aNZ06dUolS5aM9To///yzZsyYYTl2dnbW999/r0qVKr2ytkCBAlbHFy5cUM2aNWO9d7iLFy/GuGbBggWj7PGysZrRCQ0NtfpDPfIe0bF1xH3EMaKvSnXHJjlMuhgAAAAAAAAAAMA4Xl5emjdvns11ffr0Ufv27Q3oCAAAAEheHBwcVLBgQRUsWFB37tyRt7e3Ll68aMibaX19feXr6ys3NzeVLFlSxYoVs8ubnwEAAGAMW7IQt27d0vjx4y3HH374YayyDrFRsGBBHT58WNJ/IbLQ0FCrwT2xETELIcUuq2CLtGnTKl26dJYJbMk5q1CuXDnt2rXLqr/wCW8VKlSIsS6xfj9JEZPd9F8K1tZbrly5VKxYMbVv314bNmxQ0aJFZTab9c8//6hPnz5ycHCIMgksKTl27Ji2bdsW6+udnJzUqVMnq3MvG88Y2aZNm/Tll19ajh0dHTVz5kxVr149VvWZMmVS3rx5Lcd//PFHrPcO5+vraxVEizghTfpvjGbEf3iIyx4nTpzQs2fPYtwDAAAAAAAAAAAAKceWLVs0YcIEm+tatmypzz77zICOAAAAgOQte/bsqlu3rjp37qwKFSrY/EHksRUQEKA//vhDXl5e2rlzpx48eGDIPgAAAIjKiCyE2WzWsGHDFBAQIOm/gTZNmzbVmTNnYrxFFN39QUFBlvvfffddy9eBgYE6efJkrPsPd/DgQcvXrq6uKlKkiM1r4D8DBgywTHCLGGBzdnaO8d/m7TXVjelu/2Gymx2kTZtWn3/+uTp37ixJunPnjvr166eVK1fanKZNaPfv39fkyZO1Zs0a5cyZUzVq1HjpCMaIihUrFmWt2Ni/f78GDRpk+R/SwcFB33zzjerUqWNT79WrV7eM7Dxy5Ij8/f1jNfoy3M6dO62Oq1WrZnWcKlUqVa5cWTt27JAk7d692+bEdHit9F+gr3Llyq+sCQwMtOkfVW7fvm35OkOGDLGuAwAAAAAAAAAAwOtz9OhR/e9//7P5Retq1appwoQJfEIsAAAAEA+urq4qV66cypQpo4sXL+rkyZO6e/eu3fcJCQnR6dOndfr0aeXKlUulS5dW3rx5+fs8AACAAYzMQqxYsUIHDhywHAcGBqpDhw6x7m3Hjh1WWQJJ2rt3r3LlyiVJqly5shwdHS3Th3fs2GHTYJ3Q0FDt2rXLclypUiU5Odk3LvT06VPLVDdJSp8+vV3XT0yKFi2qhQsXavTo0bp06ZKk/4YnffnllypUqFCU6ydPnvy6W0z2CLvZyTvvvGN17O3trd27d6t27doJ1FHc/Pzzz1qzZo2k/yadLV68WN26dYvTWuFJ1pc5efKkevfureDgYMu5SZMmqXHjxjbv16RJEy1cuFCSFBwcrGXLlqlnz56xqg0NDdXixYstx/nz5482ydykSRPLk8zdu3e1detWNWrUKFZ7BAQE6Ndff7UcV65cWZkyZXpl3ZEjR1SzZs1Y7RESEqJjx45ZjvPnzx+rOgAAAAAAAAAAALw+Fy5cUM+ePa0+uTc2ihcvru+++y5Wr8MBAAAAeDVHR0cVLlxYhQsXlq+vr06ePKnLly8rLCzM7nvduHFDN27cUPr06VWyZEkVLVpULi4udt8HAAAgpTIqC3Hjxg199dVXdukxJpkzZ1blypW1b98+SdKvv/6qfv36xXpozubNm60Cek2aNIlVXXBwcKz/vfno0aNWxwUKFIhVXVJVvnx5bd26VQ8fPpSDg8NLBxG1bNny9TWWQjgkdAPJRXTTvVatWpUAncTPxx9/rDRp0liOp0+frqtXr8aqNvJ14SnjmFy6dEldu3ZVYGCg5dy4cePi/D96qVKlVKpUKcvx/Pnz9fjx41jVrlu3TpcvX7Yce3p6RvvpOXXr1lWOHDksx7NmzdKLFy9itceCBQus+gmfBPgqS5YsidV10n/T6SJ+wlClSpViXQsAAAAAAAAAAADj+fr6qnPnzlafgBsbuXPn1vz585U2bVqDOgMAAABStpw5c6pBgwbq1KmTypYtq9SpUxuyz5MnT7R//34tWLBAe/fu1aNHjwzZBwAAIKUxIgsRFhamoUOH6unTp/ZrNAaenp6Wrx89eiQvL69Y1b148ULfffed5ThnzpyqW7durGq3bdsW6/6WL19u+Tpt2rRW2Y3k4Pjx46pZs6a2bNlidT5TpkwvDbrBGITd7OTQoUOWr00mk8xms2VcYVKSOXNmq/Tys2fP1L1791iFxtavX291/O6778Z47a1bt9SpUyerdUeMGKH27dvb3HM4k8mk/v37W44fPHigzz///JWfsvPPP/9o7NixluNcuXLFGLhzdnZWnz59LMcXL17UxIkTX9nbX3/9ZfUE8s4776hq1aqvrJP+G0+6cuXKV1539+5djR492nKcLl061apVK1Z7AAAAAAAAAAAAwHh+fn7q0qWLbt++bVNdpkyZ5OXlpSxZshjUGQAAAIBw7u7uqlSpkrp06aJatWopc+bMhuwTHBwsb29vLVmyROvXr9fVq1dlNpsN2QsAACAlMCIL4eDgoJ9//lmXL1+2+RbRp59+GuX+yMOFqlWrpnfeecdyPHPmTB07duyVvY8fP95qvz59+sjZ2fmVdZI0ZswY+fr6vvK6VatWaefOnZbjRo0aJaspxaGhoRo2bJiuX7+u/v37q3379jp//nxCt5WiEXaLp7CwMO3YsUMjR46MMgnszp07CdRV/PTp00clS5a0HF++fFlt27bVhQsXYqxZtmyZtm7dajmuWrWqsmfPHu21Dx8+VKdOnaxexPv8889jPensZapXr65GjRpZjnft2qXevXsrICAg2ut9fHzUvn17q/vHjRv30j9427Zta/Uk8vPPP2vUqFEKDg6O9vo9e/aoa9euCg0NlfTfSNMJEyZEOzkuJqNGjdLChQtj/MeMv//+W+3atdO9e/cs53r16iU3N7dY7wEAAAAAAAAAAADjvHjxQr169Xrpa27RSZ06tX766SflzZvXoM4AAAAARMfJyUnFihVThw4d9MEHHyhfvnw2vefLFlevXtX69ev1888/y8fHJ8b3ogEAAODljM5CGMlkMmn8+PFKlSqVJCkkJERdunTR7t27o70+ODhYo0eP1rJlyyzn3n33XX344Yex3vPBgwfq0KGDzp49G+39ZrNZXl5eGjFihOVc6tSp9cknn8R6j6Rg+/btunz5smXw1dGjR9W0aVN9+eWX8vf3f2X9u+++G+VWpkyZWAUJET2nhG4gMejQoYPNNWazWX5+frp165b8/f0tIaSIP8wa9YOt0VKlSqVZs2apffv2unnzpqT/Jpg1bdpUderUUe3atfXGG28oLCxM165d06ZNm7R//35LvYuLi4YNGxbt2gEBAeratauuXLliOVe/fn1Vq1ZNZ86ciXWPmTJlUo4cOaK9b8KECTp37pwlnbx9+3bVrFnTElJLnz69bt68qR07dui3336zmvzWt29fVatW7aV7Ozg4aObMmWrevLkePHggSVq6dKl2796t9u3bq1ixYnJ1ddW1a9e0ceNG7du3z6p+3LhxKlSoUKy+z7Rp08rFxUUPHz7UuHHjtHr1arVs2VKFChWSg4ODrl+/ru3bt2v37t2WMJ0klSlTRl26dInVHgAAAAAAAAAAADBWWFiYBg8erCNHjthUF/66VOnSpY1pDAAAAECs5M6dW7lz59aTJ0/k4+Oj06dPKygoyO77PHr0SHv27NGhQ4dUrFgxlShRQunTp7f7PgAAAMmVkVmI16Fw4cL68ssv9cUXX0j6L3/RrVs3Va1aVY0bN9Zbb72lwMBAnT17VsuWLdONGzcstVmzZtXMmTPl4BC7mVhvvvmmrl27pqtXr+qDDz5Q3bp1VadOHb3xxht68uSJzp8/r3Xr1unixYtWdV988YXefPNN+33TicDmzZstX4cH3kJDQ3X58mWlTp36lfV+fn6WusjrIG4Iu0k6cuRInIJpr3ogZsiQIb6tJZhcuXJpxYoV8vT0tITGgoODtWXLFm3ZsiXGOpPJpLFjx0Yb5nrx4oV69+4tHx8fq/Nbt261SkLHhqenp0aOHBntfe7u7lq0aJE8PT116dIlSf9Nk5szZ85L1+zatav69+8fq/09PDy0ZMkSeXp66u7du5KkW7du6euvv35p3YgRI9S6detY7SH99xj66quv1LVrVwUHB+vMmTOvDAUWL15cc+fOtSS6AQAAAAAAAABA4mTLBwHi9SlatKjd15w0aZI2bdpkc93YsWNVq1Ytu/cDAAAAIG7Sp0+vqlWrqkKFCjp79qy8vb316NEju+/z4sULHT9+XCdOnFDevHlVunRpFSlSJMl+AD8AAMDrZEQW4nVq27atAgIC9NVXX1nO7d+/3yqUF1mOHDm0cOFC5cyZM9b7NGvWTHfu3NEvv/yi4OBgbd682Sr0FZ3+/furffv2sd4jqfDx8Ynyd22TyaT+/fvblMsIX4OQW/zFLrKZQpjNZptu0n8PxsgParPZLJPJZMgLYa+Th4eHNmzYoE8++UROTq/ORWbNmlWLFi1Sq1atotwXGhqq//3vfzp48KARrUaRM2dO/frrr2rZsuUrr02fPr2mTZumYcOGxTrFLEmFChXSunXr9P7777/y2hw5csjLy0udO3eO9frhKleurPnz5ytz5swvvc7R0VEdO3bU8uXLlSlTJpv3AQAAAAAAAAAAgP15eXlp/vz5Ntf17dtX7dq1M6AjAAAAAPGVKlUqlSxZUh999JGaNm2qPHnyGLKP2WzWlStXtGbNGjVu3Fi//PKLnj9/bsheAAAAyYk9sxAJoVu3bpo/f75y5Mjxymtr166ttWvXqmDBgjbtYTKZNG7cOHXv3v2VH6qQLVs2zZkzR59++qlNeyQVDx48iPa8u7v7a+4E4ZjsFkFcP/UkptRljRo14tFN4pA6dWoNGjRIHTt21KZNmzRhwgSr+3PlyqXChQurRo0aatq0qdKmTRtlDbPZrC+//FK//fbb62pbkpQuXTpNmTJF3bp10y+//KLDhw/rxo0bevbsmdKnT6+iRYuqRo0aatWqldzc3OK0R/bs2fXTTz/pxIkTWrVqlf766y/5+voqKChImTJlUokSJVSnTh01adJELi4ucf5eKleurJ07d2r58uXatm2bLl68qMDAQLm7uytfvnyqXLmyWrVqpdy5c8d5DwAAAAAAAAAAANjX5s2bo7y+FhutWrXSgAED7N8QAAAAALsymUx666239NZbb+nRo0fy9vbW2bNnFRwcbPe9zp07p2HDhmnKlClq27atOnToYNPkDgAAgJTGHlmIhFSjRg3t2rVLGzZs0I4dO3Tq1Ck9fPhQzs7Oypkzp9577z21atVKpUuXjvMeTk5OGjp0qJo3b66ff/5Zhw4d0q1bt2Q2m5U5c2YVL17cLnmIpGrhwoWaOHFirLNG4YOzEH8mM/PxVKBAAZlMpniPCow4cjBnzpzauXOnnJ2d7dFionH48GF16NBBkvTGG29o3759CdwRYDt3d3cFBARYnXNzc5O/v38CdQQAAAAAAAAASInOnDmT0C0gGkWLFrXLOkeOHJGnp6eCgoJsqqtevbp++OEHpUqVyi59AEg5eF5JfOz1nAIArxvPKfHz4sULnTlzRt7e3vLz87Pbutu3b7c6dnR0VL169eTp6al3332XN9UCSLR4Xkl8+FkFFStW1OHDh63OVahQQYcOHUqgjl4PshCISc2aNXXjxg1J/xdYC/81T548qly5sjJmzChHR8do62fMmGFVE/5rixYtlCtXrnj11q9fv3jVJ1VMdovAHj/smc1mubq6avbs2cku6AYAAAAAAAAAAADg1c6fP6+ePXvaHHQrUaKEZs2aRdANAAAASMJcXFz0zjvvqHTp0rpy5Yq8vb0tb5y1p9DQUG3ZskVbtmxRiRIl1KlTJzVs2DBFTtwAAAAA4iNnzpy6fv261QCs8F///fdfXb169ZVrRKwJ/3XNmjXx7i2lht0cErqBpM5sNlvd3n33Xa1Zs0YlS5ZM6NYAAAAAAAAAAAAAvGa+vr7q0qWL/P39bap78803NW/ePKVNm9agzgAAAAC8TiaTSfnz51eLFi3Uvn17FStWTE5OxswnOHXqlAYNGqRq1app5syZun//viH7AAAAAMlRrVq1oj1vMpksk9pedovJq+rium5KwGQ3SR4eHnGa6ubg4CA3NzdlyZJFJUqUUO3atQm5AQAAAAAAAAAAACmUn5+funTpotu3b9tUlylTJi1YsEBZsmQxqDMAAAAACSlLliyqVauWKlWqpNOnT8vHx0cBAQF23+f+/fuaMWOGvv/+ezVs2FCenp4qUaKE3fcBAAAAkpNGjRpp6tSpCg0NtYTbpP/CauGBt5eJKZgWl5zSq9ZMKQi7Sdq3b19Ct5Bk5MqVS59++qkkKV26dAncDQAAAAAAAAAAAJA4vHjxQr169dKFCxdsqkuTJo3mzZunvHnzGtQZAAAAgMQiTZo0Klu2rN59911dunRJ3t7e8vX1tfs+QUFBWrdundatW6cyZcrI09NTdevWNWyyHAAAQFJAFgIxyZEjhz777DNNnTrVapqbFL/QWVxr4xOSSy6SzU8ut2/f1rfffqv+/fvLw8MjodtJtnLlyqX+/fsndBsAAAAAAAAAAABAohEWFqZBgwbpyJEjNtU5ODho5syZKlWqlEGdAQAAAEiMHBwc9Pbbb+vtt9/WnTt35O3trYsXLyo0NNTuex07dkzHjh1Tjhw59PHHH+vDDz9UxowZ7b4PAABAYkcWAi/TvXt3Xb58WWvWrInVNLeIjJjsltI5JHQD9vLFF19o9erVqlOnjmbOnKnnz58ndEsAAAAAAAAAAAAAUoBJkyZpy5YtNteNGzdO77//vgEdAQAAAEgqsmfPrrp168rT01Ply5eXq6urIfvcvn1bU6dOVZUqVTR8+HCdP3/ekH0AAACApMjBwUFTpkzR119/rYIFC8psNsf6FhNb1ojtmilFspjsdvz4ce3du1cmk0kvXrzQrFmztGrVKg0fPlz169d/Zf0nn3wS7fkJEyYoU6ZM9m4XAAAAAAAAAAAAQDIxf/58zZ8/3+a6Tz/9VG3btjWgIwAAAABJUdq0aVW+fHmVLVtWFy9e1MmTJ3X37l277/P8+XOtXLlSK1euVMWKFeXp6amaNWvK0dHR7nsBAAAASU3z5s3VvHlzXbx4URcuXNDdu3fl7+//0pqZM2fKZDLJbDZb/frBBx8oV65cr6nz5CVZhN3WrVtn+Tr8gXHr1i1NnjxZ7733njJnzvzS+u3bt1uNBwx/YI0cOdKolgEAAAAAAAAAAAAkcZs2bdLEiRNtrmvTpo0+/fRTAzoCAAAAkNQ5OjqqcOHCKly4sG7duiVvb29dvnzZkL0OHTqkQ4cO6c0339THH3+s1q1by93d3ZC9AAAAgKSkYMGCKliwYKyunTlzpiRZ5ZIkacCAAfLw8LB7bylBsgi7HT16NMqDwmQyaejQoa8MukXEqD8AAAAAAAAAAAAAsXH48GF9/vnnNtfVqFFD48aNi/L6JgAAAABE5uHhIQ8PD/n7++utt97SypUr9fjxY7vvc+3aNU2YMEHTp09XixYt1KlTJ+XNm9fu+wAAAADJFXkk+0oWYTdfX99oz8c2RRku/AUlHmQAAAAAAAAAAAAAYnL+/Hn16tVLQUFBNtWVLFlSs2bNkpNTsniZFgAAAMBr4u7ursGDB6tfv35av369Fi5cqIsXL9p9n6dPn2rJkiVasmSJqlevLk9PT1WtWpUP6wAAAABe4vvvv4/2vC3Du2AtWbyKEtOLSHv37lW+fPlivY7ZbOaHMgAAAAAAAAAAAAAxunXrlrp06SJ/f3+b6t5880399NNPcnV1NagzAAAAAMldmjRp1LZtW3344Yf6448/tGjRIu3atcuQD/jfu3ev9u7dq/z586tTp05q3ry50qZNa/d9AAAAgKSuTp06Cd1CspMswm6ZM2fWnTt3LMcmk0lms1mTJk3SxYsXVaVKFWXMmFGOjo42rXv48GHlypUrXr2VK1cuXvUAAAAAAAAAAAAAEgc/Pz916dJFt2/ftqkuU6ZM8vLyUpYsWQzqDAAAAEBKYjKZVLlyZVWuXFlXr17VkiVL9OuvvyogIMDue12+fFmjRo3S1KlT1aZNG3Xs2DHe76sEAAAAgJcxmY34SI/XrEWLFvLx8bGE3CKKzaS2mH4L4jvlzWQy6cKFC/FaA4D9ubu7R/mHHTc3N5s/gRUAAAAAAAAAgPg4c+ZMQreAaBQtWjTa8y9evFDnzp115MgRm9ZLkyaNli5dqlKlStmjPQCIEc8riU9MzykAkNjxnJI4vep5JSAgQGvWrNGiRYv077//GtaHg4ODatWqJU9PT5UvXz7e77MEkPzxvJL48LMKKlasqMOHD1udq1Chgg4dOpRAHQGJk4+Pj44ePSoHBwdVqFCBPz9fo2Qx2a1ChQry8fGJcj668JstkkEOEAAAAAAAAAAAAEA8hYWFadCgQTYH3RwdHTVr1iyCbgAAAAAM5+bmpo4dO+qjjz7S3r17tWjRIu3fv9/u+4SFhWn79u3avn27ChcurE6dOqlp06ZKnTq13fcCAAAAEoLZbNbIkSO1cuVKq/MdOnTQl19+GeX6GjVqGNKHyWTS7t27DVk7sUsWYbcmTZroxx9/jPa+hJrsRlAOAAAAAAAAAAAASB4mTpyoLVu22Fw3fvx41axZ04COAAAAACB6Dg4OqlmzpmrWrKlLly5p8eLFWrNmjZ49e2b3vc6dO6dhw4ZpypQpatu2rT766CPlyJHD7vsAAAAAr9Py5cu1YsWKKOeXLl2qwoULq23btlbnb9y4Ee9hXdFJyVOUHRK6AXsoUqSIGjduLLPZLJPJZPkPajabY3WLSWzrY7seAAAAAAAAAAAAgKRl/vz58vLysrmuf//+atOmjQEdAQAAAEDsFChQQGPHjtXBgwc1dOhQvfHGG4bs8+jRI33//feqXr26+vfvr+PHj/NeSgAAACRZP//8syRZ8knhN7PZrCVLlsRYF/n6+NxSumQRdpOkcePGqUCBApYfkOzxIOBBBQAAAAAAAAAAAKRcGzdu1MSJE22ua9Omjfr162dARwAAAABgu/Tp06t79+7avXu35syZo/LlyxuyT0hIiDZt2qTWrVurRYsWWr9+vYKCggzZCwAAADDKP//8YzWEK6IrV64kREspTrIJu7m7u2vt2rVq3bq1JTFpj0lsTHcDAAAAAAAAAAAAUp4//vhDn3/+uc11NWvW1Lhx4/iQTAAAAACJjqOjo+rVq6dly5Zp48aNat26tZydnQ3Zy8fHRwMHDlS1atU0a9Ys3b9/35B9AAAAAHtzc3OL031xzR+RR4rKKaEbsKc0adLoq6++0v/+9z9t3bpVFy5c0J07d+Tv7//SuqNHj1oCchF/9fDwMGxsNwAAAAAAAAAAAIDE6dy5c/rkk08UHBxsU12pUqU0c+ZMOTklq5dhAQAAACRDRYsW1aRJk/T5559rxYoVWrp0qe7cuWP3fe7du6fp06drzpw5aty4sTp16qTixYvbfR8AAADAXqpUqaKNGzfKZDJZTXgzmUyqVq1ajHV8CJ79JMtXWbJkyaKPPvoo1tcXKFBAUtQH1vLly+Xh4WHX3gAAAAAAAAAAAAAkXrdu3VKXLl0UEBBgU12ePHn0448/ytXV1aDOAAAAAMD+MmfOrD59+qhHjx7aunWrFi1apBMnTth9n6CgIK1Zs0Zr1qxR2bJl5enpqTp16vBhIQAAAEh0Bg4cqL1798rPz88qZ5QhQwYNHDgw2homstkXPyX8fzywAAAAAAAAAAAAgJTtxYsX6tKli83TDDJlyiQvLy9lyZLFoM4AAAAAwFipUqVSkyZN1KRJE3l7e2vRokXasmWLzROvY+Ovv/7SX3/9JQ8PD3300Uf68MMPlSFDBrvvAwAAAMRF7ty59csvv+irr77S0aNH5eDgoAoVKmjo0KF64403oly/dOnSBOgyeSPsJsnT0zPa825ubq+3EQAAAAAAAAAAAAAJIjQ0VJs2bdLFixdtqkuTJo3mz5+vPHnyGNQZAAAAALxepUqV0jfffKOhQ4dq6dKlWrZsmR4+fGj3fW7duqUpU6Zo5syZat68uTp16qS3337b7vsAAAAAtipQoIDmz58fq2vLly9vcDcpD2E3SSNGjEjoFgAAAAAAAAAAAAAkELPZrG3btunmzZs21Tk6OmrWrFkqWbKkQZ0BAAAAQMLJli2bPvvsM/Xu3VubNm3SokWLdPr0abvv8/z5c61YsUIrVqxQpUqV5OnpqZo1a8rBwcHuewEAAABI/PhJAAAAAAAAAAAAAECKtn//fpsnuknShAkTVLNmTQM6AgAAAIDEw8XFRS1bttT69eu1YsUK1a9f37Ag2h9//KEePXqoVq1a8vLykr+/vyH7AAAAAEi8CLsBAAAAAAAAAAAASLGOHz+ukydP2lw3YMAAtW7d2v4NAQAAAEAiZTKZ9N5772n27Nnau3evevToofTp0xuy17Vr1zR+/HhVrlxZY8aM0T///GPIPgAAAAASH6eEbgAAAAAAAAAAAAAAEsL58+d14MABm+s+/PBD9e3b14COAAAAACBp8PDw0JAhQ9SvXz+tX79eixYtitPE7Fd5+vSpFi9erMWLF6tGjRry9PRUlSpVZDKZ7L4XAAAAEFdms1l//vlntPeZTCaVKVPGajpycHCwTpw4Ee31Dg4OKlu2rCF9JhWE3QAAAAAAAAAAAACkONevX9eOHTtsrnv//fc1duxY3lgJAAAAAJJcXV3Vrl07tW3bVn/88YcWLVqkXbt2yWw2232vPXv2aM+ePSpQoIA6deqk5s2by9XV1e77AAAAALZavny5Ro8eHe1906ZNswq6SVKqVKn077//avjw4dG+3jBt2jQ1bdrUkF6TAodXXwIAAAAAAAAAAAAAycf9+/e1efNmhYaG2lRXunRpzZgxQ05OfKYoAAAAAERkMplUuXJl/fjjj9qxY4c8PT3l5uZmyF6XLl3SyJEjVblyZX311Ve6efOmIfsAAAAAsREcHKwZM2bIbDZb3SSpY8eOMYbW2rRpow4dOkSpM5vNmjRpkkJCQl7nt5GoEHYDAAAAAAAAAAAAkGL4+/trw4YNCgoKsqkuT548+vHHH5kaAAAAAACv8NZbb2nkyJE6cOCARo4cqTx58hiyj5+fn+bNm6caNWqod+/eOnLkiCET5QAAAICX2blzpx48eCCTyWS5Sf9NQf70009fWvvZZ58pbdq0UWrv3bunbdu2Gd57YkXYDQAAAAAAAAAAAECK8Pz5c61fv14BAQE21WXOnFleXl7KnDmzQZ0BAAAAQPLj7u4uT09P7dixQ/PmzVOVKlUM2ScsLEy///672rdvryZNmmjVqlV68eKFIXsBAAAAkR08eNDq2Gw2y2QyqW7dukqfPv1LazNkyKCGDRtG+6ENBw4csGufSQlhNwAAAAAAAAAAAADJXmhoqDZt2qSHDx/aVOfq6qp58+YZNokAAAAAAJI7BwcH1axZU4sWLdLWrVvVvn17pUmTxpC9zp49qyFDhqhKlSqaNm2a7ty5Y8g+AAAAQLiTJ09Ge75q1aqxqo/uQyHMZrN8fHzi01aSRtgNAAAAAAAAAAAAQLJmNpv1+++/69atWzbVOTo66rvvvlPJkiUN6gwAAAAAUpaCBQtq3LhxOnjwoIYMGSIPDw9D9nn48KHmzJmjatWqacCAATpx4oQh+wAAAAD37t2TyWSKcr5AgQKxqs+XL5/Vcfha9+7di39zSRRhNwAAAAAAAAAAAADJ2r59+3Tp0iWb6yZOnKjq1asb0BEAAAAApGzp06dXjx49tHv3bs2ZM0flypUzZJ+QkBBt3LhRrVq1UosWLbRhwwYFBQUZshcAAABSpidPnkR7PrbTjFOnTh3teT8/vzj3lNQRdgMAAAAAAAAAAACQbB0/flze3t4213322Wdq1aqVAR0BAAAAAMI5OTmpXr16Wr58uSWU5uzsbMhe3t7e+uyzz1S9enXNmjVL9+/fN2QfAAAAQJLu3LkTq+tS8gS3mBB2AwAAAAAAAAAAAJAsnT9/XgcOHLC5rl27durTp48BHQEAAAAAYlK0aFFNnjxZ+/fv12effaZs2bIZss/du3c1ffp0Va1aVYMHD9aZM2cM2QcAAAApg5ubW7TnDx06FKv6P//806Z1UwLCbgAAAAAAAAAAAACSnevXr2vHjh0219WqVUtffvmlTCaTAV0BAAAAAF4lS5Ys6tu3r/bu3atvv/1WpUuXNmSfoKAgrV69Wk2aNFHbtm21detWhYSEGLIXAAAAkq/cuXPLbDZbjk0mk8xms1atWqXAwMCX1r548UKrVq2yek0ifK3cuXMb03ASQNgNAAAAAAAAAAAAQLJy//59bd68WaGhoTbV5ciRQzNmzJCTk5NBnQEAAAAAYsvZ2VlNmzbV6tWrtXr1ajVt2tSwn9f+/PNP9enTRzVr1tQPP/ygx48fG7IPAAAAkp+3337b8nXE0Nvdu3c1duzYl9Z+8803un79epRak8mkQoUK2bnTpIOwGwAAAAAAAAAAAIBkw9/fX+vXr1dQUJBNdRkyZFCTJk2UJk0agzoDAAAAAMRV6dKl9e2332rfvn3q06ePMmXKZMg+t27d0pQpU1S5cmWNGDFCFy9eNGQfAAAAJB+VK1e2OjabzZbpbqtXr1a/fv1069Ytq2sePHigESNGaMGCBZZrI6tUqZKhfSdmfCQhAAAAAAAAAAAAgGTh+fPnWr9+vZ4+fWpTnaurq5o1a0bQDQAAAAASuezZs2vgwIHq06ePNm7cqEWLFunMmTN23+f58+davny5li9fripVqqhTp06qUaOGHByYMQEAAABrNWrUkKurq549e2YJrkUMvG3dulXbt29X0aJFlS1bNt2/f19nzpxRcHCw5TpJll8lKU2aNKpZs2ZCfUsJjr91AwAAAAAAAAAAAEjyQkJCtGnTJj18+NCmulSpUqlp06ZKnz69QZ0BAAAAAOzNxcVFrVq10oYNG7R8+XLVq1fPsCDagQMH1L17d9WuXVsLFy6Uv7+/IfsAAAAgaXJ3d9cHH3wQZTpbxMBbSEiIfHx8tHPnTnl7eysoKMjq/sg1LVq0kJub2+v+VhKNZDvZLSwsTF26dJGPj0+M12TOnFmLFi2Sh4dHrNa8efOmOnXq9NIXyEqWLCkvLy+rRCUAAAAAAAAAAAAA45jNZm3btk23bt2yqc7BwUENGzZUtmzZDOoMAAAAAGAkk8mkcuXKqVy5crpx44Z+/vlnrVy5Un5+fnbf6+rVqxo3bpy+/fZbtWzZUh07dtRbb71l930AAACQ9PTr10/r1q1TYGCgVYAt4uS28IlvkqzORTyWJFdXV/Xt2/d1tp/oJNvJbl5eXjpw4ID8/PyivQUFBenbb7+NddBNkt544w198803ev78eYzrHjx4UAsWLDDwOwMAAAAAAAAAAAAQ0b59+3Tp0iWb62rVqqU8efIY0BEAAAAA4HXLlSuXhg4dqoMHD2rcuHEqUKCAIfsEBARo0aJFql27trp3764DBw5EmeIBAACAlCVLliwaOXJktOG1iOfCbxHPR7zOZDJp9OjRypIly2vqPHFKlmG3u3fvatq0aVYPhIgPCJPJpDFjxqh48eI2r12yZEmNGDHCsk7km9ls1jfffKM7d+7Y9XsCAAAAAAAAAAAAENWxY8fk7e1tc13FihVVpEgRAzoCAAAAACQkV1dXtW/fXlu3btWiRYtUs2ZNQ/Yxm83atWuXOnXqpAYNGmjZsmUKDAw0ZC8AAAAkfq1atVKXLl1iDLxFvoWLeF23bt3UokWL19d0IpUsw27z589XUFBQlPPhKceKFSuqZcuWcV6/Xbt2Kl26dIyfxBEUFKT58+fHeX0AAAAAAAAAAAAAr3bu3DkdPHjQ5roSJUrovffeM6AjAAAAAEBiYTKZVKVKFc2bN087duxQp06d5ObmZsheFy9e1MiRI1WlShVNmjRJN2/eNGQfAAAAJG7Dhw/XgAEDLMfRDdmKbuiWyWTSwIEDNWTIkIRrPhFJdmE3f39/LV++3GqsX+RQWnz/45tMJg0ePNhyHHGP8Afa8uXL5e/vH699AAAAAAAAAAAAAETv2rVr2rFjh811+fLlU40aNezfEAAAAAAg0cqbN69GjRqlAwcOaMSIEXrzzTcN2efJkyf66aefVKNGDfXp00d//vlnjIMVAAAAkDz17dtXy5cvV8mSJaOd5hb53DvvvKOVK1eqd+/eCdx54uGU0A3Y2+7duxUYGGgJnUmy+rpkyZIqVqxYvPcpV66cChUqpPPnz1vWD09TStLz58+1c+dONW/ePN57AQAAAAAAAAAAAPg/9+7d05YtWxQWFmZTXc6cOVW/fn3La3oAAAAAgJTF3d1dnTt3VqdOnbRnzx4tXLgwThPDXyUsLExbt27V1q1bVaxYMXXs2FFNmjSRi4uL3fcCAABA4lO2bFmtXr1af//9t3bs2KFTp07pzp07evr0qdKmTascOXKoRIkSqlOnjooWLZrQ7SY6yS7sdvTo0RjvM5lMql27tt32qlevns6fP//SXgi7AQAAAAAAAAAAAPbj5+enDRs2KCgoyKa6jBkzqkmTJnJySnYvkQIAAAAAbOTg4KD3339f77//vi5cuKBFixZp3bp1ev78ud33On36tIYMGaLJkyerXbt26tChg7Jnz273fQAAAJD4FC9eXMWLF0/oNpIch4RuwN7OnTv30vvLlCljt73Kli370vsvXLhgt70AAAAAAAAAAACAlO758+dav369nj59alOdq6urmjVrptSpUxvUGQAAAAAgqXr77bc1YcIEHTx4UIMHD1bOnDkN2efhw4eaPXu2qlWrps8++0ze3t6G7AMAAAAkdcku7Obr6yuTyRTj/blz57bbXm+99Va0500mk8xms3x9fe22FwAAAAAAAAAAAJCShYSEaOPGjXr06JFNdc7OzmratKnSpUtnUGcAAAAAgOQgQ4YM6tmzp/bs2aPZs2frvffeM2SfkJAQbdiwQS1atFDLli21YcMGBQcHG7IXAAAAkBQ5JXQD9ubn5/fS+9OnT2+3vTJkyPDS+588eWK3vQAAAAAAAAAAAICUymw26/fff7f5wyYdHBzUsGFDZcuWzaDOAAAAAADJjZOTk+rXr6/69evr9OnTWrRokTZu3KigoCC773Xy5EmdPHlSkyZNUocOHdS2bVtlzpzZ7vsAAADg9fP29tbvv/+ukydP6t9//5Wfn59evHih1KlT69SpU5brfvjhBwUFBalXr15KlSpVAnaceCS7yW4vXrx46f3Ozs522+tVaxnxgw0AAAAAAAAAAACQ0uzdu1eXL1+2ua527dp68803DegIAAAAAJASFCtWTFOmTNH+/fs1YMAAZc2a1ZB97ty5o2+++UZVqlTRkCFDdPbsWUP2AQAAgPH+/vtvtW7dWq1atdJPP/2kP//8U3fv3tXz589lNpv1/Plzq+v37t2rmTNnqlOnTnr8+HHCNJ3IJLuw26tSjK+a/GaLV63l5JTsBucBAAAAAAAAAAAAr9WxY8fk4+Njc12lSpVUuHBhAzoCAAAAAKQ0WbJkUb9+/bRv3z59++23KlWqlCH7BAUFadWqVWrcuLHat2+v33//XaGhoYbsBQAAAPtbvny5WrVqpZMnT8psNltuJpNJJpMpyvXPnz/XiRMnJEl//vmnOnXqpMDAwNfddqKT7MJuadKkeen9V65csdter1rL1dXVbnsBAAAAAAAAAAAAKc25c+d08OBBm+tKliypsmXLGtARAAAAACAlc3Z2VtOmTbVmzRpLKM2owQhHjhxR7969VbNmTf3000968uSJIfsAAADAPlatWqWRI0cqJCTEKuAWXcgt3PHjxxUcHCxJMpvNOnPmjIYNG/a6Wk60kl3YLXv27DKbzTHef/jwYbvtdeTIkWjPh++fPXt2u+0FAAAAAAAAAAAApCTXrl3Tjh07bK7Lnz+/qlevbkBHAAAAAAD8n3feeUczZszQ3r171bt3b2XKlMmQfW7evKlJkyapcuXKGjlypC5dumTIPgAAAIi7q1evatSoUZJkCbhFnOwWU84pYsYpvGbLli3as2fP62g70Up2YbdcuXLFeJ/ZbNamTZvsttfGjRtjTFiaTKaX9gIAAAAAAAAAAAAgevfu3dOWLVsUFhZmU13OnDlVr169l35KKgAAAAAA9pQjRw7973//0/79+zVp0iQVLlzYkH2ePXumZcuWqV69evL09NTu3btt/rkZAAAAxpg6daqCgoIsr09EDLe97DWLQ4cORTlnNps1e/Zs+zeZhCS7sFvx4sWjnAsf/ydJly9f1vbt2+O9z++//275dIyYEpbR9QIAAAAAAAAAAAAgZn5+ftqwYYOCgoJsqsuYMaOaNGkiJycngzoDAAAAACBmqVOnVuvWrbVp0yYtW7ZMdevWlYODMW/T3b9/v7p166Y6depo0aJFCggIMGQfAAAAvJqvr6+2bdsWJegWPuHtZfz8/CxfR8w+nTx5UufPnzeo48Qv2YXdypQpE+N94SP9xo0bpydPnsR5j0ePHmncuHGvfNC9rBcAAAAAAAAAAAAA1p4/f67169fr6dOnNtWlTZtWzZo1U+rUqQ3qDAAAAACA2DGZTCpfvry+//577d69W926dVO6dOkM2evff//V2LFjVblyZY0bN05Xr141ZB8AAADEbOfOnZaJuxGDbmazWWazWY6OjjHWrlmzRlWrVrUKuoXbs2ePYT0ndsku7Pbee+/J3d1dkvWov4jT13x9fdW7d289e/bM5vUDAwP1ySef6Pbt21HWjbifu7u7ypUrZ/P6AAAAAAAAAAAAQEoUEhKijRs36tGjRzbVOTs7q2nTpoa9cRAAAAAAgLjKlSuXhg0bpoMHD2rs2LHKnz+/IfsEBARo4cKFqlWrlnr06KGDBw9avb8VAAAAxjly5Ijl64jT3QoUKKD58+fr77//jrE2bdq0mjFjhnLmzBnlvpMnT9q916Qi2YXdUqVKpfr160f7l/TwpKPZbNbRo0fVrl07mz7F4sqVK/rwww917Ngxyzox7VG/fn05OTnF63sBAAAAAAAAAAAAUgKz2aytW7fK19fXpjoHBwc1bNhQWbNmNagzAAAAAADiz9XVVR06dNDWrVu1cOFC1ahRw5B9zGazdu7cqY4dO6pBgwZavnx5nAZDAAAAIPauXLli+To8Z5QvXz6tWrVK1atXf2W2KF26dProo4+iTIWLuG5Kk+zCbpLUqVOnGO+LGHj7+++/1bBhQ02cOFGXLl2Kseb8+fMaM2aMGjVqpHPnzsXq0y46duwYp94BAAAAAAAAAACAlGbv3r1xetG2du3aevPNNw3oCAAAAAAA+3NwcFDVqlU1f/587dixQx07dlTatGkN2evixYsaMWKEKleurMmTJ+vWrVuG7AMAAJDS+fr6Wia6Sf+F1QYMGCA3N7dYr/H+++9HOXf//n279JcUJcvRY4ULF1adOnW0ffv2aCewRQy8vXjxQl5eXvLy8lK2bNlUsGBBZcyYUZL06NEjXbhwQffu3bPUSYp2zfBzJpNJderUUeHChV/DdwoAAAAAAAAAAAAkbX/99Zd8fHxsrqtcuTKvyQEAAAAAkqy8efNq9OjRGjhwoFatWqXFixfr2rVrdt/nyZMn+vHHHzV//nzVrVtXnp6eKlOmjNUbsgEAABB30U3SrVChgk1r5MyZM8q5wMDAOPeU1CXLsJskDRkyRPv27VNQUNBLA2/hX0vSnTt3dPfu3SjXhYt8feTzkuTi4qIhQ4bY7xsBAAAAAAAAAAAAkqmzZ8/qjz/+sLmuVKlSKlOmjAEdAQAAAADwerm7u6tz587q2LGj9uzZo4ULF8bpZ+VXCQ0N1W+//abffvtNxYoVU6dOndS4cWO5uLjYfS8AAICUJHLGSJJcXV0ToJPkwyGhGzDKW2+9pSFDhkT7oAkXcVJb+M1sNlvdIt4XsSa6tUwmk4YMGaI8efLY/xsCAAAAAAAAAAAAkpGrV69q586dNtflz59f1apVM6AjAAAAAAASjqOjo2rVqqUlS5Zoy5Ytatu2rVKnTm3IXqdPn9bgwYNVtWpVTZ8+PcqgCAAAAMRe2rRpo5y7efOmTWtEN+E3unVTimQbdpOkjh07qmXLllZT3CKLGGyTrINvEQNuEa+JKPwak8mkli1b6uOPPzbouwEAAAAAAAAAAACSh7t372rLli0KCwuzqc7Dw0P16tWL8bU/AAAAAACSg0KFCmnChAk6cOCABg8erJw5cxqyz4MHDzRr1ixVq1ZNAwcOlI+PjyH7AAAAJGfZs2ePkjfavHmzTWusXbvW8nX4Wkb9HTApSNZhN0maMGGCGjRoYDWlLSaRp7rFFHALFzEM17BhQ02YMMHu/QMAAAAAAAAAAADJiZ+fnzZs2KDg4GCb6jJlyqTGjRvLycnJoM4AAAAAAEhcMmbMqJ49e2rPnj2aNWuWypYta8g+wcHBWr9+vT744AO1atVKGzdutPnndgAAgJQqX758lq9NJpPMZrPmzZsnb2/vWNXv3btXS5Yssco7mUwmFShQwO69JhXJPuzm5OSkGTNmqEuXLlGmt8VVeH14GK5r16769ttv5ejoaK+2AQAAAAAAAAAAgGTn2bNnWr9+vQIDA22qS5s2rZo1a6bUqVMb1BkAAAAAAImXk5OTGjZsqJUrV2rdunX64IMP5OzsbMheJ06c0IABA1SjRg3NmTNHDx48MGQfAACA5KJcuXJWxyaTSYGBgWrfvr2mTp2qK1euRFt38eJFjR07Vj179lRISEiU+ytUqGBIv0mByfyy0WXJzO7duzV69GjdunUrStjtVb8N0V2fM2dOjR07VjVr1rR7rwCM4+7uroCAAKtzbm5u8vf3T6COAAAAAAAAAAAp0ZkzZxK6hdcqJCREa9eula+vr011zs7OatmypbJmzWpQZ9aKFi36WvYBAHtLac8rSQHPKQCSKp5TEieeVxDZ/fv3tXz5ci1dulT37t0zbB9nZ2c1a9ZMnp6eKly4sGH7IPnieSXx4TkFFStW1OHDh63OVahQQYcOHUqgjoCk7caNG6pRo4ZlqJb0fxPewrNI4V+H/5ohQwY9fvzY6r5wZrNZTk5O2r9//2t7bSSxSfaT3SKqWbOmfv/9d33++efKnDmzZTKb9H/T2mK6SbJcnylTJg0aNEjbtm0j6AYAAAAAAAAAAAC8QlhYmLZu3Wpz0M3BwUGNGjVKsS/mAgAAAAAQkyxZsqhfv37at2+fpk2bphIlShiyT1BQkH799Vc1atRI7du317Zt2xQaGmrIXgAAAElRrly5VLVq1SihtfBwW3huKeKvjx49stwXOehmMplUr169FP3aiFNCN/C6pUmTRj179lTnzp21b98+/fbbbzp69OgrX1jLnj27ypcvr/r166tGjRqGjX8GAAAAAAAAAAAAkpu9e/fqypUrNtfVrl1buXPnNqAjAAAAAACSB2dnZzVv3lzNmjXTiRMntHDhQm3dutWQQNqRI0d05MgR5cqVSx9//LHatGmjdOnS2X0fAACApOZ///ufDhw4IMl6qlvE4VsRRQy4Rebk5KSBAwca12wSkOLCbuGcnZ1Vu3Zt1a5dW5L08OFDXb16Vffu3dPz589lNpuVJk0aZcmSRXny5FHmzJkTuGMAAAAAAAAAAAAg6fnzzz916tQpm+sqV66swoULG9ARAAAAAADJj8lk0rvvvqt3331Xvr6+Wrp0qVasWKFHjx7Zfa8bN27oq6++0vTp09WiRQt16tRJ+fPnt/s+AAAASUXx4sXVo0cP/fDDD5aQW+SAW2QR748YkBs8eLDy5MljdMuJWooNu0WWKVMmZcqUKaHbAAAAAAAAAAAAAJKNs2fP6tChQzbXlSpVSmXKlDGgIwAAAAAAkr+cOXNq0KBB6tu3rzZs2KCFCxfq/Pnzdt/n2bNnWrp0qZYuXaqqVavK09NT1apV+3/s3Xd402XbxvEz3UBb9ipDaNmKTGXvKavQogIqQwRRQMQHxYlbeRQVcaE4WFYQGiirIMgUKcuBMoS27A0ddNGVvH/4Nk/TAS00Scf3cxw5mt+47/tKiU1tcv4uOTk5FfhaAAAAhd0zzzyjU6dOKTQ09IZd3TLvy9rhbeTIkRozZoztiy3kiu1vk0OHDtX27dsdXQYAAAAAAAAAAABQIp08eVI///xzvsfVq1dPnTt3tkFFAAAAAACULB4eHnrggQe0du1aff/99+rVq1e2D1QXlB07dmjs2LHq3bu3Fi5cqPj4eJusAwAAUFg5Ozvr448/1oQJE6w6u2UE33K6Sf8G31xcXPTSSy/plVdeceRDKDSKbdjtjz/+0NixYxUQEKAtW7Y4uhwAAAAAAAAAAACgxLh06ZLWrVsnk8mUr3E+Pj7q3bu3zT54BwAAAABASWQwGNS2bVvNnTtXW7Zs0dixY+Xl5WWTtY4fP67XX39dHTp00FtvvaVTp07ZZB0AAIDCyMnJSdOmTVNISIj69u0rFxcXmc3mXG9ubm4KCAjQ+vXr6eiWicGcUz+8YqBevXqWJKTBYFDjxo01efJk9erVy9GlAXAwLy+vbFeN8fT0VFxcnIMqAgAAAAAAAACURIcOHXJ0CTYRGxurZcuWKTExMV/jKlSooKFDh8rDw8NGleVNkyZNHLo+ANyq4vq6UpTxmgKgqOI1pXDidQUFLSEhQStWrNCCBQsUGRlps3UMBoN69OihUaNGqV27dlzgpgTidaXw4TUF7dq1U1hYmNW+tm3bateuXQ6qCCi+4uLitGfPHv3zzz+6cuWKkpKSVKpUKVWuXFmNGzfWvffeq9KlSzu6zELHxdEF2IPZbNahQ4f05JNPqkGDBpo8ebL69OnDL8wAAAAAAAAAAABAAUpKSlJISEi+g25lypSRv7+/w4NuAAAAAACUFGXKlNHDDz+sESNG6JdfftH8+fO1bdu2Al/HbDZr06ZN2rRpkxo0aKBRo0bJ399fpUqVKvC1AAAAChsvLy/16NFDPXr0cHQpRYqTowuwNYPBYAm1mc1m/fPPP5o8ebLuu+8+rVmzRsW0sR0AAAAAAAAAAABgV2lpaVq9erViYmLyNc7NzU3+/v7y8vKyTWEAAAAAACBXTk5O6ty5s7799ltt3LhRjzzyiM26ixw9elQvvfSSOnbsqPfff1/nzp2zyToAAAAo2op92M1sNstsNmcLvYWHh2vq1Knq3bu3QkJCZDKZHFwpAAAAAAAAAAAAUDSZTCatX79eFy5cyNc4Z2dn9e/fX5UqVbJRZQAAAAAAIK98fX312muv6ddff9VLL72kWrVq2WSdmJgYzZ07V127dtXkyZO1b98+mlcAAIBiKzY2Vvv27dNPP/2kkJAQ/fTTT9q3b5+uXbvm6NIKLRdHF2AvGb8EZw68mc1mHT9+XNOmTdOcOXM0ceJE+fv7y9nZ2ZGlAgAAAAAAAAAAAEXK1q1bFRkZme9xPXv2tNkH5wAAAAAAwK3x8vLSo48+qlGjRmnz5s1asGCBdu3aVeDrpKena926dVq3bp3uuusujRo1Sv3795e7u3uBrwUAAGBPcXFxWrx4sdauXat//vkn1/MaN26s/v37a8SIEfLy8rJjhYVbse/sllXWTm8Gg0Fms1knT57U9OnT1bNnTy1btkxpaWmOLhUAAAAAAAAAAAAo9Pbu3au///473+M6duyohg0b2qAiAAAAAABQEJydndWrVy8tXrxY69at0wMPPGCzINrff/+tZ599Vp07d9bHH3+sy5cv22QdAAAAW1u+fLk6d+6sDz/8UEeOHLHkmHK6HTp0SLNmzVKXLl1kNBodXXqhUezDbhmBtqwynhiZzzGbzTp9+rRefPFFde/eXT/88INSUlLsXTIAAAAAAAAAAABQJBw+fPiWruzevHlztWzZ0gYVAQAAAAAAW2jYsKHeffdd7dy5U88++6yqVatmk3WuXLmiOXPmqFOnTvrPf/6jAwcO2GQdAACAgpaenq6XX35ZL7zwguLi4rJllnK6Sf/mm65du6bp06frlVdekclkcuTDKBSKbdjtzjvvzDHQllVuobdz585pxowZ6tatmxYvXqzk5GS71g8AAAAAAAAAAAAUZidOnNDPP/+c73H169dXp06dbFARAAAAAACwtfLly2vChAnaunWrPvnkE7Vq1com66SmpmrlypUaMmSI7r//fq1du1apqak2WQsAAKAgvPnmm1qyZInMZrNVoO1Gnd2ynrdkyRK98cYbjn4oDldsw24hISFasWKF7r//fnl4eOSYiMwst9DbxYsX9frrr6tbt26aP38+oTcAAAAAAAAAAACUeBcvXlRoaGi+ry5ao0YN9e7dO8eLVAIAAAAAgKLD1dVV/fr1048//qiVK1dq8ODBcnV1tclav/32m5566il17dpVX3zxhaKiomyyDgAAwK3atGmTFi9enK1jW0ZOKTdZs0xms1nff/+9fvrpJ5vXXJgV27CbJDVt2lTvvvuufv31V82YMUP16tW7abe33EJvly5d0ttvv63OnTvrm2++UVJSkt0fDwAAAAAAAAAAAOBosbGxWr16db6vpl6xYkUNGDBAzs7ONqoMAAAAAAA4QtOmTfXBBx9ox44dmjJliipVqmSTdS5cuKBZs2apY8eOeuGFF/TPP//YZB0AAID8SE9P19tvv23ZzinklrlxV25ZpozzzGaz3nnnHaWnp9u++EKqWIfdMnh5eWnkyJEKDQ3VkiVLNGjQILm4uNyw21tuoberV69q5syZ6ty5s7788kslJiY65DEBAAAAAAAAAAAA9paUlKSQkJB8v0fm6empQYMGyd3d3UaVAQAAAAAAR6tcubKeeuopbd++XbNmzdJdd91lk3WSk5P1448/ql+/fnrooYe0cePGEv1hcAAA4FibN2/W6dOnLbmjzDLnkbLecsoxZTh79qw2bdpkt8dQ2JSIsFtmrVu31ocffqhff/1V06dPV+3atW/Y7S230Ft0dLRmzZqlzp0764svvlB8fLxDHg8AAAAAAAAAAABgD6mpqVq9erViYmLyNc7NzU2DBg2Sl5eXbQoDAAAAAACFiru7u4YMGaKVK1daQmm26vQeFhamCRMmqEePHvrmm2907do1m6wDAACQmw0bNuS4P3PIrX379poyZYreeOMNTZkyRR06dLDKKuXkp59+slnNhZ3BnDU2WMKYzWb9+uuvCgoK0qZNm5Senp5rO0BJOaYmDQaDvLy8NGbMGI0ePZo36oBCzsvLK1tA1dPTU3FxcQ6qCAAAAAAAAABQEh06dMjRJeSZyWTS2rVrdfz48XyNc3Z21qBBg1SrVi0bVVbwmjRp4ugSAOCWFKXXlZKC1xQARRWvKYUTryso6s6dO6egoCAtWbJE0dHRNlundOnSCgwM1MiRI+Xr62uzdZB3vK4UPrymoF27dgoLC7Pa17ZtW+3atctBFQFFW+/evS3vn2R0bMu4X61aNX322Wdq1qxZtnEHDhzQpEmTdP78+RzH+vr6ltjAW4nr7JaVwWBQhw4d9Nlnn+mXX37R008/rWrVquXa7S23Tm/Xrl3TnDlz1KlTJ82ePTvfV7QEAAAAAAAAAAAACqutW7fmO+gmST179ixSQTcAAAAAAGAbPj4+mjZtmn755Re98847atCggU3WSUxM1KJFi9SrVy+NGTNG27Ztk8lksslaAAAAknThwgXL/czZI3d3d82fPz/HoJsk3X333fr222/l5uZmNTZDRgiuJCrxYbfMKleurEmTJmnbtm366quv1LVrV0nWAbcMuYXe4uPj9dlnn6lLly6aNWuWoqKi7P0wAAAAAAAAAAAAgAKzZ88e/f333/ke17FjRzVs2NAGFQEAAAAAgKLKw8NDDz74oNatW6fFixerZ8+e2T7YXVC2b9+uRx99VH369NGiRYuUkJBgk3UAAEDJlpKSYrWd0aHt/vvvV7169W44tl69enrggQeyZZYkKTU1tUDrLEoIu+XAyclJ3bt319dff61t27bpySefVLly5aw6vGXILfSWkJCgL7/8Ul27dtXMmTPp9AYAAAAAAAAAAIAi59ChQwoLC8v3uObNm6tly5Y2qAgAAAAAABQHBoNB7dq105dffqnNmzfr0Ucflaenp03WioyM1GuvvaYOHTronXfe0alTp2yyDgAAKJm8vb1z3N+zZ888jc/tvNzmLQkIu92A2WzW0aNHdeTIEV27du2m5+YUeqtWrZoaN25cop9kAAAAAAAAAAAAKHpOnDihzZs353tc/fr11alTJxtUBAAAAAAAiqPatWvrpZde0q+//qrXXntNdevWtck6cXFx+uabb9S9e3c9/vjj2rVrV45dVAAAAPKjQYMGOf5O4ePjk6fx1apVs9rO6AzXoEGDAqmvKHJxdAGF0ZUrV7Rs2TItWbJE586dk6Sb/jKb0fEt47x69epp0qRJ6tevn5ycyBQCAAAAAAAAAACg6Lh48aJCQ0NlMpnyNa5GjRrq3bu35b0zAAAAAACAvCpTpoweeeQRPfTQQ9q+fbsWLFig7du3F/g6ZrNZmzZt0qZNm9SoUSONGjVKgwYNkoeHR4GvBQAAir+uXbsqLCws2/7Y2Ng8jc+tOVe3bt1uq66ijBRWJrt27dLkyZPVqVMnffjhhzp79qylY1tub8hl7uJmNpvVqFEjffrppwoNDdWAAQMIugEAAAAAAAAAAKBIiYmJ0apVq5SampqvcRUrVtSAAQPk7Oxso8oAAAAAAEBJ4OTkpK5du+q7777TTz/9pIcfflilS5e2yVpHjhzRCy+8oI4dO2rWrFk6f/68TdYBAADFV2BgoDw9PbPt37lzZ57G79q1K9s+T09PBQQE3HZtRVWJT2LFxMTo22+/Va9evTRy5EitX79eqamploBbxi2rrCG3O++8U3PnztXq1avVt29frlYJAAAAAAAAAACAIicxMVEhISFKSkrK1zhPT08NGjRI7u7uNqoMAAAAAACURH5+fnr99de1c+dOvfjii6pZs6ZN1omOjtYXX3yhLl26aPLkydq/f7/MZrNN1gIAAMVL+fLlNX36dMvvDhlZo8WLFysmJuaGY2NiYrRo0SJLBikjyzR9+nSVL1/e1qUXWiU27Pbbb79p2rRp6tChg959910dP37cqotb5idKxk3KHnJr3ry55s2bp5CQEPXs2ZOQGwAAAAAAAAAAAIqk1NRUrV69WrGxsfka5+bmJn9/f3l5edmoMgAAAAAAUNJ5e3tr7Nix2rx5s7744gu1adPGJuukp6dr3bp1euCBBzRkyBCtWLFCycnJNlkLAAAUH8OHD9ejjz5qFZa/evWqJk6cqLi4uBzHxMXFaeLEibp8+bIkWcaOGTNGw4YNs33RhZiLowuwp/j4eIWEhCgoKEhHjx6VJKsQW2ZZr8aQOfwmSS1bttRTTz2ljh072rpsAAAAAAAAAAAAwKZMJpNCQ0N18eLFfI1zdnbWgAEDVLFiRRtVBgAAAAAA8D/Ozs7q3bu3evfurSNHjmjBggUKCQmxSSDtr7/+0rRp0zRz5kw99NBDGjFihCpVqlTg6wAAgKLt3LlzkqRRo0bJzc1Nc+fOtWSQdu/erZYtW+qBBx7QPffco4oVK+rq1avau3evfvzxR0n/6wRnMBg0YcIEDRs2zDJnXvn4+BTsg3Iwg7kE9Ng9ePCggoKCtHr1aiUlJVkF2TKH3HL6VmQNubVp00aTJk1Su3btbFw1AFvx8vJSfHy81T5PT89cE9MAAAAAAAAAANjCoUOHHF2Cxc8//6yDBw/me1zfvn3VoEEDG1TkOE2aNHF0CQBwSwrT6wr+xWsKgKKK15TCidcVIHdRUVFaunSpFi9erAsXLthsHTc3N/Xr10+jR49W06ZNbbZOccPrSuHDawratWunsLAwq31t27bVrl27HFQRULTVq1cvx2xSRogt435WeT3vZgwGg6UhWHFRbDu7Xb9+XWvWrKblx6wAAQAASURBVFFQUJD++usvSbqtkFuHDh00adIk3XPPPbYsGwAAAAAAAAAAALCrPXv23FLQrVOnTsUu6AYAAAAAAIqeChUq6IknntBjjz2mDRs2aMGCBfrtt98KfJ2UlBStXLlSK1euVKtWrTR69Gj17t1bLi7F9uPYAAAgj3LKJWV0a8vteE7HSkA/szwptr9dtW3bVgkJCZKUY8IxtydA1idLly5dNGnSJLVo0cKW5QIAAAAAAAAAAAB2d/DgwWxX8M2LFi1a8P4ZAAAAAAAoVFxdXTVgwAANGDBABw4c0IIFC7R27VqlpqYW+Fr79+/X/v37Va1aNT3yyCN68MEHVb58+QJfBwAAFA255ZXy0tktt3nyoriG45wcXYCtxMfHS/pfEjJziC3rP2bG8YzWf2azWT169JDRaNQ333zDG3UAAAAAAAAAAAAodk6cOKEtW7bke1z9+vXVsWNHG1QEAAAAAABQMO6++2598MEH2r59u5566ilVrFjRJutcuHBB77//vjp27KgXX3xR//zzj03WAQAAhV9OeaWsxzLf8npebrfirNh2dsuQEWDL7ViGjHP69OmjiRMnqkmTJnapDwAAAAAAAEDRcujQIUeXgCz4ey4A5N/FixcVGhoqk8mUr3E1a9ZU7969831lUQAAAAAAAEeoUqWKpkyZogkTJmjt2rWaP3++Dh48WODrXL9+XUuXLtXSpUvVrl07jR49Wt26dZOzs3OBrwUAAFDcFfuw283a+mV0fuvXr58mTpyohg0b2rM8AAAAAAAAAAAAwK5iYmK0atUqpaam5mtcxYoV1b9/fz6kBQAAAAAAihx3d3cFBARoyJAh2r9/vxYsWKANGzYoPT29wNfatWuXdu3apdq1a+uRRx7R/fffLy8vrwJfBwAAFC5cKLDgFPuwW2ZZQ25OTk4aNGiQnnzySfn5+TmwMgAAAAAAAAAAAMD2EhMTFRISoqSkpHyN8/T01KBBg+Tu7m6jygAAAAAAAGzPYDCodevWat26tc6dO6fFixdr6dKliomJKfC1Tp06pbfffluzZ89WQECARo0apbp16xb4OgAAwPFyatSFW1ciwm5ZQ27Ozs7y9/fXE088wS+NAAAAAAAAAAAAKBFSU1O1evVqxcbG5mucu7u7/P39uQI5AAAAAAAoVnx8fPTcc89p8uTJCgkJ0fz583Xs2LECXychIUGLFi3SokWL1KVLF40ePVqdOnWi+wsAAMXE999/7+gSip1iH3bL+EXQbDbLxcVFAQEBeuKJJ1SrVi0HVwYAAAAAAAAAAADYh8lkUmhoqC5evJivcc7Ozurfv78qVqxoo8oAAAAAAAAcq1SpUho2bJgefPBB7dq1SwsWLNDPP/9skw4t27Zt07Zt2+Tn56dRo0Zp8ODBKlOmTIGvAwAA7KdNmzaOLqHYKfZhN7PZLFdXV91///2aMGGCfHx8HF1SsXTmzBkFBwdLkry9vTVmzBgHVwQAAAAAAAAAAIAMW7Zs0YkTJ/I9rnfv3qpZs2bBFwQAAAAAAFDIGAwGtW/fXu3bt9fJkye1aNEiLVu2TPHx8QW+VkREhGbMmKH3339fDzzwgEaOHMnfYADAxsg8AEVHsQ67ubq6atiwYRo/fryqVavm6HKKtTNnzmjOnDmSpBo1avCDHwAAAAAAAAAAoJDYvXu3Dh48mO9xnTt3Vv369W1QEQAAAAAAQOF2xx136OWXX9bTTz8to9GoBQsW3NKFhG4mLi5O33zzjb777jv16NFDo0ePVps2bWQwGAp8LQAo6cg8AEVHsQ27Pfrooxo3bpwqV67s6FIAAAAAAAAAAAAAhzh48KB2796d73EtW7ZU8+bNC74gAAAAAACAIsTT01MjR47Uww8/rG3btmnBggXasWNHga9jMpm0ceNGbdy4UY0aNdKoUaM0aNAgeXh4FPhaAADAdqKiolShQoWbnvfPP//IaDTq9OnTSklJUeXKldW2bVv16tVLpUuXtkOlhZuTowuwlRdffJGgG4qcM2fOyM/Pz3ILCwtzdEkAAAAAAAAAAKCIOn78uDZv3pzvcQ0aNFCHDh1sUBEAAAAAAEDR5OTkpG7dumn+/PnasGGDHnroIZUqVcomax05ckQvvPCCOnbsqFmzZunChQs2WQcAUHIsX77cKqcA29i9e7c6dOigt99+W7Gxsbme984772jAgAH69ttvtXHjRm3btk3Lly/XtGnT1LNnT5sE64uaYht2AwAAAAAAAAAAAEqqCxcuKDQ0VGazOV/jatasqV69eslgMNioMgAAAAAAgKKtXr16euONN7Rz50698MILqlmzpk3WiY6O1hdffKEuXbpoypQp+u233/L9tx4AAGAf6enpeuWVV5Samqr58+ere/fuWrBggdLS0qzO++STT/Ttt9/KbDbneLt06ZLGjx+vPXv2OOiRFA6E3VBkJCcn3zDdCgAAAAAAAAAAACkmJkarV6/O9gbqzVSsWFH9+/eXs7OzjSoDAAAAAAAoPsqWLavHHntMmzdv1ueff642bdrYZJ20tDStWbNG999/vwICAhQSEqKUlBSbrAUAAG6N0WhUZGSkDAaDzGazYmNj9dZbb+mZZ56xnHPs2DF99tlnMhgMN7ylpqbqhRdeyPf7PMWJi6MLQNGVlpamXbt2afXq1QoODrbsP3v2rMaNG6eBAweqd+/e8vDwuKX5U1NTdeDAAYWFhWnXrl367bff9MYbb2jo0KH5mmfRokV67bXX8r3+q6++qpEjR970vCtXrmjZsmXasWOHjh07pmvXrsnT01N16tRR+/btNXz4cPn4+OR7fQAAAAAAAAAAgPxKTExUSEiIkpKS8jXO09NT/v7+cnd3t1FlAAAAAAAAxZOzs7P69OmjPn366PDhw1qwYIHNAmkHDhzQM888o3fffVcPPfSQhg8frkqVKhX4OgBQXNgy82AymRQWFqbg4GAdPHhQFy5cUHJysipWrKimTZvK399fvXv3lpPTrfWoOnbsmJYuXardu3frzJkzSkxMVLly5dS4cWN169ZNgYGB8vT0vKW5UfDmz59vuZ8RePP09NS0adMs+z/99FOlpaVZjufEYDBIkk6dOqWff/5Zffr0sWndhRVhN9ySw4cP6/nnn9fff/+d4/HNmzdr8+bN8vHx0dtvv63OnTvfdM709HQdOnRIu3btUlhYmPbu3avExMTbrtVW7RvT09P13Xff6cMPP1RycrLVsZiYGP3xxx/6448/9OWXX2r8+PGaPHkybxADAAAAAAAAAACbSU1N1apVqxQbG5uvce7u7vL39+dNcQAAAAAAgNvUuHFjzZw5U88++6yWLFmi77//XhcvXizwdS5fvqzZs2fr888/14ABAzRq1CjdddddBb4OABRltsg8ZDhz5oz+85//aN++fdmOnT9/XufPn9dPP/2kFi1a6NNPP1W1atXyPHdcXJzeeustLV++PNuxK1euaMeOHdqxY4c+/vhjvfrqq/L398/z3LCNgwcP6p9//rEE1cxmswwGg5566inVrl1b0r/Pi9DQUMs5GTJvZw3Abdq0qcSG3W4tIooSbefOnQoICMj1h35m586d05gxYzRv3rwbnrdo0SK1bt1agwcP1n//+19t27atQIJuZrNZe/fuve15skpOTtbTTz+td999N1vQLav09HR98cUXGjNmjOLi4gq8FgAAAAAAAAAAAJPJpNDQUF26dClf45ydnTVgwABVrFjRRpUBAAAAAACUPBUrVtTEiRO1bds2zZ49Wy1atLDJOikpKTIajfL399eDDz6o0NBQpaWl2WQtAChKbJF5yBAZGamBAwfmGHTL6vfff9egQYN08uTJPM19/vx53X///TkG3bKKjY3VM888o3feeUcmkylP88M2Nm/enG1f9erV9fDDD1u2g4ODLf9OGaG2jA5vOXV5M5vNOnjwoI0qLvzo7IZ8iYiI0BNPPGHVWtnT01OdOnXSHXfcIRcXF509e1abN2+2umrozJkzVbp0aT300EM5znvixAldu3atwOs9ceKELl++bNn+z3/+o65du+ZpbNWqVXPcbzab9eKLL2rdunWWfW5ubvL391fnzp1VrVo1XblyRXv37tWPP/6o+Ph4SdLu3bv1xBNP6LvvvpOrq+utPygAAAAAAAAAAIAsNm/erBMnTuRrjMFgUO/evVWjRg3bFAUAAAAAAFDCubq6auDAgRo4cKD+/PNPLViwQOvWrVNqamqBr7Vv3z7t27dP1atX1yOPPKIHH3xQ5cqVK/B1AKCws1XmQZLi4+M1fvx4q+xD7dq19fDDD6tp06ZycnJSRESEvv/+e0tQ6erVq5oyZYp+/PFHubm55Tp3XFycRo8erfDwcMu+ChUqaNiwYWrevLnKlSuns2fPauPGjVq/fr0lOPXNN9+odOnSevrpp/P9vULB+PPPPy33M7q6BQQEWOVGVqxYYeniljnkVr9+fdWpU0fbtm2z/H6QcdwW3WGLCsJuyJf33ntPCQkJlu2+ffvq3Xfflbe3t9V5169f13vvvacFCxZY9r311ltq3bq1GjZseNN16tatqx49eujOO+/U1KlTb7nerGnpgQMHqlatWrc8nyT98MMPWrlypWXb19dXX331lerWrWt1Xu/evfX444/riSee0G+//SZJ2rVrlz7++GNNmzbttmoAAAAAAAAAAADIEBYWpkOHDuV7XKdOnVS/fn0bVAQAAAAAAICsmjVrpg8//FDPP/+8vv/+ewUFBSkqKqrA1zl//rzee+89zZkzR4MHD9aoUaPUoEGDAl8HAAorW2YeFi1apOPHj1u2+/Xrp/fff18eHh6Wfa1bt1ZAQICmTp2q0NBQSdJff/2ltWvXasiQIbnW/fLLL1sF3Xr27KkPPvhAnp6eln2tWrXSoEGDdODAAT3++OO6dOmSJOmTTz5Rq1at1KlTpxt+b2AbR48etQTZMvTs2dNy/48//tDJkyct52QE4rp06aKvvvpKTk5O2rBhgyZOnGg1T+bncUnj5OgCUHTExcVpy5Ytlu0qVaroww8/zPZDX5I8PDw0Y8YMTZgwwbIvJSVFM2fOzHFuZ2dn3XPPPXr++ee1ceNGbdq0SS+88IJatmx5WzXv2bPHcr969eqqWbPmbc135coVvffee5btatWqaenSpdmCbhkqVaqkRYsWqXHjxpZ98+bN07Fjx26rDgAAAAAAAAAAAEn6+++/rd4PyauWLVuqefPmBV8QAAAAAAAAbqhKlSqaOnWqfvnlF7333nu68847bbLO9evXtWTJEt1333165JFH9PPPP1u6AAFAcWXLzIMkhYSEWO7Xq1dPH3zwgVXQLYOrq6vefvttlS5d2rJv6dKluc67Y8cOrVmzxrLdtWtXffHFF1ZBt8zuvvtuBQUFqUyZMpZ9r7zyipKTk3NdA7aTuUNghjvuuMNyf9WqVdmOGwwGvfLKK3Jy+jfW1blz52znZO4MV9IQdkOeHT9+XOnp6Zbtrl27yt3d/YZjnnnmGatfwhMSEqzagWaYPn26lixZonHjxsnX17fAat67d6/lfps2bbKlZfNr/vz5iouLs2zPnj1bFSpUuOEYDw8PzZkzx/KDJi0tTZ9//vlt1QEAAAAAAAAAAHD8+HGrN+3zqkGDBurQoYMNKgIAAAAAAEBeubu7KzAwUCEhIVq6dKnuu+8+ywfeC9qvv/6q8ePHq0ePHvruu++sPgsLAMWJLTMPiYmJVk1vhg8fLjc3t1znLVu2rDp27GjZPnDggMxmc7bzzGazPv74Y8t2hQoVNGvWrJu+JtStW1czZsywbJ8+fVorVqy44RjYxo1ChgkJCVq5cmW2rm7t27e3CsTl9Jzz8vIq+GKLCMJuyLOsV3MoW7bsTcc4Ozvr9ddfl5ubm6ZNm6Yffvghxx/ozs7OBVZnhvPnz+v06dOW7TZt2tzWfMnJyfr+++8t2507d9Y999yTp7G+vr4KCAiwbK9Zs8bSMhQAAAAAAAAAACC/Lly4oNDQ0BzfGL+RmjVrqlevXrd9gUAAAAAAAAAUDIPBoNatW+vTTz/Vtm3bNH78+Dx9RvdWnDp1Sm+99ZY6dOig119/XcePH7fJOgDgKLbMPCQnJ6tbt26WW6tWrW46d+3ata3GX716Nds5Bw4c0O+//27Zfuyxx1S+fPmbzi1JQ4YMsWo2NH/+/Hy/b4Dbl9PzbPHixYqLi9OMGTN07dq1bMcHDBhgtf3nn39a7mf8G1arVq2AKy06CLshzypXrmy1feLEiTyNa9GihbZu3aonnnjCJqG23GTu6iZJ9957723Nt337dqsfMqNGjcrX+NGjR1vum0wmrV279rbqAQAAAAAAAAAAJVNMTIxWr16ttLS0fI2rVKmSBgwYYNf3awAAAAAAAJB3Pj4+mj59un755Re99dZbql+/vk3WSUhI0MKFC9WzZ0+NHTtWO3bsIBwBoFiwZeahfPny+vrrry23pk2b3nTezF3mJMnFxSXbOatXr7bcd3V11fDhw/NUs/RvUG/kyJGW7WPHjunIkSN5Ho+CUbFiRavXUbPZrA8//FAtW7bUqlWrsl2A0NXVVT179rTat2rVKqttg8Gghg0b2q7oQo6wG/KsevXqqlq1qmV769atCg8Pz9PYzOPsJXPYrWrVqlYtHm/F1q1bLffLlCmjdu3a5Wt8/fr1rZLZ27Ztu616AAAAAAAAAABAyZOYmKiQkBAlJSXla5yXl5cGDRqU49VoAQAAAAAAULiULl1aw4cPV2hoqBYuXKgePXpk+6B8Qdm6datGjx6tvn37KigoSImJiTZZBwDsobBlHjJ366pWrVqOHcAy5xTatGkjb2/vfK2RNTRFTsH+curyZzabLbfM+wwGg/z9/VWuXDnL/jNnzmjNmjXZXutbtGhhs5oLO8JuyDMnJycNGTLEsp2amqpx48YpMjLSgVXlLnPYrVWrVlqzZo0mTZqkTp06qVGjRmratKnuu+8+vfnmmzp27NhN5/vtt9+s5nN3d89XPQaDQR07drRs//7779napObGbDZr27ZtmjRpkjp06KCGDRuqadOm6t27t55//nnt3LkzT1fUOHPmjPz8/Cy3sLAwSdKlS5c0e/Zs9evXT82aNVOzZs3Uv39/ffjhh4qNjc3X4wQAAAAAAAAAALaRkpKiVatW5ftv9+7u7ho0aJA8PT1tVBkAAAAAAABswWAwqEOHDvrqq6+0adMmjR492mZ/4wkPD9crr7yiDh066N1339XZs2dtsg4A2FJhyjzs27fPKoMwePDgbGGmqKgoHT9+3LLdvn37fK9TvXp1+fn5Wbb379+f57EpKSlasmSJHnnkEbVu3VoNGjRQ8+bNNWTIEM2cOTNPOQtJWr58uVVOIcPhw4f1wgsvqHv37mrcuLFat26t4cOHKygoSGlpaXl/kIVcp06dsu0zGAyWW9asx5gxY6y233333Ry/H927dy/YQouQ7D0QgRuYMGGCVq5cqQsXLkiSTp06pUGDBmnChAk2/QU6v6Kioqx+sIaGhmrdunVW56Smpuro0aM6evSoFi5cqMcee0zTpk3Lse1oenq61QtcgwYNbqmuzO2k4+PjdeHCBfn4+NxwTFJSkp555hn99NNPVvvT0tIUERGhiIgILVu2TK1atdLs2bNvOl9We/fu1ZNPPqmoqCir/UeOHNGRI0e0ZMkSffPNN3lqs2oLQ4cOLfA583u1WwAAAAAAAAAAHM1kMik0NFSXLl3K1zhnZ2cNHDhQFStWtFFlAAAAAAAAsIc6derolVde0dNPPy2j0agFCxbo5MmTBb7OtWvX9PXXX+vbb79Vr169NGrUKN1777026ywHoHA4evSoTT63vXz58gKf82YKQ+bhn3/+0aRJkyzb1apV0/jx47Odl7Xr3O3kFCIiInKcMzenT5/W2LFjLeMyxMXF6cCBAzpw4IDmzZunBx54QK+++qo8PDzyVdOiRYv05ptvKj093bIvJSVFe/bs0Z49e7R8+XJ9/fXXqlChQr7mLYx69OghX19fHT9+3BJuyxxwy9hnMBjUo0cPq3/ntWvXasOGDZbX2Yzz2rZtq0qVKtn9sRQWhN2QL15eXvr66681YsQIXbt2TdK/waGPPvpI8+bNU2BgoB5++GH5+vo6tM59+/ZZbd+s65nJZNJXX32lyMhIzZkzJ1vXtosXL1olZevWrXtLdWX9vpw5c+aG4bSkpCSNGjUqT+nq/fv3a+DAgZozZ446dOiQp3rOnDmjN954QwkJCbmec/XqVY0ePVqhoaGqUqVKnuYtSL///nuBz5nXjnoAAAAAAAAAABQWP//8c74/vGQwGNSnT598XygPAAAAAAAAhZeXl5dGjRqlRx55RNu2bdOCBQu0Y8eOAl/HZDJpw4YN2rBhgxo3bqzRo0dr4MCB2T5jC6B4SEhIsMnnth3BEZkHk8mk+Ph4HTt2TGvXrtUPP/yglJQUSVL58uW1YMEClS1bNtu4M2fOWG3XqVPnltbPnG84d+6c0tPTc2wClCE8PFwPP/ywLl++fNO5f/zxRx04cEBfffWVatSokad61q9fr9dee+2G5/z555964oknFBQUdMNaiwJnZ2e9+uqrGjt2rNLT03MNiFeqVElvvfWWZTsyMlIvvvhijuePHDnSZvUWBU6OLgBFT+PGjbV8+XKrLmXSv53KFixYoF69emnkyJHavHnzTUNmtrJ3717L/QYNGujJJ5/UBx98oIULF2rZsmX65JNPNGrUKHl5eVmN27Rpkz7++ONs80VHR1ttlytX7pbq8vb2ttqOiYm54flz5syxBN3Kli2rRx99VHPnztWyZcv0+eefa+zYsVZXYo2JidHEiRPz/Gb3zJkzlZCQoDp16ujFF1/UokWL9OOPP+qNN95Q7dq1reZ9//338/goAQAAAAAAAABAQQoLC9Phw4fzPa5z586qV6+eDSoCAAAAAACAozk5Oalbt26aP3++1q9frxEjRqhUqVI2Wevw4cOaPn26OnbsqA8++EAXL160yToAUFDsnXlYtmyZWrRooQceeEALFiywBN3uuece/fjjj7n+rT5rnuBWcwqZg3RpaWk3bIYjSdOnT7cE3WrXrq1nn31W8+fP15IlS/Thhx9mCzcfOXJETz75pJKTk/NUz8svvyxJatOmjf773/9q6dKlWrx4sSZPnmzVWW/fvn1asWJFnh9nYdahQwfNmjVLbm5uls5umW++vr5asmSJVbe2M2fOWM7PYDAY1KBBA/Xs2dMRD6PQKDad3R566CFHl5CNwWDQ4sWLHV2GTfj5+SkkJETz58/X119/raioKKvjO3fu1M6dO9W0aVPNmDFDLVu2tGt9e/bsUZMmTfT888+rffv2OSZd+/Xrp6lTp2r69OnasGGDZf+8efPUt29f3X333ZZ9SUlJVmPLlClzS3VlbXmadd6sDhw4IEnq0qWLPvjgA5UvX97qeJ8+fTRlyhS98cYblhavcXFxmjx5soxGo1xcbvyfeHR0tPr166f333/fqq1oq1atNHDgQN1///2WNqZr1qzRK6+8ki2wBwAAAAAAAAAAbOfvv//Wnj178j2uVatWatasmQ0qAgAAAAAAQGFTv359vfnmm5o2bZqWLl2qRYsW6dy5cwW+TlRUlD7//HN99dVXuu+++zRq1Ci1aNGiwNcBgIJgz8zD5s2bs+1r3769Zs+ebdXcJquCyilkHZeYmHjDz/3/8ccfkqQnnnhCTz/9dLbcgb+/v06dOqWpU6dazv377781c+ZMvfrqqzetJzo6Wi+88ILGjh1rleVo166d+vTpo8DAQEtw7ocfftDQoUPz8jALvQEDBqhFixZavny5Dh48qPT0dPn4+Kht27bq27dvtg52nTt31saNG/X2229bQn8Gg0HPP/98rt3hSopiE3bbvXt3ofrHNJvNhaoeW3B3d9fjjz+ukSNHKjQ0VEFBQdlal/7111964IEHNGXKFE2aNMku35Pk5GQNGjRIo0ePvmk7Sy8vL3322WeaNGmS1q9fL+nfFqKfffaZvvzyS5vXmhdt2rTRV199lWtwrUyZMpo5c6ZMJpOMRqMk6eDBg1qzZo0GDx58w7lr1qyp9957zyrolsHb21v/+c9/9MQTT0iSUlJS9Mcff6hz586394AAAAAAAAAAAECeREZGasuWLfke17BhQ7Vv394GFQEAAAAAAKAwK1u2rMaPH69HH31UP//8s+bPn39LF1K6mbS0NK1evVqrV69Ws2bNNHr0aPXt21dubm4FvhYA3A57ZR5at26tTZs2We379ddf1bVrV40fP16PP/54ofsZOXHiRD3zzDO5Hq9du7YWLlyowMBAHTt2TJL0/fff69FHH1WtWrVuOHe/fv302GOP5XiscePGGj58uObPny/p3+9/YmKiSpcufWsPpJCpUaOGpkyZkufzy5Urp/fff1+DBw/Wyy+/rObNm6tTp042rLBoKDZhtwwF0ULydhX3kFtWpUqVUkBAgAICAnTgwAEtWLBAa9euVWpqqqR//01mz56t2NhYvfTSSzb//ri7u2vs2LF5Pt9gMOidd97Rrl27FBsbK0naunWr4uLi5OXlJUnZ2jrfrK1nbuLj462289Iu+sMPP7xphzaDwaA33nhDW7dutSTOg4ODbxp2Gzp06A1r6Nixo5ycnGQymSRJJ06csHvYzRZX/Dh58qTS09MLfF4AAAAAAAAAAArK+fPntX79+ny/91WrVi317NmzxL1fBQAAAAAAgP9xcXFRnz591KdPHx06dEgLFizQqlWrlJKSUuBr/fnnn5o6dareffddjRgxQsOHD1elSpUKfB0AtlWmTJli3anR1pmHBx54QC1bttTZs2e1d+9erVmzRteuXVNiYqJmz56tsLAwzZ0715JPyFxXZgkJCbcUisuab7hZcKxBgwZ5CmSVKVPGEsSSpPT0dIWEhGjSpEk3HPfII4/c8Hjnzp0tYbf09HSdPn1aDRs2vGk9xVmHDh0UGhpqeU6WdMUu7MYbd451991364MPPtCkSZP00ksvaffu3ZZj3333ne655x716dPHgRXmrGzZsho0aJAWLVok6d8rTvz555/q2LGjJKl8+fJW58fExNzSOteuXbPaLleu3A3Pr1ChgqpVq5anuUuVKqXAwEDNmzdPkrR3716lpqbK1dU11zE3e0EoXbq0ypUrZwnQZa3fHpYvX17gc3p5eWULHgIAAAAAAAAAUFhER0drzZo1SktLy9e4SpUqqX///nJ2drZRZQAAAAAAAChqmjRpov/+97967rnn9MMPP+j777/XpUuXCnydS5cuafbs2fr88881cOBAjR49Wk2aNCnwdQDYRoMGDWzyue3CyBaZh7Jly6pVq1Zq1aqVBg0apGnTpum1117TqlWrJElhYWF68cUXNWfOHKvMS9Y8QUxMTLbsQl5kNP2R/g08lylT5obnjxgxIs/vJTRt2lR33323Dhw4IOnfjnU3C7s1atTohsd9fHystuPi4vJUS1GVmJio9evX53gsICDAct/Dw0MeHh72KqtQc3J0AQXNbDY7/Aapbt26WrhwYbbOYjNnziy036OsHcuOHz9uuV+1alWr7mqZj+VHZGSk1XbNmjVveH6bNm3yNX/m81NTU3Xq1Kkbnp81GZ6TzD8s6YYGAAAAAAAAAIBtJSYmKiQkRElJSfka5+XlJX9//1u64isAAAAAAACKv4oVK2rSpEnatm2bPvroIzVv3twm66SkpCg4OFgDBw7UsGHDFB4eLpPJZJO1AOB22DLzULZsWX3wwQfq16+fZd+6deu0c+dOq/Oy5glOnDhxS+tlzjf4+PjcNMiW35zCvffea7kfERFx0/NvllPIGujK78X/ipro6Gg999xzmj59erYbclbswm4Gg8HhN/zLxcVF//3vf3XXXXdZ9p06dUp//fWXA6vKXfXq1a22M3cxc3Z2lq+vr2X76NGjt7TGsWPHLPc9PT1v2rUta003k3W+zAntnOTl+cpzGgAAAAAAAAAA+0hJSdGqVaus3qPIC3d3d/n7+9/0Sq0AAAAAAACAm5ubBg0apODgYAUHB2vQoEFWDSEK0t69e7Vu3TotWLBA+/fv1/Xr122yDgDcKltmHpycnDRjxgyr4JnRaLQ6p169elbbBZFTyDpnTm4np5CX9zBulkEoyRkFGm3lTbEKuzm6o1tJeNLt379fP/30U57Pd3Fx0ahRo6z2HTlypKDLKhBZf2C6u7tbbbds2dJyf//+/UpOTs7X/Gaz2SqJ3aJFCzk5Fav/BAEAAAAAAAAAwC0ymUwKDQ3VpUuX8jXO2dlZAwcOVIUKFWxUGQAAAAAAAIqr5s2b66OPPtL27ds1ceJEm/2NKS4uTjt37tS3336rLVu2KCoqyibrAIBUuDIPlStXVosWLSzbf/75p9XxChUqqG7dupbtX3/9Nd9rnD9/3qrbWqtWrW6hUtgLTbbyxjYxfAcICAhwdAnF2pUrV/Tf//5XRqNR1atXV9euXeXm5pansXfeeWe2uWwpLS1Nzs7O+f4BcPHiRavtrL+wd+nSRUuWLJEkJSQkaNeuXeratWue5w8PD9fJkyet5ruZ8+fP53l+Sbpw4YLVdrly5fI1HgAAAAAAAAAAOMbPP/9s9T5CXhgMBvXp00c+Pj42qgoAAAAAAAAlQdWqVfXMM89o4sSJWr16tRYsWKBDhw4V+DppaWn666+/9Ndff+nBBx9U1apVC3wNACVXYc08ZP5ZlzWzIP2bKzh+/Lgkaffu3YqLi5OXl1ee5//555+ttjt37nzTMefPn8/XGplzCmXLls3zOGRnNpsJu+VBsQm7vffee44uoVhbvHixpWXm+fPntXDhQj322GO3NJerq2tBlmYlIiJCzzzzjB577DENHDgwX2P37NljtV27dm2r7S5dusjLy0txcXGSpIULF+Yr7DZ//nzLfScnJ/Xr1++mY3bv3p3n+bOe7+rqqlq1auVrPAAAAAAAAAAAsL9du3bp8OHD+R7XpUsX1atXzwYVAQAAAAAAoCRyd3fX0KFDFRgYqL1792rBggX66aefZDKZCnSdChUqEHQDUOBsmXlYv369nnrqKcv2p59+qt69e+dprpiYGMt9s9mc7fjAgQMtWYPU1FQFBQXp8ccfz9Pc6enpWrhwoWXbz89PjRs3vum43bt3q0GDBnlaQ7LOWvj5+eV5HHCrnBxdAIqGRx55RKVKlbJsz549O89XF816Xs2aNQu0NunfH/oLFizQwIED9ffff+v111/P19VPk5OTFRISYtn29vZW8+bNrc5xd3fXiBEjLNvbtm3Tvn378jT/8ePHFRwcbNnu169fnn5Jj4qKytatLTdJSUmWF2dJuvfee20aLAQAAAAAAAAAALfvr7/+0t69e/M9rlWrVrr77rttUBEAAAAAAABKOoPBoHvvvVefffaZtm7dqnHjxsnb27vA5s/6GV0AKAi2zDxUq1ZN6enpltsff/yRp3mTk5P1999/W7arV6+e7ZxmzZqpWbNmlu1vvvnGKiB3IytXrlRERIRle/To0XnqGhYUFKT09PQ8rfH333/rwIEDlu327dvnaRxwOwi7IU8qVqxolWpOSkrSuHHj8vRDNHOITJJatmxZ0OVJ+jddnJycLEmKjo7WmDFj8vzi9OGHH+r8+fOW7X79+snFJXvjw0cffVSenp6W7aefflpRUVE3nDs5OVlPPfWUUlNTJUkuLi6aOHFinuqSpGeeeUZpaWk3PMdsNmvGjBm6evWqZV9AQECe1wAAAAAAAAAAAPYXERGhrVu35ntco0aNeDMZAAAAAAAAdlGjRg09//zz2rlzp958803Vr1//tuZzd3dXw4YNC6g6APgfW2Ye7rrrLpUvX96yvWTJEl28ePGm8wYFBSk2Ntayfe+992Y7x2AwaMqUKZbtq1ev6tlnn71pV83jx4/rjTfesGzXrFlTgYGBN61Jko4eParZs2ff9LyEhARNmzbNsu3s7Cx/f/88rQHcjuxpHiAXEydO1LZt2yyp3IiICA0bNkxz5szJtYVlUFCQ1q9fb9nu1KmTTdoOGwwGvfHGG/rzzz8tndBOnjypwMBAzZgxQwMHDswxoZyenq4PPvhAX3/9tWWfh4eHJk+enOM6lSpV0vTp0/XKK69I+re96bBhw/Tll1+qbt262c6/cuWKnnzySR06dMiyb9y4cflq+bl7926NHz9eH3zwgdULZIaEhAS9/vrrVl3d6tevrwEDBuR5DQAAAAAAAAAAYF/79+/Xhg0bZDab8zWuVq1a6tGjR56uzAoAAAAUBZk/84LCoVGjRo4uAQBQCJUuXVojRozQ8OHDtXPnTs2fP19btmzJ9zx33XWXXF1dbVAhANgu8+Di4qLhw4fr888/lyTFxsZq9OjR+vzzz3PMEUjShg0b9N5771ntGz58eI7ndunSRf3799fatWslSZs3b9aTTz6pWbNmWTXryXDgwAE9/vjjio+Pt+x788035e7unuP8Ofn8889lMpk0derUHBsFnTp1Sk8//bSOHTtm2ffggw9m63qH/OH9nbwh7IY8c3V11SeffKIRI0bo7NmzkqRjx45p0KBB6tWrl3r27KkaNWrIZDLp1KlTWrNmjXbs2GEZ7+7urhdeeMFm9VWqVEnffPONHnzwQcsP7ejoaE2dOlVz587VoEGD1LhxY3l7e+vy5cs6dOiQgoODde7cOat5Xn/9dVWrVi3XdYYPH669e/dq1apVkv59AezXr5/8/f3VpUsXVa1aVVevXtXevXu1dOlSqxeQtm3bWqWub6Z27do6deqUtm3bph49eigwMFBt2rRRxYoVdenSJe3fv18rV6606ujm4eGhWbNm5fiCAwAAAAAAAAAAHC8yMlLjx4/XPffck69xlStXVv/+/eXs7GyjygAAAAAAAIAbMxgM6tixozp27Kjjx49r0aJFCg4Otvq87I3G3n333XaoEkBJZcvMwxNPPKF169bpxIkTkv7tjta/f3/1799fnTt3VvXq1ZWenq5Tp05p7dq1VvNK0tixY9W0adNca3/77bd15MgRRURESJI2btyobt26adiwYWrRooXKli2rs2fPatOmTQoNDbXq/DZp0iR17tw5z98nPz8/RUREaO7cuQoNDdWDDz6oO++8Ux4eHjp37py2bNmiDRs2KDk52TKmTp06eu655/K8BnA7ik0aZvr06Y4uIRuDwaCZM2c6uowCVbNmTS1ZskSjR4+2/BBNTU3VunXrtG7dulzHZXRes3Xb4UaNGmnJkiWaMGGCzpw5Y9n/zz//6P3337/hWCcnJ73wwgsaOnToDc/L+HdNTU1VaGioJCklJUXLli3TsmXLch3Xpk0bzZ07N19Xo3j55Zf10Ucf6fDhw4qNjdW3336rb7/9NtfzPTw89Nlnn+muu+7K8xoAAAAAAAAAAMA+TCaTIiMjNXbsWMXExORrrJeXlwYNGiQ3NzfbFAcAAAAAAADkU926dTVjxgxNnTpVy5cv18KFC3Xq1Klcz/fz85OXl5cdKwRQEtkq81C6dGnNnz9fw4cP1/nz5yVJycnJMhqNN+1Y3a9fv5tmXry8vLRgwQKNHj1a4eHhkqSoqChLN7ncjB07Nl8NeSTpk08+0YMPPqi4uDidPHkyWwe6rGrXrq3vvvuOn+G3yNnZWT4+PnR1y4diE3YLDg4uVP/wZrO5WIbdJMnHx0erVq3Sp59+qnnz5iktLe2G51euXFkffPCBOnToYJf6GjdurJUrV2rOnDn64YcflJqamqcxr732mlq3bp2nNdzd3fXxxx+rWbNm+uijj6wSy1k5Oztr3Lhxeuqpp/LVFlSSypQpo0WLFmnq1KnZkt1ZNW3aVDNnzlSjRo3ytQYAAAAAAAAAAChYycnJOnHihMLDwxUZGWn5GhkZqevXr+d7Pg8PD/n7+6tMmTI2qBYAAAAAAAC4PV5eXhozZoxGjRqlrVu3av78+dq5c2e285o1a+aA6gCURLbKPNSqVUtr1qzRm2++qZCQEJnN5hueX6ZMGU2fPl3Dhw+Xk5PTTeuuXr26li1bprfeekvBwcE3PLds2bKaMWOG/P39852ladiwoYKCgjRp0iSdPHnyhucOHDhQM2bMUIUKFfK1RkliNpu1YMECdenSRXXr1s12vFq1atq+fbsDKiu6ik3YLcPNfligYHh4eGjatGkaOXKk1qxZo7ffftvqeM2aNdWoUSN17dpVgwYNsvubr+XLl9err76qcePGaePGjdq+fbuOHz+uqKgoJSUlydvbW9WrV1fr1q3Vo0cPtW/fPt8/4DNCbEOGDNGPP/6oHTt2KDw8XLGxsfL09FSdOnXUvn17jRgxQj4+Prf1WL777jtt3bpVy5cv1++//64rV67I1dVVPj4+atGihQYMGKBOnToVqsAnAAAAAAAAAADFXUxMTLZAW0REhE6fPl1g71m5uLhowIABvIkMAAAAAACAQs/JyUndu3dX9+7ddezYMS1YsEAxMTFKS0tT5cqVVaNGDUeXCKAEsVXmoVy5cvrggw80efJkhYSEaPfu3Tpx4oSio6Pl5uamypUrq06dOurTp4969eqlcuXK5atub29vvffee3rsscf0448/KiwsTGfOnFFSUpLKli2rJk2aqGvXrho6dKg8PT3zNXdmTZo0UWhoqIKDg7V27VodPnxYcXFxKl26tOrUqaM2bdooMDAw1053+J/Vq1frrbfe0jvvvKM+ffroscceI+B9mwzmYpIOq1evXqEK+mR0djt27JijS7GLsLAwPfTQQ5KkGjVqkDpFoebl5aX4+HirfZ6enoqLi3NQRQAAAAAAoCg5dOiQo0tAFk2aNHF0CQCKMZPJpPPnz2cLtYWHhysqKuq25u7Vq9cNjxsMBvXr109+fn63tQ7yh9cVAEUV/69S+PCaAuSN0Wh0dAnIolGjRo4uATngdQVAUfXbb7/p0KFDKlu2LH/nKiR4TUG7du0UFhZmta9t27batWuXgyqyDzIPsJVRo0ZZOppm5JruvfdePf744+rcubMjSyuy6OxmA4UpdAcAAAAAAAAAAICbS05O1okTJxQREWG5RUZGKjIyUklJSQ6pqUuXLnwACAAAAAAAAEWah4eHWrZs6egyAACwmYMHD1pyRBmZpj179mjPnj1q1KiRgoKC5OXl5cgSi5xiF3YjaAYAAAAAAAAAAIDcxMbGWrqzZQ62nT59WiaTydHlWbRu3Vp33323o8sAAAAAAAAAAADADcTHx1vuZw69GQwGde7cmaDbLSh2YbfC0NkNAAAAAAAAAAAAjmMymXThwgWFh4dbdWkLDw/X1atXHV3eTTVq1Ejt27d3dBkAAAAAAAAAAAC4iWrVquns2bOS/hdyy/DQQw85qqwirdiE3e69915Hl1Ci1axZU0899ZQkydvb28HVAAAAAAAAAACAkiA5OVknT5606tCWEWxLSkpydHm3pHbt2urRo4ejywAAAAAAAAAAoFgh8wBb6d69uxYuXGgVcstQsWJFB1RU9BWbsFtQUJCjSyjRatasqSlTpji6DAAAAAAAAAAAUAxdu3YtW6AtIiJCp0+fVnp6uqPLKzCVK1dWv3795Ozs7OhSAAAAAAAAAAAoVsg8wFbGjRun4OBgJSYmZgu8HT58WM2bN3dMYUVYsQm7AQAAAAAAAAAAoOgym806f/68VXe28PBwRUZG6vLly44uz+Zq1Kih++67T25ubo4uBQAAAAAAAAAAAHlUvXp1zZ49W08++aTS0tKsjr377rtasGCBPDw8HFRd0UTYDQAAAAAAAAAAAHaTkpKikydPZuvSFhkZqcTEREeXZ1dubm6qVq2a6tevr8aNG8vJycnRJQEAAAAAAAAAACCfunXrpk8++UTTp0/XtWvXZDAYZDab9dtvv2ngwIEaN26c2rZtq6pVq8rd3d3R5RZ6hN0AAAAAAAAAAABQ4OLi4hQREWHpzpYRajt16pTS09MdXZ5dVa1aVb6+vqpXr558fX3l5+cnPz8/RUVFObo0AAAAAAAAAAAA3Ib69etbbZvNZqv7x48f10svvZTveQ0Gg44ePXrb9RVFhN0AAAAAAAAAAABwS8xmsy5cuKDIyEhLqC3j66VLlxxdnl05OzvrjjvusATZMm6+vr7y8vLKcQxhNwAAAAAAAAAAgKItc7gtK4PBcNNzkB1htxycOHFCISEhOnz4sOLi4m55HoPBoMWLFxdgZQAAAAAAAAAAAPaXkpKiU6dOWbqzZdwiIyOVkJDg6PLsqkyZMlbd2TJutWvXlpubm6PLAwAAAAAAAAAAgJ1lhNqk7J3dDAaD1fG8KOnhOMJuWXzyySf69NNPZTKZbmuejCckAAAAAAAAAABAUREXF5djl7ZTp04pLS3N0eXZVZUqVeTr66t69epZfa1WrRrvAQEAAAAAAAAAAMBKbgG1/AbXeB+KsJuVuXPn6uOPP77teXhiAQAAAAAAAACAwspsNuvixYtW3dkyQm0XL150dHl25ezsrNq1a2fr0ubr6ytvb29HlwcAAAAAAAAAAACUOITd/t+ePXs0a9YsgmoAAAAAAAAAAKBYSE1N1alTpyyhtszhtvj4eEeXZ1elS5fOsUvbHXfcITc3N0eXBwAAAAAAAAAAgCKOPFLBIez2/7J2dMtvm8DMeIICAAAAAAAAAAB7iYuL0/Hjxy3d2TK+njx5UmlpaY4uz64qV66cY6itevXqvH8DAAAAAAAAAAAAm7idDBKyI+wm6ciRI9q9e7cMBkO2J1jWNz4zH884ltM+AAAAAAAAAACAgmI2m3Xp0qUcu7RduHDB0eXZlZOTk2rXrm0Jsvn5+cnPz0++vr4qW7aso8sDAAAAAAAAAABACfL99987uoRih7CbpJ07d+a4P6fwW9ZjBoPB6jzSmAAAAAAAAAAA4FalpaXp1KlT2UJtERERio+Pd3R5dlWqVKkcu7Tdcccdcnd3d3R5AAAAAAAAAAAAgNq0aePoEoodwm6Sdu3aZbWdObzWrFkzPfLII6pSpYomTZqkuLg4mc1mmc1mDR06VCEhIUpNTbWMqVmzpl577TWVKlXKEQ8FAAAAAAAAAAAUAQkJCZbObOHh4YqMjFRERIROnjyp1NRUR5dnV5UqVbLqzlavXj35+fmpWrVqcnJycnR5AAAAAAAAAAAAAOyIsJuk06dPy2AwSLIOujVu3FhBQUFyd3fX+fPnLVdMNRgMeumllzR69GjNnDlTQUFBmjFjhgwGg86ePatvv/1WX331lTw8PBz2mAAAAAAAAAAAgGOZzWZdvnw5xy5tFy5ccHR5duXk5KRatWpZQm2Zb2XLlnV0eQAAAAAAAAAAAAAKCcJukqKjo7PtMxgMGjlypNzd3SVJW7Zskclkshxr2bKl5dwRI0Zo3759WrVqlaR/O8XNmjVLL7/8sh2qBwAAAAAAAAAAjpSWlqbTp0/nGGqLi4tzdHl25eHhka1Lm6+vr+rUqWN5zwUAAAAAAAAAAAAoKZKSknTo0CFdvHhRCQkJKl26tKpWraomTZqodOnSji6vUCLsJunatWs57vfz87PcDwsLszpWu3Ztq+0RI0Zo1apVls5wixcv1sMPP6w6deoUeL0AAAAAAAAAAMD+EhISFBkZqcjISIWHhysyMlIRERE6ceKEUlNTHV2eXVWsWDHHLm3Vq1eXk5OTo8sDAAAAAAAAAAAAHGrLli1avHixdu7cqfT09GzHnZyc1LFjRz388MPq1q2bAyosvAi7SSpTpkyOgbfy5ctb7h87dswSZJMkLy8vq3MbNWpktZ2enq61a9dq4sSJNqgYAAAAAAAAAADYgtls1pUrVxQREWEVagsPD9f58+cdXZ5dOTk5qWbNmjmG2sqVK+fo8gAAAAAAAAAAAIBC5/Lly/rPf/6jXbt2SZIlh5RVenq6tm/fru3bt6t9+/Z6//33VaVKFXuWWmgRdpNUrly5HMNu169ft9y/dOmS1bHExESrwFtOVyndvn07YTcAAAAAAAAAAAqhtLQ0nT59OluXtoiIiBzfMyjOPDw85OvrK19fX9WrV8/ytU6dOnJ3d3d0eQAAAAAAAAAAAECRcPToUY0cOVJXr161hNwMBkOu52ecs3PnTvn7+2vhwoWqX7++XWotzAi7SapYsaJOnjyZ7Ql07tw5S8e2hIQEq2OHDx/Wvffea9n+7bffLPczOsCdOXPGhlUDAAAAAAAAAICbSUxMVGRkZLYubSdPnlRKSoqjy7OrChUq5NilzcfHJ8eL+gEAAAAAAAAAAADIm/Pnz+vhhx9WVFSUJOuQW07d3QwGg+Ucs9msy5cv6+GHH1ZISIiqVatmn6ILKcJukpo3b24VVstw8OBBde/eXZLk4uKi9PR0y7GPP/5Y3377rdzd3RUdHa1333032/iMJygAAAAAAAAAALAds9msq1evWjqzZb6dO3fO0eXZlcFgUK1ateTr65st1Fa+fHlHlwcAAAAAAAAAAAAUO2azWVOmTFFUVJRVgO1mYzJkNN26evWqpkyZoqVLl9q03sKOsJukNm3a6Ntvv822/9dff9XkyZMlSV5eXkpOTrY8gfbs2aOOHTuqdu3aCg8PV2JiYrbOcJ6ennapHwAAAAAAAACAkiA9PV2nT59WZGRktlBbbGyso8uzK3d3d/n6+srX11f16tWzfK1Tp448PDwcXR4AAAAAAAAAAABQYqxYsUK//fZbjkG3rFmjzDLOM5vNlrzSb7/9phUrVmjIkCG2LboQI+wm6Z577pGrq6vS0tIk/S8RuX//fl28eFFVq1ZV3bp1dfnyZasnXnR0tKKjo63myhgrSdWrV7fvAwEAAAAAAAAAoBhISkqyCrRFRkYqPDxcJ06cUEpKiqPLs6sKFSrk2KWtRo0acnJycnR5AAAAAAAAAAAAQIk3d+5cy/2cgm45dXkzGAxWGaSMfWazWXPnziXsVtJ5e3ure/fu2rBhg1Vi0mw2a9GiRZo2bZqaN2+uPXv2WI5lfsLllrxs27atnR4BAAAAAAAAAABFi9lsVlRUVLYObRERETp79qyjy7Mrg8GgmjVrZuvS5uvrqwoVKji6PAAAAAAAAAAAAAC52LdvnyIjI62Ca5lzRpUrV9aIESPUpk0bVapUSVFRUdq9e7eCgoJ08eJFy7jM+aTIyEjt27dPrVu3dtjjciTCbv9v6NCh2rBhg9U+s9ms8PBwSZK/v7+++uorq2MZKcqM7az69+9vw4oBAAAAAPlx6NAhR5eALJo0aeLoEgAAgB2kp6fr7NmzOYbaYmJiHF2eXbm5ucnX1zdbqK1OnToqVaqUo8sDAAAAAAAAAAAAkE9bt2612s4Ir2U00fr0009Vrlw5y3FfX1+1bt1ajzzyiJ588kmFhYVl6/CWMS9htxKuS5cuqlOnjk6cOCFJ6tGjhyZMmKAWLVpIkho2bKg+ffpYur9lpCYzywi+GQwG9e3bV82aNbPrYwAAAAAAAAAAwFGuX7+uyMhIqzBbZGSkjh8/ruTkZEeXZ1flypWTn59ftluNGjXk7Ozs6PIAAAAAAAAAAAAAFJADBw5Y7mfkiiSpSpUq+uyzz1S2bNkcx3l7e+uzzz7Tfffdp8uXL1uNzTpvSUPY7f85OTlpwoQJ2rlzpyZMmKCGDRtmO+f111/XoUOHdPr06WxPogxms1n16tXTq6++auuSAQAAAAAAAACwu6ioqBy7tJ09ezbbReKKu5o1a2br0ubr66uKFSs6ujQAAAAAAAAAAAAAdhAZGWmVMcro6vbwww/nGnTLULZsWT300EP66KOPrBpwmc1mRUZG2rTuwoywWyZDhw7V0KFDcz1eqVIlLV26VNOnT9eOHTtyPKdr166aNWuWVYtBAAAAAAAAAACKkvT0dJ07d07h4eGKjIy0fI2IiFB0dLSjy7MrNzc31a1b19KdLSPUVrduXZUqVcrR5QEAAAAAAAAAAABwoNjY2Bz3t2nTJk/j27Vrp48++ijP85YEhN3yqUqVKvruu+906NAhbd++XefPn5fJZFLNmjXVpUsXNWrUyNElAgAAAAAAAACQJ9evX9fx48ezdWk7fvy4kpOTHV2eXZUtW9YSaMt8q1mzppydnR1dHgAAAAAAAAAAAIBCKLf3VfPaRCu37m8pKSm3WlKRR9jtFjVp0kRNmjRxdBkAAAAAAAAAANxUdHR0tkBbRESEzpw5I7PZ7Ojy7KpGjRqW7my+vr6WUFvFihVlMBgcXR4AAAAAAAAAAACAIqR06dJKSEjItv/cuXPy9fW96fjz58/nuL9UqVK3XVtRRdhN0tWrVzVmzBh1795djzzyiCpWrOjokgAAAAAAAAAAyBeTyaRz584pPDxckZGRlq8RERGKiopydHl25ebmpjp16mTr0la3bl2VLl3a0eUBAAAAAAAAAAAAKCYqVaqUY9htw4YN6tix403Hr1+/Ptd5SyrCbpK+++47HTp0SIcPH9a8efN0//3369FHH1Xt2rUdXRoAAAAAAAAAAFaSk5N14sSJbKG2yMhIXb9+3dHl2ZW3t3e2QJufn59q1qwpFxfeAgEAAAAAAAAAAABgW35+fjpx4oQMBoMkyWAwyGw2a/ny5XrggQfUtGnTXMceOHBAwcHBlrGSZDabZTAYVK9ePZvXXljxTq+kLVu2SPr3CZGcnKzvv/9eP/zwg/r27avHHnvshk8sAAAAAAAAAABsISYmJscubadPn5bZbHZ0eXZVvXp11atXT76+vlZfK1asaPXGDwAAAAAAAAAAAADY07333quff/5Z0v+CagaDQampqXr00Uf14YcfqlOnTtnG7dy5U1OnTlVqaqolIJf5vc977rnHbo+hsCHsJunUqVPZUpDp6elat26d9u/fr9DQUHl5eTmwQgAAAAAAAABAcWQymXT+/Plsobbw8HBFRUU5ujy7cnV1VZ06dbJ1aatbt67KlCnj6PIAAAAAAAAAAAAAIJvu3bvr3XfftWxnXLjUYDAoOjpajz76qO6++261a9dOlSpVUlRUlMLCwvT7779bAm45Xey0e/fudnsMhQ1hNynbkyLzE+XFF18k6AYAAAAAAAAAuC3Jyck6ceKEIiIiLLfIyEhFRkYqKSnJ0eXZlZeXl6U7W+ZQW61ateTiwtsWAAAAAAAAAAAAAIqOunXrqm3btgoLC8sWXMvY/vPPP3XgwAGrcVk7uWXu7ta2bVvVrVvXbo+hsOFdY0mNGjXSH3/8kWPbvy5dujiwMgAAAAAAAABAURIbG2vpzpY52Hb69GmZTCZHl2dX1atXl5+fn3x9fS3htnr16qlSpUpWf4cHAAAAAAAAAAAAgKLs6aef1rBhw6z2ZeSTMrJKOTXqyjgvqylTptiu2CKAsJukgIAA/fHHHzkeS09Pt28xAAAAAAAAAIBCzWQy6cKFCwoPD7fq0hYeHq6rV686ujy7cnV1VZ06dbJ1aatbt648PT0dXR4AAAAAAAAAAAAA2Fzr1q11//33a9myZVbd3TK+5nQx0Jw6wBkMBg0dOlStW7e2T+GFFGE3SQ8++KCWL1+uAwcOZHsC/fTTTxo6dKiDKgMAAAAAAAAAOEpycrJOnjxp1aEtI9iWlJTk6PLsytPT06o7W8bXmjVrytXV1dHlAQAAAAAAAAAAAIBDvfrqqzpy5Ij++uuvbF3bcureliFzjunuu+/Wa6+9ZtM6iwLCbpKcnZ31zTffaPjw4QoPD7dqE/jWW2/Jx8dH7du3d3SZAAAAAAAAAAAbuHbtWrZAW0REhE6fPq309HRHl2dX1apVk5+fX7ZQW+XKlXO82iAAAAAAAAAAAAAAQPLw8NDChQs1fvx47d2715JNypC1k1tmZrNZ99xzj7766iu5u7vbrebCirCbJKPRKEkaOnSoZs6cKel/T6L4+HiNGjVKklS1alU1bdpUvXr1yvPcAQEBBVwtAAAAAAAAACC/zGazzp8/b9WdLTw8XJGRkbp8+bKjy7MrFxcX1alTR76+vvLz87PcfH195enp6ejyAAAAAAAAAAAAAKBI8vLy0uLFi/X5559r3rx5SkxMlKRswTfpf7mlUqVKafz48XryySfl7Oxs95oLI8Jukp577rkbpiUzti9cuKCLFy9q06ZNeZ6bsBsAAAAAAAAA2E9KSopOnjyZrUtbZGSk5Y2EksLT0zPHLm21atWSq6uro8sDAAAAAAAAAAAAgGLH2dlZkydP1vDhwxUSEqJNmzbp0KFDSkhIsJxTqlQp3XnnnerZs6cGDx6sSpUqObDiwoewWyaZQ26Z5RaEu5msqUsAAAAAAAAAQMFISUlRVFSUoqOjtWbNGkuo7dSpU0pPT3d0eXZVtWrVbB3a6tWrpypVqvB3agAAAAAAAAAAAABwgEqVKmns2LEaO3aszGaz4uLilJCQoNKlS8vb25v3cm+AsFsmmbu4Zcja5S2vT6b8hOIAAAAAAAAAADmLj49XdHS0JdiW8TXzVe82btzowArtw9nZWXfccYdVqC0j2Obl5eXo8gAAAAAAAAAAAACgRDpy5EiO++vVqycXl39jWwaDQd7e3vL29rZnaUUWYbdMbhZQy2uAjXQlAAAAAAAAAORdenq6YmNjFR0dbRVoi46OVkpKiqPLs6syZcpYdWfz9fWVn5+fateuLTc3N0eXBwAAAAAAAAAAAADIZMCAAdlyRAaDQVu3bpWPj4+DqiraCLtlQkgNAAAAAIqPY8eOacWKFdq/f78iIyPVrl07OTs7y8XFxXLL2M5tf07HnJycrLZvNA//nwkAgLWUlJQcu7TFxsbKZDI5ujy7qlKlSrYubX5+fqpatSq/QwAAAAAAAAAAAABAEZLX5lrIG8JuAAAAAIBiIzo6WmvWrJHRaNSBAwesjjmiK4yzs3O+A3U3C+TlZR4+IA8AcLT4+HhLZ7bMobb4+HhHl2ZXzs7Oql27do6hNi8vL0eXBwAAAAAAAAAAAAAoAJk/r0Xw7fYRdpPk4+PDBwEBAAAAoIhKTU3V9u3bZTQa9fPPPys1NdXRJVmkp6crPT3d7kG7zCG72+lil995+H9rAChZTCaTYmNjLUG2zKE2R4TMHal06dLy9fVVvXr1rL7ecccdcnNzc3R5AAAAAAAAAAAAAIBbFBcXp7i4uJueZzabrT4/dfbs2dte28fH57bnKIoIu0navn27o0sAAAAAAOTT4cOHZTQaFRISoqtXrzq6nELFkSG7vAbqnJ2dtWzZMrm7u8vDw0MeHh5yd3e33DK2M+/Pus/Dw0Nubm5ycnKy6+MEgJImJSUlxy5tMTExMplMji7PripXrpytQ5uvr6+qV69O6BsAAAAAAAAAAAAAiqHvvvtOn3zyyQ3PyejmlvnriBEjbmtdg8Ggo0eP3tYcRRVhNwAAAABAkXHlyhWtXr1aRqNRhw4dcnQ5yCIjZJdXGzduLJB13dzccgzH5TU0l1uQLus8WUN2hBoAFDcJCQk5dmmLj493dGl25eTkpNq1a1u6s2UOtnl7ezu6PAAAAAAAAAAAAACAnWWE2Gw9Bv8i7AYAAAAAKNRSUlK0ZcsWGY1Gbd26VWlpaY4uCYVMSkqK3bvYScpzeC4jjHc7gbyMr4TsANwuk8mk2NjYbIG2qKgoh/wsdaRSpUrJ19fXEmrL+HrHHXfI3d3d0eUBAAAAAAAAAAAAAAqR3D6zk1uo7XY+41PSg3KE3QAAAAAAhY7ZbNbff/+t4OBgrVmzRtHR0Y4uCcgmOTlZycnJunbtmt3WNBgM2QJxOXWfy2+QLmt3vKzHCNkBRU9qaqpVl7aMQFtsbGy+unAWB5UqVbLqzpZxq1atmpycnBxdHgAAAAAAAAAAAACgiMhPCO1WA2t8Roew201FRETojz/+0PHjxxUXF6fr16+rVKlSeu211yznhIWFqWrVqqpbt67jCgUAAACAYuDSpUtauXKljEajjh075uhygELHbDbr+vXrun79umJjY+22bkbILiMIlzUcZ4sudu7u7nJ1deUPeMBNJCQk5NilLT4+3tGl2ZWTk5Nq1aqVrUubn5+fypYt6+jyAAAAAAAAAAAAAADFQE6fY7lRqI3Pvdwawm45MJlM+vHHH/Xdd98pMjLS6pjZbJbBYLAKu/3www/auHGjXnnlFQ0fPtzO1QIAAABA0ZacnKyNGzfKaDRqx44dMplMji4JQBaZQ3b25OTkZLMudjcK5Lm4uPDHRhQqJpNJ165ds+rUlnE/OTnZ0eXZlaurq8qXL2+5VahQQeXLl9fHH38sd3d3R5cHAAAAAAAAAAAAAIAkgm63g7BbFmfOnNHkyZP1999/57llYFhYmFJSUjRjxgxdvnxZTz31lI2rBAAAAICizWw2648//lBwcLDWrl2ra9euObokAIWQyWRSUlKSkpKS7Lquk5PTDbvY3SxIl9dAXtb5XFz4U11Jl5qami3MFh0drZiYGKWnpzu6PLsqXbq0JciWOdjm6emZ4xsCBN0AAADsy2g0OroE5KBRo0aOLgEAAAAAAAAodry8vFSjRo1cj589e1YGg8GSQcq4bzabbzgOueMTNJmcOHFCI0aM0OXLly0d3LLKGoA7duyYrl69ankyfvLJJ/Lx8dHQoUPtVTYAAAAAFBnnzp3TypUrZTQadfz4cbut6+fnp3vuuUcGg0FpaWlKT09XWlraDe9n3k5PTy9xIQOgJDOZTEpMTFRiYqJd13V2dr5hoC4/Xexy6oKX2zFnZ2e7Pk5IiYmJioqKUkxMjCXUFhUVpbi4OEeXZlcGg0He3t6WUFvmcJuHh4ejywMAAAAAAAAAAAAAQGPGjNGYMWNyPV6vXj3L/YxskcFg0LZt2+Tj42OPEosdwm7/Lzk5WU888YQuXbokg8FgCbplDrflFH4LCwuzOm42m/Xmm2+qQ4cOql69uu0LBwAAAIBCLikpST/99JOCg4P166+/5rmL9u0qW7asBg4cqICAAN199906fPjwbc1nMplyDMZlDcilpaXJZDLlGprLem5uxzK2TSZTAX1HABR26enpSkhIUEJCgl3XdXFxsWkXu9zmLu4hO5PJpGvXrmXr0hYVFaXk5GRHl2dXLi4u2cJsFSpUULly5Yr98wAAAAAAAAAAAAAAUDLklDnCrSHs9v++/fZbHTt2LMeQ241kDrtlSExM1Jw5c/Tuu+8WaI0AAAAAUFSYzWbt27dPwcHBCg0NVXx8vF3WdXZ2VpcuXRQQEKDu3bvL3d29wOZ2cnKSk5OTXF1dC2zOvMgtZJdbZ7qbHc9LFztCdkDJkpaWZref05m5uroWWBe7nAJ5uXW4c3JyKtDHkZqaagmyZQ60xcTElLiuoKVKlcqxS5uXlxd/1AcAAAAAAAAAAAAAFGsZHd1w+wi7SUpJSdG3336bLeiW+UmWW/htz549VudldHcLCQnR9OnTVa5cOdsVDgAAAACFzJkzZ7RixQoZjUadOnXKbus2bNhQgYGBGjRokCpXrmy3de3BkSG7vHafy2vHu6zH7rjjDiUnJ1tu169fJ2QHlCCpqalKTU21e9DOzc0tx850uXW2yxqWc3V1VVpamiXUFhcXZ9f6Hc1gMMjb29sqzJYRbvPw8HB0eQAAAAAAAAAAAAAA2FWjRo1yDLnZ+/NexQlhN0lbt25VdHS0JagmKc8d3t5//309++yziomJsdqfmpqqbdu2yd/f3yY1AwAAAEBhkZCQoNDQUBmNRu3evdtu61aoUEGDBg1SQECAmjRpwlVxCpiTk5MlEGIrb731ltW22WxWWlqarl+/bhWAy/o1JSXFajvz+TmNyW1f5vF57fAOoOhLSUlRSkrKbYXsevXqVYAVFU4uLi5WQbaM++XKlZOLC39WBgAAAAAAAAAAAABAktasWePoEoodPpUg6ddff7Xcz/rhyPvuu0/dunXTc889l+PYrl276osvvtBDDz2U7erzu3btIuwGAAAAoFgymUwKCwuT0WjU+vXrlZSUZJd1XVxc1K1bNwUGBqpLly42DWLB/gwGg1xdXeXq6iovLy+7rWs2m5WamnrDgF1eQ3P5DeQRsgPgaKVKlcoWaKtQoYK8vLwIkgMAAAAAAAAAAAAAALsj7Cbp8OHDVttms1murq6aN2+eOnbsKEm5ht0kqXXr1goICNCyZcusPgASHh5um4IBAAAAwEFOnDgho9GoFStW6Ny5c3Zb984771RgYKAGDhyoChUq2G1dlAwGg8HSxc7eIbuMDlNZw3K27GKXnJxst8cIoHAwGAzy9vbOFmorX768SpUq5ejyAAAAAAAAAAAAAAAo0q5cuaL3338/x2M1a9bUxIkT5eTkZNmXmpqqTz75RBcvXsx2vpOTk1566SV5enrarN7CjrCbpFOnTllCamazWQaDQRMmTLAE3fLC399fy5Ytk/Tvh0fMZrPOnDljk3oBAAAAwJ7i4uK0du1aGY1G7d+/327rVqpUSf7+/goMDFTDhg3tti5gLwaDQe7u7nJ3d3dIyM5WXexuNB6AbTk7O+fYpa1cuXJyceFPwQAAAAAAAAAAAAAA2MJ///tfrVixwqqBliRVqFBBq1atsgq6SZKrq6sefPBBDR48WDExMdnmc3V11RtvvGHLkgs1PuGgfz+4mZW/v3++5qhXr162ffHx8bdcEwAAAAA4Unp6unbu3Cmj0aiffvrJbiEVNzc39ezZUwEBAerUqRMfzAdsIHPIztvb227rmkwmpaam5tjFLqeA3O12scscxgOKGw8PD0ugLXOwzdvbO9sfzgEAAAAAAAAAAAAAgO1cunRJq1atsjTOymAwGDRjxgxVrVo1x3E1atTQK6+8omeeeSbb2GXLlmnSpEmqUqWKzesvjPjUoJTjh558fHzyNUdOV2Dnw1QAAAAAiprw8HAZjUatXLkyxxbpttK8eXMFBASof//+KleunN3WBWA/Tk5OlpBd2bJl7bauyWTKsfucrbvY8Xch3C6DwSAvLy+rQFvG11KlSjm6PAAAAAAAAAAAAAAAIGnNmjVKT0+XwWCwXKDWbDbrjjvuUP/+/W84duDAgfrkk0904sQJq7FpaWkKCQnRuHHjbF5/YUTYTVKpUqWUmJhotS86OjrX9GROLl++nOO8AAAAAFDYxcTEaM2aNTIajfrzzz/ttm61atU0ePBgBQQEyM/Pz27rAihZnJyc5OHhIQ8PD7uuazKZ8tx9LrcgXX4DecnJyUpNTbXr48Ttc3Z2tnRmy9ylrXz58nQ4BQAAAAAAAAAAAACgkNu7d6/VttlslsFguGnQTfr3QriDBg3Sxx9/bAm7Zdi3bx9ht5KsXLly2cJu+/bty9MTK8POnTuz7atQocJt1wYAAAAAtpCWlqbt27fLaDTq559/tlsHInd3d/Xp00eBgYFq166dnJ2d7bIuANibk5OTSpUqZfeLIaWnp2cLyOUUlrtZaC6/oTtCdjfn4eGRY5c2b2/vbH+wBgAAAAAAAAAAAAAARcORI0dyfN+/devWeRrfsmVLq22DwSCz2ayjR48WSH1FEWE3SXXq1NHZs2etWv59/vnn6t69e54+kBQdHa25c+dajTcYDKpbt65N6wYAAACA/Dpy5IiMRqNCQkJ05coVu63bunVrBQQEqF+/fvLy8rLbugBQ0jg7O6t06dIqXbq0XddNS0vLMWSXny52Gfvz0g0vY19aWppdH2deeHt759ilzd7/JgAAAAAAAAAAAAAAwPauXbuW434fH588ja9WrVqO+2NjY2+5pqKOsJukpk2bWjqzZU5AjhkzRm+++abq16+f69i//vpLL774ok6fPp0tidmiRQub1g0AAAAAeXH16lWtXr1aRqNRBw8etNu6NWrU0JAhQzRkyBDVqVPHbusCAOzPxcVFLi4uKlOmjF3XzQjZ2bOL3fXr1+Xq6ipvb2+rQFuFChVUrlw5ubq62vV7AAAAAAAAAAAAAAAAHCc+Pj7H/Xm9gG9u5yUkJNxyTUUdYTdJnTp10ty5cyX9ryub2WzWvn371L9/f919993ZxsycOVO7d+/W33//bdmXMTZDly5dbF88AAAAAOQgJSVFW7duVXBwsLZu3Wq3zjelS5dW3759FRAQoDZt2sjJycku6wIASiZHhewOHTpk1/UAAAAAAAAAAAAAAEDh5O7urqSkpGz7T5w4oYYNG950/OnTp3Odt6Qi7Cbp3nvvVa1atXTmzBlL0C3jq8lk0p9//inp3zBbxtdvvvnGsi3JEnLLGNuwYcMcQ3IAAAAAYCtms1kHDx6U0WjU6tWrFRUVZbe127Ztq4CAAPXt29fugQMAAAAAAAAAAAAAAAAAAByhbNmyOYbd1q9frz59+tx0/KZNm3Kdt6Qi7KZ/g2rjxo3TjBkzsoXWMu5nlbEvp/MladKkSbYuGwAAAAAkSZcvX1ZISIiCg4N19OhRu61bu3ZtBQQEaMiQIapZs6bd1gUAAAAAAAAAAAAAAAAAoDDw9fXV+fPnLZmijOZb69ev1/jx49W4ceNcx544cUKrV6+2yiNl5JN8fX1tXnthRdjt/w0bNkzLli3T33//bXliZTxBMrYzyxqEy9wRrnPnzurbt6/dHwMAAACAkiM5OVk///yzjEajtm/frvT0dLus6+npqX79+ikwMFCtWrWy+p9sAAAAAAAAAAAAAAAAAABKkqZNm2rnzp2SrBtppaam6qmnntL8+fNVo0aNbOOuXr2qp556SsnJyVaZpMzzllSE3f6fk5OTPv30UwUEBCgqKuqGXd2y7s/8ZKpTp44+/PBD2xYLAAAAoEQym836888/ZTQatXr1al27ds0u6xoMBnXo0EGBgYHq1auXSpUqZZd1AQAAAAAAAAAAAAAAAAAozLp27aq5c+datjOH1o4fP67BgwfrscceU48ePVS1alVduXJF27dv17x583Tx4sUcG3RlzFtSEXbLpEaNGlqyZIkee+wxnTx50tLVLS/MZrPuuusuff311ypbtqyNKwUAAABQkly4cEErV66U0WhURESE3db19fVVQECABg8erOrVq9ttXQAAAAAAAAAAAAAAAAAAioJWrVqpTp06lhyS2Wy2CrxFR0dr1qxZmjVrltW4jIBbxnlZG3G1bt3aTo+g8CHslkXdunW1Zs0affTRRwoKCtL169clKcfQW8YTy9PTU4899pgef/xxubq62rVeAAAAAMVTUlKSNm7cKKPRqF9++SXXrtMFzdvbWwMGDFBgYKCaNWuW5wuAAAAAAAAAAAAAAAAAAABQ0hgMBo0bN04vvfSS1eftMgfecvr8X07HMsaMGzfOxlUXboTdclCqVCm9+OKLmjBhgtavX69ffvlF//zzj65cuaKkpCSVKlVKlStXVuPGjdWlSxf16dNHXl5eji4bAAAAQBFnNpu1f/9+BQcHa926dYqPj7fLuk5OTurcubMCAgLUs2dPubu722VdAAAAAAAAAAAAAAAAAACKuvvvv1/ff/+9Dh8+bOnuJv0vvJbbReczd3fLOLdJkya6//777VZ7YUTY7QYqVKigESNGaMSIEY4uBQAAAEAxdvbsWRmNRq1YsUInT56027oNGjRQQECA/P39VaVKFbutCwAAAAAAAAAAAAAAAABAceHk5KSPP/5YgwcPVmJiYrbA241kDsJ5enrq448/zjUcV1IQdpO0fPlyBQQEyMnJydGlAAAAACghEhIStH79ehmNRoWFhdlt3fLly2vgwIEKDAzUnXfeWeL/pxgAAAAAAAAAAAAAAAAAgNtVt25dffPNNxo7dqwl8CbdOOyW+ZwyZcrom2++UZ06dexRbqFG2E3S888/r6+++kpTpkxRv379+LAnAAAAAJswmUzavXu3jEaj1q9fr8TERLus6+Lioq5duyogIEDdunWTm5ubXdYFAAAAAAAAAAAAAAAAAKCkaN26tZYvX67JkycrPDxcBoPhhhmljCBcw4YNNWfOHPn5+dmr1EKNsNv/O378uJ5++ml99tlneuaZZ9SzZ09HlwQAAACgmDh58qSMRqNWrFihs2fP2m3dO++8U0OGDNGgQYNUsWJFu60LAAAAAAAAAAAAAAAAAEBJVL9+fa1Zs0Y//vijFi9erKNHj+Z6bqNGjfTwww/r/vvvl7Ozsx2rLNwIu2ViNpt19OhRPfHEE7rrrrv0zDPPqFOnTo4uCwAAAEARFBcXp3Xr1sloNGrfvn12W7dixYoaPHiwAgIC1KhRI7utCwAAAAAAAAAAAAAAAAAAJBcXF40YMUIjRozQ6dOn9ddff+nixYtKSEhQmTJlVK1aNTVt2lQ1a9Z0dKmFEmG3TAwGg8xms8xms/766y89+uijatWqlZ555hnde++9ji4PAAAAQCGXnp6uXbt2KTg4WD/99JOuX79ul3Xd3NzUo0cPBQQEqFOnTnJ1dbXLugAAAAAAAAAAAAAAAAAAIHe1atVSrVq1HF1GkULYLROz2SyDwWC5bzabtW/fPj300EPq0KGDpk6dqmbNmjm4SgAAAACFTUREhIxGo1auXKkLFy7Ybd1mzZopICBAAwYMULly5ey2LgAAAAAAAAAAAAAAAAAAgC0QdsvCbDZLUrbQ286dO7Vz5051795dTz/9tBo3buzIMgEAAAA4WGxsrNauXavg4GD98ccfdlu3atWqGjx4sAICAlSvXj27rQsAAAAAAAAAAAAAAAAAAPLn7NmzOn78uK5du6br16/Lw8ND/fr1sxw/c+aMqlSpIjc3NwdWWbgQdsskI+Am5Rx6k6TNmzdr8+bN6tu3r6ZMmcKHSwEAAIASJC0tTTt27JDRaNSmTZuUkpJil3Xd3d3Vu3dvBQQEqEOHDnJ2drbLugAAAAAAAAAAAAAAAAAAIH8iIyM1f/58bdy4UVeuXLE6ZjAYrMJuX375pXbv3q3Zs2erSZMm9i61UCLsJumtt95SUFCQDh06JOnfJ07WkFvW7fXr12vDhg3y9/fX5MmTVbt2bQdUDgAAAMAe/vnnHxmNRoWEhOjy5ct2W7dly5YKDAxU//795eXlZbd1AQAAAAAAAAAAAAAAAABA/qSkpGjWrFmaP3++zGazJYN0I2FhYTp+/LgefPBBffrpp+rSpYsdKi3cCLtJGjZsmIYNG6bff/9dixcvVmhoqFJSUqxCb9K/QbfMoTez2ayVK1dq9erVGjp0qJ588kn5+Pg46mEAAAAAKEBRUVFavXq1goODdfDgQbutW716dQUEBGjIkCGqW7eu3dYFAAAAAAAAAAAAAAAAAAC3JiEhQePHj9eePXuyNd7KkDX8dvHiRR0/flwGg0FJSUmaOHGigoKCdPfdd9ut7sKIsFsmLVq0UIsWLfTyyy/rxx9/1JIlS3T69GlJ2bu9Zb6flpampUuXKjg4WCNGjNATTzyhSpUqOexxAAAAALg1qamp2rp1q4xGo7Zs2aLU1FS7rFuqVCn16dNHgYGBatu2rZycnOyyLgAAAAAAAAAAAAAAAAAAuH3Tp0/X7t27JSlb462s+zKEhYVZ7hsMBl2/fl1TpkxRaGioPDw8bFxx4UXYLQfly5fX448/rnHjxmnbtm0KCgrS1q1bLSE3g8FgdV/698mXmpqqhQsXaunSpRo5cqTGjRun8uXLO/jRAAAAALgRs9msQ4cOyWg0atWqVYqKirLb2m3atFFAQID69u0rT09Pu60LAAAAAAAAAAAAAAAAAAAKRmhoqNavX59jyO1GMofdMpw5c0Zff/21Jk2aVKA1FiWE3W7AyclJ3bp1U7du3XT27FkFBQVp2bJlioqKsgTepOxd365fv6558+bp+++/19ixYzVmzBh5eXk58qEAAAAAyOLKlSsKCQmR0WjUkSNH7LZu7dq1FRAQoMGDB6tWrVp2WxcAAAAAAAAAAAAAAAAAABS8jz76yHI/c8gtc9YoJ2FhYVYBuYys0qJFizR+/Hi5ubnZqOLCjbBbHtWoUUPPPvus2rRpo+eee05Xr161PIlyCr1JUkJCgubMmaPz58/r7bfflpOTk6PKBwAAACApOTlZmzdvltFo1LZt25Senm6XdT09PXXfffcpMDBQrVu3zrEdOQAAAAAAAAAAAAAAAAAAKFr27dunyMhIq6Za0s2DbpJ03333ad68edn2R0VFadeuXerSpUvBF1wEEHbLg2vXrsloNOqHH35QZGSkpBs/2TKOdenSRU8//bSaNm1qlzoBAAAAZGc2m3XgwAEZjUatXr1asbGxdlnXYDCoffv2CgwMVO/evVWqVCm7rAsAAAAAAAAAAAAAAAAAAOxj27ZtVtuZQ25VqlRRp06dFBwcnOPY5557TjVq1NCrr76a7SL6O3bsIOyG7A4cOKCgoCCtWbNGycnJuQbcsqYt27Vrp6lTp6ply5Z2qxUAAACAtQsXLigkJERGo1Hh4eF2W7du3boKCAjQ4MGD5ePjY7d1AQAAAAAAAAAAAAAAAACAfR04cMByP6O7m8Fg0MSJE/XUU0/J2dk517CbJD300EPauHGjfvnlF6vA25EjR2xad2FG2C2LpKQkrVq1SkFBQTp06JCk/4XYMj9pMp58mY+3atVKU6dOVdu2be1cNQAAAABJun79un766ScZjUbt3LlTJpPJLut6eXlpwIABCgwMVPPmzbNdYQUAAAAAAAAAAAAAAAAAABQ/J06csMoXGQwGDRw4UFOnTs3zHA8++KB++eUXSf8LzJ04ccIW5RYJhN3+39GjRxUUFKSVK1cqISHBqotbTiG3jCePJDVt2lRTp05V586d7V43AAAAUNKZzWbt379fRqNRa9euVXx8vF3WdXJyUqdOnRQQEKBevXrJ3d3dLusCAAAAAAAAAAAAAAAAAIDCISYmJtu+0aNH52uOZs2aZdsXFxd3ixUVfYTdJA0bNkz79++XpHyF3Bo1aqSnn35aPXv2tG/BAAAAAHTu3DkZjUatWLHCrlcwqV+/vgICAuTv76+qVavabV0AAAAAAAAAAAAAAAAAAFC4JCUlZdvXoEGDfM1RsWLFPM1bUhB2k7Rv3z7L/awBt4x9mVsK+vn5acqUKbrvvvuszgcAAABgW4mJiVq/fr2MRqPCwsKsLlZhS+XKldPAgQMVEBCgpk2b8v8BAAAAAAAAAAAAAAAAAABA7u7uun79utW+69evy8PDI89z5NTFzd3d/bZrK6oIu/2/3EJumffVrl1bTz31lAYNGiQnJye71wgAAACURCaTSXv37lVwcLDWr1+vhIQEu6zr4uKirl27KiAgQF27di3R/+MIAAAAAAAAAAAAAAAAAACy8/T0zBZ2O3z4sNq1a5fnOQ4cOJBtn7e3923XVlQRdsskt5Cbj4+PJk2apICAALm48C0DAAAA7OHUqVNasWKFjEajzpw5Y7d1mzRpooCAAA0cOFCVKlWy27oAAAAAAAAAAAAAAAAAAKBoqV27ti5fvmyVRZo/f36ew24mk0lff/21ZdtsNstgMOiOO+4o8FqLCpJbmWQNuVWpUkVPPvmkHnjgAbm5uTmwMgAAAKBkiI+PV2hoqIxGo/bs2WO3dStUqKDBgwcrICBAjRs3ttu6AAAAAAAAAAAAAAAAAACg6GrYsKH2798v6d9cktls1ubNm/XOO+9o2rRpN8wjJSYm6rXXXtOePXusMk3SvxfuL6kIu2VhNptVoUIFTZgwQQ899JDc3d0dXRIAAABQrKWnpyssLExGo1Hr16/P1s7bVlxdXdW9e3cFBgaqc+fOcnV1tcu6AAAAAAAAAAAAAAAAAACgeOjQoYOCgoIk/a8rm9ls1nfffaf169dr4MCB2cZs2bJFu3fv1qpVq3T58mWrsZnnLakIu/0/s9mssmXLaty4cRo5cqRKly7t6JIAAACAYu348eMKDg7WypUrdf78ebut27RpUwUGBmrAgAEqX7683dYFAAAAAAAAAAAAAAAAAADFS5cuXeTl5aX4+HhL0C3j67lz5/TVV19J+je3lPF1/PjxVvuydnWrVKmSOnXqZMdHUbgQdpPk6empsWPHavTo0fLy8nJ0OUXOmTNnFBwcLEny9vbWmDFjHFwRAAAACqtr165pzZo1MhqN+v333+22bpUqVeTv76+AgAA1aNDAbusCAAAAAAAAAAAAAAAAAByP3ANsxcPDQ8OGDdO8efMsobXMXdoyAm2ZZQ25ZQ7IGQwGjR49Wi4uJTfyVXIfeSbbtm1T2bJlHV1GkXXmzBnNmTNHklSjRg1+6AMAAMBKWlqafvnlFxmNRm3cuFEpKSl2WdfNzU29evVSYGCgOnToUKL/xw8AAAAAAAAAAAAAAAAASjJyD7ClJ598UitWrNDVq1ctobWM4FrGdmaZO7llDsYZDAbdcccdJf75yac9Jaug26VLlxQVFaWEhAQ5OzurdOnSql69Oh3fAAAAgHw6evSojEajQkJCdOnSJbut26JFCwUEBGjAgAHy9va227oAAAAAAAAAAAAAAAAAAKDk8fLy0kcffaTRo0fLZDJZBd5yknl/5u5upUuX1meffSY3Nze71F1Ylfiw26FDhxQaGqo9e/bo4MGDSk5OzvG8smXLqnnz5mrbtq3uu+8+1ahRw86VoqR49tlnZTQaJUlt2rRRUFCQgysCAADIu+joaK1evVpGo1F//fWX3datVu3/2Lvv6KrKtH/cd0KvCoIoYAFEimXEhoKgOMCoCEKC6DCvCmOvqKOjvmIZG+rY+zvqKBZsJICA2CmCgIgoFlREpQkiUqRJCfn94Y/zTYCQAMk5lOtai7XOs/d+nvvecDwbXOeTZ4/o0qVLZGRkRP369ZNWFwAAAAAAAAAAALZ1/fv3j2uuuSYxnjZtWgq72TEdffTR8fDDD8fll18eq1ev3mD3tvWtf75y5crx1FNPRaNGjZLS77Zspwy75ebmxpAhQ+I///lPfP311/mOF2TRokUxcuTIGDlyZNx1113RsmXLOO+886JFixbJaBkAALZZq1evjpEjR0Z2dna8//77sXr16qTULV++fJxwwgmRkZERRx11VJQqVSopdQEAAAAAAAAAAADW1759+xgwYED885//jC+//DIi/gi15Q225bUux3T00UfHnXfeaWOu/99OF3b78ssv44YbbkjsMrGxrf8KkvfaMWPGxJgxY6J169Zx0003xd57710yDRMREStXrozff/89dtlll1S3AgDA/2/KlCmRlZUVgwYNigULFiSt7pFHHhkZGRlxwgknRJUqVZJWFwAAAAAAAAAAAGBTGjVqFIMGDYrhw4fHwIEDY/To0bF48eINrqtevXoce+yx0bVr12jevHkKOt127VRht+effz7uuOOOWLNmTSK4tn7AraDd3dZPUq67buTIkdGxY8fo06dPnHTSSSXU+bZnzZo1MXbs2Bg8eHBkZWUljs+ePTvOPffc6NixY7Rv3z7Kly+/ReuvXr06Jk+eHOPGjYuxY8fGJ598Erfcckt07dp1s9eaNGlSZGVlxYQJE2Lu3LmxatWqqF69ehx44IHRrl276NixY5QrV26L+oz4470wZsyYGDhwYHzyySfxyy+/xJo1a6JmzZpxyCGHxEknnRTt2rWz0wgAsEOYP39+vP7665GdnR1TpkxJWt299torunTpEl26dPGDJgAAAAAAAAAAAChUSeYefv/99xgyZEi8++67MWXKlJg/f37k5uZGjRo1Yq+99op27drFySefHDVq1Nji/qdOnRqvvPJKjB8/PmbNmhXLly+PXXfdNZo0aRJt2rSJzMzMqFy58havT8lq06ZNtGnTJiIifv7555g/f36sWLEiKlSoEDVr1ozdd989xR1uu3aasNtdd90VTz311AYht4LCbetb/7q885ctWxa9evVKfODt6KZMmRLXXnttfPHFFxs9//7778f7778ftWvXjttvvz1at25d6Jo5OTnx1VdfxdixY2PcuHExYcKEWL58+Vb1+fPPP0fv3r3j/fff3+Dc3LlzY+7cufHuu+/GAw88EH369IlWrVptdo3vv/8+/vnPf8akSZM2ODd79uyYPXt2DB06NBo2bBh33313HHzwwVt0LwAAqbRy5coYMWJEZGVlxciRI2PNmjVJqVupUqU48cQTIyMjI4444ohIT09PSl0AAAAAAAAAAAC2byWRe1jn3XffjRtvvDF+/vnnDc6tyxGMGzcu7rvvvrjkkkvi7LPP3qzNc5YsWRK33XZb9O/ff4Nz8+fPjw8++CA++OCDePDBB+Omm26KU045pchrkxq1atWKWrVqpbqN7cZOEXZ78MEH48knn4yIzQ+5FWRjobm77747ypYtG2edddZWrb0tGzNmTJxzzjmxatWqQq/96aefomfPnnHttdduMgT4/PPPx3333Re//fZbsfX5zTffRI8ePWLevHmFXjtnzpzo0aNH3HDDDdGjR48i1xg/fnycd955sXTp0kKvnTp1apx22mlx3333xYknnljkGgAAqZKbmxuff/55ZGdnx+DBg2PRokVJqZuWlhZHH310ZGRkxF/+8peoWLFiUuoCAAAAAAAAAACwYyiJ3MM6//nPf+Kuu+4qUh/Lli2Lu+66K7744ou45557omzZsoXOmTNnTvTs2TOmTp1a6LWLFy+OK6+8Mr788su49tpr/UB5dhg7fNht2LBh8fDDDydCaREFB93yXrMxG5uXm5sbaWlpkZaWFrm5uXHbbbdF/fr1t2iXsG3dtGnT4sILL8z3gV+5cuVo1apV7LPPPlG6dOmYPXt2vP/++7F48eLENXfeeWdUrFgx/va3v2103R9//LFYg25z5syJM888M+bPn584Vrt27ejevXs0bdo0KlasGDNmzIjBgwfHBx98kLjm1ltvjcqVK0fXrl0LrTFlypQ4++yzY8WKFYlj++23X5x++umx//77R6lSpeLHH3+M/v37J3Z9W7VqVfTq1SuqVKkSxxxzTLHdLwBAcZo3b14MHDgwsrOzi/SP5eKyzz77RGZmZnTp0iVq166dtLoAAAAAAAAAAADsOEoq9xAR8cYbb2wQdDvggAOia9euUb9+/ahQoULMnDkzhg0bFu+++27imqFDh0aNGjXixhtv3GTvS5YsiR49esR3332XOFa9evU4/fTT45BDDoldd901Zs+eHe+88068+eabsXbt2oiIePrpp6NixYpx+eWXF+n3iC3366+/xm677bZFc1etWhVTpkyJ+fPnx7Jly6JKlSrRoEGD2HvvvYu5y+3fDh12mzdvXvTu3TsxLkrIbVPXFLQr3PqBt6uuuirefPPNqFat2tbewjbl7rvvjmXLliXGJ5xwQvTp0yeqVq2a77rff/897r777ujbt2/i2G233RaHH354NGrUqNA69erViz//+c9xwAEHxBVXXLFZPa5duzYuu+yyfEG37t27xw033JAvBX3EEUdEZmZmjBgxInr16pXYna13795x0EEHbbLPFStWxEUXXZQv6Hb55ZfHxRdfnC8JfdRRR8Xpp58e/fv3j969e8fq1asjJycnLrvssnjrrbeiZs2am3VvAAAlZeXKlfHOO+9EVlZWjB49OvEP4JJWuXLlOPnkkyMjIyMOPfTQQn/4BAAAAAAAAAAAAGxKSeUelixZEjfddFNinJaWFtdff3306NEj33ffDjvssOjcuXOMHj06LrnkkliyZElERPTt2zdOPPHEOOKIIwrsvXfv3vmCbm3bto177703KleunG/9Tp06xeTJk+P888+PefPmRUTEww8/HIcddtgOuXHTtuDXX3+NW2+9NcaNGxfvvvtuvj+Twnz99dfx6KOPxsiRI/PlUNapU6dOnHbaadGzZ88oX758cba93dqh9yi89957Y/HixYkQ2sbkDbCVKVMmjjzyyDj99NPjggsuiAsuuCBOO+20OOKII6J06dKJNTb2Jdy86y9YsCDuv//+Erij1FmyZEkMHz48Md59993jvvvu2+ADPyKifPnyceONN8YFF1yQOLZq1aq48847N7p2qVKl4ogjjohrr7023nnnnXj33Xfjuuuui0MPPXSz+3zllVfik08+SYz/9re/xa233lrgdp/HHXdcPP3001GqVKmIiFi9enXccMMNBb5fIiIeffTRmDFjRmL8z3/+My699NICt/zs2rVr/Pvf/06MFy9eHH369Nms+wIAKG65ubnxySefRO/evaN58+bRq1evGDVqVIkH3dLT06NVq1bxwAMPxPjx4+P222+Pww47TNANAAAAAAAAAACArVKSuYeXX345FixYkBhfdtll0bNnzwK/+3bMMcfEI488ku/Y448/XmDvH3zwQQwZMiQxPu644+Lxxx8vMFR18MEHR79+/aJSpUqJYzfccEOsXLmywBpsma+//jo6d+4cQ4cOjV9//TWeeOKJIs3LycmJO+64Izp27BhvvvlmLF++PHJzczf4NWvWrLjvvvuiQ4cOMWHChBK+m+3DDruz2w8//BDZ2dkFfnDkDbnts88+cfHFF8eJJ54YFSpU2Oj1y5cvj6FDh8Zjjz0WM2fOLDBAt+74K6+8Eueee27stddexXdTKfTDDz9ETk5OYnzcccdFuXLlNjnnyiuvjA8++CC+/PLLiIhYtmxZrFq1aoPg2TXXXJMIm22N1atXx6OPPpoY77fffnH99dcXOu/www+Piy66KB5++OGIiJg4cWKMGTMmjjnmmA2uXbhwYb7kdosWLeLcc88ttEbHjh1j5MiRMWDAgIiIeP311+OSSy6J+vXrFzoXAKA4/fTTTzFw4MDIzs6OH374IWl199tvv8jIyIjOnTtHrVq1klYXAAAAAAAAAACAnUNJ5h4GDRqUeL3nnnvG+eefX2g/xxxzTPz5z3+O9957LyIiRo8eHb/99tsG4bvc3Nx48MEHE+Pq1avHPffcU+CGPOvUq1cvbrzxxrjmmmsiImLmzJkxYMCAOP300wvtjaL59NNP48wzz4wVK1YkMkTPPPNMdO/ePWrXrl3gvNWrV8cFF1wQo0aN2uTGW+vk5ubG9OnT44wzzohHH300/vznPxfvjWxndtid3fr27Zt4Q6wfSlsXSMvNzY3u3bvHkCFDIiMjo8CgW0RExYoV49RTT40hQ4ZE586dIzc3d4M3Wt46a9eujWeeeaYY7yi11t/hY5dddil0TqlSpeJf//pXlC1bNq666qp46aWXNrrDWnEE3SIi3n777ZgzZ05ifOmllxb6YFrnnHPOyXdPBf3Zvfrqq7F8+fLE+Morryz0AbLO5ZdfHqVL/5Evzc3NzReaAwAoScuXL4+BAwfGmWeeGa1bt4577703KUG3XXbZJc4444wYMGBAvPnmm3H++ecLugEAAAAAAAAAAFAiSir3sHDhwpgyZUpi/Je//KXIWYX27dsnXufk5MTnn3++wTWTJ0+OSZMmJcbnnHNOVKtWrUjrd+nSJd8mPM8+++xGN3Zi882cOTPOO++8RIZkXYZo1apVcc8992xybu/evWPkyJGJ7FHeDbvW/7Vu7bS0tFizZk1ceuml8cknn5TgnW37dsiw25o1a2Lw4MEbTT2uC7qlpaXFNddcE7fccssmQ27rq1SpUtxzzz1x0UUXbTTwlrfG4MGD86WCt2c1a9bMN/7xxx+LNK9Zs2YxYsSIuPDCC4st1FaQwYMHJ17XrFkzTjzxxCLPrVy5cpx66qmJ8ejRo/NtMbpO3m1B//SnP0WzZs2KXKNu3brRrl27xPiNN96INWvWFHk+AMDmyM3NjY8++iiuvfbaOOqoo+If//hHjBkzpsT/EVuqVKk4/vjj49FHH42xY8fGzTffHAcffPAmfyIJAAAAAAAAAAAAbK2Syj1MmzYt3/ioo44qck/r/4D4+fPnb3BN3ixEmTJl4q9//WuR1y9VqlSceeaZifHUqVPj66+/LvJ8Ni43Nzcuv/zyWLBgQb6gWt680OTJkzc696233oqsrKxEgG39YNvGauUNva1atSquu+66WLVqVcnc3HZghwy7jR8/PhYvXhwR+Xdbyxt069ixY5x77rlbXOOKK66INm3abBB4y1tv0aJFMX78+C2usS3Zc889833IjhgxIr777rsizU3G7h2rV6+O0aNHJ8bHH3/8Zofr8gbR1qxZE2PGjMl3ft68efHVV18lxm3btt3sPvPWWLBgwUZT2QAAW2PmzJnx0EMPRZs2beKvf/1rvPbaa7Fs2bISr9u4ceO4/vrr48MPP4wnn3wyTjjhhCL/5BoAAAAAAAAAAADYWiWVe5g3b16Rr13fumzLOuXLl9/gmhEjRiReN2/ePKpWrVrk9SM2zDaMHDlys+azocGDB8dnn32WL+i2vttvv32DYytXrsx3fHM2KMh77ffffx99+/bdnJZ3KKVT3UBJ+Pjjjzc4ljeQVrly5bj55pu3qkZaWlr06dMnjjvuuFi5cmUiSLe+CRMmRIsWLbaq1rYgPT09unTpEk888URE/BEuO/fcc+Ppp5/Ot+Vlqnz99dexYsWKxHhLfs+bNWsWFSpUSKwzceLE6NixY+L8+ttAbkmNli1b5htPnDixyLvD/frrr/Hiiy/G+++/H99//32sXLkyqlatGvvvv38cd9xxkZGREbvttluh61x99dWRnZ0dEX88CPv16xe5ubkxYsSI6NevX3z11VexYMGC2GWXXeLQQw+N008/PVq3br3Z91pcunbtWuxr5n2vAMCOYOnSpfHmm29GdnZ2Un/YQvXq1aNTp06RmZkZTZs2TVpdAAAAAAAAAAAAis+3335bIt/b7t+/f7GvuSkllXvYd99946KLLkqM69atW+S56+/+Va9evXzjBQsWxA8//JAYb0lOYc8994wGDRokdqCbOHFikeeuWrUqsrOzY+jQoTFlypT47bffomLFilGvXr1o3rx5ZGZmRsOGDQtdp3///nHNNdckxut6mTJlSjz33HMxfvz4mDNnTlSqVCkaNmwYHTt2jG7dukXp0tterGnt2rVxzz33bBB0y5tLqlSpUr4d9dZ55ZVX4qeffiowY5R3jXXWv27d3BdeeCHOOeecjc7Z0W1774piUNBuWet2YTvllFM2O+m6MTVq1IiOHTvGa6+9VuCb54svvtjqOtuKCy64IAYOHBhz586NiIgZM2ZEp06d4oILLogePXpE5cqVU9bb1KlT843333//zV6jVKlS0aBBg8Sf2foJ7vVr7LfffptdY7fddotdd901Fi1atNEaBRk1alRceumlsXTp0nzHFyxYEOPGjYtx48bFgw8+GFdffXWceeaZm/VhtnLlyujdu3ciALfOL7/8Em+99Va89dZbcfrpp8ctt9yy2bvlFYdJkyYV+5pr164t9jUBINnWrl0bY8eOjezs7HjrrbeSFuYuU6ZMtGnTJjIzM+PYY4+NMmXKJKUuAAAAAAAAAAAAJWPZsmUl8r3tVCiJ3EPTpk236AfCr1mzJoYOHZoY16hRY4McwvqZgi3JQkRENGzYMBEwK2pOYebMmXH22Wcn5q2zZMmSmDx5ckyePDmefPLJ6NatW9x0000b3ZVuU55//vm49dZbIycnJ3Fs1apV8dFHH8VHH30U/fv3j6eeeiqqV6++WeuWtDFjxmwQWMsbfKtevXo899xz0bhx43zzcnNz49lnny0wz1HQLnF566zLPUVE/PTTT/Hhhx9usOnSziA91Q2UhJkzZ24y7HPccccVW631t3tcZ92bbcaMGcVWK9WqVKkSTz31VL6g4IoVK+L++++Pli1bxi233BLff/99SnqbPXt2vvG+++67RevkTWvPmjUr37m841q1am3RQy4tLS1fjZkzZxY6Z9iwYXHuueduEHRb34oVK+KWW26Jyy67LFauXFnknvr06bNB0G19L7/8ctx///1FXhMAKDk//PBD3HvvvXHsscfGmWeeGQMHDkxK0O3AAw+MG2+8MT788MN4/PHHo23btoJuAAAAAAAAAAAAbFO2pdzDyy+/nAjdRUSccsopkZ6eP8azfm5hS7MQeXeM++mnn/IFzDbmu+++i1NPPXWDoNvGvPrqq5GZmblBbmNT3nzzzbj55ps32cdnn30WF154YaG9JtuoUaM2enxdEO2RRx7ZIOgWETF69OhEhihvoC1vyG233XaLa665Jp566qno06dPNGzYMF/AbX1jx47d2tvZLu2QO7v98ssvmzy/sTfVlmrSpMlW9bK9adKkSfTv3z8uvvjifDudLV26NPr27Rt9+/aNli1bRo8ePaJNmzZJ2y5x4cKFideVKlWKsmXLbtE6u+yyS+L1ut3XNjbOe93W1Fi8ePEmr/3555/j2muvjTVr1kRExOGHHx6dO3eOBg0axOrVq2P69OkxdOjQGDduXGLOG2+8EbvttlvcfPPNhfbyzTffxPjx4yM9PT06deoU7dq1i1q1asWiRYvirbfeiv79+yc+ZP/v//4vunbtusUPTwBgy/32228xdOjQyM7Ojk8++SRpdWvWrBmnnHJKZGRkRKNGjZJWFwAAAAAAAAAAALbUtpB7mDFjRvz73/9OjCtUqBA9e/bc4Lr1cwu77rrrFtXLm1NYs2ZNLFu2LF/gb33XXHNNIu+y9957x2mnnRYHHHBAlC9fPn766acYPnx4vP3224mNeL7++uu46KKL4tVXX41y5coV2k/v3r0jIqJ58+aRkZER++67b6xevTrGjx8fzzzzTGIzoI8//jgGDBgQXbt23aL7LgmfffZZvvG6zbDS0tKiY8eOceSRR2503sCBAzc4lve9VatWrXjttdeidu3aiWMnnHBCdO7cOWbMmJFvh7d1kvmd0W3JDhl2K2xni2rVqhVbrRo1amxVL9ujBg0axKBBg+LZZ5+Np556KhYsWJDv/JgxY2LMmDFx0EEHxY033hiHHnpoifeU9/e5UqVKW7xO3rnr/9mVRI3ly5dv8toff/wxMadPnz7RoUOHfOdbtmwZ3bt3jzFjxsQ//vGPxMPm+eefj6OPPjr+8pe/bHL9RYsWRYUKFeK///3vBh+4bdq0iUMOOSSuv/76iIhYu3ZtvPrqq/HPf/6zSPcJAGydnJycGD16dGRnZ8c777yzWTu3bo2yZctG27ZtIyMjI1q1ahWlS++Q/2QAAAAAAAAAAABgB5bK3MOyZcviwgsvTAS6IiIuuOCC2HPPPTe4dv3cwpZmFdaft3z58k2G3T799NOIiLjwwgvj8ssv3+C7gqecckrMmDEjrrjiisS1X3zxRdx5551x0003FdrPwoUL47rrrouzzz47X+BrXc4hMzMz8b3Il156aZsKu82cObPAAGRBfS5dujTefvvtjc5bF5S74YYb8gXdIv7YifCSSy6Jq6++Ot/cdcG3zdlNb0eyQ35zdf0k4/qStdtYROG9bK/KlSsX559/fpx55pkxbNiw6NevX0yaNCnfNZ9//nl069YtevXqFZdccklSf993JGlpafHoo49Gq1atCrymZcuW8dxzz0VGRkbiYXf33XdH27Zto1SpUptc/7rrriswWXzaaafFCy+8EFOmTImIiI8++mgL72LLNWvWrNjXnD59+ja31SkArDN16tTIzs6OQYMGxc8//5y0us2aNYuMjIzo0KHDVu1iCwAAAAAAAAAAwPalUqVKJfK97VRLRe5h1apVcfHFF8fXX3+dONakSZM455xztmrdknDxxRfHlVdeWeD5vffeO5577rnIzMxM7JD34osvxt///vfYa6+9Nrn2SSedVOA9N2nSJP7617/Gs88+GxF//BksX748KlasuGU3Usx+++23As8deOCBGz0+aNCgWLFiRb7d2fK+btq0aZxwwgkbndu8efMC6y1cuLCobe9QdsiwW4UKFfIlYNe3cOHCqFWrVrHUWn/LyI31siOrUKFCZGRkREZGRkyePDn69u0bQ4cOjdWrV0fEH2G/Bx54IBYvXhzXX399iQXe8v4+L1u2bIvXyTt3/T+7kqhRlA/j7t27bzLots7+++8fV1xxRdxxxx0R8ceucJMmTYrDDz+8wDnr/vwKkpaWFq1bt06E3dbtNJdM/fv3L/Y1q1SpssnPCABItkWLFsXgwYMjOzs7Jk+enLS6e+yxR3Tp0iUyMjKifv36SasLAAAAAAAAAADAtmP//fcvke9tbyuSlXtYu3ZtXH311fHBBx8kjlWrVi2eeOKJKF++fIG95bVs2bIoW7bsZtdeP+NQWFZh//33j169ehW6bqVKleLf//53dO7cOSIicnJyYtCgQXHJJZdsct4ZZ5yxyfOtW7dOhN1ycnJi5syZ0ahRo0L7SYZ174uNKVOmzAbH1q5dG3379i3wfZOWlrbJsONuu+1W4LlVq1ZtotMdV3qqGygJNWvW3OT5b7/9tthqffPNN5s8v6k33Y7m4IMPjnvvvTeGDRu2QbL0mWeeibfffrvEalerVi3xetmyZVv8H/TixYsTr3fdddd85/KO8163NTWKsmvK3/72tyKvnZmZme/B9uGHH27y+n333bfQQGbebTI3lVAGADbP6tWr4/3334+LL744jj766Lj55puTEnQrX758nHLKKdG3b98YNWpUXHXVVYJuAAAAAAAAAAAA7BRKKveQm5sbt9xySwwZMiRxrEKFCvHEE09E3bp1C5y3fm6hsA2ZCpI3p1C6dOmoVKnSJq/v3r17lCpVqkhrH3TQQXHwwQcnxoXlFCIiGjduvMnzeXMKERFLliwpUi/JsKmMxYwZMzY4NmDAgPj+++8jIvLt6rZO9erV48QTTyxwzV9//bXAc9vKbnfJtkOG3fbaa6/EG2RjRowYUWy1ClorNzc30tLSCt2acUdUr169eO655xLJ3XXuvPPOTf65bI06derkG2/pDmTrPmAiYoMHSt7xzz//vEU7g+Xm5sYPP/yQGBfl/bE56eRdd9013/XffffdJq+vUqVKoWvmTZDn5OQUuRcAYOO+/vrruOOOO6Jly5Zx7rnnxptvvpmUn7xxxBFHRJ8+fWLcuHFx3333xTHHHFPkf6gCAAAAAAAAAADAjqS4cw8PP/xwPP/884lxuXLl4j//+U8cfvjhm5y3fm5hS7MQeXMKtWvXLvT7gesH/Qpz5JFHJl5Pmzat0OsLyyqsv9PdmjVrNqufkrTHHnsUeO7FF1/MN54+fXrcdtttG93VbV2uqGvXrlG6dOkC15w0adJG50ZE7LnnnkVte4eyQ4bdDjzwwI0eT0tLi9zc3Bg4cOAWBZXWt2TJkhg4cOAmt6hs2rTpVtfZHpUuXTruuuuufH8WM2bMiM8//7xE6jVs2DDfeEt278vJycn3obvffvttskZhQbKN+fXXX2PhwoUF1igOeT9YC9uJbUu3VwUANs+vv/4azzzzTHTq1Ck6dOgQTz/99CZ/EkdxqVOnTlx66aXx/vvvx8svvxzdunUrUtgdAAAAAAAAAAAAdnTFlXt44YUX4sEHH0yMy5YtG48//ni0aNGi0LnrZwq2JAsRETF16tQC19yYzQ1RbU5OIaLwrMK2nGWoV69evsDjutBabm5uvPTSS9G7d+9477334umnn46uXbsmdqUrKCTZrVu3TdYbOHDgRo+npaVtkGPZWeyQYbeNJV/zvml+++23uPPOO7e6zh133JHY6rGgN2VhKdztycSJEzdrS87SpUvHWWedle/Y119/XdxtRcQfW1zm3SqyKNtirm/SpEmxYsWKxPiwww7Ld/7QQw/NN96SGmPGjMk3Xr8GALDjWLVqVbz11ltx/vnnR4sWLeK2226LL7/8ssTrVqxYMTIzM+PFF1+MESNGxOWXXx777LNPidcFAAAAAAAAAACAVEt27mHIkCFx8803J8alSpWKhx56KI499tgiza9evXrUq1cvMd6SnMKcOXPybfwjp7B1jjjiiA2OrcsM5ebmxiuvvBIXXHBB3HnnnbFw4cJEEG6ddeO0tLQ4+uijN/kdzg8//DCGDx++wRrr5N1Rb2eyQ4bdmjdvntixIm/aM2+a8pVXXolXXnlli2v069cvXnvttY2+KdepWLFikZK427r58+fH1VdfHd26dYtbbrklVq1aVeS5BxxwwAZrlYQyZcpEy5YtE+Phw4dHTk7OZq3x7rvvJl6XKlUq33oREbvvvns0adJko9dvSY1q1aoVuAvh1pg7d27i9S677FLs6wMABcvNzY3PP/88/vWvf0WLFi3ioosuinfffTcp22sfddRR8e9//zvGjRsXd999dxx11FGRnr5D/nUfAAAAAAAAAAAA8klF7uGDDz6Iq666KpEpSU9Pj/vuuy/atWtX9MYj8gXjxo8fn9gprKjee++9fOPWrVsXOmfOnDmbVWNnyim0b9++wHPrMkTrfhW2Q915551X4Lk5c+bEP//5zw3Wz/u6bdu2Rex6x7JDfvu1bNmyccIJJxS429q6N9eNN94YjzzySKxdu7bIa69duzYefvjh+Ne//lXgm3LdG7Zdu3ZRrly5LbqHbckLL7wQ2dnZEfHHf0zPPffcFq9VpkyZ4mprAx07dky8njdvXrz55ptFnrt06dJ47bXXEuOWLVtG9erVN1njs88+i08//bTINWbPnp0vIX7iiScW6ffjm2++KXKNRYsW5bu+KNuPAgBbb968efHkk0/GSSedFJ07d47nnnsuFi5cWOJ1995777j88stj5MiR8eKLL0ZGRkZUqlSpxOsCAAAAAAAAAADAtiTZuYdPP/00Lrrooli9enXi2J133hknn3zyZtfLm1NYvXp19OvXr8hzc3Jy8t1rgwYN8m3yU5Dx48dvVo8fffRRvho7sr322itatGix0TDbumPrfq07ts76u7odc8wxG60xZ86c6NmzZ8ydO3eDTbjWzT/++ONj9913L4E73PbtkGG3iIgePXps9Hje9GROTk48+OCDcfrppxfpP9Rx48bFaaedFg899FBi17CCAnUREWefffYW9b6tOeOMM6JChQqJ8QMPPBDTp08v0tz1r6tbt26x9pZX+/btY4899kiMH3744Vi5cmWR5v73v/+NRYsWJcY9e/bc6HWnnnpqvt+L+++/f5PvgbwefPDBfLu6rL/VaUFefPHFIl0XEZGVlZUvgX700UcXeS4AsHlWrlwZQ4cOjbPPPjtatmwZd955Z3z77bclXrdy5crRrVu3eOWVV+L999+PSy+9tET/jgUAAAAAAAAAAADbumTmHr777rs4++yzY/ny5Yljt956a2RmZm5Gx//Pn/70p/jTn/6UGD/99NP58g2bMnDgwJg2bVpi3KNHj0J3G4uI6NevXyIXU5gvvvgiJk+enBi3aNGiSPO2Z5dffnmB5/Lu7LZ+0G2d8uXLx0033bTR+WPHjo3OnTvHtGnT8gXd1t/V7YorrtjKu9h+7bBht0aNGsWJJ55Y4LaA647n5ubGJ598Ev/zP/8TrVq1iquvvjr+7//+L15++eV4+eWX4//+7//i6quvjlatWsUZZ5wRn376ab65eeVNYP7lL38pUhp2e7DbbrvFOeeckxivWLEizj333CJ9eA4aNCjf+NBDDy3u9hLKli0bF198cWI8derUuOOOOwqd9/HHH8cjjzySGDdr1ixatWq10WurV6+eL6Q2evToePLJJwutMWTIkMjKykqMO3bsWORd1/r16xejRo0q9Lpvvvkm7r///sR43333jWbNmhWpBgBQNLm5uTFp0qS44YYb4qijjorLLrssRowYsVk7BW+JtLS0aNWqVdx///0xbty46NOnTxx++OFF+gcpAAAAAAAAAAAA7OiSlXv46aef4qyzzsq3bu/evaN79+6b3fM6aWlp0atXr8T4119/jauvvrrQ7yb+8MMPccsttyTGdevWLXLg7ttvv40HHnig0OuWLVsWV111VWJcqlSpOOWUU4pUY3t26KGHxt///vd8O7kVxbrrb7/99o3ugHfdddfFmWeeGb/++utGN15aN79Tp07RqFGjrb6P7dUOG3aLiLjmmmuiYsWKEREFvrHybhs4Z86cGDhwYNxzzz1xww03xA033BD33HNPDBw4MObMmZNvV7iC1omIqFChQlx33XUlcEepc/HFF8fBBx+cGE+bNi1OP/30Te5e0q9fv3jzzTcT41atWkWtWrVKtM/TTz89X8DrhRdeiBtvvDHf1qB5jRgxIs4+++xEIrlMmTJx++23b/KD6OKLL4699torMb7rrrvi0UcfLfBB0r9//3wf7lWrVo3rr7++yPeUm5sbl1xySQwZMqTAa8aMGRNnnXVWrFixInHsiiuuiFKlShW5DgBQsDlz5sTjjz8e7du3j65du0a/fv3it99+K/G6DRo0iKuvvjo++OCDePbZZ6NTp075fvIMAAAAAAAAAAAA8IeSzj0sWLAgzjrrrJg7d27i2NVXXx09e/bc6t6PPfbY6NChQ2L8/vvvx0UXXRRLly7d6PWTJ0+O7t275zt/6623Rrly5Ypc87HHHot///vfsWbNmo2enzFjRpxxxhkxderUxLHTTjut0J3vdhTXXHNNtG/fPt/Oa+tnTdYdy7t51i233BKdOnXa6Jq1atXKF6Bbf1e3tLS0qF279mZlTnZEpVPdQEmqW7du9O7dO/73f/+3wN3dIvIH1TaWjCzqNevecDfddFPUqVNna1rf5pQpUyYefvjh6N69e8yePTsi/tg5rVOnTtGuXbto27Zt1KlTJ9auXRszZsyIIUOGxAcffJCYX65cuaQEANPT0+Ohhx6Kzp07x6+//hoRES+++GIMHz48unfvHgcccEBUrFgxZsyYEYMHD95gx7Rbb7210PRrxYoV47HHHotu3bolwmX33XdfDB48OE477bTYf//9o3Tp0vHDDz9EVlZWfPLJJxv0V7NmzSLdz+677x6LFy+OZcuWRa9eveKFF16Izp07R4MGDWLVqlUxffr0eOONN2Ls2LH55nXo0CHfgw4A2HwrVqyIt99+O7Kzs2PMmDEF/h2wuFWtWjU6duwYGRkZ8ac//cnubQAAAAAAAAAAAFAEJZl7WLp0aZx99tnx/fffJ46dcMIJ0bp16/jqq6+K3GP16tVjjz322Oi522+/Pb7++uuYNm1aRES888470aZNm8SmQLvsskvMnj073n333Rg2bFi+DXsuueSSaN26dZH7aNCgQUybNi2eeOKJGDZsWJx22mlxwAEHRPny5eOnn36K4cOHx1tvvRUrV65MzNl3333jn//8Z5FrbO9KlSoVjzzySNx3333x5JNPRk5OzkYDb+u+X1q3bt247bbb4phjjilwzUsvvTTGjh0bEydOzBdwW7dO+fLl4/HHH49q1aqV0F1tH3bosFtERLdu3eKrr76KF154Id8bIK9NpSw3dt368r7BzjrrrCJv+7i9qVu3brz88svRo0ePxIfn6tWr44033og33nijwHnrkqnJ2kKxdu3a8fzzz0ePHj1i3rx5EfHHVqH33HPPJuf17t07Tj311CLVaNq0aTz11FNx/vnnJ5LQU6dOjdtuu63AOWXLlo177703WrVqVcQ7iahXr1507do1rr766oiImDBhQkyYMGGTc4499ti4++67fTEeALZAbm5uTJw4MbKysuKNN94o8CeiFLdSpUpF69atIyMjI/785z9v1k9WAQAAAAAAAAAAAP5QErmHlStXxkUXXRSTJ0/Od/zNN9/MtytcUfTo0SNuuOGGjZ6rUqVK9O3bN3r06BHfffddRPyxm9xjjz22yTXPPvvs6NWr12b18fDDD8dpp50WS5YsienTp8fdd9+9yev33nvveOaZZ6JKlSqbVWd7l56eHldddVVkZGTEc889FyNHjoyZM2cmzlesWDEOPvjg6NSpU3Ts2DEqVKiwyfVKlSoV999/f5x88smxZMmSfDmnChUqxEMPPRRNmzYt0XvaHqSnuoFkuPHGGyMzM3OjO7nllZubu8lfG5P3jdWtW7fo3bt3ydzENqJ27drx+uuvx4UXXhilSxeelaxZs2b07ds3unbtmoTu/p9GjRrFwIED4/jjjy/02j322COeeeaZzd469KijjooBAwZEs2bNCr22YcOG8corr8RJJ520WTUiIjIyMuL++++PSpUqbfK6cuXKxeWXXx7/+c9/onz58ptdBwB2ZrNmzYqHH344jj/++DjttNPi1VdfTUrQbf/994/rrrsuxowZE0899VScdNJJgm4AAAAAAAAAAACwFYoz95CTkxP/+Mc/YsyYMSXR6gb23HPPeO2114q0CdMuu+wS9957b1x33XWRnr558aBGjRpFv379Yp999in02o4dO0ZWVlbsvffem1VjR1K/fv24+eabY/jw4fH555/HmDFj4rPPPovJkyfHCy+8EN26dSs06LZO7dq1o0+fPomcUm5ubtSsWTNeeumlaNOmTUnexnZjh9/ZLeKPJOVdd90VtWvXjkceeSQiosBd3ooq7/z09PS4/PLL4+KLLy6ehrdx5cuXj6uuuirOPPPMGDJkSNx+++35ztetWzcaN24cxx13XHTq1KnQkFZJqVWrVjz55JMxadKk6N+/f3z88ccxZ86cWLVqVVSvXj0OOuigaNeuXXTs2HGLv1Rev379eO2112L06NExaNCgmDhxYvzyyy+Rk5MTNWrUiEMOOSQ6dOgQ7dq1i1KlSm3xvXTq1ClatGgRzz//fAwfPjx++OGHWLlyZeyyyy7RsGHDOPbYYyMzMzNq1KixxTUAYGezbNmyePPNNyMrKyvGjx+ftLrVqlWLTp06RUZGRhxwwAF2YwUAAAAAAAAAAIBiVhy5h9zc3Lj55ptj2LBhyWo7IiKqVq0ad999d5xzzjnx6quvxrhx42LWrFmxYsWK2GWXXaJp06Zx3HHHRdeuXaNy5cpbXKdp06YxbNiwyMrKiqFDh8aUKVNiyZIlUbFixdh3332jefPmkZmZudHd7nZmFSpUKHKwrSB/+ctfonv37tGvX7/o0qVLXHPNNfIgeaTlbmnaazs1ZsyY6N27d8ycOXODLxYX9luxsesbNGgQt99+exx++OHF3uv2Yty4cfG3v/0tIiLq1KkTo0aNSnFHsGlVqlTZYLeeypUrx5IlS1LUEQDJsnbt2hg/fnxkZWXFW2+9FcuXL09K3dKlS0ebNm0iIyMjjjvuuChbtmxS6gL5ffXVV6lugfU0bdo01S0AbBHPlG2PZwqwvfJM2TZ5rkDhsrOzU90CG9G4ceNUt8B6PFOgaDxXtj2eKdsmzxVge+X/gW17PFM4+uijY9y4cfmOHXXUUTF27NgUdZQccg9sa1auXBlTpkyJQw45JNWtbHN2ip3d8mrZsmW8+eab0a9fv3jqqafi559/jog/gmxF2VVjXSBur732inPOOSe6desWZcqUKdGeAQDYOj/++GMMGDAgBgwYELNnz05a3QMOOCAyMjKiY8eOsdtuuyWtLgAAAAAAAAAAAADbrnLlygm6FWCnC7tF/PGG6NmzZ5xxxhkxatSoGDp0aIwbNy4RfCtIvXr1onnz5nHSSSfFUUcdFenp6UnqGACAzbVkyZJ44403IisrKyZOnJi0ujVq1IhTTjnF1t0AAAAAAAAAAAAAsJl2yrDbOqVLl47jjz8+jj/++IiImD9/fkyfPj1+/fXXWL58eaSnp0elSpWiVq1asc8++0SVKlVS3DEAAJuSk5MTH374YWRlZcXbb78dK1euTErdsmXLRtu2bSMjIyNatWoVpUvv1H/NBgAAAAAAAAAAAIAt4lu4edSoUSNq1KiR6ja2O3Xr1o3LLrssIiKqVq2a4m4AgJ3RtGnTIjs7OwYOHBhz585NWt0//elPkZmZGR06dIhdd901aXUBAAAAAAAAAACAopN7gO2HsBtbrW7dutGrV69UtwEA7GQWL14cQ4YMiaysrPjss8+SVrdWrVrRpUuX6NKlS+y3335JqwsAAAAAAAAAAABsGbkH2H4IuwEAsN1Ys2ZNfPDBB5GdnR3vvvturFq1Kil1y5UrF+3bt4/MzMxo0aJFlCpVKil1AQAAAAAAAAAAAGBnIuwGAMA275tvvomsrKwYNGhQzJ8/P2l1DzvssMjMzIyTTjopqlSpkrS6AAAAAAAAAAAAALAzEnYDAGCbtGDBgnj99dcjOzs7vvzyy6TVrV27dnTp0iW6dOkS9erVS1pdAAAAAAAAAAAAANjZCbsBALDNWLVqVYwYMSKys7Nj+PDhsWbNmqTUrVChQpxwwgmRmZkZzZs3j/T09KTUBQAAAAAAAAAAAAD+H2E3AABSKjc3N7788svIzs6OwYMHx4IFC5JWu3nz5pGRkREnnHBCVK5cOWl1AQAAAAAAAAAAAIANCbsBAJASv/zySwwaNCiys7Pjm2++SVrdvffeOzIyMqJLly5Rt27dpNUFAAAAAAAAAAAAADZN2A0AgKRZuXJlvPfee5GdnR2jRo2KnJycpNStXLlynHTSSZGRkRGHH354pKWlJaUuAAAAAAAAAAAAAFB0wm4AAJSo3NzcmDx5cmRlZcWQIUNi8eLFSamblpYWLVu2jIyMjGjfvn1UqFAhKXUBAAAAAAAAAAAAgC0j7AYAQImYO3duDBw4MLKzs2PatGlJq1u/fv3IyMiIU045JWrXrp20ugAAAAAAAAAAAADA1hF2AwCg2Pz+++/x9ttvR3Z2dowZMybWrl2blLpVq1aNk08+OTIyMuKQQw6JtLS0pNQFAAAAAAAAAAAAAIqPsBsAAFslNzc3Jk6cGFlZWfHGG2/E0qVLk1I3PT09WrduHRkZGdG2bdsoV65cUuoCAAAAAAAAAAAAACVD2A0AgC0ye/bsyM7OjgEDBsT06dOTVrdhw4aRmZkZp5xySuy+++5JqwsAAAAAAAAAAAAAlCxhNwAAimz58uXx5ptvRlZWVowbNy5pdatVqxYdO3aMjIyMOPDAAyMtLS1ptQEAAAAAAAAAAACA5BB2AwBgk9auXRsfffRRZGdnx7Bhw2L58uVJqVu6dOk47rjjIiMjI9q0aRNly5ZNSl0AAAAAAAAAAAAAIDWE3QAA2Kjp06fHgAEDYsCAATFr1qyk1W3atGlkZGREx44do0aNGkmrCwAAAAAAAAAAAACklrAbAAAJS5YsiWHDhkV2dnZMmDAhaXV32223OOWUUyIjIyOaNGmStLoAAAAAAAAAAAAAwLZD2A0AYCeXk5MTY8eOjezs7Hjrrbfi999/T0rdsmXLxvHHHx8ZGRnRunXrKFOmTFLqAgAAAAAAAAAAAADbJmE3AICd1Pfffx/Z2dkxYMCAmDt3btLqHnzwwZGRkREnn3xyVKtWLWl1AQAAAAAAAAAAAIBtm7AbAMBOZPHixTF06NDIzs6OSZMmJa3u7rvvHp07d46MjIxo2LBh0uoCAAAAAAAAAAAAANsPYTcAgB3cmjVrYvTo0ZGVlRXvvvturFq1Kil1y5YtG+3bt4+MjIxo2bJllC7tr54AAAAAAAAAAAAAQMF84xgAYAf1zTffRHZ2dgwaNCh++eWXpNU99NBDIyMjIzp06BBVq1ZNWl0AAAAAAAAAAAAAYPsm7AYAsANZuHBhDB48OLKysuKLL75IWt0999wzunTpEhkZGVGvXr2k1QUAAAAAAAAAAAAAdhzCbgAA27nVq1fHyJEjIysrK4YPHx6rV69OSt0KFSrEX/7yl8jIyIijjz460tPTk1IXAAAAAAAAAAAAANgxCbsBAGynvvrqq8jKyorXX389FixYkLS6zZs3j4yMjDjhhBOicuXKSasLAAAAAAAAAAAAAOzYhN0AALYj8+fPj9dffz2ysrLi66+/TlrdvfbaKzIyMqJz586x9957J60uAAAAAAAAAAAAALDzEHYDANjGrVy5MoYPHx5ZWVkxcuTIyMnJSUrdSpUqxUknnRQZGRlx+OGHR3p6elLqAgAAAAAAAAAAAAA7J2E3AIBtUG5ubnz++eeRnZ0dgwcPjkWLFiWlblpaWhx99NGRmZkZ7du3j4oVKyalLgAAAAAAAAAAAACAsBsAwDbk559/joEDB0Z2dnZ89913Sau77777RmZmZnTu3Dlq166dtLoAAAAAAAAAAAAAAOsIuwEApNjvv/8e77zzTmRnZ8fo0aNj7dq1SalbpUqV6NChQ2RmZkazZs0iLS0tKXUBAAAAAAAAAAAAADZG2A0AIAVyc3Pjk08+iezs7Bg6dGgsWbIkKXXT09PjmGOOiczMzGjbtm2UL18+KXUBAAAAAAAAAAAAAAoj7AYAkEQ//fRTDBgwILKzs+PHH39MWt2GDRtGly5donPnzlGrVq2k1QUAAAAAAAAAAAAAKCphNwCAErZ8+fJ46623Ijs7O8aOHRu5ublJqbvrrrtGx44dIyMjIw466KBIS0tLSl0AAAAAAAAAAAAAgC0h7AYAUALWrl0bEyZMiOzs7Bg2bFgsW7YsKXVLlSoVxx13XGRkZESbNm2iXLlySakLAAAAAAAAAAAAALC1hN0AAIrRjBkzYsCAATFgwICYOXNm0uo2adIkMjIyolOnTlGjRo2k1QUAAAAAAAAAAAAAKC7CbgAAW2np0qUxbNiwyM7Ojo8++ihpdatXrx6nnHJKZGRkRNOmTZNWFwAAAAAAAAAAAACgJAi7AQBsgbVr18bYsWMjOzs73nrrrVixYkVS6pYpUyaOP/74yMjIiGOPPTbKlCmTlLoAAAAAAAAAAAAAACVN2A0AYDP88MMPkZWVFQMHDow5c+Ykre5BBx0UGRkZ0bFjx6hWrVrS6gIAAAAAAAAAAAAAJIuwGwBAIX777bcYMmRIZGdnx6RJk5JWd/fdd49TTjklMjIyYv/9909aXQAAAAAAAAAAAACAVBB2AwDYiJycnBg9enRkZWXFO++8E6tWrUpK3bJly0a7du0iIyMjjjnmmChd2l/XAAAAAAAAAAAAAICdg29PAwDk8e2330Z2dnYMGjQo5s2bl7S6zZo1i4yMjOjQoUPssssuSasLAAAAAAAAAAAAALCtEHYDAHZ6CxcujCFDhkRWVlZ8/vnnSau7xx57RJcuXSIjIyPq16+ftLoAAAAAAAAAAAAAANsiYTcAYJv11Vdfldjaa9eujenTp8eUKVPihx9+iJycnNhjjz1ijz32KLGaERGlS5eO/fbbL5o0aRJ169aNtLS0+P3330v0Xotb06ZNU90CAAAAAAAAAAAAALADEnYDAHYq8+fPjylTpsQ333wTy5cvT1rdOnXqRJMmTWK//faLsmXLJq0uAAAAAAAAAAAAAMD2QtgNANjhLV++PL799tuYMmVK/PLLL0mrW7Vq1WjSpEk0btw4dtlll6TVBQAAAAAAAAAAAADYHgm7AQA7pJycnPjxxx9jypQp8eOPP8batWuTUrdMmTLRsGHDaNy4cdSpUyfS0tKSUhcAAAAAAAAAAAAAYHsn7AYA7FDmzZsXU6ZMiW+//TZWrFiRtLp77bVXNGnSJBo0aBBlypRJWl0AAAAAAAAAAAAAgB2FsBsAsN1btmxZfPPNNzFlypT49ddfk1Z31113jSZNmkTjxo2jSpUqSasLAAAAAAAAAAAAALAjEnYDALZLOTk5MW3atPj6669j+vTpkZubm5S6ZcuWjf333z8aN24ctWvXTkpNAAAAAAAAAAAAAICdgbAbALBdmTt3bkyZMiW+/fbbWLlyZVJqpqWlxd577x2NGzeOBg0aROnS/goFAAAAAAAAAAAAAFDcfFMbANjmLVmyJL755puYMmVKLFy4MGl1q1evHk2aNIlGjRpF5cqVk1YXAAAAAAAAAAAAAGBnJOwGAGyTVqxYkQi4zZw5M3Jzc5NSt3z58rH//vtHkyZNolatWkmpCQAAAAAAAAAAAACAsBsAsA3Jzc2Njz/+OLKysmLYsGFx9NFHJ6Vuenp67LPPPtGkSZOoV69elCpVKil1AQAAAAAAAAAAAAD4f4TdAICUmzVrVgwYMCCys7NjxowZSatbo0aNaNKkSTRq1CgqVqyYtLoAAAAAAAAAAAAAAGxI2A0ASKnhw4fHOeeck7R6FSpUiEaNGkWTJk2iZs2aSasLAAAAAAAAAAAAAMCmCbsBACl15JFHRsWKFWP58uUlViM9PT3q1asXTZo0iX322SdKlSpVYrUAAAAAAAAAAAAAANgywm4AQEpVqlQpTjjhhMjOzi72tXffffdo0qRJ7L///lGhQoViXx8AAAAAAAAAAAAAgOIj7AYApFxGRkaxhd0qVqwYjRs3jiZNmsRuu+1WLGsCAAAAAAAAAAAAAFDyhN0AgJRr3rx51KlTJ2bPnr1F80uVKhX169ePJk2axN577x3p6enF3CEAAAAAAAAAAAAAACVN2A0ASLn09PTo0qVLPPLII5s1b4899ogmTZpEw4YNo3z58iXUHQAAAAAAAAAAAAAAySDsBgBsE4oadqtcuXI0btw4mjRpEtWqVUtCZwAAAAAAAAAAAAAAJIOwGwCwTdh3333jsMMOi4kTJ25wrnTp0tGgQYNo0qRJ7LXXXpGWlpaCDgEAAAAAAAAAAAAAKEnCbgDANiMzMzNf2K127drRpEmTaNiwYZQtWzaFnQEAAAAAAAAAAAAAUNKE3QCAbcZJJ50U//3vf+OEE06ILl26xPLly1PdEgAAAAAAAAAAAAAASSLsBgBsM6pUqRJvvvlmpKWlRUTEV199leKOAAAAAAAAAAAAAABIlvRUNwAAkNe6oBsAAAAAAAAAAAAAADsXYTcAAAAAAAAAAAAAAAAAUk7YDQAAAAAAAAAAAAAAAICUE3YDAAAAAAAAAAAAAAAAIOWE3QAAAAAAAAAAAAAAAABIOWE3AAAAAAAAAAAAAAAAAFJO2A0AAAAAAAAAAAAAAACAlBN2AwAAAAAAAAAAAAAAACDlhN0AAAAAAAAAAAAAAAAASDlhNwAAAAAAAAAAAAAAAABSTtgNAAAAAAAAAAAAAAAAgJQTdgMAAAAAAAAAAAAAAAAg5YTdAAAAAAAAAAAAAAAAAEg5YTcAAAAAAAAAAAAAAAAAUk7YDQAAAAAAAAAAAAAAAICUE3YDAAAAAAAAAAAAAAAAIOWE3QAAAAAAAAAAAAAAAABIOWE3AAAAAAAAAAAAAAAAAFJO2A0AAAAAAAAAAAAAAACAlBN2AwAAAAAAAAAAAAAAACDlhN0AAAAAAAAAAAAAAAAASDlhNwAAAAAAAAAAAAAAAABSTtgNAAAAAAAAAAAAAAAAgJQTdgMAAAAAAAAAAAAAAAAg5YTdAAAAAAAAAAAAAAAAAEg5YTcAAAAAAAAAAAAAAAAAUk7YDQAAAAAAAAAAAAAAAICUE3YDAAAAAAAAAAAAAAAAIOWE3QAAAAAAAAAAAAAAAABIOWE3AAAAAAAAAAAAAAAAAFJO2A0AAAAAAAAAAAAAAACAlBN2AwAAAAAAAAAAAAAAACDlhN0AAAAAAAAAAAAAAAAASDlhNwAAAAAAAAAAAAAAAABSTtgNAAAAAAAAAAAAAAAAgJQrneoGYH2zZs2KrKysiIioWrVq9OzZM8UdAQAAAAAAAAAAAAAA2ys5Bdh+CLuxzZk1a1Y89NBDERFRp04dDxEAAAAAAAAAAAAAAGCLySnA9iM91Q0AAAAAAAAAAAAAAAAAgLAbbGO6d+8eDRo0iAYNGsTVV1+d6nYAAAAAAAAAAAAAAIDtxIMPPpjIJLRu3TrV7cBmE3YDAAAAAAAAAAAAAAAAIOWE3QAAAAAAAAAAAAAAAGArrFy5MhYvXpzqNmC7VzrVDUBExJo1a2Ls2LExePDgyMrKShyfPXt2nHvuudGxY8do3759lC9ffrPXXrJkSRx66KGxdu3azZp34IEHxqBBg4rU+zvvvBPDhg2LTz/9NH755ZcoXbp01KxZMw499NDo0qVLtGjRItLS0ja7dwAAAAAAAAAAAAAAYPOVZE4hImL16tUxefLkGDduXIwdOzY++eSTuOWWW6Jr166bvdakSZMiKysrJkyYEHPnzo1Vq1ZF9erV48ADD4x27dpFx44do1y5clvUJ2xvhN1IuSlTpsS1114bX3zxxUbPv//++/H+++9H7dq14/bbb4/WrVtv1voTJ07c7KBbUX322Wfxz3/+M7777rt8x1etWhXTp0+P6dOnx4ABA+Kwww6Lu+66K+rVq1cifQAAAAAAAAAAAAAAAH8oiZxCTk5OfPXVVzF27NgYN25cTJgwIZYvX75Vff7888/Ru3fveP/99zc4N3fu3Jg7d268++678cADD0SfPn2iVatWW1UPtgfpqW6AnduYMWMiIyOjwAdIXj/99FP07Nkznnzyyc2qMWHChC1tb5OGDBkSp5122gZBt42ZOHFidOnSpcR6AQAAAAAAAAAAAAAASian8Pzzz8fhhx8enTt3jrvuuitGjhy51UG3b775Jjp37rzRoNv65syZEz169Ihnn312q2rC9sDObqTMtGnT4sILL4xVq1YljlWuXDlatWoV++yzT5QuXTpmz54d77//fixevDhxzZ133hkVK1aMv/3tb0Wq89FHHyVeH3LIIXHrrbcWad6mtiIdNWpUXHHFFfl2jDvkkEMiMzMz6tevHzk5OTF16tR4+eWXY+rUqRERsWTJkvj73/8er732WjRu3LhIPQAAAAAAAAAAAAAAAEVTUjmFH3/8MX777bdi63POnDlx5plnxvz58xPHateuHd27d4+mTZtGxYoVY8aMGTF48OD44IMPEtfceuutUbly5ejatWux9QLbGmE3Uubuu++OZcuWJcYnnHBC9OnTJ6pWrZrvut9//z3uvvvu6Nu3b+LYbbfdFocffng0atRokzV+//33+PzzzxPjVq1aRdOmTbeq73nz5kWvXr0SQbcyZcrELbfcEqeeemqkpaUlrmvZsmWcddZZ8eijj8b9998fERHLly+PCy+8MN54442oUKHCVvUBAAAAAAAAAAAAAAD8P8nIKURE1KtXL/785z/HAQccEFdcccVm9bh27dq47LLL8gXdunfvHjfccEOULVs2ceyII46IzMzMGDFiRPTq1SuWLl0aERG9e/eOgw46qEh9wvYoPdUNsHNasmRJDB8+PDHefffd47777tvgARLxxw5rN954Y1xwwQWJY6tWrYo777yz0DqffvpprF69OjE+8sgjt7LziDvuuCNfIvuee+6Jbt265Qu6rZOWlhaXXHJJXH311YljM2bMiMcee2yr+wAAAAAAAAAAAAAAAP5QkjmFUqVKxRFHHBHXXnttvPPOO/Huu+/GddddF4ceeuhm9/nKK6/EJ598khj/7W9/i1tvvTVf0C2v4447Lp5++ukoVapURESsXr06brjhhsjNzd3s2rA9EHYjJX744YfIyclJjI877rgoV67cJudceeWVccABByTGy5Yty7e16MZMmDAh8bps2bLRrFmzLez4D999910MGTIkMT711FPj5JNPLnTeeeedF82bN0+M+/btG4sWLdqqXgAAAAAAAAAAAAAAgD+UZE7hmmuuiZdffjnOPffcqF+//hb3uHr16nj00UcT4/322y+uv/76QucdfvjhcdFFFyXGEydOjDFjxmxxH7AtE3YjJdauXZtvvMsuuxQ6p1SpUvGvf/0rypYtG1dddVW89NJLBSaX1/noo48Srw8++OCoUKHCljX8/3vuuecS6ecyZcrEZZddVqR56enpceWVVybGy5Yti1dffXWregEAAAAAAAAAAAAAAP5QkjmFdbuqba2333475syZkxhfeumlhQby1jnnnHPy3dMzzzxTLD3BtkbYjZSoWbNmvvGPP/5YpHnNmjWLESNGxIUXXljow2L16tUxadKkxPjII4/c7D7zWrNmTQwbNiwxbteuXdSuXbvI8w8//PA46KCDEuPBgwdvVT8AAAAAAAAAAAAAAMAfkpFT2Fp5cwQ1a9aME088schzK1euHKeeempiPHr06FiwYEGx9gfbAmE3UmLPPfeMWrVqJcYjRoyI7777rkhz887blC+//DJWrFiRGDdv3nzzmlzP5MmT8z0I2rVrt9lr5J3z1VdfxS+//LJVPQEAAAAAAAAAAAAAAMnJKWyN1atXx+jRoxPj448/frPDdXkzCWvWrIkxY8YUW3+wrSid6gbYOaWnp0eXLl3iiSeeiIg/PrTPPffcePrpp6N+/frFUuOjjz5KvC5dunSUL18+brvtthg3blxMnz49Vq1aFTVq1IiDDz44TjnllGjfvn2kpxec//zkk0/yjVu0aLHZPbVs2TLuu+++xHjixIlxwgknFGnurFmz4vnnn48PPvggZsyYEWvWrIlq1apF48aNo23btnHKKadE5cqVC12ne/fuMX78+IiIyMjIiH//+9+xZs2aeOONN+LVV1+N7777LhYvXhy77bZbHHnkkXHWWWfFn/70p82+1+LStWvXYl8zbwgSAAAAAAAAAAAAAGBn9u2335bI97b79+9f7GtuSjJyClvj66+/zvdd9i3JJDRr1iwqVKiQWGfixInRsWPHIs1dunRpvPLKK/HWW2/Ft99+G8uXL48qVapE/fr1o1WrVpGZmRl16tQpdJ0HH3wwHnrooYiIqFOnTowaNSoiIiZMmBDPP/98fPbZZzFv3ryoXLlyHHjggZGZmRkdOnSItLS0zb5fdk7CbqTMBRdcEAMHDoy5c+dGRMSMGTOiU6dOccEFF0SPHj2KFNzalAkTJiRer1mzJk477bQNrpk7d27MnTs33n777TjooIPisccei9q1a290valTpyZeV69ePWrUqLHZPTVo0GCDNYsSduvfv3/ccMMNsWrVqnzH582bF/PmzYtRo0bFvffeG7fddlucdNJJm9XTkiVL4tJLL40PPvgg3/E5c+bEoEGDYtCgQXH55ZfHJZdckpKHy6RJk4p9zbVr1xb7mgAAAAAAAAAAAAAA26Nly5aVyPe2U6GkcwpbI28mISJi//333+w1SpUqFQ0aNIgvvvgiIqLIO9d98cUXcd5558XPP/+c7/iiRYvik08+iU8++SQeffTROO+886JXr15RunTR40Zr166N++67Lx5//PF8xxcsWBCjRo2KUaNGxaBBg+Lhhx+O8uXLF3lddl4Fb2MFJaxKlSrx1FNPRdWqVRPHVqxYEffff3+0bNkybrnllvj++++3aO21a9fGxx9/vFlzPv/888jIyIgvv/xyo+dnzZqVeL3vvvtuUV9VqlTJt71p3jUL8swzz8Q111yzQdBtfYsXL45LL700brvttsjNzS1SP7m5ufGPf/xjg6Db+h544IF4+eWXi7QmAAAAAAAAAAAAAACkQknmFLbW7Nmz8423NJeQd5e6omQSJkyYEN27d98g6La+NWvWxGOPPRZnnnlmLF68uMj9/Pe//90g6La+999/P6699toir8nOzc5upFSTJk2if//+cfHFF+dLKS9dujT69u0bffv2jZYtW0aPHj2iTZs2Rd5Z7Ntvv43ffvstIiKqVq0a7du3j0MOOSR23333qF69eixatCi+//77yMrKim+++SYx75dffolLLrkkhg4dGhUrVsy35qJFixKvd9111y2+56pVqyYeEnnX3Jivv/46Bg0aFBERaWlp0bp16zj55JNj7733juXLl8e0adPi9ddfj8mTJyfmPPPMM7HHHnvEOeecU2gvI0aMiIULF0b58uUjMzMzjj322Nhtt93i559/jkGDBsVbb72VuPbOO++Mk08+OapUqbIFdw0AAAAAAAAAAAAAACWvpHIKW2vhwoWJ15UqVYqyZctu0Tq77LJL4nVhmYQVK1bEP/7xj1i2bFlE/PF707Vr19h///0jPT09Zs2aFW+//XaMGDEicnJyIiJi/PjxcfXVV8cTTzwR6emb3mNr4cKFce+990ZERNu2baNDhw5Rt27dWL58eYwcOTJeeOGFxMY/gwcPjtNPPz2OOuqoLbpvdh7CbqRcgwYNYtCgQfHss8/GU089FQsWLMh3fsyYMTFmzJg46KCD4sYbb4xDDz200DU/+uijqFy5clx00UVxxhlnbBBci4ho06ZN/P3vf4/XXnstbrrppsQH6IwZM+Kee+6JG2+8Md/1K1asSLyuVKnSltxqRES+bU/zrrkxX331VURE1KhRIx544IE4+uij851v3bp19OzZM15//fW44YYbYunSpRERcffdd8fhhx8ehxxyyCbXX7hwYdSsWTP69u0bjRo1ynfuL3/5S9xzzz2JhPXSpUtj8ODB0b179yLdJwAAAAAAAAAAAAAApEJJ5BS2VnFlEvLOLSyTsO6+y5QpE9dee22cddZZG4T7unbtGl9++WX06tUrfvjhh4iIeO+99+KZZ56Js88+e5PrL1++PNLT0+Ohhx6KDh065Dt3zDHHRKtWraJnz56JY/369RN2o1DCbmwTypUrF+eff36ceeaZMWzYsOjXr19MmjQp3zWff/55dOvWLXr16hWXXHLJJtPTFStWjLfeeiv22GOPTdZNS0uLbt26RfXq1eP8889PHH/ppZfioosuiho1amzdjRWD8uXLR9++faNx48YFXtOpU6fYbbfdokePHrF27drIycmJe++9N55//vlC17/zzjs3CLqtc9lll8Urr7ySeMCNHz8+6WG3Zs2aFfua06dPT6TOAQAAAAAAAAAAAAB2ZpUqVSqR722nWnHnFLZnt9xyS3Tr1q3A8wcccED069cvOnXqFL/88ktERDzyyCPRrVu3qFKlyibXPuecczYIuq3TunXraNu2bbz77rsR8cfGRrm5uTvs7zPFQ9iNbUqFChUiIyMjMjIyYvLkydG3b98YOnRorF69OiIicnNz44EHHojFixfH9ddfX+AHXNeuXTerbtu2bSMzMzOysrIiImLVqlXx9ttv5wt2VahQIfF63RaeW2Ld7mvrr1mQyy67bJNBt3VatmwZ//M//xPPPfdcRER8+OGH8dNPP0Xt2rULnLPXXnvFscceW+D5smXLxtFHHx1Dhw6NiIgff/yx0D6KW//+/Yt9zSpVquT7cwAAAAAAAAAAAAAA2Fntv//+JfK97W1FceUUiqOPdbYmk5B3blEyCccee+wmg27r7L777vGvf/0rLrroooiI+O233+K9996Lzp07b3LeGWecUWj9dWG3X375JZYvX75VO9ux40tPdQNQkIMPPjjuvffeGDZsWDRv3jzfuWeeeSbefvvtYq23/gfshAkT8o133XXXxOtFixZtcZ3ffvtto2sWpCgPlXXW33Vt7Nixm7y+UaNGhT6I84bl8vYOAAAAAAAAAAAAAADbk2TnFPKqVq1a4vWyZcti1apVW7TO4sWLE6+LkkkoLIyW15///OfYfffdE+MPP/xwk9dXqVJlkxv0RETsueee+cZyCRRG2I1tXr169eK5557bIA185513Rm5ubrHVOfDAA/M9PH744Yd85+vWrZt4vaU7nC1dujR+/vnnja5ZkLw9FaZhw4ZRvXr1xHjatGmbvL6w7UQjIsqXL594nZOTU+ReAAAAAAAAAAAAAABgW5SsnEJederUyTfe0lzC999/n3hdlEzC+qG+TSldunQcdthhiXFxZxIi5BIonLAb24XSpUvHXXfdFQceeGDi2IwZM+Lzzz8vthppaWn5EsPrp4UbNmyYeL1gwYKYP3/+Ztf47rvvClyzuOyxxx6J13kT2xtTlO1VS2oLVgAAAAAAAAAAAAAASJVk5BTyWj8/8O233272Gjk5OfkCaPvtt1+hcypWrLhZNWQSSDVhN1Jm4sSJm7XFZ+nSpeOss87Kd+zrr78u1p7yfoiWK1cu37lDDz0037iw7Tg3ZsyYMfnGeRPPAAAAAAAAAAAAAADAltsWcwrrNG7cOCpUqJAYb0kmYdKkSbFixYrEWCaBHZGwG0k3f/78uPrqq6Nbt25xyy23xKpVq4o894ADDthgrY1ZvXr1FvX2888/J15Xr14937mDDjooqlWrlhi/8847m73+u+++m3jdpEmTqFmz5hZ0uWlz585NvN51112LfX0AAAAAAAAAAAAAANiWJCOnsLXKlCkTLVu2TIyHDx8eOTk5m7VG3kxCqVKl8q1XkOXLl29WDZkEUk3YjaR74YUXIjs7OyIi5syZE88999wWr1WmTJl845UrV8Ydd9wR559/fuTm5m7WWtOmTcv3UNp77703qHXiiScmxu+880789NNPRV7/k08+icmTJyfGHTt2LNK8hQsXFrnG1KlTY8GCBYlxgwYNijwXAAAAAAAAAAAAAAC2RyWZUyhOeXME8+bNizfffLPIc5cuXRqvvfZaYtyyZcsNNvnZmPHjxxe5xpo1a2LixImJsUwCqVA61Q2w8znjjDPiqaeeSmyd+cADD0S7du1in332KXTu9OnT843r1q2beP3VV1/FlVdeGVOnTo2IiGeffTZ69uxZ5L769++fb3zcccdtcM2ZZ54Z/fr1i4g/do97+OGHo0+fPoWuvXbt2rj33nsT44oVK0a3bt2K1Nerr74a559/fpGuXdfbOkcffXSR5gEAAAAAAAAAAABsz9YFHNi2NG7cONUtADuJksopFLf27dvHHnvskdg97eGHH462bdtGuXLlCp373//+NxYtWpQYFzUv8fzzz0ebNm2KdO17770X8+bNS4xbtGhRpHlQnOzsRtLttttucc455yTGK1asiHPPPTffh25BBg0alG986KGHJl7/9NNPiaBbRMQdd9yxQYCtIF9++WX897//TYx33XXXOOaYYza4rmHDhnHyyScnxq+++mq88cYbha7/5JNPxrhx4xLjs846K6pVq1ak3h566KGYMmVKodeNGTMmXnjhhcS4RYsWseeeexapBgAAAAAAAAAAAAAAbK9KKqdQ3MqWLRsXX3xxYjx16tS44447Cp338ccfxyOPPJIYN2vWLFq1alWkmiNHjoxXXnml0OvmzZsXN910U2JctWrV+POf/1ykGlCchN1IiYsvvjgOPvjgxHjatGlx+umnx7ffflvgnH79+uXborNVq1ZRq1atxLht27Zx+umnJ8Zr166Na665Jm688cZYvHhxgeuOHTs2evToEWvWrMnXX6VKlTZ6/fXXXx9Vq1ZNjK+88sp8W4HmlZubG4899ljcfffdiWN77713vodTYX7//fc466yzYuzYsQVe8/rrr8dFF10Ua9eujYiItLS0uPzyy4tcAwAAAAAAAAAAAAAAtmclkVMoCaeffno0a9YsMX7hhRfixhtvjNWrV2/0+hEjRsTZZ58dOTk5ERFRpkyZuP322yMtLa3INW+88cZ49tlnIzc3d6Pnv/jii/jrX/8av/zyS+LYBRdcEJUrVy5yDSgupVPdADunMmXKxMMPPxzdu3eP2bNnR8QfieROnTpFu3btom3btlGnTp1Yu3ZtzJgxI4YMGRIffPBBYn65cuXiuuuu22Ddm2++OWbNmhWjR49OHHvxxRdj8ODBcfLJJ0eLFi2iVq1asWzZspg5c2a88cYbG4TIWrZsGf/zP/9TYO+77757PPDAA3HOOefE2rVrY/Xq1XHttdfGyy+/HJmZmVG/fv3IycmJ7777Ll566aV8u81VrFgxHn/88ahQoUKRfp/q1q0bs2fPjl9//TXOOOOMOPbYY6NDhw6x9957x4oVK+K7776LwYMHx2effZZv3nnnnReHHXZYkWoAAAAAAAAAAAAAAMD2rqRyCsUtPT09HnrooejcuXP8+uuvEfFH7mH48OHRvXv3OOCAA6JixYoxY8aMGDx4cIwaNSrf/FtvvTUaNWpUpFqVKlWKcuXKxYIFC+LWW2+NrKysyMzMjEaNGkV6enrMnDkz3nnnnRg+fHgiTBcRcdhhh8Xf//734rtp2AzCbqRM3bp14+WXX44ePXrEtGnTIiJi9erV8cYbb8Qbb7xR4Ly0tLS45ZZbNvrhXKZMmXjiiSfif//3f+P1119PHP/tt9+iX79+0a9fv0321Lx583j00UejbNmym7zu2GOPjfvuuy+uvvrqRHr6008/jU8//bTAOZUrV44nn3wyGjduvMm18zryyCNjn332ifvvvz9yc3NjxIgRMWLEiE3OOfXUU+Oqq64qcg0AAAAAAAAAAAAAANgRlEROoSTUrl07nn/++ejRo0fMmzcvIiJ++umnuOeeezY5r3fv3nHqqacWuc6uu+4affr0ibPPPjtWr14dX331VXz11VebnHPggQfGE088EWXKlClyHShO6alugJ1b7dq14/XXX48LL7wwSpcuPHtZs2bN6Nu3b3Tt2rXAaypUqBD33Xdf/Pvf/446deoUqY8qVarEVVddFc8//3xUqVKlSHM6duwYL7/8cuy3336FXnvYYYfFwIED48gjjyzS2nldfPHF8b//+7+FBvCqVKkSt956a/Tp0yfS0/2nDQAAAAAAAAAAAADAzqckcgoloVGjRjFw4MA4/vjjC712jz32iGeeeSZ69uy52XVatmwZTz/9dOy2226bvK5UqVJx5plnxksvvRTVq1ff7DpQXOzsRsqVL18+rrrqqjjzzDNjyJAhcfvtt+c7X7du3WjcuHEcd9xx0alTp6hUqVKha6alpUVGRkZ06NAhRowYESNHjoxPP/00fv3111i0aFGUL18+qlevHgceeGC0aNEiOnbsGJUrV97s3g855JAYOnRovP322zFs2LD49NNPY/78+VGqVKmoWbNmHHbYYdG5c+do2bJlpKWlbfb66+7l7LPPjnbt2sULL7wQo0aNipkzZ8aaNWuiWrVq0bhx4zj++OOjS5cuRQ7qAQAAAAAAAAAAAADAjqokcgoloVatWvHkk0/GpEmTon///vHxxx/HnDlzYtWqVVG9evU46KCDol27dtGxY8coV67cFtdp2bJlvPfee/HSSy/F22+/HVOnTo3ly5dHlSpVon79+tGyZcvo2rVr7LXXXsV4d7Bl0nJzc3NT3QTkNW7cuPjb3/4WERF16tSJUaNGpbgjdjRVqlSJpUuX5jtWuXLlWLJkSYo6AgpS2DbJpEbTpk1T3QLAFvFc2fZ4pgDbK8+UbY9nCrC98kzZNnmuQOGys7NT3QIb0bhx41S3wHo8U6BoPFe2PZ4p2ybPFSicZ8q2yXNl2+OZwtFHHx3jxo3Ld+yoo46KsWPHpqij5JBTgO1HeqobAAAAAAAAAAAAAAAAAABhNwAAAAAAAAAAAAAAAABSTtgNAAAAAAAAAAAAAAAAgJQrneoGYH1169aNyy67LCIiqlatmuJuAAAAAAAAAAAAAACA7ZmcAmw/hN3Y5tStWzd69eqV6jYAAAAAAAAAAAAAAIAdgJwCbD/SU90AAAAAAAAAAAAAAAAAAAi7AQAAAAAAAAAAAAAAAJBywm4AAAAAAAAAAAAAAAAApJywGwAAAAAAAAAAAAAAAAApJ+wGAAAAAAAAAAAAAAAAQMoJuwEAAAAAAAAAAAAAAACQcsJuAAAAAAAAAAAAAAAAAKScsBsAAAAAAAAAAAAAAAAAKSfsBgAAAAAAAAAAAAAAAEDKCbsBAAAAAAAAAAAAAAAAkHLCbgAAAAAAAAAAAAAAAACknLAbAAAAAAAAAAAAAAAAACkn7AYAAAAAAAAAAAAAAABAygm7AQAAAAAAAAAAAAAAAJBywm4AAAAAAAAAAAAAAAAApJywGwAAAAAAAAAAAAAAAAApJ+wGAAAAAAAAAAAAAAAAQMoJuwEAAAAAAAAAAAAAAACQcsJuAAAAAAAAAAAAAAAAAKScsBsAAAAAAAAAAAAAAAAAKSfsBgAAAAAAAAAAAAAAAEDKCbsBAAAAAAAAAAAAAAAAkHLCbgAAAAAAAAAAAAAAAACknLAbAAAAAAAAAAAAAAAAACkn7AYAAAAAAAAAAAAAAABAygm7AQAAAAAAAAAAAAAAAJBywm4AAAAAAAAAAAAAAAAApJywGwAAAAAAAAAAAAAAAAApJ+wGAAAAAAAAAAAAAAAAQMoJuwEAAAAAAAAAAAAAAACQcsJuAAAAAAAAAAAAAAAAAKScsBsAAAAAAAAAAAAAAAAAKSfsBgAAAAAAAAAAAAAAAEDKCbsBAAAAAAAAAAAAAAAAkHLCbgAAAAAAAAAAAAAAAACknLAbAAAAAAAAAAAAAAAAACkn7AYAAAAAAAAAAAAAAABAygm7AQAAAAAAAAAAAAAAAJBywm4AAAAAAAAAAAAAAAAApJywGwAAAAAAAAAAAAAAAAApJ+wGAAAAAAAAAAAAAAAAQMoJuwEAAAAAAAAAAAAAAACQcsJuAAAAAAAAAAAAAAAAAKScsBsAAAAAAAAAAAAAAAAAKVc61Q0AAADsaLKzs1PdAhvRuHHjVLcAAAAAAAAAAAAAbIKd3QAAAAAAAAAAAAAAAABIOWE3AAAAAAAAAAAAAAAAAFJO2A0AAAAAAAAAAAAAAACAlBN2AwAAAAAAAAAAAAAAACDlhN0AAAAAAAAAAAAAAAAASDlhNwAAAAAAAAAAAAAAAABSTtgNAAAAAAAAAAAAAAAAgJQTdgMAAAAAAAAAAAAAAAAg5YTdAAAAAAAAAAAAAAAAAEg5YTcAAAAAAAAAAAAAAAAAUk7YDQAAAAAAAAAAAAAAAICUE3YDAAAAAAAAAAAAAAAAIOWE3QAAAAAAAAAAAAAAAABIOWE3AAAAAAAAAAAAAAAAAFKudKobAAAAAAAAoORlZ2enugXW07hx41S3AAAAAAAAANsUO7sBAAAAAAAAAAAAAAAAkHLCbgAAAAAAAAAAAAAAAACknLAbAAAAAAAAAAAAAAAAACkn7AYAAAAAAAAAAAAAAABAygm7AQAAAAAAAAAAAAAAAJBywm4AAAAAAAAAAAAAAAAApJywGwAAAAAAAAAAAAAAAAApJ+wGAAAAAAAAAAAAAAAAQMoJuwEAAAAAAAAAAAAAAACQcsJuAAAAAAAAAAAAAAAAAKScsBsAAAAAAAAAAAAAAAAAKSfsBgAAAAAAAAAAAAAAAEDKCbsBAAAAAAAAAAAAAAAAkHKlU90AAAAAAFCw7OzsVLfAeho3bpzqFgAAAAAAAAAAdkh2dgMAAAAAAAAAAAAAAAAg5YTdAAAAAAAAAAAAAAAAAEg5YTcAAAAAAAAAAAAAAAAAUk7YDQAAAAAAAAAAAAAAAICUE3YDAAAAAAAAAAAAAAAAIOWE3QAAAAAAAAAAAAAAAABIOWE3AAAAAAAAAAAAAAAAAFJO2A0AAAAAAAAAAAAAAACAlBN2AwAAAAAAAAAAAAAAACDlhN0AAAAAAAAAAAAAAAAASDlhNwAAAAAAAAAAAAAAAABSTtgNAAAAAAAAAAAAAAAAgJQTdgMAAAAAAAAAAAAAAAAg5YTdAAAAAAAAAAAAAAAAAEg5YTcAAAAAAAAAAAAAAAAAUk7YDQAAAAAAAAAAAAAAAICUE3YDAAAAAAAAAAAAAAAAIOWE3QAAAAAAAAAAAAAAAABIOWE3AAAAAAAAAAAAAAAAAFJO2A0AAAAAAAAAAAAAAACAlBN2AwAAAAAAAAAAAAAAACDlhN0AAAAAAAAAAAAAAAAASDlhNwAAAAAAAAAAAAAAAABSTtgNAAAAAAAAAAAAAAAAgJQTdgMAAAAAAAAAAAAAAAAg5UqnugFIplmzZkVWVlZERFStWjV69uyZ4o4AAAAAAAAAAAAAAICSJEsA2w9hN3Yqs2bNioceeigiIurUqeMBBQAAAAAAAAAAAAAAOzhZAth+pKe6AQAAAAAAAAAAAAAAAAAQdoNtyKxZs6JBgwaJX+PGjUt1SwAAAAAAAAAAAAAAQAmSJYD/R9gNAAAAAAAAAAAAAAAAgJQTdgMAAAAAAAAAAAAAAAAg5UqnugEoaWvWrImxY8fG4MGDIysrK3F89uzZce6550bHjh2jffv2Ub58+S1af/78+fHaa6/FBx98EFOnTo3ffvstKleuHPvuu2+0aNEi/vrXv0bt2rWL63YAAAAAAAAAAAAAAIBCyBLA9knYjR3alClT4tpr/7/27jxeyzn/H/j71Omc9pU2McpUDMav7FKELJEtGd8sRWTfGUPJiBlhJsswM5RCtoS0WAaTQshWlkGSTKJUWrQvp/v3Rw/3dNdZ7nM6dXfOeT4fj3k8rs91fa7P9b57TL2d+1yv6/pDfPbZZ/keHzduXIwbNy6aNm0af/rTn6JDhw5pr52XlxdDhw6NgQMHxqpVq1KOLVq0KKZMmRJTpkyJBx54IHr37h2XXnpp5ObmbtbnAbas5557LtMlsJFdd9010yUAAAAAAAAAAAAAUMbIEkDZVSnTBcCWMnHixDj55JMLbE4b+uGHH+Lss8+OQYMGpbX2qlWr4oorrojbbrttk+a0sby8vPjHP/4RZ599dixZsiSt9QEAAAAAAAAAAAAAgOKTJYCyzZvdKJemT58eF154YaxevTq5r2bNmtG+ffv41a9+FdnZ2fH999/HuHHjYvHixck5AwYMiOrVq8fpp59e4NqJRCJuuOGGePHFF5P7cnJy4oQTTogOHTpE48aNY/78+fH+++/H008/HUuXLo2IiEmTJsWFF14YQ4cOjSpVqmyBTw0AAAAAAAAAAAAAABWXLAGUfcJulEt33HFHLFu2LDk++uij47bbbovatWunzFu5cmXccccd8cgjjyT33XrrrbHPPvtE69at8137ySefjOeffz45btGiRTz44IPRvHnzlHlHHnlknH/++XHhhRfGRx99FBER77zzTtxzzz1xzTXXbO5HBAAAAAAAAAAAAAAANiBLAGVfpUwXAKVtyZIl8frrryfHDRs2jIEDB27SnCIiqlatGv369YsLLrgguW/16tUxYMCAfNeeP39+3HHHHclx48aNY/jw4Zs0p19st912MWzYsNhtt92S+wYNGhTTpk0r9ucCAAAAAAAAAAAAAADyJ0sA5YOwG+XOjBkzIi8vLzk+9NBDIzc3t9Bzrrrqqth9992T42XLlqW8tvQXDz/8cCxZsiQ5vvvuu6N+/fqFrl21atW49957k68bXbt2bfz9739P67MAAAAAAAAAAAAAAABFkyWA8kHYjXJn3bp1KeM6deoUeU7lypXj5ptvjpycnLjmmmviySefjJycnJQ5q1atiscffzw57tChQ+y7775p1dSiRYs4+eSTk+OxY8fG3Llz0zoXAAAAAAAAAAAAAAAonCwBlA/CbpQ722+/fcr422+/Teu8Nm3axPjx4+PCCy+MypUrb3L8jTfeiJ9//jk57tGjR7Hq6tmzZ3J73bp18cILLxTrfAAAAAAAAAAAAAAAIH+yBFA+CLtR7jRp0iQaNWqUHI8fPz6+/vrrtM7d8LyNjR8/Prldo0aNOPDAA4tVV8uWLWOnnXZKjidMmFCs8wEAAAAAAAAAAAAAgPzJEkD5IOxGuVOpUqU46aSTkuM1a9bEeeedF998881mrfvRRx8lt/fee+/Izc0t1vlZWVlx8MEHJ8eTJ0/e5DWpBUkkEjFhwoS45JJLol27dtG6devYc88948gjj4w//OEPMXHixEgkEkWuM2vWrNhll12S/3v33XcjImLu3Llx9913R+fOnWOvvfaKvfbaK4499tgYOHBgLF68uFifEwAAAAAAAAAAAAAAtjZZgoLJElCWZGe6ANgSLrjggnj++edjzpw5ERExc+bMOP744+OCCy6Inj17Rs2aNYu1Xl5eXkqDa9WqVYnqatmyZXJ76dKlMWfOnGjatGmh56xYsSKuuuqqeOWVV1L2r127NqZPnx7Tp0+PESNGxN577x133313kett7P3334+LLrooFixYkLL/yy+/jC+//DKeeuqpeOihh2LPPfcs1rql5ZRTTin1NZcuXZrvvlq1apX6tShbsrO1xW1NtWrVMl0C+ViyZEmmS4Btnp6ybdJXtj16CqRHX9n26CnbHj0F0qOnbHv0lG2TvgJF01O2TfrKtkdPgfToK9sePWXbpK9A0fSUbZO+su3RU1i+fPkm+95///0tct/2M888U+prFkWWIH3bepaAist/1VEu1apVKwYPHhzdu3ePn3/+OSLW/0N/1113xaBBg6Jr165xxhlnRIsWLdJa78cff4y1a9cmx82bNy9RXRtfb9asWYU2lBUrVkSPHj3iww8/LHLtDz/8MLp06RL33ntvtGvXLq16Zs2aFf37949ly5YVOOenn36Knj17xksvvRQNGzZMa93SNHny5K12rfxCcEBmLVq0KNMlAFCO6CsAlBY9BYDSoqcAUJr0FQBKi54CQGnSV6BsWLdu3Va9b3tLkiUoP1kCKq5KmS4AtpTddtstnnnmmZQEdMT6QNMjjzwSnTp1irPOOivGjRtX5Gs7Fy5cmDKuW7duiWqqXbt2yrio/4C/9957k82pTp06cc4558Q///nPGDFiRPz973+PXr16RYMGDVLWu/jii+O///1vWvUMGDAgli1bFjvvvHPccMMNMWzYsHj66aejf//+sdNOO6Wse+edd6b5KQEAAAAAAAAAAAAAIDNkCYomS8C2TNiNcm2XXXaJUaNGxe9///uoX7/+JscnTpwY5513Xpx00knx0UcfFbjOihUrUsY1atQoUT0bv/J043U39sknn0RExCGHHBL//ve/o0+fPtGpU6do27ZtHHXUUXHDDTfE66+/nvLK2CVLlsSll16akh4vyMKFC6Nz587xwgsvRK9eveKggw6KvffeO04//fQYNWpU/PrXv07OHTt2bDLZDgAAAAAAAAAAAAAA2ypZgsLJErAtE3aj3MvNzY3zzz8/3njjjbjzzjujTZs2m8z59NNP49RTT42//e1vRSazt7b9998/HnzwwahXr16+x2vUqBEDBgyIk08+ObnvP//5T4wdO7bItZs1axZ33HFHVK1adZNjtWvXjquvvjo5Xr16dUyZMqX4HwAAAAAAAAAAAAAAALYyWYKCyRKwLcvOdAGwtVSrVi1OPvnkOPnkk+OTTz6JRx55JF544YVYs2ZNREQkEom4++67Y/HixdGnT5/IyspKOXdDy5YtK1ENS5cu3aSmogwcODCyswv/q5qVlRX9+/eP8ePHx4IFCyIi4tlnn40TTzyx0PNOOeWUQms4+OCDo1KlSrFu3bqIiPj222+jQ4cORdZcmvL7D4rNNWPGjE3+QyQrK6vEKXugdK1YsSL5784vKlWqlNa/mQCwMX0FgNKipwBQWvQUAEqTvgJAadFTAChN+gps21auXJn8O/rLPdU5OTlb5L7tbYUswabKQpaAikvYjQrpt7/9bfz1r3+NSy65JPr06ROTJk1KHhs6dGjsu+++cdRRRyX3bZyEXrRoUYmuu/GrO+vWrVvo/Pr160fjxo3TWrtatWrRtWvXGDRoUEREvP/++7FmzZqoUqVKgee0bt260DWrV68edevWTTa9TLx69Jlnntnq1wQy65RTTonJkyen7GvTpo1/DwAoEX0FgNKipwBQWvQUAEqTvgJAadFTAChN+gqwLZMlWK8sZAmouCplugDIpObNm8ejjz66SWp5wIABKW/+atSoUUoiesaMGSW63jfffJMybtasWaHz999//2Ktv+H8NWvWxMyZMwudX6tWrSLX3PC1pHl5ecWqBwAAAAAAAAAAAAAAtjWyBLIEbLuE3ajwsrOz4/bbb4899tgjuW/mzJnx6aefJseVK1eOFi1aJMdfffVVia41bdq05HbNmjWLTFo3adKkWOtvvN7ixYsLnb/h61U3Zw4AAAAAAAAAAAAAAJQlsgSFkyUgU4TdKJc+/PDDeOWVV9Ken52dHT169EjZ9+WXX6aM27Ztm7L+qlWrilVTIpGIiRMnJsdt2rSJSpX8FQQAAAAAAAAAAAAAgNIgSwBln78dlCvz58+Pa6+9Nk499dTo379/rF69Ou1zd999903W2tAhhxyS3F62bFm88847xart66+/jv/+97/5rleQ2bNnF+sac+bMSRnXrVu3WOcDAAAAAAAAAAAAAEBZI0sgS0D5IexGufLYY4/Fc889FxHr/3F/9NFHS7xWlSpVUsaHHHJI1KpVKzku7toPP/xwcrtSpUrRuXPnIs+ZNGlSsa6x4fwqVarEjjvuWKzzAQAAAAAAAAAAAACgrJElkCWg/BB2o1w588wzo1q1asnx3XffnZKALszG85o1a5Yyzs3Nje7duyfHEyZMiA8++CCttWfMmBHPPvtscty5c+do1KhRkectWLBgk4R1QVasWJFszhER++233yZNFgAAAAAAAAAAAAAAyhtZAlkCyg9hN8qVBg0axLnnnpscr1ixIs4777xYtGhRkeeOGjUqZdy2bdtN5pxzzjlRs2bN5PiKK66IBQsWFLruqlWr4rLLLos1a9ZERER2dnZcfPHFRdbzi6uuuirWrl1b6JxEIhH9+vWLn376Kbnv5JNPTvsaAAAAAAAAAAAAAABQVskSyBJQfgi7Ue5cfPHF8dvf/jY5nj59epx22mnx1VdfFXjOE088ES+//HJy3L59+3zT0tttt11cd911yfHs2bPjtNNOixkzZuS77vz58+PMM8+Mzz//PLnvvPPOi1atWqX9eSZNmhS9e/eOhQsX5nt82bJlcd1116UksVu2bBnHHXdc2tcAAAAAAAAAAAAAAICyTJZAloDyITvTBUBpq1KlSvztb3+L7t27x/fffx8REdOmTYvjjz8+OnXqFEcccUTssMMOsW7dupg5c2aMHTs23nzzzeT5ubm5cf311xe4/v/93//F+++/H6NHj46I9Q2wc+fOccIJJ8QhhxwSjRo1ip9++inef//9GD58eCxdujR57gEHHBCXX3552p9lp512ipkzZ8aECRPi8MMPj65du8b+++8fDRo0iLlz58aHH34Yzz//fEoKu2rVqvGXv/wlsrP99QYAAAAAAAAAAAAAoGKQJZAloHzw/2DKpWbNmsVTTz0VPXv2jOnTp0dExJo1a+LFF1+MF198scDzsrKyon///tG6detC5wwYMCDWrFkTL730UkRErF69OkaMGBEjRowo8Lz9998//vnPf0aVKlXS/hx9+/aNu+66K7744otYvHhxDBkyJIYMGVLg/KpVq8b9998fe+yxR9rXAAAAAAAAAAAAAACA8kCWQJaAsq9SpguALaVp06YxevTouPDCC9NKJm+//fbxyCOPxCmnnFLk3Nzc3LjnnnviD3/4Q+Tm5hY6t3LlynHBBRfE0KFDo1atWmnXHxFRo0aNGDZsWLRv377IuXvuuWc8++yzceihhxbrGgAAAAAAAAAAAAAAUF7IEkDZ5s1ulGtVq1aNa665Js4666wYO3Zs/OlPf0o53qxZs9h1113j0EMPjeOPPz5q1KiR9tqVK1eO8847L0466aR4+umn480334yvv/46Fi9eHDVr1oydd945DjrooOjevXs0bdq0xJ+hXr16MXTo0Bg/fnw888wzMXny5Jg/f35UqVIlmjZtGm3atInjjjsu2rdvH1lZWSW+DgAAAAAAAAAAAAAAlAeyBFB2CbtRITRs2DDOOeec+M1vfhOnn356RETssMMOMWHChM1ee7vttouLLrooLrroos1eq1mzZslXpW4oKysrOnbsGB07dtwi6xfmjTfe2KxrAgAAAAAAAAAAAABAJsgSFL5+YWQJyJRKmS4AAAAAAAAAAAAAAAAAAITdAAAAAAAAAAAAAAAAAMg4YTcAAAAAAAAAAAAAAAAAMi470wXA1tSsWbO47LLLIiKidu3aGa4GAAAAAAAAAAAAAADY0mQJoOwQdqNCadasWVx++eWZLgMAAAAAAAAAAAAAANhKZAmg7KiU6QIAAAAAAAAAAAAAAAAAQNgNAAAAAAAAAAAAAAAAgIzLSiQSiUwXAQAAAAAAAAAAAAAAAEDF5s1uAAAAAAAAAAAAAAAAAGScsBsAAAAAAAAAAAAAAAAAGSfsBgAAAAAAAAAAAAAAAEDGCbsBAAAAAAAAAAAAAAAAkHHCbgAAAAAAAAAAAAAAAABknLAbAAAAAAAAAAAAAAAAABkn7AYAAAAAAAAAAAAAAABAxgm7AQAAAAAAAAAAAAAAAJBxwm4AAAAAAAAAAAAAAAAAZJywGwAAAAAAAAAAAAAAAAAZJ+wGAAAAAAAAAAAAAAAAQMYJuwEAAAAAAAAAAAAAAACQccJuAAAAAAAAAAAAAAAAAGScsBsAAAAAAAAAAAAAAAAAGSfsBgAAAAAAAAAAAAAAAEDGCbsBAAAAAAAAAAAAAAAAkHHCbgAAAAAAAAAAAAAAAABknLAbAAAAAAAAAAAAAAAAABkn7AYAAAAAAAAAAAAAAABAxgm7AQAAAAAAAAAAAAAAAJBxwm4AAAAAAAAAAAAAAAAAZJywGwAAAAAAAAAAAAAAAAAZJ+wGAAAAAAAAAAAAAAAAQMYJuwEAAAAAAAAAAAAAAACQccJuAAAAAAAAAAAAAAAAAGScsBsAAAAAAAAAAAAAAAAAGSfsBgCUa/Pmzct0CQCUE3oKAKVBPwEAACqadevWxfz58zNdBgAAAABQRmRnugAAYNuxZMmSGDVqVIwbNy6mTp0aCxYsiMqVK8f2228fzZs3j6OOOiqOOeaYqF27donWnzx5cjz77LPx/vvvx5w5c2L16tVRv3792GOPPaJTp07RpUuXyM3N3azP8OOPP8akSZPinXfeiXfeeSfWrVsXb7zxRr5z77nnnrj33ns363obOuKII+KBBx4otfUAyrKK1lMKsmjRohgzZky89NJL8d1338X8+fOjXr160bRp0+jUqVOcdNJJ0bBhw82qE6A800/WW7duXUyYMCFeeuml+Pjjj2P27NmxcuXKqFWrVjRv3jwOOOCAOOGEE6Jly5abVStAeVTWe8nUqVPjueeei/fffz++/fbbWLp0adSpUycaNGgQ++yzTxxzzDFx0EEHRVZWVonWX7VqVYwZMyZeffXV+PTTT2PhwoWRk5MTjRs3jn333Te6desWe+21V4nrByiv9JfCJRKJmD59erzzzjvx7rvvxrvvvhuHHXZY3HnnnSWuGaC80UsKlkgk4s0334wXXngh5buw+vXrR6NGjaJDhw5x3HHHRatWrUpcP0B5o68U7quvvornnnsu3n777ZgzZ04sXrw4ateuHa1atYpOnTpFt27dokaNGiWuHwAofVmJRCKR6SIAgMxKJBLx9NNPx+233x6LFy8udG79+vXjuuuui65du6b9BcKPP/4Yffv2jXHjxhU6r0mTJnHbbbdF+/bt0679p59+ivfeey/5C9Pp06enHN9hhx22WthtxIgR0bZt21JbD6Asqqg9ZWOJRCJGjRoVN910UyxdurTAeTk5OfH73/8+evToEZUqefk6wC/0k//54IMPom/fvjFt2rQi53bp0iX69u0b2223XdrrA5RXZbmXREQsXrw4br755hg1alSRc/fbb7/o379/sUPP48ePjz59+sScOXMKnXfEEUfErbfeGttvv32x1gcoj/SX/CUSiZg5c2a8++67yQd9bPwmt5NPPlnYDSD0kqJMmzYtrrvuuvj4448LnZeVlRXdunWLP/zhD1GnTp201wcob/SVwi1fvjz+/Oc/x5NPPlnovEaNGsW9994b++yzT9prAwBblrAbAFRwiUQibr755hg2bFixzuvVq1f84Q9/KPLG/KlTp0bPnj1j7ty5aa994403Rs+ePQuds3z58ujWrVt8+eWXhc7bWmG3fffdN5566qlSWQugrKrIPWVjxe0xXbt2jdtvv73ET6IDKE/0k/95/PHH449//GOsW7cu3VKjcePGMWTIkGjdunXa5wCUN2W1l/xi9uzZceaZZ8aMGTPSXr9mzZoxePDg2HfffdOa/9BDD8Wf//zntNdv3LhxPPzww94iClRo+kv+Pvroo7jsssti9uzZha4l7AaglxTlnXfeid69e8fy5cvTXr9ly5bx8MMPR+PGjdM+B6C80FcKt2LFijjttNPis88+S2vt7OzsuPfee+Ooo45Kux4AYMsRdgOACu7BBx+M22+/PWXf/vvvHyeccELstNNOUaVKlZg+fXqMGjUqJk2alDKvT58+cc455xS49uzZs+PEE09MeXpn06ZNo3v37vGb3/wmqlevHjNnzowxY8bEm2++mXLu7bffHqecckqBa//888/Rpk2bIj9fYTeSzps3L+bNm1fkGvkZNGhQjB49OjkePHhwdOzYsURrAZQXFbmnbOill16KSy65JDnOysqK448/Po488sho1KhRLFy4MCZMmBBPP/10rF69Ojnv+uuvj3PPPbfI9QHKO/1kvdGjR8eVV16Zsu/Xv/51nHLKKfHrX/86ateuHXPmzIn33nsvnn/++ZQ3iTZs2DCee+65aNKkSZHXASiPymoviYhYtWpVdOvWLf7zn/8k91WtWjW6du0a+++/fzRp0iSWLVsWH330UTz11FMpNxvVrFkzxo4dGzvuuGOh1xg+fHjccMMNKfsOPvjg6NKlS/zqV7+K5cuXx5dffhmPP/54fP/998k5DRs2jJEjR7qJFKiw9Jf8+8srr7wSF154YaHXjxB2A4jQSwr7WeXbb7+NE044YZPvuH6pv379+jF//vx444034tlnn41Vq1Yl5+2xxx4xYsSIyMnJKfQzAJQ3+krh34FdccUVMWbMmJTzunfvHgceeGDUqlUrZs+eHWPGjIlXXnklOadWrVoxZsyYItcGALY8YTcAqMC+++67OPLII5M32ufk5MRf//rX6Ny58yZzE4lEjBo1Kq6//vrk/CpVqsS//vWv+NWvfrXJ/HXr1sXvfve7+Oijj5L7unfvHjfeeGO+XzKPHz8+Lr/88uSX11WqVIlRo0YV+DaCjW8kzc3NjYMPPjgOO+ywGDduXPz73/+OiOK9NSFdS5cujfbt28fPP/8cERGtWrWKF1980dt4gApNT1lv7dq1ccghh8ScOXOSfw6DBg2Kgw8+eJO5n3/+eZxxxhmxePHiiIioXr16vPnmm1G3bt1CrwFQnukn633//fdxzDHHxLJly5LX7tOnT5xxxhn5/tyxaNGiuPrqq2P8+PHJfQcffHA8/PDDfk4BKpyy3EsiIv7xj3/EX/7yl+S4devW8dBDD+UbYF6+fHlcd9118eKLLyb3HXTQQYU+zXvq1KlxwgknxJo1ayJi/U0+d999d74PcVqzZk3ccsst8fjjjyf37b333vHUU08V+eRvgPJGfym4v2wcdqtfv3507NgxDj/88Lj55pvjxx9/jAhhNwC9pPCfVXr27JkSlujSpUvcfvvtkZubu8nc7777Ls4777yYNm1act+VV16Z8iBCgPJOXym8r3z00UfRrVu35Lhly5YxZMiQaNq06SZzhw4dGrfeemty3K1btxgwYECBawMAW4ffRAFABfbQQw+lvFHm1ltvzfdLj4j1b6U58cQT4+abb07uW7NmTTz00EP5zh8+fHjKlx6nn3563HLLLQU+Te3QQw+Nhx56KCpXrpxc+8Ybb4zCcvnbb799nHrqqfHggw/Ghx9+GA8++GCcdtppUadOnYI/dCkYPnx4MugWEXH++ee7gRSo8PSU9d57771k0C0i4vLLL8836BYR8Zvf/Cblz2D58uXx2muvFet6AOWNfrLe3/72t2TQLSLirrvuijPPPLPAnzvq1q0bgwYNisMPPzy576233oqJEycW67oA5UFZ7iWrVq1KuXb9+vXjscceK/BNndWrV4+77ror9t9//+S+t99+Oz7++ON85ycSiejbt28y6Fa5cuV46KGH8g26Ray/Menmm2+O//u//0vu+/DDD2PEiBH5zgcoz/SXgvtLxPobR88///x4+umn491334077rgjjjrqqMjOzi7wHICKRi8puJd88sknKUG3Aw88MAYOHJhv0C0iYscdd4xHHnkk6tevn9w3dOjQWLFiRb7zAcojfaXwn1FGjRqV3M7JyYkHHngg36BbxPrAddu2bZPjsWPHprxpFADIDGE3AKig8vLyYvTo0cnxXnvtFSeffHKR53Xr1i123XXX5Pill16KdevWpcxZs2ZN3H///cnxr3/96+jTp0+Ra++zzz5x0UUXJccffvhhgTdn1qxZM95+++247bbb4vDDD49q1aoVuX5pWL16dQwZMiQ5btq0aRx77LFb5doA2yo95X++/PLLlPFpp51W6Pxjjjkm5U1un3/+eYmvDVDW6SfrLV26NOWXsCeddFIcc8wxRZ5XqVKluOOOO6J27drJfU8++WSJagAoq8p6L5kwYUIsXLgwOb7iiitSbt7MT3Z2dtxwww0p+zZ8yvWG3nrrrZQblS699NLYZ599Cl0/Kysr+vbtG82bN0/uu//++5OBOYCKQH9Zr6D+cvjhh8fLL78cv//972PvvfdO3uAKwP/oJesV1Es2/C4sIuKmm24q8m3SjRo1igsuuCA5XrRoUbz77ruFngNQXugr6xXUVyIiPv300+T2oYcemu8b7H6RlZWVcu/XihUr4uuvvy60HgBgyxN2A4AK6osvvojFixcnx126dEnr7WRZWVnRqVOn5HjBggUxc+bMlDmvvPJKzJ49Ozm+9NJLC3zq2sbOPffclLceDB06NN95lSpVKvIL7i1h7NixKW/s6dWrV1SpUmWr1wGwLdFT/mflypXJ7fr166cE2fKTnZ0dO+64Y77nA1Q0+sl6b7/9dsrTWHv27Jn2uXXr1o0TTjghOX7zzTc3+UU1QHlW1nvJO++8k9yuVKlSgU/j3tjuu++e8mTqyZMn5ztvw+vWq1cvzjnnnLTWr1q1alx22WXJ8ffffx+vvvpqWucClAf6y3oF9RfhNoCi6SXrFdRLNlx/t912i5YtW6a1/pFHHpky3vDhHgDlmb6yXkF9JSJi1113jY4dO0bHjh3j8MMPL3LtjcNw33//fVo1AQBbjrAbAFRQGz+B5oADDkj73EaNGqWM58+fnzIeM2ZMcnv77bdP6y0Ev6hZs2Z069YtOX7rrbdiwYIFaZ+/JSUSiRg0aFByXLdu3Tj11FMzWBHAtkFP+Z8GDRokt5cuXZpWwODnn39Obm+33XZbpC6AskA/WW/q1KnJ7Xr16sUee+xRrPM7dOiQ3F62bFnMmjWr1GoD2NaV9V6yYf277rpr1KtXL631s7KyUurfuPaI9TcvvfXWW8lxt27dokaNGmmtHxFx7LHHpvy8suHTwwHKO/0l/9oBSJ9ekn/tEevfTjRjxozkuDT/bADKK30l/9o39Oc//zkGDx4cgwcPjlNOOaXItdeuXZsyzs7OTqsmAGDLEXYDgApq7ty5KeOGDRumfe6GN+VHRFSrVi25vWbNmpQbZw477LBiP9Vzw6cIrV27tsDX2m9t48ePj6+++io5Puuss6J69eoZrAhg26Cn/M//+3//L7m9evXqePvttwudP23atPjvf/+bHLdt23ZLlQawzdNP1ps3b15ye8MnlKZr43O2lYeHAGwNZb2XbNgDilN7RGr9G9b+i7feeivy8vKS4yOOOKJY61euXDkOO+yw5HjixImb3AQEUF7pL+vl118ASI9esl5+vWTRokWxevXqEq1f2J8NQHmmr6xXmv/uf/zxxynjXXfdtdTWBgBKRvQcACqoPffcMy666KLkuG7dummf+8knn6SMN3yV+5dffhkrVqxIjg866KBi19amTZuoVq1acp0PP/wwunTpUux1StuDDz6Y3K5WrVqceeaZGawGYNuhp/xPq1atYvfdd4///Oc/ERHRv3//GDFiRNSpU2eTuatWrYo+ffokx40bN44DDzxwi9UGsK3TT9Zbs2ZNcjudN4RubMMgQ0nXACirynov6datWyxatCgiindDzZIlS1LehNC8efNN5nz00UfJ7erVq6c8qCNd7dq1i6effjoiIpYvXx5ffPFF7LnnnsVeB6Cs0V/Wy6+/AJAevWS9/HpJTk5Oyp9Ncd5OtPGfjV4FVBT6ynql9e/+4sWLY/jw4clxmzZtUv5cAIDMEHYDgArqwAMPLNEN9YsXL47XX389Od5rr72iZs2ayfG0adNS5rdq1arY16hcuXLssssu8dlnn0VE6uvrM2XKlCnx3nvvJcennnpq1K9fP4MVAWw79JT/ycrKiptuuim6d+8ea9eujenTp8eJJ54Yffr0iUMOOSSqVKkS69ati3fffTcGDBiQDMVFRNx4442Rm5u7ResD2JbpJ+s1aNAguf3DDz9EIpGIrKystM//4YcfUsbF+SU3QFlX1ntJr169ir1uRMSYMWNSws35/Rls+Bl22WWXYj+VOyKiZcuWKeOvv/5a2A2oEPSX9TykCaDk9JL18vszqFWrVlx99dUlWn/UqFEpY70KqCj0lfVK49/9RYsWxYUXXhgLFiyIiIjs7Oy44YYbNntdAGDzVcp0AQBA2fKPf/wjVq1alRyfeOKJKce///77lPHOO+9couu0aNEiuT1r1qwSrVGaNnyrW+XKlUv8xQsA/1Nee8ree+8dAwcOTAbXZs6cGeeff37stdde0aFDh9hrr73izDPPTAbdKlWqFH379o2jjz56i9cGUB6Vt36y0047JbcXL14cU6ZMKdb548ePT27n5uZGs2bNSqkygPKrLPeSlStXxj/+8Y/kOCcnJ9+fLTb8DCV96vXGn3tb+M4OYFtWEfoLAFuWXlKwqVOnxosvvpgc77HHHrHLLruU2voA5ZG+EpFIJGL58uUxderUeOCBB+Loo49OPvw8Kysr/vrXv0bbtm1LpWYAYPN4sxsAkLbJkyfHkCFDkuNGjRpF165dU+YsXLgwuV2jRo3Iyckp0bXq1KmT3P7l1fWZMmPGjHjllVeS4y5dusQOO+yQwYoAyr7y3lOOPfbYaN26dVx00UUxffr0iIhYtWrVJr8gqFmzZjz88MPRpk2brVIXQHlTHvvJQQcdlDIuTp+YP39+jB07Njnee++9S/x5ASqKst5LBgwYkPJWz+7du6e8JfQXG36GDesojtzc3KhevXosX748IjL/nR3Atqyi9BcAthy9pGCrVq2Ka6+9NuXtPhdffHFkZWWVyvoA5ZG+st6cOXPi4IMP3mT/DjvsELfccksccsghm1UnAFB6vNkNAEjL3Llz45JLLom8vLzkvt///vdRo0aNlHkrVqxIbm98rDg2PHfDNTNh8ODBkUgkkuPevXtnsBqAsq8i9JT58+fHwIEDk0G3gixdujTuvPPOmDlz5lapC6A8Ka/9pFmzZrH33nsnx2PHjo1Ro0YVeV5eXl5cc801sXTp0uS+jX9RDUCqst5LRo4cGcOGDUuO69WrF5dddlm+c1euXJncrlmzZomvueFn+CX0BkCqitRfANgy9JKCJRKJuOmmm+I///lPct+BBx4YnTp1KpX1AcojfeV/Ngz0bbjeP//5T0E3ANjGCLsBAEVasmRJ9OrVK+bMmZPc1759+zj++OMzWNXWMW/evHjuueeS444dO0br1q0zWBFA2VYReso333wTxx13XPzrX/9K7tttt93iiiuuiAEDBsQ111wT++yzT/LYpEmT4rjjjosPP/wwE+UClEnlvZ9ccsklKeNrr702hg4dmvIQjg0tWLAgevXqFW+++WZyX/PmzaNz585btE6Asqys95KJEyfG9ddfn7KvX79+JX5rGwClQ38BYHPpJYW77777YsSIEclxzZo1o3///t7qBlAAfSVV7dq1N9m3cOHCOP744+Oaa66JefPmlWhdAKD0ZWe6AABg27Zy5cro3bt3fP7558l9v/rVr+Kee+6JSpU2zc1Xq1Ytub1s2bISX3fDczdcc2t75JFHYvXq1cnx+eefn7FaAMq6itBTfv755zjrrLOSX4LXqFEj/vSnP8Vxxx2X8ovWCy+8MN5666248sorY8GCBbFs2bLo1atXjB07Npo1a7ZFawQo6ypCP+nQoUN069YteeNOXl5e3HrrrfHEE09Et27domXLllG7du2YM2dOTJo0KUaOHLnJ23X69+8fOTk5W7ROgLKqrPeSjz/+OC644IJYs2ZNct+5555b6E1KVatWTb79c8O3gBbXhp+hevXqJV4HoDyqiP0FgNKllxTu8ccfj7vvvjtl38CBA6NFixalsj5AeaOvbKpRo0bx3HPPxbx58+Ljjz+OsWPHxsyZMyORSMTIkSPj3XffjSFDhkSrVq1KfA0AoHQIuwEABVq7dm1cfvnl8d577yX3NWjQIAYPHlzgE3Lq1auX3F62bFmsXr26RDdYLl68OLldt27dYp9fGpYuXRqPP/54ctymTZuUN/EAkL6K0lPuvffemD17dkREVK5cOQYNGhT7779/vnMPPvjgeOKJJ6Jr166xbNmyWLJkSdx2221x//33b9EaAcqyitJPIiJuuumm+OGHH2LixInJfd98803cfvvtRZ7bu3fvOOigg7ZkeQBlVlnvJdOnT49evXqlhJyPPvrouPbaaws9r169esmQ24Z1FMeqVatSrpup7+wAtkUVtb8AUHr0ksK98MILcdNNN6Xs69u3bxx++OGlsj5AeaOv5K9KlSqx1157RUTEEUccEZdffnkMGTIk7rjjjkgkEjF79uzo3bt3jB07NmrWrLlZ1wIANs+m0XwAgIhIJBLRp0+feO2115L76tWrF8OGDSv0yWg77LBDyvjbb78t0fW/+eab5Ham3nAzfPjw+Pnnn5Pj888/P+WtPACkp6L0lFWrVsXw4cOT4549exYYdPtFy5Yt4+qrr06OX3755fjxxx+3WI0AZVlF6Se/qFatWgwaNCjOOuusfJ+wWpA99tgjrrzyyi1YGUDZVdZ7yQ8//BA9evSIhQsXJvcddthhcdddd0V2duHPt9zwM8yYMaPY147Y9HN7KzXAehW5vwBQOvSSwr311ltx9dVXRyKRSO679tpr4+yzz97stQHKI30lfdnZ2dG7d++UQPV3330X//znP0v1OgBA8Qm7AQD5uv322+OZZ55JjmvVqhUPP/xwtG7dutDzWrZsmTL+6quvin3tvLy8mD59enL861//uthrbK7Vq1fHkCFDkuNddtnFU+EASqii9JR333035clyZ5xxRlrnnXLKKZGbm5scjxs3rtRrAygPKko/2VBubm7cdNNNMXbs2DjnnHOiZcuWUaNGjcjNzY2dd9452rVrlzK/evXqcffdd5foSasAFUFZ7iULFiyInj17Jt8kHbH+bdH33XdfWv/ub/gZpk+fHnl5ecW6fkTEtGnTUsaZ+M4OYFtUkfsLAKVDLynYxx9/HBdeeGGsWbMmue/SSy+NCy64YLPXBiiv9JXiO+OMM6JVq1bJ8fPPPx/r1q3bYtcDAIom7AYAbOLBBx+MQYMGJcc1atSIoUOHxh577FHkubvuumtUq1YtOX777beLff3JkyfHihUrkuO999672GtsrrFjx8acOXOS4969exfrbQoArFeResqsWbOS2zVq1Igdd9wxrfNq1KgRO+20U77rALBeReon+WndunX06dMnXn755fjkk0/i888/j7Fjx8a8efNS5t10003RvHnzrVobQFlRlnvJsmXL4txzz025UWi//faLf/7znykPzihM27Ztk9vLly+PKVOmpH39X0ycODG5Xb169dhtt92KvQZAeVPR+wsAm08vKdjXX38dvXr1SnnQ4HnnnReXX375Zq8NUF7pKyWTlZUVnTp1So5nz569ye9gAICtyx3bAECKZ555Jm6//fbkuGrVqjF48OBo06ZNWudXqVIl5e0Cr7/+erGfFP3aa68ltytXrrzJ2wq2tEQikfLFT+PGjeP444/fqjUAlAcVracsWrQouV2lSpXIyspK+9wNn0K3cOHC0iwLoMyraP0kXbfcckvKU1U7d+4cXbt2zWBFANuustxLVq9eHRdddFF8/PHHyX1t2rSJQYMGpdx8VJR27dpF5cqV860nHXl5eSlvoT7ooIMiOzu7WGsAlDf6CwCbSy8p2A8//BA9evRI+Z3JmWeeGdddd12xfv/tFJ3nAAAc40lEQVQCUJHoK5uncePGKeMff/xxq1wXAMifsBsAkPTqq6/G9ddfnxzn5OTEAw88EPvtt1+x1unSpUtye+7cufHyyy+nfe7SpUtjxIgRyXG7du2ifv36xbr+5ho/fnzKTaPnnHNOSggBgKJVxJ5Sr1695PaiRYtiyZIlaZ2XSCRS3ua2tfsewLasIvaTdIwePTqGDx+eHDdp0iRuvfVWN/oA5KMs95K8vLy45ppr4q233kru23333WPIkCFRs2bNtK8fEdGgQYOUm4tGjBiR8naEorzwwgsxf/785HjDPw+Aikh/AWBz6SUFW7BgQfTs2TPmzJmT3HfqqadGv379fP8FUAB9Zb0FCxZEq1atkv+79dZb0z5344fSJhKJYl0bAChdwm4AQERETJo0KS677LJYt25dRERkZ2fH/fffHwcffHCx1zryyCNTnnbzt7/9LVatWpXWuUOGDEl5M87ZZ59d7OtvrgcffDC5Xbt27fjd73631WsAKMsqak9p1apVyvjFF19M67yJEyfG4sWLC1wHoKKqqP2kKDNmzIi+ffsmx5UqVYqBAwdGnTp1MlgVwLapLPeSRCIR/fv3jxdeeCG5r1WrVvHwww9H7dq10y98Az179kxuL1y4MIYOHZrWeatWrYr77rsvOW7SpEkceeSRJaoBoDzQXwDYXHpJwZYtWxa9evWK6dOnJ/edcMIJceutt0alSm51BMiPvvI/9erViypVqkReXl7k5eXF5MmT0z73ww8/TBk3adKk2NcHAEqPnwABgPj888+jd+/esXr16ohY/xr5e+65Jw477LASrZeTkxMXX3xxcjxt2rT485//XOR5H3zwQcqNM23atIn27duXqIaSmjJlSrz33nvJ8RlnnOFJpgDFUJF7Stu2baNRo0bJ8f333x8//fRToeesXLky7rzzzuQ4JycnOnbsuMVqBCgrKnI/KcyqVavisssui2XLliX3XXTRRcV+MitARVDWe8k999wTjz32WHLcokWLGDZs2Ga9XbRDhw7Rpk2b5Pjee+/d5Cae/Nx6660pN5pefPHFkZOTU+I6AMoy/QWAzaWXFGzVqlVx4YUXxieffJLcd/TRR8cdd9wRlStX3uz1AcojfSVVVlZWSshvypQpMX78+CLP++yzz+KNN95Ijnfeeedo2LBhiWoAAEqHsBsAVHDffvttnH322bF06dKIWP9D/5133hlHH330Zq172mmnpdw889hjj0W/fv1izZo1+c4fP3589OrVK/Ly8iIiokqVKvGnP/0psrKyNquO4trwrW65ubnRo0ePrXp9gLKsoveUSpUqxSWXXJIcf//999GrV6/47rvv8p0/f/78uOCCC+Kzzz5L7uvVq1fUqlVri9YJsK2r6P2kMLfddlt8/vnnyXGbNm1Seg8A65X1XvLoo4/G3/72t+R4p512imHDhsV22223WfVnZWXFrbfeGlWqVImIiLVr18Y555wTr7/+er7z16xZEzfddFM88cQTyX1t27aN3/3ud5tVB0BZpb8AsLn0koLl5eXFNddcExMnTkzuO+yww+Kuu+6K7OzszV4foDzSV/J31llnpYwvv/zylCDbxqZOnRoXX3xxJBKJ5L7TTz99s2oAADZfVmLD7gwAVChz586NU089NeUm/LPOOiu6detWrHUaNWoUDRo02GT/Dz/8ECeeeGLKW22aNm0a3bt3j9133z2qV68eM2fOjDFjxmzypcKAAQOKXccvrr322njuueciImKHHXYo9AuLDc2YMSM6deqU/PLijDPOiJtvvrlENQBUNHrKemvXro2ePXvGO++8k9xXvXr1OOGEE6J9+/bRsGHDWLBgQUyaNCmeffbZWLRoUXJe69atY8SIEVGjRo0S1QpQHugnBXv55ZdTnqZas2bNGDNmTOy0004lqgmgvCrrvWT06NFx1VVXJb+fqlatWgwcODCaNWtWrPpbt25d4JsPnnrqqejTp0/Kvvbt28dxxx0XO++8cyxfvjy++OKLeOKJJ2LWrFnJOdtvv32MHDkymjRpUqxaAMoD/WW9wvpLfjp06BDff/99REScfPLJceeddxbregDliV6yXn69JJFIRL9+/VIetNG8efO48847Izc3N+21q1atGi1atChWPQBllb6yXkE/o1x11VUxatSolH3t27ePo446KnbeeefIzc2NOXPmxOuvvx5jx45NvhkvYv2DBh9//PFi9SAAoPQJuwFABfXzzz/HaaedFlOnTt3stfr27Rtnn312vsemTp0aPXv2jLlz55bKeuko6Y2kffr0iaeeeioi1r+d59///rcbRwHSoKekWrx4cfTo0SM+/fTTtK+z8847x7Bhw6Jp06YlrhWgrNNPCvbdd99Fly5dYsmSJcl9f/3rX+PEE08scU0A5VFZ7yUTJkyI3r17x9q1a4tVa34mT54ctWvXLvD44MGD47bbbkt7vcaNG8fDDz8cLVu23OzaAMoa/eV/iuovGxN2A1hPL/mf/HrJXXfdFffdd99mr73bbrvF2LFjN3sdgG2dvvI/Bf2MsmrVqjjvvPNS3hiajhYtWsRTTz2VbwAQANi6KmW6AABg61uxYkWcd955pfKlR1Fat24dzz//fBx22GFFzm3cuHEMHTp0s24iLal58+Ylbz6NiOjcubOgG0Aa9JRN1alTJ4YPHx49evSI7OzsQudmZWXFCSecECNHjhR0Ayo0/aRgq1evjssuuywl6HbiiScKugFspKz3ksmTJ8fFF19cKjf5pOPcc8+Nhx56KBo3blzk3COOOCJGjhwp6AZUSPoLAJtLLyncI488UipBN4CKQl9JT25ubgwZMiSuvPLKqFGjRlrnnHnmmfH8888LugHANqLwu+4AgHJnzZo1cdlll8UHH3yw1a7ZqFGjGDRoUEyePDmeeeaZ+OCDD2L27NmxevXqqF+/fuy5557RqVOn6NKlS8ZeAf/II4+kvJK+d+/eGakDoCzRUwqWm5sb/fr1i7PPPjuee+65ePPNN2PmzJmxePHiqFWrVjRt2jTatWsXJ554YrRu3TpjdQJsC/STwv3lL3+JTz75JDnecccd449//GPmCgLYBpX1XjJt2rTo1atXrFixYitVv96hhx4a48aNi9GjR8drr70Wn376aSxYsCBycnKiSZMmse+++8Ypp5wS/+///b+tWhfAtkJ/AWBz6SWFGz16dPTv33+LrA1QHukrxZOdnR2XXHJJMsT29ttvxxdffBELFy6MtWvXRsOGDaNJkyZx6KGHeig6AGyDshKJRCLTRQAAAAAAAAAAAAAAAABQsVXKdAEAAAAAAAAAAAAAAAAAIOwGAAAAAAAAAAAAAAAAQMYJuwEAAAAAAAAAAAAAAACQccJuAAAAAAAAAAAAAAAAAGScsBsAAAAAAAAAAAAAAAAAGSfsBgAAAAAAAAAAAAAAAEDGCbsBAAAAAAAAAAAAAAAAkHHCbgAAAAAAAAAAAAAAAABknLAbAAAAAAAAAAAAAAAAABkn7AYAAAAAAAAAAAAAAABAxgm7AQAAAAAAAAAAAAAAAJBxwm4AAAAAAAAAAAAAAAAAZJywGwAAAAAAAAAAAAAAAAAZJ+wGAAAAAAAAAAAAAAAAQMYJuwEAAAAAAAAAAAAAAACQccJuAAAAAAAAAAAAAAAAAGScsBsAAAAAAAAAAAAAAAAAGSfsBgAAAAAAAAAAAAAAAEDGCbsBAAAAAAAAAAAAAAAAkHHCbgAAAAAAAAAAAAAAAABknLAbAAAAAAAAAAAAAAAAABkn7AYAAAAAAAAAAAAAAABAxgm7AQAAAAAAAAAAAAAAAJBxwm4AAAAAAAAAAAAAAAAAZJywGwAAAAAAAAAAAAAAAAAZJ+wGAAAAAAAAAAAAAAAAQMYJuwEAAAAAAAAAAAAAAACQccJuAAAAAAAAAAAAAAAAAGScsBsAAAAAAAAAAAAAAAAAGSfsBgAAAAAAAAAAAAAAAEDGCbsBAAAAAAAAAAAAAAAAkHHCbgAAAAAAAAAAAAAAAABknLAbAAAAAAAAAAAAAAAAABkn7AYAAAAAAAAAAAAAAABAxgm7AQAAAAAAAAAAAAAAAJBxwm4AAAAAAAAAAAAAAAAAZJywGwAAAAAAAAAAAAAAAAAZJ+wGAAAAAAAAAAAAAAAAQMZlZ7oAAAAAAAAAKEoikYghQ4bE0qVLC523zz77RLt27Yq19qeffhrjxo0rdE7lypWjd+/ekZOTU6y1AQAAAAAAgPQJuwEAAAAAALDNy8rKinXr1sW9995b6LymTZvGa6+9Frm5uWmtm0gk4o9//GNMmTKl0HlnnnmmoBsAAAAAAABsYZUyXQAAAAAAAACko0ePHrHzzjsXOueHH36Ip59+Ou01X3/99SKDbnXr1o0rrrgi7TUBAAAAAACAkhF2AwAAAAAAoEzIycmJvn37Fjnv73//e6xcubLIeevWrYu77rqryHlXXXVV1K1bN50SAQAAAAAAgM0g7AYAAAAAAECZ0bFjxzjkkEMKnTN37tx4/PHHi1zrlVdeic8//7zQObvuumv87ne/K1aNAAAAAAAAQMlkJRKJRKaLAAAAAAAAgHR98803ccwxx8TatWsLnFO/fv0YP3581KhRI9/jeXl5ceyxx8a0adMKvdbjjz8eBxxwwGbVCwAAAAAAAKTHm90AAAAAAAAoU1q0aBE9evQodM6CBQvikUceKfD42LFjiwy6de7cWdANAAAAAAAAtiJvdgMAAAAAAKDMWbJkSRx++OHx008/FTindu3aMWHChKhdu3bK/rVr18aRRx4Z//3vfws8Nzc3N1599dXYYYcdSq1mAAAAAAAAoHDe7AYAAAAAAECZU6tWrbjmmmsKnfPzzz/HkCFDNtk/cuTIQoNuERHnn3++oBsAAAAAAABsZd7sBgAAAAAAQJmUl5cXJ510UvznP/8pcE7NmjVj/PjxUa9evYiIWLVqVXTq1Cm+//77As9p0qRJvPrqq1GtWrVSrxkAAAAAAAAomDe7AQAAAAAAUCZVrlw5+vXrV+icpUuXxoMPPpgcjxgxotCgW0TE9ddfL+gGAAAAAAAAGSDsBgAAAAAAQJm1zz77xPHHH1/onGHDhsW8efNi5cqV8fe//73Qufvtt1907ty5NEsEAAAAAAAA0pSVSCQSmS4CAAAAAAAASmr27NnRqVOnWLFiRYFzevbsGTvssEP86U9/KnBOpUqVYvTo0bHbbrsVu4bFixfH66+/Hm+//XZ8/fXX8d1338WyZctizZo1Ub169WjQoEHsvPPO0bZt2zj00ENjjz32KPY1fjFjxox49913Y9KkSTF9+vRYuHBhLFq0KNatWxf16tWL+vXrx+677x4HHnhgHHzwwdGgQYMi15w1a1YccsghBR6fMGFCNGvWLBYtWhSDBw+Of/3rX/Hdd99F1apVY9ddd41jjz02fve730VOTk6JPxcAAAAAAAAIuwEAAAAAAFDm3XfffXHXXXcVeDwnJydq1KgRCxcuLHBO9+7d45ZbbinWdefOnRv33HNPPP/887Fy5cq0z9tzzz3j2muvjXbt2qU1f8GCBTFq1Kh45pln4ssvv0z7Orm5udG9e/c4//zzY/vtty9wXjphtwULFsS5554bP/30U75zevbsGTfeeGPatQEAAAAAAMDGhN0AAAAAAAAo81auXBlHHXVUzJo1q0Tn165dO/79739H/fr10z7nhRdeiBtuuCGWLl1aomtGRJx55pnRp0+fqFKlSr7Hf/rpp7j//vtj+PDhxQrTbWz77bePwYMHF/hGuaLCbvfcc0/06dOn0M/66KOPph3eAwAAAAAAgPxUynQBAAAAAAAAsLmqVq0a119/fYnPv+KKK4oVdHv00Ufjsssu26ygW0TEsGHD4tprr41169ble7xSpUoxYsSIzQq6RUTMmzcvunfvHlOnTi3R+VdffXWhn3X33XePgw46qKTlAQAAAAAAQEQIuwEAAAAAAFBOHHXUUXHAAQcU+7yWLVvG6aefnvb8N954I26++eZiX6cgY8aMiUceeSTfY/Xq1Yv/+7//K5XrLFu2LPr161eic9euXVvo8d69e0dWVlaJ1gYAAAAAAIBfCLsBAAAAAABQLmRlZUW/fv2iUqXi/QrsxhtvjOzs7LTmrly5ssg3yJ100kkxYsSI+Oijj2LKlCnx+OOPR/v27Qs9Z+DAgbFw4cJ8j/Xq1StycnLSqq8oH3zwQcycObNU1vrFjjvuGEcffXSprgkAAAAAAEDFlN5v7QAAAAAAAKAMaN26dXTv3j0ee+yxtOYfeeSR0a5du7TXHzFiRMyZM6fA43369IlzzjknZd8BBxwQ++23X1x77bXx/PPP53ve8uXLY/jw4XHBBRdscqxRo0bRtWvXePLJJyMiolatWtG+ffvYb7/9olWrVlG/fv1IJBIxb968eO+992Lo0KGxbNmyAmv84osvYqeddkrj06bn3HPPTTssCAAAAAAAAIXJSiQSiUwXAQAAAAAAAKVl4cKFcfjhh8fixYsLnZeTkxP/+te/ihX86tq1a0yZMiXfY3vttVc8++yzkZWVle/xRYsWxYEHHhirV6/O9/hvf/vbGDlyZL7HZs6cGRdddFGce+65ccwxx0Rubm6BNX788cfRrVu3yMvLy/f47bffHqecckrKvlmzZsUhhxxS4JoREbvsskvceOON0bZt21i2bFmMHDkyHn300XjttdeiWrVqhZ4LAAAAAAAA6aiU6QIAAAAAAACgNNWrVy+uvPLKIuede+65xQq6LVmypMCgW8T6IFxBQbeIiLp160abNm0KPP75558XGITbaaedYsyYMXHiiScWGnSLWB+622+//QqdUxJPPPFEtG/fPmrUqBENGzaM888/P1588UVBNwAAAAAAAEpNdqYLAAAAAAAAgNLWsWPH+OMf/1jonHbt2hVrzalTpxZ6vF+/ftGvX79irbmhtWvXxqxZs6JFixabHFuzZk2MGzcuXnvttfjss89i7ty5sXTp0sjOzo6aNWvGr371q/jNb34T7dq1iw4dOkSjRo1KXEd+unTpEtttt90m++vUqVOq1wEAAAAAAKBiE3YDAAAAAACANPz0009b/Bo///zzJvsmTpwYN9xwQ8yaNWuTY2vXro2VK1fG/Pnz48MPP4xhw4ZFvXr1YuHChaVa14EHHliq6wEAAAAAAEB+hN0AAAAAAAAgDcuXL9/i11i5cmXKePTo0XH11VfHunXr0l6jtINuERFNmjQp9TUBAAAAAABgY5UyXQAAAAAAAACUBdWrV9/i16hatWpy+7vvvos//OEPxQq6bSktWrTIdAkAAAAAAABUAN7sBgAAAAAAAGnYbrvtCj3+4osvRuvWrUvtekOHDo1Vq1bleywrKysuuOCCOOmkk2KHHXaIiPVvdPvyyy/jnXfeiYceeqjU6gAAAAAAAICtRdgNAAAAAAAA0tC6devIysqKRCKR7/FJkyalFXZLJBKRlZVV5Lw33nijwGPdu3ePa665JmVfkyZNokmTJtGxY0dhNwAAAAAAAMqkSpkuAAAAAAAAAMqCmjVrxr777lvg8aeffjry8vIKXSORSMQVV1wRRx11VNx0003x8ssvx4IFC/KdO3v27ALXadWqVYHHvv/++0JrAAAAAAAAgG2VsBsAAAAAAACkqWvXrgUe++KLL+Luu+8u8M1veXl58de//jXGjh0bX3/9dTz22GNx8cUXx7777hvHHnts3HLLLSnBt3Xr1hV4rUmTJuW7f+XKlXHttdem+WkAAAAAAABg25Kd6QIAAAAAAACgrDjhhBPigQceiG+++Sbf43//+9/jq6++irPOOit23XXXqFGjRvz444/x/vvvx5NPPhlTpkzJ97wvv/wy6tSpE/Xq1Uvu23HHHWP69On5zn/xxRejbt26cfbZZ0ezZs1i0aJF8c4778T9999f4DkAAAAAAACwrRN2AwAAAAAAgDRVqVIl/vKXv8Spp54aa9euzXfOa6+9Fq+99lqx1m3QoEHccccdkZWVldzXoUOHQoNrTzzxRDzxxBPFug4AAAAAAABsyyplugAAAAAAAAAoS/baa68YOHBgVKpUOr9qq1u3bgwePDiaNWuWsv/ss8+OqlWrlmjNpk2blkZpAAAAAAAAsFUJuwEAAAAAAEAxHXvssfHII49EgwYNNmud3XbbLZ555pn47W9/u8mxHXbYIe69996oXLlysda8+eab44ADDtisugAAAAAAACAThN0AAAAAAACgBA466KB47bXXonfv3lGrVq1indu0adPo27dvjBw5Mpo3b17gvMMPPzweeuih2GmnnYpcs3HjxnHffffFGWecUaxaAAAAAAAAYFuRnekCAAAAAAAAoKyqXbt2XHfddXHppZfG+PHjY+LEiTF16tSYOXNmLF26NNasWRPVq1ePOnXqRPPmzeM3v/lNdOjQIfbdd9/Izk7vV3Xt27ePl156KV5++eV49dVX4/PPP4958+ZFVlZWbLfddrHbbrvFYYcdFp07d47q1atv4U8MAAAAAAAAW05WIpFIZLoIAAAAAAAAAAAAAAAAACq2SpkuAAAAAAAAAAAAAAAAAACE3QAAAAAAAAAAAAAAAADIOGE3AAAAAAAAAAAAAAAAADJO2A0AAAAAAAAAAAAAAACAjBN2AwAAAAAAAAAAAAAAACDjhN0AAAAAAAAAAAAAAAAAyDhhNwAAAAAAAAAAAAAAAAAyTtgNAAAAAAAAAAAAAAAAgIwTdgMAAAAAAAAAAAAAAAAg44TdAAAAAAAAAAAAAAAAAMg4YTcAAAAAAAAAAAAAAAAAMk7YDQAAAAAAAAAAAAAAAICME3YDAAAAAAAAAAAAAAAAIOOE3QAAAAAAAAAAAAAAAADIOGE3AAAAAAAAAAAAAAAAADJO2A0AAAAAAAAAAAAAAACAjBN2AwAAAAAAAAAAAAAAACDjhN0AAAAAAAAAAAAAAAAAyDhhNwAAAAAAAAAAAAAAAAAyTtgNAAAAAAAAAAAAAAAAgIwTdgMAAAAAAAAAAAAAAAAg44TdAAAAAAAAAAAAAAAAAMg4YTcAAAAAAAAAAAAAAAAAMk7YDQAAAAAAAAAAAAAAAICME3YDAAAAAAAAAAAAAAAAIOOE3QAAAAAAAAAAAAAAAADIOGE3AAAAAAAAAAAAAAAAADJO2A0AAAAAAAAAAAAAAACAjBN2AwAAAAAAAAAAAAAAACDjhN0AAAAAAAAAAAAAAAAAyDhhNwAAAAAAAAAAAAAAAAAyTtgNAAAAAAAAAAAAAAAAgIwTdgMAAAAAAAAAAAAAAAAg44TdAAAAAAAAAAAAAAAAAMg4YTcAAAAAAAAAAAAAAAAAMk7YDQAAAAAAAAAAAAAAAICME3YDAAAAAAAAAAAAAAAAIOOE3QAAAAAAAAAAAAAAAADIOGE3AAAAAAAAAAAAAAAAADJO2A0AAAAAAAAAAAAAAACAjBN2AwAAAAAAAAAAAAAAACDjhN0AAAAAAAAAAAAAAAAAyDhhNwAAAAAAAAAAAAAAAAAyTtgNAAAAAAAAAAAAAAAAgIwTdgMAAAAAAAAAAAAAAAAg44TdAAAAAAAAAAAAAAAAAMg4YTcAAAAAAAAAAAAAAAAAMk7YDQAAAAAAAAAAAAAAAICME3YDAAAAAAAAAAAAAAAAIOOE3QAAAAAAAAAAAAAAAADIOGE3AAAAAAAAAAAAAAAAADJO2A0AAAAAAAAAAAAAAACAjBN2AwAAAAAAAAAAAAAAACDjhN0AAAAAAAAAAAAAAAAAyDhhNwAAAAAAAAAAAAAAAAAyTtgNAAAAAAAAAAAAAAAAgIwTdgMAAAAAAAAAAAAAAAAg44TdAAAAAAAAAAAAAAAAAMg4YTcAAAAAAAAAAAAAAAAAMu7/A1twkCN/Pw06AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plotting\n", + "plt = prep_plot()\n", + "fig, ax1 = plt.subplots()\n", + "\n", + "FONTSIZE = 6\n", + "\n", + "# Line chart\n", + "ax1.plot(df['Year'], df['Tech (US)'], color=BLACK, label='Overall VC funding to tech', zorder=3)\n", + "ax1.set_xlabel('Year', fontsize=FONTSIZE+1, weight='bold')\n", + "ax1.set_ylabel('Overall VC funding to tech', fontsize=FONTSIZE+1, weight='bold')\n", + "ax1.tick_params('both', labelsize=FONTSIZE)\n", + "ax1.set_xticks(df['Year'])\n", + "ax1.set_ylim(0, 400)\n", + "\n", + "# Bar chart (secondary axis)\n", + "ax2 = ax1.twinx()\n", + "ax2.bar(df['Year'] - .125, df['Crypto (Global)'], width=0.25, alpha=0.5, color=GRAY1, label='VC funding to crypto', zorder=1)\n", + "ax2.bar(df['Year'] + .125, df['AI/ML (US)'], width=0.25, alpha=0.5, color=GRAY2, label='VC funding to AI', zorder=2)\n", + "ax2.set_ylabel('Sector-specific VC funding', fontsize=FONTSIZE+1, weight='bold')\n", + "ax2.tick_params('y', labelsize=FONTSIZE)\n", + "ax2.set_ylim(0, 80)\n", + "\n", + "# Define a formatter function to format tick labels in billions\n", + "def billions_formatter(x, pos):\n", + " return '${:.0f}bn'.format(x)\n", + "ax1.yaxis.set_major_formatter(FuncFormatter(billions_formatter))\n", + "ax2.yaxis.set_major_formatter(FuncFormatter(billions_formatter))\n", + "\n", + "# Legend\n", + "lines, labels = ax1.get_legend_handles_labels()\n", + "lines2, labels2 = ax2.get_legend_handles_labels()\n", + "ax2.legend(lines + lines2, labels + labels2, fontsize=FONTSIZE+1)\n", + "\n", + "ax2.spines[['right']].set_visible(True)\n", + "\n", + "plt.savefig(\"tech_vc_funding.png\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/figs/data/tech_vc_funding/tech_vc_funding.png b/figs/data/tech_vc_funding/tech_vc_funding.png new file mode 100644 index 00000000..e6aeb2d8 Binary files /dev/null and b/figs/data/tech_vc_funding/tech_vc_funding.png differ diff --git a/scripts/make-book-zh-tw.pl b/scripts/make-book-zh-tw.pl index 79393126..73615237 100644 --- a/scripts/make-book-zh-tw.pl +++ b/scripts/make-book-zh-tw.pl @@ -22,7 +22,7 @@ --- HEADER -$all .= read_file($_) for glob("contents/traditional-mandarin/00-00-*.md"); +$all .= (read_file($_) =~ s/^#+\s+(.+)/\n**$1**/rg). "\n\n" for glob("contents/traditional-mandarin/00-0[13]-*.md"); sub read_file { my $filename = shift; @@ -46,9 +46,8 @@ sub write_file { 6 => "六、影響", 7 => "七、前行", ); -for (sort ) { +for (sort ) { my $basename = s,.*/([-\d]+)-.*,$1,r; - next if $basename =~ /^00/; my $s = int($basename =~ s/-.*//r); if (my $section_name = delete $Sections{$s}) { $all .= "# $section_name\n\n"; @@ -70,11 +69,12 @@ sub write_file { write_file( '00-01.tex', ( - map { read_file($_) =~ s/\*\*(.*?)\*\*/\\textbf{$1}/rg } - glob 'contents/traditional-mandarin/00-01-*.md' + map { read_file($_) =~ s/\*\*(.*?)\*\*/\\textbf{$1}/rg =~ s/^#+\s+(.+)/\\textbf{$1}/rg =~ s/&/\\&/rg } + glob 'contents/traditional-mandarin/00-02-*.md' ) ); + print "Generating PDF (this may take a while)...\n"; # Pre-running twice to generate emoji PDFs diff --git a/scripts/make-book.pl b/scripts/make-book.pl index 61050004..938ebdad 100644 --- a/scripts/make-book.pl +++ b/scripts/make-book.pl @@ -21,10 +21,9 @@ mainfont: "Noto Serif" linestretch: 1.25 --- - HEADER -$all .= read_file($_) for glob("contents/english/00-00-*.md"); +$all .= (read_file($_) =~ s/^#+\s+(.+)/\n**$1**/rg). "\n\n" for glob("contents/english/00-0[13]-*.md"); sub read_file { my $filename = shift; @@ -48,9 +47,8 @@ sub write_file { 6 => "Section 6: Impact", 7 => "Section 7: Forward", ); -for (sort ) { +for (sort ) { my $basename = s,.*/([-\d]+)-.*,$1,r; - next if $basename =~ /^00/; my $s = int($basename =~ s/-.*//r); if (my $section_name = delete $Sections{$s}) { $all .= "# $section_name\n\n"; @@ -69,8 +67,8 @@ sub write_file { write_file( '00-01.tex', ( - map { read_file($_) =~ s/\*\*(.*?)\*\*/\\textbf{$1}/rg } - glob 'contents/english/00-01-*.md' + map { read_file($_) =~ s/\*\*(.*?)\*\*/\\textbf{$1}/rg =~ s/^#+\s+(.+)/\\textbf{$1}/rg =~ s/&/\\&/rg } + glob 'contents/english/00-02-*.md' ) );