From 676376faf1275ba9bdcbabfa2c3aed3ee4077fac Mon Sep 17 00:00:00 2001 From: stinodego Date: Fri, 28 Jul 2023 16:03:22 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20gh-pages=20from=20@=20pola-rs/?= =?UTF-8?q?polars@e4dd665d11659d6e114aad630cd2e49265e5a8ba=20=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../api/polars.DataFrame.write_avro.html | 2 +- .../api/polars.DataFrame.write_csv.html | 2 +- .../api/polars.DataFrame.write_database.html | 2 +- .../api/polars.DataFrame.write_delta.html | 2 +- .../api/polars.DataFrame.write_excel.html | 2 +- .../api/polars.DataFrame.write_ipc.html | 2 +- .../api/polars.DataFrame.write_json.html | 2 +- .../api/polars.DataFrame.write_ndjson.html | 2 +- .../api/polars.DataFrame.write_parquet.html | 2 +- .../api/polars.LazyFrame.sink_ipc.html | 2 +- .../api/polars.LazyFrame.sink_parquet.html | 2 +- .../dev/reference/api/polars.StringCache.html | 2 +- .../dev/reference/api/polars.collect_all.html | 2 +- .../api/polars.enable_string_cache.html | 2 +- .../reference/api/polars.get_index_type.html | 2 +- .../api/polars.scan_pyarrow_dataset.html | 2 +- .../reference/api/polars.threadpool_size.html | 2 +- .../api/polars.using_string_cache.html | 2 +- .../api/polars.DataFrame.__dataframe__.html | 2 +- .../dataframe/api/polars.DataFrame.apply.html | 2 +- .../api/polars.DataFrame.bottom_k.html | 2 +- .../dataframe/api/polars.DataFrame.clear.html | 2 +- .../dataframe/api/polars.DataFrame.clone.html | 2 +- .../api/polars.DataFrame.columns.html | 2 +- .../dataframe/api/polars.DataFrame.corr.html | 2 +- .../api/polars.DataFrame.describe.html | 2 +- .../dataframe/api/polars.DataFrame.drop.html | 2 +- .../api/polars.DataFrame.drop_in_place.html | 2 +- .../api/polars.DataFrame.drop_nulls.html | 2 +- .../api/polars.DataFrame.dtypes.html | 2 +- .../api/polars.DataFrame.estimated_size.html | 2 +- .../api/polars.DataFrame.explode.html | 2 +- .../api/polars.DataFrame.extend.html | 2 +- .../api/polars.DataFrame.fill_nan.html | 2 +- .../api/polars.DataFrame.fill_null.html | 2 +- .../api/polars.DataFrame.filter.html | 2 +- .../polars.DataFrame.find_idx_by_name.html | 2 +- .../dataframe/api/polars.DataFrame.flags.html | 2 +- .../dataframe/api/polars.DataFrame.fold.html | 2 +- .../api/polars.DataFrame.frame_equal.html | 2 +- .../api/polars.DataFrame.get_column.html | 2 +- .../api/polars.DataFrame.get_columns.html | 2 +- .../api/polars.DataFrame.glimpse.html | 2 +- .../api/polars.DataFrame.groupby.html | 2 +- .../api/polars.DataFrame.groupby_dynamic.html | 2 +- .../api/polars.DataFrame.groupby_rolling.html | 2 +- .../api/polars.DataFrame.hash_rows.html | 2 +- .../dataframe/api/polars.DataFrame.head.html | 2 +- .../api/polars.DataFrame.height.html | 2 +- .../api/polars.DataFrame.hstack.html | 2 +- .../api/polars.DataFrame.insert_at_idx.html | 2 +- .../api/polars.DataFrame.interpolate.html | 2 +- .../api/polars.DataFrame.is_duplicated.html | 2 +- .../api/polars.DataFrame.is_empty.html | 2 +- .../api/polars.DataFrame.is_unique.html | 2 +- .../dataframe/api/polars.DataFrame.item.html | 2 +- .../api/polars.DataFrame.iter_rows.html | 2 +- .../api/polars.DataFrame.iter_slices.html | 2 +- .../dataframe/api/polars.DataFrame.join.html | 2 +- .../api/polars.DataFrame.join_asof.html | 2 +- .../dataframe/api/polars.DataFrame.lazy.html | 2 +- .../dataframe/api/polars.DataFrame.limit.html | 2 +- .../dataframe/api/polars.DataFrame.max.html | 2 +- .../dataframe/api/polars.DataFrame.mean.html | 2 +- .../api/polars.DataFrame.median.html | 2 +- .../dataframe/api/polars.DataFrame.melt.html | 2 +- .../api/polars.DataFrame.merge_sorted.html | 2 +- .../dataframe/api/polars.DataFrame.min.html | 2 +- .../api/polars.DataFrame.n_chunks.html | 2 +- .../api/polars.DataFrame.n_unique.html | 2 +- .../api/polars.DataFrame.null_count.html | 2 +- .../api/polars.DataFrame.partition_by.html | 2 +- .../dataframe/api/polars.DataFrame.pipe.html | 2 +- .../dataframe/api/polars.DataFrame.pivot.html | 2 +- .../api/polars.DataFrame.product.html | 2 +- .../api/polars.DataFrame.quantile.html | 2 +- .../api/polars.DataFrame.rechunk.html | 2 +- .../api/polars.DataFrame.rename.html | 2 +- .../api/polars.DataFrame.replace.html | 2 +- .../api/polars.DataFrame.replace_at_idx.html | 2 +- .../api/polars.DataFrame.reverse.html | 2 +- .../dataframe/api/polars.DataFrame.row.html | 2 +- .../dataframe/api/polars.DataFrame.rows.html | 2 +- .../api/polars.DataFrame.rows_by_key.html | 2 +- .../api/polars.DataFrame.sample.html | 2 +- .../api/polars.DataFrame.schema.html | 2 +- .../api/polars.DataFrame.select.html | 2 +- .../api/polars.DataFrame.set_sorted.html | 2 +- .../dataframe/api/polars.DataFrame.shape.html | 2 +- .../dataframe/api/polars.DataFrame.shift.html | 2 +- .../api/polars.DataFrame.shift_and_fill.html | 2 +- .../api/polars.DataFrame.shrink_to_fit.html | 2 +- .../dataframe/api/polars.DataFrame.slice.html | 2 +- .../dataframe/api/polars.DataFrame.sort.html | 2 +- .../dataframe/api/polars.DataFrame.std.html | 2 +- .../dataframe/api/polars.DataFrame.sum.html | 2 +- .../dataframe/api/polars.DataFrame.tail.html | 2 +- .../api/polars.DataFrame.take_every.html | 2 +- .../api/polars.DataFrame.to_arrow.html | 2 +- .../api/polars.DataFrame.to_dict.html | 2 +- .../api/polars.DataFrame.to_dicts.html | 2 +- .../api/polars.DataFrame.to_dummies.html | 2 +- .../api/polars.DataFrame.to_init_repr.html | 2 +- .../api/polars.DataFrame.to_numpy.html | 2 +- .../api/polars.DataFrame.to_pandas.html | 2 +- .../api/polars.DataFrame.to_series.html | 2 +- .../api/polars.DataFrame.to_struct.html | 2 +- .../dataframe/api/polars.DataFrame.top_k.html | 2 +- .../api/polars.DataFrame.transpose.html | 2 +- .../api/polars.DataFrame.unique.html | 2 +- .../api/polars.DataFrame.unnest.html | 2 +- .../api/polars.DataFrame.unstack.html | 2 +- .../api/polars.DataFrame.update.html | 2 +- .../api/polars.DataFrame.upsample.html | 2 +- .../dataframe/api/polars.DataFrame.var.html | 2 +- .../api/polars.DataFrame.vstack.html | 2 +- .../dataframe/api/polars.DataFrame.width.html | 2 +- .../api/polars.DataFrame.with_columns.html | 2 +- .../api/polars.DataFrame.with_row_count.html | 2 +- py-polars/dev/reference/dataframe/index.html | 220 +++++------ .../api/polars.Expr.str.concat.html | 2 +- .../api/polars.Expr.str.contains.html | 2 +- .../api/polars.Expr.str.count_match.html | 2 +- .../api/polars.Expr.str.decode.html | 2 +- .../api/polars.Expr.str.encode.html | 2 +- .../api/polars.Expr.str.ends_with.html | 2 +- .../api/polars.Expr.str.explode.html | 2 +- .../api/polars.Expr.str.extract.html | 2 +- .../api/polars.Expr.str.extract_all.html | 2 +- .../api/polars.Expr.str.json_extract.html | 2 +- .../api/polars.Expr.str.json_path_match.html | 2 +- .../api/polars.Expr.str.lengths.html | 2 +- .../api/polars.Expr.str.ljust.html | 2 +- .../api/polars.Expr.str.lstrip.html | 2 +- .../api/polars.Expr.str.n_chars.html | 2 +- .../api/polars.Expr.str.parse_int.html | 2 +- .../api/polars.Expr.str.replace.html | 2 +- .../api/polars.Expr.str.replace_all.html | 2 +- .../api/polars.Expr.str.rjust.html | 2 +- .../api/polars.Expr.str.rstrip.html | 2 +- .../api/polars.Expr.str.slice.html | 2 +- .../api/polars.Expr.str.split.html | 2 +- .../api/polars.Expr.str.split_exact.html | 2 +- .../api/polars.Expr.str.splitn.html | 2 +- .../api/polars.Expr.str.starts_with.html | 2 +- .../api/polars.Expr.str.strip.html | 2 +- .../api/polars.Expr.str.strptime.html | 2 +- .../api/polars.Expr.str.to_datetime.html | 2 +- .../api/polars.Expr.str.to_decimal.html | 2 +- .../api/polars.Expr.str.to_lowercase.html | 2 +- .../api/polars.Expr.str.to_time.html | 2 +- .../api/polars.Expr.str.to_titlecase.html | 2 +- .../api/polars.Expr.str.to_uppercase.html | 2 +- .../api/polars.Expr.str.zfill.html | 2 +- .../reference/expressions/api/polars.all.html | 2 +- .../reference/expressions/api/polars.any.html | 2 +- .../expressions/api/polars.apply.html | 2 +- .../expressions/api/polars.approx_unique.html | 2 +- .../expressions/api/polars.arange.html | 2 +- .../expressions/api/polars.arctan2.html | 2 +- .../expressions/api/polars.arctan2d.html | 2 +- .../expressions/api/polars.arg_sort_by.html | 2 +- .../expressions/api/polars.arg_where.html | 2 +- .../reference/expressions/api/polars.avg.html | 2 +- .../expressions/api/polars.coalesce.html | 2 +- .../reference/expressions/api/polars.col.html | 2 +- .../expressions/api/polars.concat_list.html | 2 +- .../expressions/api/polars.concat_str.html | 2 +- .../expressions/api/polars.corr.html | 2 +- .../expressions/api/polars.count.html | 2 +- .../reference/expressions/api/polars.cov.html | 2 +- .../expressions/api/polars.cumfold.html | 2 +- .../expressions/api/polars.cumreduce.html | 2 +- .../expressions/api/polars.cumsum.html | 2 +- .../expressions/api/polars.date.html | 2 +- .../expressions/api/polars.date_range.html | 2 +- .../expressions/api/polars.date_ranges.html | 2 +- .../expressions/api/polars.datetime.html | 2 +- .../expressions/api/polars.duration.html | 2 +- .../expressions/api/polars.element.html | 2 +- .../expressions/api/polars.exclude.html | 2 +- .../expressions/api/polars.first.html | 2 +- .../expressions/api/polars.fold.html | 2 +- .../expressions/api/polars.format.html | 2 +- .../expressions/api/polars.from_epoch.html | 2 +- .../expressions/api/polars.groups.html | 2 +- .../expressions/api/polars.head.html | 2 +- .../expressions/api/polars.implode.html | 2 +- .../expressions/api/polars.int_range.html | 2 +- .../expressions/api/polars.int_ranges.html | 2 +- .../expressions/api/polars.last.html | 2 +- .../reference/expressions/api/polars.lit.html | 2 +- .../reference/expressions/api/polars.map.html | 2 +- .../reference/expressions/api/polars.max.html | 2 +- .../expressions/api/polars.mean.html | 2 +- .../expressions/api/polars.median.html | 2 +- .../reference/expressions/api/polars.min.html | 2 +- .../expressions/api/polars.n_unique.html | 2 +- .../expressions/api/polars.ones.html | 2 +- .../expressions/api/polars.quantile.html | 2 +- .../expressions/api/polars.reduce.html | 2 +- .../expressions/api/polars.repeat.html | 2 +- .../expressions/api/polars.rolling_corr.html | 2 +- .../expressions/api/polars.rolling_cov.html | 2 +- .../expressions/api/polars.select.html | 2 +- .../expressions/api/polars.sql_expr.html | 2 +- .../reference/expressions/api/polars.std.html | 2 +- .../expressions/api/polars.struct.html | 2 +- .../reference/expressions/api/polars.sum.html | 2 +- .../expressions/api/polars.tail.html | 2 +- .../expressions/api/polars.time.html | 2 +- .../expressions/api/polars.time_range.html | 2 +- .../expressions/api/polars.time_ranges.html | 2 +- .../reference/expressions/api/polars.var.html | 2 +- .../expressions/api/polars.zeros.html | 2 +- .../api/polars.LazyFrame.bottom_k.html | 2 +- .../lazyframe/api/polars.LazyFrame.cache.html | 2 +- .../lazyframe/api/polars.LazyFrame.clear.html | 2 +- .../lazyframe/api/polars.LazyFrame.clone.html | 2 +- .../api/polars.LazyFrame.collect.html | 2 +- .../api/polars.LazyFrame.columns.html | 2 +- .../lazyframe/api/polars.LazyFrame.drop.html | 2 +- .../api/polars.LazyFrame.drop_nulls.html | 2 +- .../api/polars.LazyFrame.dtypes.html | 2 +- .../api/polars.LazyFrame.explain.html | 2 +- .../api/polars.LazyFrame.explode.html | 2 +- .../lazyframe/api/polars.LazyFrame.fetch.html | 2 +- .../api/polars.LazyFrame.fill_nan.html | 2 +- .../api/polars.LazyFrame.fill_null.html | 2 +- .../api/polars.LazyFrame.filter.html | 2 +- .../lazyframe/api/polars.LazyFrame.first.html | 2 +- .../api/polars.LazyFrame.from_json.html | 2 +- .../api/polars.LazyFrame.groupby.html | 2 +- .../api/polars.LazyFrame.groupby_dynamic.html | 2 +- .../api/polars.LazyFrame.groupby_rolling.html | 2 +- .../lazyframe/api/polars.LazyFrame.head.html | 2 +- .../api/polars.LazyFrame.inspect.html | 2 +- .../api/polars.LazyFrame.interpolate.html | 2 +- .../lazyframe/api/polars.LazyFrame.join.html | 2 +- .../api/polars.LazyFrame.join_asof.html | 2 +- .../lazyframe/api/polars.LazyFrame.last.html | 2 +- .../lazyframe/api/polars.LazyFrame.lazy.html | 2 +- .../lazyframe/api/polars.LazyFrame.limit.html | 2 +- .../lazyframe/api/polars.LazyFrame.map.html | 2 +- .../lazyframe/api/polars.LazyFrame.max.html | 2 +- .../lazyframe/api/polars.LazyFrame.mean.html | 2 +- .../api/polars.LazyFrame.median.html | 2 +- .../lazyframe/api/polars.LazyFrame.melt.html | 2 +- .../api/polars.LazyFrame.merge_sorted.html | 2 +- .../lazyframe/api/polars.LazyFrame.min.html | 2 +- .../api/polars.LazyFrame.null_count.html | 2 +- .../lazyframe/api/polars.LazyFrame.pipe.html | 2 +- .../api/polars.LazyFrame.profile.html | 2 +- .../api/polars.LazyFrame.quantile.html | 2 +- .../api/polars.LazyFrame.read_json.html | 2 +- .../api/polars.LazyFrame.rename.html | 2 +- .../api/polars.LazyFrame.reverse.html | 2 +- .../api/polars.LazyFrame.schema.html | 2 +- .../api/polars.LazyFrame.select.html | 2 +- .../api/polars.LazyFrame.set_sorted.html | 2 +- .../lazyframe/api/polars.LazyFrame.shift.html | 2 +- .../api/polars.LazyFrame.shift_and_fill.html | 2 +- .../api/polars.LazyFrame.show_graph.html | 2 +- .../lazyframe/api/polars.LazyFrame.slice.html | 2 +- .../lazyframe/api/polars.LazyFrame.sort.html | 2 +- .../lazyframe/api/polars.LazyFrame.std.html | 2 +- .../lazyframe/api/polars.LazyFrame.sum.html | 2 +- .../lazyframe/api/polars.LazyFrame.tail.html | 2 +- .../api/polars.LazyFrame.take_every.html | 2 +- .../lazyframe/api/polars.LazyFrame.top_k.html | 2 +- .../api/polars.LazyFrame.unique.html | 2 +- .../api/polars.LazyFrame.unnest.html | 2 +- .../api/polars.LazyFrame.update.html | 2 +- .../lazyframe/api/polars.LazyFrame.var.html | 2 +- .../lazyframe/api/polars.LazyFrame.width.html | 2 +- .../api/polars.LazyFrame.with_columns.html | 2 +- .../api/polars.LazyFrame.with_context.html | 2 +- .../api/polars.LazyFrame.with_row_count.html | 2 +- .../api/polars.LazyFrame.write_json.html | 2 +- ...ars.lazyframe.groupby.LazyGroupBy.agg.html | 2 +- ...ars.lazyframe.groupby.LazyGroupBy.all.html | 2 +- ...s.lazyframe.groupby.LazyGroupBy.apply.html | 2 +- ...s.lazyframe.groupby.LazyGroupBy.count.html | 2 +- ...s.lazyframe.groupby.LazyGroupBy.first.html | 2 +- ...rs.lazyframe.groupby.LazyGroupBy.head.html | 2 +- ...rs.lazyframe.groupby.LazyGroupBy.last.html | 2 +- ...ars.lazyframe.groupby.LazyGroupBy.max.html | 2 +- ...rs.lazyframe.groupby.LazyGroupBy.mean.html | 2 +- ....lazyframe.groupby.LazyGroupBy.median.html | 2 +- ...ars.lazyframe.groupby.LazyGroupBy.min.html | 2 +- ...azyframe.groupby.LazyGroupBy.n_unique.html | 2 +- ...azyframe.groupby.LazyGroupBy.quantile.html | 2 +- ...ars.lazyframe.groupby.LazyGroupBy.sum.html | 2 +- ...rs.lazyframe.groupby.LazyGroupBy.tail.html | 2 +- py-polars/dev/reference/lazyframe/index.html | 136 +++---- .../series/api/polars.Series.abs.html | 2 +- .../series/api/polars.Series.alias.html | 2 +- .../series/api/polars.Series.all.html | 2 +- .../series/api/polars.Series.any.html | 2 +- .../series/api/polars.Series.append.html | 2 +- .../series/api/polars.Series.apply.html | 2 +- .../series/api/polars.Series.arccos.html | 2 +- .../series/api/polars.Series.arccosh.html | 2 +- .../series/api/polars.Series.arcsin.html | 2 +- .../series/api/polars.Series.arcsinh.html | 2 +- .../series/api/polars.Series.arctan.html | 2 +- .../series/api/polars.Series.arctanh.html | 2 +- .../series/api/polars.Series.arg_max.html | 2 +- .../series/api/polars.Series.arg_min.html | 2 +- .../series/api/polars.Series.arg_sort.html | 2 +- .../series/api/polars.Series.arg_true.html | 2 +- .../series/api/polars.Series.arg_unique.html | 2 +- .../series/api/polars.Series.bottom_k.html | 2 +- .../series/api/polars.Series.cast.html | 2 +- .../series/api/polars.Series.cbrt.html | 2 +- .../series/api/polars.Series.ceil.html | 2 +- .../api/polars.Series.chunk_lengths.html | 2 +- .../series/api/polars.Series.clear.html | 2 +- .../series/api/polars.Series.clip.html | 2 +- .../series/api/polars.Series.clip_max.html | 2 +- .../series/api/polars.Series.clip_min.html | 2 +- .../series/api/polars.Series.clone.html | 2 +- .../series/api/polars.Series.cos.html | 2 +- .../series/api/polars.Series.cosh.html | 2 +- .../series/api/polars.Series.cummax.html | 2 +- .../series/api/polars.Series.cummin.html | 2 +- .../series/api/polars.Series.cumprod.html | 2 +- .../series/api/polars.Series.cumsum.html | 2 +- .../api/polars.Series.cumulative_eval.html | 2 +- .../series/api/polars.Series.cut.html | 2 +- .../series/api/polars.Series.describe.html | 2 +- .../series/api/polars.Series.diff.html | 2 +- .../series/api/polars.Series.dot.html | 2 +- .../series/api/polars.Series.drop_nans.html | 2 +- .../series/api/polars.Series.drop_nulls.html | 2 +- .../series/api/polars.Series.entropy.html | 2 +- .../api/polars.Series.estimated_size.html | 2 +- .../series/api/polars.Series.ewm_mean.html | 2 +- .../series/api/polars.Series.ewm_std.html | 2 +- .../series/api/polars.Series.ewm_var.html | 2 +- .../series/api/polars.Series.exp.html | 2 +- .../series/api/polars.Series.explode.html | 2 +- .../series/api/polars.Series.extend.html | 2 +- .../api/polars.Series.extend_constant.html | 2 +- .../series/api/polars.Series.fill_nan.html | 2 +- .../series/api/polars.Series.fill_null.html | 2 +- .../series/api/polars.Series.filter.html | 2 +- .../series/api/polars.Series.floor.html | 2 +- .../series/api/polars.Series.get_chunks.html | 2 +- .../api/polars.Series.has_validity.html | 2 +- .../series/api/polars.Series.hash.html | 2 +- .../series/api/polars.Series.head.html | 2 +- .../series/api/polars.Series.hist.html | 2 +- .../series/api/polars.Series.implode.html | 2 +- .../series/api/polars.Series.interpolate.html | 2 +- .../series/api/polars.Series.is_between.html | 2 +- .../series/api/polars.Series.is_boolean.html | 2 +- .../api/polars.Series.is_duplicated.html | 2 +- .../series/api/polars.Series.is_empty.html | 2 +- .../series/api/polars.Series.is_finite.html | 2 +- .../series/api/polars.Series.is_first.html | 2 +- .../series/api/polars.Series.is_float.html | 2 +- .../series/api/polars.Series.is_in.html | 2 +- .../series/api/polars.Series.is_infinite.html | 2 +- .../series/api/polars.Series.is_integer.html | 2 +- .../series/api/polars.Series.is_nan.html | 2 +- .../series/api/polars.Series.is_not_nan.html | 2 +- .../series/api/polars.Series.is_not_null.html | 2 +- .../series/api/polars.Series.is_null.html | 2 +- .../series/api/polars.Series.is_numeric.html | 2 +- .../series/api/polars.Series.is_sorted.html | 2 +- .../series/api/polars.Series.is_temporal.html | 2 +- .../series/api/polars.Series.is_unique.html | 2 +- .../series/api/polars.Series.is_utf8.html | 2 +- .../series/api/polars.Series.item.html | 2 +- .../series/api/polars.Series.kurtosis.html | 2 +- .../series/api/polars.Series.len.html | 2 +- .../series/api/polars.Series.limit.html | 2 +- .../series/api/polars.Series.log.html | 2 +- .../series/api/polars.Series.log10.html | 2 +- .../series/api/polars.Series.log1p.html | 2 +- .../series/api/polars.Series.lower_bound.html | 2 +- .../series/api/polars.Series.map_dict.html | 2 +- .../series/api/polars.Series.max.html | 2 +- .../series/api/polars.Series.mean.html | 2 +- .../series/api/polars.Series.median.html | 2 +- .../series/api/polars.Series.min.html | 2 +- .../series/api/polars.Series.mode.html | 2 +- .../series/api/polars.Series.n_chunks.html | 2 +- .../series/api/polars.Series.n_unique.html | 2 +- .../series/api/polars.Series.nan_max.html | 2 +- .../series/api/polars.Series.nan_min.html | 2 +- .../api/polars.Series.new_from_index.html | 2 +- .../series/api/polars.Series.null_count.html | 2 +- .../series/api/polars.Series.pct_change.html | 2 +- .../series/api/polars.Series.peak_max.html | 2 +- .../series/api/polars.Series.peak_min.html | 2 +- .../series/api/polars.Series.product.html | 2 +- .../series/api/polars.Series.qcut.html | 2 +- .../series/api/polars.Series.quantile.html | 2 +- .../series/api/polars.Series.rank.html | 2 +- .../series/api/polars.Series.rechunk.html | 2 +- .../series/api/polars.Series.reinterpret.html | 2 +- .../series/api/polars.Series.rename.html | 2 +- .../series/api/polars.Series.reshape.html | 2 +- .../series/api/polars.Series.reverse.html | 2 +- .../series/api/polars.Series.rle.html | 2 +- .../series/api/polars.Series.rle_id.html | 2 +- .../api/polars.Series.rolling_apply.html | 2 +- .../series/api/polars.Series.rolling_max.html | 2 +- .../api/polars.Series.rolling_mean.html | 2 +- .../api/polars.Series.rolling_median.html | 2 +- .../series/api/polars.Series.rolling_min.html | 2 +- .../api/polars.Series.rolling_quantile.html | 2 +- .../api/polars.Series.rolling_skew.html | 2 +- .../series/api/polars.Series.rolling_std.html | 2 +- .../series/api/polars.Series.rolling_sum.html | 2 +- .../series/api/polars.Series.rolling_var.html | 2 +- .../series/api/polars.Series.round.html | 2 +- .../series/api/polars.Series.sample.html | 2 +- .../api/polars.Series.search_sorted.html | 2 +- .../api/polars.Series.series_equal.html | 2 +- .../series/api/polars.Series.set.html | 2 +- .../series/api/polars.Series.set_at_idx.html | 2 +- .../series/api/polars.Series.set_sorted.html | 2 +- .../series/api/polars.Series.shift.html | 2 +- .../api/polars.Series.shift_and_fill.html | 2 +- .../api/polars.Series.shrink_dtype.html | 2 +- .../api/polars.Series.shrink_to_fit.html | 2 +- .../series/api/polars.Series.shuffle.html | 2 +- .../series/api/polars.Series.sign.html | 2 +- .../series/api/polars.Series.sin.html | 2 +- .../series/api/polars.Series.sinh.html | 2 +- .../series/api/polars.Series.skew.html | 2 +- .../series/api/polars.Series.slice.html | 2 +- .../series/api/polars.Series.sort.html | 2 +- .../series/api/polars.Series.sqrt.html | 2 +- .../series/api/polars.Series.std.html | 2 +- .../series/api/polars.Series.str.concat.html | 2 +- .../api/polars.Series.str.contains.html | 2 +- .../api/polars.Series.str.count_match.html | 2 +- .../series/api/polars.Series.str.decode.html | 2 +- .../series/api/polars.Series.str.encode.html | 2 +- .../api/polars.Series.str.ends_with.html | 2 +- .../series/api/polars.Series.str.explode.html | 2 +- .../series/api/polars.Series.str.extract.html | 2 +- .../api/polars.Series.str.extract_all.html | 2 +- .../api/polars.Series.str.json_extract.html | 2 +- .../polars.Series.str.json_path_match.html | 2 +- .../series/api/polars.Series.str.lengths.html | 2 +- .../series/api/polars.Series.str.ljust.html | 2 +- .../series/api/polars.Series.str.lstrip.html | 2 +- .../series/api/polars.Series.str.n_chars.html | 2 +- .../api/polars.Series.str.parse_int.html | 2 +- .../series/api/polars.Series.str.replace.html | 2 +- .../api/polars.Series.str.replace_all.html | 2 +- .../series/api/polars.Series.str.rjust.html | 2 +- .../series/api/polars.Series.str.rstrip.html | 2 +- .../series/api/polars.Series.str.slice.html | 2 +- .../series/api/polars.Series.str.split.html | 2 +- .../api/polars.Series.str.split_exact.html | 2 +- .../series/api/polars.Series.str.splitn.html | 2 +- .../api/polars.Series.str.starts_with.html | 2 +- .../series/api/polars.Series.str.strip.html | 2 +- .../api/polars.Series.str.strptime.html | 2 +- .../series/api/polars.Series.str.to_date.html | 2 +- .../api/polars.Series.str.to_datetime.html | 2 +- .../api/polars.Series.str.to_decimal.html | 2 +- .../api/polars.Series.str.to_lowercase.html | 2 +- .../series/api/polars.Series.str.to_time.html | 2 +- .../api/polars.Series.str.to_titlecase.html | 2 +- .../api/polars.Series.str.to_uppercase.html | 2 +- .../series/api/polars.Series.str.zfill.html | 2 +- .../series/api/polars.Series.sum.html | 2 +- .../series/api/polars.Series.tail.html | 2 +- .../series/api/polars.Series.take.html | 2 +- .../series/api/polars.Series.take_every.html | 2 +- .../series/api/polars.Series.tan.html | 2 +- .../series/api/polars.Series.tanh.html | 2 +- .../series/api/polars.Series.to_arrow.html | 2 +- .../series/api/polars.Series.to_dummies.html | 2 +- .../series/api/polars.Series.to_frame.html | 2 +- .../api/polars.Series.to_init_repr.html | 2 +- .../series/api/polars.Series.to_list.html | 2 +- .../series/api/polars.Series.to_numpy.html | 2 +- .../series/api/polars.Series.to_pandas.html | 2 +- .../series/api/polars.Series.to_physical.html | 2 +- .../series/api/polars.Series.top_k.html | 2 +- .../series/api/polars.Series.unique.html | 2 +- .../api/polars.Series.unique_counts.html | 2 +- .../series/api/polars.Series.upper_bound.html | 2 +- .../api/polars.Series.value_counts.html | 2 +- .../series/api/polars.Series.var.html | 2 +- .../series/api/polars.Series.view.html | 2 +- .../series/api/polars.Series.zip_with.html | 2 +- py-polars/dev/reference/series/index.html | 350 +++++++++--------- py-polars/dev/searchindex.js | 2 +- 497 files changed, 847 insertions(+), 847 deletions(-) diff --git a/py-polars/dev/reference/api/polars.DataFrame.write_avro.html b/py-polars/dev/reference/api/polars.DataFrame.write_avro.html index 892bf1ca176c..482b41b2e1ea 100644 --- a/py-polars/dev/reference/api/polars.DataFrame.write_avro.html +++ b/py-polars/dev/reference/api/polars.DataFrame.write_avro.html @@ -1621,7 +1621,7 @@

polars.DataFrame.write_avro#

-DataFrame.write_avro(file: BinaryIO | BytesIO | str | Path, compression: AvroCompression = 'uncompressed') None[source]#
+DataFrame.write_avro(file: BinaryIO | BytesIO | str | Path, compression: AvroCompression = 'uncompressed') None[source]#

Write to Apache Avro file.

Parameters:
diff --git a/py-polars/dev/reference/api/polars.DataFrame.write_csv.html b/py-polars/dev/reference/api/polars.DataFrame.write_csv.html index 50c341b111ca..b7b15d6e7c82 100644 --- a/py-polars/dev/reference/api/polars.DataFrame.write_csv.html +++ b/py-polars/dev/reference/api/polars.DataFrame.write_csv.html @@ -1621,7 +1621,7 @@

polars.DataFrame.write_csv#

-DataFrame.write_csv(file: None = None, *, has_header: bool = True, separator: str = ',', quote: str = '"', batch_size: int = 1024, datetime_format: str | None = None, date_format: str | None = None, time_format: str | None = None, float_precision: int | None = None, null_value: str | None = None) str[source]#
+DataFrame.write_csv(file: None = None, *, has_header: bool = True, separator: str = ',', quote: str = '"', batch_size: int = 1024, datetime_format: str | None = None, date_format: str | None = None, time_format: str | None = None, float_precision: int | None = None, null_value: str | None = None) str[source]#
DataFrame.write_csv(file: BytesIO | TextIOWrapper | str | Path, *, has_header: bool = True, separator: str = ',', quote: str = '"', batch_size: int = 1024, datetime_format: str | None = None, date_format: str | None = None, time_format: str | None = None, float_precision: int | None = None, null_value: str | None = None) None

Write to comma-separated values (CSV) file.

diff --git a/py-polars/dev/reference/api/polars.DataFrame.write_database.html b/py-polars/dev/reference/api/polars.DataFrame.write_database.html index 83a207d394cb..f3a0b05b8f3e 100644 --- a/py-polars/dev/reference/api/polars.DataFrame.write_database.html +++ b/py-polars/dev/reference/api/polars.DataFrame.write_database.html @@ -1621,7 +1621,7 @@

polars.DataFrame.write_database#

-DataFrame.write_database(table_name: str, connection: str, *, if_exists: DbWriteMode = 'fail', engine: DbWriteEngine = 'sqlalchemy') None[source]#
+DataFrame.write_database(table_name: str, connection: str, *, if_exists: DbWriteMode = 'fail', engine: DbWriteEngine = 'sqlalchemy') None[source]#

Write a polars frame to a database.

Parameters:
diff --git a/py-polars/dev/reference/api/polars.DataFrame.write_delta.html b/py-polars/dev/reference/api/polars.DataFrame.write_delta.html index d9a98eb85fdf..242cbf1cb96a 100644 --- a/py-polars/dev/reference/api/polars.DataFrame.write_delta.html +++ b/py-polars/dev/reference/api/polars.DataFrame.write_delta.html @@ -1621,7 +1621,7 @@

polars.DataFrame.write_delta#

-DataFrame.write_delta(target: str | Path | deltalake.DeltaTable, *, mode: Literal['error', 'append', 'overwrite', 'ignore'] = 'error', overwrite_schema: bool = False, storage_options: dict[str, str] | None = None, delta_write_options: dict[str, Any] | None = None) None[source]#
+DataFrame.write_delta(target: str | Path | deltalake.DeltaTable, *, mode: Literal['error', 'append', 'overwrite', 'ignore'] = 'error', overwrite_schema: bool = False, storage_options: dict[str, str] | None = None, delta_write_options: dict[str, Any] | None = None) None[source]#

Write DataFrame as delta table.

Note: Some polars data types like Null, Categorical and Time are not supported by the delta protocol specification.

diff --git a/py-polars/dev/reference/api/polars.DataFrame.write_excel.html b/py-polars/dev/reference/api/polars.DataFrame.write_excel.html index 21ff7e224e88..a559b644765c 100644 --- a/py-polars/dev/reference/api/polars.DataFrame.write_excel.html +++ b/py-polars/dev/reference/api/polars.DataFrame.write_excel.html @@ -1621,7 +1621,7 @@

polars.DataFrame.write_excel#

-DataFrame.write_excel(workbook: Workbook | BytesIO | Path | str | None = None, worksheet: str | None = None, *, position: tuple[int, int] | str = 'A1', table_style: str | dict[str, Any] | None = None, table_name: str | None = None, column_formats: dict[str | tuple[str, ...], str | dict[str, str]] | None = None, dtype_formats: dict[OneOrMoreDataTypes, str] | None = None, conditional_formats: ConditionalFormatDict | None = None, column_totals: ColumnTotalsDefinition | None = None, column_widths: dict[str | tuple[str, ...], int] | int | None = None, row_totals: RowTotalsDefinition | None = None, row_heights: dict[int | tuple[int, ...], int] | int | None = None, sparklines: dict[str, Sequence[str] | dict[str, Any]] | None = None, formulas: dict[str, str | dict[str, str]] | None = None, float_precision: int = 3, has_header: bool = True, autofilter: bool = True, autofit: bool = False, hidden_columns: Sequence[str] | None = None, hide_gridlines: bool = False, sheet_zoom: int | None = None, freeze_panes: str | tuple[int, int] | tuple[str, int, int] | tuple[int, int, int, int] | None = None) Workbook[source]#
+DataFrame.write_excel(workbook: Workbook | BytesIO | Path | str | None = None, worksheet: str | None = None, *, position: tuple[int, int] | str = 'A1', table_style: str | dict[str, Any] | None = None, table_name: str | None = None, column_formats: dict[str | tuple[str, ...], str | dict[str, str]] | None = None, dtype_formats: dict[OneOrMoreDataTypes, str] | None = None, conditional_formats: ConditionalFormatDict | None = None, column_totals: ColumnTotalsDefinition | None = None, column_widths: dict[str | tuple[str, ...], int] | int | None = None, row_totals: RowTotalsDefinition | None = None, row_heights: dict[int | tuple[int, ...], int] | int | None = None, sparklines: dict[str, Sequence[str] | dict[str, Any]] | None = None, formulas: dict[str, str | dict[str, str]] | None = None, float_precision: int = 3, has_header: bool = True, autofilter: bool = True, autofit: bool = False, hidden_columns: Sequence[str] | None = None, hide_gridlines: bool = False, sheet_zoom: int | None = None, freeze_panes: str | tuple[int, int] | tuple[str, int, int] | tuple[int, int, int, int] | None = None) Workbook[source]#

Write frame data to a table in an Excel workbook/worksheet.

Parameters:
diff --git a/py-polars/dev/reference/api/polars.DataFrame.write_ipc.html b/py-polars/dev/reference/api/polars.DataFrame.write_ipc.html index 630e6f8246cb..6f6118224482 100644 --- a/py-polars/dev/reference/api/polars.DataFrame.write_ipc.html +++ b/py-polars/dev/reference/api/polars.DataFrame.write_ipc.html @@ -1621,7 +1621,7 @@

polars.DataFrame.write_ipc#

-DataFrame.write_ipc(file: None, compression: IpcCompression = 'uncompressed') BytesIO[source]#
+DataFrame.write_ipc(file: None, compression: IpcCompression = 'uncompressed') BytesIO[source]#
DataFrame.write_ipc(file: BinaryIO | BytesIO | str | Path, compression: IpcCompression = 'uncompressed') None

Write to Arrow IPC binary stream or Feather file.

diff --git a/py-polars/dev/reference/api/polars.DataFrame.write_json.html b/py-polars/dev/reference/api/polars.DataFrame.write_json.html index 29dcdbb83a22..8e085ace4d60 100644 --- a/py-polars/dev/reference/api/polars.DataFrame.write_json.html +++ b/py-polars/dev/reference/api/polars.DataFrame.write_json.html @@ -1621,7 +1621,7 @@

polars.DataFrame.write_json#

-DataFrame.write_json(file: None = None, *, pretty: bool = False, row_oriented: bool = False) str[source]#
+DataFrame.write_json(file: None = None, *, pretty: bool = False, row_oriented: bool = False) str[source]#
DataFrame.write_json(file: IOBase | str | Path, *, pretty: bool = False, row_oriented: bool = False) None

Serialize to JSON representation.

diff --git a/py-polars/dev/reference/api/polars.DataFrame.write_ndjson.html b/py-polars/dev/reference/api/polars.DataFrame.write_ndjson.html index f9754ebb45da..7f24ed8c49a8 100644 --- a/py-polars/dev/reference/api/polars.DataFrame.write_ndjson.html +++ b/py-polars/dev/reference/api/polars.DataFrame.write_ndjson.html @@ -1621,7 +1621,7 @@

polars.DataFrame.write_ndjson#

-DataFrame.write_ndjson(file: None = None) str[source]#
+DataFrame.write_ndjson(file: None = None) str[source]#
DataFrame.write_ndjson(file: IOBase | str | Path) None

Serialize to newline delimited JSON representation.

diff --git a/py-polars/dev/reference/api/polars.DataFrame.write_parquet.html b/py-polars/dev/reference/api/polars.DataFrame.write_parquet.html index 0ac6bbb29da6..88c83ee6dddb 100644 --- a/py-polars/dev/reference/api/polars.DataFrame.write_parquet.html +++ b/py-polars/dev/reference/api/polars.DataFrame.write_parquet.html @@ -1621,7 +1621,7 @@

polars.DataFrame.write_parquet#

-DataFrame.write_parquet(file: str | Path | BytesIO, *, compression: ParquetCompression = 'zstd', compression_level: int | None = None, statistics: bool = False, row_group_size: int | None = None, use_pyarrow: bool = False, pyarrow_options: dict[str, object] | None = None) None[source]#
+DataFrame.write_parquet(file: str | Path | BytesIO, *, compression: ParquetCompression = 'zstd', compression_level: int | None = None, statistics: bool = False, row_group_size: int | None = None, use_pyarrow: bool = False, pyarrow_options: dict[str, object] | None = None) None[source]#

Write to Apache Parquet file.

Parameters:
diff --git a/py-polars/dev/reference/api/polars.LazyFrame.sink_ipc.html b/py-polars/dev/reference/api/polars.LazyFrame.sink_ipc.html index bfba17e4a391..d5e871f0dadf 100644 --- a/py-polars/dev/reference/api/polars.LazyFrame.sink_ipc.html +++ b/py-polars/dev/reference/api/polars.LazyFrame.sink_ipc.html @@ -1621,7 +1621,7 @@

polars.LazyFrame.sink_ipc#

-LazyFrame.sink_ipc(path: str | Path, *, compression: str | None = 'zstd', maintain_order: bool = True, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, no_optimization: bool = False, slice_pushdown: bool = True) DataFrame[source]#
+LazyFrame.sink_ipc(path: str | Path, *, compression: str | None = 'zstd', maintain_order: bool = True, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, no_optimization: bool = False, slice_pushdown: bool = True) DataFrame[source]#

Persists a LazyFrame at the provided path.

This allows streaming results that are larger than RAM to be written to disk.

diff --git a/py-polars/dev/reference/api/polars.LazyFrame.sink_parquet.html b/py-polars/dev/reference/api/polars.LazyFrame.sink_parquet.html index bcade280af42..46bb0c1cce8f 100644 --- a/py-polars/dev/reference/api/polars.LazyFrame.sink_parquet.html +++ b/py-polars/dev/reference/api/polars.LazyFrame.sink_parquet.html @@ -1621,7 +1621,7 @@

polars.LazyFrame.sink_parquet#

-LazyFrame.sink_parquet(path: str | Path, *, compression: str = 'zstd', compression_level: int | None = None, statistics: bool = False, row_group_size: int | None = None, data_pagesize_limit: int | None = None, maintain_order: bool = True, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, no_optimization: bool = False, slice_pushdown: bool = True) DataFrame[source]#
+LazyFrame.sink_parquet(path: str | Path, *, compression: str = 'zstd', compression_level: int | None = None, statistics: bool = False, row_group_size: int | None = None, data_pagesize_limit: int | None = None, maintain_order: bool = True, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, no_optimization: bool = False, slice_pushdown: bool = True) DataFrame[source]#

Persists a LazyFrame at the provided path.

This allows streaming results that are larger than RAM to be written to disk.

diff --git a/py-polars/dev/reference/api/polars.StringCache.html b/py-polars/dev/reference/api/polars.StringCache.html index d51066226d54..cc68a59157bc 100644 --- a/py-polars/dev/reference/api/polars.StringCache.html +++ b/py-polars/dev/reference/api/polars.StringCache.html @@ -1621,7 +1621,7 @@

polars.StringCache#

-class polars.StringCache[source]#
+class polars.StringCache[source]#

Context manager that allows data sources to share the same categorical features.

This will temporarily cache the string categories until the context manager is finished. If StringCaches are nested, the global cache will only be invalidated diff --git a/py-polars/dev/reference/api/polars.collect_all.html b/py-polars/dev/reference/api/polars.collect_all.html index 0273fecb376a..ce77e5aa1eb3 100644 --- a/py-polars/dev/reference/api/polars.collect_all.html +++ b/py-polars/dev/reference/api/polars.collect_all.html @@ -1621,7 +1621,7 @@

polars.collect_all#

-polars.collect_all(lazy_frames: Sequence[LazyFrame], *, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, no_optimization: bool = False, slice_pushdown: bool = True, comm_subplan_elim: bool = True, comm_subexpr_elim: bool = True, streaming: bool = False) list[DataFrame][source]#
+polars.collect_all(lazy_frames: Sequence[LazyFrame], *, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, no_optimization: bool = False, slice_pushdown: bool = True, comm_subplan_elim: bool = True, comm_subexpr_elim: bool = True, streaming: bool = False) list[DataFrame][source]#

Collect multiple LazyFrames at the same time.

This runs all the computation graphs in parallel on the Polars threadpool.

diff --git a/py-polars/dev/reference/api/polars.enable_string_cache.html b/py-polars/dev/reference/api/polars.enable_string_cache.html index 860ffb2850ae..24df7d42ed8f 100644 --- a/py-polars/dev/reference/api/polars.enable_string_cache.html +++ b/py-polars/dev/reference/api/polars.enable_string_cache.html @@ -1621,7 +1621,7 @@

polars.enable_string_cache#

-polars.enable_string_cache(enable: bool) None[source]#
+polars.enable_string_cache(enable: bool) None[source]#

Enable (or disable) the global string cache.

This ensures that casts to Categorical dtypes will have the same category values when string values are equal.

diff --git a/py-polars/dev/reference/api/polars.get_index_type.html b/py-polars/dev/reference/api/polars.get_index_type.html index 85ade8d20cb3..8b904c17c69d 100644 --- a/py-polars/dev/reference/api/polars.get_index_type.html +++ b/py-polars/dev/reference/api/polars.get_index_type.html @@ -1621,7 +1621,7 @@

polars.get_index_type#

-polars.get_index_type() DataTypeClass[source]#
+polars.get_index_type() DataTypeClass[source]#

Get the datatype used for Polars indexing.

Returns:
diff --git a/py-polars/dev/reference/api/polars.scan_pyarrow_dataset.html b/py-polars/dev/reference/api/polars.scan_pyarrow_dataset.html index c122d1fd064a..c84383d6f78c 100644 --- a/py-polars/dev/reference/api/polars.scan_pyarrow_dataset.html +++ b/py-polars/dev/reference/api/polars.scan_pyarrow_dataset.html @@ -1621,7 +1621,7 @@

polars.scan_pyarrow_dataset#

-polars.scan_pyarrow_dataset(source: pa.dataset.Dataset, *, allow_pyarrow_filter: bool = True) LazyFrame[source]#
+polars.scan_pyarrow_dataset(source: pa.dataset.Dataset, *, allow_pyarrow_filter: bool = True) LazyFrame[source]#

Scan a pyarrow dataset.

This can be useful to connect to cloud or partitioned datasets.

diff --git a/py-polars/dev/reference/api/polars.threadpool_size.html b/py-polars/dev/reference/api/polars.threadpool_size.html index 50475c267b52..8d17c5bbe010 100644 --- a/py-polars/dev/reference/api/polars.threadpool_size.html +++ b/py-polars/dev/reference/api/polars.threadpool_size.html @@ -1621,7 +1621,7 @@

polars.threadpool_size#

-polars.threadpool_size() int[source]#
+polars.threadpool_size() int[source]#

Get the number of threads in the Polars thread pool.

Notes

The threadpool size can be overridden by setting the POLARS_MAX_THREADS diff --git a/py-polars/dev/reference/api/polars.using_string_cache.html b/py-polars/dev/reference/api/polars.using_string_cache.html index 697261e03bda..9c68058063f6 100644 --- a/py-polars/dev/reference/api/polars.using_string_cache.html +++ b/py-polars/dev/reference/api/polars.using_string_cache.html @@ -1621,7 +1621,7 @@

polars.using_string_cache#

-polars.using_string_cache() bool[source]#
+polars.using_string_cache() bool[source]#

Return the current state of the global string cache (enabled/disabled).

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.__dataframe__.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.__dataframe__.html index b553d6bb7616..ea1771b724b2 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.__dataframe__.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.__dataframe__.html @@ -1626,7 +1626,7 @@

polars.DataFrame.__dataframe__#

-DataFrame.__dataframe__(nan_as_null: bool = False, allow_copy: bool = True) _PyArrowDataFrame[source]#
+DataFrame.__dataframe__(nan_as_null: bool = False, allow_copy: bool = True) _PyArrowDataFrame[source]#

Convert to a dataframe object implementing the dataframe interchange protocol.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.apply.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.apply.html index d3fe09f31686..944a37cc6638 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.apply.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.apply.html @@ -1626,7 +1626,7 @@

polars.DataFrame.apply#

-DataFrame.apply(function: Callable[[tuple[Any, ...]], Any], return_dtype: PolarsDataType | None = None, *, inference_size: int = 256) DataFrame[source]#
+DataFrame.apply(function: Callable[[tuple[Any, ...]], Any], return_dtype: PolarsDataType | None = None, *, inference_size: int = 256) DataFrame[source]#

Apply a custom/user-defined function (UDF) over the rows of the DataFrame.

Warning

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.bottom_k.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.bottom_k.html index ca2c20c1f26d..990a105c394a 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.bottom_k.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.bottom_k.html @@ -1626,7 +1626,7 @@

polars.DataFrame.bottom_k#

-DataFrame.bottom_k(k: int, *, by: IntoExpr | Iterable[IntoExpr], descending: bool | Sequence[bool] = False, nulls_last: bool = False, maintain_order: bool = False) DataFrame[source]#
+DataFrame.bottom_k(k: int, *, by: IntoExpr | Iterable[IntoExpr], descending: bool | Sequence[bool] = False, nulls_last: bool = False, maintain_order: bool = False) DataFrame[source]#

Return the k smallest elements.

If ‘descending=True` the largest elements will be given.

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.clear.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.clear.html index 0860133b48cb..f16fef4abb6a 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.clear.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.clear.html @@ -1626,7 +1626,7 @@

polars.DataFrame.clear#

-DataFrame.clear(n: int = 0) Self[source]#
+DataFrame.clear(n: int = 0) Self[source]#

Create an empty (n=0) or n-row null-filled (n>0) copy of the DataFrame.

Returns a n-row null-filled DataFrame with an identical schema. n can be greater than the current number of rows in the DataFrame.

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.clone.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.clone.html index 05cc8aa51ecc..b89e282cd17e 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.clone.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.clone.html @@ -1626,7 +1626,7 @@

polars.DataFrame.clone#

-DataFrame.clone() Self[source]#
+DataFrame.clone() Self[source]#

Cheap deepcopy/clone.

See also

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.columns.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.columns.html index 6811eaef3e09..9672103ae4ac 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.columns.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.columns.html @@ -1626,7 +1626,7 @@

polars.DataFrame.columns#

-property DataFrame.columns: list[str][source]#
+property DataFrame.columns: list[str][source]#

Get or set column names.

Examples

>>> df = pl.DataFrame(
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.corr.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.corr.html
index efe84c1b106c..853ec9bfcd9d 100644
--- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.corr.html
+++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.corr.html
@@ -1626,7 +1626,7 @@
 

polars.DataFrame.corr#

-DataFrame.corr(**kwargs: Any) DataFrame[source]#
+DataFrame.corr(**kwargs: Any) DataFrame[source]#

Return pairwise Pearson product-moment correlation coefficients between columns.

See numpy corrcoef for more information: https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.describe.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.describe.html index e91667f910ac..c60e1d62b3b2 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.describe.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.describe.html @@ -1626,7 +1626,7 @@

polars.DataFrame.describe#

-DataFrame.describe(percentiles: Sequence[float] | float | None = (0.25, 0.75)) Self[source]#
+DataFrame.describe(percentiles: Sequence[float] | float | None = (0.25, 0.75)) Self[source]#

Summary statistics for a DataFrame.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.drop.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.drop.html index 3cc7f81282f2..e2ef753e1dea 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.drop.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.drop.html @@ -1626,7 +1626,7 @@

polars.DataFrame.drop#

-DataFrame.drop(columns: str | Collection[str], *more_columns: str) DataFrame[source]#
+DataFrame.drop(columns: str | Collection[str], *more_columns: str) DataFrame[source]#

Remove columns from the dataframe.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.drop_in_place.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.drop_in_place.html index f39bc31aa858..96a698d8001d 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.drop_in_place.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.drop_in_place.html @@ -1626,7 +1626,7 @@

polars.DataFrame.drop_in_place#

-DataFrame.drop_in_place(name: str) Series[source]#
+DataFrame.drop_in_place(name: str) Series[source]#

Drop a single column in-place and return the dropped column.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.drop_nulls.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.drop_nulls.html index 17016bb3cedc..18d87657a9d3 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.drop_nulls.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.drop_nulls.html @@ -1626,7 +1626,7 @@

polars.DataFrame.drop_nulls#

-DataFrame.drop_nulls(subset: str | Collection[str] | None = None) DataFrame[source]#
+DataFrame.drop_nulls(subset: str | Collection[str] | None = None) DataFrame[source]#

Drop all rows that contain null values.

Returns a new DataFrame.

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.dtypes.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.dtypes.html index 155bacb33bd3..1601b55aca77 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.dtypes.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.dtypes.html @@ -1626,7 +1626,7 @@

polars.DataFrame.dtypes#

-property DataFrame.dtypes: list[PolarsDataType][source]#
+property DataFrame.dtypes: list[PolarsDataType][source]#

Get the datatypes of the columns of this DataFrame.

The datatypes can also be found in column headers when printing the DataFrame.

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.estimated_size.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.estimated_size.html index 5cfdbd2396c8..fa67101e35c9 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.estimated_size.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.estimated_size.html @@ -1626,7 +1626,7 @@

polars.DataFrame.estimated_size#

-DataFrame.estimated_size(unit: SizeUnit = 'b') int | float[source]#
+DataFrame.estimated_size(unit: SizeUnit = 'b') int | float[source]#

Return an estimation of the total (heap) allocated size of the DataFrame.

Estimated size is given in the specified unit (bytes by default).

This estimation is the sum of the size of its buffers, validity, including diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.explode.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.explode.html index d0bc3e79aa63..566406420b9e 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.explode.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.explode.html @@ -1626,7 +1626,7 @@

polars.DataFrame.explode#

-DataFrame.explode(columns: str | Sequence[str] | Expr | Sequence[Expr], *more_columns: str | Expr) DataFrame[source]#
+DataFrame.explode(columns: str | Sequence[str] | Expr | Sequence[Expr], *more_columns: str | Expr) DataFrame[source]#

Explode the dataframe to long format by exploding the given columns.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.extend.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.extend.html index 4b0b196ee191..a80badf9b05b 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.extend.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.extend.html @@ -1626,7 +1626,7 @@

polars.DataFrame.extend#

-DataFrame.extend(other: DataFrame) Self[source]#
+DataFrame.extend(other: DataFrame) Self[source]#

Extend the memory backed by this DataFrame with the values from other.

Different from vstack which adds the chunks from other to the chunks of this DataFrame, extend appends the data from other to the underlying diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.fill_nan.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.fill_nan.html index 39a30453e679..28a8355954e8 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.fill_nan.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.fill_nan.html @@ -1626,7 +1626,7 @@

polars.DataFrame.fill_nan#

-DataFrame.fill_nan(value: Expr | int | float | None) DataFrame[source]#
+DataFrame.fill_nan(value: Expr | int | float | None) DataFrame[source]#

Fill floating point NaN values by an Expression evaluation.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.fill_null.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.fill_null.html index ad11276b7268..42f34b94c5db 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.fill_null.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.fill_null.html @@ -1626,7 +1626,7 @@

polars.DataFrame.fill_null#

-DataFrame.fill_null(value: Any | None = None, strategy: FillNullStrategy | None = None, limit: int | None = None, *, matches_supertype: bool = True) DataFrame[source]#
+DataFrame.fill_null(value: Any | None = None, strategy: FillNullStrategy | None = None, limit: int | None = None, *, matches_supertype: bool = True) DataFrame[source]#

Fill null values using the specified value or strategy.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.filter.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.filter.html index 3ed7fcd9b55e..59081c59853d 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.filter.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.filter.html @@ -1626,7 +1626,7 @@

polars.DataFrame.filter#

-DataFrame.filter(predicate: Expr | str | Series | list[bool] | np.ndarray[Any, Any] | bool) DataFrame[source]#
+DataFrame.filter(predicate: Expr | str | Series | list[bool] | np.ndarray[Any, Any] | bool) DataFrame[source]#

Filter the rows in the DataFrame based on a predicate expression.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.find_idx_by_name.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.find_idx_by_name.html index 60057ca008d3..43d2793cc6bd 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.find_idx_by_name.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.find_idx_by_name.html @@ -1626,7 +1626,7 @@

polars.DataFrame.find_idx_by_name#

-DataFrame.find_idx_by_name(name: str) int[source]#
+DataFrame.find_idx_by_name(name: str) int[source]#

Find the index of a column by name.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.flags.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.flags.html index 87cebc27a6cc..14cf59df6922 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.flags.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.flags.html @@ -1626,7 +1626,7 @@

polars.DataFrame.flags#

-property DataFrame.flags: dict[str, dict[str, bool]][source]#
+property DataFrame.flags: dict[str, dict[str, bool]][source]#

Get flags that are set on the columns of this DataFrame.

Returns:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.fold.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.fold.html index 2e280d18b2bb..529f9e14f4e5 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.fold.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.fold.html @@ -1626,7 +1626,7 @@

polars.DataFrame.fold#

-DataFrame.fold(operation: Callable[[Series, Series], Series]) Series[source]#
+DataFrame.fold(operation: Callable[[Series, Series], Series]) Series[source]#

Apply a horizontal reduction on a DataFrame.

This can be used to effectively determine aggregations on a row level, and can be applied to any DataType that can be supercasted (casted to a similar parent diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.frame_equal.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.frame_equal.html index 92e1dee7703d..f20cfaec6e3b 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.frame_equal.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.frame_equal.html @@ -1626,7 +1626,7 @@

polars.DataFrame.frame_equal#

-DataFrame.frame_equal(other: DataFrame, *, null_equal: bool = True) bool[source]#
+DataFrame.frame_equal(other: DataFrame, *, null_equal: bool = True) bool[source]#

Check if DataFrame is equal to other.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.get_column.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.get_column.html index 224ef79c0eff..6c3ec4ae1b27 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.get_column.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.get_column.html @@ -1626,7 +1626,7 @@

polars.DataFrame.get_column#

-DataFrame.get_column(name: str) Series[source]#
+DataFrame.get_column(name: str) Series[source]#

Get a single column as Series by name.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.get_columns.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.get_columns.html index be27f4b4d716..081a7b8e8959 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.get_columns.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.get_columns.html @@ -1626,7 +1626,7 @@

polars.DataFrame.get_columns#

-DataFrame.get_columns() list[Series][source]#
+DataFrame.get_columns() list[Series][source]#

Get the DataFrame as a List of Series.

Examples

>>> df = pl.DataFrame({"foo": [1, 2, 3], "bar": [4, 5, 6]})
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.glimpse.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.glimpse.html
index 652f53f4662b..c152828924e0 100644
--- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.glimpse.html
+++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.glimpse.html
@@ -1626,7 +1626,7 @@
 

polars.DataFrame.glimpse#

-DataFrame.glimpse(*, return_as_string: Literal[False]) None[source]#
+DataFrame.glimpse(*, return_as_string: Literal[False]) None[source]#
DataFrame.glimpse(*, return_as_string: Literal[True]) str

Return a dense preview of the dataframe.

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.groupby.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.groupby.html index c9bcfaf733f8..128d696a3e03 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.groupby.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.groupby.html @@ -1626,7 +1626,7 @@

polars.DataFrame.groupby#

-DataFrame.groupby(by: IntoExpr | Iterable[IntoExpr], *more_by: IntoExpr, maintain_order: bool = False) GroupBy[source]#
+DataFrame.groupby(by: IntoExpr | Iterable[IntoExpr], *more_by: IntoExpr, maintain_order: bool = False) GroupBy[source]#

Start a groupby operation.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.groupby_dynamic.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.groupby_dynamic.html index 89f7ea1686d9..bbb4a52ba5d4 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.groupby_dynamic.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.groupby_dynamic.html @@ -1626,7 +1626,7 @@

polars.DataFrame.groupby_dynamic#

-DataFrame.groupby_dynamic(index_column: IntoExpr, *, every: str | timedelta, period: str | timedelta | None = None, offset: str | timedelta | None = None, truncate: bool = True, include_boundaries: bool = False, closed: ClosedInterval = 'left', by: IntoExpr | Iterable[IntoExpr] | None = None, start_by: StartBy = 'window', check_sorted: bool = True) DynamicGroupBy[source]#
+DataFrame.groupby_dynamic(index_column: IntoExpr, *, every: str | timedelta, period: str | timedelta | None = None, offset: str | timedelta | None = None, truncate: bool = True, include_boundaries: bool = False, closed: ClosedInterval = 'left', by: IntoExpr | Iterable[IntoExpr] | None = None, start_by: StartBy = 'window', check_sorted: bool = True) DynamicGroupBy[source]#

Group based on a time value (or index value of type Int32, Int64).

Time windows are calculated and rows are assigned to windows. Different from a normal groupby is that a row can be member of multiple groups. The time/index diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.groupby_rolling.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.groupby_rolling.html index 7f76e9ead7bf..2391574b7105 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.groupby_rolling.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.groupby_rolling.html @@ -1626,7 +1626,7 @@

polars.DataFrame.groupby_rolling#

-DataFrame.groupby_rolling(index_column: IntoExpr, *, period: str | timedelta, offset: str | timedelta | None = None, closed: ClosedInterval = 'right', by: IntoExpr | Iterable[IntoExpr] | None = None, check_sorted: bool = True) RollingGroupBy[source]#
+DataFrame.groupby_rolling(index_column: IntoExpr, *, period: str | timedelta, offset: str | timedelta | None = None, closed: ClosedInterval = 'right', by: IntoExpr | Iterable[IntoExpr] | None = None, check_sorted: bool = True) RollingGroupBy[source]#

Create rolling groups based on a time, Int32, or Int64 column.

Different from a dynamic_groupby the windows are now determined by the individual values and are not of constant intervals. For constant intervals use diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.hash_rows.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.hash_rows.html index 354673e29224..61592f24cfe1 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.hash_rows.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.hash_rows.html @@ -1626,7 +1626,7 @@

polars.DataFrame.hash_rows#

-DataFrame.hash_rows(seed: int = 0, seed_1: int | None = None, seed_2: int | None = None, seed_3: int | None = None) Series[source]#
+DataFrame.hash_rows(seed: int = 0, seed_1: int | None = None, seed_2: int | None = None, seed_3: int | None = None) Series[source]#

Hash and combine the rows in this DataFrame.

The hash value is of type UInt64.

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.head.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.head.html index 69d4b68e179e..0f562aa0dd82 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.head.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.head.html @@ -1626,7 +1626,7 @@

polars.DataFrame.head#

-DataFrame.head(n: int = 5) Self[source]#
+DataFrame.head(n: int = 5) Self[source]#

Get the first n rows.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.height.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.height.html index 8cdbb130cc9b..c3993d84d07e 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.height.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.height.html @@ -1626,7 +1626,7 @@

polars.DataFrame.height#

-property DataFrame.height: int[source]#
+property DataFrame.height: int[source]#

Get the height of the DataFrame.

Examples

>>> df = pl.DataFrame({"foo": [1, 2, 3, 4, 5]})
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.hstack.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.hstack.html
index 662cacd453d1..5dd0727fec1d 100644
--- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.hstack.html
+++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.hstack.html
@@ -1626,7 +1626,7 @@
 

polars.DataFrame.hstack#

-DataFrame.hstack(columns: list[Series] | DataFrame, *, in_place: bool = False) Self[source]#
+DataFrame.hstack(columns: list[Series] | DataFrame, *, in_place: bool = False) Self[source]#

Return a new DataFrame grown horizontally by stacking multiple Series to it.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.insert_at_idx.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.insert_at_idx.html index 101a51bcaa67..44a58a51e7ce 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.insert_at_idx.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.insert_at_idx.html @@ -1626,7 +1626,7 @@

polars.DataFrame.insert_at_idx#

-DataFrame.insert_at_idx(index: int, series: Series) Self[source]#
+DataFrame.insert_at_idx(index: int, series: Series) Self[source]#

Insert a Series at a certain column index. This operation is in place.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.interpolate.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.interpolate.html index 78615444a109..4e9fa0f639e3 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.interpolate.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.interpolate.html @@ -1626,7 +1626,7 @@

polars.DataFrame.interpolate#

-DataFrame.interpolate() DataFrame[source]#
+DataFrame.interpolate() DataFrame[source]#

Interpolate intermediate values. The interpolation method is linear.

Examples

>>> df = pl.DataFrame(
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.is_duplicated.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.is_duplicated.html
index c95c380f8a81..d59c96225b6d 100644
--- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.is_duplicated.html
+++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.is_duplicated.html
@@ -1626,7 +1626,7 @@
 

polars.DataFrame.is_duplicated#

-DataFrame.is_duplicated() Series[source]#
+DataFrame.is_duplicated() Series[source]#

Get a mask of all duplicated rows in this DataFrame.

Examples

>>> df = pl.DataFrame(
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.is_empty.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.is_empty.html
index 261f48e8847d..2eb6853baf93 100644
--- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.is_empty.html
+++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.is_empty.html
@@ -1626,7 +1626,7 @@
 

polars.DataFrame.is_empty#

-DataFrame.is_empty() bool[source]#
+DataFrame.is_empty() bool[source]#

Check if the dataframe is empty.

Examples

>>> df = pl.DataFrame({"foo": [1, 2, 3], "bar": [4, 5, 6]})
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.is_unique.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.is_unique.html
index 3c86bcfd507e..0cb2ef380cbe 100644
--- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.is_unique.html
+++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.is_unique.html
@@ -1626,7 +1626,7 @@
 

polars.DataFrame.is_unique#

-DataFrame.is_unique() Series[source]#
+DataFrame.is_unique() Series[source]#

Get a mask of all unique rows in this DataFrame.

Examples

>>> df = pl.DataFrame(
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.item.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.item.html
index d359c372871a..ab55b807109b 100644
--- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.item.html
+++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.item.html
@@ -1626,7 +1626,7 @@
 

polars.DataFrame.item#

-DataFrame.item(row: int | None = None, column: int | str | None = None) Any[source]#
+DataFrame.item(row: int | None = None, column: int | str | None = None) Any[source]#

Return the dataframe as a scalar, or return the element at the given row/column.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.iter_rows.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.iter_rows.html index 92a3c936d2ae..99087610ad24 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.iter_rows.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.iter_rows.html @@ -1626,7 +1626,7 @@

polars.DataFrame.iter_rows#

-DataFrame.iter_rows(*, named: Literal[False] = False, buffer_size: int = 500) Iterator[tuple[Any, ...]][source]#
+DataFrame.iter_rows(*, named: Literal[False] = False, buffer_size: int = 500) Iterator[tuple[Any, ...]][source]#
DataFrame.iter_rows(*, named: Literal[True], buffer_size: int = 500) Iterator[dict[str, Any]]

Returns an iterator over the DataFrame of rows of python-native values.

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.iter_slices.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.iter_slices.html index 823c69e7712d..8c90e0d5d8b0 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.iter_slices.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.iter_slices.html @@ -1626,7 +1626,7 @@

polars.DataFrame.iter_slices#

-DataFrame.iter_slices(n_rows: int = 10000) Iterator[DataFrame][source]#
+DataFrame.iter_slices(n_rows: int = 10000) Iterator[DataFrame][source]#

Returns a non-copying iterator of slices over the underlying DataFrame.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.join.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.join.html index 91e910497862..94bdda513e4f 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.join.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.join.html @@ -1626,7 +1626,7 @@

polars.DataFrame.join#

-DataFrame.join(other: DataFrame, on: str | Expr | Sequence[str | Expr] | None = None, how: JoinStrategy = 'inner', *, left_on: str | Expr | Sequence[str | Expr] | None = None, right_on: str | Expr | Sequence[str | Expr] | None = None, suffix: str = '_right', validate: JoinValidation = 'm:m') DataFrame[source]#
+DataFrame.join(other: DataFrame, on: str | Expr | Sequence[str | Expr] | None = None, how: JoinStrategy = 'inner', *, left_on: str | Expr | Sequence[str | Expr] | None = None, right_on: str | Expr | Sequence[str | Expr] | None = None, suffix: str = '_right', validate: JoinValidation = 'm:m') DataFrame[source]#

Join in SQL-like fashion.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.join_asof.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.join_asof.html index d74eb075d4a0..94b3a06a7c50 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.join_asof.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.join_asof.html @@ -1626,7 +1626,7 @@

polars.DataFrame.join_asof#

-DataFrame.join_asof(other: DataFrame, *, left_on: str | None | Expr = None, right_on: str | None | Expr = None, on: str | None | Expr = None, by_left: str | Sequence[str] | None = None, by_right: str | Sequence[str] | None = None, by: str | Sequence[str] | None = None, strategy: AsofJoinStrategy = 'backward', suffix: str = '_right', tolerance: str | int | float | None = None, allow_parallel: bool = True, force_parallel: bool = False) DataFrame[source]#
+DataFrame.join_asof(other: DataFrame, *, left_on: str | None | Expr = None, right_on: str | None | Expr = None, on: str | None | Expr = None, by_left: str | Sequence[str] | None = None, by_right: str | Sequence[str] | None = None, by: str | Sequence[str] | None = None, strategy: AsofJoinStrategy = 'backward', suffix: str = '_right', tolerance: str | int | float | None = None, allow_parallel: bool = True, force_parallel: bool = False) DataFrame[source]#

Perform an asof join.

This is similar to a left-join except that we match on nearest key rather than equal keys.

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.lazy.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.lazy.html index 48d8966da89c..fa8c010319c5 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.lazy.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.lazy.html @@ -1626,7 +1626,7 @@

polars.DataFrame.lazy#

-DataFrame.lazy() LazyFrame[source]#
+DataFrame.lazy() LazyFrame[source]#

Start a lazy query from this point. This returns a LazyFrame object.

Operations on a LazyFrame are not executed until this is requested by either calling:

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.limit.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.limit.html index cd45ab954ca4..ae3c9642c42c 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.limit.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.limit.html @@ -1626,7 +1626,7 @@

polars.DataFrame.limit#

-DataFrame.limit(n: int = 5) Self[source]#
+DataFrame.limit(n: int = 5) Self[source]#

Get the first n rows.

Alias for DataFrame.head().

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.max.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.max.html index df98b83a8602..349943a9f890 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.max.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.max.html @@ -1626,7 +1626,7 @@

polars.DataFrame.max#

-DataFrame.max(axis: Literal[0] = 0) Self[source]#
+DataFrame.max(axis: Literal[0] = 0) Self[source]#
DataFrame.max(axis: Literal[1]) Series
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.mean.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.mean.html index 08289e6928ae..8a7e9be15f1f 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.mean.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.mean.html @@ -1626,7 +1626,7 @@

polars.DataFrame.mean#

-DataFrame.mean(*, axis: Literal[0] = 0, null_strategy: NullStrategy = 'ignore') Self[source]#
+DataFrame.mean(*, axis: Literal[0] = 0, null_strategy: NullStrategy = 'ignore') Self[source]#
DataFrame.mean(*, axis: Literal[1], null_strategy: NullStrategy = 'ignore') Series
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.median.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.median.html index 752b5df006f8..4bcc695748cb 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.median.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.median.html @@ -1626,7 +1626,7 @@

polars.DataFrame.median#

-DataFrame.median() Self[source]#
+DataFrame.median() Self[source]#

Aggregate the columns of this DataFrame to their median value.

Examples

>>> df = pl.DataFrame(
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.melt.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.melt.html
index 923b64faf686..1ef8636eadae 100644
--- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.melt.html
+++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.melt.html
@@ -1626,7 +1626,7 @@
 

polars.DataFrame.melt#

-DataFrame.melt(id_vars: Sequence[str] | str | None = None, value_vars: Sequence[str] | str | None = None, variable_name: str | None = None, value_name: str | None = None) Self[source]#
+DataFrame.melt(id_vars: Sequence[str] | str | None = None, value_vars: Sequence[str] | str | None = None, variable_name: str | None = None, value_name: str | None = None) Self[source]#

Unpivot a DataFrame from wide to long format.

Optionally leaves identifiers set.

This function is useful to massage a DataFrame into a format where one or more diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.merge_sorted.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.merge_sorted.html index a09c0850c8bc..3a00c67614a4 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.merge_sorted.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.merge_sorted.html @@ -1626,7 +1626,7 @@

polars.DataFrame.merge_sorted#

-DataFrame.merge_sorted(other: DataFrame, key: str) DataFrame[source]#
+DataFrame.merge_sorted(other: DataFrame, key: str) DataFrame[source]#

Take two sorted DataFrames and merge them by the sorted key.

The output of this operation will also be sorted. It is the callers responsibility that the frames are sorted diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.min.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.min.html index 2477810f022a..473c805aae14 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.min.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.min.html @@ -1626,7 +1626,7 @@

polars.DataFrame.min#

-DataFrame.min(axis: Literal[0] = 0) Self[source]#
+DataFrame.min(axis: Literal[0] = 0) Self[source]#
DataFrame.min(axis: Literal[1]) Series
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.n_chunks.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.n_chunks.html index 023780af0e3e..e6f48eedc500 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.n_chunks.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.n_chunks.html @@ -1626,7 +1626,7 @@

polars.DataFrame.n_chunks#

-DataFrame.n_chunks(strategy: Literal['first'] = 'first') int[source]#
+DataFrame.n_chunks(strategy: Literal['first'] = 'first') int[source]#
DataFrame.n_chunks(strategy: Literal['all']) list[int]

Get number of chunks used by the ChunkedArrays of this DataFrame.

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.n_unique.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.n_unique.html index 2fc39c8cd6b3..1c2bc507a854 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.n_unique.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.n_unique.html @@ -1626,7 +1626,7 @@

polars.DataFrame.n_unique#

-DataFrame.n_unique(subset: str | Expr | Sequence[str | Expr] | None = None) int[source]#
+DataFrame.n_unique(subset: str | Expr | Sequence[str | Expr] | None = None) int[source]#

Return the number of unique rows, or the number of unique row-subsets.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.null_count.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.null_count.html index bba1d8eb811f..aea5d54069e2 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.null_count.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.null_count.html @@ -1626,7 +1626,7 @@

polars.DataFrame.null_count#

-DataFrame.null_count() Self[source]#
+DataFrame.null_count() Self[source]#

Create a new DataFrame that shows the null counts per column.

Examples

>>> df = pl.DataFrame(
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.partition_by.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.partition_by.html
index 67cc54b533a5..5d220bd941b2 100644
--- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.partition_by.html
+++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.partition_by.html
@@ -1626,7 +1626,7 @@
 

polars.DataFrame.partition_by#

-DataFrame.partition_by(by: str | Iterable[str], *more_by: str, maintain_order: bool = True, include_key: bool = True, as_dict: Literal[False] = False) list[Self][source]#
+DataFrame.partition_by(by: str | Iterable[str], *more_by: str, maintain_order: bool = True, include_key: bool = True, as_dict: Literal[False] = False) list[Self][source]#
DataFrame.partition_by(by: str | Iterable[str], *more_by: str, maintain_order: bool = True, include_key: bool = True, as_dict: Literal[True]) dict[Any, Self]

Group by the given columns and return the groups as separate dataframes.

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.pipe.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.pipe.html index c0ad8dfa2065..4c06b29bff41 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.pipe.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.pipe.html @@ -1626,7 +1626,7 @@

polars.DataFrame.pipe#

-DataFrame.pipe(function: Callable[Concatenate[DataFrame, P], T], *args: P.args, **kwargs: P.kwargs) T[source]#
+DataFrame.pipe(function: Callable[Concatenate[DataFrame, P], T], *args: P.args, **kwargs: P.kwargs) T[source]#

Offers a structured way to apply a sequence of user-defined functions (UDFs).

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.pivot.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.pivot.html index acd79ff4d9f5..a9c5c62b8fde 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.pivot.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.pivot.html @@ -1626,7 +1626,7 @@

polars.DataFrame.pivot#

-DataFrame.pivot(values: Sequence[str] | str, index: Sequence[str] | str, columns: Sequence[str] | str, aggregate_function: PivotAgg | Expr | None | NoDefault = _NoDefault.no_default, *, maintain_order: bool = True, sort_columns: bool = False, separator: str = '_') Self[source]#
+DataFrame.pivot(values: Sequence[str] | str, index: Sequence[str] | str, columns: Sequence[str] | str, aggregate_function: PivotAgg | Expr | None | NoDefault = _NoDefault.no_default, *, maintain_order: bool = True, sort_columns: bool = False, separator: str = '_') Self[source]#

Create a spreadsheet-style pivot table as a DataFrame.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.product.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.product.html index fa873278cf76..fff2f2e686a3 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.product.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.product.html @@ -1626,7 +1626,7 @@

polars.DataFrame.product#

-DataFrame.product() DataFrame[source]#
+DataFrame.product() DataFrame[source]#

Aggregate the columns of this DataFrame to their product values.

Examples

>>> df = pl.DataFrame(
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.quantile.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.quantile.html
index b66c105ecd96..2d90182c59a0 100644
--- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.quantile.html
+++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.quantile.html
@@ -1626,7 +1626,7 @@
 

polars.DataFrame.quantile#

-DataFrame.quantile(quantile: float, interpolation: RollingInterpolationMethod = 'nearest') Self[source]#
+DataFrame.quantile(quantile: float, interpolation: RollingInterpolationMethod = 'nearest') Self[source]#

Aggregate the columns of this DataFrame to their quantile value.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.rechunk.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.rechunk.html index 262f71a744cf..c999dcb64744 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.rechunk.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.rechunk.html @@ -1626,7 +1626,7 @@

polars.DataFrame.rechunk#

-DataFrame.rechunk() Self[source]#
+DataFrame.rechunk() Self[source]#

Rechunk the data in this DataFrame to a contiguous allocation.

This will make sure all subsequent operations have optimal and predictable performance.

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.rename.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.rename.html index 0a1c73d17a2a..a10812e20201 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.rename.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.rename.html @@ -1626,7 +1626,7 @@

polars.DataFrame.rename#

-DataFrame.rename(mapping: dict[str, str]) DataFrame[source]#
+DataFrame.rename(mapping: dict[str, str]) DataFrame[source]#

Rename column names.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.replace.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.replace.html index a968890f47b2..a4009bbfbc16 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.replace.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.replace.html @@ -1626,7 +1626,7 @@

polars.DataFrame.replace#

-DataFrame.replace(column: str, new_column: Series) Self[source]#
+DataFrame.replace(column: str, new_column: Series) Self[source]#

Replace a column by a new Series.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.replace_at_idx.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.replace_at_idx.html index f0edd54e95d9..fe6980ce0b9e 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.replace_at_idx.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.replace_at_idx.html @@ -1626,7 +1626,7 @@

polars.DataFrame.replace_at_idx#

-DataFrame.replace_at_idx(index: int, series: Series) Self[source]#
+DataFrame.replace_at_idx(index: int, series: Series) Self[source]#

Replace a column at an index location.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.reverse.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.reverse.html index 51a94bba32b9..bff378e2d2e9 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.reverse.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.reverse.html @@ -1626,7 +1626,7 @@

polars.DataFrame.reverse#

-DataFrame.reverse() DataFrame[source]#
+DataFrame.reverse() DataFrame[source]#

Reverse the DataFrame.

Examples

>>> df = pl.DataFrame(
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.row.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.row.html
index acb9b65b25df..aaa694fd6480 100644
--- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.row.html
+++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.row.html
@@ -1626,7 +1626,7 @@
 

polars.DataFrame.row#

-DataFrame.row(index: int | None = None, *, by_predicate: Expr | None = None, named: Literal[False] = False) tuple[Any, ...][source]#
+DataFrame.row(index: int | None = None, *, by_predicate: Expr | None = None, named: Literal[False] = False) tuple[Any, ...][source]#
DataFrame.row(index: int | None = None, *, by_predicate: Expr | None = None, named: Literal[True]) dict[str, Any]

Get the values of a single row, either by index or by predicate.

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.rows.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.rows.html index 795e80f9c432..0f0959b6939c 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.rows.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.rows.html @@ -1626,7 +1626,7 @@

polars.DataFrame.rows#

-DataFrame.rows(*, named: Literal[False] = False) list[tuple[Any, ...]][source]#
+DataFrame.rows(*, named: Literal[False] = False) list[tuple[Any, ...]][source]#
DataFrame.rows(*, named: Literal[True]) list[dict[str, Any]]

Returns all data in the DataFrame as a list of rows of python-native values.

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.rows_by_key.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.rows_by_key.html index 291864cecf64..495fe4d9c891 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.rows_by_key.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.rows_by_key.html @@ -1626,7 +1626,7 @@

polars.DataFrame.rows_by_key#

-DataFrame.rows_by_key(key: str | Sequence[str] | SelectorType, *, named: bool = False, include_key: bool = False, unique: bool = False) dict[Any, Iterable[Any]][source]#
+DataFrame.rows_by_key(key: str | Sequence[str] | SelectorType, *, named: bool = False, include_key: bool = False, unique: bool = False) dict[Any, Iterable[Any]][source]#

Returns DataFrame data as a keyed dictionary of python-native values.

Note that this method should not be used in place of native operations, due to the high cost of materialising all frame data out into a dictionary; it should diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.sample.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.sample.html index a2b98f3e87b0..83d3dca09c23 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.sample.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.sample.html @@ -1626,7 +1626,7 @@

polars.DataFrame.sample#

-DataFrame.sample(n: int | None = None, *, fraction: float | None = None, with_replacement: bool = False, shuffle: bool = False, seed: int | None = None) Self[source]#
+DataFrame.sample(n: int | None = None, *, fraction: float | None = None, with_replacement: bool = False, shuffle: bool = False, seed: int | None = None) Self[source]#

Sample from this DataFrame.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.schema.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.schema.html index c346f0231807..9e49fe1bbdb5 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.schema.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.schema.html @@ -1626,7 +1626,7 @@

polars.DataFrame.schema#

-property DataFrame.schema: SchemaDict[source]#
+property DataFrame.schema: SchemaDict[source]#

Get a dict[column name, DataType].

Examples

>>> df = pl.DataFrame(
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.select.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.select.html
index 08ef665733f1..9efc15c335ad 100644
--- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.select.html
+++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.select.html
@@ -1626,7 +1626,7 @@
 

polars.DataFrame.select#

-DataFrame.select(*exprs: IntoExpr | Iterable[IntoExpr], **named_exprs: IntoExpr) DataFrame[source]#
+DataFrame.select(*exprs: IntoExpr | Iterable[IntoExpr], **named_exprs: IntoExpr) DataFrame[source]#

Select columns from this DataFrame.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.set_sorted.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.set_sorted.html index b156027691cc..61a9cb57feb5 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.set_sorted.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.set_sorted.html @@ -1626,7 +1626,7 @@

polars.DataFrame.set_sorted#

-DataFrame.set_sorted(column: str | Iterable[str], *more_columns: str, descending: bool = False) DataFrame[source]#
+DataFrame.set_sorted(column: str | Iterable[str], *more_columns: str, descending: bool = False) DataFrame[source]#

Indicate that one or multiple columns are sorted.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.shape.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.shape.html index 0c68dd18eb5d..b1d4b8c3b667 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.shape.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.shape.html @@ -1626,7 +1626,7 @@

polars.DataFrame.shape#

-property DataFrame.shape: tuple[int, int][source]#
+property DataFrame.shape: tuple[int, int][source]#

Get the shape of the DataFrame.

Examples

>>> df = pl.DataFrame({"foo": [1, 2, 3, 4, 5]})
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.shift.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.shift.html
index 64064b79ec54..8188bdd79c5a 100644
--- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.shift.html
+++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.shift.html
@@ -1626,7 +1626,7 @@
 

polars.DataFrame.shift#

-DataFrame.shift(periods: int) Self[source]#
+DataFrame.shift(periods: int) Self[source]#

Shift values by the given period.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.shift_and_fill.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.shift_and_fill.html index cb3d351ade37..085e93edf47a 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.shift_and_fill.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.shift_and_fill.html @@ -1626,7 +1626,7 @@

polars.DataFrame.shift_and_fill#

-DataFrame.shift_and_fill(fill_value: int | str | float, *, periods: int = 1) DataFrame[source]#
+DataFrame.shift_and_fill(fill_value: int | str | float, *, periods: int = 1) DataFrame[source]#

Shift the values by a given period and fill the resulting null values.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.shrink_to_fit.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.shrink_to_fit.html index 4cf21a1fb892..f7074ef85d85 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.shrink_to_fit.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.shrink_to_fit.html @@ -1626,7 +1626,7 @@

polars.DataFrame.shrink_to_fit#

-DataFrame.shrink_to_fit(*, in_place: bool = False) Self[source]#
+DataFrame.shrink_to_fit(*, in_place: bool = False) Self[source]#

Shrink DataFrame memory usage.

Shrinks to fit the exact capacity needed to hold the data.

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.slice.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.slice.html index 47c9ba7229bb..7be9535fe479 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.slice.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.slice.html @@ -1626,7 +1626,7 @@

polars.DataFrame.slice#

-DataFrame.slice(offset: int, length: int | None = None) Self[source]#
+DataFrame.slice(offset: int, length: int | None = None) Self[source]#

Get a slice of this DataFrame.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.sort.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.sort.html index c0825d3a4f03..516cc1396a12 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.sort.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.sort.html @@ -1626,7 +1626,7 @@

polars.DataFrame.sort#

-DataFrame.sort(by: IntoExpr | Iterable[IntoExpr], *more_by: IntoExpr, descending: bool | Sequence[bool] = False, nulls_last: bool = False) DataFrame[source]#
+DataFrame.sort(by: IntoExpr | Iterable[IntoExpr], *more_by: IntoExpr, descending: bool | Sequence[bool] = False, nulls_last: bool = False) DataFrame[source]#

Sort the dataframe by the given columns.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.std.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.std.html index 0bf5873aa3c4..a18cdc88503b 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.std.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.std.html @@ -1626,7 +1626,7 @@

polars.DataFrame.std#

-DataFrame.std(ddof: int = 1) Self[source]#
+DataFrame.std(ddof: int = 1) Self[source]#

Aggregate the columns of this DataFrame to their standard deviation value.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.sum.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.sum.html index ac57230aadfc..a8e6f06da5b9 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.sum.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.sum.html @@ -1626,7 +1626,7 @@

polars.DataFrame.sum#

-DataFrame.sum(*, axis: Literal[0] = 0, null_strategy: NullStrategy = 'ignore') Self[source]#
+DataFrame.sum(*, axis: Literal[0] = 0, null_strategy: NullStrategy = 'ignore') Self[source]#
DataFrame.sum(*, axis: Literal[1], null_strategy: NullStrategy = 'ignore') Series
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.tail.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.tail.html index 703a3d100158..aa2182b21c3a 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.tail.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.tail.html @@ -1626,7 +1626,7 @@

polars.DataFrame.tail#

-DataFrame.tail(n: int = 5) Self[source]#
+DataFrame.tail(n: int = 5) Self[source]#

Get the last n rows.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.take_every.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.take_every.html index 8b164d7bd1ab..40f725bd998a 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.take_every.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.take_every.html @@ -1626,7 +1626,7 @@

polars.DataFrame.take_every#

-DataFrame.take_every(n: int) DataFrame[source]#
+DataFrame.take_every(n: int) DataFrame[source]#

Take every nth row in the DataFrame and return as a new DataFrame.

Examples

>>> s = pl.DataFrame({"a": [1, 2, 3, 4], "b": [5, 6, 7, 8]})
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_arrow.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_arrow.html
index 5c5c015457cb..bd7da97cf73c 100644
--- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_arrow.html
+++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_arrow.html
@@ -1626,7 +1626,7 @@
 

polars.DataFrame.to_arrow#

-DataFrame.to_arrow() Table[source]#
+DataFrame.to_arrow() Table[source]#

Collect the underlying arrow arrays in an Arrow Table.

This operation is mostly zero copy.

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_dict.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_dict.html index 6b242cd2b775..3e7147fafb52 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_dict.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_dict.html @@ -1626,7 +1626,7 @@

polars.DataFrame.to_dict#

-DataFrame.to_dict(as_series: Literal[True] = True) dict[str, Series][source]#
+DataFrame.to_dict(as_series: Literal[True] = True) dict[str, Series][source]#
DataFrame.to_dict(as_series: Literal[False]) dict[str, list[Any]]
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_dicts.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_dicts.html index 12f33531c0d0..440fd02557de 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_dicts.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_dicts.html @@ -1626,7 +1626,7 @@

polars.DataFrame.to_dicts#

-DataFrame.to_dicts() list[dict[str, Any]][source]#
+DataFrame.to_dicts() list[dict[str, Any]][source]#

Convert every row to a dictionary of Python-native values.

Notes

If you have ns-precision temporal values you should be aware that Python diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_dummies.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_dummies.html index c7bec1e37223..e64232626a6f 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_dummies.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_dummies.html @@ -1626,7 +1626,7 @@

polars.DataFrame.to_dummies#

-DataFrame.to_dummies(columns: str | Sequence[str] | None = None, *, separator: str = '_', drop_first: bool = False) Self[source]#
+DataFrame.to_dummies(columns: str | Sequence[str] | None = None, *, separator: str = '_', drop_first: bool = False) Self[source]#

Convert categorical variables into dummy/indicator variables.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_init_repr.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_init_repr.html index efad9ede0c36..b33bb81c5b5e 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_init_repr.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_init_repr.html @@ -1626,7 +1626,7 @@

polars.DataFrame.to_init_repr#

-DataFrame.to_init_repr(n: int = 1000) str[source]#
+DataFrame.to_init_repr(n: int = 1000) str[source]#

Convert DataFrame to instantiatable string representation.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_numpy.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_numpy.html index 4666cf64965f..3e285134ad9f 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_numpy.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_numpy.html @@ -1626,7 +1626,7 @@

polars.DataFrame.to_numpy#

-DataFrame.to_numpy(structured: bool = False, *, order: IndexOrder = 'fortran') np.ndarray[Any, Any][source]#
+DataFrame.to_numpy(structured: bool = False, *, order: IndexOrder = 'fortran') np.ndarray[Any, Any][source]#

Convert DataFrame to a 2D NumPy array.

This operation clones data.

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_pandas.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_pandas.html index 306ff747230d..320f7d176c3d 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_pandas.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_pandas.html @@ -1626,7 +1626,7 @@

polars.DataFrame.to_pandas#

-DataFrame.to_pandas(*args: Any, use_pyarrow_extension_array: bool = False, **kwargs: Any) DataFrame[source]#
+DataFrame.to_pandas(*args: Any, use_pyarrow_extension_array: bool = False, **kwargs: Any) DataFrame[source]#

Cast to a pandas DataFrame.

This requires that pandas and pyarrow are installed. This operation clones data, unless use_pyarrow_extension_array=True.

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_series.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_series.html index d08ce984aa09..4f7838d0f50c 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_series.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_series.html @@ -1626,7 +1626,7 @@

polars.DataFrame.to_series#

-DataFrame.to_series(index: int = 0) Series[source]#
+DataFrame.to_series(index: int = 0) Series[source]#

Select column as Series at index location.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_struct.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_struct.html index faafa5d894cc..3d610c746252 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_struct.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.to_struct.html @@ -1626,7 +1626,7 @@

polars.DataFrame.to_struct#

-DataFrame.to_struct(name: str) Series[source]#
+DataFrame.to_struct(name: str) Series[source]#

Convert a DataFrame to a Series of type Struct.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.top_k.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.top_k.html index ed6167ba584d..a02bdd2bb88e 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.top_k.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.top_k.html @@ -1626,7 +1626,7 @@

polars.DataFrame.top_k#

-DataFrame.top_k(k: int, *, by: IntoExpr | Iterable[IntoExpr], descending: bool | Sequence[bool] = False, nulls_last: bool = False, maintain_order: bool = False) DataFrame[source]#
+DataFrame.top_k(k: int, *, by: IntoExpr | Iterable[IntoExpr], descending: bool | Sequence[bool] = False, nulls_last: bool = False, maintain_order: bool = False) DataFrame[source]#

Return the k largest elements.

If ‘descending=True` the smallest elements will be given.

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.transpose.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.transpose.html index 9327edc8f1a2..8f9f468353e7 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.transpose.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.transpose.html @@ -1626,7 +1626,7 @@

polars.DataFrame.transpose#

-DataFrame.transpose(*, include_header: bool = False, header_name: str = 'column', column_names: str | Iterable[str] | None = None) Self[source]#
+DataFrame.transpose(*, include_header: bool = False, header_name: str = 'column', column_names: str | Iterable[str] | None = None) Self[source]#

Transpose a DataFrame over the diagonal.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.unique.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.unique.html index 00b23ce82403..3e2bdbd5e1a5 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.unique.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.unique.html @@ -1626,7 +1626,7 @@

polars.DataFrame.unique#

-DataFrame.unique(subset: str | Sequence[str] | None = None, *, keep: UniqueKeepStrategy = 'any', maintain_order: bool = False) DataFrame[source]#
+DataFrame.unique(subset: str | Sequence[str] | None = None, *, keep: UniqueKeepStrategy = 'any', maintain_order: bool = False) DataFrame[source]#

Drop duplicate rows from this dataframe.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.unnest.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.unnest.html index c142079f44be..44427f0a7659 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.unnest.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.unnest.html @@ -1626,7 +1626,7 @@

polars.DataFrame.unnest#

-DataFrame.unnest(columns: str | Sequence[str], *more_columns: str) Self[source]#
+DataFrame.unnest(columns: str | Sequence[str], *more_columns: str) Self[source]#

Decompose struct columns into separate columns for each of their fields.

The new columns will be inserted into the dataframe at the location of the struct column.

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.unstack.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.unstack.html index 766558158855..cc4f1b56e543 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.unstack.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.unstack.html @@ -1626,7 +1626,7 @@

polars.DataFrame.unstack#

-DataFrame.unstack(step: int, how: UnstackDirection = 'vertical', columns: str | Sequence[str] | None = None, fill_values: list[Any] | None = None) DataFrame[source]#
+DataFrame.unstack(step: int, how: UnstackDirection = 'vertical', columns: str | Sequence[str] | None = None, fill_values: list[Any] | None = None) DataFrame[source]#

Unstack a long table to a wide form without doing an aggregation.

This can be much faster than a pivot, because it can skip the grouping phase.

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.update.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.update.html index e0bfdcfaed5a..8ae342691516 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.update.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.update.html @@ -1626,7 +1626,7 @@

polars.DataFrame.update#

-DataFrame.update(other: DataFrame, on: str | Sequence[str] | None = None, how: Literal['left', 'inner'] = 'left') DataFrame[source]#
+DataFrame.update(other: DataFrame, on: str | Sequence[str] | None = None, how: Literal['left', 'inner'] = 'left') DataFrame[source]#

Update the values in this DataFrame with the non-null values in other.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.upsample.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.upsample.html index d53c0aa8f5fd..cce7ae1e7268 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.upsample.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.upsample.html @@ -1626,7 +1626,7 @@

polars.DataFrame.upsample#

-DataFrame.upsample(time_column: str, *, every: str | timedelta, offset: str | timedelta | None = None, by: str | Sequence[str] | None = None, maintain_order: bool = False) Self[source]#
+DataFrame.upsample(time_column: str, *, every: str | timedelta, offset: str | timedelta | None = None, by: str | Sequence[str] | None = None, maintain_order: bool = False) Self[source]#

Upsample a DataFrame at a regular frequency.

The every and offset arguments are created with the following string language:

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.var.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.var.html index fb110cbebb30..20c4e471a699 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.var.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.var.html @@ -1626,7 +1626,7 @@

polars.DataFrame.var#

-DataFrame.var(ddof: int = 1) Self[source]#
+DataFrame.var(ddof: int = 1) Self[source]#

Aggregate the columns of this DataFrame to their variance value.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.vstack.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.vstack.html index 558b687c0fa0..a4a55c30e4f8 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.vstack.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.vstack.html @@ -1626,7 +1626,7 @@

polars.DataFrame.vstack#

-DataFrame.vstack(other: DataFrame, *, in_place: bool = False) Self[source]#
+DataFrame.vstack(other: DataFrame, *, in_place: bool = False) Self[source]#

Grow this DataFrame vertically by stacking a DataFrame to it.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.width.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.width.html index 2c82a279b48b..51275d7a7a52 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.width.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.width.html @@ -1626,7 +1626,7 @@

polars.DataFrame.width#

-property DataFrame.width: int[source]#
+property DataFrame.width: int[source]#

Get the width of the DataFrame.

Examples

>>> df = pl.DataFrame({"foo": [1, 2, 3, 4, 5]})
diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.with_columns.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.with_columns.html
index dd2234e8b9d0..48aebdcbca03 100644
--- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.with_columns.html
+++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.with_columns.html
@@ -1626,7 +1626,7 @@
 

polars.DataFrame.with_columns#

-DataFrame.with_columns(*exprs: IntoExpr | Iterable[IntoExpr], **named_exprs: IntoExpr) DataFrame[source]#
+DataFrame.with_columns(*exprs: IntoExpr | Iterable[IntoExpr], **named_exprs: IntoExpr) DataFrame[source]#

Add columns to this DataFrame.

Added columns will replace existing columns with the same name.

diff --git a/py-polars/dev/reference/dataframe/api/polars.DataFrame.with_row_count.html b/py-polars/dev/reference/dataframe/api/polars.DataFrame.with_row_count.html index 3613ba95b435..b773d633f2a8 100644 --- a/py-polars/dev/reference/dataframe/api/polars.DataFrame.with_row_count.html +++ b/py-polars/dev/reference/dataframe/api/polars.DataFrame.with_row_count.html @@ -1626,7 +1626,7 @@

polars.DataFrame.with_row_count#

-DataFrame.with_row_count(name: str = 'row_nr', offset: int = 0) Self[source]#
+DataFrame.with_row_count(name: str = 'row_nr', offset: int = 0) Self[source]#

Add a column at index 0 that counts the rows.

Parameters:
diff --git a/py-polars/dev/reference/dataframe/index.html b/py-polars/dev/reference/dataframe/index.html index 484bca49b409..62dbdf97c91f 100644 --- a/py-polars/dev/reference/dataframe/index.html +++ b/py-polars/dev/reference/dataframe/index.html @@ -1617,7 +1617,7 @@

DataFrame
-class polars.DataFrame(data: FrameInitTypes | None = None, schema: SchemaDefinition | None = None, *, schema_overrides: SchemaDict | None = None, orient: Orientation | None = None, infer_schema_length: int | None = 100, nan_to_null: bool = False)[source]
+class polars.DataFrame(data: FrameInitTypes | None = None, schema: SchemaDefinition | None = None, *, schema_overrides: SchemaDict | None = None, orient: Orientation | None = None, infer_schema_length: int | None = 100, nan_to_null: bool = False)[source]

Two-dimensional data structure representing data as a table with rows and columns.

Parameters:
@@ -2106,7 +2106,7 @@

DataFrame
-apply(function: Callable[[tuple[Any, ...]], Any], return_dtype: PolarsDataType | None = None, *, inference_size: int = 256) DataFrame[source]
+apply(function: Callable[[tuple[Any, ...]], Any], return_dtype: PolarsDataType | None = None, *, inference_size: int = 256) DataFrame[source]

Apply a custom/user-defined function (UDF) over the rows of the DataFrame.

Warning

@@ -2195,7 +2195,7 @@

DataFrame
-bottom_k(k: int, *, by: IntoExpr | Iterable[IntoExpr], descending: bool | Sequence[bool] = False, nulls_last: bool = False, maintain_order: bool = False) DataFrame[source]
+bottom_k(k: int, *, by: IntoExpr | Iterable[IntoExpr], descending: bool | Sequence[bool] = False, nulls_last: bool = False, maintain_order: bool = False) DataFrame[source]

Return the k smallest elements.

If ‘descending=True` the largest elements will be given.

@@ -2267,7 +2267,7 @@

DataFrame
-clear(n: int = 0) Self[source]
+clear(n: int = 0) Self[source]

Create an empty (n=0) or n-row null-filled (n>0) copy of the DataFrame.

Returns a n-row null-filled DataFrame with an identical schema. n can be greater than the current number of rows in the DataFrame.

@@ -2320,7 +2320,7 @@

DataFrame
-clone() Self[source]
+clone() Self[source]

Cheap deepcopy/clone.

See also

@@ -2355,7 +2355,7 @@

DataFrame
-property columns: list[str][source]
+property columns: list[str][source]

Get or set column names.

Examples

>>> df = pl.DataFrame(
@@ -2388,7 +2388,7 @@ 

DataFrame
-corr(**kwargs: Any) DataFrame[source]
+corr(**kwargs: Any) DataFrame[source]

Return pairwise Pearson product-moment correlation coefficients between columns.

See numpy corrcoef for more information: https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html

@@ -2421,7 +2421,7 @@

DataFrame
-describe(percentiles: Sequence[float] | float | None = (0.25, 0.75)) Self[source]
+describe(percentiles: Sequence[float] | float | None = (0.25, 0.75)) Self[source]

Summary statistics for a DataFrame.

Parameters:
@@ -2473,7 +2473,7 @@

DataFrame
-drop(columns: str | Collection[str], *more_columns: str) DataFrame[source]
+drop(columns: str | Collection[str], *more_columns: str) DataFrame[source]

Remove columns from the dataframe.

Parameters:
@@ -2539,7 +2539,7 @@

DataFrame
-drop_in_place(name: str) Series[source]
+drop_in_place(name: str) Series[source]

Drop a single column in-place and return the dropped column.

Parameters:
@@ -2577,7 +2577,7 @@

DataFrame
-drop_nulls(subset: str | Collection[str] | None = None) DataFrame[source]
+drop_nulls(subset: str | Collection[str] | None = None) DataFrame[source]

Drop all rows that contain null values.

Returns a new DataFrame.

@@ -2666,7 +2666,7 @@

DataFrame
-property dtypes: list[PolarsDataType][source]
+property dtypes: list[PolarsDataType][source]

Get the datatypes of the columns of this DataFrame.

The datatypes can also be found in column headers when printing the DataFrame.

@@ -2703,7 +2703,7 @@

DataFrame
-estimated_size(unit: SizeUnit = 'b') int | float[source]
+estimated_size(unit: SizeUnit = 'b') int | float[source]

Return an estimation of the total (heap) allocated size of the DataFrame.

Estimated size is given in the specified unit (bytes by default).

This estimation is the sum of the size of its buffers, validity, including @@ -2741,7 +2741,7 @@

DataFrame
-explode(columns: str | Sequence[str] | Expr | Sequence[Expr], *more_columns: str | Expr) DataFrame[source]
+explode(columns: str | Sequence[str] | Expr | Sequence[Expr], *more_columns: str | Expr) DataFrame[source]

Explode the dataframe to long format by exploding the given columns.

Parameters:
@@ -2800,7 +2800,7 @@

DataFrame
-extend(other: DataFrame) Self[source]
+extend(other: DataFrame) Self[source]

Extend the memory backed by this DataFrame with the values from other.

Different from vstack which adds the chunks from other to the chunks of this DataFrame, extend appends the data from other to the underlying @@ -2856,7 +2856,7 @@

DataFrame
-fill_nan(value: Expr | int | float | None) DataFrame[source]
+fill_nan(value: Expr | int | float | None) DataFrame[source]

Fill floating point NaN values by an Expression evaluation.

Parameters:
@@ -2908,7 +2908,7 @@

DataFrame
-fill_null(value: Any | None = None, strategy: FillNullStrategy | None = None, limit: int | None = None, *, matches_supertype: bool = True) DataFrame[source]
+fill_null(value: Any | None = None, strategy: FillNullStrategy | None = None, limit: int | None = None, *, matches_supertype: bool = True) DataFrame[source]

Fill null values using the specified value or strategy.

Parameters:
@@ -3002,7 +3002,7 @@

DataFrame
-filter(predicate: Expr | str | Series | list[bool] | np.ndarray[Any, Any] | bool) DataFrame[source]
+filter(predicate: Expr | str | Series | list[bool] | np.ndarray[Any, Any] | bool) DataFrame[source]

Filter the rows in the DataFrame based on a predicate expression.

Parameters:
@@ -3064,7 +3064,7 @@

DataFrame
-find_idx_by_name(name: str) int[source]
+find_idx_by_name(name: str) int[source]

Find the index of a column by name.

Parameters:
@@ -3086,7 +3086,7 @@

DataFrame
-property flags: dict[str, dict[str, bool]][source]
+property flags: dict[str, dict[str, bool]][source]

Get flags that are set on the columns of this DataFrame.

Returns:
@@ -3100,7 +3100,7 @@

DataFrame
-fold(operation: Callable[[Series, Series], Series]) Series[source]
+fold(operation: Callable[[Series, Series], Series]) Series[source]

Apply a horizontal reduction on a DataFrame.

This can be used to effectively determine aggregations on a row level, and can be applied to any DataType that can be supercasted (casted to a similar parent @@ -3188,7 +3188,7 @@

DataFrame
-frame_equal(other: DataFrame, *, null_equal: bool = True) bool[source]
+frame_equal(other: DataFrame, *, null_equal: bool = True) bool[source]

Check if DataFrame is equal to other.

Parameters:
@@ -3225,7 +3225,7 @@

DataFrame
-get_column(name: str) Series[source]
+get_column(name: str) Series[source]

Get a single column as Series by name.

Parameters:
@@ -3257,7 +3257,7 @@

DataFrame
-get_columns() list[Series][source]
+get_columns() list[Series][source]

Get the DataFrame as a List of Series.

Examples

>>> df = pl.DataFrame({"foo": [1, 2, 3], "bar": [4, 5, 6]})
@@ -3313,7 +3313,7 @@ 

DataFrame
-glimpse(*, return_as_string: Literal[False]) None[source]
+glimpse(*, return_as_string: Literal[False]) None[source]
glimpse(*, return_as_string: Literal[True]) str

Return a dense preview of the dataframe.

@@ -3360,7 +3360,7 @@

DataFrame
-groupby(by: IntoExpr | Iterable[IntoExpr], *more_by: IntoExpr, maintain_order: bool = False) GroupBy[source]
+groupby(by: IntoExpr | Iterable[IntoExpr], *more_by: IntoExpr, maintain_order: bool = False) GroupBy[source]

Start a groupby operation.

Parameters:
@@ -3498,7 +3498,7 @@

DataFrame
-groupby_dynamic(index_column: IntoExpr, *, every: str | timedelta, period: str | timedelta | None = None, offset: str | timedelta | None = None, truncate: bool = True, include_boundaries: bool = False, closed: ClosedInterval = 'left', by: IntoExpr | Iterable[IntoExpr] | None = None, start_by: StartBy = 'window', check_sorted: bool = True) DynamicGroupBy[source]
+groupby_dynamic(index_column: IntoExpr, *, every: str | timedelta, period: str | timedelta | None = None, offset: str | timedelta | None = None, truncate: bool = True, include_boundaries: bool = False, closed: ClosedInterval = 'left', by: IntoExpr | Iterable[IntoExpr] | None = None, start_by: StartBy = 'window', check_sorted: bool = True) DynamicGroupBy[source]

Group based on a time value (or index value of type Int32, Int64).

Time windows are calculated and rows are assigned to windows. Different from a normal groupby is that a row can be member of multiple groups. The time/index @@ -3807,7 +3807,7 @@

DataFrame
-groupby_rolling(index_column: IntoExpr, *, period: str | timedelta, offset: str | timedelta | None = None, closed: ClosedInterval = 'right', by: IntoExpr | Iterable[IntoExpr] | None = None, check_sorted: bool = True) RollingGroupBy[source]
+groupby_rolling(index_column: IntoExpr, *, period: str | timedelta, offset: str | timedelta | None = None, closed: ClosedInterval = 'right', by: IntoExpr | Iterable[IntoExpr] | None = None, check_sorted: bool = True) RollingGroupBy[source]

Create rolling groups based on a time, Int32, or Int64 column.

Different from a dynamic_groupby the windows are now determined by the individual values and are not of constant intervals. For constant intervals use @@ -3935,7 +3935,7 @@

DataFrame
-hash_rows(seed: int = 0, seed_1: int | None = None, seed_2: int | None = None, seed_3: int | None = None) Series[source]
+hash_rows(seed: int = 0, seed_1: int | None = None, seed_2: int | None = None, seed_3: int | None = None) Series[source]

Hash and combine the rows in this DataFrame.

The hash value is of type UInt64.

@@ -3974,7 +3974,7 @@

DataFrame
-head(n: int = 5) Self[source]
+head(n: int = 5) Self[source]

Get the first n rows.

Parameters:
@@ -4029,7 +4029,7 @@

DataFrame
-property height: int[source]
+property height: int[source]

Get the height of the DataFrame.

Examples

>>> df = pl.DataFrame({"foo": [1, 2, 3, 4, 5]})
@@ -4041,7 +4041,7 @@ 

DataFrame
-hstack(columns: list[Series] | DataFrame, *, in_place: bool = False) Self[source]
+hstack(columns: list[Series] | DataFrame, *, in_place: bool = False) Self[source]

Return a new DataFrame grown horizontally by stacking multiple Series to it.

Parameters:
@@ -4079,7 +4079,7 @@

DataFrame
-insert_at_idx(index: int, series: Series) Self[source]
+insert_at_idx(index: int, series: Series) Self[source]

Insert a Series at a certain column index. This operation is in place.

Parameters:
@@ -4133,7 +4133,7 @@

DataFrame
-interpolate() DataFrame[source]
+interpolate() DataFrame[source]

Interpolate intermediate values. The interpolation method is linear.

Examples

>>> df = pl.DataFrame(
@@ -4161,7 +4161,7 @@ 

DataFrame
-is_duplicated() Series[source]
+is_duplicated() Series[source]

Get a mask of all duplicated rows in this DataFrame.

Examples

>>> df = pl.DataFrame(
@@ -4198,7 +4198,7 @@ 

DataFrame
-is_empty() bool[source]
+is_empty() bool[source]

Check if the dataframe is empty.

Examples

>>> df = pl.DataFrame({"foo": [1, 2, 3], "bar": [4, 5, 6]})
@@ -4212,7 +4212,7 @@ 

DataFrame
-is_unique() Series[source]
+is_unique() Series[source]

Get a mask of all unique rows in this DataFrame.

Examples

>>> df = pl.DataFrame(
@@ -4249,7 +4249,7 @@ 

DataFrame
-item(row: int | None = None, column: int | str | None = None) Any[source]
+item(row: int | None = None, column: int | str | None = None) Any[source]

Return the dataframe as a scalar, or return the element at the given row/column.

Parameters:
@@ -4285,7 +4285,7 @@

DataFrame
-iter_rows(*, named: Literal[False] = False, buffer_size: int = 500) Iterator[tuple[Any, ...]][source]
+iter_rows(*, named: Literal[False] = False, buffer_size: int = 500) Iterator[tuple[Any, ...]][source]
iter_rows(*, named: Literal[True], buffer_size: int = 500) Iterator[dict[str, Any]]

Returns an iterator over the DataFrame of rows of python-native values.

@@ -4347,7 +4347,7 @@

DataFrame
-iter_slices(n_rows: int = 10000) Iterator[DataFrame][source]
+iter_slices(n_rows: int = 10000) Iterator[DataFrame][source]

Returns a non-copying iterator of slices over the underlying DataFrame.

Parameters:
@@ -4405,7 +4405,7 @@

DataFrame
-join(other: DataFrame, on: str | Expr | Sequence[str | Expr] | None = None, how: JoinStrategy = 'inner', *, left_on: str | Expr | Sequence[str | Expr] | None = None, right_on: str | Expr | Sequence[str | Expr] | None = None, suffix: str = '_right', validate: JoinValidation = 'm:m') DataFrame[source]
+join(other: DataFrame, on: str | Expr | Sequence[str | Expr] | None = None, how: JoinStrategy = 'inner', *, left_on: str | Expr | Sequence[str | Expr] | None = None, right_on: str | Expr | Sequence[str | Expr] | None = None, suffix: str = '_right', validate: JoinValidation = 'm:m') DataFrame[source]

Join in SQL-like fashion.

Parameters:
@@ -4551,7 +4551,7 @@

DataFrame
-join_asof(other: DataFrame, *, left_on: str | None | Expr = None, right_on: str | None | Expr = None, on: str | None | Expr = None, by_left: str | Sequence[str] | None = None, by_right: str | Sequence[str] | None = None, by: str | Sequence[str] | None = None, strategy: AsofJoinStrategy = 'backward', suffix: str = '_right', tolerance: str | int | float | None = None, allow_parallel: bool = True, force_parallel: bool = False) DataFrame[source]
+join_asof(other: DataFrame, *, left_on: str | None | Expr = None, right_on: str | None | Expr = None, on: str | None | Expr = None, by_left: str | Sequence[str] | None = None, by_right: str | Sequence[str] | None = None, by: str | Sequence[str] | None = None, strategy: AsofJoinStrategy = 'backward', suffix: str = '_right', tolerance: str | int | float | None = None, allow_parallel: bool = True, force_parallel: bool = False) DataFrame[source]

Perform an asof join.

This is similar to a left-join except that we match on nearest key rather than equal keys.

@@ -4671,7 +4671,7 @@

DataFrame
-lazy() LazyFrame[source]
+lazy() LazyFrame[source]

Start a lazy query from this point. This returns a LazyFrame object.

Operations on a LazyFrame are not executed until this is requested by either calling:

@@ -4727,7 +4727,7 @@

DataFrame
-limit(n: int = 5) Self[source]
+limit(n: int = 5) Self[source]

Get the first n rows.

Alias for DataFrame.head().

@@ -4749,7 +4749,7 @@

DataFrame
-max(axis: Literal[0] = 0) Self[source]
+max(axis: Literal[0] = 0) Self[source]
max(axis: Literal[1]) Series
@@ -4778,7 +4778,7 @@

DataFrame
-mean(*, axis: Literal[0] = 0, null_strategy: NullStrategy = 'ignore') Self[source]
+mean(*, axis: Literal[0] = 0, null_strategy: NullStrategy = 'ignore') Self[source]

mean(*, axis: Literal[1], null_strategy: NullStrategy = 'ignore') Series
@@ -4826,7 +4826,7 @@

DataFrame
-median() Self[source]
+median() Self[source]

Aggregate the columns of this DataFrame to their median value.

Examples

>>> df = pl.DataFrame(
@@ -4851,7 +4851,7 @@ 

DataFrame
-melt(id_vars: Sequence[str] | str | None = None, value_vars: Sequence[str] | str | None = None, variable_name: str | None = None, value_name: str | None = None) Self[source]
+melt(id_vars: Sequence[str] | str | None = None, value_vars: Sequence[str] | str | None = None, variable_name: str | None = None, value_name: str | None = None) Self[source]

Unpivot a DataFrame from wide to long format.

Optionally leaves identifiers set.

This function is useful to massage a DataFrame into a format where one or more @@ -4901,7 +4901,7 @@

DataFrame
-merge_sorted(other: DataFrame, key: str) DataFrame[source]
+merge_sorted(other: DataFrame, key: str) DataFrame[source]

Take two sorted DataFrames and merge them by the sorted key.

The output of this operation will also be sorted. It is the callers responsibility that the frames are sorted @@ -4968,7 +4968,7 @@

DataFrame
-min(axis: Literal[0] = 0) Self[source]
+min(axis: Literal[0] = 0) Self[source]
min(axis: Literal[1]) Series
@@ -4997,7 +4997,7 @@

DataFrame
-n_chunks(strategy: Literal['first'] = 'first') int[source]
+n_chunks(strategy: Literal['first'] = 'first') int[source]

n_chunks(strategy: Literal['all']) list[int]

Get number of chunks used by the ChunkedArrays of this DataFrame.

@@ -5028,7 +5028,7 @@

DataFrame
-n_unique(subset: str | Expr | Sequence[str | Expr] | None = None) int[source]
+n_unique(subset: str | Expr | Sequence[str | Expr] | None = None) int[source]

Return the number of unique rows, or the number of unique row-subsets.

Parameters:
@@ -5087,7 +5087,7 @@

DataFrame
-null_count() Self[source]
+null_count() Self[source]

Create a new DataFrame that shows the null counts per column.

Examples

>>> df = pl.DataFrame(
@@ -5112,7 +5112,7 @@ 

DataFrame
-partition_by(by: str | Iterable[str], *more_by: str, maintain_order: bool = True, include_key: bool = True, as_dict: Literal[False] = False) list[Self][source]
+partition_by(by: str | Iterable[str], *more_by: str, maintain_order: bool = True, include_key: bool = True, as_dict: Literal[False] = False) list[Self][source]
partition_by(by: str | Iterable[str], *more_by: str, maintain_order: bool = True, include_key: bool = True, as_dict: Literal[True]) dict[Any, Self]

Group by the given columns and return the groups as separate dataframes.

@@ -5244,7 +5244,7 @@

DataFrame
-pipe(function: Callable[Concatenate[DataFrame, P], T], *args: P.args, **kwargs: P.kwargs) T[source]
+pipe(function: Callable[Concatenate[DataFrame, P], T], *args: P.args, **kwargs: P.kwargs) T[source]

Offers a structured way to apply a sequence of user-defined functions (UDFs).

Parameters:
@@ -5309,7 +5309,7 @@

DataFrame
-pivot(values: Sequence[str] | str, index: Sequence[str] | str, columns: Sequence[str] | str, aggregate_function: PivotAgg | Expr | None | NoDefault = _NoDefault.no_default, *, maintain_order: bool = True, sort_columns: bool = False, separator: str = '_') Self[source]
+pivot(values: Sequence[str] | str, index: Sequence[str] | str, columns: Sequence[str] | str, aggregate_function: PivotAgg | Expr | None | NoDefault = _NoDefault.no_default, *, maintain_order: bool = True, sort_columns: bool = False, separator: str = '_') Self[source]

Create a spreadsheet-style pivot table as a DataFrame.

Parameters:
@@ -5395,7 +5395,7 @@

DataFrame
-product() DataFrame[source]
+product() DataFrame[source]

Aggregate the columns of this DataFrame to their product values.

Examples

>>> df = pl.DataFrame(
@@ -5422,7 +5422,7 @@ 

DataFrame
-quantile(quantile: float, interpolation: RollingInterpolationMethod = 'nearest') Self[source]
+quantile(quantile: float, interpolation: RollingInterpolationMethod = 'nearest') Self[source]

Aggregate the columns of this DataFrame to their quantile value.

Parameters:
@@ -5457,7 +5457,7 @@

DataFrame
-rechunk() Self[source]
+rechunk() Self[source]

Rechunk the data in this DataFrame to a contiguous allocation.

This will make sure all subsequent operations have optimal and predictable performance.

@@ -5465,7 +5465,7 @@

DataFrame
-rename(mapping: dict[str, str]) DataFrame[source]
+rename(mapping: dict[str, str]) DataFrame[source]

Rename column names.

Parameters:
@@ -5496,7 +5496,7 @@

DataFrame
-replace(column: str, new_column: Series) Self[source]
+replace(column: str, new_column: Series) Self[source]

Replace a column by a new Series.

Parameters:
@@ -5528,7 +5528,7 @@

DataFrame
-replace_at_idx(index: int, series: Series) Self[source]
+replace_at_idx(index: int, series: Series) Self[source]

Replace a column at an index location.

Parameters:
@@ -5566,7 +5566,7 @@

DataFrame
-reverse() DataFrame[source]
+reverse() DataFrame[source]

Reverse the DataFrame.

Examples

>>> df = pl.DataFrame(
@@ -5592,7 +5592,7 @@ 

DataFrame
-row(index: int | None = None, *, by_predicate: Expr | None = None, named: Literal[False] = False) tuple[Any, ...][source]
+row(index: int | None = None, *, by_predicate: Expr | None = None, named: Literal[False] = False) tuple[Any, ...][source]
row(index: int | None = None, *, by_predicate: Expr | None = None, named: Literal[True]) dict[str, Any]

Get the values of a single row, either by index or by predicate.

@@ -5665,7 +5665,7 @@

DataFrame
-rows(*, named: Literal[False] = False) list[tuple[Any, ...]][source]
+rows(*, named: Literal[False] = False) list[tuple[Any, ...]][source]
rows(*, named: Literal[True]) list[dict[str, Any]]

Returns all data in the DataFrame as a list of rows of python-native values.

@@ -5726,7 +5726,7 @@

DataFrame
-rows_by_key(key: str | Sequence[str] | SelectorType, *, named: bool = False, include_key: bool = False, unique: bool = False) dict[Any, Iterable[Any]][source]
+rows_by_key(key: str | Sequence[str] | SelectorType, *, named: bool = False, include_key: bool = False, unique: bool = False) dict[Any, Iterable[Any]][source]

Returns DataFrame data as a keyed dictionary of python-native values.

Note that this method should not be used in place of native operations, due to the high cost of materialising all frame data out into a dictionary; it should @@ -5822,7 +5822,7 @@

DataFrame
-sample(n: int | None = None, *, fraction: float | None = None, with_replacement: bool = False, shuffle: bool = False, seed: int | None = None) Self[source]
+sample(n: int | None = None, *, fraction: float | None = None, with_replacement: bool = False, shuffle: bool = False, seed: int | None = None) Self[source]

Sample from this DataFrame.

Parameters:
@@ -5868,7 +5868,7 @@

DataFrame
-property schema: SchemaDict[source]
+property schema: SchemaDict[source]

Get a dict[column name, DataType].

Examples

>>> df = pl.DataFrame(
@@ -5886,7 +5886,7 @@ 

DataFrame
-select(*exprs: IntoExpr | Iterable[IntoExpr], **named_exprs: IntoExpr) DataFrame[source]
+select(*exprs: IntoExpr | Iterable[IntoExpr], **named_exprs: IntoExpr) DataFrame[source]

Select columns from this DataFrame.

Parameters:
@@ -5989,7 +5989,7 @@

DataFrame
-set_sorted(column: str | Iterable[str], *more_columns: str, descending: bool = False) DataFrame[source]
+set_sorted(column: str | Iterable[str], *more_columns: str, descending: bool = False) DataFrame[source]

Indicate that one or multiple columns are sorted.

Parameters:
@@ -6007,7 +6007,7 @@

DataFrame
-property shape: tuple[int, int][source]
+property shape: tuple[int, int][source]

Get the shape of the DataFrame.

Examples

>>> df = pl.DataFrame({"foo": [1, 2, 3, 4, 5]})
@@ -6019,7 +6019,7 @@ 

DataFrame
-shift(periods: int) Self[source]
+shift(periods: int) Self[source]

Shift values by the given period.

Parameters:
@@ -6071,7 +6071,7 @@

DataFrame
-shift_and_fill(fill_value: int | str | float, *, periods: int = 1) DataFrame[source]
+shift_and_fill(fill_value: int | str | float, *, periods: int = 1) DataFrame[source]

Shift the values by a given period and fill the resulting null values.

Parameters:
@@ -6108,14 +6108,14 @@

DataFrame
-shrink_to_fit(*, in_place: bool = False) Self[source]
+shrink_to_fit(*, in_place: bool = False) Self[source]

Shrink DataFrame memory usage.

Shrinks to fit the exact capacity needed to hold the data.

-slice(offset: int, length: int | None = None) Self[source]
+slice(offset: int, length: int | None = None) Self[source]

Get a slice of this DataFrame.

Parameters:
@@ -6152,7 +6152,7 @@

DataFrame
-sort(by: IntoExpr | Iterable[IntoExpr], *more_by: IntoExpr, descending: bool | Sequence[bool] = False, nulls_last: bool = False) DataFrame[source]
+sort(by: IntoExpr | Iterable[IntoExpr], *more_by: IntoExpr, descending: bool | Sequence[bool] = False, nulls_last: bool = False) DataFrame[source]

Sort the dataframe by the given columns.

Parameters:
@@ -6238,7 +6238,7 @@

DataFrame
-std(ddof: int = 1) Self[source]
+std(ddof: int = 1) Self[source]

Aggregate the columns of this DataFrame to their standard deviation value.

Parameters:
@@ -6282,7 +6282,7 @@

DataFrame
-sum(*, axis: Literal[0] = 0, null_strategy: NullStrategy = 'ignore') Self[source]
+sum(*, axis: Literal[0] = 0, null_strategy: NullStrategy = 'ignore') Self[source]
sum(*, axis: Literal[1], null_strategy: NullStrategy = 'ignore') Series
@@ -6329,7 +6329,7 @@

DataFrame
-tail(n: int = 5) Self[source]
+tail(n: int = 5) Self[source]

Get the last n rows.

Parameters:
@@ -6384,7 +6384,7 @@

DataFrame
-take_every(n: int) DataFrame[source]
+take_every(n: int) DataFrame[source]

Take every nth row in the DataFrame and return as a new DataFrame.

Examples

>>> s = pl.DataFrame({"a": [1, 2, 3, 4], "b": [5, 6, 7, 8]})
@@ -6404,7 +6404,7 @@ 

DataFrame
-to_arrow() Table[source]
+to_arrow() Table[source]

Collect the underlying arrow arrays in an Arrow Table.

This operation is mostly zero copy.

@@ -6430,7 +6430,7 @@

DataFrame
-to_dict(as_series: Literal[True] = True) dict[str, Series][source]
+to_dict(as_series: Literal[True] = True) dict[str, Series][source]
to_dict(as_series: Literal[False]) dict[str, list[Any]]
@@ -6522,7 +6522,7 @@

DataFrame
-to_dicts() list[dict[str, Any]][source]
+to_dicts() list[dict[str, Any]][source]

Convert every row to a dictionary of Python-native values.

Notes

If you have ns-precision temporal values you should be aware that Python @@ -6539,7 +6539,7 @@

DataFrame
-to_dummies(columns: str | Sequence[str] | None = None, *, separator: str = '_', drop_first: bool = False) Self[source]
+to_dummies(columns: str | Sequence[str] | None = None, *, separator: str = '_', drop_first: bool = False) Self[source]

Convert categorical variables into dummy/indicator variables.

Parameters:
@@ -6578,7 +6578,7 @@

DataFrame
-to_init_repr(n: int = 1000) str[source]
+to_init_repr(n: int = 1000) str[source]

Convert DataFrame to instantiatable string representation.

Parameters:
@@ -6631,7 +6631,7 @@

DataFrame
-to_numpy(structured: bool = False, *, order: IndexOrder = 'fortran') np.ndarray[Any, Any][source]
+to_numpy(structured: bool = False, *, order: IndexOrder = 'fortran') np.ndarray[Any, Any][source]

Convert DataFrame to a 2D NumPy array.

This operation clones data.

@@ -6690,7 +6690,7 @@

DataFrame
-to_pandas(*args: Any, use_pyarrow_extension_array: bool = False, **kwargs: Any) DataFrame[source]
+to_pandas(*args: Any, use_pyarrow_extension_array: bool = False, **kwargs: Any) DataFrame[source]

Cast to a pandas DataFrame.

This requires that pandas and pyarrow are installed. This operation clones data, unless use_pyarrow_extension_array=True.

@@ -6767,7 +6767,7 @@

DataFrame
-to_series(index: int = 0) Series[source]
+to_series(index: int = 0) Series[source]

Select column as Series at index location.

Parameters:
@@ -6805,7 +6805,7 @@

DataFrame
-to_struct(name: str) Series[source]
+to_struct(name: str) Series[source]

Convert a DataFrame to a Series of type Struct.

Parameters:
@@ -6838,7 +6838,7 @@

DataFrame
-top_k(k: int, *, by: IntoExpr | Iterable[IntoExpr], descending: bool | Sequence[bool] = False, nulls_last: bool = False, maintain_order: bool = False) DataFrame[source]
+top_k(k: int, *, by: IntoExpr | Iterable[IntoExpr], descending: bool | Sequence[bool] = False, nulls_last: bool = False, maintain_order: bool = False) DataFrame[source]

Return the k largest elements.

If ‘descending=True` the smallest elements will be given.

@@ -6910,7 +6910,7 @@

DataFrame
-transpose(*, include_header: bool = False, header_name: str = 'column', column_names: str | Iterable[str] | None = None) Self[source]
+transpose(*, include_header: bool = False, header_name: str = 'column', column_names: str | Iterable[str] | None = None) Self[source]

Transpose a DataFrame over the diagonal.

Parameters:
@@ -7023,7 +7023,7 @@

DataFrame
-unique(subset: str | Sequence[str] | None = None, *, keep: UniqueKeepStrategy = 'any', maintain_order: bool = False) DataFrame[source]
+unique(subset: str | Sequence[str] | None = None, *, keep: UniqueKeepStrategy = 'any', maintain_order: bool = False) DataFrame[source]

Drop duplicate rows from this dataframe.

Parameters:
@@ -7107,7 +7107,7 @@

DataFrame
-unnest(columns: str | Sequence[str], *more_columns: str) Self[source]
+unnest(columns: str | Sequence[str], *more_columns: str) Self[source]

Decompose struct columns into separate columns for each of their fields.

The new columns will be inserted into the dataframe at the location of the struct column.

@@ -7158,7 +7158,7 @@

DataFrame
-unstack(step: int, how: UnstackDirection = 'vertical', columns: str | Sequence[str] | None = None, fill_values: list[Any] | None = None) DataFrame[source]
+unstack(step: int, how: UnstackDirection = 'vertical', columns: str | Sequence[str] | None = None, fill_values: list[Any] | None = None) DataFrame[source]

Unstack a long table to a wide form without doing an aggregation.

This can be much faster than a pivot, because it can skip the grouping phase.

@@ -7234,7 +7234,7 @@

DataFrame
-update(other: DataFrame, on: str | Sequence[str] | None = None, how: Literal['left', 'inner'] = 'left') DataFrame[source]
+update(other: DataFrame, on: str | Sequence[str] | None = None, how: Literal['left', 'inner'] = 'left') DataFrame[source]

Update the values in this DataFrame with the non-null values in other.

Parameters:
@@ -7311,7 +7311,7 @@

DataFrame
-upsample(time_column: str, *, every: str | timedelta, offset: str | timedelta | None = None, by: str | Sequence[str] | None = None, maintain_order: bool = False) Self[source]
+upsample(time_column: str, *, every: str | timedelta, offset: str | timedelta | None = None, by: str | Sequence[str] | None = None, maintain_order: bool = False) Self[source]

Upsample a DataFrame at a regular frequency.

The every and offset arguments are created with the following string language:

@@ -7401,7 +7401,7 @@

DataFrame
-var(ddof: int = 1) Self[source]
+var(ddof: int = 1) Self[source]

Aggregate the columns of this DataFrame to their variance value.

Parameters:
@@ -7445,7 +7445,7 @@

DataFrame
-vstack(other: DataFrame, *, in_place: bool = False) Self[source]
+vstack(other: DataFrame, *, in_place: bool = False) Self[source]

Grow this DataFrame vertically by stacking a DataFrame to it.

Parameters:
@@ -7496,7 +7496,7 @@

DataFrame
-property width: int[source]
+property width: int[source]

Get the width of the DataFrame.

Examples

>>> df = pl.DataFrame({"foo": [1, 2, 3, 4, 5]})
@@ -7508,7 +7508,7 @@ 

DataFrame
-with_columns(*exprs: IntoExpr | Iterable[IntoExpr], **named_exprs: IntoExpr) DataFrame[source]
+with_columns(*exprs: IntoExpr | Iterable[IntoExpr], **named_exprs: IntoExpr) DataFrame[source]

Add columns to this DataFrame.

Added columns will replace existing columns with the same name.

@@ -7653,7 +7653,7 @@

DataFrame
-with_row_count(name: str = 'row_nr', offset: int = 0) Self[source]
+with_row_count(name: str = 'row_nr', offset: int = 0) Self[source]

Add a column at index 0 that counts the rows.

Parameters:
@@ -7689,7 +7689,7 @@

DataFrame
-write_avro(file: BinaryIO | BytesIO | str | Path, compression: AvroCompression = 'uncompressed') None[source]
+write_avro(file: BinaryIO | BytesIO | str | Path, compression: AvroCompression = 'uncompressed') None[source]

Write to Apache Avro file.

Parameters:
@@ -7719,7 +7719,7 @@

DataFrame
-write_csv(file: None = None, *, has_header: bool = True, separator: str = ',', quote: str = '"', batch_size: int = 1024, datetime_format: str | None = None, date_format: str | None = None, time_format: str | None = None, float_precision: int | None = None, null_value: str | None = None) str[source]
+write_csv(file: None = None, *, has_header: bool = True, separator: str = ',', quote: str = '"', batch_size: int = 1024, datetime_format: str | None = None, date_format: str | None = None, time_format: str | None = None, float_precision: int | None = None, null_value: str | None = None) str[source]
write_csv(file: BytesIO | TextIOWrapper | str | Path, *, has_header: bool = True, separator: str = ',', quote: str = '"', batch_size: int = 1024, datetime_format: str | None = None, date_format: str | None = None, time_format: str | None = None, float_precision: int | None = None, null_value: str | None = None) None

Write to comma-separated values (CSV) file.

@@ -7777,7 +7777,7 @@

DataFrame
-write_database(table_name: str, connection: str, *, if_exists: DbWriteMode = 'fail', engine: DbWriteEngine = 'sqlalchemy') None[source]
+write_database(table_name: str, connection: str, *, if_exists: DbWriteMode = 'fail', engine: DbWriteEngine = 'sqlalchemy') None[source]

Write a polars frame to a database.

Parameters:
@@ -7805,7 +7805,7 @@

DataFrame
-write_delta(target: str | Path | deltalake.DeltaTable, *, mode: Literal['error', 'append', 'overwrite', 'ignore'] = 'error', overwrite_schema: bool = False, storage_options: dict[str, str] | None = None, delta_write_options: dict[str, Any] | None = None) None[source]
+write_delta(target: str | Path | deltalake.DeltaTable, *, mode: Literal['error', 'append', 'overwrite', 'ignore'] = 'error', overwrite_schema: bool = False, storage_options: dict[str, str] | None = None, delta_write_options: dict[str, Any] | None = None) None[source]

Write DataFrame as delta table.

Note: Some polars data types like Null, Categorical and Time are not supported by the delta protocol specification.

@@ -7885,7 +7885,7 @@

DataFrame
-write_excel(workbook: Workbook | BytesIO | Path | str | None = None, worksheet: str | None = None, *, position: tuple[int, int] | str = 'A1', table_style: str | dict[str, Any] | None = None, table_name: str | None = None, column_formats: dict[str | tuple[str, ...], str | dict[str, str]] | None = None, dtype_formats: dict[OneOrMoreDataTypes, str] | None = None, conditional_formats: ConditionalFormatDict | None = None, column_totals: ColumnTotalsDefinition | None = None, column_widths: dict[str | tuple[str, ...], int] | int | None = None, row_totals: RowTotalsDefinition | None = None, row_heights: dict[int | tuple[int, ...], int] | int | None = None, sparklines: dict[str, Sequence[str] | dict[str, Any]] | None = None, formulas: dict[str, str | dict[str, str]] | None = None, float_precision: int = 3, has_header: bool = True, autofilter: bool = True, autofit: bool = False, hidden_columns: Sequence[str] | None = None, hide_gridlines: bool = False, sheet_zoom: int | None = None, freeze_panes: str | tuple[int, int] | tuple[str, int, int] | tuple[int, int, int, int] | None = None) Workbook[source]
+write_excel(workbook: Workbook | BytesIO | Path | str | None = None, worksheet: str | None = None, *, position: tuple[int, int] | str = 'A1', table_style: str | dict[str, Any] | None = None, table_name: str | None = None, column_formats: dict[str | tuple[str, ...], str | dict[str, str]] | None = None, dtype_formats: dict[OneOrMoreDataTypes, str] | None = None, conditional_formats: ConditionalFormatDict | None = None, column_totals: ColumnTotalsDefinition | None = None, column_widths: dict[str | tuple[str, ...], int] | int | None = None, row_totals: RowTotalsDefinition | None = None, row_heights: dict[int | tuple[int, ...], int] | int | None = None, sparklines: dict[str, Sequence[str] | dict[str, Any]] | None = None, formulas: dict[str, str | dict[str, str]] | None = None, float_precision: int = 3, has_header: bool = True, autofilter: bool = True, autofit: bool = False, hidden_columns: Sequence[str] | None = None, hide_gridlines: bool = False, sheet_zoom: int | None = None, freeze_panes: str | tuple[int, int] | tuple[str, int, int] | tuple[int, int, int, int] | None = None) Workbook[source]

Write frame data to a table in an Excel workbook/worksheet.

Parameters:
@@ -8211,7 +8211,7 @@

DataFrame
-write_ipc(file: None, compression: IpcCompression = 'uncompressed') BytesIO[source]
+write_ipc(file: None, compression: IpcCompression = 'uncompressed') BytesIO[source]
write_ipc(file: BinaryIO | BytesIO | str | Path, compression: IpcCompression = 'uncompressed') None

Write to Arrow IPC binary stream or Feather file.

@@ -8244,7 +8244,7 @@

DataFrame
-write_json(file: None = None, *, pretty: bool = False, row_oriented: bool = False) str[source]
+write_json(file: None = None, *, pretty: bool = False, row_oriented: bool = False) str[source]
write_json(file: IOBase | str | Path, *, pretty: bool = False, row_oriented: bool = False) None

Serialize to JSON representation.

@@ -8284,7 +8284,7 @@

DataFrame
-write_ndjson(file: None = None) str[source]
+write_ndjson(file: None = None) str[source]
write_ndjson(file: IOBase | str | Path) None

Serialize to newline delimited JSON representation.

@@ -8312,7 +8312,7 @@

DataFrame
-write_parquet(file: str | Path | BytesIO, *, compression: ParquetCompression = 'zstd', compression_level: int | None = None, statistics: bool = False, row_group_size: int | None = None, use_pyarrow: bool = False, pyarrow_options: dict[str, object] | None = None) None[source]
+write_parquet(file: str | Path | BytesIO, *, compression: ParquetCompression = 'zstd', compression_level: int | None = None, statistics: bool = False, row_group_size: int | None = None, use_pyarrow: bool = False, pyarrow_options: dict[str, object] | None = None) None[source]

Write to Apache Parquet file.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.concat.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.concat.html index 697eb89d2746..76e102221a0f 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.concat.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.concat.html @@ -1626,7 +1626,7 @@

polars.Expr.str.concat#

-Expr.str.concat(delimiter: str = '-') Expr[source]#
+Expr.str.concat(delimiter: str = '-') Expr[source]#

Vertically concat the values in the Series to a single string value.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.contains.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.contains.html index 8bf23d73ac24..41c4981fef7f 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.contains.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.contains.html @@ -1626,7 +1626,7 @@

polars.Expr.str.contains#

-Expr.str.contains(pattern: str | Expr, *, literal: bool = False, strict: bool = True) Expr[source]#
+Expr.str.contains(pattern: str | Expr, *, literal: bool = False, strict: bool = True) Expr[source]#

Check if string contains a substring that matches a regex.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.count_match.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.count_match.html index f29c6f13e129..4083064d3daa 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.count_match.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.count_match.html @@ -1626,7 +1626,7 @@

polars.Expr.str.count_match#

-Expr.str.count_match(pattern: str) Expr[source]#
+Expr.str.count_match(pattern: str) Expr[source]#

Count all successive non-overlapping regex matches.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.decode.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.decode.html index ea300401ca99..8a8ded1fe670 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.decode.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.decode.html @@ -1626,7 +1626,7 @@

polars.Expr.str.decode#

-Expr.str.decode(encoding: TransferEncoding, *, strict: bool = True) Expr[source]#
+Expr.str.decode(encoding: TransferEncoding, *, strict: bool = True) Expr[source]#

Decode a value using the provided encoding.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.encode.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.encode.html index 21495ac1ec3b..47e2a5d29e09 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.encode.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.encode.html @@ -1626,7 +1626,7 @@

polars.Expr.str.encode#

-Expr.str.encode(encoding: TransferEncoding) Expr[source]#
+Expr.str.encode(encoding: TransferEncoding) Expr[source]#

Encode a value using the provided encoding.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.ends_with.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.ends_with.html index 8dc7e157565b..69204bff4986 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.ends_with.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.ends_with.html @@ -1626,7 +1626,7 @@

polars.Expr.str.ends_with#

-Expr.str.ends_with(suffix: str | Expr) Expr[source]#
+Expr.str.ends_with(suffix: str | Expr) Expr[source]#

Check if string values end with a substring.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.explode.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.explode.html index 091edda6fd8b..8faba968e464 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.explode.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.explode.html @@ -1626,7 +1626,7 @@

polars.Expr.str.explode#

-Expr.str.explode() Expr[source]#
+Expr.str.explode() Expr[source]#

Returns a column with a separate row for every string character.

Returns:
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.extract.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.extract.html index 6adbeddd0b66..b98230faed50 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.extract.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.extract.html @@ -1626,7 +1626,7 @@

polars.Expr.str.extract#

-Expr.str.extract(pattern: str, group_index: int = 1) Expr[source]#
+Expr.str.extract(pattern: str, group_index: int = 1) Expr[source]#

Extract the target capture group from provided patterns.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.extract_all.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.extract_all.html index 3b7d18df5ec2..3b0000788258 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.extract_all.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.extract_all.html @@ -1626,7 +1626,7 @@

polars.Expr.str.extract_all#

-Expr.str.extract_all(pattern: str | Expr) Expr[source]#
+Expr.str.extract_all(pattern: str | Expr) Expr[source]#

Extract all matches for the given regex pattern.

Extract each successive non-overlapping regex match in an individual string as a list. Extracted matches contain null if the original value is null diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.json_extract.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.json_extract.html index adc444204009..3b584f21bc18 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.json_extract.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.json_extract.html @@ -1626,7 +1626,7 @@

polars.Expr.str.json_extract#

-Expr.str.json_extract(dtype: PolarsDataType | None = None, infer_schema_length: int | None = 100) Expr[source]#
+Expr.str.json_extract(dtype: PolarsDataType | None = None, infer_schema_length: int | None = 100) Expr[source]#

Parse string values as JSON.

Throw errors if encounter invalid JSON strings.

diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.json_path_match.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.json_path_match.html index 40de8cfdbd1d..4b487688919c 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.json_path_match.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.json_path_match.html @@ -1626,7 +1626,7 @@

polars.Expr.str.json_path_match#

-Expr.str.json_path_match(json_path: str) Expr[source]#
+Expr.str.json_path_match(json_path: str) Expr[source]#

Extract the first match of JSON string with the provided JSONPath expression.

Throws errors if invalid JSON strings are encountered. All return values will be cast to Utf8 regardless of the original diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.lengths.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.lengths.html index 2cb0c8ba69e9..0d30ba4eddea 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.lengths.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.lengths.html @@ -1626,7 +1626,7 @@

polars.Expr.str.lengths#

-Expr.str.lengths() Expr[source]#
+Expr.str.lengths() Expr[source]#

Get length of the strings as UInt32 (as number of bytes).

Notes

The returned lengths are equal to the number of bytes in the UTF8 string. If you diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.ljust.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.ljust.html index aa10bcc22af2..e3ce8fb5ed84 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.ljust.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.ljust.html @@ -1626,7 +1626,7 @@

polars.Expr.str.ljust#

-Expr.str.ljust(width: int, fill_char: str = ' ') Expr[source]#
+Expr.str.ljust(width: int, fill_char: str = ' ') Expr[source]#

Return the string left justified in a string of length width.

Padding is done using the specified fill_char. The original string is returned if width is less than or equal to diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.lstrip.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.lstrip.html index 4f5e93e7d700..dabebefc7c23 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.lstrip.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.lstrip.html @@ -1626,7 +1626,7 @@

polars.Expr.str.lstrip#

-Expr.str.lstrip(characters: str | None = None) Expr[source]#
+Expr.str.lstrip(characters: str | None = None) Expr[source]#

Remove leading characters.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.n_chars.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.n_chars.html index 0d771ecd470e..8aa94753c367 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.n_chars.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.n_chars.html @@ -1626,7 +1626,7 @@

polars.Expr.str.n_chars#

-Expr.str.n_chars() Expr[source]#
+Expr.str.n_chars() Expr[source]#

Get length of the strings as UInt32 (as number of chars).

Notes

If you know that you are working with ASCII text, lengths will be diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.parse_int.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.parse_int.html index 4149ad26d054..49833477078d 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.parse_int.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.parse_int.html @@ -1626,7 +1626,7 @@

polars.Expr.str.parse_int#

-Expr.str.parse_int(radix: int = 2, *, strict: bool = True) Expr[source]#
+Expr.str.parse_int(radix: int = 2, *, strict: bool = True) Expr[source]#

Parse integers with base radix from strings.

By default base 2. ParseError/Overflows become Nulls.

diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.replace.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.replace.html index f318318d5e50..6f76f1e95d2b 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.replace.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.replace.html @@ -1626,7 +1626,7 @@

polars.Expr.str.replace#

-Expr.str.replace(pattern: str | Expr, value: str | Expr, *, literal: bool = False, n: int = 1) Expr[source]#
+Expr.str.replace(pattern: str | Expr, value: str | Expr, *, literal: bool = False, n: int = 1) Expr[source]#

Replace first matching regex/literal substring with a new string value.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.replace_all.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.replace_all.html index cbfe47f8c5f8..ffa59a7f9cbd 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.replace_all.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.replace_all.html @@ -1626,7 +1626,7 @@

polars.Expr.str.replace_all#

-Expr.str.replace_all(pattern: str | Expr, value: str | Expr, *, literal: bool = False) Expr[source]#
+Expr.str.replace_all(pattern: str | Expr, value: str | Expr, *, literal: bool = False) Expr[source]#

Replace all matching regex/literal substrings with a new string value.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.rjust.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.rjust.html index 95f3f4504acf..eef832610357 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.rjust.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.rjust.html @@ -1626,7 +1626,7 @@

polars.Expr.str.rjust#

-Expr.str.rjust(width: int, fill_char: str = ' ') Expr[source]#
+Expr.str.rjust(width: int, fill_char: str = ' ') Expr[source]#

Return the string right justified in a string of length width.

Padding is done using the specified fill_char. The original string is returned if width is less than or equal to diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.rstrip.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.rstrip.html index fe4232d75f78..6d620646887f 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.rstrip.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.rstrip.html @@ -1626,7 +1626,7 @@

polars.Expr.str.rstrip#

-Expr.str.rstrip(characters: str | None = None) Expr[source]#
+Expr.str.rstrip(characters: str | None = None) Expr[source]#

Remove trailing characters.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.slice.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.slice.html index dc0c57f303ea..8dc0aedb42b0 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.slice.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.slice.html @@ -1626,7 +1626,7 @@

polars.Expr.str.slice#

-Expr.str.slice(offset: int, length: int | None = None) Expr[source]#
+Expr.str.slice(offset: int, length: int | None = None) Expr[source]#

Create subslices of the string values of a Utf8 Series.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.split.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.split.html index 5c041475b29c..3287c4543c42 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.split.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.split.html @@ -1626,7 +1626,7 @@

polars.Expr.str.split#

-Expr.str.split(by: str, *, inclusive: bool = False) Expr[source]#
+Expr.str.split(by: str, *, inclusive: bool = False) Expr[source]#

Split the string by a substring.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.split_exact.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.split_exact.html index b41e18e605d5..b5d3692caa52 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.split_exact.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.split_exact.html @@ -1626,7 +1626,7 @@

polars.Expr.str.split_exact#

-Expr.str.split_exact(by: str, n: int, *, inclusive: bool = False) Expr[source]#
+Expr.str.split_exact(by: str, n: int, *, inclusive: bool = False) Expr[source]#

Split the string by a substring using n splits.

Results in a struct of n+1 fields.

If it cannot make n splits, the remaining field elements will be null.

diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.splitn.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.splitn.html index 3d57fe208b46..bd3e1a6cd542 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.splitn.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.splitn.html @@ -1626,7 +1626,7 @@

polars.Expr.str.splitn#

-Expr.str.splitn(by: str, n: int) Expr[source]#
+Expr.str.splitn(by: str, n: int) Expr[source]#

Split the string by a substring, restricted to returning at most n items.

If the number of possible splits is less than n-1, the remaining field elements will be null. If the number of possible splits is n-1 or greater, diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.starts_with.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.starts_with.html index 7afbdf6db4d2..be6e20c6ef66 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.starts_with.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.starts_with.html @@ -1626,7 +1626,7 @@

polars.Expr.str.starts_with#

-Expr.str.starts_with(prefix: str | Expr) Expr[source]#
+Expr.str.starts_with(prefix: str | Expr) Expr[source]#

Check if string values start with a substring.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.strip.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.strip.html index 484d23b0c672..6feb2ac6e6cb 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.strip.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.strip.html @@ -1626,7 +1626,7 @@

polars.Expr.str.strip#

-Expr.str.strip(characters: str | None = None) Expr[source]#
+Expr.str.strip(characters: str | None = None) Expr[source]#

Remove leading and trailing characters.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.strptime.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.strptime.html index 0f083e3c3a0b..c13c4dab87bc 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.strptime.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.strptime.html @@ -1626,7 +1626,7 @@

polars.Expr.str.strptime#

-Expr.str.strptime(dtype: PolarsTemporalType, format: str | None = None, *, strict: bool = True, exact: bool = True, cache: bool = True, utc: bool | None = None) Expr[source]#
+Expr.str.strptime(dtype: PolarsTemporalType, format: str | None = None, *, strict: bool = True, exact: bool = True, cache: bool = True, utc: bool | None = None) Expr[source]#

Convert a Utf8 column into a Date/Datetime/Time column.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.to_datetime.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.to_datetime.html index 205facf9bdcd..90487827e555 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.to_datetime.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.to_datetime.html @@ -1626,7 +1626,7 @@

polars.Expr.str.to_datetime#

-Expr.str.to_datetime(format: str | None = None, *, time_unit: TimeUnit | None = None, time_zone: str | None = None, strict: bool = True, exact: bool = True, cache: bool = True, utc: bool | None = None) Expr[source]#
+Expr.str.to_datetime(format: str | None = None, *, time_unit: TimeUnit | None = None, time_zone: str | None = None, strict: bool = True, exact: bool = True, cache: bool = True, utc: bool | None = None) Expr[source]#

Convert a Utf8 column into a Datetime column.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.to_decimal.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.to_decimal.html index a1dd809ae9be..c4aff352fe56 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.to_decimal.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.to_decimal.html @@ -1626,7 +1626,7 @@

polars.Expr.str.to_decimal#

-Expr.str.to_decimal(inference_length: int = 100) Expr[source]#
+Expr.str.to_decimal(inference_length: int = 100) Expr[source]#

Convert a Utf8 column into a Decimal column.

This method infers the needed parameters precision and scale.

diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.to_lowercase.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.to_lowercase.html index e025e3a59f09..18c353da9576 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.to_lowercase.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.to_lowercase.html @@ -1626,7 +1626,7 @@

polars.Expr.str.to_lowercase#

-Expr.str.to_lowercase() Expr[source]#
+Expr.str.to_lowercase() Expr[source]#

Transform to lowercase variant.

Examples

>>> df = pl.DataFrame({"foo": ["CAT", "DOG"]})
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.to_time.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.to_time.html
index e8ab240a1972..3f5b97a5d288 100644
--- a/py-polars/dev/reference/expressions/api/polars.Expr.str.to_time.html
+++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.to_time.html
@@ -1626,7 +1626,7 @@
 

polars.Expr.str.to_time#

-Expr.str.to_time(format: str | None = None, *, strict: bool = True, cache: bool = True) Expr[source]#
+Expr.str.to_time(format: str | None = None, *, strict: bool = True, cache: bool = True) Expr[source]#

Convert a Utf8 column into a Time column.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.to_titlecase.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.to_titlecase.html index 89dc793b3bce..e9554f5d6d2e 100644 --- a/py-polars/dev/reference/expressions/api/polars.Expr.str.to_titlecase.html +++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.to_titlecase.html @@ -1626,7 +1626,7 @@

polars.Expr.str.to_titlecase#

-Expr.str.to_titlecase() Expr[source]#
+Expr.str.to_titlecase() Expr[source]#

Transform to titlecase variant.

Examples

>>> df = pl.DataFrame(
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.to_uppercase.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.to_uppercase.html
index c0b428f615d3..c64863a0d5f9 100644
--- a/py-polars/dev/reference/expressions/api/polars.Expr.str.to_uppercase.html
+++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.to_uppercase.html
@@ -1626,7 +1626,7 @@
 

polars.Expr.str.to_uppercase#

-Expr.str.to_uppercase() Expr[source]#
+Expr.str.to_uppercase() Expr[source]#

Transform to uppercase variant.

Examples

>>> df = pl.DataFrame({"foo": ["cat", "dog"]})
diff --git a/py-polars/dev/reference/expressions/api/polars.Expr.str.zfill.html b/py-polars/dev/reference/expressions/api/polars.Expr.str.zfill.html
index 3fa256dd0e8a..6fc57e902e5f 100644
--- a/py-polars/dev/reference/expressions/api/polars.Expr.str.zfill.html
+++ b/py-polars/dev/reference/expressions/api/polars.Expr.str.zfill.html
@@ -1626,7 +1626,7 @@
 

polars.Expr.str.zfill#

-Expr.str.zfill(alignment: int) Expr[source]#
+Expr.str.zfill(alignment: int) Expr[source]#

Fills the string with zeroes.

Return a copy of the string left filled with ASCII ‘0’ digits to make a string of length width.

diff --git a/py-polars/dev/reference/expressions/api/polars.all.html b/py-polars/dev/reference/expressions/api/polars.all.html index f99a8dfd6472..60e5ea46456e 100644 --- a/py-polars/dev/reference/expressions/api/polars.all.html +++ b/py-polars/dev/reference/expressions/api/polars.all.html @@ -1626,7 +1626,7 @@

polars.all#

-polars.all(exprs: Series) bool[source]#
+polars.all(exprs: Series) bool[source]#
polars.all(exprs: IntoExpr | Iterable[IntoExpr] | None = None, *more_exprs: IntoExpr) Expr

Either return an expression representing all columns, or evaluate a bitwise AND operation.

diff --git a/py-polars/dev/reference/expressions/api/polars.any.html b/py-polars/dev/reference/expressions/api/polars.any.html index f4b895c683e1..d29ab13d868b 100644 --- a/py-polars/dev/reference/expressions/api/polars.any.html +++ b/py-polars/dev/reference/expressions/api/polars.any.html @@ -1626,7 +1626,7 @@

polars.any#

-polars.any(exprs: Series) bool[source]#
+polars.any(exprs: Series) bool[source]#
polars.any(exprs: IntoExpr | Iterable[IntoExpr], *more_exprs: IntoExpr) Expr

Evaluate a bitwise OR operation.

diff --git a/py-polars/dev/reference/expressions/api/polars.apply.html b/py-polars/dev/reference/expressions/api/polars.apply.html index 5dad2998d22b..cb272be711b2 100644 --- a/py-polars/dev/reference/expressions/api/polars.apply.html +++ b/py-polars/dev/reference/expressions/api/polars.apply.html @@ -1626,7 +1626,7 @@

polars.apply#

-polars.apply(exprs: Sequence[str | Expr], function: Callable[[Sequence[Series]], Series | Any], return_dtype: PolarsDataType | None = None, *, returns_scalar: bool = True) Expr[source]#
+polars.apply(exprs: Sequence[str | Expr], function: Callable[[Sequence[Series]], Series | Any], return_dtype: PolarsDataType | None = None, *, returns_scalar: bool = True) Expr[source]#

Apply a custom/user-defined function (UDF) in a GroupBy context.

Warning

diff --git a/py-polars/dev/reference/expressions/api/polars.approx_unique.html b/py-polars/dev/reference/expressions/api/polars.approx_unique.html index e6c90994bf49..2565fd850d6a 100644 --- a/py-polars/dev/reference/expressions/api/polars.approx_unique.html +++ b/py-polars/dev/reference/expressions/api/polars.approx_unique.html @@ -1626,7 +1626,7 @@

polars.approx_unique#

-polars.approx_unique(column: str | Expr) Expr[source]#
+polars.approx_unique(column: str | Expr) Expr[source]#

Approx count unique values.

This is done using the HyperLogLog++ algorithm for cardinality estimation.

diff --git a/py-polars/dev/reference/expressions/api/polars.arange.html b/py-polars/dev/reference/expressions/api/polars.arange.html index be1255cac8f3..cecd2dcf8245 100644 --- a/py-polars/dev/reference/expressions/api/polars.arange.html +++ b/py-polars/dev/reference/expressions/api/polars.arange.html @@ -1626,7 +1626,7 @@

polars.arange#

-polars.arange(start: int | Expr | Series, end: int | Expr | Series, step: int = 1, *, dtype: PolarsDataType | None = None, eager: Literal[False] = False) Expr[source]#
+polars.arange(start: int | Expr | Series, end: int | Expr | Series, step: int = 1, *, dtype: PolarsDataType | None = None, eager: Literal[False] = False) Expr[source]#
polars.arange(start: int | IntoExpr, end: int | IntoExpr, step: int = 1, *, dtype: PolarsDataType | None = None, eager: Literal[True]) Series
diff --git a/py-polars/dev/reference/expressions/api/polars.arctan2.html b/py-polars/dev/reference/expressions/api/polars.arctan2.html index 970363a315a5..00a2e8f2610f 100644 --- a/py-polars/dev/reference/expressions/api/polars.arctan2.html +++ b/py-polars/dev/reference/expressions/api/polars.arctan2.html @@ -1626,7 +1626,7 @@

polars.arctan2#

-polars.arctan2(y: str | Expr, x: str | Expr) Expr[source]#
+polars.arctan2(y: str | Expr, x: str | Expr) Expr[source]#

Compute two argument arctan in radians.

Returns the angle (in radians) in the plane between the positive x-axis and the ray from the origin to (x,y).

diff --git a/py-polars/dev/reference/expressions/api/polars.arctan2d.html b/py-polars/dev/reference/expressions/api/polars.arctan2d.html index 9eef41c206ef..346e94b8892d 100644 --- a/py-polars/dev/reference/expressions/api/polars.arctan2d.html +++ b/py-polars/dev/reference/expressions/api/polars.arctan2d.html @@ -1626,7 +1626,7 @@

polars.arctan2d#

-polars.arctan2d(y: str | Expr, x: str | Expr) Expr[source]#
+polars.arctan2d(y: str | Expr, x: str | Expr) Expr[source]#

Compute two argument arctan in degrees.

Returns the angle (in degrees) in the plane between the positive x-axis and the ray from the origin to (x,y).

diff --git a/py-polars/dev/reference/expressions/api/polars.arg_sort_by.html b/py-polars/dev/reference/expressions/api/polars.arg_sort_by.html index 5f91996e1b89..408a4e50c6b5 100644 --- a/py-polars/dev/reference/expressions/api/polars.arg_sort_by.html +++ b/py-polars/dev/reference/expressions/api/polars.arg_sort_by.html @@ -1626,7 +1626,7 @@

polars.arg_sort_by#

-polars.arg_sort_by(exprs: IntoExpr | Iterable[IntoExpr], *more_exprs: IntoExpr, descending: bool | Sequence[bool] = False) Expr[source]#
+polars.arg_sort_by(exprs: IntoExpr | Iterable[IntoExpr], *more_exprs: IntoExpr, descending: bool | Sequence[bool] = False) Expr[source]#

Return the row indices that would sort the columns.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.arg_where.html b/py-polars/dev/reference/expressions/api/polars.arg_where.html index c6eca32c9e04..163245885027 100644 --- a/py-polars/dev/reference/expressions/api/polars.arg_where.html +++ b/py-polars/dev/reference/expressions/api/polars.arg_where.html @@ -1626,7 +1626,7 @@

polars.arg_where#

-polars.arg_where(condition: Expr | Series, *, eager: Literal[False] = False) Expr[source]#
+polars.arg_where(condition: Expr | Series, *, eager: Literal[False] = False) Expr[source]#
polars.arg_where(condition: Expr | Series, *, eager: Literal[True]) Series
diff --git a/py-polars/dev/reference/expressions/api/polars.avg.html b/py-polars/dev/reference/expressions/api/polars.avg.html index 3862ec76b9c0..b27527efeb91 100644 --- a/py-polars/dev/reference/expressions/api/polars.avg.html +++ b/py-polars/dev/reference/expressions/api/polars.avg.html @@ -1626,7 +1626,7 @@

polars.avg#

-polars.avg(column: str) Expr[source]#
+polars.avg(column: str) Expr[source]#
polars.avg(column: Series) float

Alias for mean.

diff --git a/py-polars/dev/reference/expressions/api/polars.coalesce.html b/py-polars/dev/reference/expressions/api/polars.coalesce.html index 2fc0b66993f9..546cc19a3bd3 100644 --- a/py-polars/dev/reference/expressions/api/polars.coalesce.html +++ b/py-polars/dev/reference/expressions/api/polars.coalesce.html @@ -1626,7 +1626,7 @@

polars.coalesce#

-polars.coalesce(exprs: IntoExpr | Iterable[IntoExpr], *more_exprs: IntoExpr) Expr[source]#
+polars.coalesce(exprs: IntoExpr | Iterable[IntoExpr], *more_exprs: IntoExpr) Expr[source]#

Folds the columns from left to right, keeping the first non-null value.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.col.html b/py-polars/dev/reference/expressions/api/polars.col.html index c102a22a3149..a6ac54732cb0 100644 --- a/py-polars/dev/reference/expressions/api/polars.col.html +++ b/py-polars/dev/reference/expressions/api/polars.col.html @@ -1626,7 +1626,7 @@

polars.col#

-polars.col(name: str | PolarsDataType | Iterable[str] | Iterable[PolarsDataType], *more_names: str | PolarsDataType) Expr[source]#
+polars.col(name: str | PolarsDataType | Iterable[str] | Iterable[PolarsDataType], *more_names: str | PolarsDataType) Expr[source]#

Return an expression representing column(s) in a dataframe.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.concat_list.html b/py-polars/dev/reference/expressions/api/polars.concat_list.html index 901a2f317b9b..9124aecebd7e 100644 --- a/py-polars/dev/reference/expressions/api/polars.concat_list.html +++ b/py-polars/dev/reference/expressions/api/polars.concat_list.html @@ -1626,7 +1626,7 @@

polars.concat_list#

-polars.concat_list(exprs: IntoExpr | Iterable[IntoExpr], *more_exprs: IntoExpr) Expr[source]#
+polars.concat_list(exprs: IntoExpr | Iterable[IntoExpr], *more_exprs: IntoExpr) Expr[source]#

Horizontally concatenate columns into a single list column.

Operates in linear time.

diff --git a/py-polars/dev/reference/expressions/api/polars.concat_str.html b/py-polars/dev/reference/expressions/api/polars.concat_str.html index 0ebad6b070d7..3ed17779bd7b 100644 --- a/py-polars/dev/reference/expressions/api/polars.concat_str.html +++ b/py-polars/dev/reference/expressions/api/polars.concat_str.html @@ -1626,7 +1626,7 @@

polars.concat_str#

-polars.concat_str(exprs: IntoExpr | Iterable[IntoExpr], *more_exprs: IntoExpr, separator: str = '') Expr[source]#
+polars.concat_str(exprs: IntoExpr | Iterable[IntoExpr], *more_exprs: IntoExpr, separator: str = '') Expr[source]#

Horizontally concatenate columns into a single string column.

Operates in linear time.

diff --git a/py-polars/dev/reference/expressions/api/polars.corr.html b/py-polars/dev/reference/expressions/api/polars.corr.html index 18dd258bfeaa..f051bf07d971 100644 --- a/py-polars/dev/reference/expressions/api/polars.corr.html +++ b/py-polars/dev/reference/expressions/api/polars.corr.html @@ -1626,7 +1626,7 @@

polars.corr#

-polars.corr(a: str | Expr, b: str | Expr, *, method: CorrelationMethod = 'pearson', ddof: int = 1, propagate_nans: bool = False) Expr[source]#
+polars.corr(a: str | Expr, b: str | Expr, *, method: CorrelationMethod = 'pearson', ddof: int = 1, propagate_nans: bool = False) Expr[source]#

Compute the Pearson’s or Spearman rank correlation correlation between two columns.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.count.html b/py-polars/dev/reference/expressions/api/polars.count.html index a1db30b81996..8bc1f2d74611 100644 --- a/py-polars/dev/reference/expressions/api/polars.count.html +++ b/py-polars/dev/reference/expressions/api/polars.count.html @@ -1626,7 +1626,7 @@

polars.count#

-polars.count(column: str) Expr[source]#
+polars.count(column: str) Expr[source]#
polars.count(column: Series) int
diff --git a/py-polars/dev/reference/expressions/api/polars.cov.html b/py-polars/dev/reference/expressions/api/polars.cov.html index fe05c26f3f8a..7ac0c5e8a7c9 100644 --- a/py-polars/dev/reference/expressions/api/polars.cov.html +++ b/py-polars/dev/reference/expressions/api/polars.cov.html @@ -1626,7 +1626,7 @@

polars.cov#

-polars.cov(a: str | Expr, b: str | Expr) Expr[source]#
+polars.cov(a: str | Expr, b: str | Expr) Expr[source]#

Compute the covariance between two columns/ expressions.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.cumfold.html b/py-polars/dev/reference/expressions/api/polars.cumfold.html index 5df5c181264a..dfc908feec5b 100644 --- a/py-polars/dev/reference/expressions/api/polars.cumfold.html +++ b/py-polars/dev/reference/expressions/api/polars.cumfold.html @@ -1626,7 +1626,7 @@

polars.cumfold#

-polars.cumfold(acc: IntoExpr, function: Callable[[Series, Series], Series], exprs: Sequence[Expr | str] | Expr, *, include_init: bool = False) Expr[source]#
+polars.cumfold(acc: IntoExpr, function: Callable[[Series, Series], Series], exprs: Sequence[Expr | str] | Expr, *, include_init: bool = False) Expr[source]#

Cumulatively accumulate over multiple columns horizontally/ row wise with a left fold.

Every cumulative result is added as a separate field in a Struct column.

diff --git a/py-polars/dev/reference/expressions/api/polars.cumreduce.html b/py-polars/dev/reference/expressions/api/polars.cumreduce.html index 11d1a385c043..d3cedae5d24e 100644 --- a/py-polars/dev/reference/expressions/api/polars.cumreduce.html +++ b/py-polars/dev/reference/expressions/api/polars.cumreduce.html @@ -1626,7 +1626,7 @@

polars.cumreduce#

-polars.cumreduce(function: Callable[[Series, Series], Series], exprs: Sequence[Expr | str] | Expr) Expr[source]#
+polars.cumreduce(function: Callable[[Series, Series], Series], exprs: Sequence[Expr | str] | Expr) Expr[source]#

Cumulatively accumulate over multiple columns horizontally/ row wise with a left fold.

Every cumulative result is added as a separate field in a Struct column.

diff --git a/py-polars/dev/reference/expressions/api/polars.cumsum.html b/py-polars/dev/reference/expressions/api/polars.cumsum.html index 7930af1390ae..7b05fdc04662 100644 --- a/py-polars/dev/reference/expressions/api/polars.cumsum.html +++ b/py-polars/dev/reference/expressions/api/polars.cumsum.html @@ -1626,7 +1626,7 @@

polars.cumsum#

-polars.cumsum(exprs: Series) Series[source]#
+polars.cumsum(exprs: Series) Series[source]#
polars.cumsum(exprs: IntoExpr | Iterable[IntoExpr], *more_exprs: IntoExpr) Expr

Cumulatively sum all values.

diff --git a/py-polars/dev/reference/expressions/api/polars.date.html b/py-polars/dev/reference/expressions/api/polars.date.html index 08d560a94e1b..d3e65ebc235e 100644 --- a/py-polars/dev/reference/expressions/api/polars.date.html +++ b/py-polars/dev/reference/expressions/api/polars.date.html @@ -1626,7 +1626,7 @@

polars.date#

-polars.date(year: Expr | str | int, month: Expr | str | int, day: Expr | str | int) Expr[source]#
+polars.date(year: Expr | str | int, month: Expr | str | int, day: Expr | str | int) Expr[source]#

Create a Polars literal expression of type Date.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.date_range.html b/py-polars/dev/reference/expressions/api/polars.date_range.html index 44a45b43e445..82267e1bdef0 100644 --- a/py-polars/dev/reference/expressions/api/polars.date_range.html +++ b/py-polars/dev/reference/expressions/api/polars.date_range.html @@ -1626,7 +1626,7 @@

polars.date_range#

-polars.date_range(start: date | datetime | IntoExpr, end: date | datetime | IntoExpr, interval: str | timedelta = '1d', *, closed: ClosedInterval = 'both', time_unit: TimeUnit | None = None, time_zone: str | None = None, eager: Literal[False] = False, name: str | None = None) Expr[source]#
+polars.date_range(start: date | datetime | IntoExpr, end: date | datetime | IntoExpr, interval: str | timedelta = '1d', *, closed: ClosedInterval = 'both', time_unit: TimeUnit | None = None, time_zone: str | None = None, eager: Literal[False] = False, name: str | None = None) Expr[source]#
polars.date_range(start: date | datetime | IntoExpr, end: date | datetime | IntoExpr, interval: str | timedelta = '1d', *, closed: ClosedInterval = 'both', time_unit: TimeUnit | None = None, time_zone: str | None = None, eager: Literal[True], name: str | None = None) Series
diff --git a/py-polars/dev/reference/expressions/api/polars.date_ranges.html b/py-polars/dev/reference/expressions/api/polars.date_ranges.html index 162bc95b2047..83c23e9aa547 100644 --- a/py-polars/dev/reference/expressions/api/polars.date_ranges.html +++ b/py-polars/dev/reference/expressions/api/polars.date_ranges.html @@ -1626,7 +1626,7 @@

polars.date_ranges#

-polars.date_ranges(start: date | datetime | IntoExpr, end: date | datetime | IntoExpr, interval: str | timedelta = '1d', *, closed: ClosedInterval = 'both', time_unit: TimeUnit | None = None, time_zone: str | None = None, eager: Literal[False] = False) Expr[source]#
+polars.date_ranges(start: date | datetime | IntoExpr, end: date | datetime | IntoExpr, interval: str | timedelta = '1d', *, closed: ClosedInterval = 'both', time_unit: TimeUnit | None = None, time_zone: str | None = None, eager: Literal[False] = False) Expr[source]#
polars.date_ranges(start: date | datetime | IntoExpr, end: date | datetime | IntoExpr, interval: str | timedelta = '1d', *, closed: ClosedInterval = 'both', time_unit: TimeUnit | None = None, time_zone: str | None = None, eager: Literal[True]) Series
diff --git a/py-polars/dev/reference/expressions/api/polars.datetime.html b/py-polars/dev/reference/expressions/api/polars.datetime.html index 0105bd5927b3..465098e7e39c 100644 --- a/py-polars/dev/reference/expressions/api/polars.datetime.html +++ b/py-polars/dev/reference/expressions/api/polars.datetime.html @@ -1626,7 +1626,7 @@

polars.datetime#

-polars.datetime(year: Expr | str | int, month: Expr | str | int, day: Expr | str | int, hour: Expr | str | int | None = None, minute: Expr | str | int | None = None, second: Expr | str | int | None = None, microsecond: Expr | str | int | None = None) Expr[source]#
+polars.datetime(year: Expr | str | int, month: Expr | str | int, day: Expr | str | int, hour: Expr | str | int | None = None, minute: Expr | str | int | None = None, second: Expr | str | int | None = None, microsecond: Expr | str | int | None = None) Expr[source]#

Create a Polars literal expression of type Datetime.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.duration.html b/py-polars/dev/reference/expressions/api/polars.duration.html index 9fdda34497d0..dafac8e7d505 100644 --- a/py-polars/dev/reference/expressions/api/polars.duration.html +++ b/py-polars/dev/reference/expressions/api/polars.duration.html @@ -1626,7 +1626,7 @@

polars.duration#

-polars.duration(*, days: Expr | str | int | None = None, seconds: Expr | str | int | None = None, nanoseconds: Expr | str | int | None = None, microseconds: Expr | str | int | None = None, milliseconds: Expr | str | int | None = None, minutes: Expr | str | int | None = None, hours: Expr | str | int | None = None, weeks: Expr | str | int | None = None) Expr[source]#
+polars.duration(*, days: Expr | str | int | None = None, seconds: Expr | str | int | None = None, nanoseconds: Expr | str | int | None = None, microseconds: Expr | str | int | None = None, milliseconds: Expr | str | int | None = None, minutes: Expr | str | int | None = None, hours: Expr | str | int | None = None, weeks: Expr | str | int | None = None) Expr[source]#

Create polars Duration from distinct time components.

Returns:
diff --git a/py-polars/dev/reference/expressions/api/polars.element.html b/py-polars/dev/reference/expressions/api/polars.element.html index 97fb18e8d6dd..9c4fbcb2b03a 100644 --- a/py-polars/dev/reference/expressions/api/polars.element.html +++ b/py-polars/dev/reference/expressions/api/polars.element.html @@ -1626,7 +1626,7 @@

polars.element#

-polars.element() Expr[source]#
+polars.element() Expr[source]#

Alias for an element being evaluated in an eval expression.

Examples

A horizontal rank computation by taking the elements of a list

diff --git a/py-polars/dev/reference/expressions/api/polars.exclude.html b/py-polars/dev/reference/expressions/api/polars.exclude.html index d0fb6e68c815..e22336506820 100644 --- a/py-polars/dev/reference/expressions/api/polars.exclude.html +++ b/py-polars/dev/reference/expressions/api/polars.exclude.html @@ -1626,7 +1626,7 @@

polars.exclude#

-polars.exclude(columns: str | PolarsDataType | Iterable[str] | Iterable[PolarsDataType], *more_columns: str | PolarsDataType) Expr[source]#
+polars.exclude(columns: str | PolarsDataType | Iterable[str] | Iterable[PolarsDataType], *more_columns: str | PolarsDataType) Expr[source]#

Represent all columns except for the given columns.

Syntactic sugar for pl.all().exclude(columns).

diff --git a/py-polars/dev/reference/expressions/api/polars.first.html b/py-polars/dev/reference/expressions/api/polars.first.html index c2ad2d273a9f..99d1c1fcd6d1 100644 --- a/py-polars/dev/reference/expressions/api/polars.first.html +++ b/py-polars/dev/reference/expressions/api/polars.first.html @@ -1626,7 +1626,7 @@

polars.first#

-polars.first(column: str) Expr[source]#
+polars.first(column: str) Expr[source]#
polars.first(column: Series) Any
diff --git a/py-polars/dev/reference/expressions/api/polars.fold.html b/py-polars/dev/reference/expressions/api/polars.fold.html index e618c257213c..9ae0d39bb100 100644 --- a/py-polars/dev/reference/expressions/api/polars.fold.html +++ b/py-polars/dev/reference/expressions/api/polars.fold.html @@ -1626,7 +1626,7 @@

polars.fold#

-polars.fold(acc: IntoExpr, function: Callable[[Series, Series], Series], exprs: Sequence[Expr | str] | Expr) Expr[source]#
+polars.fold(acc: IntoExpr, function: Callable[[Series, Series], Series], exprs: Sequence[Expr | str] | Expr) Expr[source]#

Accumulate over multiple columns horizontally/ row wise with a left fold.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.format.html b/py-polars/dev/reference/expressions/api/polars.format.html index 3b318522b6c4..3cfaf129b5ca 100644 --- a/py-polars/dev/reference/expressions/api/polars.format.html +++ b/py-polars/dev/reference/expressions/api/polars.format.html @@ -1626,7 +1626,7 @@

polars.format#

-polars.format(f_string: str, *args: Expr | str) Expr[source]#
+polars.format(f_string: str, *args: Expr | str) Expr[source]#

Format expressions as a string.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.from_epoch.html b/py-polars/dev/reference/expressions/api/polars.from_epoch.html index 92900b632821..eef93ce51584 100644 --- a/py-polars/dev/reference/expressions/api/polars.from_epoch.html +++ b/py-polars/dev/reference/expressions/api/polars.from_epoch.html @@ -1626,7 +1626,7 @@

polars.from_epoch#

-polars.from_epoch(column: str | Expr, time_unit: EpochTimeUnit = 's') Expr[source]#
+polars.from_epoch(column: str | Expr, time_unit: EpochTimeUnit = 's') Expr[source]#
polars.from_epoch(column: Series | Sequence[int], time_unit: EpochTimeUnit = 's') Series

Utility function that parses an epoch timestamp (or Unix time) to Polars Date(time).

diff --git a/py-polars/dev/reference/expressions/api/polars.groups.html b/py-polars/dev/reference/expressions/api/polars.groups.html index 789ed0bf6941..beeb6c1ba25c 100644 --- a/py-polars/dev/reference/expressions/api/polars.groups.html +++ b/py-polars/dev/reference/expressions/api/polars.groups.html @@ -1626,7 +1626,7 @@

polars.groups#

-polars.groups(column: str) Expr[source]#
+polars.groups(column: str) Expr[source]#

Syntactic sugar for pl.col(“foo”).agg_groups().

diff --git a/py-polars/dev/reference/expressions/api/polars.head.html b/py-polars/dev/reference/expressions/api/polars.head.html index 7888f0936abc..77467d941530 100644 --- a/py-polars/dev/reference/expressions/api/polars.head.html +++ b/py-polars/dev/reference/expressions/api/polars.head.html @@ -1626,7 +1626,7 @@

polars.head#

-polars.head(column: str, n: int = 10) Expr[source]#
+polars.head(column: str, n: int = 10) Expr[source]#
polars.head(column: Series, n: int = 10) Series

Get the first n rows.

diff --git a/py-polars/dev/reference/expressions/api/polars.implode.html b/py-polars/dev/reference/expressions/api/polars.implode.html index 9f684ff70968..79e7f91bafbd 100644 --- a/py-polars/dev/reference/expressions/api/polars.implode.html +++ b/py-polars/dev/reference/expressions/api/polars.implode.html @@ -1626,7 +1626,7 @@

polars.implode#

-polars.implode(name: str) Expr[source]#
+polars.implode(name: str) Expr[source]#

Aggregate all column values into a list.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.int_range.html b/py-polars/dev/reference/expressions/api/polars.int_range.html index a0aa356657a0..c9b5d50c8a16 100644 --- a/py-polars/dev/reference/expressions/api/polars.int_range.html +++ b/py-polars/dev/reference/expressions/api/polars.int_range.html @@ -1626,7 +1626,7 @@

polars.int_range#

-polars.int_range(start: int | IntoExpr, end: int | IntoExpr, step: int = 1, *, dtype: PolarsIntegerType = Int64, eager: Literal[False] = False) Expr[source]#
+polars.int_range(start: int | IntoExpr, end: int | IntoExpr, step: int = 1, *, dtype: PolarsIntegerType = Int64, eager: Literal[False] = False) Expr[source]#
polars.int_range(start: int | IntoExpr, end: int | IntoExpr, step: int = 1, *, dtype: PolarsIntegerType = Int64, eager: Literal[True]) Series
diff --git a/py-polars/dev/reference/expressions/api/polars.int_ranges.html b/py-polars/dev/reference/expressions/api/polars.int_ranges.html index b644644a2ee3..664f5f6592ce 100644 --- a/py-polars/dev/reference/expressions/api/polars.int_ranges.html +++ b/py-polars/dev/reference/expressions/api/polars.int_ranges.html @@ -1626,7 +1626,7 @@

polars.int_ranges#

-polars.int_ranges(start: IntoExpr, end: IntoExpr, step: int = 1, *, dtype: PolarsIntegerType = Int64, eager: Literal[False] = False) Expr[source]#
+polars.int_ranges(start: IntoExpr, end: IntoExpr, step: int = 1, *, dtype: PolarsIntegerType = Int64, eager: Literal[False] = False) Expr[source]#
polars.int_ranges(start: IntoExpr, end: IntoExpr, step: int = 1, *, dtype: PolarsIntegerType = Int64, eager: Literal[True]) Series
diff --git a/py-polars/dev/reference/expressions/api/polars.last.html b/py-polars/dev/reference/expressions/api/polars.last.html index ad426caa297b..c60d34e371cc 100644 --- a/py-polars/dev/reference/expressions/api/polars.last.html +++ b/py-polars/dev/reference/expressions/api/polars.last.html @@ -1626,7 +1626,7 @@

polars.last#

-polars.last(column: str) Expr[source]#
+polars.last(column: str) Expr[source]#
polars.last(column: Series) Any
diff --git a/py-polars/dev/reference/expressions/api/polars.lit.html b/py-polars/dev/reference/expressions/api/polars.lit.html index e06ade8e852e..7b9546559e3a 100644 --- a/py-polars/dev/reference/expressions/api/polars.lit.html +++ b/py-polars/dev/reference/expressions/api/polars.lit.html @@ -1626,7 +1626,7 @@

polars.lit#

-polars.lit(value: Any, dtype: PolarsDataType | None = None, *, allow_object: bool = False) Expr[source]#
+polars.lit(value: Any, dtype: PolarsDataType | None = None, *, allow_object: bool = False) Expr[source]#

Return an expression representing a literal value.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.map.html b/py-polars/dev/reference/expressions/api/polars.map.html index 185e326cf342..f087aa250eb5 100644 --- a/py-polars/dev/reference/expressions/api/polars.map.html +++ b/py-polars/dev/reference/expressions/api/polars.map.html @@ -1626,7 +1626,7 @@

polars.map#

-polars.map(exprs: Sequence[str] | Sequence[Expr], function: Callable[[Sequence[Series]], Series], return_dtype: PolarsDataType | None = None) Expr[source]#
+polars.map(exprs: Sequence[str] | Sequence[Expr], function: Callable[[Sequence[Series]], Series], return_dtype: PolarsDataType | None = None) Expr[source]#

Map a custom function over multiple columns/expressions.

Produces a single Series result.

diff --git a/py-polars/dev/reference/expressions/api/polars.max.html b/py-polars/dev/reference/expressions/api/polars.max.html index 230f8d032c8a..1dc8d36984a7 100644 --- a/py-polars/dev/reference/expressions/api/polars.max.html +++ b/py-polars/dev/reference/expressions/api/polars.max.html @@ -1626,7 +1626,7 @@

polars.max#

-polars.max(exprs: Series) PythonLiteral | None[source]#
+polars.max(exprs: Series) PythonLiteral | None[source]#
polars.max(exprs: IntoExpr | Iterable[IntoExpr], *more_exprs: IntoExpr) Expr

Get the maximum value.

diff --git a/py-polars/dev/reference/expressions/api/polars.mean.html b/py-polars/dev/reference/expressions/api/polars.mean.html index 2b59c90e6103..0e040a5c7dab 100644 --- a/py-polars/dev/reference/expressions/api/polars.mean.html +++ b/py-polars/dev/reference/expressions/api/polars.mean.html @@ -1626,7 +1626,7 @@

polars.mean#

-polars.mean(column: str) Expr[source]#
+polars.mean(column: str) Expr[source]#
polars.mean(column: Series) float

Get the mean value.

diff --git a/py-polars/dev/reference/expressions/api/polars.median.html b/py-polars/dev/reference/expressions/api/polars.median.html index 4c1cc5e84825..30b8ea1ced31 100644 --- a/py-polars/dev/reference/expressions/api/polars.median.html +++ b/py-polars/dev/reference/expressions/api/polars.median.html @@ -1626,7 +1626,7 @@

polars.median#

-polars.median(column: str) Expr[source]#
+polars.median(column: str) Expr[source]#
polars.median(column: Series) float | int

Get the median value.

diff --git a/py-polars/dev/reference/expressions/api/polars.min.html b/py-polars/dev/reference/expressions/api/polars.min.html index 004e8243a4cc..5cfe866363c2 100644 --- a/py-polars/dev/reference/expressions/api/polars.min.html +++ b/py-polars/dev/reference/expressions/api/polars.min.html @@ -1626,7 +1626,7 @@

polars.min#

-polars.min(exprs: Series) PythonLiteral | None[source]#
+polars.min(exprs: Series) PythonLiteral | None[source]#
polars.min(exprs: IntoExpr | Iterable[IntoExpr], *more_exprs: IntoExpr) Expr

Get the minimum value.

diff --git a/py-polars/dev/reference/expressions/api/polars.n_unique.html b/py-polars/dev/reference/expressions/api/polars.n_unique.html index 2a27abb52f3e..8ebad8999283 100644 --- a/py-polars/dev/reference/expressions/api/polars.n_unique.html +++ b/py-polars/dev/reference/expressions/api/polars.n_unique.html @@ -1626,7 +1626,7 @@

polars.n_unique#

-polars.n_unique(column: str) Expr[source]#
+polars.n_unique(column: str) Expr[source]#
polars.n_unique(column: Series) int

Count unique values.

diff --git a/py-polars/dev/reference/expressions/api/polars.ones.html b/py-polars/dev/reference/expressions/api/polars.ones.html index 7f9b13bc447e..7ea1703b36be 100644 --- a/py-polars/dev/reference/expressions/api/polars.ones.html +++ b/py-polars/dev/reference/expressions/api/polars.ones.html @@ -1626,7 +1626,7 @@

polars.ones#

-polars.ones(n: int | Expr, dtype: PolarsDataType = Float64, *, eager: Literal[False] = False) Expr[source]#
+polars.ones(n: int | Expr, dtype: PolarsDataType = Float64, *, eager: Literal[False] = False) Expr[source]#
polars.ones(n: int | Expr, dtype: PolarsDataType = Float64, *, eager: Literal[True]) Series
diff --git a/py-polars/dev/reference/expressions/api/polars.quantile.html b/py-polars/dev/reference/expressions/api/polars.quantile.html index ee37c16fa47e..6c7ce6dcd611 100644 --- a/py-polars/dev/reference/expressions/api/polars.quantile.html +++ b/py-polars/dev/reference/expressions/api/polars.quantile.html @@ -1626,7 +1626,7 @@

polars.quantile#

-polars.quantile(column: str, quantile: float | Expr, interpolation: RollingInterpolationMethod = 'nearest') Expr[source]#
+polars.quantile(column: str, quantile: float | Expr, interpolation: RollingInterpolationMethod = 'nearest') Expr[source]#

Syntactic sugar for pl.col(“foo”).quantile(..).

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.reduce.html b/py-polars/dev/reference/expressions/api/polars.reduce.html index d1a221c2775f..08838635c162 100644 --- a/py-polars/dev/reference/expressions/api/polars.reduce.html +++ b/py-polars/dev/reference/expressions/api/polars.reduce.html @@ -1626,7 +1626,7 @@

polars.reduce#

-polars.reduce(function: Callable[[Series, Series], Series], exprs: Sequence[Expr | str] | Expr) Expr[source]#
+polars.reduce(function: Callable[[Series, Series], Series], exprs: Sequence[Expr | str] | Expr) Expr[source]#

Accumulate over multiple columns horizontally/ row wise with a left fold.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.repeat.html b/py-polars/dev/reference/expressions/api/polars.repeat.html index 18e7b244e7d5..36aed860cfef 100644 --- a/py-polars/dev/reference/expressions/api/polars.repeat.html +++ b/py-polars/dev/reference/expressions/api/polars.repeat.html @@ -1626,7 +1626,7 @@

polars.repeat#

-polars.repeat(value: IntoExpr | None, n: int | Expr, *, dtype: PolarsDataType | None = None, eager: Literal[False] = False, name: str | None = None) Expr[source]#
+polars.repeat(value: IntoExpr | None, n: int | Expr, *, dtype: PolarsDataType | None = None, eager: Literal[False] = False, name: str | None = None) Expr[source]#
polars.repeat(value: IntoExpr | None, n: int | Expr, *, dtype: PolarsDataType | None = None, eager: Literal[True], name: str | None = None) Series
diff --git a/py-polars/dev/reference/expressions/api/polars.rolling_corr.html b/py-polars/dev/reference/expressions/api/polars.rolling_corr.html index 2fb04a24d9b6..ad69b786e78c 100644 --- a/py-polars/dev/reference/expressions/api/polars.rolling_corr.html +++ b/py-polars/dev/reference/expressions/api/polars.rolling_corr.html @@ -1626,7 +1626,7 @@

polars.rolling_corr#

-polars.rolling_corr(a: str | Expr, b: str | Expr, *, window_size: int, min_periods: int | None = None, ddof: int = 1) Expr[source]#
+polars.rolling_corr(a: str | Expr, b: str | Expr, *, window_size: int, min_periods: int | None = None, ddof: int = 1) Expr[source]#

Compute the rolling correlation between two columns/ expressions.

The window at a given row includes the row itself and the window_size - 1 elements before it.

diff --git a/py-polars/dev/reference/expressions/api/polars.rolling_cov.html b/py-polars/dev/reference/expressions/api/polars.rolling_cov.html index 5ef823c6cd63..6a77f64787f3 100644 --- a/py-polars/dev/reference/expressions/api/polars.rolling_cov.html +++ b/py-polars/dev/reference/expressions/api/polars.rolling_cov.html @@ -1626,7 +1626,7 @@

polars.rolling_cov#

-polars.rolling_cov(a: str | Expr, b: str | Expr, *, window_size: int, min_periods: int | None = None, ddof: int = 1) Expr[source]#
+polars.rolling_cov(a: str | Expr, b: str | Expr, *, window_size: int, min_periods: int | None = None, ddof: int = 1) Expr[source]#

Compute the rolling covariance between two columns/ expressions.

The window at a given row includes the row itself and the window_size - 1 elements before it.

diff --git a/py-polars/dev/reference/expressions/api/polars.select.html b/py-polars/dev/reference/expressions/api/polars.select.html index e995beaeb204..09201531f853 100644 --- a/py-polars/dev/reference/expressions/api/polars.select.html +++ b/py-polars/dev/reference/expressions/api/polars.select.html @@ -1626,7 +1626,7 @@

polars.select#

-polars.select(*exprs: IntoExpr | Iterable[IntoExpr], **named_exprs: IntoExpr) DataFrame[source]#
+polars.select(*exprs: IntoExpr | Iterable[IntoExpr], **named_exprs: IntoExpr) DataFrame[source]#

Run polars expressions without a context.

This is syntactic sugar for running df.select on an empty DataFrame.

diff --git a/py-polars/dev/reference/expressions/api/polars.sql_expr.html b/py-polars/dev/reference/expressions/api/polars.sql_expr.html index da8c96dacb50..9d8a039a7b28 100644 --- a/py-polars/dev/reference/expressions/api/polars.sql_expr.html +++ b/py-polars/dev/reference/expressions/api/polars.sql_expr.html @@ -1626,7 +1626,7 @@

polars.sql_expr#

-polars.sql_expr(sql: str) Expr[source]#
+polars.sql_expr(sql: str) Expr[source]#
polars.sql_expr(sql: Sequence[str]) list[Expr]

Parse one or more SQL expressions to polars expression(s).

diff --git a/py-polars/dev/reference/expressions/api/polars.std.html b/py-polars/dev/reference/expressions/api/polars.std.html index 26b84298f3bf..30794ba47d93 100644 --- a/py-polars/dev/reference/expressions/api/polars.std.html +++ b/py-polars/dev/reference/expressions/api/polars.std.html @@ -1626,7 +1626,7 @@

polars.std#

-polars.std(column: str, ddof: int = 1) Expr[source]#
+polars.std(column: str, ddof: int = 1) Expr[source]#
polars.std(column: Series, ddof: int = 1) float | None

Get the standard deviation.

diff --git a/py-polars/dev/reference/expressions/api/polars.struct.html b/py-polars/dev/reference/expressions/api/polars.struct.html index 4117682ade82..c15e09e51cce 100644 --- a/py-polars/dev/reference/expressions/api/polars.struct.html +++ b/py-polars/dev/reference/expressions/api/polars.struct.html @@ -1626,7 +1626,7 @@

polars.struct#

-polars.struct(*exprs: IntoExpr | Iterable[IntoExpr], schema: SchemaDict | None = None, eager: Literal[False] = False, **named_exprs: IntoExpr) Expr[source]#
+polars.struct(*exprs: IntoExpr | Iterable[IntoExpr], schema: SchemaDict | None = None, eager: Literal[False] = False, **named_exprs: IntoExpr) Expr[source]#
polars.struct(*exprs: IntoExpr | Iterable[IntoExpr], schema: SchemaDict | None = None, eager: Literal[True], **named_exprs: IntoExpr) Series
diff --git a/py-polars/dev/reference/expressions/api/polars.sum.html b/py-polars/dev/reference/expressions/api/polars.sum.html index bdeaa12813f4..e490840190ce 100644 --- a/py-polars/dev/reference/expressions/api/polars.sum.html +++ b/py-polars/dev/reference/expressions/api/polars.sum.html @@ -1626,7 +1626,7 @@

polars.sum#

-polars.sum(exprs: Series) int | float[source]#
+polars.sum(exprs: Series) int | float[source]#
polars.sum(exprs: IntoExpr | Iterable[IntoExpr], *more_exprs: IntoExpr) Expr

Sum all values.

diff --git a/py-polars/dev/reference/expressions/api/polars.tail.html b/py-polars/dev/reference/expressions/api/polars.tail.html index b16e46fe9a5d..1ce8a74a99f7 100644 --- a/py-polars/dev/reference/expressions/api/polars.tail.html +++ b/py-polars/dev/reference/expressions/api/polars.tail.html @@ -1626,7 +1626,7 @@

polars.tail#

-polars.tail(column: str, n: int = 10) Expr[source]#
+polars.tail(column: str, n: int = 10) Expr[source]#
polars.tail(column: Series, n: int = 10) Series

Get the last n rows.

diff --git a/py-polars/dev/reference/expressions/api/polars.time.html b/py-polars/dev/reference/expressions/api/polars.time.html index 67c492500384..8dff91db44e2 100644 --- a/py-polars/dev/reference/expressions/api/polars.time.html +++ b/py-polars/dev/reference/expressions/api/polars.time.html @@ -1626,7 +1626,7 @@

polars.time#

-polars.time(hour: Expr | str | int | None = None, minute: Expr | str | int | None = None, second: Expr | str | int | None = None, microsecond: Expr | str | int | None = None) Expr[source]#
+polars.time(hour: Expr | str | int | None = None, minute: Expr | str | int | None = None, second: Expr | str | int | None = None, microsecond: Expr | str | int | None = None) Expr[source]#

Create a Polars literal expression of type Time.

Parameters:
diff --git a/py-polars/dev/reference/expressions/api/polars.time_range.html b/py-polars/dev/reference/expressions/api/polars.time_range.html index b31d0f0b9eee..734a921dbb09 100644 --- a/py-polars/dev/reference/expressions/api/polars.time_range.html +++ b/py-polars/dev/reference/expressions/api/polars.time_range.html @@ -1626,7 +1626,7 @@

polars.time_range#

-polars.time_range(start: time | IntoExpr | None = None, end: time | IntoExpr | None = None, interval: str | timedelta = '1h', *, closed: ClosedInterval = 'both', eager: Literal[False] = False, name: str | None = None) Expr[source]#
+polars.time_range(start: time | IntoExpr | None = None, end: time | IntoExpr | None = None, interval: str | timedelta = '1h', *, closed: ClosedInterval = 'both', eager: Literal[False] = False, name: str | None = None) Expr[source]#
polars.time_range(start: time | IntoExpr | None = None, end: time | IntoExpr | None = None, interval: str | timedelta = '1h', *, closed: ClosedInterval = 'both', eager: Literal[True], name: str | None = None) Series
diff --git a/py-polars/dev/reference/expressions/api/polars.time_ranges.html b/py-polars/dev/reference/expressions/api/polars.time_ranges.html index 0de824b01e8f..771402f9d55a 100644 --- a/py-polars/dev/reference/expressions/api/polars.time_ranges.html +++ b/py-polars/dev/reference/expressions/api/polars.time_ranges.html @@ -1626,7 +1626,7 @@

polars.time_ranges#

-polars.time_ranges(start: time | IntoExpr | None = None, end: time | IntoExpr | None = None, interval: str | timedelta = '1h', *, closed: ClosedInterval = 'both', eager: Literal[False] = False) Expr[source]#
+polars.time_ranges(start: time | IntoExpr | None = None, end: time | IntoExpr | None = None, interval: str | timedelta = '1h', *, closed: ClosedInterval = 'both', eager: Literal[False] = False) Expr[source]#
polars.time_ranges(start: time | IntoExpr | None = None, end: time | IntoExpr | None = None, interval: str | timedelta = '1h', *, closed: ClosedInterval = 'both', eager: Literal[True]) Series
diff --git a/py-polars/dev/reference/expressions/api/polars.var.html b/py-polars/dev/reference/expressions/api/polars.var.html index bc1e27934728..73ad49544d18 100644 --- a/py-polars/dev/reference/expressions/api/polars.var.html +++ b/py-polars/dev/reference/expressions/api/polars.var.html @@ -1626,7 +1626,7 @@

polars.var#

-polars.var(column: str, ddof: int = 1) Expr[source]#
+polars.var(column: str, ddof: int = 1) Expr[source]#
polars.var(column: Series, ddof: int = 1) float | None

Get the variance.

diff --git a/py-polars/dev/reference/expressions/api/polars.zeros.html b/py-polars/dev/reference/expressions/api/polars.zeros.html index 6df97cee2f7e..785a4857e8f2 100644 --- a/py-polars/dev/reference/expressions/api/polars.zeros.html +++ b/py-polars/dev/reference/expressions/api/polars.zeros.html @@ -1626,7 +1626,7 @@

polars.zeros#

-polars.zeros(n: int | Expr, dtype: PolarsDataType = Float64, *, eager: Literal[False] = False) Expr[source]#
+polars.zeros(n: int | Expr, dtype: PolarsDataType = Float64, *, eager: Literal[False] = False) Expr[source]#
polars.zeros(n: int | Expr, dtype: PolarsDataType = Float64, *, eager: Literal[True]) Series
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.bottom_k.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.bottom_k.html index 089170b5659c..a140a2b183a1 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.bottom_k.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.bottom_k.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.bottom_k#

-LazyFrame.bottom_k(k: int, *, by: IntoExpr | Iterable[IntoExpr], descending: bool | Sequence[bool] = False, nulls_last: bool = False, maintain_order: bool = False) Self[source]#
+LazyFrame.bottom_k(k: int, *, by: IntoExpr | Iterable[IntoExpr], descending: bool | Sequence[bool] = False, nulls_last: bool = False, maintain_order: bool = False) Self[source]#

Return the k smallest elements.

If ‘descending=True` the largest elements will be given.

diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.cache.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.cache.html index dbc5ac2a97b0..8a9810618ef1 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.cache.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.cache.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.cache#

-LazyFrame.cache() Self[source]#
+LazyFrame.cache() Self[source]#

Cache the result once the execution of the physical plan hits this node.

diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.clear.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.clear.html index d0bfcc443fa9..9913856473ea 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.clear.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.clear.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.clear#

-LazyFrame.clear(n: int = 0) LazyFrame[source]#
+LazyFrame.clear(n: int = 0) LazyFrame[source]#

Create an empty copy of the current LazyFrame, with zero to ‘n’ rows.

Returns a copy with an identical schema but no data.

diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.clone.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.clone.html index a459d03b91a8..f69c903336f0 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.clone.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.clone.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.clone#

-LazyFrame.clone() Self[source]#
+LazyFrame.clone() Self[source]#

Very cheap deepcopy/clone.

See also

diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.collect.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.collect.html index 45fbb0c1289a..3f5aafe9d5b1 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.collect.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.collect.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.collect#

-LazyFrame.collect(*, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, no_optimization: bool = False, slice_pushdown: bool = True, comm_subplan_elim: bool = True, comm_subexpr_elim: bool = True, streaming: bool = False) DataFrame[source]#
+LazyFrame.collect(*, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, no_optimization: bool = False, slice_pushdown: bool = True, comm_subplan_elim: bool = True, comm_subexpr_elim: bool = True, streaming: bool = False) DataFrame[source]#

Collect into a DataFrame.

Note: use fetch() if you want to run your query on the first n rows only. This can be a huge time saver in debugging queries.

diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.columns.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.columns.html index cf2c75e551fb..1aa4fe234e3c 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.columns.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.columns.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.columns#

-property LazyFrame.columns: list[str][source]#
+property LazyFrame.columns: list[str][source]#

Get column names.

Examples

>>> lf = pl.LazyFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.drop.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.drop.html
index 9edd1adfbf99..aa60ca7e62a1 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.drop.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.drop.html
@@ -1626,7 +1626,7 @@
 

polars.LazyFrame.drop#

-LazyFrame.drop(columns: str | Collection[str], *more_columns: str) Self[source]#
+LazyFrame.drop(columns: str | Collection[str], *more_columns: str) Self[source]#

Remove columns from the dataframe.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.drop_nulls.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.drop_nulls.html index 7567bcd2081e..07ffb33917b6 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.drop_nulls.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.drop_nulls.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.drop_nulls#

-LazyFrame.drop_nulls(subset: str | Collection[str] | None = None) Self[source]#
+LazyFrame.drop_nulls(subset: str | Collection[str] | None = None) Self[source]#

Drop all rows that contain null values.

Returns a new LazyFrame.

diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.dtypes.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.dtypes.html index 242cbbacd158..f6b887ab1c48 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.dtypes.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.dtypes.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.dtypes#

-property LazyFrame.dtypes: list[PolarsDataType][source]#
+property LazyFrame.dtypes: list[PolarsDataType][source]#

Get dtypes of columns in LazyFrame.

See also

diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.explain.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.explain.html index 5627b75ca7c4..0b64c0eddd26 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.explain.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.explain.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.explain#

-LazyFrame.explain(*, optimized: bool = True, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, slice_pushdown: bool = True, comm_subplan_elim: bool = True, comm_subexpr_elim: bool = True, streaming: bool = False) str[source]#
+LazyFrame.explain(*, optimized: bool = True, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, slice_pushdown: bool = True, comm_subplan_elim: bool = True, comm_subexpr_elim: bool = True, streaming: bool = False) str[source]#

Create a string representation of the query plan.

Different optimizations can be turned on or off.

diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.explode.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.explode.html index 7214c658c91f..d38d76c8e3e1 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.explode.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.explode.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.explode#

-LazyFrame.explode(columns: str | Sequence[str] | Expr | Sequence[Expr], *more_columns: str | Expr) Self[source]#
+LazyFrame.explode(columns: str | Sequence[str] | Expr | Sequence[Expr], *more_columns: str | Expr) Self[source]#

Explode the dataframe to long format by exploding the given columns.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.fetch.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.fetch.html index 149ada202573..86c7a7352cf6 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.fetch.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.fetch.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.fetch#

-LazyFrame.fetch(n_rows: int = 500, *, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, no_optimization: bool = False, slice_pushdown: bool = True, comm_subplan_elim: bool = True, comm_subexpr_elim: bool = True, streaming: bool = False) DataFrame[source]#
+LazyFrame.fetch(n_rows: int = 500, *, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, no_optimization: bool = False, slice_pushdown: bool = True, comm_subplan_elim: bool = True, comm_subexpr_elim: bool = True, streaming: bool = False) DataFrame[source]#

Collect a small number of rows for debugging purposes.

Fetch is like a collect() operation, but it overwrites the number of rows read by every scan operation. This is a utility that helps debug a query on a diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.fill_nan.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.fill_nan.html index a8476bb9f681..645fa05ee22b 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.fill_nan.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.fill_nan.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.fill_nan#

-LazyFrame.fill_nan(value: int | float | Expr | None) Self[source]#
+LazyFrame.fill_nan(value: int | float | Expr | None) Self[source]#

Fill floating point NaN values.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.fill_null.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.fill_null.html index c7302f4b62ba..53999093d7ab 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.fill_null.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.fill_null.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.fill_null#

-LazyFrame.fill_null(value: Any | None = None, strategy: FillNullStrategy | None = None, limit: int | None = None, *, matches_supertype: bool = True) Self[source]#
+LazyFrame.fill_null(value: Any | None = None, strategy: FillNullStrategy | None = None, limit: int | None = None, *, matches_supertype: bool = True) Self[source]#

Fill null values using the specified value or strategy.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.filter.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.filter.html index b75fc3fea7ca..7c34c43274d3 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.filter.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.filter.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.filter#

-LazyFrame.filter(predicate: IntoExpr) Self[source]#
+LazyFrame.filter(predicate: IntoExpr) Self[source]#

Filter the rows in the LazyFrame based on a predicate expression.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.first.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.first.html index 3ae6599750ca..480358dd0b72 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.first.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.first.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.first#

-LazyFrame.first() Self[source]#
+LazyFrame.first() Self[source]#

Get the first row of the DataFrame.

Examples

>>> lf = pl.LazyFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.from_json.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.from_json.html
index 2c1e78a46e74..592e30f49012 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.from_json.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.from_json.html
@@ -1626,7 +1626,7 @@
 

polars.LazyFrame.from_json#

-classmethod LazyFrame.from_json(json: str) Self[source]#
+classmethod LazyFrame.from_json(json: str) Self[source]#

Read a logical plan from a JSON string to construct a LazyFrame.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.groupby.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.groupby.html index d53da3dd2d06..79240f3da253 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.groupby.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.groupby.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.groupby#

-LazyFrame.groupby(by: IntoExpr | Iterable[IntoExpr], *more_by: IntoExpr, maintain_order: bool = False) LazyGroupBy[source]#
+LazyFrame.groupby(by: IntoExpr | Iterable[IntoExpr], *more_by: IntoExpr, maintain_order: bool = False) LazyGroupBy[source]#

Start a groupby operation.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.groupby_dynamic.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.groupby_dynamic.html index b58b14b5df32..ed4302e181d7 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.groupby_dynamic.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.groupby_dynamic.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.groupby_dynamic#

-LazyFrame.groupby_dynamic(index_column: IntoExpr, *, every: str | timedelta, period: str | timedelta | None = None, offset: str | timedelta | None = None, truncate: bool = True, include_boundaries: bool = False, closed: ClosedInterval = 'left', by: IntoExpr | Iterable[IntoExpr] | None = None, start_by: StartBy = 'window', check_sorted: bool = True) LazyGroupBy[source]#
+LazyFrame.groupby_dynamic(index_column: IntoExpr, *, every: str | timedelta, period: str | timedelta | None = None, offset: str | timedelta | None = None, truncate: bool = True, include_boundaries: bool = False, closed: ClosedInterval = 'left', by: IntoExpr | Iterable[IntoExpr] | None = None, start_by: StartBy = 'window', check_sorted: bool = True) LazyGroupBy[source]#

Group based on a time value (or index value of type Int32, Int64).

Time windows are calculated and rows are assigned to windows. Different from a normal groupby is that a row can be member of multiple groups. The time/index diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.groupby_rolling.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.groupby_rolling.html index 3d05dcb1fddb..e4b0c653932e 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.groupby_rolling.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.groupby_rolling.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.groupby_rolling#

-LazyFrame.groupby_rolling(index_column: IntoExpr, *, period: str | timedelta, offset: str | timedelta | None = None, closed: ClosedInterval = 'right', by: IntoExpr | Iterable[IntoExpr] | None = None, check_sorted: bool = True) LazyGroupBy[source]#
+LazyFrame.groupby_rolling(index_column: IntoExpr, *, period: str | timedelta, offset: str | timedelta | None = None, closed: ClosedInterval = 'right', by: IntoExpr | Iterable[IntoExpr] | None = None, check_sorted: bool = True) LazyGroupBy[source]#

Create rolling groups based on a time, Int32, or Int64 column.

Different from a dynamic_groupby the windows are now determined by the individual values and are not of constant intervals. For constant intervals diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.head.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.head.html index 4e25a393b352..e03ee89174f4 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.head.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.head.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.head#

-LazyFrame.head(n: int = 5) Self[source]#
+LazyFrame.head(n: int = 5) Self[source]#

Get the first n rows.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.inspect.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.inspect.html index d98a40fb8090..7c8594f90297 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.inspect.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.inspect.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.inspect#

-LazyFrame.inspect(fmt: str = '{}') Self[source]#
+LazyFrame.inspect(fmt: str = '{}') Self[source]#

Inspect a node in the computation graph.

Print the value that this node in the computation graph evaluates to and passes on the value.

diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.interpolate.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.interpolate.html index f01733e15140..e399ef3aa19b 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.interpolate.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.interpolate.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.interpolate#

-LazyFrame.interpolate() Self[source]#
+LazyFrame.interpolate() Self[source]#

Interpolate intermediate values. The interpolation method is linear.

Examples

>>> lf = pl.LazyFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.join.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.join.html
index 4873c1715115..cf560b0b854f 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.join.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.join.html
@@ -1626,7 +1626,7 @@
 

polars.LazyFrame.join#

-LazyFrame.join(other: LazyFrame, on: str | Expr | Sequence[str | Expr] | None = None, how: JoinStrategy = 'inner', *, left_on: str | Expr | Sequence[str | Expr] | None = None, right_on: str | Expr | Sequence[str | Expr] | None = None, suffix: str = '_right', validate: JoinValidation = 'm:m', allow_parallel: bool = True, force_parallel: bool = False) Self[source]#
+LazyFrame.join(other: LazyFrame, on: str | Expr | Sequence[str | Expr] | None = None, how: JoinStrategy = 'inner', *, left_on: str | Expr | Sequence[str | Expr] | None = None, right_on: str | Expr | Sequence[str | Expr] | None = None, suffix: str = '_right', validate: JoinValidation = 'm:m', allow_parallel: bool = True, force_parallel: bool = False) Self[source]#

Add a join operation to the Logical Plan.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.join_asof.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.join_asof.html index 277d488caa50..2f73914b514b 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.join_asof.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.join_asof.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.join_asof#

-LazyFrame.join_asof(other: LazyFrame, *, left_on: str | None | Expr = None, right_on: str | None | Expr = None, on: str | None | Expr = None, by_left: str | Sequence[str] | None = None, by_right: str | Sequence[str] | None = None, by: str | Sequence[str] | None = None, strategy: AsofJoinStrategy = 'backward', suffix: str = '_right', tolerance: str | int | float | None = None, allow_parallel: bool = True, force_parallel: bool = False) Self[source]#
+LazyFrame.join_asof(other: LazyFrame, *, left_on: str | None | Expr = None, right_on: str | None | Expr = None, on: str | None | Expr = None, by_left: str | Sequence[str] | None = None, by_right: str | Sequence[str] | None = None, by: str | Sequence[str] | None = None, strategy: AsofJoinStrategy = 'backward', suffix: str = '_right', tolerance: str | int | float | None = None, allow_parallel: bool = True, force_parallel: bool = False) Self[source]#

Perform an asof join.

This is similar to a left-join except that we match on nearest key rather than equal keys.

diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.last.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.last.html index 609a3318ba1e..a5f5b0fed3e2 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.last.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.last.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.last#

-LazyFrame.last() Self[source]#
+LazyFrame.last() Self[source]#

Get the last row of the DataFrame.

Examples

>>> lf = pl.LazyFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.lazy.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.lazy.html
index 024d99970f07..47c5beaef53d 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.lazy.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.lazy.html
@@ -1626,7 +1626,7 @@
 

polars.LazyFrame.lazy#

-LazyFrame.lazy() Self[source]#
+LazyFrame.lazy() Self[source]#

Return lazy representation, i.e. itself.

Useful for writing code that expects either a DataFrame or LazyFrame.

diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.limit.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.limit.html index d9881f88cd63..04b2cb45ac10 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.limit.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.limit.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.limit#

-LazyFrame.limit(n: int = 5) Self[source]#
+LazyFrame.limit(n: int = 5) Self[source]#

Get the first n rows.

Alias for LazyFrame.head().

diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.map.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.map.html index 271fdc5fcdb4..6b2d20dc54a4 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.map.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.map.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.map#

-LazyFrame.map(function: Callable[[DataFrame], DataFrame], *, predicate_pushdown: bool = True, projection_pushdown: bool = True, slice_pushdown: bool = True, no_optimizations: bool = False, schema: None | SchemaDict = None, validate_output_schema: bool = True, streamable: bool = False) Self[source]#
+LazyFrame.map(function: Callable[[DataFrame], DataFrame], *, predicate_pushdown: bool = True, projection_pushdown: bool = True, slice_pushdown: bool = True, no_optimizations: bool = False, schema: None | SchemaDict = None, validate_output_schema: bool = True, streamable: bool = False) Self[source]#

Apply a custom function.

It is important that the function returns a Polars DataFrame.

diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.max.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.max.html index 30adcd499d47..74550b1da1bf 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.max.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.max.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.max#

-LazyFrame.max() Self[source]#
+LazyFrame.max() Self[source]#

Aggregate the columns in the LazyFrame to their maximum value.

Examples

>>> lf = pl.LazyFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.mean.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.mean.html
index 1ec8af32ea40..25c32a54088b 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.mean.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.mean.html
@@ -1626,7 +1626,7 @@
 

polars.LazyFrame.mean#

-LazyFrame.mean() Self[source]#
+LazyFrame.mean() Self[source]#

Aggregate the columns in the LazyFrame to their mean value.

Examples

>>> lf = pl.LazyFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.median.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.median.html
index 98cdd10d931f..7c2c928a01e6 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.median.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.median.html
@@ -1626,7 +1626,7 @@
 

polars.LazyFrame.median#

-LazyFrame.median() Self[source]#
+LazyFrame.median() Self[source]#

Aggregate the columns in the LazyFrame to their median value.

Examples

>>> lf = pl.LazyFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.melt.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.melt.html
index 8c4c91aab052..daea7290c1ce 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.melt.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.melt.html
@@ -1626,7 +1626,7 @@
 

polars.LazyFrame.melt#

-LazyFrame.melt(id_vars: str | list[str] | None = None, value_vars: str | list[str] | None = None, variable_name: str | None = None, value_name: str | None = None, *, streamable: bool = True) Self[source]#
+LazyFrame.melt(id_vars: str | list[str] | None = None, value_vars: str | list[str] | None = None, variable_name: str | None = None, value_name: str | None = None, *, streamable: bool = True) Self[source]#

Unpivot a DataFrame from wide to long format.

Optionally leaves identifiers set.

This function is useful to massage a DataFrame into a format where one or more diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.merge_sorted.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.merge_sorted.html index 257344d3b71b..913b2007ae5b 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.merge_sorted.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.merge_sorted.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.merge_sorted#

-LazyFrame.merge_sorted(other: LazyFrame, key: str) Self[source]#
+LazyFrame.merge_sorted(other: LazyFrame, key: str) Self[source]#

Take two sorted DataFrames and merge them by the sorted key.

The output of this operation will also be sorted. It is the callers responsibility that the frames are sorted diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.min.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.min.html index c00325de35e4..5333066758aa 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.min.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.min.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.min#

-LazyFrame.min() Self[source]#
+LazyFrame.min() Self[source]#

Aggregate the columns in the LazyFrame to their minimum value.

Examples

>>> lf = pl.LazyFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.null_count.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.null_count.html
index 41d4e6abf8d7..3028af0dbed8 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.null_count.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.null_count.html
@@ -1626,7 +1626,7 @@
 

polars.LazyFrame.null_count#

-LazyFrame.null_count() Self[source]#
+LazyFrame.null_count() Self[source]#

Aggregate the columns in the LazyFrame as the sum of their null value count.

Examples

>>> lf = pl.LazyFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.pipe.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.pipe.html
index 45cf20d898ee..36fac421fc8d 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.pipe.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.pipe.html
@@ -1626,7 +1626,7 @@
 

polars.LazyFrame.pipe#

-LazyFrame.pipe(function: Callable[Concatenate[LazyFrame, P], T], *args: P.args, **kwargs: P.kwargs) T[source]#
+LazyFrame.pipe(function: Callable[Concatenate[LazyFrame, P], T], *args: P.args, **kwargs: P.kwargs) T[source]#

Offers a structured way to apply a sequence of user-defined functions (UDFs).

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.profile.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.profile.html index bcb5c9774f39..7bda6978f99f 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.profile.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.profile.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.profile#

-LazyFrame.profile(*, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, no_optimization: bool = False, slice_pushdown: bool = True, comm_subplan_elim: bool = True, comm_subexpr_elim: bool = True, show_plot: bool = False, truncate_nodes: int = 0, figsize: tuple[int, int] = (18, 8), streaming: bool = False) tuple[DataFrame, DataFrame][source]#
+LazyFrame.profile(*, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, no_optimization: bool = False, slice_pushdown: bool = True, comm_subplan_elim: bool = True, comm_subexpr_elim: bool = True, show_plot: bool = False, truncate_nodes: int = 0, figsize: tuple[int, int] = (18, 8), streaming: bool = False) tuple[DataFrame, DataFrame][source]#

Profile a LazyFrame.

This will run the query and return a tuple containing the materialized DataFrame and a DataFrame that diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.quantile.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.quantile.html index f70071da4a0c..8025d65a3d72 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.quantile.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.quantile.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.quantile#

-LazyFrame.quantile(quantile: float | Expr, interpolation: RollingInterpolationMethod = 'nearest') Self[source]#
+LazyFrame.quantile(quantile: float | Expr, interpolation: RollingInterpolationMethod = 'nearest') Self[source]#

Aggregate the columns in the LazyFrame to their quantile value.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.read_json.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.read_json.html index e3c6ed0e2e8f..97ab2afdc8aa 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.read_json.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.read_json.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.read_json#

-classmethod LazyFrame.read_json(file: str | Path | IOBase) Self[source]#
+classmethod LazyFrame.read_json(file: str | Path | IOBase) Self[source]#

Read a logical plan from a JSON file to construct a LazyFrame.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.rename.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.rename.html index ecc114a379a6..4a863a643f6f 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.rename.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.rename.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.rename#

-LazyFrame.rename(mapping: dict[str, str]) Self[source]#
+LazyFrame.rename(mapping: dict[str, str]) Self[source]#

Rename column names.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.reverse.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.reverse.html index ced1601ad576..c19a423292f7 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.reverse.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.reverse.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.reverse#

-LazyFrame.reverse() Self[source]#
+LazyFrame.reverse() Self[source]#

Reverse the DataFrame.

Examples

>>> lf = pl.LazyFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.schema.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.schema.html
index 1bad687e7713..0513dcc1a31c 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.schema.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.schema.html
@@ -1626,7 +1626,7 @@
 

polars.LazyFrame.schema#

-property LazyFrame.schema: SchemaDict[source]#
+property LazyFrame.schema: SchemaDict[source]#

Get a dict[column name, DataType].

Examples

>>> lf = pl.LazyFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.select.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.select.html
index a0fd1014216b..1d0d6865ce49 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.select.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.select.html
@@ -1626,7 +1626,7 @@
 

polars.LazyFrame.select#

-LazyFrame.select(*exprs: IntoExpr | Iterable[IntoExpr], **named_exprs: IntoExpr) Self[source]#
+LazyFrame.select(*exprs: IntoExpr | Iterable[IntoExpr], **named_exprs: IntoExpr) Self[source]#

Select columns from this LazyFrame.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.set_sorted.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.set_sorted.html index da8f289ddfa4..8546a968b3d4 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.set_sorted.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.set_sorted.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.set_sorted#

-LazyFrame.set_sorted(column: str | Iterable[str], *more_columns: str, descending: bool = False) Self[source]#
+LazyFrame.set_sorted(column: str | Iterable[str], *more_columns: str, descending: bool = False) Self[source]#

Indicate that one or multiple columns are sorted.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.shift.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.shift.html index 25482686a732..e4e1479b678a 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.shift.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.shift.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.shift#

-LazyFrame.shift(periods: int) Self[source]#
+LazyFrame.shift(periods: int) Self[source]#

Shift the values by a given period.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.shift_and_fill.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.shift_and_fill.html index 5130cd151651..3eb6882addcc 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.shift_and_fill.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.shift_and_fill.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.shift_and_fill#

-LazyFrame.shift_and_fill(fill_value: Expr | int | str | float, *, periods: int = 1) Self[source]#
+LazyFrame.shift_and_fill(fill_value: Expr | int | str | float, *, periods: int = 1) Self[source]#

Shift the values by a given period and fill the resulting null values.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.show_graph.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.show_graph.html index 81691dcf571f..d9ab1e4681f3 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.show_graph.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.show_graph.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.show_graph#

-LazyFrame.show_graph(*, optimized: bool = True, show: bool = True, output_path: str | Path | None = None, raw_output: bool = False, figsize: tuple[float, float] = (16.0, 12.0), type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, slice_pushdown: bool = True, comm_subplan_elim: bool = True, comm_subexpr_elim: bool = True, streaming: bool = False) str | None[source]#
+LazyFrame.show_graph(*, optimized: bool = True, show: bool = True, output_path: str | Path | None = None, raw_output: bool = False, figsize: tuple[float, float] = (16.0, 12.0), type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, slice_pushdown: bool = True, comm_subplan_elim: bool = True, comm_subexpr_elim: bool = True, streaming: bool = False) str | None[source]#

Show a plot of the query plan. Note that you should have graphviz installed.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.slice.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.slice.html index 14b98f0e9366..5ebd907f8377 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.slice.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.slice.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.slice#

-LazyFrame.slice(offset: int, length: int | None = None) Self[source]#
+LazyFrame.slice(offset: int, length: int | None = None) Self[source]#

Get a slice of this DataFrame.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.sort.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.sort.html index ce4de8a45837..5223401675c7 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.sort.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.sort.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.sort#

-LazyFrame.sort(by: IntoExpr | Iterable[IntoExpr], *more_by: IntoExpr, descending: bool | Sequence[bool] = False, nulls_last: bool = False, maintain_order: bool = False) Self[source]#
+LazyFrame.sort(by: IntoExpr | Iterable[IntoExpr], *more_by: IntoExpr, descending: bool | Sequence[bool] = False, nulls_last: bool = False, maintain_order: bool = False) Self[source]#

Sort the dataframe by the given columns.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.std.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.std.html index 5027a243e424..d7e5ede5db42 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.std.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.std.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.std#

-LazyFrame.std(ddof: int = 1) Self[source]#
+LazyFrame.std(ddof: int = 1) Self[source]#

Aggregate the columns in the LazyFrame to their standard deviation value.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.sum.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.sum.html index 526167b267b0..d2c10358a75b 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.sum.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.sum.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.sum#

-LazyFrame.sum() Self[source]#
+LazyFrame.sum() Self[source]#

Aggregate the columns in the LazyFrame to their sum value.

Examples

>>> lf = pl.LazyFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.tail.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.tail.html
index 977b0d774e8f..948fbe09ac8b 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.tail.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.tail.html
@@ -1626,7 +1626,7 @@
 

polars.LazyFrame.tail#

-LazyFrame.tail(n: int = 5) Self[source]#
+LazyFrame.tail(n: int = 5) Self[source]#

Get the last n rows.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.take_every.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.take_every.html index 6bc6a832d0f9..094e4390c467 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.take_every.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.take_every.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.take_every#

-LazyFrame.take_every(n: int) Self[source]#
+LazyFrame.take_every(n: int) Self[source]#

Take every nth row in the LazyFrame and return as a new LazyFrame.

Examples

>>> lf = pl.LazyFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.top_k.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.top_k.html
index 79611bd1466c..f2efa204d644 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.top_k.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.top_k.html
@@ -1626,7 +1626,7 @@
 

polars.LazyFrame.top_k#

-LazyFrame.top_k(k: int, *, by: IntoExpr | Iterable[IntoExpr], descending: bool | Sequence[bool] = False, nulls_last: bool = False, maintain_order: bool = False) Self[source]#
+LazyFrame.top_k(k: int, *, by: IntoExpr | Iterable[IntoExpr], descending: bool | Sequence[bool] = False, nulls_last: bool = False, maintain_order: bool = False) Self[source]#

Return the k largest elements.

If ‘descending=True` the smallest elements will be given.

diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.unique.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.unique.html index 7fa709940cb3..e69dd38d4d27 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.unique.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.unique.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.unique#

-LazyFrame.unique(subset: str | Sequence[str] | None = None, *, keep: UniqueKeepStrategy = 'any', maintain_order: bool = False) Self[source]#
+LazyFrame.unique(subset: str | Sequence[str] | None = None, *, keep: UniqueKeepStrategy = 'any', maintain_order: bool = False) Self[source]#

Drop duplicate rows from this dataframe.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.unnest.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.unnest.html index 43e1207cfebe..6a6b1bab299f 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.unnest.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.unnest.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.unnest#

-LazyFrame.unnest(columns: str | Sequence[str], *more_columns: str) Self[source]#
+LazyFrame.unnest(columns: str | Sequence[str], *more_columns: str) Self[source]#

Decompose struct columns into separate columns for each of their fields.

The new columns will be inserted into the dataframe at the location of the struct column.

diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.update.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.update.html index 5c23aa4f42ed..233b19c13581 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.update.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.update.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.update#

-LazyFrame.update(other: LazyFrame, on: str | Sequence[str] | None = None, how: Literal['left', 'inner'] = 'left') Self[source]#
+LazyFrame.update(other: LazyFrame, on: str | Sequence[str] | None = None, how: Literal['left', 'inner'] = 'left') Self[source]#

Update the values in this LazyFrame with the non-null values in other.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.var.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.var.html index 7dbf84990277..8d4328d58b92 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.var.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.var.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.var#

-LazyFrame.var(ddof: int = 1) Self[source]#
+LazyFrame.var(ddof: int = 1) Self[source]#

Aggregate the columns in the LazyFrame to their variance value.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.width.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.width.html index 2d62aacdbe68..81350d6afd1b 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.width.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.width.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.width#

-property LazyFrame.width: int[source]#
+property LazyFrame.width: int[source]#

Get the width of the LazyFrame.

Examples

>>> lf = pl.LazyFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.with_columns.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.with_columns.html
index e1a8025ba292..df61e8c49061 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.with_columns.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.with_columns.html
@@ -1626,7 +1626,7 @@
 

polars.LazyFrame.with_columns#

-LazyFrame.with_columns(*exprs: IntoExpr | Iterable[IntoExpr], **named_exprs: IntoExpr) Self[source]#
+LazyFrame.with_columns(*exprs: IntoExpr | Iterable[IntoExpr], **named_exprs: IntoExpr) Self[source]#

Add columns to this DataFrame.

Added columns will replace existing columns with the same name.

diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.with_context.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.with_context.html index 92c1ff1d1250..9f1c5846dfe9 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.with_context.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.with_context.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.with_context#

-LazyFrame.with_context(other: Self | list[Self]) Self[source]#
+LazyFrame.with_context(other: Self | list[Self]) Self[source]#

Add an external context to the computation graph.

This allows expressions to also access columns from DataFrames that are not part of this one.

diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.with_row_count.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.with_row_count.html index a1d9426ab9d0..f80d3e20f7b7 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.with_row_count.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.with_row_count.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.with_row_count#

-LazyFrame.with_row_count(name: str = 'row_nr', offset: int = 0) Self[source]#
+LazyFrame.with_row_count(name: str = 'row_nr', offset: int = 0) Self[source]#

Add a column at index 0 that counts the rows.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.write_json.html b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.write_json.html index 0ce82289412b..08e3ac3b0245 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.write_json.html +++ b/py-polars/dev/reference/lazyframe/api/polars.LazyFrame.write_json.html @@ -1626,7 +1626,7 @@

polars.LazyFrame.write_json#

-LazyFrame.write_json(file: None = None) str[source]#
+LazyFrame.write_json(file: None = None) str[source]#
LazyFrame.write_json(file: IOBase | str | Path) None

Write the logical plan of this LazyFrame to a file or string in JSON format.

diff --git a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.agg.html b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.agg.html index 1e1e5970fe57..e275acde158b 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.agg.html +++ b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.agg.html @@ -1626,7 +1626,7 @@

polars.lazyframe.groupby.LazyGroupBy.agg#

-LazyGroupBy.agg(*aggs: IntoExpr | Iterable[IntoExpr], **named_aggs: IntoExpr) LazyFrame[source]#
+LazyGroupBy.agg(*aggs: IntoExpr | Iterable[IntoExpr], **named_aggs: IntoExpr) LazyFrame[source]#

Compute aggregations for each group of a groupby operation.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.all.html b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.all.html index 5c7941a09eef..e2306177d97e 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.all.html +++ b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.all.html @@ -1626,7 +1626,7 @@

polars.lazyframe.groupby.LazyGroupBy.all#

-LazyGroupBy.all() LazyFrame[source]#
+LazyGroupBy.all() LazyFrame[source]#

Aggregate the groups into Series.

Examples

>>> ldf = pl.DataFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.apply.html b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.apply.html
index 0a83dbec074f..d9943736ecc3 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.apply.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.apply.html
@@ -1626,7 +1626,7 @@
 

polars.lazyframe.groupby.LazyGroupBy.apply#

-LazyGroupBy.apply(function: Callable[[DataFrame], DataFrame], schema: SchemaDict | None) LazyFrame[source]#
+LazyGroupBy.apply(function: Callable[[DataFrame], DataFrame], schema: SchemaDict | None) LazyFrame[source]#

Apply a custom/user-defined function (UDF) over the groups as a new DataFrame.

Warning

diff --git a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.count.html b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.count.html index 635f955af64b..da078180e596 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.count.html +++ b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.count.html @@ -1626,7 +1626,7 @@

polars.lazyframe.groupby.LazyGroupBy.count#

-LazyGroupBy.count() LazyFrame[source]#
+LazyGroupBy.count() LazyFrame[source]#

Count the number of values in each group.

Warning

diff --git a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.first.html b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.first.html index 164720b383a8..8148b204089b 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.first.html +++ b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.first.html @@ -1626,7 +1626,7 @@

polars.lazyframe.groupby.LazyGroupBy.first#

-LazyGroupBy.first() LazyFrame[source]#
+LazyGroupBy.first() LazyFrame[source]#

Aggregate the first values in the group.

Examples

>>> ldf = pl.DataFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.head.html b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.head.html
index 8e5c58f83dea..d4f5c4adaf39 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.head.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.head.html
@@ -1626,7 +1626,7 @@
 

polars.lazyframe.groupby.LazyGroupBy.head#

-LazyGroupBy.head(n: int = 5) LazyFrame[source]#
+LazyGroupBy.head(n: int = 5) LazyFrame[source]#

Get the first n rows of each group.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.last.html b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.last.html index 9e1a43610ac3..368ba8c75698 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.last.html +++ b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.last.html @@ -1626,7 +1626,7 @@

polars.lazyframe.groupby.LazyGroupBy.last#

-LazyGroupBy.last() LazyFrame[source]#
+LazyGroupBy.last() LazyFrame[source]#

Aggregate the last values in the group.

Examples

>>> ldf = pl.DataFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.max.html b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.max.html
index 7348464ef198..22ab69bb561d 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.max.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.max.html
@@ -1626,7 +1626,7 @@
 

polars.lazyframe.groupby.LazyGroupBy.max#

-LazyGroupBy.max() LazyFrame[source]#
+LazyGroupBy.max() LazyFrame[source]#

Reduce the groups to the maximal value.

Examples

>>> ldf = pl.DataFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.mean.html b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.mean.html
index 4d52fc9dab64..573a8750aa17 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.mean.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.mean.html
@@ -1626,7 +1626,7 @@
 

polars.lazyframe.groupby.LazyGroupBy.mean#

-LazyGroupBy.mean() LazyFrame[source]#
+LazyGroupBy.mean() LazyFrame[source]#

Reduce the groups to the mean values.

Examples

>>> ldf = pl.DataFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.median.html b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.median.html
index 0cd5f0e9ba03..c67364dadc0a 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.median.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.median.html
@@ -1626,7 +1626,7 @@
 

polars.lazyframe.groupby.LazyGroupBy.median#

-LazyGroupBy.median() LazyFrame[source]#
+LazyGroupBy.median() LazyFrame[source]#

Return the median per group.

Examples

>>> ldf = pl.DataFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.min.html b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.min.html
index e6d584040c94..74ddb8236992 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.min.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.min.html
@@ -1626,7 +1626,7 @@
 

polars.lazyframe.groupby.LazyGroupBy.min#

-LazyGroupBy.min() LazyFrame[source]#
+LazyGroupBy.min() LazyFrame[source]#

Reduce the groups to the minimal value.

Examples

>>> ldf = pl.DataFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.n_unique.html b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.n_unique.html
index dfc46f44852f..2cd47f043f6a 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.n_unique.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.n_unique.html
@@ -1626,7 +1626,7 @@
 

polars.lazyframe.groupby.LazyGroupBy.n_unique#

-LazyGroupBy.n_unique() LazyFrame[source]#
+LazyGroupBy.n_unique() LazyFrame[source]#

Count the unique values per group.

Examples

>>> ldf = pl.DataFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.quantile.html b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.quantile.html
index ec70838ce9f5..e97d0b91f3bb 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.quantile.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.quantile.html
@@ -1626,7 +1626,7 @@
 

polars.lazyframe.groupby.LazyGroupBy.quantile#

-LazyGroupBy.quantile(quantile: float, interpolation: RollingInterpolationMethod = 'nearest') LazyFrame[source]#
+LazyGroupBy.quantile(quantile: float, interpolation: RollingInterpolationMethod = 'nearest') LazyFrame[source]#

Compute the quantile per group.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.sum.html b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.sum.html index 4c3ad6ffec80..015a28603ee3 100644 --- a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.sum.html +++ b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.sum.html @@ -1626,7 +1626,7 @@

polars.lazyframe.groupby.LazyGroupBy.sum#

-LazyGroupBy.sum() LazyFrame[source]#
+LazyGroupBy.sum() LazyFrame[source]#

Reduce the groups to the sum.

Examples

>>> ldf = pl.DataFrame(
diff --git a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.tail.html b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.tail.html
index 73db58b6e082..004a9cde535d 100644
--- a/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.tail.html
+++ b/py-polars/dev/reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.tail.html
@@ -1626,7 +1626,7 @@
 

polars.lazyframe.groupby.LazyGroupBy.tail#

-LazyGroupBy.tail(n: int = 5) LazyFrame[source]#
+LazyGroupBy.tail(n: int = 5) LazyFrame[source]#

Get the last n rows of each group.

Parameters:
diff --git a/py-polars/dev/reference/lazyframe/index.html b/py-polars/dev/reference/lazyframe/index.html index b30db5ab61fe..11f1e4f9d87b 100644 --- a/py-polars/dev/reference/lazyframe/index.html +++ b/py-polars/dev/reference/lazyframe/index.html @@ -1617,7 +1617,7 @@

LazyFrame
-class polars.LazyFrame(data: FrameInitTypes | None = None, schema: SchemaDefinition | None = None, *, schema_overrides: SchemaDict | None = None, orient: Orientation | None = None, infer_schema_length: int | None = 100, nan_to_null: bool = False)[source]
+class polars.LazyFrame(data: FrameInitTypes | None = None, schema: SchemaDefinition | None = None, *, schema_overrides: SchemaDict | None = None, orient: Orientation | None = None, infer_schema_length: int | None = 100, nan_to_null: bool = False)[source]

Representation of a Lazy computation graph/query against a DataFrame.

This allows for whole-query optimisation in addition to parallelism, and is the preferred (and highest-performance) mode of operation for polars.

@@ -1973,7 +1973,7 @@

LazyFrame
-approx_unique() Self[source]
+approx_unique() Self[source]

Approx count unique values.

This is done using the HyperLogLog++ algorithm for cardinality estimation.

Examples

@@ -1998,7 +1998,7 @@

LazyFrame
-bottom_k(k: int, *, by: IntoExpr | Iterable[IntoExpr], descending: bool | Sequence[bool] = False, nulls_last: bool = False, maintain_order: bool = False) Self[source]
+bottom_k(k: int, *, by: IntoExpr | Iterable[IntoExpr], descending: bool | Sequence[bool] = False, nulls_last: bool = False, maintain_order: bool = False) Self[source]

Return the k smallest elements.

If ‘descending=True` the largest elements will be given.

@@ -2070,13 +2070,13 @@

LazyFrame
-cache() Self[source]
+cache() Self[source]

Cache the result once the execution of the physical plan hits this node.

-clear(n: int = 0) LazyFrame[source]
+clear(n: int = 0) LazyFrame[source]

Create an empty copy of the current LazyFrame, with zero to ‘n’ rows.

Returns a copy with an identical schema but no data.

@@ -2128,7 +2128,7 @@

LazyFrame
-clone() Self[source]
+clone() Self[source]

Very cheap deepcopy/clone.

See also

@@ -2153,7 +2153,7 @@

LazyFrame
-collect(*, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, no_optimization: bool = False, slice_pushdown: bool = True, comm_subplan_elim: bool = True, comm_subexpr_elim: bool = True, streaming: bool = False) DataFrame[source]
+collect(*, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, no_optimization: bool = False, slice_pushdown: bool = True, comm_subplan_elim: bool = True, comm_subexpr_elim: bool = True, streaming: bool = False) DataFrame[source]

Collect into a DataFrame.

Note: use fetch() if you want to run your query on the first n rows only. This can be a huge time saver in debugging queries.

@@ -2211,7 +2211,7 @@

LazyFrame
-property columns: list[str][source]
+property columns: list[str][source]

Get column names.

Examples

>>> lf = pl.LazyFrame(
@@ -2229,7 +2229,7 @@ 

LazyFrame
-drop(columns: str | Collection[str], *more_columns: str) Self[source]
+drop(columns: str | Collection[str], *more_columns: str) Self[source]

Remove columns from the dataframe.

Parameters:
@@ -2295,7 +2295,7 @@

LazyFrame
-drop_nulls(subset: str | Collection[str] | None = None) Self[source]
+drop_nulls(subset: str | Collection[str] | None = None) Self[source]

Drop all rows that contain null values.

Returns a new LazyFrame.

@@ -2369,7 +2369,7 @@

LazyFrame
-property dtypes: list[PolarsDataType][source]
+property dtypes: list[PolarsDataType][source]

Get dtypes of columns in LazyFrame.

See also

@@ -2394,7 +2394,7 @@

LazyFrame
-explain(*, optimized: bool = True, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, slice_pushdown: bool = True, comm_subplan_elim: bool = True, comm_subexpr_elim: bool = True, streaming: bool = False) str[source]
+explain(*, optimized: bool = True, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, slice_pushdown: bool = True, comm_subplan_elim: bool = True, comm_subexpr_elim: bool = True, streaming: bool = False) str[source]

Create a string representation of the query plan.

Different optimizations can be turned on or off.

@@ -2441,7 +2441,7 @@

LazyFrame
-explode(columns: str | Sequence[str] | Expr | Sequence[Expr], *more_columns: str | Expr) Self[source]
+explode(columns: str | Sequence[str] | Expr | Sequence[Expr], *more_columns: str | Expr) Self[source]

Explode the dataframe to long format by exploding the given columns.

Parameters:
@@ -2483,7 +2483,7 @@

LazyFrame
-fetch(n_rows: int = 500, *, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, no_optimization: bool = False, slice_pushdown: bool = True, comm_subplan_elim: bool = True, comm_subexpr_elim: bool = True, streaming: bool = False) DataFrame[source]
+fetch(n_rows: int = 500, *, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, no_optimization: bool = False, slice_pushdown: bool = True, comm_subplan_elim: bool = True, comm_subexpr_elim: bool = True, streaming: bool = False) DataFrame[source]

Collect a small number of rows for debugging purposes.

Fetch is like a collect() operation, but it overwrites the number of rows read by every scan operation. This is a utility that helps debug a query on a @@ -2546,7 +2546,7 @@

LazyFrame
-fill_nan(value: int | float | Expr | None) Self[source]
+fill_nan(value: int | float | Expr | None) Self[source]

Fill floating point NaN values.

Parameters:
@@ -2586,7 +2586,7 @@

LazyFrame
-fill_null(value: Any | None = None, strategy: FillNullStrategy | None = None, limit: int | None = None, *, matches_supertype: bool = True) Self[source]
+fill_null(value: Any | None = None, strategy: FillNullStrategy | None = None, limit: int | None = None, *, matches_supertype: bool = True) Self[source]

Fill null values using the specified value or strategy.

Parameters:
@@ -2668,7 +2668,7 @@

LazyFrame
-filter(predicate: IntoExpr) Self[source]
+filter(predicate: IntoExpr) Self[source]

Filter the rows in the LazyFrame based on a predicate expression.

Parameters:
@@ -2730,7 +2730,7 @@

LazyFrame
-first() Self[source]
+first() Self[source]

Get the first row of the DataFrame.

Examples

>>> lf = pl.LazyFrame(
@@ -2754,7 +2754,7 @@ 

LazyFrame
-classmethod from_json(json: str) Self[source]
+classmethod from_json(json: str) Self[source]

Read a logical plan from a JSON string to construct a LazyFrame.

Parameters:
@@ -2774,7 +2774,7 @@

LazyFrame
-groupby(by: IntoExpr | Iterable[IntoExpr], *more_by: IntoExpr, maintain_order: bool = False) LazyGroupBy[source]
+groupby(by: IntoExpr | Iterable[IntoExpr], *more_by: IntoExpr, maintain_order: bool = False) LazyGroupBy[source]

Start a groupby operation.

Parameters:
@@ -2866,7 +2866,7 @@

LazyFrame
-groupby_dynamic(index_column: IntoExpr, *, every: str | timedelta, period: str | timedelta | None = None, offset: str | timedelta | None = None, truncate: bool = True, include_boundaries: bool = False, closed: ClosedInterval = 'left', by: IntoExpr | Iterable[IntoExpr] | None = None, start_by: StartBy = 'window', check_sorted: bool = True) LazyGroupBy[source]
+groupby_dynamic(index_column: IntoExpr, *, every: str | timedelta, period: str | timedelta | None = None, offset: str | timedelta | None = None, truncate: bool = True, include_boundaries: bool = False, closed: ClosedInterval = 'left', by: IntoExpr | Iterable[IntoExpr] | None = None, start_by: StartBy = 'window', check_sorted: bool = True) LazyGroupBy[source]

Group based on a time value (or index value of type Int32, Int64).

Time windows are calculated and rows are assigned to windows. Different from a normal groupby is that a row can be member of multiple groups. The time/index @@ -3181,7 +3181,7 @@

LazyFrame
-groupby_rolling(index_column: IntoExpr, *, period: str | timedelta, offset: str | timedelta | None = None, closed: ClosedInterval = 'right', by: IntoExpr | Iterable[IntoExpr] | None = None, check_sorted: bool = True) LazyGroupBy[source]
+groupby_rolling(index_column: IntoExpr, *, period: str | timedelta, offset: str | timedelta | None = None, closed: ClosedInterval = 'right', by: IntoExpr | Iterable[IntoExpr] | None = None, check_sorted: bool = True) LazyGroupBy[source]

Create rolling groups based on a time, Int32, or Int64 column.

Different from a dynamic_groupby the windows are now determined by the individual values and are not of constant intervals. For constant intervals @@ -3313,7 +3313,7 @@

LazyFrame
-head(n: int = 5) Self[source]
+head(n: int = 5) Self[source]

Get the first n rows.

Parameters:
@@ -3363,7 +3363,7 @@

LazyFrame
-inspect(fmt: str = '{}') Self[source]
+inspect(fmt: str = '{}') Self[source]

Inspect a node in the computation graph.

Print the value that this node in the computation graph evaluates to and passes on the value.

@@ -3381,7 +3381,7 @@

LazyFrame
-interpolate() Self[source]
+interpolate() Self[source]

Interpolate intermediate values. The interpolation method is linear.

Examples

>>> lf = pl.LazyFrame(
@@ -3409,7 +3409,7 @@ 

LazyFrame
-join(other: LazyFrame, on: str | Expr | Sequence[str | Expr] | None = None, how: JoinStrategy = 'inner', *, left_on: str | Expr | Sequence[str | Expr] | None = None, right_on: str | Expr | Sequence[str | Expr] | None = None, suffix: str = '_right', validate: JoinValidation = 'm:m', allow_parallel: bool = True, force_parallel: bool = False) Self[source]
+join(other: LazyFrame, on: str | Expr | Sequence[str | Expr] | None = None, how: JoinStrategy = 'inner', *, left_on: str | Expr | Sequence[str | Expr] | None = None, right_on: str | Expr | Sequence[str | Expr] | None = None, suffix: str = '_right', validate: JoinValidation = 'm:m', allow_parallel: bool = True, force_parallel: bool = False) Self[source]

Add a join operation to the Logical Plan.

Parameters:
@@ -3547,7 +3547,7 @@

LazyFrame
-join_asof(other: LazyFrame, *, left_on: str | None | Expr = None, right_on: str | None | Expr = None, on: str | None | Expr = None, by_left: str | Sequence[str] | None = None, by_right: str | Sequence[str] | None = None, by: str | Sequence[str] | None = None, strategy: AsofJoinStrategy = 'backward', suffix: str = '_right', tolerance: str | int | float | None = None, allow_parallel: bool = True, force_parallel: bool = False) Self[source]
+join_asof(other: LazyFrame, *, left_on: str | None | Expr = None, right_on: str | None | Expr = None, on: str | None | Expr = None, by_left: str | Sequence[str] | None = None, by_right: str | Sequence[str] | None = None, by: str | Sequence[str] | None = None, strategy: AsofJoinStrategy = 'backward', suffix: str = '_right', tolerance: str | int | float | None = None, allow_parallel: bool = True, force_parallel: bool = False) Self[source]

Perform an asof join.

This is similar to a left-join except that we match on nearest key rather than equal keys.

@@ -3669,7 +3669,7 @@

LazyFrame
-last() Self[source]
+last() Self[source]

Get the last row of the DataFrame.

Examples

>>> lf = pl.LazyFrame(
@@ -3693,7 +3693,7 @@ 

LazyFrame
-lazy() Self[source]
+lazy() Self[source]

Return lazy representation, i.e. itself.

Useful for writing code that expects either a DataFrame or LazyFrame.

@@ -3720,7 +3720,7 @@

LazyFrame
-limit(n: int = 5) Self[source]
+limit(n: int = 5) Self[source]

Get the first n rows.

Alias for LazyFrame.head().

@@ -3771,7 +3771,7 @@

LazyFrame
-map(function: Callable[[DataFrame], DataFrame], *, predicate_pushdown: bool = True, projection_pushdown: bool = True, slice_pushdown: bool = True, no_optimizations: bool = False, schema: None | SchemaDict = None, validate_output_schema: bool = True, streamable: bool = False) Self[source]
+map(function: Callable[[DataFrame], DataFrame], *, predicate_pushdown: bool = True, projection_pushdown: bool = True, slice_pushdown: bool = True, no_optimizations: bool = False, schema: None | SchemaDict = None, validate_output_schema: bool = True, streamable: bool = False) Self[source]

Apply a custom function.

It is important that the function returns a Polars DataFrame.

@@ -3834,7 +3834,7 @@

LazyFrame
-max() Self[source]
+max() Self[source]

Aggregate the columns in the LazyFrame to their maximum value.

Examples

>>> lf = pl.LazyFrame(
@@ -3858,7 +3858,7 @@ 

LazyFrame
-mean() Self[source]
+mean() Self[source]

Aggregate the columns in the LazyFrame to their mean value.

Examples

>>> lf = pl.LazyFrame(
@@ -3882,7 +3882,7 @@ 

LazyFrame
-median() Self[source]
+median() Self[source]

Aggregate the columns in the LazyFrame to their median value.

Examples

>>> lf = pl.LazyFrame(
@@ -3906,7 +3906,7 @@ 

LazyFrame
-melt(id_vars: str | list[str] | None = None, value_vars: str | list[str] | None = None, variable_name: str | None = None, value_name: str | None = None, *, streamable: bool = True) Self[source]
+melt(id_vars: str | list[str] | None = None, value_vars: str | list[str] | None = None, variable_name: str | None = None, value_name: str | None = None, *, streamable: bool = True) Self[source]

Unpivot a DataFrame from wide to long format.

Optionally leaves identifiers set.

This function is useful to massage a DataFrame into a format where one or more @@ -3960,7 +3960,7 @@

LazyFrame
-merge_sorted(other: LazyFrame, key: str) Self[source]
+merge_sorted(other: LazyFrame, key: str) Self[source]

Take two sorted DataFrames and merge them by the sorted key.

The output of this operation will also be sorted. It is the callers responsibility that the frames are sorted @@ -4027,7 +4027,7 @@

LazyFrame
-min() Self[source]
+min() Self[source]

Aggregate the columns in the LazyFrame to their minimum value.

Examples

>>> lf = pl.LazyFrame(
@@ -4051,7 +4051,7 @@ 

LazyFrame
-null_count() Self[source]
+null_count() Self[source]

Aggregate the columns in the LazyFrame as the sum of their null value count.

Examples

>>> lf = pl.LazyFrame(
@@ -4076,7 +4076,7 @@ 

LazyFrame
-pipe(function: Callable[Concatenate[LazyFrame, P], T], *args: P.args, **kwargs: P.kwargs) T[source]
+pipe(function: Callable[Concatenate[LazyFrame, P], T], *args: P.args, **kwargs: P.kwargs) T[source]

Offers a structured way to apply a sequence of user-defined functions (UDFs).

Parameters:
@@ -4147,7 +4147,7 @@

LazyFrame
-profile(*, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, no_optimization: bool = False, slice_pushdown: bool = True, comm_subplan_elim: bool = True, comm_subexpr_elim: bool = True, show_plot: bool = False, truncate_nodes: int = 0, figsize: tuple[int, int] = (18, 8), streaming: bool = False) tuple[DataFrame, DataFrame][source]
+profile(*, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, no_optimization: bool = False, slice_pushdown: bool = True, comm_subplan_elim: bool = True, comm_subexpr_elim: bool = True, show_plot: bool = False, truncate_nodes: int = 0, figsize: tuple[int, int] = (18, 8), streaming: bool = False) tuple[DataFrame, DataFrame][source]

Profile a LazyFrame.

This will run the query and return a tuple containing the materialized DataFrame and a DataFrame that @@ -4221,7 +4221,7 @@

LazyFrame
-quantile(quantile: float | Expr, interpolation: RollingInterpolationMethod = 'nearest') Self[source]
+quantile(quantile: float | Expr, interpolation: RollingInterpolationMethod = 'nearest') Self[source]

Aggregate the columns in the LazyFrame to their quantile value.

Parameters:
@@ -4255,7 +4255,7 @@

LazyFrame
-classmethod read_json(file: str | Path | IOBase) Self[source]
+classmethod read_json(file: str | Path | IOBase) Self[source]

Read a logical plan from a JSON file to construct a LazyFrame.

Parameters:
@@ -4275,7 +4275,7 @@

LazyFrame
-rename(mapping: dict[str, str]) Self[source]
+rename(mapping: dict[str, str]) Self[source]

Rename column names.

Parameters:
@@ -4313,7 +4313,7 @@

LazyFrame
-reverse() Self[source]
+reverse() Self[source]

Reverse the DataFrame.

Examples

>>> lf = pl.LazyFrame(
@@ -4339,7 +4339,7 @@ 

LazyFrame
-property schema: SchemaDict[source]
+property schema: SchemaDict[source]

Get a dict[column name, DataType].

Examples

>>> lf = pl.LazyFrame(
@@ -4357,7 +4357,7 @@ 

LazyFrame
-select(*exprs: IntoExpr | Iterable[IntoExpr], **named_exprs: IntoExpr) Self[source]
+select(*exprs: IntoExpr | Iterable[IntoExpr], **named_exprs: IntoExpr) Self[source]

Select columns from this LazyFrame.

Parameters:
@@ -4462,7 +4462,7 @@

LazyFrame
-set_sorted(column: str | Iterable[str], *more_columns: str, descending: bool = False) Self[source]
+set_sorted(column: str | Iterable[str], *more_columns: str, descending: bool = False) Self[source]

Indicate that one or multiple columns are sorted.

Parameters:
@@ -4480,7 +4480,7 @@

LazyFrame
-shift(periods: int) Self[source]
+shift(periods: int) Self[source]

Shift the values by a given period.

Parameters:
@@ -4525,7 +4525,7 @@

LazyFrame
-shift_and_fill(fill_value: Expr | int | str | float, *, periods: int = 1) Self[source]
+shift_and_fill(fill_value: Expr | int | str | float, *, periods: int = 1) Self[source]

Shift the values by a given period and fill the resulting null values.

Parameters:
@@ -4572,7 +4572,7 @@

LazyFrame
-show_graph(*, optimized: bool = True, show: bool = True, output_path: str | Path | None = None, raw_output: bool = False, figsize: tuple[float, float] = (16.0, 12.0), type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, slice_pushdown: bool = True, comm_subplan_elim: bool = True, comm_subexpr_elim: bool = True, streaming: bool = False) str | None[source]
+show_graph(*, optimized: bool = True, show: bool = True, output_path: str | Path | None = None, raw_output: bool = False, figsize: tuple[float, float] = (16.0, 12.0), type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, slice_pushdown: bool = True, comm_subplan_elim: bool = True, comm_subexpr_elim: bool = True, streaming: bool = False) str | None[source]

Show a plot of the query plan. Note that you should have graphviz installed.

Parameters:
@@ -4623,7 +4623,7 @@

LazyFrame
-sink_ipc(path: str | Path, *, compression: str | None = 'zstd', maintain_order: bool = True, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, no_optimization: bool = False, slice_pushdown: bool = True) DataFrame[source]
+sink_ipc(path: str | Path, *, compression: str | None = 'zstd', maintain_order: bool = True, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, no_optimization: bool = False, slice_pushdown: bool = True) DataFrame[source]

Persists a LazyFrame at the provided path.

This allows streaming results that are larger than RAM to be written to disk.

@@ -4666,7 +4666,7 @@

LazyFrame
-sink_parquet(path: str | Path, *, compression: str = 'zstd', compression_level: int | None = None, statistics: bool = False, row_group_size: int | None = None, data_pagesize_limit: int | None = None, maintain_order: bool = True, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, no_optimization: bool = False, slice_pushdown: bool = True) DataFrame[source]
+sink_parquet(path: str | Path, *, compression: str = 'zstd', compression_level: int | None = None, statistics: bool = False, row_group_size: int | None = None, data_pagesize_limit: int | None = None, maintain_order: bool = True, type_coercion: bool = True, predicate_pushdown: bool = True, projection_pushdown: bool = True, simplify_expression: bool = True, no_optimization: bool = False, slice_pushdown: bool = True) DataFrame[source]

Persists a LazyFrame at the provided path.

This allows streaming results that are larger than RAM to be written to disk.

@@ -4730,7 +4730,7 @@

LazyFrame
-slice(offset: int, length: int | None = None) Self[source]
+slice(offset: int, length: int | None = None) Self[source]

Get a slice of this DataFrame.

Parameters:
@@ -4767,7 +4767,7 @@

LazyFrame
-sort(by: IntoExpr | Iterable[IntoExpr], *more_by: IntoExpr, descending: bool | Sequence[bool] = False, nulls_last: bool = False, maintain_order: bool = False) Self[source]
+sort(by: IntoExpr | Iterable[IntoExpr], *more_by: IntoExpr, descending: bool | Sequence[bool] = False, nulls_last: bool = False, maintain_order: bool = False) Self[source]

Sort the dataframe by the given columns.

Parameters:
@@ -4857,7 +4857,7 @@

LazyFrame
-std(ddof: int = 1) Self[source]
+std(ddof: int = 1) Self[source]

Aggregate the columns in the LazyFrame to their standard deviation value.

Parameters:
@@ -4900,7 +4900,7 @@

LazyFrame
-sum() Self[source]
+sum() Self[source]

Aggregate the columns in the LazyFrame to their sum value.

Examples

>>> lf = pl.LazyFrame(
@@ -4924,7 +4924,7 @@ 

LazyFrame
-tail(n: int = 5) Self[source]
+tail(n: int = 5) Self[source]

Get the last n rows.

Parameters:
@@ -4970,7 +4970,7 @@

LazyFrame
-take_every(n: int) Self[source]
+take_every(n: int) Self[source]

Take every nth row in the LazyFrame and return as a new LazyFrame.

Examples

>>> lf = pl.LazyFrame(
@@ -4995,7 +4995,7 @@ 

LazyFrame
-top_k(k: int, *, by: IntoExpr | Iterable[IntoExpr], descending: bool | Sequence[bool] = False, nulls_last: bool = False, maintain_order: bool = False) Self[source]
+top_k(k: int, *, by: IntoExpr | Iterable[IntoExpr], descending: bool | Sequence[bool] = False, nulls_last: bool = False, maintain_order: bool = False) Self[source]

Return the k largest elements.

If ‘descending=True` the smallest elements will be given.

@@ -5067,7 +5067,7 @@

LazyFrame
-unique(subset: str | Sequence[str] | None = None, *, keep: UniqueKeepStrategy = 'any', maintain_order: bool = False) Self[source]
+unique(subset: str | Sequence[str] | None = None, *, keep: UniqueKeepStrategy = 'any', maintain_order: bool = False) Self[source]

Drop duplicate rows from this dataframe.

Parameters:
@@ -5151,7 +5151,7 @@

LazyFrame
-unnest(columns: str | Sequence[str], *more_columns: str) Self[source]
+unnest(columns: str | Sequence[str], *more_columns: str) Self[source]

Decompose struct columns into separate columns for each of their fields.

The new columns will be inserted into the dataframe at the location of the struct column.

@@ -5202,7 +5202,7 @@

LazyFrame
-update(other: LazyFrame, on: str | Sequence[str] | None = None, how: Literal['left', 'inner'] = 'left') Self[source]
+update(other: LazyFrame, on: str | Sequence[str] | None = None, how: Literal['left', 'inner'] = 'left') Self[source]

Update the values in this LazyFrame with the non-null values in other.

Parameters:
@@ -5279,7 +5279,7 @@

LazyFrame
-var(ddof: int = 1) Self[source]
+var(ddof: int = 1) Self[source]

Aggregate the columns in the LazyFrame to their variance value.

Parameters:
@@ -5322,7 +5322,7 @@

LazyFrame
-property width: int[source]
+property width: int[source]

Get the width of the LazyFrame.

Examples

>>> lf = pl.LazyFrame(
@@ -5339,7 +5339,7 @@ 

LazyFrame
-with_columns(*exprs: IntoExpr | Iterable[IntoExpr], **named_exprs: IntoExpr) Self[source]
+with_columns(*exprs: IntoExpr | Iterable[IntoExpr], **named_exprs: IntoExpr) Self[source]

Add columns to this DataFrame.

Added columns will replace existing columns with the same name.

@@ -5484,7 +5484,7 @@

LazyFrame
-with_context(other: Self | list[Self]) Self[source]
+with_context(other: Self | list[Self]) Self[source]

Add an external context to the computation graph.

This allows expressions to also access columns from DataFrames that are not part of this one.

@@ -5540,7 +5540,7 @@

LazyFrame
-with_row_count(name: str = 'row_nr', offset: int = 0) Self[source]
+with_row_count(name: str = 'row_nr', offset: int = 0) Self[source]

Add a column at index 0 that counts the rows.

Parameters:
@@ -5581,7 +5581,7 @@

LazyFrame
-write_json(file: None = None) str[source]
+write_json(file: None = None) str[source]
write_json(file: IOBase | str | Path) None

Write the logical plan of this LazyFrame to a file or string in JSON format.

diff --git a/py-polars/dev/reference/series/api/polars.Series.abs.html b/py-polars/dev/reference/series/api/polars.Series.abs.html index 152b097499e2..a5afd5349bc4 100644 --- a/py-polars/dev/reference/series/api/polars.Series.abs.html +++ b/py-polars/dev/reference/series/api/polars.Series.abs.html @@ -1626,7 +1626,7 @@

polars.Series.abs#

-Series.abs() Series[source]#
+Series.abs() Series[source]#

Compute absolute values.

Same as abs(series).

diff --git a/py-polars/dev/reference/series/api/polars.Series.alias.html b/py-polars/dev/reference/series/api/polars.Series.alias.html index 12034a27b7f4..4c3059cef5b7 100644 --- a/py-polars/dev/reference/series/api/polars.Series.alias.html +++ b/py-polars/dev/reference/series/api/polars.Series.alias.html @@ -1626,7 +1626,7 @@

polars.Series.alias#

-Series.alias(name: str) Series[source]#
+Series.alias(name: str) Series[source]#

Rename the series.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.all.html b/py-polars/dev/reference/series/api/polars.Series.all.html index 4c1f2c1881de..8c7916c7caf5 100644 --- a/py-polars/dev/reference/series/api/polars.Series.all.html +++ b/py-polars/dev/reference/series/api/polars.Series.all.html @@ -1626,7 +1626,7 @@

polars.Series.all#

-Series.all(drop_nulls: bool = True) bool | None[source]#
+Series.all(drop_nulls: bool = True) bool | None[source]#

Check if all boolean values in the column are True.

Returns:
diff --git a/py-polars/dev/reference/series/api/polars.Series.any.html b/py-polars/dev/reference/series/api/polars.Series.any.html index bfb4c935877f..aa56cc0fc1f3 100644 --- a/py-polars/dev/reference/series/api/polars.Series.any.html +++ b/py-polars/dev/reference/series/api/polars.Series.any.html @@ -1626,7 +1626,7 @@

polars.Series.any#

-Series.any(drop_nulls: bool = True) bool | None[source]#
+Series.any(drop_nulls: bool = True) bool | None[source]#

Check if any boolean value in the column is True.

Returns:
diff --git a/py-polars/dev/reference/series/api/polars.Series.append.html b/py-polars/dev/reference/series/api/polars.Series.append.html index 167ef083b58e..2c345edfcf3e 100644 --- a/py-polars/dev/reference/series/api/polars.Series.append.html +++ b/py-polars/dev/reference/series/api/polars.Series.append.html @@ -1626,7 +1626,7 @@

polars.Series.append#

-Series.append(other: Series, *, append_chunks: bool | None = None) Self[source]#
+Series.append(other: Series, *, append_chunks: bool | None = None) Self[source]#

Append a Series to this one.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.apply.html b/py-polars/dev/reference/series/api/polars.Series.apply.html index ec8aa6b925a4..03d46524899e 100644 --- a/py-polars/dev/reference/series/api/polars.Series.apply.html +++ b/py-polars/dev/reference/series/api/polars.Series.apply.html @@ -1626,7 +1626,7 @@

polars.Series.apply#

-Series.apply(function: Callable[[Any], Any], return_dtype: PolarsDataType | None = None, *, skip_nulls: bool = True) Self[source]#
+Series.apply(function: Callable[[Any], Any], return_dtype: PolarsDataType | None = None, *, skip_nulls: bool = True) Self[source]#

Apply a custom/user-defined function (UDF) over elements in this Series.

Warning

diff --git a/py-polars/dev/reference/series/api/polars.Series.arccos.html b/py-polars/dev/reference/series/api/polars.Series.arccos.html index 3978838874e8..755ecb89e98b 100644 --- a/py-polars/dev/reference/series/api/polars.Series.arccos.html +++ b/py-polars/dev/reference/series/api/polars.Series.arccos.html @@ -1626,7 +1626,7 @@

polars.Series.arccos#

-Series.arccos() Series[source]#
+Series.arccos() Series[source]#

Compute the element-wise value for the inverse cosine.

Examples

>>> s = pl.Series("a", [1.0, 0.0, -1.0])
diff --git a/py-polars/dev/reference/series/api/polars.Series.arccosh.html b/py-polars/dev/reference/series/api/polars.Series.arccosh.html
index 805f2fe448dc..65e110135802 100644
--- a/py-polars/dev/reference/series/api/polars.Series.arccosh.html
+++ b/py-polars/dev/reference/series/api/polars.Series.arccosh.html
@@ -1626,7 +1626,7 @@
 

polars.Series.arccosh#

-Series.arccosh() Series[source]#
+Series.arccosh() Series[source]#

Compute the element-wise value for the inverse hyperbolic cosine.

Examples

>>> s = pl.Series("a", [5.0, 1.0, 0.0, -1.0])
diff --git a/py-polars/dev/reference/series/api/polars.Series.arcsin.html b/py-polars/dev/reference/series/api/polars.Series.arcsin.html
index 27acd46a32d4..9998d999b293 100644
--- a/py-polars/dev/reference/series/api/polars.Series.arcsin.html
+++ b/py-polars/dev/reference/series/api/polars.Series.arcsin.html
@@ -1626,7 +1626,7 @@
 

polars.Series.arcsin#

-Series.arcsin() Series[source]#
+Series.arcsin() Series[source]#

Compute the element-wise value for the inverse sine.

Examples

>>> s = pl.Series("a", [1.0, 0.0, -1.0])
diff --git a/py-polars/dev/reference/series/api/polars.Series.arcsinh.html b/py-polars/dev/reference/series/api/polars.Series.arcsinh.html
index 9991fd5dbcdb..2979e8768392 100644
--- a/py-polars/dev/reference/series/api/polars.Series.arcsinh.html
+++ b/py-polars/dev/reference/series/api/polars.Series.arcsinh.html
@@ -1626,7 +1626,7 @@
 

polars.Series.arcsinh#

-Series.arcsinh() Series[source]#
+Series.arcsinh() Series[source]#

Compute the element-wise value for the inverse hyperbolic sine.

Examples

>>> s = pl.Series("a", [1.0, 0.0, -1.0])
diff --git a/py-polars/dev/reference/series/api/polars.Series.arctan.html b/py-polars/dev/reference/series/api/polars.Series.arctan.html
index bdbbb0f07898..cdd374e2540a 100644
--- a/py-polars/dev/reference/series/api/polars.Series.arctan.html
+++ b/py-polars/dev/reference/series/api/polars.Series.arctan.html
@@ -1626,7 +1626,7 @@
 

polars.Series.arctan#

-Series.arctan() Series[source]#
+Series.arctan() Series[source]#

Compute the element-wise value for the inverse tangent.

Examples

>>> s = pl.Series("a", [1.0, 0.0, -1.0])
diff --git a/py-polars/dev/reference/series/api/polars.Series.arctanh.html b/py-polars/dev/reference/series/api/polars.Series.arctanh.html
index 6230e0011dc0..788a669ec0c8 100644
--- a/py-polars/dev/reference/series/api/polars.Series.arctanh.html
+++ b/py-polars/dev/reference/series/api/polars.Series.arctanh.html
@@ -1626,7 +1626,7 @@
 

polars.Series.arctanh#

-Series.arctanh() Series[source]#
+Series.arctanh() Series[source]#

Compute the element-wise value for the inverse hyperbolic tangent.

Examples

>>> s = pl.Series("a", [2.0, 1.0, 0.5, 0.0, -0.5, -1.0, -1.1])
diff --git a/py-polars/dev/reference/series/api/polars.Series.arg_max.html b/py-polars/dev/reference/series/api/polars.Series.arg_max.html
index 1cd02025b8c3..05cf752bcb38 100644
--- a/py-polars/dev/reference/series/api/polars.Series.arg_max.html
+++ b/py-polars/dev/reference/series/api/polars.Series.arg_max.html
@@ -1626,7 +1626,7 @@
 

polars.Series.arg_max#

-Series.arg_max() int | None[source]#
+Series.arg_max() int | None[source]#

Get the index of the maximal value.

Returns:
diff --git a/py-polars/dev/reference/series/api/polars.Series.arg_min.html b/py-polars/dev/reference/series/api/polars.Series.arg_min.html index 909d48576a0a..6d4f0c8ff978 100644 --- a/py-polars/dev/reference/series/api/polars.Series.arg_min.html +++ b/py-polars/dev/reference/series/api/polars.Series.arg_min.html @@ -1626,7 +1626,7 @@

polars.Series.arg_min#

-Series.arg_min() int | None[source]#
+Series.arg_min() int | None[source]#

Get the index of the minimal value.

Returns:
diff --git a/py-polars/dev/reference/series/api/polars.Series.arg_sort.html b/py-polars/dev/reference/series/api/polars.Series.arg_sort.html index 178811a207c8..9aec3c8c5b44 100644 --- a/py-polars/dev/reference/series/api/polars.Series.arg_sort.html +++ b/py-polars/dev/reference/series/api/polars.Series.arg_sort.html @@ -1626,7 +1626,7 @@

polars.Series.arg_sort#

-Series.arg_sort(*, descending: bool = False, nulls_last: bool = False) Series[source]#
+Series.arg_sort(*, descending: bool = False, nulls_last: bool = False) Series[source]#

Get the index values that would sort this Series.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.arg_true.html b/py-polars/dev/reference/series/api/polars.Series.arg_true.html index 4d670c69ac52..8538270832fd 100644 --- a/py-polars/dev/reference/series/api/polars.Series.arg_true.html +++ b/py-polars/dev/reference/series/api/polars.Series.arg_true.html @@ -1626,7 +1626,7 @@

polars.Series.arg_true#

-Series.arg_true() Series[source]#
+Series.arg_true() Series[source]#

Get index values where Boolean Series evaluate True.

Returns:
diff --git a/py-polars/dev/reference/series/api/polars.Series.arg_unique.html b/py-polars/dev/reference/series/api/polars.Series.arg_unique.html index f78160b3968b..b958929b4480 100644 --- a/py-polars/dev/reference/series/api/polars.Series.arg_unique.html +++ b/py-polars/dev/reference/series/api/polars.Series.arg_unique.html @@ -1626,7 +1626,7 @@

polars.Series.arg_unique#

-Series.arg_unique() Series[source]#
+Series.arg_unique() Series[source]#

Get unique index as Series.

Returns:
diff --git a/py-polars/dev/reference/series/api/polars.Series.bottom_k.html b/py-polars/dev/reference/series/api/polars.Series.bottom_k.html index 270f5f45e720..a4e826604fb7 100644 --- a/py-polars/dev/reference/series/api/polars.Series.bottom_k.html +++ b/py-polars/dev/reference/series/api/polars.Series.bottom_k.html @@ -1627,7 +1627,7 @@

polars.Series.bottom_k#

-Series.bottom_k(k: int = 5) Series[source]#
+Series.bottom_k(k: int = 5) Series[source]#

Return the k smallest elements.

This has time complexity:

diff --git a/py-polars/dev/reference/series/api/polars.Series.cast.html b/py-polars/dev/reference/series/api/polars.Series.cast.html index dc50e753461d..cb671f109f3d 100644 --- a/py-polars/dev/reference/series/api/polars.Series.cast.html +++ b/py-polars/dev/reference/series/api/polars.Series.cast.html @@ -1626,7 +1626,7 @@

polars.Series.cast#

-Series.cast(dtype: PolarsDataType | type[int] | type[float] | type[str] | type[bool], *, strict: bool = True) Self[source]#
+Series.cast(dtype: PolarsDataType | type[int] | type[float] | type[str] | type[bool], *, strict: bool = True) Self[source]#

Cast between data types.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.cbrt.html b/py-polars/dev/reference/series/api/polars.Series.cbrt.html index 67652d92d4c8..82e648d930cf 100644 --- a/py-polars/dev/reference/series/api/polars.Series.cbrt.html +++ b/py-polars/dev/reference/series/api/polars.Series.cbrt.html @@ -1626,7 +1626,7 @@

polars.Series.cbrt#

-Series.cbrt() Series[source]#
+Series.cbrt() Series[source]#

Compute the cube root of the elements.

Optimization for

>>> pl.Series([1, 2]) ** (1.0 / 3)
diff --git a/py-polars/dev/reference/series/api/polars.Series.ceil.html b/py-polars/dev/reference/series/api/polars.Series.ceil.html
index 9b864161cd29..4276577f353b 100644
--- a/py-polars/dev/reference/series/api/polars.Series.ceil.html
+++ b/py-polars/dev/reference/series/api/polars.Series.ceil.html
@@ -1626,7 +1626,7 @@
 

polars.Series.ceil#

-Series.ceil() Series[source]#
+Series.ceil() Series[source]#

Rounds up to the nearest integer value.

Only works on floating point Series.

Examples

diff --git a/py-polars/dev/reference/series/api/polars.Series.chunk_lengths.html b/py-polars/dev/reference/series/api/polars.Series.chunk_lengths.html index fe17ebcf7651..df78e8535a3a 100644 --- a/py-polars/dev/reference/series/api/polars.Series.chunk_lengths.html +++ b/py-polars/dev/reference/series/api/polars.Series.chunk_lengths.html @@ -1626,7 +1626,7 @@

polars.Series.chunk_lengths#

-Series.chunk_lengths() list[int][source]#
+Series.chunk_lengths() list[int][source]#

Get the length of each individual chunk.

Examples

>>> s = pl.Series("a", [1, 2, 3])
diff --git a/py-polars/dev/reference/series/api/polars.Series.clear.html b/py-polars/dev/reference/series/api/polars.Series.clear.html
index c12071a9f3d1..c73be60c69f2 100644
--- a/py-polars/dev/reference/series/api/polars.Series.clear.html
+++ b/py-polars/dev/reference/series/api/polars.Series.clear.html
@@ -1626,7 +1626,7 @@
 

polars.Series.clear#

-Series.clear(n: int = 0) Series[source]#
+Series.clear(n: int = 0) Series[source]#

Create an empty copy of the current Series, with zero to ‘n’ elements.

The copy has an identical name/dtype, but no data.

diff --git a/py-polars/dev/reference/series/api/polars.Series.clip.html b/py-polars/dev/reference/series/api/polars.Series.clip.html index 0888ae44fafa..6c5e3d06fde6 100644 --- a/py-polars/dev/reference/series/api/polars.Series.clip.html +++ b/py-polars/dev/reference/series/api/polars.Series.clip.html @@ -1626,7 +1626,7 @@

polars.Series.clip#

-Series.clip(lower_bound: int | float, upper_bound: int | float) Series[source]#
+Series.clip(lower_bound: int | float, upper_bound: int | float) Series[source]#

Clip (limit) the values in an array to a min and max boundary.

Only works for numerical types.

If you want to clip other dtypes, consider writing a “when, then, otherwise” diff --git a/py-polars/dev/reference/series/api/polars.Series.clip_max.html b/py-polars/dev/reference/series/api/polars.Series.clip_max.html index f19347b42c2d..e181500af9be 100644 --- a/py-polars/dev/reference/series/api/polars.Series.clip_max.html +++ b/py-polars/dev/reference/series/api/polars.Series.clip_max.html @@ -1626,7 +1626,7 @@

polars.Series.clip_max#

-Series.clip_max(upper_bound: int | float) Series[source]#
+Series.clip_max(upper_bound: int | float) Series[source]#

Clip (limit) the values in an array to a max boundary.

Only works for numerical types.

If you want to clip other dtypes, consider writing a “when, then, otherwise” diff --git a/py-polars/dev/reference/series/api/polars.Series.clip_min.html b/py-polars/dev/reference/series/api/polars.Series.clip_min.html index 2e1cbd3a275c..4fdea8932e49 100644 --- a/py-polars/dev/reference/series/api/polars.Series.clip_min.html +++ b/py-polars/dev/reference/series/api/polars.Series.clip_min.html @@ -1626,7 +1626,7 @@

polars.Series.clip_min#

-Series.clip_min(lower_bound: int | float) Series[source]#
+Series.clip_min(lower_bound: int | float) Series[source]#

Clip (limit) the values in an array to a min boundary.

Only works for numerical types.

If you want to clip other dtypes, consider writing a “when, then, otherwise” diff --git a/py-polars/dev/reference/series/api/polars.Series.clone.html b/py-polars/dev/reference/series/api/polars.Series.clone.html index d3c4371f4c6a..9bf50ba85a81 100644 --- a/py-polars/dev/reference/series/api/polars.Series.clone.html +++ b/py-polars/dev/reference/series/api/polars.Series.clone.html @@ -1626,7 +1626,7 @@

polars.Series.clone#

-Series.clone() Self[source]#
+Series.clone() Self[source]#

Very cheap deepcopy/clone.

See also

diff --git a/py-polars/dev/reference/series/api/polars.Series.cos.html b/py-polars/dev/reference/series/api/polars.Series.cos.html index 68ba6de2d499..9c7252a98c8c 100644 --- a/py-polars/dev/reference/series/api/polars.Series.cos.html +++ b/py-polars/dev/reference/series/api/polars.Series.cos.html @@ -1626,7 +1626,7 @@

polars.Series.cos#

-Series.cos() Series[source]#
+Series.cos() Series[source]#

Compute the element-wise value for the cosine.

Examples

>>> import math
diff --git a/py-polars/dev/reference/series/api/polars.Series.cosh.html b/py-polars/dev/reference/series/api/polars.Series.cosh.html
index 70cd74ed4942..7a8b522c70b0 100644
--- a/py-polars/dev/reference/series/api/polars.Series.cosh.html
+++ b/py-polars/dev/reference/series/api/polars.Series.cosh.html
@@ -1626,7 +1626,7 @@
 

polars.Series.cosh#

-Series.cosh() Series[source]#
+Series.cosh() Series[source]#

Compute the element-wise value for the hyperbolic cosine.

Examples

>>> s = pl.Series("a", [1.0, 0.0, -1.0])
diff --git a/py-polars/dev/reference/series/api/polars.Series.cummax.html b/py-polars/dev/reference/series/api/polars.Series.cummax.html
index 1ae976217ed8..c4851c4023e1 100644
--- a/py-polars/dev/reference/series/api/polars.Series.cummax.html
+++ b/py-polars/dev/reference/series/api/polars.Series.cummax.html
@@ -1626,7 +1626,7 @@
 

polars.Series.cummax#

-Series.cummax(*, reverse: bool = False) Series[source]#
+Series.cummax(*, reverse: bool = False) Series[source]#

Get an array with the cumulative max computed at every element.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.cummin.html b/py-polars/dev/reference/series/api/polars.Series.cummin.html index 398d156bea23..964add8f435c 100644 --- a/py-polars/dev/reference/series/api/polars.Series.cummin.html +++ b/py-polars/dev/reference/series/api/polars.Series.cummin.html @@ -1626,7 +1626,7 @@

polars.Series.cummin#

-Series.cummin(*, reverse: bool = False) Series[source]#
+Series.cummin(*, reverse: bool = False) Series[source]#

Get an array with the cumulative min computed at every element.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.cumprod.html b/py-polars/dev/reference/series/api/polars.Series.cumprod.html index 2d58cdc19014..337d96c45fc9 100644 --- a/py-polars/dev/reference/series/api/polars.Series.cumprod.html +++ b/py-polars/dev/reference/series/api/polars.Series.cumprod.html @@ -1626,7 +1626,7 @@

polars.Series.cumprod#

-Series.cumprod(*, reverse: bool = False) Series[source]#
+Series.cumprod(*, reverse: bool = False) Series[source]#

Get an array with the cumulative product computed at every element.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.cumsum.html b/py-polars/dev/reference/series/api/polars.Series.cumsum.html index 0d3d5a3e02a0..adfb4d10549a 100644 --- a/py-polars/dev/reference/series/api/polars.Series.cumsum.html +++ b/py-polars/dev/reference/series/api/polars.Series.cumsum.html @@ -1626,7 +1626,7 @@

polars.Series.cumsum#

-Series.cumsum(*, reverse: bool = False) Series[source]#
+Series.cumsum(*, reverse: bool = False) Series[source]#

Get an array with the cumulative sum computed at every element.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.cumulative_eval.html b/py-polars/dev/reference/series/api/polars.Series.cumulative_eval.html index a64ee5c8f51d..f6452431f1f9 100644 --- a/py-polars/dev/reference/series/api/polars.Series.cumulative_eval.html +++ b/py-polars/dev/reference/series/api/polars.Series.cumulative_eval.html @@ -1626,7 +1626,7 @@

polars.Series.cumulative_eval#

-Series.cumulative_eval(expr: Expr, min_periods: int = 1, *, parallel: bool = False) Series[source]#
+Series.cumulative_eval(expr: Expr, min_periods: int = 1, *, parallel: bool = False) Series[source]#

Run an expression over a sliding window that increases 1 slot every iteration.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.cut.html b/py-polars/dev/reference/series/api/polars.Series.cut.html index d00596d3205f..b2d7b8573b2a 100644 --- a/py-polars/dev/reference/series/api/polars.Series.cut.html +++ b/py-polars/dev/reference/series/api/polars.Series.cut.html @@ -1626,7 +1626,7 @@

polars.Series.cut#

-Series.cut(breaks: list[float], labels: list[str] | None = None, break_point_label: str = 'break_point', category_label: str = 'category', *, series: bool = True, left_closed: bool = False, include_breaks: bool = False) DataFrame | Series[source]#
+Series.cut(breaks: list[float], labels: list[str] | None = None, break_point_label: str = 'break_point', category_label: str = 'category', *, series: bool = True, left_closed: bool = False, include_breaks: bool = False) DataFrame | Series[source]#

Bin continuous values into discrete categories.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.describe.html b/py-polars/dev/reference/series/api/polars.Series.describe.html index 036585f04cea..4164d5ae18bc 100644 --- a/py-polars/dev/reference/series/api/polars.Series.describe.html +++ b/py-polars/dev/reference/series/api/polars.Series.describe.html @@ -1626,7 +1626,7 @@

polars.Series.describe#

-Series.describe(percentiles: Sequence[float] | float | None = (0.25, 0.75)) DataFrame[source]#
+Series.describe(percentiles: Sequence[float] | float | None = (0.25, 0.75)) DataFrame[source]#

Quick summary statistics of a series.

Series with mixed datatypes will return summary statistics for the datatype of the first value.

diff --git a/py-polars/dev/reference/series/api/polars.Series.diff.html b/py-polars/dev/reference/series/api/polars.Series.diff.html index efdf255189dd..7e67dc6625a2 100644 --- a/py-polars/dev/reference/series/api/polars.Series.diff.html +++ b/py-polars/dev/reference/series/api/polars.Series.diff.html @@ -1626,7 +1626,7 @@

polars.Series.diff#

-Series.diff(n: int = 1, null_behavior: NullBehavior = 'ignore') Series[source]#
+Series.diff(n: int = 1, null_behavior: NullBehavior = 'ignore') Series[source]#

Calculate the n-th discrete difference.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.dot.html b/py-polars/dev/reference/series/api/polars.Series.dot.html index efafc260c0ee..9e28a7269068 100644 --- a/py-polars/dev/reference/series/api/polars.Series.dot.html +++ b/py-polars/dev/reference/series/api/polars.Series.dot.html @@ -1626,7 +1626,7 @@

polars.Series.dot#

-Series.dot(other: Series | Sequence[Any] | Array | ChunkedArray | ndarray | Series | DatetimeIndex) float | None[source]#
+Series.dot(other: Series | Sequence[Any] | Array | ChunkedArray | ndarray | Series | DatetimeIndex) float | None[source]#

Compute the dot/inner product between two Series.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.drop_nans.html b/py-polars/dev/reference/series/api/polars.Series.drop_nans.html index 2304e8ccada3..338618420141 100644 --- a/py-polars/dev/reference/series/api/polars.Series.drop_nans.html +++ b/py-polars/dev/reference/series/api/polars.Series.drop_nans.html @@ -1626,7 +1626,7 @@

polars.Series.drop_nans#

-Series.drop_nans() Series[source]#
+Series.drop_nans() Series[source]#

Drop NaN values.

diff --git a/py-polars/dev/reference/series/api/polars.Series.drop_nulls.html b/py-polars/dev/reference/series/api/polars.Series.drop_nulls.html index 446aa55cde81..1d61ca68207a 100644 --- a/py-polars/dev/reference/series/api/polars.Series.drop_nulls.html +++ b/py-polars/dev/reference/series/api/polars.Series.drop_nulls.html @@ -1626,7 +1626,7 @@

polars.Series.drop_nulls#

-Series.drop_nulls() Series[source]#
+Series.drop_nulls() Series[source]#

Drop all null values.

Creates a new Series that copies data from this Series without null values.

diff --git a/py-polars/dev/reference/series/api/polars.Series.entropy.html b/py-polars/dev/reference/series/api/polars.Series.entropy.html index 78d728b3a51d..c66ce047a13d 100644 --- a/py-polars/dev/reference/series/api/polars.Series.entropy.html +++ b/py-polars/dev/reference/series/api/polars.Series.entropy.html @@ -1626,7 +1626,7 @@

polars.Series.entropy#

-Series.entropy(base: float = 2.718281828459045, *, normalize: bool = False) float | None[source]#
+Series.entropy(base: float = 2.718281828459045, *, normalize: bool = False) float | None[source]#

Computes the entropy.

Uses the formula -sum(pk * log(pk) where pk are discrete probabilities.

diff --git a/py-polars/dev/reference/series/api/polars.Series.estimated_size.html b/py-polars/dev/reference/series/api/polars.Series.estimated_size.html index 7f6f9d4dcaa8..059183738634 100644 --- a/py-polars/dev/reference/series/api/polars.Series.estimated_size.html +++ b/py-polars/dev/reference/series/api/polars.Series.estimated_size.html @@ -1626,7 +1626,7 @@

polars.Series.estimated_size#

-Series.estimated_size(unit: SizeUnit = 'b') int | float[source]#
+Series.estimated_size(unit: SizeUnit = 'b') int | float[source]#

Return an estimation of the total (heap) allocated size of the Series.

Estimated size is given in the specified unit (bytes by default).

This estimation is the sum of the size of its buffers, validity, including diff --git a/py-polars/dev/reference/series/api/polars.Series.ewm_mean.html b/py-polars/dev/reference/series/api/polars.Series.ewm_mean.html index 15e1043e171e..d76d352f2bee 100644 --- a/py-polars/dev/reference/series/api/polars.Series.ewm_mean.html +++ b/py-polars/dev/reference/series/api/polars.Series.ewm_mean.html @@ -1627,7 +1627,7 @@

polars.Series.ewm_mean#

-Series.ewm_mean(com: float | None = None, span: float | None = None, half_life: float | None = None, alpha: float | None = None, *, adjust: bool = True, min_periods: int = 1, ignore_nulls: bool = True) Series[source]#
+Series.ewm_mean(com: float | None = None, span: float | None = None, half_life: float | None = None, alpha: float | None = None, *, adjust: bool = True, min_periods: int = 1, ignore_nulls: bool = True) Series[source]#

Exponentially-weighted moving average.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.ewm_std.html b/py-polars/dev/reference/series/api/polars.Series.ewm_std.html index e3c0b0534474..60dfa768f787 100644 --- a/py-polars/dev/reference/series/api/polars.Series.ewm_std.html +++ b/py-polars/dev/reference/series/api/polars.Series.ewm_std.html @@ -1627,7 +1627,7 @@

polars.Series.ewm_std#

-Series.ewm_std(com: float | None = None, span: float | None = None, half_life: float | None = None, alpha: float | None = None, *, adjust: bool = True, bias: bool = False, min_periods: int = 1, ignore_nulls: bool = True) Series[source]#
+Series.ewm_std(com: float | None = None, span: float | None = None, half_life: float | None = None, alpha: float | None = None, *, adjust: bool = True, bias: bool = False, min_periods: int = 1, ignore_nulls: bool = True) Series[source]#

Exponentially-weighted moving standard deviation.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.ewm_var.html b/py-polars/dev/reference/series/api/polars.Series.ewm_var.html index 0178425a730f..040725be12aa 100644 --- a/py-polars/dev/reference/series/api/polars.Series.ewm_var.html +++ b/py-polars/dev/reference/series/api/polars.Series.ewm_var.html @@ -1627,7 +1627,7 @@

polars.Series.ewm_var#

-Series.ewm_var(com: float | None = None, span: float | None = None, half_life: float | None = None, alpha: float | None = None, *, adjust: bool = True, bias: bool = False, min_periods: int = 1, ignore_nulls: bool = True) Series[source]#
+Series.ewm_var(com: float | None = None, span: float | None = None, half_life: float | None = None, alpha: float | None = None, *, adjust: bool = True, bias: bool = False, min_periods: int = 1, ignore_nulls: bool = True) Series[source]#

Exponentially-weighted moving variance.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.exp.html b/py-polars/dev/reference/series/api/polars.Series.exp.html index 0eef1083b798..c6ef3b15e1ee 100644 --- a/py-polars/dev/reference/series/api/polars.Series.exp.html +++ b/py-polars/dev/reference/series/api/polars.Series.exp.html @@ -1626,7 +1626,7 @@

polars.Series.exp#

-Series.exp() Series[source]#
+Series.exp() Series[source]#

Compute the exponential, element-wise.

diff --git a/py-polars/dev/reference/series/api/polars.Series.explode.html b/py-polars/dev/reference/series/api/polars.Series.explode.html index 6f5b74507bbd..dbd45d54d891 100644 --- a/py-polars/dev/reference/series/api/polars.Series.explode.html +++ b/py-polars/dev/reference/series/api/polars.Series.explode.html @@ -1626,7 +1626,7 @@

polars.Series.explode#

-Series.explode() Series[source]#
+Series.explode() Series[source]#

Explode a list Series.

This means that every item is expanded to a new row.

diff --git a/py-polars/dev/reference/series/api/polars.Series.extend.html b/py-polars/dev/reference/series/api/polars.Series.extend.html index ab32741c3838..7c795d2522ee 100644 --- a/py-polars/dev/reference/series/api/polars.Series.extend.html +++ b/py-polars/dev/reference/series/api/polars.Series.extend.html @@ -1626,7 +1626,7 @@

polars.Series.extend#

-Series.extend(other: Series) Self[source]#
+Series.extend(other: Series) Self[source]#

Extend the memory backed by this Series with the values from another.

Different from append, which adds the chunks from other to the chunks of this series, extend appends the data from other to the underlying memory diff --git a/py-polars/dev/reference/series/api/polars.Series.extend_constant.html b/py-polars/dev/reference/series/api/polars.Series.extend_constant.html index 10778769ea7d..9692af60f191 100644 --- a/py-polars/dev/reference/series/api/polars.Series.extend_constant.html +++ b/py-polars/dev/reference/series/api/polars.Series.extend_constant.html @@ -1626,7 +1626,7 @@

polars.Series.extend_constant#

-Series.extend_constant(value: PythonLiteral | None, n: int) Series[source]#
+Series.extend_constant(value: PythonLiteral | None, n: int) Series[source]#

Extremely fast method for extending the Series with ‘n’ copies of a value.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.fill_nan.html b/py-polars/dev/reference/series/api/polars.Series.fill_nan.html index 34bbeb2a0737..ad3f1b708990 100644 --- a/py-polars/dev/reference/series/api/polars.Series.fill_nan.html +++ b/py-polars/dev/reference/series/api/polars.Series.fill_nan.html @@ -1626,7 +1626,7 @@

polars.Series.fill_nan#

-Series.fill_nan(value: int | float | Expr | None) Series[source]#
+Series.fill_nan(value: int | float | Expr | None) Series[source]#

Fill floating point NaN value with a fill value.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.fill_null.html b/py-polars/dev/reference/series/api/polars.Series.fill_null.html index 6d138f99be0e..0d0868023710 100644 --- a/py-polars/dev/reference/series/api/polars.Series.fill_null.html +++ b/py-polars/dev/reference/series/api/polars.Series.fill_null.html @@ -1626,7 +1626,7 @@

polars.Series.fill_null#

-Series.fill_null(value: Any | None = None, strategy: FillNullStrategy | None = None, limit: int | None = None) Series[source]#
+Series.fill_null(value: Any | None = None, strategy: FillNullStrategy | None = None, limit: int | None = None) Series[source]#

Fill null values using the specified value or strategy.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.filter.html b/py-polars/dev/reference/series/api/polars.Series.filter.html index 8ac36f180c4b..b0d616edcd7f 100644 --- a/py-polars/dev/reference/series/api/polars.Series.filter.html +++ b/py-polars/dev/reference/series/api/polars.Series.filter.html @@ -1626,7 +1626,7 @@

polars.Series.filter#

-Series.filter(predicate: Series | list[bool]) Self[source]#
+Series.filter(predicate: Series | list[bool]) Self[source]#

Filter elements by a boolean mask.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.floor.html b/py-polars/dev/reference/series/api/polars.Series.floor.html index dce52c31c0ff..b49cba6696ee 100644 --- a/py-polars/dev/reference/series/api/polars.Series.floor.html +++ b/py-polars/dev/reference/series/api/polars.Series.floor.html @@ -1626,7 +1626,7 @@

polars.Series.floor#

-Series.floor() Series[source]#
+Series.floor() Series[source]#

Rounds down to the nearest integer value.

Only works on floating point Series.

Examples

diff --git a/py-polars/dev/reference/series/api/polars.Series.get_chunks.html b/py-polars/dev/reference/series/api/polars.Series.get_chunks.html index 088559467b54..0f3f8fc44aae 100644 --- a/py-polars/dev/reference/series/api/polars.Series.get_chunks.html +++ b/py-polars/dev/reference/series/api/polars.Series.get_chunks.html @@ -1626,7 +1626,7 @@

polars.Series.get_chunks#

-Series.get_chunks() list[polars.series.series.Series][source]#
+Series.get_chunks() list[polars.series.series.Series][source]#

Get the chunks of this Series as a list of Series.

diff --git a/py-polars/dev/reference/series/api/polars.Series.has_validity.html b/py-polars/dev/reference/series/api/polars.Series.has_validity.html index 3b6add5b767f..35701193afa8 100644 --- a/py-polars/dev/reference/series/api/polars.Series.has_validity.html +++ b/py-polars/dev/reference/series/api/polars.Series.has_validity.html @@ -1626,7 +1626,7 @@

polars.Series.has_validity#

-Series.has_validity() bool[source]#
+Series.has_validity() bool[source]#

Return True if the Series has a validity bitmask.

If there is none, it means that there are no null values. Use this to swiftly assert a Series does not have null values.

diff --git a/py-polars/dev/reference/series/api/polars.Series.hash.html b/py-polars/dev/reference/series/api/polars.Series.hash.html index 72590fb2cb04..a65fac63e9d0 100644 --- a/py-polars/dev/reference/series/api/polars.Series.hash.html +++ b/py-polars/dev/reference/series/api/polars.Series.hash.html @@ -1626,7 +1626,7 @@

polars.Series.hash#

-Series.hash(seed: int = 0, seed_1: int | None = None, seed_2: int | None = None, seed_3: int | None = None) Series[source]#
+Series.hash(seed: int = 0, seed_1: int | None = None, seed_2: int | None = None, seed_3: int | None = None) Series[source]#

Hash the Series.

The hash value is of type UInt64.

diff --git a/py-polars/dev/reference/series/api/polars.Series.head.html b/py-polars/dev/reference/series/api/polars.Series.head.html index 29e54d12c16e..fc95153739fc 100644 --- a/py-polars/dev/reference/series/api/polars.Series.head.html +++ b/py-polars/dev/reference/series/api/polars.Series.head.html @@ -1626,7 +1626,7 @@

polars.Series.head#

-Series.head(n: int = 10) Series[source]#
+Series.head(n: int = 10) Series[source]#

Get the first n elements.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.hist.html b/py-polars/dev/reference/series/api/polars.Series.hist.html index 27cfa1c23d95..9b3b551c594e 100644 --- a/py-polars/dev/reference/series/api/polars.Series.hist.html +++ b/py-polars/dev/reference/series/api/polars.Series.hist.html @@ -1626,7 +1626,7 @@

polars.Series.hist#

-Series.hist(bins: list[float] | None = None, *, bin_count: int | None = None) DataFrame[source]#
+Series.hist(bins: list[float] | None = None, *, bin_count: int | None = None) DataFrame[source]#

Bin values into buckets and count their occurrences.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.implode.html b/py-polars/dev/reference/series/api/polars.Series.implode.html index 38a1f8f04281..c526db240ec8 100644 --- a/py-polars/dev/reference/series/api/polars.Series.implode.html +++ b/py-polars/dev/reference/series/api/polars.Series.implode.html @@ -1626,7 +1626,7 @@

polars.Series.implode#

-Series.implode() Self[source]#
+Series.implode() Self[source]#

Aggregate values into a list.

diff --git a/py-polars/dev/reference/series/api/polars.Series.interpolate.html b/py-polars/dev/reference/series/api/polars.Series.interpolate.html index 983c088d9f1f..36e8b1554d33 100644 --- a/py-polars/dev/reference/series/api/polars.Series.interpolate.html +++ b/py-polars/dev/reference/series/api/polars.Series.interpolate.html @@ -1626,7 +1626,7 @@

polars.Series.interpolate#

-Series.interpolate(method: InterpolationMethod = 'linear') Series[source]#
+Series.interpolate(method: InterpolationMethod = 'linear') Series[source]#

Fill null values using interpolation.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.is_between.html b/py-polars/dev/reference/series/api/polars.Series.is_between.html index 204fa24b45dd..a57857296be1 100644 --- a/py-polars/dev/reference/series/api/polars.Series.is_between.html +++ b/py-polars/dev/reference/series/api/polars.Series.is_between.html @@ -1626,7 +1626,7 @@

polars.Series.is_between#

-Series.is_between(lower_bound: IntoExpr, upper_bound: IntoExpr, closed: ClosedInterval = 'both') Series[source]#
+Series.is_between(lower_bound: IntoExpr, upper_bound: IntoExpr, closed: ClosedInterval = 'both') Series[source]#

Get a boolean mask of the values that fall between the given start/end values.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.is_boolean.html b/py-polars/dev/reference/series/api/polars.Series.is_boolean.html index e1ecfcbc7461..e6c955a3b618 100644 --- a/py-polars/dev/reference/series/api/polars.Series.is_boolean.html +++ b/py-polars/dev/reference/series/api/polars.Series.is_boolean.html @@ -1626,7 +1626,7 @@

polars.Series.is_boolean#

-Series.is_boolean() bool[source]#
+Series.is_boolean() bool[source]#

Check if this Series is a Boolean.

Examples

>>> s = pl.Series("a", [True, False, True])
diff --git a/py-polars/dev/reference/series/api/polars.Series.is_duplicated.html b/py-polars/dev/reference/series/api/polars.Series.is_duplicated.html
index 0f3ef69614ca..cdf0a379e3ef 100644
--- a/py-polars/dev/reference/series/api/polars.Series.is_duplicated.html
+++ b/py-polars/dev/reference/series/api/polars.Series.is_duplicated.html
@@ -1626,7 +1626,7 @@
 

polars.Series.is_duplicated#

-Series.is_duplicated() Series[source]#
+Series.is_duplicated() Series[source]#

Get mask of all duplicated values.

Returns:
diff --git a/py-polars/dev/reference/series/api/polars.Series.is_empty.html b/py-polars/dev/reference/series/api/polars.Series.is_empty.html index afaf232d734a..e5471394bff8 100644 --- a/py-polars/dev/reference/series/api/polars.Series.is_empty.html +++ b/py-polars/dev/reference/series/api/polars.Series.is_empty.html @@ -1626,7 +1626,7 @@

polars.Series.is_empty#

-Series.is_empty() bool[source]#
+Series.is_empty() bool[source]#

Check if the Series is empty.

Examples

>>> s = pl.Series("a", [], dtype=pl.Float32)
diff --git a/py-polars/dev/reference/series/api/polars.Series.is_finite.html b/py-polars/dev/reference/series/api/polars.Series.is_finite.html
index 1657972b1f3c..55a4578158ee 100644
--- a/py-polars/dev/reference/series/api/polars.Series.is_finite.html
+++ b/py-polars/dev/reference/series/api/polars.Series.is_finite.html
@@ -1626,7 +1626,7 @@
 

polars.Series.is_finite#

-Series.is_finite() Series[source]#
+Series.is_finite() Series[source]#

Returns a boolean Series indicating which values are finite.

Returns:
diff --git a/py-polars/dev/reference/series/api/polars.Series.is_first.html b/py-polars/dev/reference/series/api/polars.Series.is_first.html index 759494ab69c1..5a552fc4a47a 100644 --- a/py-polars/dev/reference/series/api/polars.Series.is_first.html +++ b/py-polars/dev/reference/series/api/polars.Series.is_first.html @@ -1626,7 +1626,7 @@

polars.Series.is_first#

-Series.is_first() Series[source]#
+Series.is_first() Series[source]#

Get a mask of the first unique value.

Returns:
diff --git a/py-polars/dev/reference/series/api/polars.Series.is_float.html b/py-polars/dev/reference/series/api/polars.Series.is_float.html index 6960feb2d5a8..4f74ac71a5f1 100644 --- a/py-polars/dev/reference/series/api/polars.Series.is_float.html +++ b/py-polars/dev/reference/series/api/polars.Series.is_float.html @@ -1626,7 +1626,7 @@

polars.Series.is_float#

-Series.is_float() bool[source]#
+Series.is_float() bool[source]#

Check if this Series has floating point numbers.

Examples

>>> s = pl.Series("a", [1.0, 2.0, 3.0])
diff --git a/py-polars/dev/reference/series/api/polars.Series.is_in.html b/py-polars/dev/reference/series/api/polars.Series.is_in.html
index c5ae065968f5..a443ba19482d 100644
--- a/py-polars/dev/reference/series/api/polars.Series.is_in.html
+++ b/py-polars/dev/reference/series/api/polars.Series.is_in.html
@@ -1626,7 +1626,7 @@
 

polars.Series.is_in#

-Series.is_in(other: Series | Collection[Any]) Series[source]#
+Series.is_in(other: Series | Collection[Any]) Series[source]#

Check if elements of this Series are in the other Series.

Returns:
diff --git a/py-polars/dev/reference/series/api/polars.Series.is_infinite.html b/py-polars/dev/reference/series/api/polars.Series.is_infinite.html index fac1f75c8220..cf9e8412bce6 100644 --- a/py-polars/dev/reference/series/api/polars.Series.is_infinite.html +++ b/py-polars/dev/reference/series/api/polars.Series.is_infinite.html @@ -1626,7 +1626,7 @@

polars.Series.is_infinite#

-Series.is_infinite() Series[source]#
+Series.is_infinite() Series[source]#

Returns a boolean Series indicating which values are infinite.

Returns:
diff --git a/py-polars/dev/reference/series/api/polars.Series.is_integer.html b/py-polars/dev/reference/series/api/polars.Series.is_integer.html index ff9fdfa5af1f..95999ff1a8c6 100644 --- a/py-polars/dev/reference/series/api/polars.Series.is_integer.html +++ b/py-polars/dev/reference/series/api/polars.Series.is_integer.html @@ -1626,7 +1626,7 @@

polars.Series.is_integer#

-Series.is_integer(signed: bool | None = None) bool[source]#
+Series.is_integer(signed: bool | None = None) bool[source]#

Check if this Series datatype is an integer (signed or unsigned).

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.is_nan.html b/py-polars/dev/reference/series/api/polars.Series.is_nan.html index f988d8233836..742c390f68f9 100644 --- a/py-polars/dev/reference/series/api/polars.Series.is_nan.html +++ b/py-polars/dev/reference/series/api/polars.Series.is_nan.html @@ -1626,7 +1626,7 @@

polars.Series.is_nan#

-Series.is_nan() Series[source]#
+Series.is_nan() Series[source]#

Returns a boolean Series indicating which values are not NaN.

Returns:
diff --git a/py-polars/dev/reference/series/api/polars.Series.is_not_nan.html b/py-polars/dev/reference/series/api/polars.Series.is_not_nan.html index b684d7da155a..4a665c037b02 100644 --- a/py-polars/dev/reference/series/api/polars.Series.is_not_nan.html +++ b/py-polars/dev/reference/series/api/polars.Series.is_not_nan.html @@ -1626,7 +1626,7 @@

polars.Series.is_not_nan#

-Series.is_not_nan() Series[source]#
+Series.is_not_nan() Series[source]#

Returns a boolean Series indicating which values are not NaN.

Returns:
diff --git a/py-polars/dev/reference/series/api/polars.Series.is_not_null.html b/py-polars/dev/reference/series/api/polars.Series.is_not_null.html index 857d2cba6e62..e0bf94d71231 100644 --- a/py-polars/dev/reference/series/api/polars.Series.is_not_null.html +++ b/py-polars/dev/reference/series/api/polars.Series.is_not_null.html @@ -1626,7 +1626,7 @@

polars.Series.is_not_null#

-Series.is_not_null() Series[source]#
+Series.is_not_null() Series[source]#

Returns a boolean Series indicating which values are not null.

Returns:
diff --git a/py-polars/dev/reference/series/api/polars.Series.is_null.html b/py-polars/dev/reference/series/api/polars.Series.is_null.html index eefb0ee555bf..06dcb85953e9 100644 --- a/py-polars/dev/reference/series/api/polars.Series.is_null.html +++ b/py-polars/dev/reference/series/api/polars.Series.is_null.html @@ -1626,7 +1626,7 @@

polars.Series.is_null#

-Series.is_null() Series[source]#
+Series.is_null() Series[source]#

Returns a boolean Series indicating which values are null.

Returns:
diff --git a/py-polars/dev/reference/series/api/polars.Series.is_numeric.html b/py-polars/dev/reference/series/api/polars.Series.is_numeric.html index 346e582e3035..65e554d49523 100644 --- a/py-polars/dev/reference/series/api/polars.Series.is_numeric.html +++ b/py-polars/dev/reference/series/api/polars.Series.is_numeric.html @@ -1626,7 +1626,7 @@

polars.Series.is_numeric#

-Series.is_numeric() bool[source]#
+Series.is_numeric() bool[source]#

Check if this Series datatype is numeric.

Examples

>>> s = pl.Series("a", [1, 2, 3])
diff --git a/py-polars/dev/reference/series/api/polars.Series.is_sorted.html b/py-polars/dev/reference/series/api/polars.Series.is_sorted.html
index 4162050509bf..bc8d634e6aaa 100644
--- a/py-polars/dev/reference/series/api/polars.Series.is_sorted.html
+++ b/py-polars/dev/reference/series/api/polars.Series.is_sorted.html
@@ -1626,7 +1626,7 @@
 

polars.Series.is_sorted#

-Series.is_sorted(*, descending: bool = False) bool[source]#
+Series.is_sorted(*, descending: bool = False) bool[source]#

Check if the Series is sorted.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.is_temporal.html b/py-polars/dev/reference/series/api/polars.Series.is_temporal.html index 9ba484a14860..b518a0846150 100644 --- a/py-polars/dev/reference/series/api/polars.Series.is_temporal.html +++ b/py-polars/dev/reference/series/api/polars.Series.is_temporal.html @@ -1626,7 +1626,7 @@

polars.Series.is_temporal#

-Series.is_temporal(excluding: OneOrMoreDataTypes | None = None) bool[source]#
+Series.is_temporal(excluding: OneOrMoreDataTypes | None = None) bool[source]#

Check if this Series datatype is temporal.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.is_unique.html b/py-polars/dev/reference/series/api/polars.Series.is_unique.html index 63f8d227516c..fd4957861121 100644 --- a/py-polars/dev/reference/series/api/polars.Series.is_unique.html +++ b/py-polars/dev/reference/series/api/polars.Series.is_unique.html @@ -1626,7 +1626,7 @@

polars.Series.is_unique#

-Series.is_unique() Series[source]#
+Series.is_unique() Series[source]#

Get mask of all unique values.

Returns:
diff --git a/py-polars/dev/reference/series/api/polars.Series.is_utf8.html b/py-polars/dev/reference/series/api/polars.Series.is_utf8.html index 8137b8758021..cf323bb21166 100644 --- a/py-polars/dev/reference/series/api/polars.Series.is_utf8.html +++ b/py-polars/dev/reference/series/api/polars.Series.is_utf8.html @@ -1626,7 +1626,7 @@

polars.Series.is_utf8#

-Series.is_utf8() bool[source]#
+Series.is_utf8() bool[source]#

Check if this Series datatype is a Utf8.

Examples

>>> s = pl.Series("x", ["a", "b", "c"])
diff --git a/py-polars/dev/reference/series/api/polars.Series.item.html b/py-polars/dev/reference/series/api/polars.Series.item.html
index 05d0a9e175ef..e2753a34078a 100644
--- a/py-polars/dev/reference/series/api/polars.Series.item.html
+++ b/py-polars/dev/reference/series/api/polars.Series.item.html
@@ -1626,7 +1626,7 @@
 

polars.Series.item#

-Series.item(row: int | None = None) Any[source]#
+Series.item(row: int | None = None) Any[source]#

Return the series as a scalar, or return the element at the given row index.

If no row index is provided, this is equivalent to s[0], with a check that the shape is (1,). With a row index, this is equivalent to s[row].

diff --git a/py-polars/dev/reference/series/api/polars.Series.kurtosis.html b/py-polars/dev/reference/series/api/polars.Series.kurtosis.html index a285f7168340..bc0e23581065 100644 --- a/py-polars/dev/reference/series/api/polars.Series.kurtosis.html +++ b/py-polars/dev/reference/series/api/polars.Series.kurtosis.html @@ -1626,7 +1626,7 @@

polars.Series.kurtosis#

-Series.kurtosis(*, fisher: bool = True, bias: bool = True) float | None[source]#
+Series.kurtosis(*, fisher: bool = True, bias: bool = True) float | None[source]#

Compute the kurtosis (Fisher or Pearson) of a dataset.

Kurtosis is the fourth central moment divided by the square of the variance. If Fisher’s definition is used, then 3.0 is subtracted from diff --git a/py-polars/dev/reference/series/api/polars.Series.len.html b/py-polars/dev/reference/series/api/polars.Series.len.html index 921068f95ce0..8fbefd2b587b 100644 --- a/py-polars/dev/reference/series/api/polars.Series.len.html +++ b/py-polars/dev/reference/series/api/polars.Series.len.html @@ -1626,7 +1626,7 @@

polars.Series.len#

-Series.len() int[source]#
+Series.len() int[source]#

Length of this Series.

Examples

>>> s = pl.Series("a", [1, 2, 3])
diff --git a/py-polars/dev/reference/series/api/polars.Series.limit.html b/py-polars/dev/reference/series/api/polars.Series.limit.html
index 6612cc95f3bc..f9ce548ab078 100644
--- a/py-polars/dev/reference/series/api/polars.Series.limit.html
+++ b/py-polars/dev/reference/series/api/polars.Series.limit.html
@@ -1626,7 +1626,7 @@
 

polars.Series.limit#

-Series.limit(n: int = 10) Series[source]#
+Series.limit(n: int = 10) Series[source]#

Get the first n elements.

Alias for Series.head().

diff --git a/py-polars/dev/reference/series/api/polars.Series.log.html b/py-polars/dev/reference/series/api/polars.Series.log.html index 7e8c0220d78b..56d6161cae6b 100644 --- a/py-polars/dev/reference/series/api/polars.Series.log.html +++ b/py-polars/dev/reference/series/api/polars.Series.log.html @@ -1626,7 +1626,7 @@

polars.Series.log#

-Series.log(base: float = 2.718281828459045) Series[source]#
+Series.log(base: float = 2.718281828459045) Series[source]#

Compute the logarithm to a given base.

diff --git a/py-polars/dev/reference/series/api/polars.Series.log10.html b/py-polars/dev/reference/series/api/polars.Series.log10.html index 97a0d970cf3e..7eab703d6f41 100644 --- a/py-polars/dev/reference/series/api/polars.Series.log10.html +++ b/py-polars/dev/reference/series/api/polars.Series.log10.html @@ -1626,7 +1626,7 @@

polars.Series.log10#

-Series.log10() Series[source]#
+Series.log10() Series[source]#

Compute the base 10 logarithm of the input array, element-wise.

diff --git a/py-polars/dev/reference/series/api/polars.Series.log1p.html b/py-polars/dev/reference/series/api/polars.Series.log1p.html index acb57cf5b160..bdf4697e47a3 100644 --- a/py-polars/dev/reference/series/api/polars.Series.log1p.html +++ b/py-polars/dev/reference/series/api/polars.Series.log1p.html @@ -1626,7 +1626,7 @@

polars.Series.log1p#

-Series.log1p() Series[source]#
+Series.log1p() Series[source]#

Compute the natural logarithm of the input array plus one, element-wise.

diff --git a/py-polars/dev/reference/series/api/polars.Series.lower_bound.html b/py-polars/dev/reference/series/api/polars.Series.lower_bound.html index af4c5c2b0153..792b47b8b842 100644 --- a/py-polars/dev/reference/series/api/polars.Series.lower_bound.html +++ b/py-polars/dev/reference/series/api/polars.Series.lower_bound.html @@ -1626,7 +1626,7 @@

polars.Series.lower_bound#

-Series.lower_bound() Self[source]#
+Series.lower_bound() Self[source]#

Return the lower bound of this Series’ dtype as a unit Series.

See also

diff --git a/py-polars/dev/reference/series/api/polars.Series.map_dict.html b/py-polars/dev/reference/series/api/polars.Series.map_dict.html index 6b5328fa90eb..b5d4bcc4af05 100644 --- a/py-polars/dev/reference/series/api/polars.Series.map_dict.html +++ b/py-polars/dev/reference/series/api/polars.Series.map_dict.html @@ -1626,7 +1626,7 @@

polars.Series.map_dict#

-Series.map_dict(remapping: dict[Any, Any], *, default: Any = None, return_dtype: PolarsDataType | None = None) Self[source]#
+Series.map_dict(remapping: dict[Any, Any], *, default: Any = None, return_dtype: PolarsDataType | None = None) Self[source]#

Replace values in the Series using a remapping dictionary.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.max.html b/py-polars/dev/reference/series/api/polars.Series.max.html index 5017c83ab634..7353bf633b44 100644 --- a/py-polars/dev/reference/series/api/polars.Series.max.html +++ b/py-polars/dev/reference/series/api/polars.Series.max.html @@ -1626,7 +1626,7 @@

polars.Series.max#

-Series.max() PythonLiteral | None[source]#
+Series.max() PythonLiteral | None[source]#

Get the maximum value in this Series.

Examples

>>> s = pl.Series("a", [1, 2, 3])
diff --git a/py-polars/dev/reference/series/api/polars.Series.mean.html b/py-polars/dev/reference/series/api/polars.Series.mean.html
index 3ae950ec575d..4ef517b6aac0 100644
--- a/py-polars/dev/reference/series/api/polars.Series.mean.html
+++ b/py-polars/dev/reference/series/api/polars.Series.mean.html
@@ -1626,7 +1626,7 @@
 

polars.Series.mean#

-Series.mean() int | float | None[source]#
+Series.mean() int | float | None[source]#

Reduce this Series to the mean value.

Examples

>>> s = pl.Series("a", [1, 2, 3])
diff --git a/py-polars/dev/reference/series/api/polars.Series.median.html b/py-polars/dev/reference/series/api/polars.Series.median.html
index 4042ce6c1204..3a46dc5b9b4a 100644
--- a/py-polars/dev/reference/series/api/polars.Series.median.html
+++ b/py-polars/dev/reference/series/api/polars.Series.median.html
@@ -1626,7 +1626,7 @@
 

polars.Series.median#

-Series.median() float | None[source]#
+Series.median() float | None[source]#

Get the median of this Series.

Examples

>>> s = pl.Series("a", [1, 2, 3])
diff --git a/py-polars/dev/reference/series/api/polars.Series.min.html b/py-polars/dev/reference/series/api/polars.Series.min.html
index 978a3b65e752..a27a1b55ceee 100644
--- a/py-polars/dev/reference/series/api/polars.Series.min.html
+++ b/py-polars/dev/reference/series/api/polars.Series.min.html
@@ -1626,7 +1626,7 @@
 

polars.Series.min#

-Series.min() PythonLiteral | None[source]#
+Series.min() PythonLiteral | None[source]#

Get the minimal value in this Series.

Examples

>>> s = pl.Series("a", [1, 2, 3])
diff --git a/py-polars/dev/reference/series/api/polars.Series.mode.html b/py-polars/dev/reference/series/api/polars.Series.mode.html
index e379409d20ee..ce0aa100f818 100644
--- a/py-polars/dev/reference/series/api/polars.Series.mode.html
+++ b/py-polars/dev/reference/series/api/polars.Series.mode.html
@@ -1626,7 +1626,7 @@
 

polars.Series.mode#

-Series.mode() Series[source]#
+Series.mode() Series[source]#

Compute the most occurring value(s).

Can return multiple Values.

Examples

diff --git a/py-polars/dev/reference/series/api/polars.Series.n_chunks.html b/py-polars/dev/reference/series/api/polars.Series.n_chunks.html index 49a4aa2381c0..874aa0db5b16 100644 --- a/py-polars/dev/reference/series/api/polars.Series.n_chunks.html +++ b/py-polars/dev/reference/series/api/polars.Series.n_chunks.html @@ -1626,7 +1626,7 @@

polars.Series.n_chunks#

-Series.n_chunks() int[source]#
+Series.n_chunks() int[source]#

Get the number of chunks that this Series contains.

Examples

>>> s = pl.Series("a", [1, 2, 3])
diff --git a/py-polars/dev/reference/series/api/polars.Series.n_unique.html b/py-polars/dev/reference/series/api/polars.Series.n_unique.html
index 34aad8e4b9fa..fec8dcd64205 100644
--- a/py-polars/dev/reference/series/api/polars.Series.n_unique.html
+++ b/py-polars/dev/reference/series/api/polars.Series.n_unique.html
@@ -1626,7 +1626,7 @@
 

polars.Series.n_unique#

-Series.n_unique() int[source]#
+Series.n_unique() int[source]#

Count the number of unique values in this Series.

Examples

>>> s = pl.Series("a", [1, 2, 2, 3])
diff --git a/py-polars/dev/reference/series/api/polars.Series.nan_max.html b/py-polars/dev/reference/series/api/polars.Series.nan_max.html
index fca32bcaa5c5..2db8b1572497 100644
--- a/py-polars/dev/reference/series/api/polars.Series.nan_max.html
+++ b/py-polars/dev/reference/series/api/polars.Series.nan_max.html
@@ -1626,7 +1626,7 @@
 

polars.Series.nan_max#

-Series.nan_max() int | float | date | datetime | timedelta | str[source]#
+Series.nan_max() int | float | date | datetime | timedelta | str[source]#

Get maximum value, but propagate/poison encountered NaN values.

This differs from numpy’s nanmax as numpy defaults to propagating NaN values, whereas polars defaults to ignoring them.

diff --git a/py-polars/dev/reference/series/api/polars.Series.nan_min.html b/py-polars/dev/reference/series/api/polars.Series.nan_min.html index bf6c8e9be2e1..02461ab8de64 100644 --- a/py-polars/dev/reference/series/api/polars.Series.nan_min.html +++ b/py-polars/dev/reference/series/api/polars.Series.nan_min.html @@ -1626,7 +1626,7 @@

polars.Series.nan_min#

-Series.nan_min() int | float | date | datetime | timedelta | str[source]#
+Series.nan_min() int | float | date | datetime | timedelta | str[source]#

Get minimum value, but propagate/poison encountered NaN values.

This differs from numpy’s nanmax as numpy defaults to propagating NaN values, whereas polars defaults to ignoring them.

diff --git a/py-polars/dev/reference/series/api/polars.Series.new_from_index.html b/py-polars/dev/reference/series/api/polars.Series.new_from_index.html index 275c21f2e110..211a74d60e49 100644 --- a/py-polars/dev/reference/series/api/polars.Series.new_from_index.html +++ b/py-polars/dev/reference/series/api/polars.Series.new_from_index.html @@ -1626,7 +1626,7 @@

polars.Series.new_from_index#

-Series.new_from_index(index: int, length: int) Self[source]#
+Series.new_from_index(index: int, length: int) Self[source]#

Create a new Series filled with values from the given index.

diff --git a/py-polars/dev/reference/series/api/polars.Series.null_count.html b/py-polars/dev/reference/series/api/polars.Series.null_count.html index ac4555f23158..9fc2729a72c8 100644 --- a/py-polars/dev/reference/series/api/polars.Series.null_count.html +++ b/py-polars/dev/reference/series/api/polars.Series.null_count.html @@ -1626,7 +1626,7 @@

polars.Series.null_count#

-Series.null_count() int[source]#
+Series.null_count() int[source]#

Count the null values in this Series.

diff --git a/py-polars/dev/reference/series/api/polars.Series.pct_change.html b/py-polars/dev/reference/series/api/polars.Series.pct_change.html index 55468005aff7..c12e872c7aee 100644 --- a/py-polars/dev/reference/series/api/polars.Series.pct_change.html +++ b/py-polars/dev/reference/series/api/polars.Series.pct_change.html @@ -1626,7 +1626,7 @@

polars.Series.pct_change#

-Series.pct_change(n: int = 1) Series[source]#
+Series.pct_change(n: int = 1) Series[source]#

Computes percentage change between values.

Percentage change (as fraction) between current element and most-recent non-null element at least n period(s) before the current element.

diff --git a/py-polars/dev/reference/series/api/polars.Series.peak_max.html b/py-polars/dev/reference/series/api/polars.Series.peak_max.html index 23a0a9f4666a..6c4e4c40025f 100644 --- a/py-polars/dev/reference/series/api/polars.Series.peak_max.html +++ b/py-polars/dev/reference/series/api/polars.Series.peak_max.html @@ -1626,7 +1626,7 @@

polars.Series.peak_max#

-Series.peak_max() Self[source]#
+Series.peak_max() Self[source]#

Get a boolean mask of the local maximum peaks.

Examples

>>> s = pl.Series("a", [1, 2, 3, 4, 5])
diff --git a/py-polars/dev/reference/series/api/polars.Series.peak_min.html b/py-polars/dev/reference/series/api/polars.Series.peak_min.html
index b21c578f4003..482b4b007d76 100644
--- a/py-polars/dev/reference/series/api/polars.Series.peak_min.html
+++ b/py-polars/dev/reference/series/api/polars.Series.peak_min.html
@@ -1626,7 +1626,7 @@
 

polars.Series.peak_min#

-Series.peak_min() Self[source]#
+Series.peak_min() Self[source]#

Get a boolean mask of the local minimum peaks.

Examples

>>> s = pl.Series("a", [4, 1, 3, 2, 5])
diff --git a/py-polars/dev/reference/series/api/polars.Series.product.html b/py-polars/dev/reference/series/api/polars.Series.product.html
index 8c338a206ed7..b65fab53122a 100644
--- a/py-polars/dev/reference/series/api/polars.Series.product.html
+++ b/py-polars/dev/reference/series/api/polars.Series.product.html
@@ -1626,7 +1626,7 @@
 

polars.Series.product#

-Series.product() int | float[source]#
+Series.product() int | float[source]#

Reduce this Series to the product value.

diff --git a/py-polars/dev/reference/series/api/polars.Series.qcut.html b/py-polars/dev/reference/series/api/polars.Series.qcut.html index ee7000f43052..5fe0cd70f4cc 100644 --- a/py-polars/dev/reference/series/api/polars.Series.qcut.html +++ b/py-polars/dev/reference/series/api/polars.Series.qcut.html @@ -1626,7 +1626,7 @@

polars.Series.qcut#

-Series.qcut(q: list[float] | int, *, labels: list[str] | None = None, break_point_label: str = 'break_point', category_label: str = 'category', series: bool = True, left_closed: bool = False, allow_duplicates: bool = False, include_breaks: bool = False) DataFrame | Series[source]#
+Series.qcut(q: list[float] | int, *, labels: list[str] | None = None, break_point_label: str = 'break_point', category_label: str = 'category', series: bool = True, left_closed: bool = False, allow_duplicates: bool = False, include_breaks: bool = False) DataFrame | Series[source]#

Discretize continuous values into discrete categories based on their quantiles.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.quantile.html b/py-polars/dev/reference/series/api/polars.Series.quantile.html index 52a568174de7..2e0ff2abf23c 100644 --- a/py-polars/dev/reference/series/api/polars.Series.quantile.html +++ b/py-polars/dev/reference/series/api/polars.Series.quantile.html @@ -1626,7 +1626,7 @@

polars.Series.quantile#

-Series.quantile(quantile: float, interpolation: RollingInterpolationMethod = 'nearest') float | None[source]#
+Series.quantile(quantile: float, interpolation: RollingInterpolationMethod = 'nearest') float | None[source]#

Get the quantile value of this Series.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.rank.html b/py-polars/dev/reference/series/api/polars.Series.rank.html index 45ebc6619652..07ab6e238ede 100644 --- a/py-polars/dev/reference/series/api/polars.Series.rank.html +++ b/py-polars/dev/reference/series/api/polars.Series.rank.html @@ -1626,7 +1626,7 @@

polars.Series.rank#

-Series.rank(method: RankMethod = 'average', *, descending: bool = False, seed: int | None = None) Series[source]#
+Series.rank(method: RankMethod = 'average', *, descending: bool = False, seed: int | None = None) Series[source]#

Assign ranks to data, dealing with ties appropriately.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.rechunk.html b/py-polars/dev/reference/series/api/polars.Series.rechunk.html index aba9eae6f39e..654dd0ce5d60 100644 --- a/py-polars/dev/reference/series/api/polars.Series.rechunk.html +++ b/py-polars/dev/reference/series/api/polars.Series.rechunk.html @@ -1626,7 +1626,7 @@

polars.Series.rechunk#

-Series.rechunk(*, in_place: bool = False) Self[source]#
+Series.rechunk(*, in_place: bool = False) Self[source]#

Create a single chunk of memory for this Series.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.reinterpret.html b/py-polars/dev/reference/series/api/polars.Series.reinterpret.html index 411b2d4ab677..7d2fbb6e46f9 100644 --- a/py-polars/dev/reference/series/api/polars.Series.reinterpret.html +++ b/py-polars/dev/reference/series/api/polars.Series.reinterpret.html @@ -1626,7 +1626,7 @@

polars.Series.reinterpret#

-Series.reinterpret(*, signed: bool = True) Series[source]#
+Series.reinterpret(*, signed: bool = True) Series[source]#

Reinterpret the underlying bits as a signed/unsigned integer.

This operation is only allowed for 64bit integers. For lower bits integers, you can safely use that cast operation.

diff --git a/py-polars/dev/reference/series/api/polars.Series.rename.html b/py-polars/dev/reference/series/api/polars.Series.rename.html index 39ceb4f77338..d59ae84487a6 100644 --- a/py-polars/dev/reference/series/api/polars.Series.rename.html +++ b/py-polars/dev/reference/series/api/polars.Series.rename.html @@ -1626,7 +1626,7 @@

polars.Series.rename#

-Series.rename(name: str, *, in_place: bool | None = None) Series[source]#
+Series.rename(name: str, *, in_place: bool | None = None) Series[source]#

Rename this Series.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.reshape.html b/py-polars/dev/reference/series/api/polars.Series.reshape.html index f193e89b3e47..24a85bdebd68 100644 --- a/py-polars/dev/reference/series/api/polars.Series.reshape.html +++ b/py-polars/dev/reference/series/api/polars.Series.reshape.html @@ -1626,7 +1626,7 @@

polars.Series.reshape#

-Series.reshape(dimensions: tuple[int, ...]) Series[source]#
+Series.reshape(dimensions: tuple[int, ...]) Series[source]#

Reshape this Series to a flat Series or a Series of Lists.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.reverse.html b/py-polars/dev/reference/series/api/polars.Series.reverse.html index dff1996d5462..8589aaba9d7e 100644 --- a/py-polars/dev/reference/series/api/polars.Series.reverse.html +++ b/py-polars/dev/reference/series/api/polars.Series.reverse.html @@ -1626,7 +1626,7 @@

polars.Series.reverse#

-Series.reverse() Series[source]#
+Series.reverse() Series[source]#

Return Series in reverse order.

Examples

>>> s = pl.Series("a", [1, 2, 3], dtype=pl.Int8)
diff --git a/py-polars/dev/reference/series/api/polars.Series.rle.html b/py-polars/dev/reference/series/api/polars.Series.rle.html
index 5094b005cdcf..4d0be3161c51 100644
--- a/py-polars/dev/reference/series/api/polars.Series.rle.html
+++ b/py-polars/dev/reference/series/api/polars.Series.rle.html
@@ -1626,7 +1626,7 @@
 

polars.Series.rle#

-Series.rle() Series[source]#
+Series.rle() Series[source]#

Get the lengths of runs of identical values.

Returns:
diff --git a/py-polars/dev/reference/series/api/polars.Series.rle_id.html b/py-polars/dev/reference/series/api/polars.Series.rle_id.html index 7bd59114811e..6562ac5a6cdd 100644 --- a/py-polars/dev/reference/series/api/polars.Series.rle_id.html +++ b/py-polars/dev/reference/series/api/polars.Series.rle_id.html @@ -1626,7 +1626,7 @@

polars.Series.rle_id#

-Series.rle_id() Series[source]#
+Series.rle_id() Series[source]#

Map values to run IDs.

Similar to RLE, but it maps each value to an ID corresponding to the run into which it falls. This is especially useful when you want to define groups by diff --git a/py-polars/dev/reference/series/api/polars.Series.rolling_apply.html b/py-polars/dev/reference/series/api/polars.Series.rolling_apply.html index 5dd9381ee30f..7080f7576086 100644 --- a/py-polars/dev/reference/series/api/polars.Series.rolling_apply.html +++ b/py-polars/dev/reference/series/api/polars.Series.rolling_apply.html @@ -1626,7 +1626,7 @@

polars.Series.rolling_apply#

-Series.rolling_apply(function: Callable[[Series], Any], window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]#
+Series.rolling_apply(function: Callable[[Series], Any], window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]#

Apply a custom rolling window function.

Prefer the specific rolling window functions over this one, as they are faster:

diff --git a/py-polars/dev/reference/series/api/polars.Series.rolling_max.html b/py-polars/dev/reference/series/api/polars.Series.rolling_max.html index 63778217910b..f751dd6d3129 100644 --- a/py-polars/dev/reference/series/api/polars.Series.rolling_max.html +++ b/py-polars/dev/reference/series/api/polars.Series.rolling_max.html @@ -1626,7 +1626,7 @@

polars.Series.rolling_max#

-Series.rolling_max(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]#
+Series.rolling_max(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]#

Apply a rolling max (moving max) over the values in this array.

A window of length window_size will traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by the diff --git a/py-polars/dev/reference/series/api/polars.Series.rolling_mean.html b/py-polars/dev/reference/series/api/polars.Series.rolling_mean.html index 467ea2889e88..8cd30f45fb9c 100644 --- a/py-polars/dev/reference/series/api/polars.Series.rolling_mean.html +++ b/py-polars/dev/reference/series/api/polars.Series.rolling_mean.html @@ -1626,7 +1626,7 @@

polars.Series.rolling_mean#

-Series.rolling_mean(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]#
+Series.rolling_mean(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]#

Apply a rolling mean (moving mean) over the values in this array.

A window of length window_size will traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by the diff --git a/py-polars/dev/reference/series/api/polars.Series.rolling_median.html b/py-polars/dev/reference/series/api/polars.Series.rolling_median.html index 0b1eb0783771..b2f9657ffdce 100644 --- a/py-polars/dev/reference/series/api/polars.Series.rolling_median.html +++ b/py-polars/dev/reference/series/api/polars.Series.rolling_median.html @@ -1626,7 +1626,7 @@

polars.Series.rolling_median#

-Series.rolling_median(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]#
+Series.rolling_median(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]#

Compute a rolling median.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.rolling_min.html b/py-polars/dev/reference/series/api/polars.Series.rolling_min.html index 06c5bbfb41d8..5c0092fbc443 100644 --- a/py-polars/dev/reference/series/api/polars.Series.rolling_min.html +++ b/py-polars/dev/reference/series/api/polars.Series.rolling_min.html @@ -1626,7 +1626,7 @@

polars.Series.rolling_min#

-Series.rolling_min(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]#
+Series.rolling_min(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]#

Apply a rolling min (moving min) over the values in this array.

A window of length window_size will traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by the diff --git a/py-polars/dev/reference/series/api/polars.Series.rolling_quantile.html b/py-polars/dev/reference/series/api/polars.Series.rolling_quantile.html index 04b400651a84..972e29637123 100644 --- a/py-polars/dev/reference/series/api/polars.Series.rolling_quantile.html +++ b/py-polars/dev/reference/series/api/polars.Series.rolling_quantile.html @@ -1626,7 +1626,7 @@

polars.Series.rolling_quantile#

-Series.rolling_quantile(quantile: float, interpolation: RollingInterpolationMethod = 'nearest', window_size: int = 2, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]#
+Series.rolling_quantile(quantile: float, interpolation: RollingInterpolationMethod = 'nearest', window_size: int = 2, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]#

Compute a rolling quantile.

The window at a given row will include the row itself and the window_size - 1 elements before it.

diff --git a/py-polars/dev/reference/series/api/polars.Series.rolling_skew.html b/py-polars/dev/reference/series/api/polars.Series.rolling_skew.html index 0e6e62b87dfe..498d98a410f5 100644 --- a/py-polars/dev/reference/series/api/polars.Series.rolling_skew.html +++ b/py-polars/dev/reference/series/api/polars.Series.rolling_skew.html @@ -1626,7 +1626,7 @@

polars.Series.rolling_skew#

-Series.rolling_skew(window_size: int, *, bias: bool = True) Series[source]#
+Series.rolling_skew(window_size: int, *, bias: bool = True) Series[source]#

Compute a rolling skew.

The window at a given row includes the row itself and the window_size - 1 elements before it.

diff --git a/py-polars/dev/reference/series/api/polars.Series.rolling_std.html b/py-polars/dev/reference/series/api/polars.Series.rolling_std.html index f2376df1abd4..f9c5ff546708 100644 --- a/py-polars/dev/reference/series/api/polars.Series.rolling_std.html +++ b/py-polars/dev/reference/series/api/polars.Series.rolling_std.html @@ -1626,7 +1626,7 @@

polars.Series.rolling_std#

-Series.rolling_std(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False, ddof: int = 1) Series[source]#
+Series.rolling_std(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False, ddof: int = 1) Series[source]#

Compute a rolling std dev.

A window of length window_size will traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by the diff --git a/py-polars/dev/reference/series/api/polars.Series.rolling_sum.html b/py-polars/dev/reference/series/api/polars.Series.rolling_sum.html index fc98a537089f..d2b85e16ba29 100644 --- a/py-polars/dev/reference/series/api/polars.Series.rolling_sum.html +++ b/py-polars/dev/reference/series/api/polars.Series.rolling_sum.html @@ -1626,7 +1626,7 @@

polars.Series.rolling_sum#

-Series.rolling_sum(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]#
+Series.rolling_sum(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]#

Apply a rolling sum (moving sum) over the values in this array.

A window of length window_size will traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by the diff --git a/py-polars/dev/reference/series/api/polars.Series.rolling_var.html b/py-polars/dev/reference/series/api/polars.Series.rolling_var.html index 7cbe258a78b6..549fba1742c8 100644 --- a/py-polars/dev/reference/series/api/polars.Series.rolling_var.html +++ b/py-polars/dev/reference/series/api/polars.Series.rolling_var.html @@ -1626,7 +1626,7 @@

polars.Series.rolling_var#

-Series.rolling_var(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False, ddof: int = 1) Series[source]#
+Series.rolling_var(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False, ddof: int = 1) Series[source]#

Compute a rolling variance.

A window of length window_size will traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by the diff --git a/py-polars/dev/reference/series/api/polars.Series.round.html b/py-polars/dev/reference/series/api/polars.Series.round.html index 2467c6042d4d..cbd886c749d6 100644 --- a/py-polars/dev/reference/series/api/polars.Series.round.html +++ b/py-polars/dev/reference/series/api/polars.Series.round.html @@ -1626,7 +1626,7 @@

polars.Series.round#

-Series.round(decimals: int = 0) Series[source]#
+Series.round(decimals: int = 0) Series[source]#

Round underlying floating point data by decimals digits.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.sample.html b/py-polars/dev/reference/series/api/polars.Series.sample.html index 4153a9efbefd..5f13c5b14554 100644 --- a/py-polars/dev/reference/series/api/polars.Series.sample.html +++ b/py-polars/dev/reference/series/api/polars.Series.sample.html @@ -1626,7 +1626,7 @@

polars.Series.sample#

-Series.sample(n: int | None = None, *, fraction: float | None = None, with_replacement: bool = False, shuffle: bool = False, seed: int | None = None) Series[source]#
+Series.sample(n: int | None = None, *, fraction: float | None = None, with_replacement: bool = False, shuffle: bool = False, seed: int | None = None) Series[source]#

Sample from this Series.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.search_sorted.html b/py-polars/dev/reference/series/api/polars.Series.search_sorted.html index 81afdc7ae10b..dab035287d63 100644 --- a/py-polars/dev/reference/series/api/polars.Series.search_sorted.html +++ b/py-polars/dev/reference/series/api/polars.Series.search_sorted.html @@ -1627,7 +1627,7 @@

polars.Series.search_sorted#

-Series.search_sorted(element: int | float, side: SearchSortedSide = 'any') int[source]#
+Series.search_sorted(element: int | float, side: SearchSortedSide = 'any') int[source]#
Series.search_sorted(element: Series | ndarray[Any, Any] | list[int] | list[float], side: SearchSortedSide = 'any') Series

Find indices where elements should be inserted to maintain order.

diff --git a/py-polars/dev/reference/series/api/polars.Series.series_equal.html b/py-polars/dev/reference/series/api/polars.Series.series_equal.html index b9156a076a0c..f28a1038b1b6 100644 --- a/py-polars/dev/reference/series/api/polars.Series.series_equal.html +++ b/py-polars/dev/reference/series/api/polars.Series.series_equal.html @@ -1626,7 +1626,7 @@

polars.Series.series_equal#

-Series.series_equal(other: Series, *, null_equal: bool = True, strict: bool = False) bool[source]#
+Series.series_equal(other: Series, *, null_equal: bool = True, strict: bool = False) bool[source]#

Check if series is equal with another Series.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.set.html b/py-polars/dev/reference/series/api/polars.Series.set.html index a3005fa50581..5b246f4982f4 100644 --- a/py-polars/dev/reference/series/api/polars.Series.set.html +++ b/py-polars/dev/reference/series/api/polars.Series.set.html @@ -1626,7 +1626,7 @@

polars.Series.set#

-Series.set(filter: Series, value: int | float | str) Series[source]#
+Series.set(filter: Series, value: int | float | str) Series[source]#

Set masked values.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.set_at_idx.html b/py-polars/dev/reference/series/api/polars.Series.set_at_idx.html index 1e6cad32b8cf..9be69629c48b 100644 --- a/py-polars/dev/reference/series/api/polars.Series.set_at_idx.html +++ b/py-polars/dev/reference/series/api/polars.Series.set_at_idx.html @@ -1626,7 +1626,7 @@

polars.Series.set_at_idx#

-Series.set_at_idx(idx: Series | ndarray[Any, Any] | Sequence[int] | int, value: int | float | str | bool | Sequence[int] | Sequence[float] | Sequence[bool] | Sequence[str] | Sequence[date] | Sequence[datetime] | date | datetime | Series | None) Series[source]#
+Series.set_at_idx(idx: Series | ndarray[Any, Any] | Sequence[int] | int, value: int | float | str | bool | Sequence[int] | Sequence[float] | Sequence[bool] | Sequence[str] | Sequence[date] | Sequence[datetime] | date | datetime | Series | None) Series[source]#

Set values at the index locations.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.set_sorted.html b/py-polars/dev/reference/series/api/polars.Series.set_sorted.html index f5abe8b73457..25f528c0c524 100644 --- a/py-polars/dev/reference/series/api/polars.Series.set_sorted.html +++ b/py-polars/dev/reference/series/api/polars.Series.set_sorted.html @@ -1626,7 +1626,7 @@

polars.Series.set_sorted#

-Series.set_sorted(*, descending: bool = False) Self[source]#
+Series.set_sorted(*, descending: bool = False) Self[source]#

Flags the Series as ‘sorted’.

Enables downstream code to user fast paths for sorted arrays.

diff --git a/py-polars/dev/reference/series/api/polars.Series.shift.html b/py-polars/dev/reference/series/api/polars.Series.shift.html index 8ddeb2647564..72d910b21a83 100644 --- a/py-polars/dev/reference/series/api/polars.Series.shift.html +++ b/py-polars/dev/reference/series/api/polars.Series.shift.html @@ -1626,7 +1626,7 @@

polars.Series.shift#

-Series.shift(periods: int = 1) Series[source]#
+Series.shift(periods: int = 1) Series[source]#

Shift the values by a given period.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.shift_and_fill.html b/py-polars/dev/reference/series/api/polars.Series.shift_and_fill.html index fc7adeeabf1b..7f8bdd435a79 100644 --- a/py-polars/dev/reference/series/api/polars.Series.shift_and_fill.html +++ b/py-polars/dev/reference/series/api/polars.Series.shift_and_fill.html @@ -1626,7 +1626,7 @@

polars.Series.shift_and_fill#

-Series.shift_and_fill(fill_value: int | Expr, *, periods: int = 1) Series[source]#
+Series.shift_and_fill(fill_value: int | Expr, *, periods: int = 1) Series[source]#

Shift the values by a given period and fill the resulting null values.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.shrink_dtype.html b/py-polars/dev/reference/series/api/polars.Series.shrink_dtype.html index 5bb41502814c..af2c3266a790 100644 --- a/py-polars/dev/reference/series/api/polars.Series.shrink_dtype.html +++ b/py-polars/dev/reference/series/api/polars.Series.shrink_dtype.html @@ -1626,7 +1626,7 @@

polars.Series.shrink_dtype#

-Series.shrink_dtype() Series[source]#
+Series.shrink_dtype() Series[source]#

Shrink numeric columns to the minimal required datatype.

Shrink to the dtype needed to fit the extrema of this [Series]. This can be used to reduce memory pressure.

diff --git a/py-polars/dev/reference/series/api/polars.Series.shrink_to_fit.html b/py-polars/dev/reference/series/api/polars.Series.shrink_to_fit.html index 586a60d0c5d9..e8a36c3bca28 100644 --- a/py-polars/dev/reference/series/api/polars.Series.shrink_to_fit.html +++ b/py-polars/dev/reference/series/api/polars.Series.shrink_to_fit.html @@ -1626,7 +1626,7 @@

polars.Series.shrink_to_fit#

-Series.shrink_to_fit(*, in_place: bool = False) Series[source]#
+Series.shrink_to_fit(*, in_place: bool = False) Series[source]#

Shrink Series memory usage.

Shrinks the underlying array capacity to exactly fit the actual data. (Note that this function does not change the Series data type).

diff --git a/py-polars/dev/reference/series/api/polars.Series.shuffle.html b/py-polars/dev/reference/series/api/polars.Series.shuffle.html index 96bc3cf7b122..4f77cbb2efa6 100644 --- a/py-polars/dev/reference/series/api/polars.Series.shuffle.html +++ b/py-polars/dev/reference/series/api/polars.Series.shuffle.html @@ -1626,7 +1626,7 @@

polars.Series.shuffle#

-Series.shuffle(seed: int | None = None) Series[source]#
+Series.shuffle(seed: int | None = None) Series[source]#

Shuffle the contents of this Series.

Parameters:
diff --git a/py-polars/dev/reference/series/api/polars.Series.sign.html b/py-polars/dev/reference/series/api/polars.Series.sign.html index b9f1ec5acc7b..e7451a53e4f5 100644 --- a/py-polars/dev/reference/series/api/polars.Series.sign.html +++ b/py-polars/dev/reference/series/api/polars.Series.sign.html @@ -1626,7 +1626,7 @@

polars.Series.sign#

-Series.sign() Series[source]#
+Series.sign() Series[source]#

Compute the element-wise indication of the sign.

The returned values can be -1, 0, or 1:

    diff --git a/py-polars/dev/reference/series/api/polars.Series.sin.html b/py-polars/dev/reference/series/api/polars.Series.sin.html index 02f433e8316c..b69128652bf4 100644 --- a/py-polars/dev/reference/series/api/polars.Series.sin.html +++ b/py-polars/dev/reference/series/api/polars.Series.sin.html @@ -1626,7 +1626,7 @@

    polars.Series.sin#

    -Series.sin() Series[source]#
    +Series.sin() Series[source]#

    Compute the element-wise value for the sine.

    Examples

    >>> import math
    diff --git a/py-polars/dev/reference/series/api/polars.Series.sinh.html b/py-polars/dev/reference/series/api/polars.Series.sinh.html
    index f75ec5af26b3..c88405560b79 100644
    --- a/py-polars/dev/reference/series/api/polars.Series.sinh.html
    +++ b/py-polars/dev/reference/series/api/polars.Series.sinh.html
    @@ -1626,7 +1626,7 @@
     

    polars.Series.sinh#

    -Series.sinh() Series[source]#
    +Series.sinh() Series[source]#

    Compute the element-wise value for the hyperbolic sine.

    Examples

    >>> s = pl.Series("a", [1.0, 0.0, -1.0])
    diff --git a/py-polars/dev/reference/series/api/polars.Series.skew.html b/py-polars/dev/reference/series/api/polars.Series.skew.html
    index c8ff5f259a5f..d484aec4f57e 100644
    --- a/py-polars/dev/reference/series/api/polars.Series.skew.html
    +++ b/py-polars/dev/reference/series/api/polars.Series.skew.html
    @@ -1627,7 +1627,7 @@
     

    polars.Series.skew#

    -Series.skew(*, bias: bool = True) float | None[source]#
    +Series.skew(*, bias: bool = True) float | None[source]#

    Compute the sample skewness of a data set.

    For normally distributed data, the skewness should be about zero. For unimodal continuous distributions, a skewness value greater than zero means diff --git a/py-polars/dev/reference/series/api/polars.Series.slice.html b/py-polars/dev/reference/series/api/polars.Series.slice.html index e5f176f67616..2bf8de1cebc4 100644 --- a/py-polars/dev/reference/series/api/polars.Series.slice.html +++ b/py-polars/dev/reference/series/api/polars.Series.slice.html @@ -1626,7 +1626,7 @@

    polars.Series.slice#

    -Series.slice(offset: int, length: int | None = None) Series[source]#
    +Series.slice(offset: int, length: int | None = None) Series[source]#

    Get a slice of this Series.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.sort.html b/py-polars/dev/reference/series/api/polars.Series.sort.html index d944d1e5dfef..1aeb57914624 100644 --- a/py-polars/dev/reference/series/api/polars.Series.sort.html +++ b/py-polars/dev/reference/series/api/polars.Series.sort.html @@ -1626,7 +1626,7 @@

    polars.Series.sort#

    -Series.sort(*, descending: bool = False, in_place: bool = False) Self[source]#
    +Series.sort(*, descending: bool = False, in_place: bool = False) Self[source]#

    Sort this Series.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.sqrt.html b/py-polars/dev/reference/series/api/polars.Series.sqrt.html index 11326b610f74..53b371cf34be 100644 --- a/py-polars/dev/reference/series/api/polars.Series.sqrt.html +++ b/py-polars/dev/reference/series/api/polars.Series.sqrt.html @@ -1626,7 +1626,7 @@

    polars.Series.sqrt#

    -Series.sqrt() Series[source]#
    +Series.sqrt() Series[source]#

    Compute the square root of the elements.

    Syntactic sugar for

    >>> pl.Series([1, 2]) ** 0.5
    diff --git a/py-polars/dev/reference/series/api/polars.Series.std.html b/py-polars/dev/reference/series/api/polars.Series.std.html
    index e23ce55fab45..89abc67da93c 100644
    --- a/py-polars/dev/reference/series/api/polars.Series.std.html
    +++ b/py-polars/dev/reference/series/api/polars.Series.std.html
    @@ -1626,7 +1626,7 @@
     

    polars.Series.std#

    -Series.std(ddof: int = 1) float | None[source]#
    +Series.std(ddof: int = 1) float | None[source]#

    Get the standard deviation of this Series.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.concat.html b/py-polars/dev/reference/series/api/polars.Series.str.concat.html index 6649eebbd4c7..1dbee9e4bda2 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.concat.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.concat.html @@ -1626,7 +1626,7 @@

    polars.Series.str.concat#

    -Series.str.concat(delimiter: str = '-') Series[source]#
    +Series.str.concat(delimiter: str = '-') Series[source]#

    Vertically concat the values in the Series to a single string value.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.contains.html b/py-polars/dev/reference/series/api/polars.Series.str.contains.html index 9e29621d447d..815583cd7b49 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.contains.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.contains.html @@ -1626,7 +1626,7 @@

    polars.Series.str.contains#

    -Series.str.contains(pattern: str | Expr, *, literal: bool = False, strict: bool = True) Series[source]#
    +Series.str.contains(pattern: str | Expr, *, literal: bool = False, strict: bool = True) Series[source]#

    Check if strings in Series contain a substring that matches a regex.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.count_match.html b/py-polars/dev/reference/series/api/polars.Series.str.count_match.html index e45895870508..58cadba6feab 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.count_match.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.count_match.html @@ -1626,7 +1626,7 @@

    polars.Series.str.count_match#

    -Series.str.count_match(pattern: str) Series[source]#
    +Series.str.count_match(pattern: str) Series[source]#

    Count all successive non-overlapping regex matches.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.decode.html b/py-polars/dev/reference/series/api/polars.Series.str.decode.html index 8b4b1238f464..23a85e846d1f 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.decode.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.decode.html @@ -1626,7 +1626,7 @@

    polars.Series.str.decode#

    -Series.str.decode(encoding: TransferEncoding, *, strict: bool = True) Series[source]#
    +Series.str.decode(encoding: TransferEncoding, *, strict: bool = True) Series[source]#

    Decode a value using the provided encoding.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.encode.html b/py-polars/dev/reference/series/api/polars.Series.str.encode.html index aed939388411..5286197fd3ff 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.encode.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.encode.html @@ -1626,7 +1626,7 @@

    polars.Series.str.encode#

    -Series.str.encode(encoding: TransferEncoding) Series[source]#
    +Series.str.encode(encoding: TransferEncoding) Series[source]#

    Encode a value using the provided encoding.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.ends_with.html b/py-polars/dev/reference/series/api/polars.Series.str.ends_with.html index 7ec007e603c0..077ecc0898a8 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.ends_with.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.ends_with.html @@ -1626,7 +1626,7 @@

    polars.Series.str.ends_with#

    -Series.str.ends_with(suffix: str | Expr) Series[source]#
    +Series.str.ends_with(suffix: str | Expr) Series[source]#

    Check if string values end with a substring.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.explode.html b/py-polars/dev/reference/series/api/polars.Series.str.explode.html index e34b4d9d6345..d03ac966a41d 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.explode.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.explode.html @@ -1626,7 +1626,7 @@

    polars.Series.str.explode#

    -Series.str.explode() Series[source]#
    +Series.str.explode() Series[source]#

    Returns a column with a separate row for every string character.

    Returns:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.extract.html b/py-polars/dev/reference/series/api/polars.Series.str.extract.html index 12b58883ff65..b40eed12ed33 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.extract.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.extract.html @@ -1626,7 +1626,7 @@

    polars.Series.str.extract#

    -Series.str.extract(pattern: str, group_index: int = 1) Series[source]#
    +Series.str.extract(pattern: str, group_index: int = 1) Series[source]#

    Extract the target capture group from provided patterns.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.extract_all.html b/py-polars/dev/reference/series/api/polars.Series.str.extract_all.html index 70de68e3eceb..83d772b23be0 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.extract_all.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.extract_all.html @@ -1626,7 +1626,7 @@

    polars.Series.str.extract_all#

    -Series.str.extract_all(pattern: str | Series) Series[source]#
    +Series.str.extract_all(pattern: str | Series) Series[source]#

    Extract all matches for the given regex pattern.

    Extract each successive non-overlapping regex match in an individual string as a list. Extracted matches contain null if the original value is null diff --git a/py-polars/dev/reference/series/api/polars.Series.str.json_extract.html b/py-polars/dev/reference/series/api/polars.Series.str.json_extract.html index d85ba16d9ae4..be95d79c9a69 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.json_extract.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.json_extract.html @@ -1626,7 +1626,7 @@

    polars.Series.str.json_extract#

    -Series.str.json_extract(dtype: PolarsDataType | None = None, infer_schema_length: int | None = 100) Series[source]#
    +Series.str.json_extract(dtype: PolarsDataType | None = None, infer_schema_length: int | None = 100) Series[source]#

    Parse string values as JSON.

    Throw errors if encounter invalid JSON strings.

    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.json_path_match.html b/py-polars/dev/reference/series/api/polars.Series.str.json_path_match.html index 64311bf4bf87..72e7808c7d7a 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.json_path_match.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.json_path_match.html @@ -1626,7 +1626,7 @@

    polars.Series.str.json_path_match#

    -Series.str.json_path_match(json_path: str) Series[source]#
    +Series.str.json_path_match(json_path: str) Series[source]#

    Extract the first match of json string with provided JSONPath expression.

    Throw errors if encounter invalid json strings. All return value will be casted to Utf8 regardless of the original value.

    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.lengths.html b/py-polars/dev/reference/series/api/polars.Series.str.lengths.html index 0cc40661dcb3..939ca21a426f 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.lengths.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.lengths.html @@ -1626,7 +1626,7 @@

    polars.Series.str.lengths#

    -Series.str.lengths() Series[source]#
    +Series.str.lengths() Series[source]#

    Get length of the string values in the Series (as number of bytes).

    Returns:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.ljust.html b/py-polars/dev/reference/series/api/polars.Series.str.ljust.html index 26064ec87553..5e7604323c51 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.ljust.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.ljust.html @@ -1626,7 +1626,7 @@

    polars.Series.str.ljust#

    -Series.str.ljust(width: int, fill_char: str = ' ') Series[source]#
    +Series.str.ljust(width: int, fill_char: str = ' ') Series[source]#

    Return the string left justified in a string of length width.

    Padding is done using the specified fill_char. The original string is returned if width is less than or equal to``len(s)``.

    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.lstrip.html b/py-polars/dev/reference/series/api/polars.Series.str.lstrip.html index 0e111b216ede..7e2e32638ebf 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.lstrip.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.lstrip.html @@ -1626,7 +1626,7 @@

    polars.Series.str.lstrip#

    -Series.str.lstrip(characters: str | None = None) Series[source]#
    +Series.str.lstrip(characters: str | None = None) Series[source]#

    Remove leading characters.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.n_chars.html b/py-polars/dev/reference/series/api/polars.Series.str.n_chars.html index 342b7d073701..211f8c7f7260 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.n_chars.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.n_chars.html @@ -1626,7 +1626,7 @@

    polars.Series.str.n_chars#

    -Series.str.n_chars() Series[source]#
    +Series.str.n_chars() Series[source]#

    Get length of the string values in the Series (as number of chars).

    Returns:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.parse_int.html b/py-polars/dev/reference/series/api/polars.Series.str.parse_int.html index 469cc8f65d6b..c4bf5a76a3f8 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.parse_int.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.parse_int.html @@ -1626,7 +1626,7 @@

    polars.Series.str.parse_int#

    -Series.str.parse_int(radix: int = 2, *, strict: bool = True) Series[source]#
    +Series.str.parse_int(radix: int = 2, *, strict: bool = True) Series[source]#

    Parse integers with base radix from strings.

    By default base 2. ParseError/Overflows become Nulls.

    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.replace.html b/py-polars/dev/reference/series/api/polars.Series.str.replace.html index 241f2baa244e..cd40fffc3b08 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.replace.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.replace.html @@ -1626,7 +1626,7 @@

    polars.Series.str.replace#

    -Series.str.replace(pattern: str, value: str, *, literal: bool = False, n: int = 1) Series[source]#
    +Series.str.replace(pattern: str, value: str, *, literal: bool = False, n: int = 1) Series[source]#

    Replace first matching regex/literal substring with a new string value.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.replace_all.html b/py-polars/dev/reference/series/api/polars.Series.str.replace_all.html index ff7922e25543..d2d35d13f75f 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.replace_all.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.replace_all.html @@ -1626,7 +1626,7 @@

    polars.Series.str.replace_all#

    -Series.str.replace_all(pattern: str, value: str, *, literal: bool = False) Series[source]#
    +Series.str.replace_all(pattern: str, value: str, *, literal: bool = False) Series[source]#

    Replace all matching regex/literal substrings with a new string value.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.rjust.html b/py-polars/dev/reference/series/api/polars.Series.str.rjust.html index 1a9e1dc8fa6f..1ba401edbc9f 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.rjust.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.rjust.html @@ -1626,7 +1626,7 @@

    polars.Series.str.rjust#

    -Series.str.rjust(width: int, fill_char: str = ' ') Series[source]#
    +Series.str.rjust(width: int, fill_char: str = ' ') Series[source]#

    Return the string right justified in a string of length width.

    Padding is done using the specified fill_char. The original string is returned if width is less than or equal to len(s).

    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.rstrip.html b/py-polars/dev/reference/series/api/polars.Series.str.rstrip.html index bba45c09fb79..917821c10aa3 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.rstrip.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.rstrip.html @@ -1626,7 +1626,7 @@

    polars.Series.str.rstrip#

    -Series.str.rstrip(characters: str | None = None) Series[source]#
    +Series.str.rstrip(characters: str | None = None) Series[source]#

    Remove trailing characters.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.slice.html b/py-polars/dev/reference/series/api/polars.Series.str.slice.html index 03a2d676819a..2203f06384c9 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.slice.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.slice.html @@ -1626,7 +1626,7 @@

    polars.Series.str.slice#

    -Series.str.slice(offset: int, length: int | None = None) Series[source]#
    +Series.str.slice(offset: int, length: int | None = None) Series[source]#

    Create subslices of the string values of a Utf8 Series.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.split.html b/py-polars/dev/reference/series/api/polars.Series.str.split.html index de8942be85b9..44d14f6ac4b9 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.split.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.split.html @@ -1626,7 +1626,7 @@

    polars.Series.str.split#

    -Series.str.split(by: str, *, inclusive: bool = False) Series[source]#
    +Series.str.split(by: str, *, inclusive: bool = False) Series[source]#

    Split the string by a substring.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.split_exact.html b/py-polars/dev/reference/series/api/polars.Series.str.split_exact.html index 6e307d31a2a4..ce525b78bfdf 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.split_exact.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.split_exact.html @@ -1626,7 +1626,7 @@

    polars.Series.str.split_exact#

    -Series.str.split_exact(by: str, n: int, *, inclusive: bool = False) Series[source]#
    +Series.str.split_exact(by: str, n: int, *, inclusive: bool = False) Series[source]#

    Split the string by a substring using n splits.

    Results in a struct of n+1 fields.

    If it cannot make n splits, the remaining field elements will be null.

    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.splitn.html b/py-polars/dev/reference/series/api/polars.Series.str.splitn.html index 99d1b3eb6230..a2789367724b 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.splitn.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.splitn.html @@ -1626,7 +1626,7 @@

    polars.Series.str.splitn#

    -Series.str.splitn(by: str, n: int) Series[source]#
    +Series.str.splitn(by: str, n: int) Series[source]#

    Split the string by a substring, restricted to returning at most n items.

    If the number of possible splits is less than n-1, the remaining field elements will be null. If the number of possible splits is n-1 or greater, diff --git a/py-polars/dev/reference/series/api/polars.Series.str.starts_with.html b/py-polars/dev/reference/series/api/polars.Series.str.starts_with.html index 2a0144e77ccf..37111211af99 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.starts_with.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.starts_with.html @@ -1626,7 +1626,7 @@

    polars.Series.str.starts_with#

    -Series.str.starts_with(prefix: str | Expr) Series[source]#
    +Series.str.starts_with(prefix: str | Expr) Series[source]#

    Check if string values start with a substring.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.strip.html b/py-polars/dev/reference/series/api/polars.Series.str.strip.html index 6109e2e8a592..8b1910981544 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.strip.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.strip.html @@ -1626,7 +1626,7 @@

    polars.Series.str.strip#

    -Series.str.strip(characters: str | None = None) Series[source]#
    +Series.str.strip(characters: str | None = None) Series[source]#

    Remove leading and trailing characters.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.strptime.html b/py-polars/dev/reference/series/api/polars.Series.str.strptime.html index 8d3796cd757f..3cbcd1a74c1b 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.strptime.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.strptime.html @@ -1626,7 +1626,7 @@

    polars.Series.str.strptime#

    -Series.str.strptime(dtype: PolarsTemporalType, format: str | None = None, *, strict: bool = True, exact: bool = True, cache: bool = True, utc: bool | None = None) Series[source]#
    +Series.str.strptime(dtype: PolarsTemporalType, format: str | None = None, *, strict: bool = True, exact: bool = True, cache: bool = True, utc: bool | None = None) Series[source]#

    Convert a Utf8 column into a Date/Datetime/Time column.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.to_date.html b/py-polars/dev/reference/series/api/polars.Series.str.to_date.html index 9275c0039e49..6f83e6b71649 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.to_date.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.to_date.html @@ -1626,7 +1626,7 @@

    polars.Series.str.to_date#

    -Series.str.to_date(format: str | None = None, *, strict: bool = True, exact: bool = True, cache: bool = True) Series[source]#
    +Series.str.to_date(format: str | None = None, *, strict: bool = True, exact: bool = True, cache: bool = True) Series[source]#

    Convert a Utf8 column into a Date column.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.to_datetime.html b/py-polars/dev/reference/series/api/polars.Series.str.to_datetime.html index 22b67f32ee9b..5686a680fba3 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.to_datetime.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.to_datetime.html @@ -1626,7 +1626,7 @@

    polars.Series.str.to_datetime#

    -Series.str.to_datetime(format: str | None = None, *, time_unit: TimeUnit | None = None, time_zone: str | None = None, strict: bool = True, exact: bool = True, cache: bool = True, utc: bool | None = None) Series[source]#
    +Series.str.to_datetime(format: str | None = None, *, time_unit: TimeUnit | None = None, time_zone: str | None = None, strict: bool = True, exact: bool = True, cache: bool = True, utc: bool | None = None) Series[source]#

    Convert a Utf8 column into a Datetime column.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.to_decimal.html b/py-polars/dev/reference/series/api/polars.Series.str.to_decimal.html index 7efb6f9387e9..3e43d3a28865 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.to_decimal.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.to_decimal.html @@ -1626,7 +1626,7 @@

    polars.Series.str.to_decimal#

    -Series.str.to_decimal(inference_length: int = 100) Series[source]#
    +Series.str.to_decimal(inference_length: int = 100) Series[source]#

    Convert a Utf8 column into a Decimal column.

    This method infers the needed parameters precision and scale.

    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.to_lowercase.html b/py-polars/dev/reference/series/api/polars.Series.str.to_lowercase.html index b300de22494e..e3d1e3fb6d59 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.to_lowercase.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.to_lowercase.html @@ -1626,7 +1626,7 @@

    polars.Series.str.to_lowercase#

    -Series.str.to_lowercase() Series[source]#
    +Series.str.to_lowercase() Series[source]#

    Modify the strings to their lowercase equivalent.

    Examples

    >>> s = pl.Series("foo", ["CAT", "DOG"])
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.to_time.html b/py-polars/dev/reference/series/api/polars.Series.str.to_time.html
    index 366f7df82dda..e48db742131c 100644
    --- a/py-polars/dev/reference/series/api/polars.Series.str.to_time.html
    +++ b/py-polars/dev/reference/series/api/polars.Series.str.to_time.html
    @@ -1626,7 +1626,7 @@
     

    polars.Series.str.to_time#

    -Series.str.to_time(format: str | None = None, *, strict: bool = True, cache: bool = True) Series[source]#
    +Series.str.to_time(format: str | None = None, *, strict: bool = True, cache: bool = True) Series[source]#

    Convert a Utf8 column into a Time column.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.to_titlecase.html b/py-polars/dev/reference/series/api/polars.Series.str.to_titlecase.html index 334bd70e5218..fca16ab41190 100644 --- a/py-polars/dev/reference/series/api/polars.Series.str.to_titlecase.html +++ b/py-polars/dev/reference/series/api/polars.Series.str.to_titlecase.html @@ -1626,7 +1626,7 @@

    polars.Series.str.to_titlecase#

    -Series.str.to_titlecase() Series[source]#
    +Series.str.to_titlecase() Series[source]#

    Modify the strings to their titlecase equivalent.

    Examples

    >>> s = pl.Series("sing", ["welcome to my world", "THERE'S NO TURNING BACK"])
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.to_uppercase.html b/py-polars/dev/reference/series/api/polars.Series.str.to_uppercase.html
    index 36c124f2a5f1..5391a2a32fed 100644
    --- a/py-polars/dev/reference/series/api/polars.Series.str.to_uppercase.html
    +++ b/py-polars/dev/reference/series/api/polars.Series.str.to_uppercase.html
    @@ -1626,7 +1626,7 @@
     

    polars.Series.str.to_uppercase#

    -Series.str.to_uppercase() Series[source]#
    +Series.str.to_uppercase() Series[source]#

    Modify the strings to their uppercase equivalent.

    Examples

    >>> s = pl.Series("foo", ["cat", "dog"])
    diff --git a/py-polars/dev/reference/series/api/polars.Series.str.zfill.html b/py-polars/dev/reference/series/api/polars.Series.str.zfill.html
    index cddb497cb36a..8fd5121d2afb 100644
    --- a/py-polars/dev/reference/series/api/polars.Series.str.zfill.html
    +++ b/py-polars/dev/reference/series/api/polars.Series.str.zfill.html
    @@ -1626,7 +1626,7 @@
     

    polars.Series.str.zfill#

    -Series.str.zfill(alignment: int) Series[source]#
    +Series.str.zfill(alignment: int) Series[source]#

    Fills the string with zeroes.

    Return a copy of the string left filled with ASCII ‘0’ digits to make a string of length width.

    diff --git a/py-polars/dev/reference/series/api/polars.Series.sum.html b/py-polars/dev/reference/series/api/polars.Series.sum.html index 011d1738dee1..d7d90db7f8bb 100644 --- a/py-polars/dev/reference/series/api/polars.Series.sum.html +++ b/py-polars/dev/reference/series/api/polars.Series.sum.html @@ -1626,7 +1626,7 @@

    polars.Series.sum#

    -Series.sum() int | float[source]#
    +Series.sum() int | float[source]#

    Reduce this Series to the sum value.

    Notes

    Dtypes in {Int8, UInt8, Int16, UInt16} are cast to diff --git a/py-polars/dev/reference/series/api/polars.Series.tail.html b/py-polars/dev/reference/series/api/polars.Series.tail.html index e47bf52a9dc2..8033bc57d95c 100644 --- a/py-polars/dev/reference/series/api/polars.Series.tail.html +++ b/py-polars/dev/reference/series/api/polars.Series.tail.html @@ -1626,7 +1626,7 @@

    polars.Series.tail#

    -Series.tail(n: int = 10) Series[source]#
    +Series.tail(n: int = 10) Series[source]#

    Get the last n elements.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.take.html b/py-polars/dev/reference/series/api/polars.Series.take.html index f943644d618e..aa93b88a1c1d 100644 --- a/py-polars/dev/reference/series/api/polars.Series.take.html +++ b/py-polars/dev/reference/series/api/polars.Series.take.html @@ -1626,7 +1626,7 @@

    polars.Series.take#

    -Series.take(indices: int | list[int] | Expr | Series | np.ndarray[Any, Any]) Series[source]#
    +Series.take(indices: int | list[int] | Expr | Series | np.ndarray[Any, Any]) Series[source]#

    Take values by index.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.take_every.html b/py-polars/dev/reference/series/api/polars.Series.take_every.html index 101b3bef9cf6..64d0633e5505 100644 --- a/py-polars/dev/reference/series/api/polars.Series.take_every.html +++ b/py-polars/dev/reference/series/api/polars.Series.take_every.html @@ -1626,7 +1626,7 @@

    polars.Series.take_every#

    -Series.take_every(n: int) Series[source]#
    +Series.take_every(n: int) Series[source]#

    Take every nth value in the Series and return as new Series.

    Examples

    >>> s = pl.Series("a", [1, 2, 3, 4])
    diff --git a/py-polars/dev/reference/series/api/polars.Series.tan.html b/py-polars/dev/reference/series/api/polars.Series.tan.html
    index 3f398079c27e..e4fef2ad83ac 100644
    --- a/py-polars/dev/reference/series/api/polars.Series.tan.html
    +++ b/py-polars/dev/reference/series/api/polars.Series.tan.html
    @@ -1626,7 +1626,7 @@
     

    polars.Series.tan#

    -Series.tan() Series[source]#
    +Series.tan() Series[source]#

    Compute the element-wise value for the tangent.

    Examples

    >>> import math
    diff --git a/py-polars/dev/reference/series/api/polars.Series.tanh.html b/py-polars/dev/reference/series/api/polars.Series.tanh.html
    index e9d5e63eb188..5d1682e9b953 100644
    --- a/py-polars/dev/reference/series/api/polars.Series.tanh.html
    +++ b/py-polars/dev/reference/series/api/polars.Series.tanh.html
    @@ -1626,7 +1626,7 @@
     

    polars.Series.tanh#

    -Series.tanh() Series[source]#
    +Series.tanh() Series[source]#

    Compute the element-wise value for the hyperbolic tangent.

    Examples

    >>> s = pl.Series("a", [1.0, 0.0, -1.0])
    diff --git a/py-polars/dev/reference/series/api/polars.Series.to_arrow.html b/py-polars/dev/reference/series/api/polars.Series.to_arrow.html
    index 4f955523b1ab..c8c01484d149 100644
    --- a/py-polars/dev/reference/series/api/polars.Series.to_arrow.html
    +++ b/py-polars/dev/reference/series/api/polars.Series.to_arrow.html
    @@ -1626,7 +1626,7 @@
     

    polars.Series.to_arrow#

    -Series.to_arrow() Array[source]#
    +Series.to_arrow() Array[source]#

    Get the underlying Arrow Array.

    If the Series contains only a single chunk this operation is zero copy.

    Examples

    diff --git a/py-polars/dev/reference/series/api/polars.Series.to_dummies.html b/py-polars/dev/reference/series/api/polars.Series.to_dummies.html index a06c6bda47d6..f5c9ffd054a5 100644 --- a/py-polars/dev/reference/series/api/polars.Series.to_dummies.html +++ b/py-polars/dev/reference/series/api/polars.Series.to_dummies.html @@ -1626,7 +1626,7 @@

    polars.Series.to_dummies#

    -Series.to_dummies(separator: str = '_') DataFrame[source]#
    +Series.to_dummies(separator: str = '_') DataFrame[source]#

    Get dummy/indicator variables.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.to_frame.html b/py-polars/dev/reference/series/api/polars.Series.to_frame.html index 901c9b5b817f..6c911f4fefc6 100644 --- a/py-polars/dev/reference/series/api/polars.Series.to_frame.html +++ b/py-polars/dev/reference/series/api/polars.Series.to_frame.html @@ -1626,7 +1626,7 @@

    polars.Series.to_frame#

    -Series.to_frame(name: str | None = None) DataFrame[source]#
    +Series.to_frame(name: str | None = None) DataFrame[source]#

    Cast this Series to a DataFrame.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.to_init_repr.html b/py-polars/dev/reference/series/api/polars.Series.to_init_repr.html index 94d0d948481e..924b3a0a3e2f 100644 --- a/py-polars/dev/reference/series/api/polars.Series.to_init_repr.html +++ b/py-polars/dev/reference/series/api/polars.Series.to_init_repr.html @@ -1626,7 +1626,7 @@

    polars.Series.to_init_repr#

    -Series.to_init_repr(n: int = 1000) str[source]#
    +Series.to_init_repr(n: int = 1000) str[source]#

    Convert Series to instantiatable string representation.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.to_list.html b/py-polars/dev/reference/series/api/polars.Series.to_list.html index 403dec887e0d..05c8267a7a61 100644 --- a/py-polars/dev/reference/series/api/polars.Series.to_list.html +++ b/py-polars/dev/reference/series/api/polars.Series.to_list.html @@ -1626,7 +1626,7 @@

    polars.Series.to_list#

    -Series.to_list(*, use_pyarrow: bool = False) list[Any][source]#
    +Series.to_list(*, use_pyarrow: bool = False) list[Any][source]#

    Convert this Series to a Python List. This operation clones data.

    Parameters:
    diff --git a/py-polars/dev/reference/series/api/polars.Series.to_numpy.html b/py-polars/dev/reference/series/api/polars.Series.to_numpy.html index 379dc133fbdd..bd84f18abc69 100644 --- a/py-polars/dev/reference/series/api/polars.Series.to_numpy.html +++ b/py-polars/dev/reference/series/api/polars.Series.to_numpy.html @@ -1626,7 +1626,7 @@

    polars.Series.to_numpy#

    -Series.to_numpy(*args: Any, zero_copy_only: bool = False, writable: bool = False, use_pyarrow: bool = True) ndarray[Any, Any][source]#
    +Series.to_numpy(*args: Any, zero_copy_only: bool = False, writable: bool = False, use_pyarrow: bool = True) ndarray[Any, Any][source]#

    Convert this Series to numpy.

    This operation may clone data but is completely safe. Note that:

      diff --git a/py-polars/dev/reference/series/api/polars.Series.to_pandas.html b/py-polars/dev/reference/series/api/polars.Series.to_pandas.html index e7f95bcd2d7a..403268e4942e 100644 --- a/py-polars/dev/reference/series/api/polars.Series.to_pandas.html +++ b/py-polars/dev/reference/series/api/polars.Series.to_pandas.html @@ -1626,7 +1626,7 @@

      polars.Series.to_pandas#

      -Series.to_pandas(*args: Any, use_pyarrow_extension_array: bool = False, **kwargs: Any) pd.Series[Any][source]#
      +Series.to_pandas(*args: Any, use_pyarrow_extension_array: bool = False, **kwargs: Any) pd.Series[Any][source]#

      Convert this Series to a pandas Series.

      This requires that pandas and pyarrow are installed. This operation clones data, unless use_pyarrow_extension_array=True.

      diff --git a/py-polars/dev/reference/series/api/polars.Series.to_physical.html b/py-polars/dev/reference/series/api/polars.Series.to_physical.html index e4cb386c9973..d4a23c46529f 100644 --- a/py-polars/dev/reference/series/api/polars.Series.to_physical.html +++ b/py-polars/dev/reference/series/api/polars.Series.to_physical.html @@ -1626,7 +1626,7 @@

      polars.Series.to_physical#

      -Series.to_physical() Series[source]#
      +Series.to_physical() Series[source]#

      Cast to physical representation of the logical dtype.

      • polars.datatypes.Date() -> polars.datatypes.Int32()

      • diff --git a/py-polars/dev/reference/series/api/polars.Series.top_k.html b/py-polars/dev/reference/series/api/polars.Series.top_k.html index e4d828196322..4287c40c52d7 100644 --- a/py-polars/dev/reference/series/api/polars.Series.top_k.html +++ b/py-polars/dev/reference/series/api/polars.Series.top_k.html @@ -1627,7 +1627,7 @@

        polars.Series.top_k#

        -Series.top_k(k: int = 5) Series[source]#
        +Series.top_k(k: int = 5) Series[source]#

        Return the k largest elements.

        This has time complexity:

        diff --git a/py-polars/dev/reference/series/api/polars.Series.unique.html b/py-polars/dev/reference/series/api/polars.Series.unique.html index ec7bfd84f726..4907ab2de170 100644 --- a/py-polars/dev/reference/series/api/polars.Series.unique.html +++ b/py-polars/dev/reference/series/api/polars.Series.unique.html @@ -1626,7 +1626,7 @@

        polars.Series.unique#

        -Series.unique(*, maintain_order: bool = False) Series[source]#
        +Series.unique(*, maintain_order: bool = False) Series[source]#

        Get unique elements in series.

        Parameters:
        diff --git a/py-polars/dev/reference/series/api/polars.Series.unique_counts.html b/py-polars/dev/reference/series/api/polars.Series.unique_counts.html index 3bbd7f4eca5b..127174a8d21d 100644 --- a/py-polars/dev/reference/series/api/polars.Series.unique_counts.html +++ b/py-polars/dev/reference/series/api/polars.Series.unique_counts.html @@ -1626,7 +1626,7 @@

        polars.Series.unique_counts#

        -Series.unique_counts() Series[source]#
        +Series.unique_counts() Series[source]#

        Return a count of the unique values in the order of appearance.

        Examples

        >>> s = pl.Series("id", ["a", "b", "b", "c", "c", "c"])
        diff --git a/py-polars/dev/reference/series/api/polars.Series.upper_bound.html b/py-polars/dev/reference/series/api/polars.Series.upper_bound.html
        index 575f6a12e80c..ca4871a0a50b 100644
        --- a/py-polars/dev/reference/series/api/polars.Series.upper_bound.html
        +++ b/py-polars/dev/reference/series/api/polars.Series.upper_bound.html
        @@ -1626,7 +1626,7 @@
         

        polars.Series.upper_bound#

        -Series.upper_bound() Self[source]#
        +Series.upper_bound() Self[source]#

        Return the upper bound of this Series’ dtype as a unit Series.

        See also

        diff --git a/py-polars/dev/reference/series/api/polars.Series.value_counts.html b/py-polars/dev/reference/series/api/polars.Series.value_counts.html index f738a4a4cc6b..84dbf1a8106a 100644 --- a/py-polars/dev/reference/series/api/polars.Series.value_counts.html +++ b/py-polars/dev/reference/series/api/polars.Series.value_counts.html @@ -1626,7 +1626,7 @@

        polars.Series.value_counts#

        -Series.value_counts(*, sort: bool = False) DataFrame[source]#
        +Series.value_counts(*, sort: bool = False) DataFrame[source]#

        Count the unique values in a Series.

        Parameters:
        diff --git a/py-polars/dev/reference/series/api/polars.Series.var.html b/py-polars/dev/reference/series/api/polars.Series.var.html index fc7b99e42d6a..604c4414e2b2 100644 --- a/py-polars/dev/reference/series/api/polars.Series.var.html +++ b/py-polars/dev/reference/series/api/polars.Series.var.html @@ -1626,7 +1626,7 @@

        polars.Series.var#

        -Series.var(ddof: int = 1) float | None[source]#
        +Series.var(ddof: int = 1) float | None[source]#

        Get variance of this Series.

        Parameters:
        diff --git a/py-polars/dev/reference/series/api/polars.Series.view.html b/py-polars/dev/reference/series/api/polars.Series.view.html index 803609860385..d33dc4eedbb5 100644 --- a/py-polars/dev/reference/series/api/polars.Series.view.html +++ b/py-polars/dev/reference/series/api/polars.Series.view.html @@ -1626,7 +1626,7 @@

        polars.Series.view#

        -Series.view(*, ignore_nulls: bool = False) SeriesView[source]#
        +Series.view(*, ignore_nulls: bool = False) SeriesView[source]#

        Get a view into this Series data with a numpy array.

        This operation doesn’t clone data, but does not include missing values. Don’t use this unless you know what you are doing.

        diff --git a/py-polars/dev/reference/series/api/polars.Series.zip_with.html b/py-polars/dev/reference/series/api/polars.Series.zip_with.html index 1887034ce107..00d9b5daf9e2 100644 --- a/py-polars/dev/reference/series/api/polars.Series.zip_with.html +++ b/py-polars/dev/reference/series/api/polars.Series.zip_with.html @@ -1626,7 +1626,7 @@

        polars.Series.zip_with#

        -Series.zip_with(mask: Series, other: Series) Self[source]#
        +Series.zip_with(mask: Series, other: Series) Self[source]#

        Take values from self or other based on the given mask.

        Where mask evaluates true, take values from self. Where mask evaluates false, take values from other.

        diff --git a/py-polars/dev/reference/series/index.html b/py-polars/dev/reference/series/index.html index 8cf6375cd26f..7c51eb0f7e9d 100644 --- a/py-polars/dev/reference/series/index.html +++ b/py-polars/dev/reference/series/index.html @@ -1618,7 +1618,7 @@

        Series
        -class polars.Series(name: str | ArrayLike | None = None, values: ArrayLike | None = None, dtype: PolarsDataType | None = None, *, strict: bool = True, nan_to_null: bool = False, dtype_if_empty: PolarsDataType | None = None)[source]
        +class polars.Series(name: str | ArrayLike | None = None, values: ArrayLike | None = None, dtype: PolarsDataType | None = None, *, strict: bool = True, nan_to_null: bool = False, dtype_if_empty: PolarsDataType | None = None)[source]

        A Series represents a single column in a polars DataFrame.

        Parameters:
        @@ -2216,14 +2216,14 @@

        Series
        -abs() Series[source]
        +abs() Series[source]

        Compute absolute values.

        Same as abs(series).

        -alias(name: str) Series[source]
        +alias(name: str) Series[source]

        Rename the series.

        Parameters:
        @@ -2249,7 +2249,7 @@

        Series
        -all(drop_nulls: bool = True) bool | None[source]
        +all(drop_nulls: bool = True) bool | None[source]

        Check if all boolean values in the column are True.

        Returns:
        @@ -2263,7 +2263,7 @@

        Series
        -any(drop_nulls: bool = True) bool | None[source]
        +any(drop_nulls: bool = True) bool | None[source]

        Check if any boolean value in the column is True.

        Returns:
        @@ -2277,7 +2277,7 @@

        Series
        -append(other: Series, *, append_chunks: bool | None = None) Self[source]
        +append(other: Series, *, append_chunks: bool | None = None) Self[source]

        Append a Series to this one.

        Parameters:
        @@ -2345,7 +2345,7 @@

        Series
        -apply(function: Callable[[Any], Any], return_dtype: PolarsDataType | None = None, *, skip_nulls: bool = True) Self[source]
        +apply(function: Callable[[Any], Any], return_dtype: PolarsDataType | None = None, *, skip_nulls: bool = True) Self[source]

        Apply a custom/user-defined function (UDF) over elements in this Series.

        Warning

        @@ -2410,7 +2410,7 @@

        Series
        -arccos() Series[source]
        +arccos() Series[source]

        Compute the element-wise value for the inverse cosine.

        Examples

        >>> s = pl.Series("a", [1.0, 0.0, -1.0])
        @@ -2428,7 +2428,7 @@ 

        Series
        -arccosh() Series[source]
        +arccosh() Series[source]

        Compute the element-wise value for the inverse hyperbolic cosine.

        Examples

        >>> s = pl.Series("a", [5.0, 1.0, 0.0, -1.0])
        @@ -2447,7 +2447,7 @@ 

        Series
        -arcsin() Series[source]
        +arcsin() Series[source]

        Compute the element-wise value for the inverse sine.

        Examples

        >>> s = pl.Series("a", [1.0, 0.0, -1.0])
        @@ -2465,7 +2465,7 @@ 

        Series
        -arcsinh() Series[source]
        +arcsinh() Series[source]

        Compute the element-wise value for the inverse hyperbolic sine.

        Examples

        >>> s = pl.Series("a", [1.0, 0.0, -1.0])
        @@ -2483,7 +2483,7 @@ 

        Series
        -arctan() Series[source]
        +arctan() Series[source]

        Compute the element-wise value for the inverse tangent.

        Examples

        >>> s = pl.Series("a", [1.0, 0.0, -1.0])
        @@ -2501,7 +2501,7 @@ 

        Series
        -arctanh() Series[source]
        +arctanh() Series[source]

        Compute the element-wise value for the inverse hyperbolic tangent.

        Examples

        >>> s = pl.Series("a", [2.0, 1.0, 0.5, 0.0, -0.5, -1.0, -1.1])
        @@ -2523,7 +2523,7 @@ 

        Series
        -arg_max() int | None[source]
        +arg_max() int | None[source]

        Get the index of the maximal value.

        Returns:
        @@ -2542,7 +2542,7 @@

        Series
        -arg_min() int | None[source]
        +arg_min() int | None[source]

        Get the index of the minimal value.

        Returns:
        @@ -2561,7 +2561,7 @@

        Series
        -arg_sort(*, descending: bool = False, nulls_last: bool = False) Series[source]
        +arg_sort(*, descending: bool = False, nulls_last: bool = False) Series[source]

        Get the index values that would sort this Series.

        Parameters:
        @@ -2591,7 +2591,7 @@

        Series
        -arg_true() Series[source]
        +arg_true() Series[source]

        Get index values where Boolean Series evaluate True.

        Returns:
        @@ -2615,7 +2615,7 @@

        Series
        -arg_unique() Series[source]
        +arg_unique() Series[source]

        Get unique index as Series.

        Returns:
        @@ -2640,7 +2640,7 @@

        Series
        -bottom_k(k: int = 5) Series[source]
        +bottom_k(k: int = 5) Series[source]

        Return the k smallest elements.

        This has time complexity:

        @@ -2675,7 +2675,7 @@

        Series
        -cast(dtype: PolarsDataType | type[int] | type[float] | type[str] | type[bool], *, strict: bool = True) Self[source]
        +cast(dtype: PolarsDataType | type[int] | type[float] | type[str] | type[bool], *, strict: bool = True) Self[source]

        Cast between data types.

        Parameters:
        @@ -2713,7 +2713,7 @@

        Series
        -cbrt() Series[source]
        +cbrt() Series[source]

        Compute the cube root of the elements.

        Optimization for

        >>> pl.Series([1, 2]) ** (1.0 / 3)
        @@ -2729,7 +2729,7 @@ 

        Series
        -ceil() Series[source]
        +ceil() Series[source]

        Rounds up to the nearest integer value.

        Only works on floating point Series.

        Examples

        @@ -2748,7 +2748,7 @@

        Series
        -chunk_lengths() list[int][source]
        +chunk_lengths() list[int][source]

        Get the length of each individual chunk.

        Examples

        >>> s = pl.Series("a", [1, 2, 3])
        @@ -2769,7 +2769,7 @@ 

        Series
        -clear(n: int = 0) Series[source]
        +clear(n: int = 0) Series[source]

        Create an empty copy of the current Series, with zero to ‘n’ elements.

        The copy has an identical name/dtype, but no data.

        @@ -2809,7 +2809,7 @@

        Series
        -clip(lower_bound: int | float, upper_bound: int | float) Series[source]
        +clip(lower_bound: int | float, upper_bound: int | float) Series[source]

        Clip (limit) the values in an array to a min and max boundary.

        Only works for numerical types.

        If you want to clip other dtypes, consider writing a “when, then, otherwise” @@ -2841,7 +2841,7 @@

        Series
        -clip_max(upper_bound: int | float) Series[source]
        +clip_max(upper_bound: int | float) Series[source]

        Clip (limit) the values in an array to a max boundary.

        Only works for numerical types.

        If you want to clip other dtypes, consider writing a “when, then, otherwise” @@ -2858,7 +2858,7 @@

        Series
        -clip_min(lower_bound: int | float) Series[source]
        +clip_min(lower_bound: int | float) Series[source]

        Clip (limit) the values in an array to a min boundary.

        Only works for numerical types.

        If you want to clip other dtypes, consider writing a “when, then, otherwise” @@ -2875,7 +2875,7 @@

        Series
        -clone() Self[source]
        +clone() Self[source]

        Very cheap deepcopy/clone.

        See also

        @@ -2900,7 +2900,7 @@

        Series
        -cos() Series[source]
        +cos() Series[source]

        Compute the element-wise value for the cosine.

        Examples

        >>> import math
        @@ -2919,7 +2919,7 @@ 

        Series
        -cosh() Series[source]
        +cosh() Series[source]

        Compute the element-wise value for the hyperbolic cosine.

        Examples

        >>> s = pl.Series("a", [1.0, 0.0, -1.0])
        @@ -2937,7 +2937,7 @@ 

        Series
        -cummax(*, reverse: bool = False) Series[source]
        +cummax(*, reverse: bool = False) Series[source]

        Get an array with the cumulative max computed at every element.

        Parameters:
        @@ -2963,7 +2963,7 @@

        Series
        -cummin(*, reverse: bool = False) Series[source]
        +cummin(*, reverse: bool = False) Series[source]

        Get an array with the cumulative min computed at every element.

        Parameters:
        @@ -2989,7 +2989,7 @@

        Series
        -cumprod(*, reverse: bool = False) Series[source]
        +cumprod(*, reverse: bool = False) Series[source]

        Get an array with the cumulative product computed at every element.

        Parameters:
        @@ -3018,7 +3018,7 @@

        Series
        -cumsum(*, reverse: bool = False) Series[source]
        +cumsum(*, reverse: bool = False) Series[source]

        Get an array with the cumulative sum computed at every element.

        Parameters:
        @@ -3047,7 +3047,7 @@

        Series
        -cumulative_eval(expr: Expr, min_periods: int = 1, *, parallel: bool = False) Series[source]
        +cumulative_eval(expr: Expr, min_periods: int = 1, *, parallel: bool = False) Series[source]

        Run an expression over a sliding window that increases 1 slot every iteration.

        Parameters:
        @@ -3088,7 +3088,7 @@

        Series
        -cut(breaks: list[float], labels: list[str] | None = None, break_point_label: str = 'break_point', category_label: str = 'category', *, series: bool = True, left_closed: bool = False, include_breaks: bool = False) DataFrame | Series[source]
        +cut(breaks: list[float], labels: list[str] | None = None, break_point_label: str = 'break_point', category_label: str = 'category', *, series: bool = True, left_closed: bool = False, include_breaks: bool = False) DataFrame | Series[source]

        Bin continuous values into discrete categories.

        Parameters:
        @@ -3178,7 +3178,7 @@

        Series
        -describe(percentiles: Sequence[float] | float | None = (0.25, 0.75)) DataFrame[source]
        +describe(percentiles: Sequence[float] | float | None = (0.25, 0.75)) DataFrame[source]

        Quick summary statistics of a series.

        Series with mixed datatypes will return summary statistics for the datatype of the first value.

        @@ -3236,7 +3236,7 @@

        Series
        -diff(n: int = 1, null_behavior: NullBehavior = 'ignore') Series[source]
        +diff(n: int = 1, null_behavior: NullBehavior = 'ignore') Series[source]

        Calculate the n-th discrete difference.

        Parameters:
        @@ -3288,7 +3288,7 @@

        Series
        -dot(other: Series | Sequence[Any] | Array | ChunkedArray | ndarray | Series | DatetimeIndex) float | None[source]
        +dot(other: Series | Sequence[Any] | Array | ChunkedArray | ndarray | Series | DatetimeIndex) float | None[source]

        Compute the dot/inner product between two Series.

        Parameters:
        @@ -3309,20 +3309,20 @@

        Series
        -drop_nans() Series[source]
        +drop_nans() Series[source]

        Drop NaN values.

        -drop_nulls() Series[source]
        +drop_nulls() Series[source]

        Drop all null values.

        Creates a new Series that copies data from this Series without null values.

        -entropy(base: float = 2.718281828459045, *, normalize: bool = False) float | None[source]
        +entropy(base: float = 2.718281828459045, *, normalize: bool = False) float | None[source]

        Computes the entropy.

        Uses the formula -sum(pk * log(pk) where pk are discrete probabilities.

        @@ -3348,13 +3348,13 @@

        Series
        -eq(other: Any) Self | Expr[source]
        +eq(other: Any) Self | Expr[source]

        Method equivalent of operator expression series == other.

        -eq_missing(other: Any) Self[source]
        +eq_missing(other: Any) Self[source]
        eq_missing(other: Expr) Expr

        Method equivalent of equality operator expr == other where None == None`.

        @@ -3371,7 +3371,7 @@

        Series
        -estimated_size(unit: SizeUnit = 'b') int | float[source]
        +estimated_size(unit: SizeUnit = 'b') int | float[source]

        Return an estimation of the total (heap) allocated size of the Series.

        Estimated size is given in the specified unit (bytes by default).

        This estimation is the sum of the size of its buffers, validity, including @@ -3402,7 +3402,7 @@

        Series
        -ewm_mean(com: float | None = None, span: float | None = None, half_life: float | None = None, alpha: float | None = None, *, adjust: bool = True, min_periods: int = 1, ignore_nulls: bool = True) Series[source]
        +ewm_mean(com: float | None = None, span: float | None = None, half_life: float | None = None, alpha: float | None = None, *, adjust: bool = True, min_periods: int = 1, ignore_nulls: bool = True) Series[source]

        Exponentially-weighted moving average.

        Parameters:
        @@ -3472,7 +3472,7 @@

        Series
        -ewm_std(com: float | None = None, span: float | None = None, half_life: float | None = None, alpha: float | None = None, *, adjust: bool = True, bias: bool = False, min_periods: int = 1, ignore_nulls: bool = True) Series[source]
        +ewm_std(com: float | None = None, span: float | None = None, half_life: float | None = None, alpha: float | None = None, *, adjust: bool = True, bias: bool = False, min_periods: int = 1, ignore_nulls: bool = True) Series[source]

        Exponentially-weighted moving standard deviation.

        Parameters:
        @@ -3557,7 +3557,7 @@

        Series
        -ewm_var(com: float | None = None, span: float | None = None, half_life: float | None = None, alpha: float | None = None, *, adjust: bool = True, bias: bool = False, min_periods: int = 1, ignore_nulls: bool = True) Series[source]
        +ewm_var(com: float | None = None, span: float | None = None, half_life: float | None = None, alpha: float | None = None, *, adjust: bool = True, bias: bool = False, min_periods: int = 1, ignore_nulls: bool = True) Series[source]

        Exponentially-weighted moving variance.

        Parameters:
        @@ -3642,13 +3642,13 @@

        Series
        -exp() Series[source]
        +exp() Series[source]

        Compute the exponential, element-wise.

        -explode() Series[source]
        +explode() Series[source]

        Explode a list Series.

        This means that every item is expanded to a new row.

        @@ -3672,7 +3672,7 @@

        Series
        -extend(other: Series) Self[source]
        +extend(other: Series) Self[source]

        Extend the memory backed by this Series with the values from another.

        Different from append, which adds the chunks from other to the chunks of this series, extend appends the data from other to the underlying memory @@ -3729,7 +3729,7 @@

        Series
        -extend_constant(value: PythonLiteral | None, n: int) Series[source]
        +extend_constant(value: PythonLiteral | None, n: int) Series[source]

        Extremely fast method for extending the Series with ‘n’ copies of a value.

        Parameters:
        @@ -3760,7 +3760,7 @@

        Series
        -fill_nan(value: int | float | Expr | None) Series[source]
        +fill_nan(value: int | float | Expr | None) Series[source]

        Fill floating point NaN value with a fill value.

        Parameters:
        @@ -3787,7 +3787,7 @@

        Series
        -fill_null(value: Any | None = None, strategy: FillNullStrategy | None = None, limit: int | None = None) Series[source]
        +fill_null(value: Any | None = None, strategy: FillNullStrategy | None = None, limit: int | None = None) Series[source]

        Fill null values using the specified value or strategy.

        Parameters:
        @@ -3837,7 +3837,7 @@

        Series
        -filter(predicate: Series | list[bool]) Self[source]
        +filter(predicate: Series | list[bool]) Self[source]

        Filter elements by a boolean mask.

        Parameters:
        @@ -3863,7 +3863,7 @@

        Series
        -floor() Series[source]
        +floor() Series[source]

        Rounds down to the nearest integer value.

        Only works on floating point Series.

        Examples

        @@ -3882,25 +3882,25 @@

        Series
        -ge(other: Any) Self | Expr[source]
        +ge(other: Any) Self | Expr[source]

        Method equivalent of operator expression series >= other.

        -get_chunks() list[polars.series.series.Series][source]
        +get_chunks() list[polars.series.series.Series][source]

        Get the chunks of this Series as a list of Series.

        -gt(other: Any) Self | Expr[source]
        +gt(other: Any) Self | Expr[source]

        Method equivalent of operator expression series > other.

        -has_validity() bool[source]
        +has_validity() bool[source]

        Return True if the Series has a validity bitmask.

        If there is none, it means that there are no null values. Use this to swiftly assert a Series does not have null values.

        @@ -3908,7 +3908,7 @@

        Series
        -hash(seed: int = 0, seed_1: int | None = None, seed_2: int | None = None, seed_3: int | None = None) Series[source]
        +hash(seed: int = 0, seed_1: int | None = None, seed_2: int | None = None, seed_3: int | None = None) Series[source]

        Hash the Series.

        The hash value is of type UInt64.

        @@ -3941,7 +3941,7 @@

        Series
        -head(n: int = 10) Series[source]
        +head(n: int = 10) Series[source]

        Get the first n elements.

        Parameters:
        @@ -3984,7 +3984,7 @@

        Series
        -hist(bins: list[float] | None = None, *, bin_count: int | None = None) DataFrame[source]
        +hist(bins: list[float] | None = None, *, bin_count: int | None = None) DataFrame[source]

        Bin values into buckets and count their occurrences.

        Parameters:
        @@ -4029,13 +4029,13 @@

        Series
        -implode() Self[source]
        +implode() Self[source]

        Aggregate values into a list.

        -interpolate(method: InterpolationMethod = 'linear') Series[source]
        +interpolate(method: InterpolationMethod = 'linear') Series[source]

        Fill null values using interpolation.

        Parameters:
        @@ -4063,7 +4063,7 @@

        Series
        -is_between(lower_bound: IntoExpr, upper_bound: IntoExpr, closed: ClosedInterval = 'both') Series[source]
        +is_between(lower_bound: IntoExpr, upper_bound: IntoExpr, closed: ClosedInterval = 'both') Series[source]

        Get a boolean mask of the values that fall between the given start/end values.

        Parameters:
        @@ -4124,7 +4124,7 @@

        Series
        -is_boolean() bool[source]
        +is_boolean() bool[source]

        Check if this Series is a Boolean.

        Examples

        >>> s = pl.Series("a", [True, False, True])
        @@ -4136,7 +4136,7 @@ 

        Series
        -is_duplicated() Series[source]
        +is_duplicated() Series[source]

        Get mask of all duplicated values.

        Returns:
        @@ -4163,7 +4163,7 @@

        Series
        -is_empty() bool[source]
        +is_empty() bool[source]

        Check if the Series is empty.

        Examples

        >>> s = pl.Series("a", [], dtype=pl.Float32)
        @@ -4175,7 +4175,7 @@ 

        Series
        -is_finite() Series[source]
        +is_finite() Series[source]

        Returns a boolean Series indicating which values are finite.

        Returns:
        @@ -4202,7 +4202,7 @@

        Series
        -is_first() Series[source]
        +is_first() Series[source]

        Get a mask of the first unique value.

        Returns:
        @@ -4216,7 +4216,7 @@

        Series
        -is_float() bool[source]
        +is_float() bool[source]

        Check if this Series has floating point numbers.

        Examples

        >>> s = pl.Series("a", [1.0, 2.0, 3.0])
        @@ -4228,7 +4228,7 @@ 

        Series
        -is_in(other: Series | Collection[Any]) Series[source]
        +is_in(other: Series | Collection[Any]) Series[source]

        Check if elements of this Series are in the other Series.

        Returns:
        @@ -4283,7 +4283,7 @@

        Series
        -is_infinite() Series[source]
        +is_infinite() Series[source]

        Returns a boolean Series indicating which values are infinite.

        Returns:
        @@ -4310,7 +4310,7 @@

        Series
        -is_integer(signed: bool | None = None) bool[source]
        +is_integer(signed: bool | None = None) bool[source]

        Check if this Series datatype is an integer (signed or unsigned).

        Parameters:
        @@ -4338,7 +4338,7 @@

        Series
        -is_nan() Series[source]
        +is_nan() Series[source]

        Returns a boolean Series indicating which values are not NaN.

        Returns:
        @@ -4366,7 +4366,7 @@

        Series
        -is_not_nan() Series[source]
        +is_not_nan() Series[source]

        Returns a boolean Series indicating which values are not NaN.

        Returns:
        @@ -4394,7 +4394,7 @@

        Series
        -is_not_null() Series[source]
        +is_not_null() Series[source]

        Returns a boolean Series indicating which values are not null.

        Returns:
        @@ -4421,7 +4421,7 @@

        Series
        -is_null() Series[source]
        +is_null() Series[source]

        Returns a boolean Series indicating which values are null.

        Returns:
        @@ -4448,7 +4448,7 @@

        Series
        -is_numeric() bool[source]
        +is_numeric() bool[source]

        Check if this Series datatype is numeric.

        Examples

        >>> s = pl.Series("a", [1, 2, 3])
        @@ -4460,7 +4460,7 @@ 

        Series
        -is_sorted(*, descending: bool = False) bool[source]
        +is_sorted(*, descending: bool = False) bool[source]

        Check if the Series is sorted.

        Parameters:
        @@ -4474,7 +4474,7 @@

        Series
        -is_temporal(excluding: OneOrMoreDataTypes | None = None) bool[source]
        +is_temporal(excluding: OneOrMoreDataTypes | None = None) bool[source]

        Check if this Series datatype is temporal.

        Parameters:
        @@ -4497,7 +4497,7 @@

        Series
        -is_unique() Series[source]
        +is_unique() Series[source]

        Get mask of all unique values.

        Returns:
        @@ -4524,7 +4524,7 @@

        Series
        -is_utf8() bool[source]
        +is_utf8() bool[source]

        Check if this Series datatype is a Utf8.

        Examples

        >>> s = pl.Series("x", ["a", "b", "c"])
        @@ -4536,7 +4536,7 @@ 

        Series
        -item(row: int | None = None) Any[source]
        +item(row: int | None = None) Any[source]

        Return the series as a scalar, or return the element at the given row index.

        If no row index is provided, this is equivalent to s[0], with a check that the shape is (1,). With a row index, this is equivalent to s[row].

        @@ -4553,7 +4553,7 @@

        Series
        -kurtosis(*, fisher: bool = True, bias: bool = True) float | None[source]
        +kurtosis(*, fisher: bool = True, bias: bool = True) float | None[source]

        Compute the kurtosis (Fisher or Pearson) of a dataset.

        Kurtosis is the fourth central moment divided by the square of the variance. If Fisher’s definition is used, then 3.0 is subtracted from @@ -4576,13 +4576,13 @@

        Series
        -le(other: Any) Self | Expr[source]
        +le(other: Any) Self | Expr[source]

        Method equivalent of operator expression series <= other.

        -len() int[source]
        +len() int[source]

        Length of this Series.

        Examples

        >>> s = pl.Series("a", [1, 2, 3])
        @@ -4594,7 +4594,7 @@ 

        Series
        -limit(n: int = 10) Series[source]
        +limit(n: int = 10) Series[source]

        Get the first n elements.

        Alias for Series.head().

        @@ -4616,25 +4616,25 @@

        Series
        -log(base: float = 2.718281828459045) Series[source]
        +log(base: float = 2.718281828459045) Series[source]

        Compute the logarithm to a given base.

        -log10() Series[source]
        +log10() Series[source]

        Compute the base 10 logarithm of the input array, element-wise.

        -log1p() Series[source]
        +log1p() Series[source]

        Compute the natural logarithm of the input array plus one, element-wise.

        -lower_bound() Self[source]
        +lower_bound() Self[source]

        Return the lower bound of this Series’ dtype as a unit Series.

        See also

        @@ -4666,13 +4666,13 @@

        Series
        -lt(other: Any) Self | Expr[source]
        +lt(other: Any) Self | Expr[source]

        Method equivalent of operator expression series < other.

        -map_dict(remapping: dict[Any, Any], *, default: Any = None, return_dtype: PolarsDataType | None = None) Self[source]
        +map_dict(remapping: dict[Any, Any], *, default: Any = None, return_dtype: PolarsDataType | None = None) Self[source]

        Replace values in the Series using a remapping dictionary.

        Parameters:
        @@ -4748,7 +4748,7 @@

        Series
        -max() PythonLiteral | None[source]
        +max() PythonLiteral | None[source]

        Get the maximum value in this Series.

        Examples

        >>> s = pl.Series("a", [1, 2, 3])
        @@ -4760,7 +4760,7 @@ 

        Series
        -mean() int | float | None[source]
        +mean() int | float | None[source]

        Reduce this Series to the mean value.

        Examples

        >>> s = pl.Series("a", [1, 2, 3])
        @@ -4772,7 +4772,7 @@ 

        Series
        -median() float | None[source]
        +median() float | None[source]

        Get the median of this Series.

        Examples

        >>> s = pl.Series("a", [1, 2, 3])
        @@ -4784,7 +4784,7 @@ 

        Series
        -min() PythonLiteral | None[source]
        +min() PythonLiteral | None[source]

        Get the minimal value in this Series.

        Examples

        >>> s = pl.Series("a", [1, 2, 3])
        @@ -4796,7 +4796,7 @@ 

        Series
        -mode() Series[source]
        +mode() Series[source]

        Compute the most occurring value(s).

        Can return multiple Values.

        Examples

        @@ -4813,7 +4813,7 @@

        Series
        -n_chunks() int[source]
        +n_chunks() int[source]

        Get the number of chunks that this Series contains.

        Examples

        >>> s = pl.Series("a", [1, 2, 3])
        @@ -4836,7 +4836,7 @@ 

        Series
        -n_unique() int[source]
        +n_unique() int[source]

        Count the number of unique values in this Series.

        Examples

        >>> s = pl.Series("a", [1, 2, 2, 3])
        @@ -4848,7 +4848,7 @@ 

        Series
        -nan_max() int | float | date | datetime | timedelta | str[source]
        +nan_max() int | float | date | datetime | timedelta | str[source]

        Get maximum value, but propagate/poison encountered NaN values.

        This differs from numpy’s nanmax as numpy defaults to propagating NaN values, whereas polars defaults to ignoring them.

        @@ -4856,7 +4856,7 @@

        Series
        -nan_min() int | float | date | datetime | timedelta | str[source]
        +nan_min() int | float | date | datetime | timedelta | str[source]

        Get minimum value, but propagate/poison encountered NaN values.

        This differs from numpy’s nanmax as numpy defaults to propagating NaN values, whereas polars defaults to ignoring them.

        @@ -4864,13 +4864,13 @@

        Series
        -ne(other: Any) Self | Expr[source]
        +ne(other: Any) Self | Expr[source]

        Method equivalent of operator expression series != other.

        -ne_missing(other: Expr) Expr[source]
        +ne_missing(other: Expr) Expr[source]
        ne_missing(other: Any) Self

        Method equivalent of equality operator expr != other where None == None`.

        @@ -4887,19 +4887,19 @@

        Series
        -new_from_index(index: int, length: int) Self[source]
        +new_from_index(index: int, length: int) Self[source]

        Create a new Series filled with values from the given index.

        -null_count() int[source]
        +null_count() int[source]

        Count the null values in this Series.

        -pct_change(n: int = 1) Series[source]
        +pct_change(n: int = 1) Series[source]

        Computes percentage change between values.

        Percentage change (as fraction) between current element and most-recent non-null element at least n period(s) before the current element.

        @@ -4951,7 +4951,7 @@

        Series
        -peak_max() Self[source]
        +peak_max() Self[source]

        Get a boolean mask of the local maximum peaks.

        Examples

        >>> s = pl.Series("a", [1, 2, 3, 4, 5])
        @@ -4971,7 +4971,7 @@ 

        Series
        -peak_min() Self[source]
        +peak_min() Self[source]

        Get a boolean mask of the local minimum peaks.

        Examples

        >>> s = pl.Series("a", [4, 1, 3, 2, 5])
        @@ -4991,7 +4991,7 @@ 

        Series
        -pow(exponent: int | float | None | Series) Series[source]
        +pow(exponent: int | float | None | Series) Series[source]

        Raise to the power of the given exponent.

        Parameters:
        @@ -5018,13 +5018,13 @@

        Series
        -product() int | float[source]
        +product() int | float[source]

        Reduce this Series to the product value.

        -qcut(q: list[float] | int, *, labels: list[str] | None = None, break_point_label: str = 'break_point', category_label: str = 'category', series: bool = True, left_closed: bool = False, allow_duplicates: bool = False, include_breaks: bool = False) DataFrame | Series[source]
        +qcut(q: list[float] | int, *, labels: list[str] | None = None, break_point_label: str = 'break_point', category_label: str = 'category', series: bool = True, left_closed: bool = False, allow_duplicates: bool = False, include_breaks: bool = False) DataFrame | Series[source]

        Discretize continuous values into discrete categories based on their quantiles.

        Parameters:
        @@ -5128,7 +5128,7 @@

        Series
        -quantile(quantile: float, interpolation: RollingInterpolationMethod = 'nearest') float | None[source]
        +quantile(quantile: float, interpolation: RollingInterpolationMethod = 'nearest') float | None[source]

        Get the quantile value of this Series.

        Parameters:
        @@ -5150,7 +5150,7 @@

        Series
        -rank(method: RankMethod = 'average', *, descending: bool = False, seed: int | None = None) Series[source]
        +rank(method: RankMethod = 'average', *, descending: bool = False, seed: int | None = None) Series[source]

        Assign ranks to data, dealing with ties appropriately.

        Parameters:
        @@ -5214,7 +5214,7 @@

        Series
        -rechunk(*, in_place: bool = False) Self[source]
        +rechunk(*, in_place: bool = False) Self[source]

        Create a single chunk of memory for this Series.

        Parameters:
        @@ -5228,7 +5228,7 @@

        Series
        -reinterpret(*, signed: bool = True) Series[source]
        +reinterpret(*, signed: bool = True) Series[source]

        Reinterpret the underlying bits as a signed/unsigned integer.

        This operation is only allowed for 64bit integers. For lower bits integers, you can safely use that cast operation.

        @@ -5244,7 +5244,7 @@

        Series
        -rename(name: str, *, in_place: bool | None = None) Series[source]
        +rename(name: str, *, in_place: bool | None = None) Series[source]

        Rename this Series.

        Parameters:
        @@ -5272,7 +5272,7 @@

        Series
        -reshape(dimensions: tuple[int, ...]) Series[source]
        +reshape(dimensions: tuple[int, ...]) Series[source]

        Reshape this Series to a flat Series or a Series of Lists.

        Parameters:
        @@ -5315,7 +5315,7 @@

        Series
        -reverse() Series[source]
        +reverse() Series[source]

        Return Series in reverse order.

        Examples

        >>> s = pl.Series("a", [1, 2, 3], dtype=pl.Int8)
        @@ -5333,7 +5333,7 @@ 

        Series
        -rle() Series[source]
        +rle() Series[source]

        Get the lengths of runs of identical values.

        Returns:
        @@ -5365,7 +5365,7 @@

        Series
        -rle_id() Series[source]
        +rle_id() Series[source]

        Map values to run IDs.

        Similar to RLE, but it maps each value to an ID corresponding to the run into which it falls. This is especially useful when you want to define groups by @@ -5404,7 +5404,7 @@

        Series
        -rolling_apply(function: Callable[[Series], Any], window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]
        +rolling_apply(function: Callable[[Series], Any], window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]

        Apply a custom rolling window function.

        Prefer the specific rolling window functions over this one, as they are faster:

        @@ -5454,7 +5454,7 @@

        Series
        -rolling_max(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]
        +rolling_max(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]

        Apply a rolling max (moving max) over the values in this array.

        A window of length window_size will traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by the @@ -5495,7 +5495,7 @@

        Series
        -rolling_mean(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]
        +rolling_mean(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]

        Apply a rolling mean (moving mean) over the values in this array.

        A window of length window_size will traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by the @@ -5536,7 +5536,7 @@

        Series
        -rolling_median(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]
        +rolling_median(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]

        Compute a rolling median.

        Parameters:
        @@ -5575,7 +5575,7 @@

        Series
        -rolling_min(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]
        +rolling_min(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]

        Apply a rolling min (moving min) over the values in this array.

        A window of length window_size will traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by the @@ -5616,7 +5616,7 @@

        Series
        -rolling_quantile(quantile: float, interpolation: RollingInterpolationMethod = 'nearest', window_size: int = 2, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]
        +rolling_quantile(quantile: float, interpolation: RollingInterpolationMethod = 'nearest', window_size: int = 2, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]

        Compute a rolling quantile.

        The window at a given row will include the row itself and the window_size - 1 elements before it.

        @@ -5670,7 +5670,7 @@

        Series
        -rolling_skew(window_size: int, *, bias: bool = True) Series[source]
        +rolling_skew(window_size: int, *, bias: bool = True) Series[source]

        Compute a rolling skew.

        The window at a given row includes the row itself and the window_size - 1 elements before it.

        @@ -5705,7 +5705,7 @@

        Series
        -rolling_std(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False, ddof: int = 1) Series[source]
        +rolling_std(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False, ddof: int = 1) Series[source]

        Compute a rolling std dev.

        A window of length window_size will traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by the @@ -5749,7 +5749,7 @@

        Series
        -rolling_sum(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]
        +rolling_sum(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False) Series[source]

        Apply a rolling sum (moving sum) over the values in this array.

        A window of length window_size will traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by the @@ -5790,7 +5790,7 @@

        Series
        -rolling_var(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False, ddof: int = 1) Series[source]
        +rolling_var(window_size: int, weights: list[float] | None = None, min_periods: int | None = None, *, center: bool = False, ddof: int = 1) Series[source]

        Compute a rolling variance.

        A window of length window_size will traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by the @@ -5834,7 +5834,7 @@

        Series
        -round(decimals: int = 0) Series[source]
        +round(decimals: int = 0) Series[source]

        Round underlying floating point data by decimals digits.

        Parameters:
        @@ -5860,7 +5860,7 @@

        Series
        -sample(n: int | None = None, *, fraction: float | None = None, with_replacement: bool = False, shuffle: bool = False, seed: int | None = None) Series[source]
        +sample(n: int | None = None, *, fraction: float | None = None, with_replacement: bool = False, shuffle: bool = False, seed: int | None = None) Series[source]

        Sample from this Series.

        Parameters:
        @@ -5895,7 +5895,7 @@

        Series
        -search_sorted(element: int | float, side: SearchSortedSide = 'any') int[source]
        +search_sorted(element: int | float, side: SearchSortedSide = 'any') int[source]
        search_sorted(element: Series | ndarray[Any, Any] | list[int] | list[float], side: SearchSortedSide = 'any') Series

        Find indices where elements should be inserted to maintain order.

        @@ -5917,7 +5917,7 @@

        Series
        -series_equal(other: Series, *, null_equal: bool = True, strict: bool = False) bool[source]
        +series_equal(other: Series, *, null_equal: bool = True, strict: bool = False) bool[source]

        Check if series is equal with another Series.

        Parameters:
        @@ -5945,7 +5945,7 @@

        Series
        -set(filter: Series, value: int | float | str) Series[source]
        +set(filter: Series, value: int | float | str) Series[source]

        Set masked values.

        Parameters:
        @@ -5993,7 +5993,7 @@

        Series
        -set_at_idx(idx: Series | ndarray[Any, Any] | Sequence[int] | int, value: int | float | str | bool | Sequence[int] | Sequence[float] | Sequence[bool] | Sequence[str] | Sequence[date] | Sequence[datetime] | date | datetime | Series | None) Series[source]
        +set_at_idx(idx: Series | ndarray[Any, Any] | Sequence[int] | int, value: int | float | str | bool | Sequence[int] | Sequence[float] | Sequence[bool] | Sequence[str] | Sequence[date] | Sequence[datetime] | date | datetime | Series | None) Series[source]

        Set values at the index locations.

        Parameters:
        @@ -6047,7 +6047,7 @@

        Series
        -set_sorted(*, descending: bool = False) Self[source]
        +set_sorted(*, descending: bool = False) Self[source]

        Flags the Series as ‘sorted’.

        Enables downstream code to user fast paths for sorted arrays.

        @@ -6073,7 +6073,7 @@

        Series
        -shift(periods: int = 1) Series[source]
        +shift(periods: int = 1) Series[source]

        Shift the values by a given period.

        Parameters:
        @@ -6107,7 +6107,7 @@

        Series
        -shift_and_fill(fill_value: int | Expr, *, periods: int = 1) Series[source]
        +shift_and_fill(fill_value: int | Expr, *, periods: int = 1) Series[source]

        Shift the values by a given period and fill the resulting null values.

        Parameters:
        @@ -6123,7 +6123,7 @@

        Series
        -shrink_dtype() Series[source]
        +shrink_dtype() Series[source]

        Shrink numeric columns to the minimal required datatype.

        Shrink to the dtype needed to fit the extrema of this [Series]. This can be used to reduce memory pressure.

        @@ -6131,7 +6131,7 @@

        Series
        -shrink_to_fit(*, in_place: bool = False) Series[source]
        +shrink_to_fit(*, in_place: bool = False) Series[source]

        Shrink Series memory usage.

        Shrinks the underlying array capacity to exactly fit the actual data. (Note that this function does not change the Series data type).

        @@ -6139,7 +6139,7 @@

        Series
        -shuffle(seed: int | None = None) Series[source]
        +shuffle(seed: int | None = None) Series[source]

        Shuffle the contents of this Series.

        Parameters:
        @@ -6166,7 +6166,7 @@

        Series
        -sign() Series[source]
        +sign() Series[source]

        Compute the element-wise indication of the sign.

        The returned values can be -1, 0, or 1:

          @@ -6193,7 +6193,7 @@

          Series
          -sin() Series[source]
          +sin() Series[source]

          Compute the element-wise value for the sine.

          Examples

          >>> import math
          @@ -6212,7 +6212,7 @@ 

          Series
          -sinh() Series[source]
          +sinh() Series[source]

          Compute the element-wise value for the hyperbolic sine.

          Examples

          >>> s = pl.Series("a", [1.0, 0.0, -1.0])
          @@ -6230,7 +6230,7 @@ 

          Series
          -skew(*, bias: bool = True) float | None[source]
          +skew(*, bias: bool = True) float | None[source]

          Compute the sample skewness of a data set.

          For normally distributed data, the skewness should be about zero. For unimodal continuous distributions, a skewness value greater than zero means @@ -6265,7 +6265,7 @@

          Series
          -slice(offset: int, length: int | None = None) Series[source]
          +slice(offset: int, length: int | None = None) Series[source]

          Get a slice of this Series.

          Parameters:
          @@ -6293,7 +6293,7 @@

          Series
          -sort(*, descending: bool = False, in_place: bool = False) Self[source]
          +sort(*, descending: bool = False, in_place: bool = False) Self[source]

          Sort this Series.

          Parameters:
          @@ -6331,7 +6331,7 @@

          Series
          -sqrt() Series[source]
          +sqrt() Series[source]

          Compute the square root of the elements.

          Syntactic sugar for

          >>> pl.Series([1, 2]) ** 0.5
          @@ -6347,7 +6347,7 @@ 

          Series
          -std(ddof: int = 1) float | None[source]
          +std(ddof: int = 1) float | None[source]

          Get the standard deviation of this Series.

          Parameters:
          @@ -6369,7 +6369,7 @@

          Series
          -sum() int | float[source]
          +sum() int | float[source]

          Reduce this Series to the sum value.

          Notes

          Dtypes in {Int8, UInt8, Int16, UInt16} are cast to @@ -6384,7 +6384,7 @@

          Series
          -tail(n: int = 10) Series[source]
          +tail(n: int = 10) Series[source]

          Get the last n elements.

          Parameters:
          @@ -6427,7 +6427,7 @@

          Series
          -take(indices: int | list[int] | Expr | Series | np.ndarray[Any, Any]) Series[source]
          +take(indices: int | list[int] | Expr | Series | np.ndarray[Any, Any]) Series[source]

          Take values by index.

          Parameters:
          @@ -6452,7 +6452,7 @@

          Series
          -take_every(n: int) Series[source]
          +take_every(n: int) Series[source]

          Take every nth value in the Series and return as new Series.

          Examples

          >>> s = pl.Series("a", [1, 2, 3, 4])
          @@ -6469,7 +6469,7 @@ 

          Series
          -tan() Series[source]
          +tan() Series[source]

          Compute the element-wise value for the tangent.

          Examples

          >>> import math
          @@ -6488,7 +6488,7 @@ 

          Series
          -tanh() Series[source]
          +tanh() Series[source]

          Compute the element-wise value for the hyperbolic tangent.

          Examples

          >>> s = pl.Series("a", [1.0, 0.0, -1.0])
          @@ -6506,7 +6506,7 @@ 

          Series
          -to_arrow() Array[source]
          +to_arrow() Array[source]

          Get the underlying Arrow Array.

          If the Series contains only a single chunk this operation is zero copy.

          Examples

          @@ -6525,7 +6525,7 @@

          Series
          -to_dummies(separator: str = '_') DataFrame[source]
          +to_dummies(separator: str = '_') DataFrame[source]

          Get dummy/indicator variables.

          Parameters:
          @@ -6554,7 +6554,7 @@

          Series
          -to_frame(name: str | None = None) DataFrame[source]
          +to_frame(name: str | None = None) DataFrame[source]

          Cast this Series to a DataFrame.

          Parameters:
          @@ -6596,7 +6596,7 @@

          Series
          -to_init_repr(n: int = 1000) str[source]
          +to_init_repr(n: int = 1000) str[source]

          Convert Series to instantiatable string representation.

          Parameters:
          @@ -6633,7 +6633,7 @@

          Series
          -to_list(*, use_pyarrow: bool = False) list[Any][source]
          +to_list(*, use_pyarrow: bool = False) list[Any][source]

          Convert this Series to a Python List. This operation clones data.

          Parameters:
          @@ -6655,7 +6655,7 @@

          Series
          -to_numpy(*args: Any, zero_copy_only: bool = False, writable: bool = False, use_pyarrow: bool = True) ndarray[Any, Any][source]
          +to_numpy(*args: Any, zero_copy_only: bool = False, writable: bool = False, use_pyarrow: bool = True) ndarray[Any, Any][source]

          Convert this Series to numpy.

          This operation may clone data but is completely safe. Note that:

            @@ -6699,7 +6699,7 @@

            Series
            -to_pandas(*args: Any, use_pyarrow_extension_array: bool = False, **kwargs: Any) pd.Series[Any][source]
            +to_pandas(*args: Any, use_pyarrow_extension_array: bool = False, **kwargs: Any) pd.Series[Any][source]

            Convert this Series to a pandas Series.

            This requires that pandas and pyarrow are installed. This operation clones data, unless use_pyarrow_extension_array=True.

            @@ -6750,7 +6750,7 @@

            Series
            -to_physical() Series[source]
            +to_physical() Series[source]

            Cast to physical representation of the logical dtype.

            • polars.datatypes.Date() -> polars.datatypes.Int32()

            • @@ -6781,7 +6781,7 @@

              Series
              -top_k(k: int = 5) Series[source]
              +top_k(k: int = 5) Series[source]

              Return the k largest elements.

              This has time complexity:

              @@ -6816,7 +6816,7 @@

              Series
              -unique(*, maintain_order: bool = False) Series[source]
              +unique(*, maintain_order: bool = False) Series[source]

              Get unique elements in series.

              Parameters:
              @@ -6842,7 +6842,7 @@

              Series
              -unique_counts() Series[source]
              +unique_counts() Series[source]

              Return a count of the unique values in the order of appearance.

              Examples

              >>> s = pl.Series("id", ["a", "b", "b", "c", "c", "c"])
              @@ -6860,7 +6860,7 @@ 

              Series
              -upper_bound() Self[source]
              +upper_bound() Self[source]

              Return the upper bound of this Series’ dtype as a unit Series.

              See also

              @@ -6892,7 +6892,7 @@

              Series
              -value_counts(*, sort: bool = False) DataFrame[source]
              +value_counts(*, sort: bool = False) DataFrame[source]

              Count the unique values in a Series.

              Parameters:
              @@ -6921,7 +6921,7 @@

              Series
              -var(ddof: int = 1) float | None[source]
              +var(ddof: int = 1) float | None[source]

              Get variance of this Series.

              Parameters:
              @@ -6943,7 +6943,7 @@

              Series
              -view(*, ignore_nulls: bool = False) SeriesView[source]
              +view(*, ignore_nulls: bool = False) SeriesView[source]

              Get a view into this Series data with a numpy array.

              This operation doesn’t clone data, but does not include missing values. Don’t use this unless you know what you are doing.

              @@ -6966,7 +6966,7 @@

              Series
              -zip_with(mask: Series, other: Series) Self[source]
              +zip_with(mask: Series, other: Series) Self[source]

              Take values from self or other based on the given mask.

              Where mask evaluates true, take values from self. Where mask evaluates false, take values from other.

              diff --git a/py-polars/dev/searchindex.js b/py-polars/dev/searchindex.js index a515a456c135..41b613ec8ebe 100644 --- a/py-polars/dev/searchindex.js +++ b/py-polars/dev/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["index", "reference/api", "reference/api/polars.Array", "reference/api/polars.Binary", "reference/api/polars.Boolean", "reference/api/polars.Categorical", "reference/api/polars.Config.activate_decimals", "reference/api/polars.Config.load", "reference/api/polars.Config.restore_defaults", "reference/api/polars.Config.save", "reference/api/polars.Config.set_ascii_tables", "reference/api/polars.Config.set_fmt_float", "reference/api/polars.Config.set_fmt_str_lengths", "reference/api/polars.Config.set_streaming_chunk_size", "reference/api/polars.Config.set_tbl_cell_alignment", "reference/api/polars.Config.set_tbl_cols", "reference/api/polars.Config.set_tbl_column_data_type_inline", "reference/api/polars.Config.set_tbl_dataframe_shape_below", "reference/api/polars.Config.set_tbl_formatting", "reference/api/polars.Config.set_tbl_hide_column_data_types", "reference/api/polars.Config.set_tbl_hide_column_names", "reference/api/polars.Config.set_tbl_hide_dataframe_shape", "reference/api/polars.Config.set_tbl_hide_dtype_separator", "reference/api/polars.Config.set_tbl_rows", "reference/api/polars.Config.set_tbl_width_chars", "reference/api/polars.Config.set_verbose", "reference/api/polars.Config.state", "reference/api/polars.DataFrame.write_avro", "reference/api/polars.DataFrame.write_csv", "reference/api/polars.DataFrame.write_database", "reference/api/polars.DataFrame.write_delta", "reference/api/polars.DataFrame.write_excel", "reference/api/polars.DataFrame.write_ipc", "reference/api/polars.DataFrame.write_json", "reference/api/polars.DataFrame.write_ndjson", "reference/api/polars.DataFrame.write_parquet", "reference/api/polars.DataType", "reference/api/polars.Date", "reference/api/polars.Datetime", "reference/api/polars.Decimal", "reference/api/polars.Duration", "reference/api/polars.Float32", "reference/api/polars.Float64", "reference/api/polars.Int16", "reference/api/polars.Int32", "reference/api/polars.Int64", "reference/api/polars.Int8", "reference/api/polars.LazyFrame.sink_ipc", "reference/api/polars.LazyFrame.sink_parquet", "reference/api/polars.List", "reference/api/polars.Null", "reference/api/polars.Object", "reference/api/polars.SQLContext.execute", "reference/api/polars.SQLContext.register", "reference/api/polars.SQLContext.register_globals", "reference/api/polars.SQLContext.register_many", "reference/api/polars.SQLContext.tables", "reference/api/polars.SQLContext.unregister", "reference/api/polars.StringCache", "reference/api/polars.Struct", "reference/api/polars.Time", "reference/api/polars.UInt16", "reference/api/polars.UInt32", "reference/api/polars.UInt64", "reference/api/polars.UInt8", "reference/api/polars.Unknown", "reference/api/polars.Utf8", "reference/api/polars.align_frames", "reference/api/polars.api.register_dataframe_namespace", "reference/api/polars.api.register_expr_namespace", "reference/api/polars.api.register_lazyframe_namespace", "reference/api/polars.api.register_series_namespace", "reference/api/polars.build_info", "reference/api/polars.collect_all", "reference/api/polars.concat", "reference/api/polars.enable_string_cache", "reference/api/polars.exceptions.ArrowError", "reference/api/polars.exceptions.ColumnNotFoundError", "reference/api/polars.exceptions.ComputeError", "reference/api/polars.exceptions.DuplicateError", "reference/api/polars.exceptions.InvalidOperationError", "reference/api/polars.exceptions.NoDataError", "reference/api/polars.exceptions.NoRowsReturnedError", "reference/api/polars.exceptions.PolarsPanicError", "reference/api/polars.exceptions.RowsError", "reference/api/polars.exceptions.SchemaError", "reference/api/polars.exceptions.SchemaFieldNotFoundError", "reference/api/polars.exceptions.ShapeError", "reference/api/polars.exceptions.StructFieldNotFoundError", "reference/api/polars.exceptions.TooManyRowsReturnedError", "reference/api/polars.from_arrow", "reference/api/polars.from_dataframe", "reference/api/polars.from_dict", "reference/api/polars.from_dicts", "reference/api/polars.from_numpy", "reference/api/polars.from_pandas", "reference/api/polars.from_records", "reference/api/polars.from_repr", "reference/api/polars.get_index_type", "reference/api/polars.io.csv.batched_reader.BatchedCsvReader.next_batches", "reference/api/polars.read_avro", "reference/api/polars.read_csv", "reference/api/polars.read_csv_batched", "reference/api/polars.read_database", "reference/api/polars.read_delta", "reference/api/polars.read_excel", "reference/api/polars.read_ipc", "reference/api/polars.read_ipc_schema", "reference/api/polars.read_json", "reference/api/polars.read_ndjson", "reference/api/polars.read_parquet", "reference/api/polars.read_parquet_schema", "reference/api/polars.scan_csv", "reference/api/polars.scan_delta", "reference/api/polars.scan_ipc", "reference/api/polars.scan_ndjson", "reference/api/polars.scan_parquet", "reference/api/polars.scan_pyarrow_dataset", "reference/api/polars.show_versions", "reference/api/polars.testing.assert_frame_equal", "reference/api/polars.testing.assert_series_equal", "reference/api/polars.testing.parametric.column", "reference/api/polars.testing.parametric.columns", "reference/api/polars.testing.parametric.create_list_strategy", "reference/api/polars.testing.parametric.dataframes", "reference/api/polars.testing.parametric.load_profile", "reference/api/polars.testing.parametric.series", "reference/api/polars.testing.parametric.set_profile", "reference/api/polars.threadpool_size", "reference/api/polars.using_string_cache", "reference/config", "reference/dataframe/aggregation", "reference/dataframe/api/polars.DataFrame.__dataframe__", "reference/dataframe/api/polars.DataFrame.apply", "reference/dataframe/api/polars.DataFrame.bottom_k", "reference/dataframe/api/polars.DataFrame.clear", "reference/dataframe/api/polars.DataFrame.clone", "reference/dataframe/api/polars.DataFrame.columns", "reference/dataframe/api/polars.DataFrame.corr", "reference/dataframe/api/polars.DataFrame.describe", "reference/dataframe/api/polars.DataFrame.drop", "reference/dataframe/api/polars.DataFrame.drop_in_place", "reference/dataframe/api/polars.DataFrame.drop_nulls", "reference/dataframe/api/polars.DataFrame.dtypes", "reference/dataframe/api/polars.DataFrame.estimated_size", "reference/dataframe/api/polars.DataFrame.explode", "reference/dataframe/api/polars.DataFrame.extend", "reference/dataframe/api/polars.DataFrame.fill_nan", "reference/dataframe/api/polars.DataFrame.fill_null", "reference/dataframe/api/polars.DataFrame.filter", "reference/dataframe/api/polars.DataFrame.find_idx_by_name", "reference/dataframe/api/polars.DataFrame.flags", "reference/dataframe/api/polars.DataFrame.fold", "reference/dataframe/api/polars.DataFrame.frame_equal", "reference/dataframe/api/polars.DataFrame.get_column", "reference/dataframe/api/polars.DataFrame.get_columns", "reference/dataframe/api/polars.DataFrame.glimpse", "reference/dataframe/api/polars.DataFrame.groupby", "reference/dataframe/api/polars.DataFrame.groupby_dynamic", "reference/dataframe/api/polars.DataFrame.groupby_rolling", "reference/dataframe/api/polars.DataFrame.hash_rows", "reference/dataframe/api/polars.DataFrame.head", "reference/dataframe/api/polars.DataFrame.height", "reference/dataframe/api/polars.DataFrame.hstack", "reference/dataframe/api/polars.DataFrame.insert_at_idx", "reference/dataframe/api/polars.DataFrame.interpolate", "reference/dataframe/api/polars.DataFrame.is_duplicated", "reference/dataframe/api/polars.DataFrame.is_empty", "reference/dataframe/api/polars.DataFrame.is_unique", "reference/dataframe/api/polars.DataFrame.item", "reference/dataframe/api/polars.DataFrame.iter_rows", "reference/dataframe/api/polars.DataFrame.iter_slices", "reference/dataframe/api/polars.DataFrame.join", "reference/dataframe/api/polars.DataFrame.join_asof", "reference/dataframe/api/polars.DataFrame.lazy", "reference/dataframe/api/polars.DataFrame.limit", "reference/dataframe/api/polars.DataFrame.max", "reference/dataframe/api/polars.DataFrame.mean", "reference/dataframe/api/polars.DataFrame.median", "reference/dataframe/api/polars.DataFrame.melt", "reference/dataframe/api/polars.DataFrame.merge_sorted", "reference/dataframe/api/polars.DataFrame.min", "reference/dataframe/api/polars.DataFrame.n_chunks", "reference/dataframe/api/polars.DataFrame.n_unique", "reference/dataframe/api/polars.DataFrame.null_count", "reference/dataframe/api/polars.DataFrame.partition_by", "reference/dataframe/api/polars.DataFrame.pipe", "reference/dataframe/api/polars.DataFrame.pivot", "reference/dataframe/api/polars.DataFrame.product", "reference/dataframe/api/polars.DataFrame.quantile", "reference/dataframe/api/polars.DataFrame.rechunk", "reference/dataframe/api/polars.DataFrame.rename", "reference/dataframe/api/polars.DataFrame.replace", "reference/dataframe/api/polars.DataFrame.replace_at_idx", "reference/dataframe/api/polars.DataFrame.reverse", "reference/dataframe/api/polars.DataFrame.row", "reference/dataframe/api/polars.DataFrame.rows", "reference/dataframe/api/polars.DataFrame.rows_by_key", "reference/dataframe/api/polars.DataFrame.sample", "reference/dataframe/api/polars.DataFrame.schema", "reference/dataframe/api/polars.DataFrame.select", "reference/dataframe/api/polars.DataFrame.set_sorted", "reference/dataframe/api/polars.DataFrame.shape", "reference/dataframe/api/polars.DataFrame.shift", "reference/dataframe/api/polars.DataFrame.shift_and_fill", "reference/dataframe/api/polars.DataFrame.shrink_to_fit", "reference/dataframe/api/polars.DataFrame.slice", "reference/dataframe/api/polars.DataFrame.sort", "reference/dataframe/api/polars.DataFrame.std", "reference/dataframe/api/polars.DataFrame.sum", "reference/dataframe/api/polars.DataFrame.tail", "reference/dataframe/api/polars.DataFrame.take_every", "reference/dataframe/api/polars.DataFrame.to_arrow", "reference/dataframe/api/polars.DataFrame.to_dict", "reference/dataframe/api/polars.DataFrame.to_dicts", "reference/dataframe/api/polars.DataFrame.to_dummies", "reference/dataframe/api/polars.DataFrame.to_init_repr", "reference/dataframe/api/polars.DataFrame.to_numpy", "reference/dataframe/api/polars.DataFrame.to_pandas", "reference/dataframe/api/polars.DataFrame.to_series", "reference/dataframe/api/polars.DataFrame.to_struct", "reference/dataframe/api/polars.DataFrame.top_k", "reference/dataframe/api/polars.DataFrame.transpose", "reference/dataframe/api/polars.DataFrame.unique", "reference/dataframe/api/polars.DataFrame.unnest", "reference/dataframe/api/polars.DataFrame.unstack", "reference/dataframe/api/polars.DataFrame.update", "reference/dataframe/api/polars.DataFrame.upsample", "reference/dataframe/api/polars.DataFrame.var", "reference/dataframe/api/polars.DataFrame.vstack", "reference/dataframe/api/polars.DataFrame.width", "reference/dataframe/api/polars.DataFrame.with_columns", "reference/dataframe/api/polars.DataFrame.with_row_count", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.__iter__", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.agg", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.all", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.apply", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.count", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.first", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.head", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.last", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.max", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.mean", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.median", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.min", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.n_unique", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.quantile", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.sum", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.tail", "reference/dataframe/attributes", "reference/dataframe/computation", "reference/dataframe/descriptive", "reference/dataframe/export", "reference/dataframe/groupby", "reference/dataframe/index", "reference/dataframe/miscellaneous", "reference/dataframe/modify_select", "reference/datatypes", "reference/exceptions", "reference/expressions/aggregation", "reference/expressions/api/polars.Expr.abs", "reference/expressions/api/polars.Expr.add", "reference/expressions/api/polars.Expr.agg_groups", "reference/expressions/api/polars.Expr.alias", "reference/expressions/api/polars.Expr.all", "reference/expressions/api/polars.Expr.and_", "reference/expressions/api/polars.Expr.any", "reference/expressions/api/polars.Expr.append", "reference/expressions/api/polars.Expr.apply", "reference/expressions/api/polars.Expr.approx_unique", "reference/expressions/api/polars.Expr.arccos", "reference/expressions/api/polars.Expr.arccosh", "reference/expressions/api/polars.Expr.arcsin", "reference/expressions/api/polars.Expr.arcsinh", "reference/expressions/api/polars.Expr.arctan", "reference/expressions/api/polars.Expr.arctanh", "reference/expressions/api/polars.Expr.arg_max", "reference/expressions/api/polars.Expr.arg_min", "reference/expressions/api/polars.Expr.arg_sort", "reference/expressions/api/polars.Expr.arg_true", "reference/expressions/api/polars.Expr.arg_unique", "reference/expressions/api/polars.Expr.arr.max", "reference/expressions/api/polars.Expr.arr.min", "reference/expressions/api/polars.Expr.arr.sum", "reference/expressions/api/polars.Expr.arr.unique", "reference/expressions/api/polars.Expr.backward_fill", "reference/expressions/api/polars.Expr.bin.contains", "reference/expressions/api/polars.Expr.bin.decode", "reference/expressions/api/polars.Expr.bin.encode", "reference/expressions/api/polars.Expr.bin.ends_with", "reference/expressions/api/polars.Expr.bin.starts_with", "reference/expressions/api/polars.Expr.bottom_k", "reference/expressions/api/polars.Expr.cache", "reference/expressions/api/polars.Expr.cast", "reference/expressions/api/polars.Expr.cat.get_categories", "reference/expressions/api/polars.Expr.cat.set_ordering", "reference/expressions/api/polars.Expr.cbrt", "reference/expressions/api/polars.Expr.ceil", "reference/expressions/api/polars.Expr.clip", "reference/expressions/api/polars.Expr.clip_max", "reference/expressions/api/polars.Expr.clip_min", "reference/expressions/api/polars.Expr.cos", "reference/expressions/api/polars.Expr.cosh", "reference/expressions/api/polars.Expr.count", "reference/expressions/api/polars.Expr.cumcount", "reference/expressions/api/polars.Expr.cummax", "reference/expressions/api/polars.Expr.cummin", "reference/expressions/api/polars.Expr.cumprod", "reference/expressions/api/polars.Expr.cumsum", "reference/expressions/api/polars.Expr.cumulative_eval", "reference/expressions/api/polars.Expr.cut", "reference/expressions/api/polars.Expr.degrees", "reference/expressions/api/polars.Expr.diff", "reference/expressions/api/polars.Expr.dot", "reference/expressions/api/polars.Expr.drop_nans", "reference/expressions/api/polars.Expr.drop_nulls", "reference/expressions/api/polars.Expr.dt.base_utc_offset", "reference/expressions/api/polars.Expr.dt.cast_time_unit", "reference/expressions/api/polars.Expr.dt.combine", "reference/expressions/api/polars.Expr.dt.convert_time_zone", "reference/expressions/api/polars.Expr.dt.date", "reference/expressions/api/polars.Expr.dt.datetime", "reference/expressions/api/polars.Expr.dt.day", "reference/expressions/api/polars.Expr.dt.days", "reference/expressions/api/polars.Expr.dt.dst_offset", "reference/expressions/api/polars.Expr.dt.epoch", "reference/expressions/api/polars.Expr.dt.hour", "reference/expressions/api/polars.Expr.dt.hours", "reference/expressions/api/polars.Expr.dt.is_leap_year", "reference/expressions/api/polars.Expr.dt.iso_year", "reference/expressions/api/polars.Expr.dt.microsecond", "reference/expressions/api/polars.Expr.dt.microseconds", "reference/expressions/api/polars.Expr.dt.millisecond", "reference/expressions/api/polars.Expr.dt.milliseconds", "reference/expressions/api/polars.Expr.dt.minute", "reference/expressions/api/polars.Expr.dt.minutes", "reference/expressions/api/polars.Expr.dt.month", "reference/expressions/api/polars.Expr.dt.month_end", "reference/expressions/api/polars.Expr.dt.month_start", "reference/expressions/api/polars.Expr.dt.nanosecond", "reference/expressions/api/polars.Expr.dt.nanoseconds", "reference/expressions/api/polars.Expr.dt.offset_by", "reference/expressions/api/polars.Expr.dt.ordinal_day", "reference/expressions/api/polars.Expr.dt.quarter", "reference/expressions/api/polars.Expr.dt.replace_time_zone", "reference/expressions/api/polars.Expr.dt.round", "reference/expressions/api/polars.Expr.dt.second", "reference/expressions/api/polars.Expr.dt.seconds", "reference/expressions/api/polars.Expr.dt.strftime", "reference/expressions/api/polars.Expr.dt.time", "reference/expressions/api/polars.Expr.dt.timestamp", "reference/expressions/api/polars.Expr.dt.to_string", "reference/expressions/api/polars.Expr.dt.truncate", "reference/expressions/api/polars.Expr.dt.week", "reference/expressions/api/polars.Expr.dt.weekday", "reference/expressions/api/polars.Expr.dt.with_time_unit", "reference/expressions/api/polars.Expr.dt.year", "reference/expressions/api/polars.Expr.entropy", "reference/expressions/api/polars.Expr.eq", "reference/expressions/api/polars.Expr.eq_missing", "reference/expressions/api/polars.Expr.ewm_mean", "reference/expressions/api/polars.Expr.ewm_std", "reference/expressions/api/polars.Expr.ewm_var", "reference/expressions/api/polars.Expr.exclude", "reference/expressions/api/polars.Expr.exp", "reference/expressions/api/polars.Expr.explode", "reference/expressions/api/polars.Expr.extend_constant", "reference/expressions/api/polars.Expr.fill_nan", "reference/expressions/api/polars.Expr.fill_null", "reference/expressions/api/polars.Expr.filter", "reference/expressions/api/polars.Expr.first", "reference/expressions/api/polars.Expr.flatten", "reference/expressions/api/polars.Expr.floor", "reference/expressions/api/polars.Expr.floordiv", "reference/expressions/api/polars.Expr.forward_fill", "reference/expressions/api/polars.Expr.from_json", "reference/expressions/api/polars.Expr.ge", "reference/expressions/api/polars.Expr.gt", "reference/expressions/api/polars.Expr.hash", "reference/expressions/api/polars.Expr.head", "reference/expressions/api/polars.Expr.implode", "reference/expressions/api/polars.Expr.inspect", "reference/expressions/api/polars.Expr.interpolate", "reference/expressions/api/polars.Expr.is_between", "reference/expressions/api/polars.Expr.is_duplicated", "reference/expressions/api/polars.Expr.is_finite", "reference/expressions/api/polars.Expr.is_first", "reference/expressions/api/polars.Expr.is_in", "reference/expressions/api/polars.Expr.is_infinite", "reference/expressions/api/polars.Expr.is_nan", "reference/expressions/api/polars.Expr.is_not", "reference/expressions/api/polars.Expr.is_not_nan", "reference/expressions/api/polars.Expr.is_not_null", "reference/expressions/api/polars.Expr.is_null", "reference/expressions/api/polars.Expr.is_unique", "reference/expressions/api/polars.Expr.keep_name", "reference/expressions/api/polars.Expr.kurtosis", "reference/expressions/api/polars.Expr.last", "reference/expressions/api/polars.Expr.le", "reference/expressions/api/polars.Expr.len", "reference/expressions/api/polars.Expr.limit", "reference/expressions/api/polars.Expr.list.all", "reference/expressions/api/polars.Expr.list.any", "reference/expressions/api/polars.Expr.list.arg_max", "reference/expressions/api/polars.Expr.list.arg_min", "reference/expressions/api/polars.Expr.list.concat", "reference/expressions/api/polars.Expr.list.contains", "reference/expressions/api/polars.Expr.list.count_match", "reference/expressions/api/polars.Expr.list.diff", "reference/expressions/api/polars.Expr.list.difference", "reference/expressions/api/polars.Expr.list.eval", "reference/expressions/api/polars.Expr.list.explode", "reference/expressions/api/polars.Expr.list.first", "reference/expressions/api/polars.Expr.list.get", "reference/expressions/api/polars.Expr.list.head", "reference/expressions/api/polars.Expr.list.intersection", "reference/expressions/api/polars.Expr.list.join", "reference/expressions/api/polars.Expr.list.last", "reference/expressions/api/polars.Expr.list.lengths", "reference/expressions/api/polars.Expr.list.max", "reference/expressions/api/polars.Expr.list.mean", "reference/expressions/api/polars.Expr.list.min", "reference/expressions/api/polars.Expr.list.reverse", "reference/expressions/api/polars.Expr.list.shift", "reference/expressions/api/polars.Expr.list.slice", "reference/expressions/api/polars.Expr.list.sort", "reference/expressions/api/polars.Expr.list.sum", "reference/expressions/api/polars.Expr.list.tail", "reference/expressions/api/polars.Expr.list.take", "reference/expressions/api/polars.Expr.list.to_struct", "reference/expressions/api/polars.Expr.list.union", "reference/expressions/api/polars.Expr.list.unique", "reference/expressions/api/polars.Expr.log", "reference/expressions/api/polars.Expr.log10", "reference/expressions/api/polars.Expr.log1p", "reference/expressions/api/polars.Expr.lower_bound", "reference/expressions/api/polars.Expr.lt", "reference/expressions/api/polars.Expr.map", "reference/expressions/api/polars.Expr.map_alias", "reference/expressions/api/polars.Expr.map_dict", "reference/expressions/api/polars.Expr.max", "reference/expressions/api/polars.Expr.mean", "reference/expressions/api/polars.Expr.median", "reference/expressions/api/polars.Expr.meta.eq", "reference/expressions/api/polars.Expr.meta.has_multiple_outputs", "reference/expressions/api/polars.Expr.meta.is_regex_projection", "reference/expressions/api/polars.Expr.meta.ne", "reference/expressions/api/polars.Expr.meta.output_name", "reference/expressions/api/polars.Expr.meta.pop", "reference/expressions/api/polars.Expr.meta.root_names", "reference/expressions/api/polars.Expr.meta.tree_format", "reference/expressions/api/polars.Expr.meta.undo_aliases", "reference/expressions/api/polars.Expr.meta.write_json", "reference/expressions/api/polars.Expr.min", "reference/expressions/api/polars.Expr.mod", "reference/expressions/api/polars.Expr.mode", "reference/expressions/api/polars.Expr.mul", "reference/expressions/api/polars.Expr.n_unique", "reference/expressions/api/polars.Expr.nan_max", "reference/expressions/api/polars.Expr.nan_min", "reference/expressions/api/polars.Expr.ne", "reference/expressions/api/polars.Expr.ne_missing", "reference/expressions/api/polars.Expr.null_count", "reference/expressions/api/polars.Expr.or_", "reference/expressions/api/polars.Expr.over", "reference/expressions/api/polars.Expr.pct_change", "reference/expressions/api/polars.Expr.pipe", "reference/expressions/api/polars.Expr.pow", "reference/expressions/api/polars.Expr.prefix", "reference/expressions/api/polars.Expr.product", "reference/expressions/api/polars.Expr.qcut", "reference/expressions/api/polars.Expr.quantile", "reference/expressions/api/polars.Expr.radians", "reference/expressions/api/polars.Expr.rank", "reference/expressions/api/polars.Expr.rechunk", "reference/expressions/api/polars.Expr.reinterpret", "reference/expressions/api/polars.Expr.repeat_by", "reference/expressions/api/polars.Expr.reshape", "reference/expressions/api/polars.Expr.reverse", "reference/expressions/api/polars.Expr.rle", "reference/expressions/api/polars.Expr.rle_id", "reference/expressions/api/polars.Expr.rolling_apply", "reference/expressions/api/polars.Expr.rolling_max", "reference/expressions/api/polars.Expr.rolling_mean", "reference/expressions/api/polars.Expr.rolling_median", "reference/expressions/api/polars.Expr.rolling_min", "reference/expressions/api/polars.Expr.rolling_quantile", "reference/expressions/api/polars.Expr.rolling_skew", "reference/expressions/api/polars.Expr.rolling_std", "reference/expressions/api/polars.Expr.rolling_sum", "reference/expressions/api/polars.Expr.rolling_var", "reference/expressions/api/polars.Expr.round", "reference/expressions/api/polars.Expr.sample", "reference/expressions/api/polars.Expr.search_sorted", "reference/expressions/api/polars.Expr.set_sorted", "reference/expressions/api/polars.Expr.shift", "reference/expressions/api/polars.Expr.shift_and_fill", "reference/expressions/api/polars.Expr.shrink_dtype", "reference/expressions/api/polars.Expr.shuffle", "reference/expressions/api/polars.Expr.sign", "reference/expressions/api/polars.Expr.sin", "reference/expressions/api/polars.Expr.sinh", "reference/expressions/api/polars.Expr.skew", "reference/expressions/api/polars.Expr.slice", "reference/expressions/api/polars.Expr.sort", "reference/expressions/api/polars.Expr.sort_by", "reference/expressions/api/polars.Expr.sqrt", "reference/expressions/api/polars.Expr.std", "reference/expressions/api/polars.Expr.str.concat", "reference/expressions/api/polars.Expr.str.contains", "reference/expressions/api/polars.Expr.str.count_match", "reference/expressions/api/polars.Expr.str.decode", "reference/expressions/api/polars.Expr.str.encode", "reference/expressions/api/polars.Expr.str.ends_with", "reference/expressions/api/polars.Expr.str.explode", "reference/expressions/api/polars.Expr.str.extract", "reference/expressions/api/polars.Expr.str.extract_all", "reference/expressions/api/polars.Expr.str.json_extract", "reference/expressions/api/polars.Expr.str.json_path_match", "reference/expressions/api/polars.Expr.str.lengths", "reference/expressions/api/polars.Expr.str.ljust", "reference/expressions/api/polars.Expr.str.lstrip", "reference/expressions/api/polars.Expr.str.n_chars", "reference/expressions/api/polars.Expr.str.parse_int", "reference/expressions/api/polars.Expr.str.replace", "reference/expressions/api/polars.Expr.str.replace_all", "reference/expressions/api/polars.Expr.str.rjust", "reference/expressions/api/polars.Expr.str.rstrip", "reference/expressions/api/polars.Expr.str.slice", "reference/expressions/api/polars.Expr.str.split", "reference/expressions/api/polars.Expr.str.split_exact", "reference/expressions/api/polars.Expr.str.splitn", "reference/expressions/api/polars.Expr.str.starts_with", "reference/expressions/api/polars.Expr.str.strip", "reference/expressions/api/polars.Expr.str.strptime", "reference/expressions/api/polars.Expr.str.to_date", "reference/expressions/api/polars.Expr.str.to_datetime", "reference/expressions/api/polars.Expr.str.to_decimal", "reference/expressions/api/polars.Expr.str.to_lowercase", "reference/expressions/api/polars.Expr.str.to_time", "reference/expressions/api/polars.Expr.str.to_titlecase", "reference/expressions/api/polars.Expr.str.to_uppercase", "reference/expressions/api/polars.Expr.str.zfill", "reference/expressions/api/polars.Expr.struct.field", "reference/expressions/api/polars.Expr.struct.rename_fields", "reference/expressions/api/polars.Expr.sub", "reference/expressions/api/polars.Expr.suffix", "reference/expressions/api/polars.Expr.sum", "reference/expressions/api/polars.Expr.tail", "reference/expressions/api/polars.Expr.take", "reference/expressions/api/polars.Expr.take_every", "reference/expressions/api/polars.Expr.tan", "reference/expressions/api/polars.Expr.tanh", "reference/expressions/api/polars.Expr.to_physical", "reference/expressions/api/polars.Expr.top_k", "reference/expressions/api/polars.Expr.truediv", "reference/expressions/api/polars.Expr.unique", "reference/expressions/api/polars.Expr.unique_counts", "reference/expressions/api/polars.Expr.upper_bound", "reference/expressions/api/polars.Expr.value_counts", "reference/expressions/api/polars.Expr.var", "reference/expressions/api/polars.Expr.where", "reference/expressions/api/polars.Expr.xor", "reference/expressions/api/polars.all", "reference/expressions/api/polars.all_horizontal", "reference/expressions/api/polars.any", "reference/expressions/api/polars.any_horizontal", "reference/expressions/api/polars.apply", "reference/expressions/api/polars.approx_unique", "reference/expressions/api/polars.arange", "reference/expressions/api/polars.arctan2", "reference/expressions/api/polars.arctan2d", "reference/expressions/api/polars.arg_sort_by", "reference/expressions/api/polars.arg_where", "reference/expressions/api/polars.avg", "reference/expressions/api/polars.coalesce", "reference/expressions/api/polars.col", "reference/expressions/api/polars.concat_list", "reference/expressions/api/polars.concat_str", "reference/expressions/api/polars.corr", "reference/expressions/api/polars.count", "reference/expressions/api/polars.cov", "reference/expressions/api/polars.cumfold", "reference/expressions/api/polars.cumreduce", "reference/expressions/api/polars.cumsum", "reference/expressions/api/polars.cumsum_horizontal", "reference/expressions/api/polars.date", "reference/expressions/api/polars.date_range", "reference/expressions/api/polars.date_ranges", "reference/expressions/api/polars.datetime", "reference/expressions/api/polars.duration", "reference/expressions/api/polars.element", "reference/expressions/api/polars.exclude", "reference/expressions/api/polars.first", "reference/expressions/api/polars.fold", "reference/expressions/api/polars.format", "reference/expressions/api/polars.from_epoch", "reference/expressions/api/polars.groups", "reference/expressions/api/polars.head", "reference/expressions/api/polars.implode", "reference/expressions/api/polars.int_range", "reference/expressions/api/polars.int_ranges", "reference/expressions/api/polars.last", "reference/expressions/api/polars.lit", "reference/expressions/api/polars.map", "reference/expressions/api/polars.max", "reference/expressions/api/polars.max_horizontal", "reference/expressions/api/polars.mean", "reference/expressions/api/polars.median", "reference/expressions/api/polars.min", "reference/expressions/api/polars.min_horizontal", "reference/expressions/api/polars.n_unique", "reference/expressions/api/polars.ones", "reference/expressions/api/polars.quantile", "reference/expressions/api/polars.reduce", "reference/expressions/api/polars.repeat", "reference/expressions/api/polars.rolling_corr", "reference/expressions/api/polars.rolling_cov", "reference/expressions/api/polars.select", "reference/expressions/api/polars.sql_expr", "reference/expressions/api/polars.std", "reference/expressions/api/polars.struct", "reference/expressions/api/polars.sum", "reference/expressions/api/polars.sum_horizontal", "reference/expressions/api/polars.tail", "reference/expressions/api/polars.time", "reference/expressions/api/polars.time_range", "reference/expressions/api/polars.time_ranges", "reference/expressions/api/polars.var", "reference/expressions/api/polars.when", "reference/expressions/api/polars.zeros", "reference/expressions/array", "reference/expressions/binary", "reference/expressions/boolean", "reference/expressions/categories", "reference/expressions/columns", "reference/expressions/computation", "reference/expressions/functions", "reference/expressions/index", "reference/expressions/list", "reference/expressions/meta", "reference/expressions/miscellaneous", "reference/expressions/modify_select", "reference/expressions/operators", "reference/expressions/string", "reference/expressions/struct", "reference/expressions/temporal", "reference/expressions/window", "reference/functions", "reference/index", "reference/io", "reference/lazyframe/aggregation", "reference/lazyframe/api/polars.LazyFrame.bottom_k", "reference/lazyframe/api/polars.LazyFrame.cache", "reference/lazyframe/api/polars.LazyFrame.clear", "reference/lazyframe/api/polars.LazyFrame.clone", "reference/lazyframe/api/polars.LazyFrame.collect", "reference/lazyframe/api/polars.LazyFrame.columns", "reference/lazyframe/api/polars.LazyFrame.drop", "reference/lazyframe/api/polars.LazyFrame.drop_nulls", "reference/lazyframe/api/polars.LazyFrame.dtypes", "reference/lazyframe/api/polars.LazyFrame.explain", "reference/lazyframe/api/polars.LazyFrame.explode", "reference/lazyframe/api/polars.LazyFrame.fetch", "reference/lazyframe/api/polars.LazyFrame.fill_nan", "reference/lazyframe/api/polars.LazyFrame.fill_null", "reference/lazyframe/api/polars.LazyFrame.filter", "reference/lazyframe/api/polars.LazyFrame.first", "reference/lazyframe/api/polars.LazyFrame.from_json", "reference/lazyframe/api/polars.LazyFrame.groupby", "reference/lazyframe/api/polars.LazyFrame.groupby_dynamic", "reference/lazyframe/api/polars.LazyFrame.groupby_rolling", "reference/lazyframe/api/polars.LazyFrame.head", "reference/lazyframe/api/polars.LazyFrame.inspect", "reference/lazyframe/api/polars.LazyFrame.interpolate", "reference/lazyframe/api/polars.LazyFrame.join", "reference/lazyframe/api/polars.LazyFrame.join_asof", "reference/lazyframe/api/polars.LazyFrame.last", "reference/lazyframe/api/polars.LazyFrame.lazy", "reference/lazyframe/api/polars.LazyFrame.limit", "reference/lazyframe/api/polars.LazyFrame.map", "reference/lazyframe/api/polars.LazyFrame.max", "reference/lazyframe/api/polars.LazyFrame.mean", "reference/lazyframe/api/polars.LazyFrame.median", "reference/lazyframe/api/polars.LazyFrame.melt", "reference/lazyframe/api/polars.LazyFrame.merge_sorted", "reference/lazyframe/api/polars.LazyFrame.min", "reference/lazyframe/api/polars.LazyFrame.null_count", "reference/lazyframe/api/polars.LazyFrame.pipe", "reference/lazyframe/api/polars.LazyFrame.profile", "reference/lazyframe/api/polars.LazyFrame.quantile", "reference/lazyframe/api/polars.LazyFrame.read_json", "reference/lazyframe/api/polars.LazyFrame.rename", "reference/lazyframe/api/polars.LazyFrame.reverse", "reference/lazyframe/api/polars.LazyFrame.schema", "reference/lazyframe/api/polars.LazyFrame.select", "reference/lazyframe/api/polars.LazyFrame.set_sorted", "reference/lazyframe/api/polars.LazyFrame.shift", "reference/lazyframe/api/polars.LazyFrame.shift_and_fill", "reference/lazyframe/api/polars.LazyFrame.show_graph", "reference/lazyframe/api/polars.LazyFrame.slice", "reference/lazyframe/api/polars.LazyFrame.sort", "reference/lazyframe/api/polars.LazyFrame.std", "reference/lazyframe/api/polars.LazyFrame.sum", "reference/lazyframe/api/polars.LazyFrame.tail", "reference/lazyframe/api/polars.LazyFrame.take_every", "reference/lazyframe/api/polars.LazyFrame.top_k", "reference/lazyframe/api/polars.LazyFrame.unique", "reference/lazyframe/api/polars.LazyFrame.unnest", "reference/lazyframe/api/polars.LazyFrame.update", "reference/lazyframe/api/polars.LazyFrame.var", "reference/lazyframe/api/polars.LazyFrame.width", "reference/lazyframe/api/polars.LazyFrame.with_columns", "reference/lazyframe/api/polars.LazyFrame.with_context", "reference/lazyframe/api/polars.LazyFrame.with_row_count", "reference/lazyframe/api/polars.LazyFrame.write_json", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.agg", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.all", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.apply", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.count", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.first", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.head", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.last", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.max", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.mean", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.median", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.min", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.n_unique", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.quantile", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.sum", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.tail", "reference/lazyframe/attributes", "reference/lazyframe/descriptive", "reference/lazyframe/groupby", "reference/lazyframe/index", "reference/lazyframe/miscellaneous", "reference/lazyframe/modify_select", "reference/selectors", "reference/series/aggregation", "reference/series/api/polars.Series.abs", "reference/series/api/polars.Series.alias", "reference/series/api/polars.Series.all", "reference/series/api/polars.Series.any", "reference/series/api/polars.Series.append", "reference/series/api/polars.Series.apply", "reference/series/api/polars.Series.arccos", "reference/series/api/polars.Series.arccosh", "reference/series/api/polars.Series.arcsin", "reference/series/api/polars.Series.arcsinh", "reference/series/api/polars.Series.arctan", "reference/series/api/polars.Series.arctanh", "reference/series/api/polars.Series.arg_max", "reference/series/api/polars.Series.arg_min", "reference/series/api/polars.Series.arg_sort", "reference/series/api/polars.Series.arg_true", "reference/series/api/polars.Series.arg_unique", "reference/series/api/polars.Series.arr.max", "reference/series/api/polars.Series.arr.min", "reference/series/api/polars.Series.arr.sum", "reference/series/api/polars.Series.arr.unique", "reference/series/api/polars.Series.bin.contains", "reference/series/api/polars.Series.bin.decode", "reference/series/api/polars.Series.bin.encode", "reference/series/api/polars.Series.bin.ends_with", "reference/series/api/polars.Series.bin.starts_with", "reference/series/api/polars.Series.bottom_k", "reference/series/api/polars.Series.cast", "reference/series/api/polars.Series.cat", "reference/series/api/polars.Series.cat.get_categories", "reference/series/api/polars.Series.cat.set_ordering", "reference/series/api/polars.Series.cbrt", "reference/series/api/polars.Series.ceil", "reference/series/api/polars.Series.chunk_lengths", "reference/series/api/polars.Series.clear", "reference/series/api/polars.Series.clip", "reference/series/api/polars.Series.clip_max", "reference/series/api/polars.Series.clip_min", "reference/series/api/polars.Series.clone", "reference/series/api/polars.Series.cos", "reference/series/api/polars.Series.cosh", "reference/series/api/polars.Series.cummax", "reference/series/api/polars.Series.cummin", "reference/series/api/polars.Series.cumprod", "reference/series/api/polars.Series.cumsum", "reference/series/api/polars.Series.cumulative_eval", "reference/series/api/polars.Series.cut", "reference/series/api/polars.Series.describe", "reference/series/api/polars.Series.diff", "reference/series/api/polars.Series.dot", "reference/series/api/polars.Series.drop_nans", "reference/series/api/polars.Series.drop_nulls", "reference/series/api/polars.Series.dt", "reference/series/api/polars.Series.dt.base_utc_offset", "reference/series/api/polars.Series.dt.cast_time_unit", "reference/series/api/polars.Series.dt.combine", "reference/series/api/polars.Series.dt.convert_time_zone", "reference/series/api/polars.Series.dt.date", "reference/series/api/polars.Series.dt.datetime", "reference/series/api/polars.Series.dt.day", "reference/series/api/polars.Series.dt.days", "reference/series/api/polars.Series.dt.dst_offset", "reference/series/api/polars.Series.dt.epoch", "reference/series/api/polars.Series.dt.hour", "reference/series/api/polars.Series.dt.hours", "reference/series/api/polars.Series.dt.is_leap_year", "reference/series/api/polars.Series.dt.iso_year", "reference/series/api/polars.Series.dt.max", "reference/series/api/polars.Series.dt.mean", "reference/series/api/polars.Series.dt.median", "reference/series/api/polars.Series.dt.microsecond", "reference/series/api/polars.Series.dt.microseconds", "reference/series/api/polars.Series.dt.millisecond", "reference/series/api/polars.Series.dt.milliseconds", "reference/series/api/polars.Series.dt.min", "reference/series/api/polars.Series.dt.minute", "reference/series/api/polars.Series.dt.minutes", "reference/series/api/polars.Series.dt.month", "reference/series/api/polars.Series.dt.month_end", "reference/series/api/polars.Series.dt.month_start", "reference/series/api/polars.Series.dt.nanosecond", "reference/series/api/polars.Series.dt.nanoseconds", "reference/series/api/polars.Series.dt.offset_by", "reference/series/api/polars.Series.dt.ordinal_day", "reference/series/api/polars.Series.dt.quarter", "reference/series/api/polars.Series.dt.replace_time_zone", "reference/series/api/polars.Series.dt.round", "reference/series/api/polars.Series.dt.second", "reference/series/api/polars.Series.dt.seconds", "reference/series/api/polars.Series.dt.strftime", "reference/series/api/polars.Series.dt.time", "reference/series/api/polars.Series.dt.timestamp", "reference/series/api/polars.Series.dt.to_string", "reference/series/api/polars.Series.dt.truncate", "reference/series/api/polars.Series.dt.week", "reference/series/api/polars.Series.dt.weekday", "reference/series/api/polars.Series.dt.with_time_unit", "reference/series/api/polars.Series.dt.year", "reference/series/api/polars.Series.dtype", "reference/series/api/polars.Series.entropy", "reference/series/api/polars.Series.estimated_size", "reference/series/api/polars.Series.ewm_mean", "reference/series/api/polars.Series.ewm_std", "reference/series/api/polars.Series.ewm_var", "reference/series/api/polars.Series.exp", "reference/series/api/polars.Series.explode", "reference/series/api/polars.Series.extend", "reference/series/api/polars.Series.extend_constant", "reference/series/api/polars.Series.fill_nan", "reference/series/api/polars.Series.fill_null", "reference/series/api/polars.Series.filter", "reference/series/api/polars.Series.flags", "reference/series/api/polars.Series.floor", "reference/series/api/polars.Series.get_chunks", "reference/series/api/polars.Series.has_validity", "reference/series/api/polars.Series.hash", "reference/series/api/polars.Series.head", "reference/series/api/polars.Series.hist", "reference/series/api/polars.Series.implode", "reference/series/api/polars.Series.inner_dtype", "reference/series/api/polars.Series.interpolate", "reference/series/api/polars.Series.is_between", "reference/series/api/polars.Series.is_boolean", "reference/series/api/polars.Series.is_duplicated", "reference/series/api/polars.Series.is_empty", "reference/series/api/polars.Series.is_finite", "reference/series/api/polars.Series.is_first", "reference/series/api/polars.Series.is_float", "reference/series/api/polars.Series.is_in", "reference/series/api/polars.Series.is_infinite", "reference/series/api/polars.Series.is_integer", "reference/series/api/polars.Series.is_nan", "reference/series/api/polars.Series.is_not_nan", "reference/series/api/polars.Series.is_not_null", "reference/series/api/polars.Series.is_null", "reference/series/api/polars.Series.is_numeric", "reference/series/api/polars.Series.is_sorted", "reference/series/api/polars.Series.is_temporal", "reference/series/api/polars.Series.is_unique", "reference/series/api/polars.Series.is_utf8", "reference/series/api/polars.Series.item", "reference/series/api/polars.Series.kurtosis", "reference/series/api/polars.Series.len", "reference/series/api/polars.Series.limit", "reference/series/api/polars.Series.list", "reference/series/api/polars.Series.list.all", "reference/series/api/polars.Series.list.any", "reference/series/api/polars.Series.list.arg_max", "reference/series/api/polars.Series.list.arg_min", "reference/series/api/polars.Series.list.concat", "reference/series/api/polars.Series.list.contains", "reference/series/api/polars.Series.list.count_match", "reference/series/api/polars.Series.list.diff", "reference/series/api/polars.Series.list.difference", "reference/series/api/polars.Series.list.eval", "reference/series/api/polars.Series.list.explode", "reference/series/api/polars.Series.list.first", "reference/series/api/polars.Series.list.get", "reference/series/api/polars.Series.list.head", "reference/series/api/polars.Series.list.intersection", "reference/series/api/polars.Series.list.join", "reference/series/api/polars.Series.list.last", "reference/series/api/polars.Series.list.lengths", "reference/series/api/polars.Series.list.max", "reference/series/api/polars.Series.list.mean", "reference/series/api/polars.Series.list.min", "reference/series/api/polars.Series.list.reverse", "reference/series/api/polars.Series.list.shift", "reference/series/api/polars.Series.list.slice", "reference/series/api/polars.Series.list.sort", "reference/series/api/polars.Series.list.sum", "reference/series/api/polars.Series.list.tail", "reference/series/api/polars.Series.list.take", "reference/series/api/polars.Series.list.to_struct", "reference/series/api/polars.Series.list.union", "reference/series/api/polars.Series.list.unique", "reference/series/api/polars.Series.log", "reference/series/api/polars.Series.log10", "reference/series/api/polars.Series.log1p", "reference/series/api/polars.Series.lower_bound", "reference/series/api/polars.Series.map_dict", "reference/series/api/polars.Series.max", "reference/series/api/polars.Series.mean", "reference/series/api/polars.Series.median", "reference/series/api/polars.Series.min", "reference/series/api/polars.Series.mode", "reference/series/api/polars.Series.n_chunks", "reference/series/api/polars.Series.n_unique", "reference/series/api/polars.Series.name", "reference/series/api/polars.Series.nan_max", "reference/series/api/polars.Series.nan_min", "reference/series/api/polars.Series.new_from_index", "reference/series/api/polars.Series.null_count", "reference/series/api/polars.Series.pct_change", "reference/series/api/polars.Series.peak_max", "reference/series/api/polars.Series.peak_min", "reference/series/api/polars.Series.product", "reference/series/api/polars.Series.qcut", "reference/series/api/polars.Series.quantile", "reference/series/api/polars.Series.rank", "reference/series/api/polars.Series.rechunk", "reference/series/api/polars.Series.reinterpret", "reference/series/api/polars.Series.rename", "reference/series/api/polars.Series.reshape", "reference/series/api/polars.Series.reverse", "reference/series/api/polars.Series.rle", "reference/series/api/polars.Series.rle_id", "reference/series/api/polars.Series.rolling_apply", "reference/series/api/polars.Series.rolling_max", "reference/series/api/polars.Series.rolling_mean", "reference/series/api/polars.Series.rolling_median", "reference/series/api/polars.Series.rolling_min", "reference/series/api/polars.Series.rolling_quantile", "reference/series/api/polars.Series.rolling_skew", "reference/series/api/polars.Series.rolling_std", "reference/series/api/polars.Series.rolling_sum", "reference/series/api/polars.Series.rolling_var", "reference/series/api/polars.Series.round", "reference/series/api/polars.Series.sample", "reference/series/api/polars.Series.search_sorted", "reference/series/api/polars.Series.series_equal", "reference/series/api/polars.Series.set", "reference/series/api/polars.Series.set_at_idx", "reference/series/api/polars.Series.set_sorted", "reference/series/api/polars.Series.shape", "reference/series/api/polars.Series.shift", "reference/series/api/polars.Series.shift_and_fill", "reference/series/api/polars.Series.shrink_dtype", "reference/series/api/polars.Series.shrink_to_fit", "reference/series/api/polars.Series.shuffle", "reference/series/api/polars.Series.sign", "reference/series/api/polars.Series.sin", "reference/series/api/polars.Series.sinh", "reference/series/api/polars.Series.skew", "reference/series/api/polars.Series.slice", "reference/series/api/polars.Series.sort", "reference/series/api/polars.Series.sqrt", "reference/series/api/polars.Series.std", "reference/series/api/polars.Series.str", "reference/series/api/polars.Series.str.concat", "reference/series/api/polars.Series.str.contains", "reference/series/api/polars.Series.str.count_match", "reference/series/api/polars.Series.str.decode", "reference/series/api/polars.Series.str.encode", "reference/series/api/polars.Series.str.ends_with", "reference/series/api/polars.Series.str.explode", "reference/series/api/polars.Series.str.extract", "reference/series/api/polars.Series.str.extract_all", "reference/series/api/polars.Series.str.json_extract", "reference/series/api/polars.Series.str.json_path_match", "reference/series/api/polars.Series.str.lengths", "reference/series/api/polars.Series.str.ljust", "reference/series/api/polars.Series.str.lstrip", "reference/series/api/polars.Series.str.n_chars", "reference/series/api/polars.Series.str.parse_int", "reference/series/api/polars.Series.str.replace", "reference/series/api/polars.Series.str.replace_all", "reference/series/api/polars.Series.str.rjust", "reference/series/api/polars.Series.str.rstrip", "reference/series/api/polars.Series.str.slice", "reference/series/api/polars.Series.str.split", "reference/series/api/polars.Series.str.split_exact", "reference/series/api/polars.Series.str.splitn", "reference/series/api/polars.Series.str.starts_with", "reference/series/api/polars.Series.str.strip", "reference/series/api/polars.Series.str.strptime", "reference/series/api/polars.Series.str.to_date", "reference/series/api/polars.Series.str.to_datetime", "reference/series/api/polars.Series.str.to_decimal", "reference/series/api/polars.Series.str.to_lowercase", "reference/series/api/polars.Series.str.to_time", "reference/series/api/polars.Series.str.to_titlecase", "reference/series/api/polars.Series.str.to_uppercase", "reference/series/api/polars.Series.str.zfill", "reference/series/api/polars.Series.struct.field", "reference/series/api/polars.Series.struct.fields", "reference/series/api/polars.Series.struct.rename_fields", "reference/series/api/polars.Series.struct.schema", "reference/series/api/polars.Series.struct.unnest", "reference/series/api/polars.Series.sum", "reference/series/api/polars.Series.tail", "reference/series/api/polars.Series.take", "reference/series/api/polars.Series.take_every", "reference/series/api/polars.Series.tan", "reference/series/api/polars.Series.tanh", "reference/series/api/polars.Series.time_unit", "reference/series/api/polars.Series.to_arrow", "reference/series/api/polars.Series.to_dummies", "reference/series/api/polars.Series.to_frame", "reference/series/api/polars.Series.to_init_repr", "reference/series/api/polars.Series.to_list", "reference/series/api/polars.Series.to_numpy", "reference/series/api/polars.Series.to_pandas", "reference/series/api/polars.Series.to_physical", "reference/series/api/polars.Series.top_k", "reference/series/api/polars.Series.unique", "reference/series/api/polars.Series.unique_counts", "reference/series/api/polars.Series.upper_bound", "reference/series/api/polars.Series.value_counts", "reference/series/api/polars.Series.var", "reference/series/api/polars.Series.view", "reference/series/api/polars.Series.zip_with", "reference/series/array", "reference/series/attributes", "reference/series/binary", "reference/series/boolean", "reference/series/categories", "reference/series/computation", "reference/series/descriptive", "reference/series/export", "reference/series/index", "reference/series/list", "reference/series/miscellaneous", "reference/series/modify_select", "reference/series/string", "reference/series/struct", "reference/series/temporal", "reference/sql", "reference/testing", "reference/utils"], "filenames": ["index.rst", "reference/api.rst", "reference/api/polars.Array.rst", "reference/api/polars.Binary.rst", "reference/api/polars.Boolean.rst", "reference/api/polars.Categorical.rst", "reference/api/polars.Config.activate_decimals.rst", "reference/api/polars.Config.load.rst", "reference/api/polars.Config.restore_defaults.rst", "reference/api/polars.Config.save.rst", "reference/api/polars.Config.set_ascii_tables.rst", "reference/api/polars.Config.set_fmt_float.rst", "reference/api/polars.Config.set_fmt_str_lengths.rst", "reference/api/polars.Config.set_streaming_chunk_size.rst", "reference/api/polars.Config.set_tbl_cell_alignment.rst", "reference/api/polars.Config.set_tbl_cols.rst", "reference/api/polars.Config.set_tbl_column_data_type_inline.rst", "reference/api/polars.Config.set_tbl_dataframe_shape_below.rst", "reference/api/polars.Config.set_tbl_formatting.rst", "reference/api/polars.Config.set_tbl_hide_column_data_types.rst", "reference/api/polars.Config.set_tbl_hide_column_names.rst", "reference/api/polars.Config.set_tbl_hide_dataframe_shape.rst", "reference/api/polars.Config.set_tbl_hide_dtype_separator.rst", "reference/api/polars.Config.set_tbl_rows.rst", "reference/api/polars.Config.set_tbl_width_chars.rst", "reference/api/polars.Config.set_verbose.rst", "reference/api/polars.Config.state.rst", "reference/api/polars.DataFrame.write_avro.rst", "reference/api/polars.DataFrame.write_csv.rst", "reference/api/polars.DataFrame.write_database.rst", "reference/api/polars.DataFrame.write_delta.rst", "reference/api/polars.DataFrame.write_excel.rst", "reference/api/polars.DataFrame.write_ipc.rst", "reference/api/polars.DataFrame.write_json.rst", "reference/api/polars.DataFrame.write_ndjson.rst", "reference/api/polars.DataFrame.write_parquet.rst", "reference/api/polars.DataType.rst", "reference/api/polars.Date.rst", "reference/api/polars.Datetime.rst", "reference/api/polars.Decimal.rst", "reference/api/polars.Duration.rst", "reference/api/polars.Float32.rst", "reference/api/polars.Float64.rst", "reference/api/polars.Int16.rst", "reference/api/polars.Int32.rst", "reference/api/polars.Int64.rst", "reference/api/polars.Int8.rst", "reference/api/polars.LazyFrame.sink_ipc.rst", "reference/api/polars.LazyFrame.sink_parquet.rst", "reference/api/polars.List.rst", "reference/api/polars.Null.rst", "reference/api/polars.Object.rst", "reference/api/polars.SQLContext.execute.rst", "reference/api/polars.SQLContext.register.rst", "reference/api/polars.SQLContext.register_globals.rst", "reference/api/polars.SQLContext.register_many.rst", "reference/api/polars.SQLContext.tables.rst", "reference/api/polars.SQLContext.unregister.rst", "reference/api/polars.StringCache.rst", "reference/api/polars.Struct.rst", "reference/api/polars.Time.rst", "reference/api/polars.UInt16.rst", "reference/api/polars.UInt32.rst", "reference/api/polars.UInt64.rst", "reference/api/polars.UInt8.rst", "reference/api/polars.Unknown.rst", "reference/api/polars.Utf8.rst", "reference/api/polars.align_frames.rst", "reference/api/polars.api.register_dataframe_namespace.rst", "reference/api/polars.api.register_expr_namespace.rst", "reference/api/polars.api.register_lazyframe_namespace.rst", "reference/api/polars.api.register_series_namespace.rst", "reference/api/polars.build_info.rst", "reference/api/polars.collect_all.rst", "reference/api/polars.concat.rst", "reference/api/polars.enable_string_cache.rst", "reference/api/polars.exceptions.ArrowError.rst", "reference/api/polars.exceptions.ColumnNotFoundError.rst", "reference/api/polars.exceptions.ComputeError.rst", "reference/api/polars.exceptions.DuplicateError.rst", "reference/api/polars.exceptions.InvalidOperationError.rst", "reference/api/polars.exceptions.NoDataError.rst", "reference/api/polars.exceptions.NoRowsReturnedError.rst", "reference/api/polars.exceptions.PolarsPanicError.rst", "reference/api/polars.exceptions.RowsError.rst", "reference/api/polars.exceptions.SchemaError.rst", "reference/api/polars.exceptions.SchemaFieldNotFoundError.rst", "reference/api/polars.exceptions.ShapeError.rst", "reference/api/polars.exceptions.StructFieldNotFoundError.rst", "reference/api/polars.exceptions.TooManyRowsReturnedError.rst", "reference/api/polars.from_arrow.rst", "reference/api/polars.from_dataframe.rst", "reference/api/polars.from_dict.rst", "reference/api/polars.from_dicts.rst", "reference/api/polars.from_numpy.rst", "reference/api/polars.from_pandas.rst", "reference/api/polars.from_records.rst", "reference/api/polars.from_repr.rst", "reference/api/polars.get_index_type.rst", "reference/api/polars.io.csv.batched_reader.BatchedCsvReader.next_batches.rst", "reference/api/polars.read_avro.rst", "reference/api/polars.read_csv.rst", "reference/api/polars.read_csv_batched.rst", "reference/api/polars.read_database.rst", "reference/api/polars.read_delta.rst", "reference/api/polars.read_excel.rst", "reference/api/polars.read_ipc.rst", "reference/api/polars.read_ipc_schema.rst", "reference/api/polars.read_json.rst", "reference/api/polars.read_ndjson.rst", "reference/api/polars.read_parquet.rst", "reference/api/polars.read_parquet_schema.rst", "reference/api/polars.scan_csv.rst", "reference/api/polars.scan_delta.rst", "reference/api/polars.scan_ipc.rst", "reference/api/polars.scan_ndjson.rst", "reference/api/polars.scan_parquet.rst", "reference/api/polars.scan_pyarrow_dataset.rst", "reference/api/polars.show_versions.rst", "reference/api/polars.testing.assert_frame_equal.rst", "reference/api/polars.testing.assert_series_equal.rst", "reference/api/polars.testing.parametric.column.rst", "reference/api/polars.testing.parametric.columns.rst", "reference/api/polars.testing.parametric.create_list_strategy.rst", "reference/api/polars.testing.parametric.dataframes.rst", "reference/api/polars.testing.parametric.load_profile.rst", "reference/api/polars.testing.parametric.series.rst", "reference/api/polars.testing.parametric.set_profile.rst", "reference/api/polars.threadpool_size.rst", "reference/api/polars.using_string_cache.rst", "reference/config.rst", "reference/dataframe/aggregation.rst", "reference/dataframe/api/polars.DataFrame.__dataframe__.rst", "reference/dataframe/api/polars.DataFrame.apply.rst", "reference/dataframe/api/polars.DataFrame.bottom_k.rst", "reference/dataframe/api/polars.DataFrame.clear.rst", "reference/dataframe/api/polars.DataFrame.clone.rst", "reference/dataframe/api/polars.DataFrame.columns.rst", "reference/dataframe/api/polars.DataFrame.corr.rst", "reference/dataframe/api/polars.DataFrame.describe.rst", "reference/dataframe/api/polars.DataFrame.drop.rst", "reference/dataframe/api/polars.DataFrame.drop_in_place.rst", "reference/dataframe/api/polars.DataFrame.drop_nulls.rst", "reference/dataframe/api/polars.DataFrame.dtypes.rst", "reference/dataframe/api/polars.DataFrame.estimated_size.rst", "reference/dataframe/api/polars.DataFrame.explode.rst", "reference/dataframe/api/polars.DataFrame.extend.rst", "reference/dataframe/api/polars.DataFrame.fill_nan.rst", "reference/dataframe/api/polars.DataFrame.fill_null.rst", "reference/dataframe/api/polars.DataFrame.filter.rst", "reference/dataframe/api/polars.DataFrame.find_idx_by_name.rst", "reference/dataframe/api/polars.DataFrame.flags.rst", "reference/dataframe/api/polars.DataFrame.fold.rst", "reference/dataframe/api/polars.DataFrame.frame_equal.rst", "reference/dataframe/api/polars.DataFrame.get_column.rst", "reference/dataframe/api/polars.DataFrame.get_columns.rst", "reference/dataframe/api/polars.DataFrame.glimpse.rst", "reference/dataframe/api/polars.DataFrame.groupby.rst", "reference/dataframe/api/polars.DataFrame.groupby_dynamic.rst", "reference/dataframe/api/polars.DataFrame.groupby_rolling.rst", "reference/dataframe/api/polars.DataFrame.hash_rows.rst", "reference/dataframe/api/polars.DataFrame.head.rst", "reference/dataframe/api/polars.DataFrame.height.rst", "reference/dataframe/api/polars.DataFrame.hstack.rst", "reference/dataframe/api/polars.DataFrame.insert_at_idx.rst", "reference/dataframe/api/polars.DataFrame.interpolate.rst", "reference/dataframe/api/polars.DataFrame.is_duplicated.rst", "reference/dataframe/api/polars.DataFrame.is_empty.rst", "reference/dataframe/api/polars.DataFrame.is_unique.rst", "reference/dataframe/api/polars.DataFrame.item.rst", "reference/dataframe/api/polars.DataFrame.iter_rows.rst", "reference/dataframe/api/polars.DataFrame.iter_slices.rst", "reference/dataframe/api/polars.DataFrame.join.rst", "reference/dataframe/api/polars.DataFrame.join_asof.rst", "reference/dataframe/api/polars.DataFrame.lazy.rst", "reference/dataframe/api/polars.DataFrame.limit.rst", "reference/dataframe/api/polars.DataFrame.max.rst", "reference/dataframe/api/polars.DataFrame.mean.rst", "reference/dataframe/api/polars.DataFrame.median.rst", "reference/dataframe/api/polars.DataFrame.melt.rst", "reference/dataframe/api/polars.DataFrame.merge_sorted.rst", "reference/dataframe/api/polars.DataFrame.min.rst", "reference/dataframe/api/polars.DataFrame.n_chunks.rst", "reference/dataframe/api/polars.DataFrame.n_unique.rst", "reference/dataframe/api/polars.DataFrame.null_count.rst", "reference/dataframe/api/polars.DataFrame.partition_by.rst", "reference/dataframe/api/polars.DataFrame.pipe.rst", "reference/dataframe/api/polars.DataFrame.pivot.rst", "reference/dataframe/api/polars.DataFrame.product.rst", "reference/dataframe/api/polars.DataFrame.quantile.rst", "reference/dataframe/api/polars.DataFrame.rechunk.rst", "reference/dataframe/api/polars.DataFrame.rename.rst", "reference/dataframe/api/polars.DataFrame.replace.rst", "reference/dataframe/api/polars.DataFrame.replace_at_idx.rst", "reference/dataframe/api/polars.DataFrame.reverse.rst", "reference/dataframe/api/polars.DataFrame.row.rst", "reference/dataframe/api/polars.DataFrame.rows.rst", "reference/dataframe/api/polars.DataFrame.rows_by_key.rst", "reference/dataframe/api/polars.DataFrame.sample.rst", "reference/dataframe/api/polars.DataFrame.schema.rst", "reference/dataframe/api/polars.DataFrame.select.rst", "reference/dataframe/api/polars.DataFrame.set_sorted.rst", "reference/dataframe/api/polars.DataFrame.shape.rst", "reference/dataframe/api/polars.DataFrame.shift.rst", "reference/dataframe/api/polars.DataFrame.shift_and_fill.rst", "reference/dataframe/api/polars.DataFrame.shrink_to_fit.rst", "reference/dataframe/api/polars.DataFrame.slice.rst", "reference/dataframe/api/polars.DataFrame.sort.rst", "reference/dataframe/api/polars.DataFrame.std.rst", "reference/dataframe/api/polars.DataFrame.sum.rst", "reference/dataframe/api/polars.DataFrame.tail.rst", "reference/dataframe/api/polars.DataFrame.take_every.rst", "reference/dataframe/api/polars.DataFrame.to_arrow.rst", "reference/dataframe/api/polars.DataFrame.to_dict.rst", "reference/dataframe/api/polars.DataFrame.to_dicts.rst", "reference/dataframe/api/polars.DataFrame.to_dummies.rst", "reference/dataframe/api/polars.DataFrame.to_init_repr.rst", "reference/dataframe/api/polars.DataFrame.to_numpy.rst", "reference/dataframe/api/polars.DataFrame.to_pandas.rst", "reference/dataframe/api/polars.DataFrame.to_series.rst", "reference/dataframe/api/polars.DataFrame.to_struct.rst", "reference/dataframe/api/polars.DataFrame.top_k.rst", "reference/dataframe/api/polars.DataFrame.transpose.rst", "reference/dataframe/api/polars.DataFrame.unique.rst", "reference/dataframe/api/polars.DataFrame.unnest.rst", "reference/dataframe/api/polars.DataFrame.unstack.rst", "reference/dataframe/api/polars.DataFrame.update.rst", "reference/dataframe/api/polars.DataFrame.upsample.rst", "reference/dataframe/api/polars.DataFrame.var.rst", "reference/dataframe/api/polars.DataFrame.vstack.rst", "reference/dataframe/api/polars.DataFrame.width.rst", "reference/dataframe/api/polars.DataFrame.with_columns.rst", "reference/dataframe/api/polars.DataFrame.with_row_count.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.__iter__.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.agg.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.all.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.apply.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.count.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.first.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.head.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.last.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.max.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.mean.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.median.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.min.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.n_unique.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.quantile.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.sum.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.tail.rst", "reference/dataframe/attributes.rst", "reference/dataframe/computation.rst", "reference/dataframe/descriptive.rst", "reference/dataframe/export.rst", "reference/dataframe/groupby.rst", "reference/dataframe/index.rst", "reference/dataframe/miscellaneous.rst", "reference/dataframe/modify_select.rst", "reference/datatypes.rst", "reference/exceptions.rst", "reference/expressions/aggregation.rst", "reference/expressions/api/polars.Expr.abs.rst", "reference/expressions/api/polars.Expr.add.rst", "reference/expressions/api/polars.Expr.agg_groups.rst", "reference/expressions/api/polars.Expr.alias.rst", "reference/expressions/api/polars.Expr.all.rst", "reference/expressions/api/polars.Expr.and_.rst", "reference/expressions/api/polars.Expr.any.rst", "reference/expressions/api/polars.Expr.append.rst", "reference/expressions/api/polars.Expr.apply.rst", "reference/expressions/api/polars.Expr.approx_unique.rst", "reference/expressions/api/polars.Expr.arccos.rst", "reference/expressions/api/polars.Expr.arccosh.rst", "reference/expressions/api/polars.Expr.arcsin.rst", "reference/expressions/api/polars.Expr.arcsinh.rst", "reference/expressions/api/polars.Expr.arctan.rst", "reference/expressions/api/polars.Expr.arctanh.rst", "reference/expressions/api/polars.Expr.arg_max.rst", "reference/expressions/api/polars.Expr.arg_min.rst", "reference/expressions/api/polars.Expr.arg_sort.rst", "reference/expressions/api/polars.Expr.arg_true.rst", "reference/expressions/api/polars.Expr.arg_unique.rst", "reference/expressions/api/polars.Expr.arr.max.rst", "reference/expressions/api/polars.Expr.arr.min.rst", "reference/expressions/api/polars.Expr.arr.sum.rst", "reference/expressions/api/polars.Expr.arr.unique.rst", "reference/expressions/api/polars.Expr.backward_fill.rst", "reference/expressions/api/polars.Expr.bin.contains.rst", "reference/expressions/api/polars.Expr.bin.decode.rst", "reference/expressions/api/polars.Expr.bin.encode.rst", "reference/expressions/api/polars.Expr.bin.ends_with.rst", "reference/expressions/api/polars.Expr.bin.starts_with.rst", "reference/expressions/api/polars.Expr.bottom_k.rst", "reference/expressions/api/polars.Expr.cache.rst", "reference/expressions/api/polars.Expr.cast.rst", "reference/expressions/api/polars.Expr.cat.get_categories.rst", "reference/expressions/api/polars.Expr.cat.set_ordering.rst", "reference/expressions/api/polars.Expr.cbrt.rst", "reference/expressions/api/polars.Expr.ceil.rst", "reference/expressions/api/polars.Expr.clip.rst", "reference/expressions/api/polars.Expr.clip_max.rst", "reference/expressions/api/polars.Expr.clip_min.rst", "reference/expressions/api/polars.Expr.cos.rst", "reference/expressions/api/polars.Expr.cosh.rst", "reference/expressions/api/polars.Expr.count.rst", "reference/expressions/api/polars.Expr.cumcount.rst", "reference/expressions/api/polars.Expr.cummax.rst", "reference/expressions/api/polars.Expr.cummin.rst", "reference/expressions/api/polars.Expr.cumprod.rst", "reference/expressions/api/polars.Expr.cumsum.rst", "reference/expressions/api/polars.Expr.cumulative_eval.rst", "reference/expressions/api/polars.Expr.cut.rst", "reference/expressions/api/polars.Expr.degrees.rst", "reference/expressions/api/polars.Expr.diff.rst", "reference/expressions/api/polars.Expr.dot.rst", "reference/expressions/api/polars.Expr.drop_nans.rst", "reference/expressions/api/polars.Expr.drop_nulls.rst", "reference/expressions/api/polars.Expr.dt.base_utc_offset.rst", "reference/expressions/api/polars.Expr.dt.cast_time_unit.rst", "reference/expressions/api/polars.Expr.dt.combine.rst", "reference/expressions/api/polars.Expr.dt.convert_time_zone.rst", "reference/expressions/api/polars.Expr.dt.date.rst", "reference/expressions/api/polars.Expr.dt.datetime.rst", "reference/expressions/api/polars.Expr.dt.day.rst", "reference/expressions/api/polars.Expr.dt.days.rst", "reference/expressions/api/polars.Expr.dt.dst_offset.rst", "reference/expressions/api/polars.Expr.dt.epoch.rst", "reference/expressions/api/polars.Expr.dt.hour.rst", "reference/expressions/api/polars.Expr.dt.hours.rst", "reference/expressions/api/polars.Expr.dt.is_leap_year.rst", "reference/expressions/api/polars.Expr.dt.iso_year.rst", "reference/expressions/api/polars.Expr.dt.microsecond.rst", "reference/expressions/api/polars.Expr.dt.microseconds.rst", "reference/expressions/api/polars.Expr.dt.millisecond.rst", "reference/expressions/api/polars.Expr.dt.milliseconds.rst", "reference/expressions/api/polars.Expr.dt.minute.rst", "reference/expressions/api/polars.Expr.dt.minutes.rst", "reference/expressions/api/polars.Expr.dt.month.rst", "reference/expressions/api/polars.Expr.dt.month_end.rst", "reference/expressions/api/polars.Expr.dt.month_start.rst", "reference/expressions/api/polars.Expr.dt.nanosecond.rst", "reference/expressions/api/polars.Expr.dt.nanoseconds.rst", "reference/expressions/api/polars.Expr.dt.offset_by.rst", "reference/expressions/api/polars.Expr.dt.ordinal_day.rst", "reference/expressions/api/polars.Expr.dt.quarter.rst", "reference/expressions/api/polars.Expr.dt.replace_time_zone.rst", "reference/expressions/api/polars.Expr.dt.round.rst", "reference/expressions/api/polars.Expr.dt.second.rst", "reference/expressions/api/polars.Expr.dt.seconds.rst", "reference/expressions/api/polars.Expr.dt.strftime.rst", "reference/expressions/api/polars.Expr.dt.time.rst", "reference/expressions/api/polars.Expr.dt.timestamp.rst", "reference/expressions/api/polars.Expr.dt.to_string.rst", "reference/expressions/api/polars.Expr.dt.truncate.rst", "reference/expressions/api/polars.Expr.dt.week.rst", "reference/expressions/api/polars.Expr.dt.weekday.rst", "reference/expressions/api/polars.Expr.dt.with_time_unit.rst", "reference/expressions/api/polars.Expr.dt.year.rst", "reference/expressions/api/polars.Expr.entropy.rst", "reference/expressions/api/polars.Expr.eq.rst", "reference/expressions/api/polars.Expr.eq_missing.rst", "reference/expressions/api/polars.Expr.ewm_mean.rst", "reference/expressions/api/polars.Expr.ewm_std.rst", "reference/expressions/api/polars.Expr.ewm_var.rst", "reference/expressions/api/polars.Expr.exclude.rst", "reference/expressions/api/polars.Expr.exp.rst", "reference/expressions/api/polars.Expr.explode.rst", "reference/expressions/api/polars.Expr.extend_constant.rst", "reference/expressions/api/polars.Expr.fill_nan.rst", "reference/expressions/api/polars.Expr.fill_null.rst", "reference/expressions/api/polars.Expr.filter.rst", "reference/expressions/api/polars.Expr.first.rst", "reference/expressions/api/polars.Expr.flatten.rst", "reference/expressions/api/polars.Expr.floor.rst", "reference/expressions/api/polars.Expr.floordiv.rst", "reference/expressions/api/polars.Expr.forward_fill.rst", "reference/expressions/api/polars.Expr.from_json.rst", "reference/expressions/api/polars.Expr.ge.rst", "reference/expressions/api/polars.Expr.gt.rst", "reference/expressions/api/polars.Expr.hash.rst", "reference/expressions/api/polars.Expr.head.rst", "reference/expressions/api/polars.Expr.implode.rst", "reference/expressions/api/polars.Expr.inspect.rst", "reference/expressions/api/polars.Expr.interpolate.rst", "reference/expressions/api/polars.Expr.is_between.rst", "reference/expressions/api/polars.Expr.is_duplicated.rst", "reference/expressions/api/polars.Expr.is_finite.rst", "reference/expressions/api/polars.Expr.is_first.rst", "reference/expressions/api/polars.Expr.is_in.rst", "reference/expressions/api/polars.Expr.is_infinite.rst", "reference/expressions/api/polars.Expr.is_nan.rst", "reference/expressions/api/polars.Expr.is_not.rst", "reference/expressions/api/polars.Expr.is_not_nan.rst", "reference/expressions/api/polars.Expr.is_not_null.rst", "reference/expressions/api/polars.Expr.is_null.rst", "reference/expressions/api/polars.Expr.is_unique.rst", "reference/expressions/api/polars.Expr.keep_name.rst", "reference/expressions/api/polars.Expr.kurtosis.rst", "reference/expressions/api/polars.Expr.last.rst", "reference/expressions/api/polars.Expr.le.rst", "reference/expressions/api/polars.Expr.len.rst", "reference/expressions/api/polars.Expr.limit.rst", "reference/expressions/api/polars.Expr.list.all.rst", "reference/expressions/api/polars.Expr.list.any.rst", "reference/expressions/api/polars.Expr.list.arg_max.rst", "reference/expressions/api/polars.Expr.list.arg_min.rst", "reference/expressions/api/polars.Expr.list.concat.rst", "reference/expressions/api/polars.Expr.list.contains.rst", "reference/expressions/api/polars.Expr.list.count_match.rst", "reference/expressions/api/polars.Expr.list.diff.rst", "reference/expressions/api/polars.Expr.list.difference.rst", "reference/expressions/api/polars.Expr.list.eval.rst", "reference/expressions/api/polars.Expr.list.explode.rst", "reference/expressions/api/polars.Expr.list.first.rst", "reference/expressions/api/polars.Expr.list.get.rst", "reference/expressions/api/polars.Expr.list.head.rst", "reference/expressions/api/polars.Expr.list.intersection.rst", "reference/expressions/api/polars.Expr.list.join.rst", "reference/expressions/api/polars.Expr.list.last.rst", "reference/expressions/api/polars.Expr.list.lengths.rst", "reference/expressions/api/polars.Expr.list.max.rst", "reference/expressions/api/polars.Expr.list.mean.rst", "reference/expressions/api/polars.Expr.list.min.rst", "reference/expressions/api/polars.Expr.list.reverse.rst", "reference/expressions/api/polars.Expr.list.shift.rst", "reference/expressions/api/polars.Expr.list.slice.rst", "reference/expressions/api/polars.Expr.list.sort.rst", "reference/expressions/api/polars.Expr.list.sum.rst", "reference/expressions/api/polars.Expr.list.tail.rst", "reference/expressions/api/polars.Expr.list.take.rst", "reference/expressions/api/polars.Expr.list.to_struct.rst", "reference/expressions/api/polars.Expr.list.union.rst", "reference/expressions/api/polars.Expr.list.unique.rst", "reference/expressions/api/polars.Expr.log.rst", "reference/expressions/api/polars.Expr.log10.rst", "reference/expressions/api/polars.Expr.log1p.rst", "reference/expressions/api/polars.Expr.lower_bound.rst", "reference/expressions/api/polars.Expr.lt.rst", "reference/expressions/api/polars.Expr.map.rst", "reference/expressions/api/polars.Expr.map_alias.rst", "reference/expressions/api/polars.Expr.map_dict.rst", "reference/expressions/api/polars.Expr.max.rst", "reference/expressions/api/polars.Expr.mean.rst", "reference/expressions/api/polars.Expr.median.rst", "reference/expressions/api/polars.Expr.meta.eq.rst", "reference/expressions/api/polars.Expr.meta.has_multiple_outputs.rst", "reference/expressions/api/polars.Expr.meta.is_regex_projection.rst", "reference/expressions/api/polars.Expr.meta.ne.rst", "reference/expressions/api/polars.Expr.meta.output_name.rst", "reference/expressions/api/polars.Expr.meta.pop.rst", "reference/expressions/api/polars.Expr.meta.root_names.rst", "reference/expressions/api/polars.Expr.meta.tree_format.rst", "reference/expressions/api/polars.Expr.meta.undo_aliases.rst", "reference/expressions/api/polars.Expr.meta.write_json.rst", "reference/expressions/api/polars.Expr.min.rst", "reference/expressions/api/polars.Expr.mod.rst", "reference/expressions/api/polars.Expr.mode.rst", "reference/expressions/api/polars.Expr.mul.rst", "reference/expressions/api/polars.Expr.n_unique.rst", "reference/expressions/api/polars.Expr.nan_max.rst", "reference/expressions/api/polars.Expr.nan_min.rst", "reference/expressions/api/polars.Expr.ne.rst", "reference/expressions/api/polars.Expr.ne_missing.rst", "reference/expressions/api/polars.Expr.null_count.rst", "reference/expressions/api/polars.Expr.or_.rst", "reference/expressions/api/polars.Expr.over.rst", "reference/expressions/api/polars.Expr.pct_change.rst", "reference/expressions/api/polars.Expr.pipe.rst", "reference/expressions/api/polars.Expr.pow.rst", "reference/expressions/api/polars.Expr.prefix.rst", "reference/expressions/api/polars.Expr.product.rst", "reference/expressions/api/polars.Expr.qcut.rst", "reference/expressions/api/polars.Expr.quantile.rst", "reference/expressions/api/polars.Expr.radians.rst", "reference/expressions/api/polars.Expr.rank.rst", "reference/expressions/api/polars.Expr.rechunk.rst", "reference/expressions/api/polars.Expr.reinterpret.rst", "reference/expressions/api/polars.Expr.repeat_by.rst", "reference/expressions/api/polars.Expr.reshape.rst", "reference/expressions/api/polars.Expr.reverse.rst", "reference/expressions/api/polars.Expr.rle.rst", "reference/expressions/api/polars.Expr.rle_id.rst", "reference/expressions/api/polars.Expr.rolling_apply.rst", "reference/expressions/api/polars.Expr.rolling_max.rst", "reference/expressions/api/polars.Expr.rolling_mean.rst", "reference/expressions/api/polars.Expr.rolling_median.rst", "reference/expressions/api/polars.Expr.rolling_min.rst", "reference/expressions/api/polars.Expr.rolling_quantile.rst", "reference/expressions/api/polars.Expr.rolling_skew.rst", "reference/expressions/api/polars.Expr.rolling_std.rst", "reference/expressions/api/polars.Expr.rolling_sum.rst", "reference/expressions/api/polars.Expr.rolling_var.rst", "reference/expressions/api/polars.Expr.round.rst", "reference/expressions/api/polars.Expr.sample.rst", "reference/expressions/api/polars.Expr.search_sorted.rst", "reference/expressions/api/polars.Expr.set_sorted.rst", "reference/expressions/api/polars.Expr.shift.rst", "reference/expressions/api/polars.Expr.shift_and_fill.rst", "reference/expressions/api/polars.Expr.shrink_dtype.rst", "reference/expressions/api/polars.Expr.shuffle.rst", "reference/expressions/api/polars.Expr.sign.rst", "reference/expressions/api/polars.Expr.sin.rst", "reference/expressions/api/polars.Expr.sinh.rst", "reference/expressions/api/polars.Expr.skew.rst", "reference/expressions/api/polars.Expr.slice.rst", "reference/expressions/api/polars.Expr.sort.rst", "reference/expressions/api/polars.Expr.sort_by.rst", "reference/expressions/api/polars.Expr.sqrt.rst", "reference/expressions/api/polars.Expr.std.rst", "reference/expressions/api/polars.Expr.str.concat.rst", "reference/expressions/api/polars.Expr.str.contains.rst", "reference/expressions/api/polars.Expr.str.count_match.rst", "reference/expressions/api/polars.Expr.str.decode.rst", "reference/expressions/api/polars.Expr.str.encode.rst", "reference/expressions/api/polars.Expr.str.ends_with.rst", "reference/expressions/api/polars.Expr.str.explode.rst", "reference/expressions/api/polars.Expr.str.extract.rst", "reference/expressions/api/polars.Expr.str.extract_all.rst", "reference/expressions/api/polars.Expr.str.json_extract.rst", "reference/expressions/api/polars.Expr.str.json_path_match.rst", "reference/expressions/api/polars.Expr.str.lengths.rst", "reference/expressions/api/polars.Expr.str.ljust.rst", "reference/expressions/api/polars.Expr.str.lstrip.rst", "reference/expressions/api/polars.Expr.str.n_chars.rst", "reference/expressions/api/polars.Expr.str.parse_int.rst", "reference/expressions/api/polars.Expr.str.replace.rst", "reference/expressions/api/polars.Expr.str.replace_all.rst", "reference/expressions/api/polars.Expr.str.rjust.rst", "reference/expressions/api/polars.Expr.str.rstrip.rst", "reference/expressions/api/polars.Expr.str.slice.rst", "reference/expressions/api/polars.Expr.str.split.rst", "reference/expressions/api/polars.Expr.str.split_exact.rst", "reference/expressions/api/polars.Expr.str.splitn.rst", "reference/expressions/api/polars.Expr.str.starts_with.rst", "reference/expressions/api/polars.Expr.str.strip.rst", "reference/expressions/api/polars.Expr.str.strptime.rst", "reference/expressions/api/polars.Expr.str.to_date.rst", "reference/expressions/api/polars.Expr.str.to_datetime.rst", "reference/expressions/api/polars.Expr.str.to_decimal.rst", "reference/expressions/api/polars.Expr.str.to_lowercase.rst", "reference/expressions/api/polars.Expr.str.to_time.rst", "reference/expressions/api/polars.Expr.str.to_titlecase.rst", "reference/expressions/api/polars.Expr.str.to_uppercase.rst", "reference/expressions/api/polars.Expr.str.zfill.rst", "reference/expressions/api/polars.Expr.struct.field.rst", "reference/expressions/api/polars.Expr.struct.rename_fields.rst", "reference/expressions/api/polars.Expr.sub.rst", "reference/expressions/api/polars.Expr.suffix.rst", "reference/expressions/api/polars.Expr.sum.rst", "reference/expressions/api/polars.Expr.tail.rst", "reference/expressions/api/polars.Expr.take.rst", "reference/expressions/api/polars.Expr.take_every.rst", "reference/expressions/api/polars.Expr.tan.rst", "reference/expressions/api/polars.Expr.tanh.rst", "reference/expressions/api/polars.Expr.to_physical.rst", "reference/expressions/api/polars.Expr.top_k.rst", "reference/expressions/api/polars.Expr.truediv.rst", "reference/expressions/api/polars.Expr.unique.rst", "reference/expressions/api/polars.Expr.unique_counts.rst", "reference/expressions/api/polars.Expr.upper_bound.rst", "reference/expressions/api/polars.Expr.value_counts.rst", "reference/expressions/api/polars.Expr.var.rst", "reference/expressions/api/polars.Expr.where.rst", "reference/expressions/api/polars.Expr.xor.rst", "reference/expressions/api/polars.all.rst", "reference/expressions/api/polars.all_horizontal.rst", "reference/expressions/api/polars.any.rst", "reference/expressions/api/polars.any_horizontal.rst", "reference/expressions/api/polars.apply.rst", "reference/expressions/api/polars.approx_unique.rst", "reference/expressions/api/polars.arange.rst", "reference/expressions/api/polars.arctan2.rst", "reference/expressions/api/polars.arctan2d.rst", "reference/expressions/api/polars.arg_sort_by.rst", "reference/expressions/api/polars.arg_where.rst", "reference/expressions/api/polars.avg.rst", "reference/expressions/api/polars.coalesce.rst", "reference/expressions/api/polars.col.rst", "reference/expressions/api/polars.concat_list.rst", "reference/expressions/api/polars.concat_str.rst", "reference/expressions/api/polars.corr.rst", "reference/expressions/api/polars.count.rst", "reference/expressions/api/polars.cov.rst", "reference/expressions/api/polars.cumfold.rst", "reference/expressions/api/polars.cumreduce.rst", "reference/expressions/api/polars.cumsum.rst", "reference/expressions/api/polars.cumsum_horizontal.rst", "reference/expressions/api/polars.date.rst", "reference/expressions/api/polars.date_range.rst", "reference/expressions/api/polars.date_ranges.rst", "reference/expressions/api/polars.datetime.rst", "reference/expressions/api/polars.duration.rst", "reference/expressions/api/polars.element.rst", "reference/expressions/api/polars.exclude.rst", "reference/expressions/api/polars.first.rst", "reference/expressions/api/polars.fold.rst", "reference/expressions/api/polars.format.rst", "reference/expressions/api/polars.from_epoch.rst", "reference/expressions/api/polars.groups.rst", "reference/expressions/api/polars.head.rst", "reference/expressions/api/polars.implode.rst", "reference/expressions/api/polars.int_range.rst", "reference/expressions/api/polars.int_ranges.rst", "reference/expressions/api/polars.last.rst", "reference/expressions/api/polars.lit.rst", "reference/expressions/api/polars.map.rst", "reference/expressions/api/polars.max.rst", "reference/expressions/api/polars.max_horizontal.rst", "reference/expressions/api/polars.mean.rst", "reference/expressions/api/polars.median.rst", "reference/expressions/api/polars.min.rst", "reference/expressions/api/polars.min_horizontal.rst", "reference/expressions/api/polars.n_unique.rst", "reference/expressions/api/polars.ones.rst", "reference/expressions/api/polars.quantile.rst", "reference/expressions/api/polars.reduce.rst", "reference/expressions/api/polars.repeat.rst", "reference/expressions/api/polars.rolling_corr.rst", "reference/expressions/api/polars.rolling_cov.rst", "reference/expressions/api/polars.select.rst", "reference/expressions/api/polars.sql_expr.rst", "reference/expressions/api/polars.std.rst", "reference/expressions/api/polars.struct.rst", "reference/expressions/api/polars.sum.rst", "reference/expressions/api/polars.sum_horizontal.rst", "reference/expressions/api/polars.tail.rst", "reference/expressions/api/polars.time.rst", "reference/expressions/api/polars.time_range.rst", "reference/expressions/api/polars.time_ranges.rst", "reference/expressions/api/polars.var.rst", "reference/expressions/api/polars.when.rst", "reference/expressions/api/polars.zeros.rst", "reference/expressions/array.rst", "reference/expressions/binary.rst", "reference/expressions/boolean.rst", "reference/expressions/categories.rst", "reference/expressions/columns.rst", "reference/expressions/computation.rst", "reference/expressions/functions.rst", "reference/expressions/index.rst", "reference/expressions/list.rst", "reference/expressions/meta.rst", "reference/expressions/miscellaneous.rst", "reference/expressions/modify_select.rst", "reference/expressions/operators.rst", "reference/expressions/string.rst", "reference/expressions/struct.rst", "reference/expressions/temporal.rst", "reference/expressions/window.rst", "reference/functions.rst", "reference/index.rst", "reference/io.rst", "reference/lazyframe/aggregation.rst", "reference/lazyframe/api/polars.LazyFrame.bottom_k.rst", "reference/lazyframe/api/polars.LazyFrame.cache.rst", "reference/lazyframe/api/polars.LazyFrame.clear.rst", "reference/lazyframe/api/polars.LazyFrame.clone.rst", "reference/lazyframe/api/polars.LazyFrame.collect.rst", "reference/lazyframe/api/polars.LazyFrame.columns.rst", "reference/lazyframe/api/polars.LazyFrame.drop.rst", "reference/lazyframe/api/polars.LazyFrame.drop_nulls.rst", "reference/lazyframe/api/polars.LazyFrame.dtypes.rst", "reference/lazyframe/api/polars.LazyFrame.explain.rst", "reference/lazyframe/api/polars.LazyFrame.explode.rst", "reference/lazyframe/api/polars.LazyFrame.fetch.rst", "reference/lazyframe/api/polars.LazyFrame.fill_nan.rst", "reference/lazyframe/api/polars.LazyFrame.fill_null.rst", "reference/lazyframe/api/polars.LazyFrame.filter.rst", "reference/lazyframe/api/polars.LazyFrame.first.rst", "reference/lazyframe/api/polars.LazyFrame.from_json.rst", "reference/lazyframe/api/polars.LazyFrame.groupby.rst", "reference/lazyframe/api/polars.LazyFrame.groupby_dynamic.rst", "reference/lazyframe/api/polars.LazyFrame.groupby_rolling.rst", "reference/lazyframe/api/polars.LazyFrame.head.rst", "reference/lazyframe/api/polars.LazyFrame.inspect.rst", "reference/lazyframe/api/polars.LazyFrame.interpolate.rst", "reference/lazyframe/api/polars.LazyFrame.join.rst", "reference/lazyframe/api/polars.LazyFrame.join_asof.rst", "reference/lazyframe/api/polars.LazyFrame.last.rst", "reference/lazyframe/api/polars.LazyFrame.lazy.rst", "reference/lazyframe/api/polars.LazyFrame.limit.rst", "reference/lazyframe/api/polars.LazyFrame.map.rst", "reference/lazyframe/api/polars.LazyFrame.max.rst", "reference/lazyframe/api/polars.LazyFrame.mean.rst", "reference/lazyframe/api/polars.LazyFrame.median.rst", "reference/lazyframe/api/polars.LazyFrame.melt.rst", "reference/lazyframe/api/polars.LazyFrame.merge_sorted.rst", "reference/lazyframe/api/polars.LazyFrame.min.rst", "reference/lazyframe/api/polars.LazyFrame.null_count.rst", "reference/lazyframe/api/polars.LazyFrame.pipe.rst", "reference/lazyframe/api/polars.LazyFrame.profile.rst", "reference/lazyframe/api/polars.LazyFrame.quantile.rst", "reference/lazyframe/api/polars.LazyFrame.read_json.rst", "reference/lazyframe/api/polars.LazyFrame.rename.rst", "reference/lazyframe/api/polars.LazyFrame.reverse.rst", "reference/lazyframe/api/polars.LazyFrame.schema.rst", "reference/lazyframe/api/polars.LazyFrame.select.rst", "reference/lazyframe/api/polars.LazyFrame.set_sorted.rst", "reference/lazyframe/api/polars.LazyFrame.shift.rst", "reference/lazyframe/api/polars.LazyFrame.shift_and_fill.rst", "reference/lazyframe/api/polars.LazyFrame.show_graph.rst", "reference/lazyframe/api/polars.LazyFrame.slice.rst", "reference/lazyframe/api/polars.LazyFrame.sort.rst", "reference/lazyframe/api/polars.LazyFrame.std.rst", "reference/lazyframe/api/polars.LazyFrame.sum.rst", "reference/lazyframe/api/polars.LazyFrame.tail.rst", "reference/lazyframe/api/polars.LazyFrame.take_every.rst", "reference/lazyframe/api/polars.LazyFrame.top_k.rst", "reference/lazyframe/api/polars.LazyFrame.unique.rst", "reference/lazyframe/api/polars.LazyFrame.unnest.rst", "reference/lazyframe/api/polars.LazyFrame.update.rst", "reference/lazyframe/api/polars.LazyFrame.var.rst", "reference/lazyframe/api/polars.LazyFrame.width.rst", "reference/lazyframe/api/polars.LazyFrame.with_columns.rst", "reference/lazyframe/api/polars.LazyFrame.with_context.rst", "reference/lazyframe/api/polars.LazyFrame.with_row_count.rst", "reference/lazyframe/api/polars.LazyFrame.write_json.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.agg.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.all.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.apply.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.count.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.first.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.head.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.last.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.max.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.mean.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.median.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.min.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.n_unique.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.quantile.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.sum.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.tail.rst", "reference/lazyframe/attributes.rst", "reference/lazyframe/descriptive.rst", "reference/lazyframe/groupby.rst", "reference/lazyframe/index.rst", "reference/lazyframe/miscellaneous.rst", "reference/lazyframe/modify_select.rst", "reference/selectors.rst", "reference/series/aggregation.rst", "reference/series/api/polars.Series.abs.rst", "reference/series/api/polars.Series.alias.rst", "reference/series/api/polars.Series.all.rst", "reference/series/api/polars.Series.any.rst", "reference/series/api/polars.Series.append.rst", "reference/series/api/polars.Series.apply.rst", "reference/series/api/polars.Series.arccos.rst", "reference/series/api/polars.Series.arccosh.rst", "reference/series/api/polars.Series.arcsin.rst", "reference/series/api/polars.Series.arcsinh.rst", "reference/series/api/polars.Series.arctan.rst", "reference/series/api/polars.Series.arctanh.rst", "reference/series/api/polars.Series.arg_max.rst", "reference/series/api/polars.Series.arg_min.rst", "reference/series/api/polars.Series.arg_sort.rst", "reference/series/api/polars.Series.arg_true.rst", "reference/series/api/polars.Series.arg_unique.rst", "reference/series/api/polars.Series.arr.max.rst", "reference/series/api/polars.Series.arr.min.rst", "reference/series/api/polars.Series.arr.sum.rst", "reference/series/api/polars.Series.arr.unique.rst", "reference/series/api/polars.Series.bin.contains.rst", "reference/series/api/polars.Series.bin.decode.rst", "reference/series/api/polars.Series.bin.encode.rst", "reference/series/api/polars.Series.bin.ends_with.rst", "reference/series/api/polars.Series.bin.starts_with.rst", "reference/series/api/polars.Series.bottom_k.rst", "reference/series/api/polars.Series.cast.rst", "reference/series/api/polars.Series.cat.rst", "reference/series/api/polars.Series.cat.get_categories.rst", "reference/series/api/polars.Series.cat.set_ordering.rst", "reference/series/api/polars.Series.cbrt.rst", "reference/series/api/polars.Series.ceil.rst", "reference/series/api/polars.Series.chunk_lengths.rst", "reference/series/api/polars.Series.clear.rst", "reference/series/api/polars.Series.clip.rst", "reference/series/api/polars.Series.clip_max.rst", "reference/series/api/polars.Series.clip_min.rst", "reference/series/api/polars.Series.clone.rst", "reference/series/api/polars.Series.cos.rst", "reference/series/api/polars.Series.cosh.rst", "reference/series/api/polars.Series.cummax.rst", "reference/series/api/polars.Series.cummin.rst", "reference/series/api/polars.Series.cumprod.rst", "reference/series/api/polars.Series.cumsum.rst", "reference/series/api/polars.Series.cumulative_eval.rst", "reference/series/api/polars.Series.cut.rst", "reference/series/api/polars.Series.describe.rst", "reference/series/api/polars.Series.diff.rst", "reference/series/api/polars.Series.dot.rst", "reference/series/api/polars.Series.drop_nans.rst", "reference/series/api/polars.Series.drop_nulls.rst", "reference/series/api/polars.Series.dt.rst", "reference/series/api/polars.Series.dt.base_utc_offset.rst", "reference/series/api/polars.Series.dt.cast_time_unit.rst", "reference/series/api/polars.Series.dt.combine.rst", "reference/series/api/polars.Series.dt.convert_time_zone.rst", "reference/series/api/polars.Series.dt.date.rst", "reference/series/api/polars.Series.dt.datetime.rst", "reference/series/api/polars.Series.dt.day.rst", "reference/series/api/polars.Series.dt.days.rst", "reference/series/api/polars.Series.dt.dst_offset.rst", "reference/series/api/polars.Series.dt.epoch.rst", "reference/series/api/polars.Series.dt.hour.rst", "reference/series/api/polars.Series.dt.hours.rst", "reference/series/api/polars.Series.dt.is_leap_year.rst", "reference/series/api/polars.Series.dt.iso_year.rst", "reference/series/api/polars.Series.dt.max.rst", "reference/series/api/polars.Series.dt.mean.rst", "reference/series/api/polars.Series.dt.median.rst", "reference/series/api/polars.Series.dt.microsecond.rst", "reference/series/api/polars.Series.dt.microseconds.rst", "reference/series/api/polars.Series.dt.millisecond.rst", "reference/series/api/polars.Series.dt.milliseconds.rst", "reference/series/api/polars.Series.dt.min.rst", "reference/series/api/polars.Series.dt.minute.rst", "reference/series/api/polars.Series.dt.minutes.rst", "reference/series/api/polars.Series.dt.month.rst", "reference/series/api/polars.Series.dt.month_end.rst", "reference/series/api/polars.Series.dt.month_start.rst", "reference/series/api/polars.Series.dt.nanosecond.rst", "reference/series/api/polars.Series.dt.nanoseconds.rst", "reference/series/api/polars.Series.dt.offset_by.rst", "reference/series/api/polars.Series.dt.ordinal_day.rst", "reference/series/api/polars.Series.dt.quarter.rst", "reference/series/api/polars.Series.dt.replace_time_zone.rst", "reference/series/api/polars.Series.dt.round.rst", "reference/series/api/polars.Series.dt.second.rst", "reference/series/api/polars.Series.dt.seconds.rst", "reference/series/api/polars.Series.dt.strftime.rst", "reference/series/api/polars.Series.dt.time.rst", "reference/series/api/polars.Series.dt.timestamp.rst", "reference/series/api/polars.Series.dt.to_string.rst", "reference/series/api/polars.Series.dt.truncate.rst", "reference/series/api/polars.Series.dt.week.rst", "reference/series/api/polars.Series.dt.weekday.rst", "reference/series/api/polars.Series.dt.with_time_unit.rst", "reference/series/api/polars.Series.dt.year.rst", "reference/series/api/polars.Series.dtype.rst", "reference/series/api/polars.Series.entropy.rst", "reference/series/api/polars.Series.estimated_size.rst", "reference/series/api/polars.Series.ewm_mean.rst", "reference/series/api/polars.Series.ewm_std.rst", "reference/series/api/polars.Series.ewm_var.rst", "reference/series/api/polars.Series.exp.rst", "reference/series/api/polars.Series.explode.rst", "reference/series/api/polars.Series.extend.rst", "reference/series/api/polars.Series.extend_constant.rst", "reference/series/api/polars.Series.fill_nan.rst", "reference/series/api/polars.Series.fill_null.rst", "reference/series/api/polars.Series.filter.rst", "reference/series/api/polars.Series.flags.rst", "reference/series/api/polars.Series.floor.rst", "reference/series/api/polars.Series.get_chunks.rst", "reference/series/api/polars.Series.has_validity.rst", "reference/series/api/polars.Series.hash.rst", "reference/series/api/polars.Series.head.rst", "reference/series/api/polars.Series.hist.rst", "reference/series/api/polars.Series.implode.rst", "reference/series/api/polars.Series.inner_dtype.rst", "reference/series/api/polars.Series.interpolate.rst", "reference/series/api/polars.Series.is_between.rst", "reference/series/api/polars.Series.is_boolean.rst", "reference/series/api/polars.Series.is_duplicated.rst", "reference/series/api/polars.Series.is_empty.rst", "reference/series/api/polars.Series.is_finite.rst", "reference/series/api/polars.Series.is_first.rst", "reference/series/api/polars.Series.is_float.rst", "reference/series/api/polars.Series.is_in.rst", "reference/series/api/polars.Series.is_infinite.rst", "reference/series/api/polars.Series.is_integer.rst", "reference/series/api/polars.Series.is_nan.rst", "reference/series/api/polars.Series.is_not_nan.rst", "reference/series/api/polars.Series.is_not_null.rst", "reference/series/api/polars.Series.is_null.rst", "reference/series/api/polars.Series.is_numeric.rst", "reference/series/api/polars.Series.is_sorted.rst", "reference/series/api/polars.Series.is_temporal.rst", "reference/series/api/polars.Series.is_unique.rst", "reference/series/api/polars.Series.is_utf8.rst", "reference/series/api/polars.Series.item.rst", "reference/series/api/polars.Series.kurtosis.rst", "reference/series/api/polars.Series.len.rst", "reference/series/api/polars.Series.limit.rst", "reference/series/api/polars.Series.list.rst", "reference/series/api/polars.Series.list.all.rst", "reference/series/api/polars.Series.list.any.rst", "reference/series/api/polars.Series.list.arg_max.rst", "reference/series/api/polars.Series.list.arg_min.rst", "reference/series/api/polars.Series.list.concat.rst", "reference/series/api/polars.Series.list.contains.rst", "reference/series/api/polars.Series.list.count_match.rst", "reference/series/api/polars.Series.list.diff.rst", "reference/series/api/polars.Series.list.difference.rst", "reference/series/api/polars.Series.list.eval.rst", "reference/series/api/polars.Series.list.explode.rst", "reference/series/api/polars.Series.list.first.rst", "reference/series/api/polars.Series.list.get.rst", "reference/series/api/polars.Series.list.head.rst", "reference/series/api/polars.Series.list.intersection.rst", "reference/series/api/polars.Series.list.join.rst", "reference/series/api/polars.Series.list.last.rst", "reference/series/api/polars.Series.list.lengths.rst", "reference/series/api/polars.Series.list.max.rst", "reference/series/api/polars.Series.list.mean.rst", "reference/series/api/polars.Series.list.min.rst", "reference/series/api/polars.Series.list.reverse.rst", "reference/series/api/polars.Series.list.shift.rst", "reference/series/api/polars.Series.list.slice.rst", "reference/series/api/polars.Series.list.sort.rst", "reference/series/api/polars.Series.list.sum.rst", "reference/series/api/polars.Series.list.tail.rst", "reference/series/api/polars.Series.list.take.rst", "reference/series/api/polars.Series.list.to_struct.rst", "reference/series/api/polars.Series.list.union.rst", "reference/series/api/polars.Series.list.unique.rst", "reference/series/api/polars.Series.log.rst", "reference/series/api/polars.Series.log10.rst", "reference/series/api/polars.Series.log1p.rst", "reference/series/api/polars.Series.lower_bound.rst", "reference/series/api/polars.Series.map_dict.rst", "reference/series/api/polars.Series.max.rst", "reference/series/api/polars.Series.mean.rst", "reference/series/api/polars.Series.median.rst", "reference/series/api/polars.Series.min.rst", "reference/series/api/polars.Series.mode.rst", "reference/series/api/polars.Series.n_chunks.rst", "reference/series/api/polars.Series.n_unique.rst", "reference/series/api/polars.Series.name.rst", "reference/series/api/polars.Series.nan_max.rst", "reference/series/api/polars.Series.nan_min.rst", "reference/series/api/polars.Series.new_from_index.rst", "reference/series/api/polars.Series.null_count.rst", "reference/series/api/polars.Series.pct_change.rst", "reference/series/api/polars.Series.peak_max.rst", "reference/series/api/polars.Series.peak_min.rst", "reference/series/api/polars.Series.product.rst", "reference/series/api/polars.Series.qcut.rst", "reference/series/api/polars.Series.quantile.rst", "reference/series/api/polars.Series.rank.rst", "reference/series/api/polars.Series.rechunk.rst", "reference/series/api/polars.Series.reinterpret.rst", "reference/series/api/polars.Series.rename.rst", "reference/series/api/polars.Series.reshape.rst", "reference/series/api/polars.Series.reverse.rst", "reference/series/api/polars.Series.rle.rst", "reference/series/api/polars.Series.rle_id.rst", "reference/series/api/polars.Series.rolling_apply.rst", "reference/series/api/polars.Series.rolling_max.rst", "reference/series/api/polars.Series.rolling_mean.rst", "reference/series/api/polars.Series.rolling_median.rst", "reference/series/api/polars.Series.rolling_min.rst", "reference/series/api/polars.Series.rolling_quantile.rst", "reference/series/api/polars.Series.rolling_skew.rst", "reference/series/api/polars.Series.rolling_std.rst", "reference/series/api/polars.Series.rolling_sum.rst", "reference/series/api/polars.Series.rolling_var.rst", "reference/series/api/polars.Series.round.rst", "reference/series/api/polars.Series.sample.rst", "reference/series/api/polars.Series.search_sorted.rst", "reference/series/api/polars.Series.series_equal.rst", "reference/series/api/polars.Series.set.rst", "reference/series/api/polars.Series.set_at_idx.rst", "reference/series/api/polars.Series.set_sorted.rst", "reference/series/api/polars.Series.shape.rst", "reference/series/api/polars.Series.shift.rst", "reference/series/api/polars.Series.shift_and_fill.rst", "reference/series/api/polars.Series.shrink_dtype.rst", "reference/series/api/polars.Series.shrink_to_fit.rst", "reference/series/api/polars.Series.shuffle.rst", "reference/series/api/polars.Series.sign.rst", "reference/series/api/polars.Series.sin.rst", "reference/series/api/polars.Series.sinh.rst", "reference/series/api/polars.Series.skew.rst", "reference/series/api/polars.Series.slice.rst", "reference/series/api/polars.Series.sort.rst", "reference/series/api/polars.Series.sqrt.rst", "reference/series/api/polars.Series.std.rst", "reference/series/api/polars.Series.str.rst", "reference/series/api/polars.Series.str.concat.rst", "reference/series/api/polars.Series.str.contains.rst", "reference/series/api/polars.Series.str.count_match.rst", "reference/series/api/polars.Series.str.decode.rst", "reference/series/api/polars.Series.str.encode.rst", "reference/series/api/polars.Series.str.ends_with.rst", "reference/series/api/polars.Series.str.explode.rst", "reference/series/api/polars.Series.str.extract.rst", "reference/series/api/polars.Series.str.extract_all.rst", "reference/series/api/polars.Series.str.json_extract.rst", "reference/series/api/polars.Series.str.json_path_match.rst", "reference/series/api/polars.Series.str.lengths.rst", "reference/series/api/polars.Series.str.ljust.rst", "reference/series/api/polars.Series.str.lstrip.rst", "reference/series/api/polars.Series.str.n_chars.rst", "reference/series/api/polars.Series.str.parse_int.rst", "reference/series/api/polars.Series.str.replace.rst", "reference/series/api/polars.Series.str.replace_all.rst", "reference/series/api/polars.Series.str.rjust.rst", "reference/series/api/polars.Series.str.rstrip.rst", "reference/series/api/polars.Series.str.slice.rst", "reference/series/api/polars.Series.str.split.rst", "reference/series/api/polars.Series.str.split_exact.rst", "reference/series/api/polars.Series.str.splitn.rst", "reference/series/api/polars.Series.str.starts_with.rst", "reference/series/api/polars.Series.str.strip.rst", "reference/series/api/polars.Series.str.strptime.rst", "reference/series/api/polars.Series.str.to_date.rst", "reference/series/api/polars.Series.str.to_datetime.rst", "reference/series/api/polars.Series.str.to_decimal.rst", "reference/series/api/polars.Series.str.to_lowercase.rst", "reference/series/api/polars.Series.str.to_time.rst", "reference/series/api/polars.Series.str.to_titlecase.rst", "reference/series/api/polars.Series.str.to_uppercase.rst", "reference/series/api/polars.Series.str.zfill.rst", "reference/series/api/polars.Series.struct.field.rst", "reference/series/api/polars.Series.struct.fields.rst", "reference/series/api/polars.Series.struct.rename_fields.rst", "reference/series/api/polars.Series.struct.schema.rst", "reference/series/api/polars.Series.struct.unnest.rst", "reference/series/api/polars.Series.sum.rst", "reference/series/api/polars.Series.tail.rst", "reference/series/api/polars.Series.take.rst", "reference/series/api/polars.Series.take_every.rst", "reference/series/api/polars.Series.tan.rst", "reference/series/api/polars.Series.tanh.rst", "reference/series/api/polars.Series.time_unit.rst", "reference/series/api/polars.Series.to_arrow.rst", "reference/series/api/polars.Series.to_dummies.rst", "reference/series/api/polars.Series.to_frame.rst", "reference/series/api/polars.Series.to_init_repr.rst", "reference/series/api/polars.Series.to_list.rst", "reference/series/api/polars.Series.to_numpy.rst", "reference/series/api/polars.Series.to_pandas.rst", "reference/series/api/polars.Series.to_physical.rst", "reference/series/api/polars.Series.top_k.rst", "reference/series/api/polars.Series.unique.rst", "reference/series/api/polars.Series.unique_counts.rst", "reference/series/api/polars.Series.upper_bound.rst", "reference/series/api/polars.Series.value_counts.rst", "reference/series/api/polars.Series.var.rst", "reference/series/api/polars.Series.view.rst", "reference/series/api/polars.Series.zip_with.rst", "reference/series/array.rst", "reference/series/attributes.rst", "reference/series/binary.rst", "reference/series/boolean.rst", "reference/series/categories.rst", "reference/series/computation.rst", "reference/series/descriptive.rst", "reference/series/export.rst", "reference/series/index.rst", "reference/series/list.rst", "reference/series/miscellaneous.rst", "reference/series/modify_select.rst", "reference/series/string.rst", "reference/series/struct.rst", "reference/series/temporal.rst", "reference/sql.rst", "reference/testing.rst", "reference/utils.rst"], "titles": ["<no title>", "Extending the API", "polars.Array", "polars.Binary", "polars.Boolean", "polars.Categorical", "polars.Config.activate_decimals", "polars.Config.load", "polars.Config.restore_defaults", "polars.Config.save", "polars.Config.set_ascii_tables", "polars.Config.set_fmt_float", "polars.Config.set_fmt_str_lengths", "polars.Config.set_streaming_chunk_size", "polars.Config.set_tbl_cell_alignment", "polars.Config.set_tbl_cols", "polars.Config.set_tbl_column_data_type_inline", "polars.Config.set_tbl_dataframe_shape_below", "polars.Config.set_tbl_formatting", "polars.Config.set_tbl_hide_column_data_types", "polars.Config.set_tbl_hide_column_names", "polars.Config.set_tbl_hide_dataframe_shape", "polars.Config.set_tbl_hide_dtype_separator", "polars.Config.set_tbl_rows", "polars.Config.set_tbl_width_chars", "polars.Config.set_verbose", "polars.Config.state", "polars.DataFrame.write_avro", "polars.DataFrame.write_csv", "polars.DataFrame.write_database", "polars.DataFrame.write_delta", "polars.DataFrame.write_excel", "polars.DataFrame.write_ipc", "polars.DataFrame.write_json", "polars.DataFrame.write_ndjson", "polars.DataFrame.write_parquet", "polars.DataType", "polars.Date", "polars.Datetime", "polars.Decimal", "polars.Duration", "polars.Float32", "polars.Float64", "polars.Int16", "polars.Int32", "polars.Int64", "polars.Int8", "polars.LazyFrame.sink_ipc", "polars.LazyFrame.sink_parquet", "polars.List", "polars.Null", "polars.Object", "polars.SQLContext.execute", "polars.SQLContext.register", "polars.SQLContext.register_globals", "polars.SQLContext.register_many", "polars.SQLContext.tables", "polars.SQLContext.unregister", "polars.StringCache", "polars.Struct", "polars.Time", "polars.UInt16", "polars.UInt32", "polars.UInt64", "polars.UInt8", "polars.Unknown", "polars.Utf8", "polars.align_frames", "polars.api.register_dataframe_namespace", "polars.api.register_expr_namespace", "polars.api.register_lazyframe_namespace", "polars.api.register_series_namespace", "polars.build_info", "polars.collect_all", "polars.concat", "polars.enable_string_cache", "polars.exceptions.ArrowError", "polars.exceptions.ColumnNotFoundError", "polars.exceptions.ComputeError", "polars.exceptions.DuplicateError", "polars.exceptions.InvalidOperationError", "polars.exceptions.NoDataError", "polars.exceptions.NoRowsReturnedError", "polars.exceptions.PolarsPanicError", "polars.exceptions.RowsError", "polars.exceptions.SchemaError", "polars.exceptions.SchemaFieldNotFoundError", "polars.exceptions.ShapeError", "polars.exceptions.StructFieldNotFoundError", "polars.exceptions.TooManyRowsReturnedError", "polars.from_arrow", "polars.from_dataframe", "polars.from_dict", "polars.from_dicts", "polars.from_numpy", "polars.from_pandas", "polars.from_records", "polars.from_repr", "polars.get_index_type", "polars.io.csv.batched_reader.BatchedCsvReader.next_batches", "polars.read_avro", "polars.read_csv", "polars.read_csv_batched", "polars.read_database", "polars.read_delta", "polars.read_excel", "polars.read_ipc", "polars.read_ipc_schema", "polars.read_json", "polars.read_ndjson", "polars.read_parquet", "polars.read_parquet_schema", "polars.scan_csv", "polars.scan_delta", "polars.scan_ipc", "polars.scan_ndjson", "polars.scan_parquet", "polars.scan_pyarrow_dataset", "polars.show_versions", "polars.testing.assert_frame_equal", "polars.testing.assert_series_equal", "polars.testing.parametric.column", "polars.testing.parametric.columns", "polars.testing.parametric.create_list_strategy", "polars.testing.parametric.dataframes", "polars.testing.parametric.load_profile", "polars.testing.parametric.series", "polars.testing.parametric.set_profile", "polars.threadpool_size", "polars.using_string_cache", "Config", "Aggregation", "polars.DataFrame.__dataframe__", "polars.DataFrame.apply", "polars.DataFrame.bottom_k", "polars.DataFrame.clear", "polars.DataFrame.clone", "polars.DataFrame.columns", "polars.DataFrame.corr", "polars.DataFrame.describe", "polars.DataFrame.drop", "polars.DataFrame.drop_in_place", "polars.DataFrame.drop_nulls", "polars.DataFrame.dtypes", "polars.DataFrame.estimated_size", "polars.DataFrame.explode", "polars.DataFrame.extend", "polars.DataFrame.fill_nan", "polars.DataFrame.fill_null", "polars.DataFrame.filter", "polars.DataFrame.find_idx_by_name", "polars.DataFrame.flags", "polars.DataFrame.fold", "polars.DataFrame.frame_equal", "polars.DataFrame.get_column", "polars.DataFrame.get_columns", "polars.DataFrame.glimpse", "polars.DataFrame.groupby", "polars.DataFrame.groupby_dynamic", "polars.DataFrame.groupby_rolling", "polars.DataFrame.hash_rows", "polars.DataFrame.head", "polars.DataFrame.height", "polars.DataFrame.hstack", "polars.DataFrame.insert_at_idx", "polars.DataFrame.interpolate", "polars.DataFrame.is_duplicated", "polars.DataFrame.is_empty", "polars.DataFrame.is_unique", "polars.DataFrame.item", "polars.DataFrame.iter_rows", "polars.DataFrame.iter_slices", "polars.DataFrame.join", "polars.DataFrame.join_asof", "polars.DataFrame.lazy", "polars.DataFrame.limit", "polars.DataFrame.max", "polars.DataFrame.mean", "polars.DataFrame.median", "polars.DataFrame.melt", "polars.DataFrame.merge_sorted", "polars.DataFrame.min", "polars.DataFrame.n_chunks", "polars.DataFrame.n_unique", "polars.DataFrame.null_count", "polars.DataFrame.partition_by", "polars.DataFrame.pipe", "polars.DataFrame.pivot", "polars.DataFrame.product", "polars.DataFrame.quantile", "polars.DataFrame.rechunk", "polars.DataFrame.rename", "polars.DataFrame.replace", "polars.DataFrame.replace_at_idx", "polars.DataFrame.reverse", "polars.DataFrame.row", "polars.DataFrame.rows", "polars.DataFrame.rows_by_key", "polars.DataFrame.sample", "polars.DataFrame.schema", "polars.DataFrame.select", "polars.DataFrame.set_sorted", "polars.DataFrame.shape", "polars.DataFrame.shift", "polars.DataFrame.shift_and_fill", "polars.DataFrame.shrink_to_fit", "polars.DataFrame.slice", "polars.DataFrame.sort", "polars.DataFrame.std", "polars.DataFrame.sum", "polars.DataFrame.tail", "polars.DataFrame.take_every", "polars.DataFrame.to_arrow", "polars.DataFrame.to_dict", "polars.DataFrame.to_dicts", "polars.DataFrame.to_dummies", "polars.DataFrame.to_init_repr", "polars.DataFrame.to_numpy", "polars.DataFrame.to_pandas", "polars.DataFrame.to_series", "polars.DataFrame.to_struct", "polars.DataFrame.top_k", "polars.DataFrame.transpose", "polars.DataFrame.unique", "polars.DataFrame.unnest", "polars.DataFrame.unstack", "polars.DataFrame.update", "polars.DataFrame.upsample", "polars.DataFrame.var", "polars.DataFrame.vstack", "polars.DataFrame.width", "polars.DataFrame.with_columns", "polars.DataFrame.with_row_count", "polars.dataframe.groupby.GroupBy.__iter__", "polars.dataframe.groupby.GroupBy.agg", "polars.dataframe.groupby.GroupBy.all", "polars.dataframe.groupby.GroupBy.apply", "polars.dataframe.groupby.GroupBy.count", "polars.dataframe.groupby.GroupBy.first", "polars.dataframe.groupby.GroupBy.head", "polars.dataframe.groupby.GroupBy.last", "polars.dataframe.groupby.GroupBy.max", "polars.dataframe.groupby.GroupBy.mean", "polars.dataframe.groupby.GroupBy.median", "polars.dataframe.groupby.GroupBy.min", "polars.dataframe.groupby.GroupBy.n_unique", "polars.dataframe.groupby.GroupBy.quantile", "polars.dataframe.groupby.GroupBy.sum", "polars.dataframe.groupby.GroupBy.tail", "Attributes", "Computation", "Descriptive", "Export", "GroupBy", "DataFrame", "Miscellaneous", "Manipulation/selection", "Data types", "Exceptions", "Aggregation", "polars.Expr.abs", "polars.Expr.add", "polars.Expr.agg_groups", "polars.Expr.alias", "polars.Expr.all", "polars.Expr.and_", "polars.Expr.any", "polars.Expr.append", "polars.Expr.apply", "polars.Expr.approx_unique", "polars.Expr.arccos", "polars.Expr.arccosh", "polars.Expr.arcsin", "polars.Expr.arcsinh", "polars.Expr.arctan", "polars.Expr.arctanh", "polars.Expr.arg_max", "polars.Expr.arg_min", "polars.Expr.arg_sort", "polars.Expr.arg_true", "polars.Expr.arg_unique", "polars.Expr.arr.max", "polars.Expr.arr.min", "polars.Expr.arr.sum", "polars.Expr.arr.unique", "polars.Expr.backward_fill", "polars.Expr.bin.contains", "polars.Expr.bin.decode", "polars.Expr.bin.encode", "polars.Expr.bin.ends_with", "polars.Expr.bin.starts_with", "polars.Expr.bottom_k", "polars.Expr.cache", "polars.Expr.cast", "polars.Expr.cat.get_categories", "polars.Expr.cat.set_ordering", "polars.Expr.cbrt", "polars.Expr.ceil", "polars.Expr.clip", "polars.Expr.clip_max", "polars.Expr.clip_min", "polars.Expr.cos", "polars.Expr.cosh", "polars.Expr.count", "polars.Expr.cumcount", "polars.Expr.cummax", "polars.Expr.cummin", "polars.Expr.cumprod", "polars.Expr.cumsum", "polars.Expr.cumulative_eval", "polars.Expr.cut", "polars.Expr.degrees", "polars.Expr.diff", "polars.Expr.dot", "polars.Expr.drop_nans", "polars.Expr.drop_nulls", "polars.Expr.dt.base_utc_offset", "polars.Expr.dt.cast_time_unit", "polars.Expr.dt.combine", "polars.Expr.dt.convert_time_zone", "polars.Expr.dt.date", "polars.Expr.dt.datetime", "polars.Expr.dt.day", "polars.Expr.dt.days", "polars.Expr.dt.dst_offset", "polars.Expr.dt.epoch", "polars.Expr.dt.hour", "polars.Expr.dt.hours", "polars.Expr.dt.is_leap_year", "polars.Expr.dt.iso_year", "polars.Expr.dt.microsecond", "polars.Expr.dt.microseconds", "polars.Expr.dt.millisecond", "polars.Expr.dt.milliseconds", "polars.Expr.dt.minute", "polars.Expr.dt.minutes", "polars.Expr.dt.month", "polars.Expr.dt.month_end", "polars.Expr.dt.month_start", "polars.Expr.dt.nanosecond", "polars.Expr.dt.nanoseconds", "polars.Expr.dt.offset_by", "polars.Expr.dt.ordinal_day", "polars.Expr.dt.quarter", "polars.Expr.dt.replace_time_zone", "polars.Expr.dt.round", "polars.Expr.dt.second", "polars.Expr.dt.seconds", "polars.Expr.dt.strftime", "polars.Expr.dt.time", "polars.Expr.dt.timestamp", "polars.Expr.dt.to_string", "polars.Expr.dt.truncate", "polars.Expr.dt.week", "polars.Expr.dt.weekday", "polars.Expr.dt.with_time_unit", "polars.Expr.dt.year", "polars.Expr.entropy", "polars.Expr.eq", "polars.Expr.eq_missing", "polars.Expr.ewm_mean", "polars.Expr.ewm_std", "polars.Expr.ewm_var", "polars.Expr.exclude", "polars.Expr.exp", "polars.Expr.explode", "polars.Expr.extend_constant", "polars.Expr.fill_nan", "polars.Expr.fill_null", "polars.Expr.filter", "polars.Expr.first", "polars.Expr.flatten", "polars.Expr.floor", "polars.Expr.floordiv", "polars.Expr.forward_fill", "polars.Expr.from_json", "polars.Expr.ge", "polars.Expr.gt", "polars.Expr.hash", "polars.Expr.head", "polars.Expr.implode", "polars.Expr.inspect", "polars.Expr.interpolate", "polars.Expr.is_between", "polars.Expr.is_duplicated", "polars.Expr.is_finite", "polars.Expr.is_first", "polars.Expr.is_in", "polars.Expr.is_infinite", "polars.Expr.is_nan", "polars.Expr.is_not", "polars.Expr.is_not_nan", "polars.Expr.is_not_null", "polars.Expr.is_null", "polars.Expr.is_unique", "polars.Expr.keep_name", "polars.Expr.kurtosis", "polars.Expr.last", "polars.Expr.le", "polars.Expr.len", "polars.Expr.limit", "polars.Expr.list.all", "polars.Expr.list.any", "polars.Expr.list.arg_max", "polars.Expr.list.arg_min", "polars.Expr.list.concat", "polars.Expr.list.contains", "polars.Expr.list.count_match", "polars.Expr.list.diff", "polars.Expr.list.difference", "polars.Expr.list.eval", "polars.Expr.list.explode", "polars.Expr.list.first", "polars.Expr.list.get", "polars.Expr.list.head", "polars.Expr.list.intersection", "polars.Expr.list.join", "polars.Expr.list.last", "polars.Expr.list.lengths", "polars.Expr.list.max", "polars.Expr.list.mean", "polars.Expr.list.min", "polars.Expr.list.reverse", "polars.Expr.list.shift", "polars.Expr.list.slice", "polars.Expr.list.sort", "polars.Expr.list.sum", "polars.Expr.list.tail", "polars.Expr.list.take", "polars.Expr.list.to_struct", "polars.Expr.list.union", "polars.Expr.list.unique", "polars.Expr.log", "polars.Expr.log10", "polars.Expr.log1p", "polars.Expr.lower_bound", "polars.Expr.lt", "polars.Expr.map", "polars.Expr.map_alias", "polars.Expr.map_dict", "polars.Expr.max", "polars.Expr.mean", "polars.Expr.median", "polars.Expr.meta.eq", "polars.Expr.meta.has_multiple_outputs", "polars.Expr.meta.is_regex_projection", "polars.Expr.meta.ne", "polars.Expr.meta.output_name", "polars.Expr.meta.pop", "polars.Expr.meta.root_names", "polars.Expr.meta.tree_format", "polars.Expr.meta.undo_aliases", "polars.Expr.meta.write_json", "polars.Expr.min", "polars.Expr.mod", "polars.Expr.mode", "polars.Expr.mul", "polars.Expr.n_unique", "polars.Expr.nan_max", "polars.Expr.nan_min", "polars.Expr.ne", "polars.Expr.ne_missing", "polars.Expr.null_count", "polars.Expr.or_", "polars.Expr.over", "polars.Expr.pct_change", "polars.Expr.pipe", "polars.Expr.pow", "polars.Expr.prefix", "polars.Expr.product", "polars.Expr.qcut", "polars.Expr.quantile", "polars.Expr.radians", "polars.Expr.rank", "polars.Expr.rechunk", "polars.Expr.reinterpret", "polars.Expr.repeat_by", "polars.Expr.reshape", "polars.Expr.reverse", "polars.Expr.rle", "polars.Expr.rle_id", "polars.Expr.rolling_apply", "polars.Expr.rolling_max", "polars.Expr.rolling_mean", "polars.Expr.rolling_median", "polars.Expr.rolling_min", "polars.Expr.rolling_quantile", "polars.Expr.rolling_skew", "polars.Expr.rolling_std", "polars.Expr.rolling_sum", "polars.Expr.rolling_var", "polars.Expr.round", "polars.Expr.sample", "polars.Expr.search_sorted", "polars.Expr.set_sorted", "polars.Expr.shift", "polars.Expr.shift_and_fill", "polars.Expr.shrink_dtype", "polars.Expr.shuffle", "polars.Expr.sign", "polars.Expr.sin", "polars.Expr.sinh", "polars.Expr.skew", "polars.Expr.slice", "polars.Expr.sort", "polars.Expr.sort_by", "polars.Expr.sqrt", "polars.Expr.std", "polars.Expr.str.concat", "polars.Expr.str.contains", "polars.Expr.str.count_match", "polars.Expr.str.decode", "polars.Expr.str.encode", "polars.Expr.str.ends_with", "polars.Expr.str.explode", "polars.Expr.str.extract", "polars.Expr.str.extract_all", "polars.Expr.str.json_extract", "polars.Expr.str.json_path_match", "polars.Expr.str.lengths", "polars.Expr.str.ljust", "polars.Expr.str.lstrip", "polars.Expr.str.n_chars", "polars.Expr.str.parse_int", "polars.Expr.str.replace", "polars.Expr.str.replace_all", "polars.Expr.str.rjust", "polars.Expr.str.rstrip", "polars.Expr.str.slice", "polars.Expr.str.split", "polars.Expr.str.split_exact", "polars.Expr.str.splitn", "polars.Expr.str.starts_with", "polars.Expr.str.strip", "polars.Expr.str.strptime", "polars.Expr.str.to_date", "polars.Expr.str.to_datetime", "polars.Expr.str.to_decimal", "polars.Expr.str.to_lowercase", "polars.Expr.str.to_time", "polars.Expr.str.to_titlecase", "polars.Expr.str.to_uppercase", "polars.Expr.str.zfill", "polars.Expr.struct.field", "polars.Expr.struct.rename_fields", "polars.Expr.sub", "polars.Expr.suffix", "polars.Expr.sum", "polars.Expr.tail", "polars.Expr.take", "polars.Expr.take_every", "polars.Expr.tan", "polars.Expr.tanh", "polars.Expr.to_physical", "polars.Expr.top_k", "polars.Expr.truediv", "polars.Expr.unique", "polars.Expr.unique_counts", "polars.Expr.upper_bound", "polars.Expr.value_counts", "polars.Expr.var", "polars.Expr.where", "polars.Expr.xor", "polars.all", "polars.all_horizontal", "polars.any", "polars.any_horizontal", "polars.apply", "polars.approx_unique", "polars.arange", "polars.arctan2", "polars.arctan2d", "polars.arg_sort_by", "polars.arg_where", "polars.avg", "polars.coalesce", "polars.col", "polars.concat_list", "polars.concat_str", "polars.corr", "polars.count", "polars.cov", "polars.cumfold", "polars.cumreduce", "polars.cumsum", "polars.cumsum_horizontal", "polars.date", "polars.date_range", "polars.date_ranges", "polars.datetime", "polars.duration", "polars.element", "polars.exclude", "polars.first", "polars.fold", "polars.format", "polars.from_epoch", "polars.groups", "polars.head", "polars.implode", "polars.int_range", "polars.int_ranges", "polars.last", "polars.lit", "polars.map", "polars.max", "polars.max_horizontal", "polars.mean", "polars.median", "polars.min", "polars.min_horizontal", "polars.n_unique", "polars.ones", "polars.quantile", "polars.reduce", "polars.repeat", "polars.rolling_corr", "polars.rolling_cov", "polars.select", "polars.sql_expr", "polars.std", "polars.struct", "polars.sum", "polars.sum_horizontal", "polars.tail", "polars.time", "polars.time_range", "polars.time_ranges", "polars.var", "polars.when", "polars.zeros", "Array", "Binary", "Boolean", "Categories", "Columns / names", "Computation", "Functions", "Expressions", "List", "Meta", "Miscellaneous", "Manipulation/selection", "Operators", "String", "Struct", "Temporal", "Window", "Functions", "API reference", "Input/output", "Aggregation", "polars.LazyFrame.bottom_k", "polars.LazyFrame.cache", "polars.LazyFrame.clear", "polars.LazyFrame.clone", "polars.LazyFrame.collect", "polars.LazyFrame.columns", "polars.LazyFrame.drop", "polars.LazyFrame.drop_nulls", "polars.LazyFrame.dtypes", "polars.LazyFrame.explain", "polars.LazyFrame.explode", "polars.LazyFrame.fetch", "polars.LazyFrame.fill_nan", "polars.LazyFrame.fill_null", "polars.LazyFrame.filter", "polars.LazyFrame.first", "polars.LazyFrame.from_json", "polars.LazyFrame.groupby", "polars.LazyFrame.groupby_dynamic", "polars.LazyFrame.groupby_rolling", "polars.LazyFrame.head", "polars.LazyFrame.inspect", "polars.LazyFrame.interpolate", "polars.LazyFrame.join", "polars.LazyFrame.join_asof", "polars.LazyFrame.last", "polars.LazyFrame.lazy", "polars.LazyFrame.limit", "polars.LazyFrame.map", "polars.LazyFrame.max", "polars.LazyFrame.mean", "polars.LazyFrame.median", "polars.LazyFrame.melt", "polars.LazyFrame.merge_sorted", "polars.LazyFrame.min", "polars.LazyFrame.null_count", "polars.LazyFrame.pipe", "polars.LazyFrame.profile", "polars.LazyFrame.quantile", "polars.LazyFrame.read_json", "polars.LazyFrame.rename", "polars.LazyFrame.reverse", "polars.LazyFrame.schema", "polars.LazyFrame.select", "polars.LazyFrame.set_sorted", "polars.LazyFrame.shift", "polars.LazyFrame.shift_and_fill", "polars.LazyFrame.show_graph", "polars.LazyFrame.slice", "polars.LazyFrame.sort", "polars.LazyFrame.std", "polars.LazyFrame.sum", "polars.LazyFrame.tail", "polars.LazyFrame.take_every", "polars.LazyFrame.top_k", "polars.LazyFrame.unique", "polars.LazyFrame.unnest", "polars.LazyFrame.update", "polars.LazyFrame.var", "polars.LazyFrame.width", "polars.LazyFrame.with_columns", "polars.LazyFrame.with_context", "polars.LazyFrame.with_row_count", "polars.LazyFrame.write_json", "polars.lazyframe.groupby.LazyGroupBy.agg", "polars.lazyframe.groupby.LazyGroupBy.all", "polars.lazyframe.groupby.LazyGroupBy.apply", "polars.lazyframe.groupby.LazyGroupBy.count", "polars.lazyframe.groupby.LazyGroupBy.first", "polars.lazyframe.groupby.LazyGroupBy.head", "polars.lazyframe.groupby.LazyGroupBy.last", "polars.lazyframe.groupby.LazyGroupBy.max", "polars.lazyframe.groupby.LazyGroupBy.mean", "polars.lazyframe.groupby.LazyGroupBy.median", "polars.lazyframe.groupby.LazyGroupBy.min", "polars.lazyframe.groupby.LazyGroupBy.n_unique", "polars.lazyframe.groupby.LazyGroupBy.quantile", "polars.lazyframe.groupby.LazyGroupBy.sum", "polars.lazyframe.groupby.LazyGroupBy.tail", "Attributes", "Descriptive", "GroupBy", "LazyFrame", "Miscellaneous", "Manipulation/selection", "Selectors", "Aggregation", "polars.Series.abs", "polars.Series.alias", "polars.Series.all", "polars.Series.any", "polars.Series.append", "polars.Series.apply", "polars.Series.arccos", "polars.Series.arccosh", "polars.Series.arcsin", "polars.Series.arcsinh", "polars.Series.arctan", "polars.Series.arctanh", "polars.Series.arg_max", "polars.Series.arg_min", "polars.Series.arg_sort", "polars.Series.arg_true", "polars.Series.arg_unique", "polars.Series.arr.max", "polars.Series.arr.min", "polars.Series.arr.sum", "polars.Series.arr.unique", "polars.Series.bin.contains", "polars.Series.bin.decode", "polars.Series.bin.encode", "polars.Series.bin.ends_with", "polars.Series.bin.starts_with", "polars.Series.bottom_k", "polars.Series.cast", "polars.Series.cat", "polars.Series.cat.get_categories", "polars.Series.cat.set_ordering", "polars.Series.cbrt", "polars.Series.ceil", "polars.Series.chunk_lengths", "polars.Series.clear", "polars.Series.clip", "polars.Series.clip_max", "polars.Series.clip_min", "polars.Series.clone", "polars.Series.cos", "polars.Series.cosh", "polars.Series.cummax", "polars.Series.cummin", "polars.Series.cumprod", "polars.Series.cumsum", "polars.Series.cumulative_eval", "polars.Series.cut", "polars.Series.describe", "polars.Series.diff", "polars.Series.dot", "polars.Series.drop_nans", "polars.Series.drop_nulls", "polars.Series.dt", "polars.Series.dt.base_utc_offset", "polars.Series.dt.cast_time_unit", "polars.Series.dt.combine", "polars.Series.dt.convert_time_zone", "polars.Series.dt.date", "polars.Series.dt.datetime", "polars.Series.dt.day", "polars.Series.dt.days", "polars.Series.dt.dst_offset", "polars.Series.dt.epoch", "polars.Series.dt.hour", "polars.Series.dt.hours", "polars.Series.dt.is_leap_year", "polars.Series.dt.iso_year", "polars.Series.dt.max", "polars.Series.dt.mean", "polars.Series.dt.median", "polars.Series.dt.microsecond", "polars.Series.dt.microseconds", "polars.Series.dt.millisecond", "polars.Series.dt.milliseconds", "polars.Series.dt.min", "polars.Series.dt.minute", "polars.Series.dt.minutes", "polars.Series.dt.month", "polars.Series.dt.month_end", "polars.Series.dt.month_start", "polars.Series.dt.nanosecond", "polars.Series.dt.nanoseconds", "polars.Series.dt.offset_by", "polars.Series.dt.ordinal_day", "polars.Series.dt.quarter", "polars.Series.dt.replace_time_zone", "polars.Series.dt.round", "polars.Series.dt.second", "polars.Series.dt.seconds", "polars.Series.dt.strftime", "polars.Series.dt.time", "polars.Series.dt.timestamp", "polars.Series.dt.to_string", "polars.Series.dt.truncate", "polars.Series.dt.week", "polars.Series.dt.weekday", "polars.Series.dt.with_time_unit", "polars.Series.dt.year", "polars.Series.dtype", "polars.Series.entropy", "polars.Series.estimated_size", "polars.Series.ewm_mean", "polars.Series.ewm_std", "polars.Series.ewm_var", "polars.Series.exp", "polars.Series.explode", "polars.Series.extend", "polars.Series.extend_constant", "polars.Series.fill_nan", "polars.Series.fill_null", "polars.Series.filter", "polars.Series.flags", "polars.Series.floor", "polars.Series.get_chunks", "polars.Series.has_validity", "polars.Series.hash", "polars.Series.head", "polars.Series.hist", "polars.Series.implode", "polars.Series.inner_dtype", "polars.Series.interpolate", "polars.Series.is_between", "polars.Series.is_boolean", "polars.Series.is_duplicated", "polars.Series.is_empty", "polars.Series.is_finite", "polars.Series.is_first", "polars.Series.is_float", "polars.Series.is_in", "polars.Series.is_infinite", "polars.Series.is_integer", "polars.Series.is_nan", "polars.Series.is_not_nan", "polars.Series.is_not_null", "polars.Series.is_null", "polars.Series.is_numeric", "polars.Series.is_sorted", "polars.Series.is_temporal", "polars.Series.is_unique", "polars.Series.is_utf8", "polars.Series.item", "polars.Series.kurtosis", "polars.Series.len", "polars.Series.limit", "polars.Series.list", "polars.Series.list.all", "polars.Series.list.any", "polars.Series.list.arg_max", "polars.Series.list.arg_min", "polars.Series.list.concat", "polars.Series.list.contains", "polars.Series.list.count_match", "polars.Series.list.diff", "polars.Series.list.difference", "polars.Series.list.eval", "polars.Series.list.explode", "polars.Series.list.first", "polars.Series.list.get", "polars.Series.list.head", "polars.Series.list.intersection", "polars.Series.list.join", "polars.Series.list.last", "polars.Series.list.lengths", "polars.Series.list.max", "polars.Series.list.mean", "polars.Series.list.min", "polars.Series.list.reverse", "polars.Series.list.shift", "polars.Series.list.slice", "polars.Series.list.sort", "polars.Series.list.sum", "polars.Series.list.tail", "polars.Series.list.take", "polars.Series.list.to_struct", "polars.Series.list.union", "polars.Series.list.unique", "polars.Series.log", "polars.Series.log10", "polars.Series.log1p", "polars.Series.lower_bound", "polars.Series.map_dict", "polars.Series.max", "polars.Series.mean", "polars.Series.median", "polars.Series.min", "polars.Series.mode", "polars.Series.n_chunks", "polars.Series.n_unique", "polars.Series.name", "polars.Series.nan_max", "polars.Series.nan_min", "polars.Series.new_from_index", "polars.Series.null_count", "polars.Series.pct_change", "polars.Series.peak_max", "polars.Series.peak_min", "polars.Series.product", "polars.Series.qcut", "polars.Series.quantile", "polars.Series.rank", "polars.Series.rechunk", "polars.Series.reinterpret", "polars.Series.rename", "polars.Series.reshape", "polars.Series.reverse", "polars.Series.rle", "polars.Series.rle_id", "polars.Series.rolling_apply", "polars.Series.rolling_max", "polars.Series.rolling_mean", "polars.Series.rolling_median", "polars.Series.rolling_min", "polars.Series.rolling_quantile", "polars.Series.rolling_skew", "polars.Series.rolling_std", "polars.Series.rolling_sum", "polars.Series.rolling_var", "polars.Series.round", "polars.Series.sample", "polars.Series.search_sorted", "polars.Series.series_equal", "polars.Series.set", "polars.Series.set_at_idx", "polars.Series.set_sorted", "polars.Series.shape", "polars.Series.shift", "polars.Series.shift_and_fill", "polars.Series.shrink_dtype", "polars.Series.shrink_to_fit", "polars.Series.shuffle", "polars.Series.sign", "polars.Series.sin", "polars.Series.sinh", "polars.Series.skew", "polars.Series.slice", "polars.Series.sort", "polars.Series.sqrt", "polars.Series.std", "polars.Series.str", "polars.Series.str.concat", "polars.Series.str.contains", "polars.Series.str.count_match", "polars.Series.str.decode", "polars.Series.str.encode", "polars.Series.str.ends_with", "polars.Series.str.explode", "polars.Series.str.extract", "polars.Series.str.extract_all", "polars.Series.str.json_extract", "polars.Series.str.json_path_match", "polars.Series.str.lengths", "polars.Series.str.ljust", "polars.Series.str.lstrip", "polars.Series.str.n_chars", "polars.Series.str.parse_int", "polars.Series.str.replace", "polars.Series.str.replace_all", "polars.Series.str.rjust", "polars.Series.str.rstrip", "polars.Series.str.slice", "polars.Series.str.split", "polars.Series.str.split_exact", "polars.Series.str.splitn", "polars.Series.str.starts_with", "polars.Series.str.strip", "polars.Series.str.strptime", "polars.Series.str.to_date", "polars.Series.str.to_datetime", "polars.Series.str.to_decimal", "polars.Series.str.to_lowercase", "polars.Series.str.to_time", "polars.Series.str.to_titlecase", "polars.Series.str.to_uppercase", "polars.Series.str.zfill", "polars.Series.struct.field", "polars.Series.struct.fields", "polars.Series.struct.rename_fields", "polars.Series.struct.schema", "polars.Series.struct.unnest", "polars.Series.sum", "polars.Series.tail", "polars.Series.take", "polars.Series.take_every", "polars.Series.tan", "polars.Series.tanh", "polars.Series.time_unit", "polars.Series.to_arrow", "polars.Series.to_dummies", "polars.Series.to_frame", "polars.Series.to_init_repr", "polars.Series.to_list", "polars.Series.to_numpy", "polars.Series.to_pandas", "polars.Series.to_physical", "polars.Series.top_k", "polars.Series.unique", "polars.Series.unique_counts", "polars.Series.upper_bound", "polars.Series.value_counts", "polars.Series.var", "polars.Series.view", "polars.Series.zip_with", "Array", "Attributes", "Binary", "Boolean", "Categories", "Computation", "Descriptive", "Export", "Series", "List", "Miscellaneous", "Manipulation/selection", "String", "Struct", "Temporal", "SQL", "Testing", "Utils"], "terms": {"api": [0, 91, 117, 132, 133, 236, 254, 268, 567, 638, 718, 744, 1049], "refer": [0, 31, 101, 102, 105, 138, 254, 348, 351, 439, 473, 515, 534, 535, 536, 539, 638, 828, 831, 938, 1004, 1005, 1006, 1009, 1049], "input": [0, 67, 73, 93, 101, 102, 105, 133, 134, 145, 157, 185, 200, 207, 221, 231, 234, 254, 261, 268, 363, 383, 433, 439, 448, 464, 505, 562, 563, 564, 565, 566, 567, 569, 572, 575, 576, 577, 578, 584, 585, 592, 593, 600, 601, 602, 604, 605, 606, 609, 610, 618, 621, 622, 623, 629, 638, 649, 652, 662, 669, 695, 701, 706, 712, 716, 734, 744, 860, 916, 917, 919, 1049], "output": [0, 26, 28, 31, 32, 33, 34, 105, 133, 158, 159, 170, 180, 185, 187, 196, 200, 227, 231, 254, 268, 437, 438, 447, 484, 486, 488, 490, 492, 498, 559, 567, 579, 587, 588, 604, 626, 638, 649, 670, 671, 680, 684, 685, 695, 712, 715, 718, 734, 744, 1037, 1049], "seri": [0, 1, 2, 23, 59, 68, 69, 70, 71, 74, 90, 92, 95, 97, 120, 124, 141, 149, 152, 154, 155, 159, 160, 163, 164, 166, 168, 176, 177, 181, 192, 193, 209, 213, 216, 219, 220, 235, 254, 267, 268, 279, 286, 294, 295, 297, 344, 366, 372, 381, 385, 387, 388, 389, 391, 392, 393, 405, 411, 414, 423, 424, 427, 428, 429, 435, 437, 467, 473, 474, 475, 476, 477, 479, 481, 487, 493, 494, 497, 508, 528, 534, 535, 536, 539, 543, 549, 550, 558, 563, 565, 567, 568, 569, 573, 574, 580, 582, 583, 584, 587, 588, 593, 594, 596, 598, 600, 601, 602, 603, 604, 605, 607, 608, 609, 611, 612, 614, 615, 618, 620, 621, 622, 624, 626, 627, 628, 630, 638, 649, 666, 671, 717, 734, 1041, 1043, 1045, 1048, 1050, 1053, 1054, 1055, 1057], "datafram": [0, 1, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 67, 68, 69, 70, 71, 73, 74, 75, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 112, 114, 115, 116, 119, 121, 122, 130, 252, 253, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 415, 416, 417, 418, 419, 420, 421, 422, 425, 426, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 537, 538, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 588, 590, 591, 592, 593, 594, 595, 596, 598, 601, 602, 604, 605, 606, 607, 608, 609, 610, 611, 614, 618, 619, 620, 621, 622, 623, 624, 627, 628, 629, 638, 649, 656, 658, 662, 663, 667, 670, 675, 676, 677, 678, 680, 684, 685, 689, 693, 700, 701, 707, 708, 709, 712, 713, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 743, 744, 758, 759, 769, 785, 786, 824, 856, 884, 885, 893, 936, 988, 1000, 1001, 1017, 1026, 1027, 1037, 1049, 1056, 1057], "lazyfram": [0, 1, 52, 53, 55, 57, 67, 68, 69, 70, 71, 73, 74, 112, 113, 114, 115, 116, 117, 119, 124, 174, 186, 254, 369, 429, 638, 649, 733, 737, 1056, 1057], "express": [0, 47, 48, 73, 121, 124, 126, 133, 134, 145, 147, 149, 157, 183, 187, 195, 200, 207, 221, 231, 234, 236, 254, 261, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 278, 279, 286, 288, 289, 290, 292, 298, 299, 300, 301, 302, 303, 309, 311, 313, 316, 317, 318, 319, 320, 321, 322, 323, 324, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 352, 353, 354, 355, 356, 358, 359, 363, 365, 366, 368, 369, 373, 375, 376, 377, 381, 383, 385, 386, 387, 388, 390, 395, 398, 399, 403, 404, 406, 407, 410, 411, 416, 429, 435, 436, 437, 438, 439, 443, 444, 445, 446, 447, 448, 450, 452, 454, 456, 460, 461, 463, 464, 466, 467, 468, 469, 472, 476, 477, 479, 492, 493, 494, 496, 498, 500, 501, 503, 505, 508, 509, 510, 512, 514, 515, 516, 517, 518, 523, 524, 525, 528, 529, 530, 531, 545, 546, 549, 551, 552, 555, 556, 558, 559, 561, 562, 563, 564, 565, 566, 567, 569, 570, 571, 572, 573, 575, 576, 577, 578, 579, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 600, 601, 602, 603, 604, 605, 606, 609, 610, 612, 614, 615, 616, 617, 618, 619, 621, 622, 623, 625, 626, 627, 629, 630, 637, 649, 652, 656, 661, 662, 663, 666, 669, 689, 695, 698, 699, 701, 706, 712, 713, 716, 718, 734, 737, 744, 774, 775, 776, 784, 794, 846, 860, 890, 893, 958, 965, 979, 980, 985, 986, 987, 988, 994, 995, 1049], "selector": [0, 622, 649], "extend": [0, 93, 229, 254, 366, 638, 649, 743, 846, 1049], "function": [0, 31, 67, 68, 69, 70, 71, 91, 97, 101, 102, 105, 112, 122, 133, 138, 144, 152, 179, 186, 187, 218, 222, 225, 226, 236, 254, 264, 268, 309, 345, 360, 361, 362, 429, 437, 438, 464, 466, 481, 482, 483, 484, 485, 486, 488, 489, 490, 502, 553, 563, 565, 567, 569, 582, 583, 584, 593, 594, 596, 602, 604, 605, 609, 614, 622, 638, 649, 680, 684, 688, 709, 718, 734, 744, 784, 825, 839, 840, 841, 842, 856, 912, 936, 946, 960, 961, 967, 972, 1031, 1049, 1057], "data": [0, 1, 6, 16, 19, 29, 30, 31, 32, 36, 47, 48, 52, 58, 67, 68, 70, 74, 75, 80, 81, 85, 87, 90, 91, 92, 93, 94, 95, 96, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 119, 120, 122, 123, 124, 126, 132, 133, 136, 146, 156, 157, 158, 159, 170, 171, 172, 174, 185, 186, 190, 195, 196, 197, 205, 212, 217, 218, 222, 231, 233, 252, 254, 264, 265, 266, 268, 270, 271, 272, 273, 274, 275, 278, 281, 282, 283, 284, 286, 288, 289, 290, 293, 294, 301, 302, 311, 316, 317, 320, 321, 322, 323, 324, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 345, 346, 347, 349, 352, 353, 354, 355, 356, 358, 359, 365, 376, 377, 382, 383, 385, 386, 387, 388, 389, 391, 398, 403, 404, 406, 411, 416, 431, 436, 460, 461, 463, 464, 470, 472, 473, 476, 477, 479, 491, 492, 500, 501, 502, 508, 510, 512, 514, 515, 516, 518, 523, 528, 529, 530, 531, 534, 535, 536, 539, 549, 551, 552, 553, 555, 556, 559, 562, 567, 569, 576, 586, 587, 588, 589, 590, 600, 601, 603, 604, 612, 615, 625, 626, 627, 630, 638, 649, 654, 655, 663, 669, 670, 671, 688, 712, 734, 741, 742, 743, 744, 754, 758, 759, 760, 762, 766, 768, 773, 777, 785, 790, 792, 793, 796, 797, 798, 799, 800, 802, 803, 804, 805, 809, 810, 811, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 832, 833, 834, 835, 836, 844, 845, 856, 862, 864, 865, 867, 868, 870, 871, 872, 873, 877, 886, 887, 889, 894, 899, 914, 936, 938, 942, 944, 956, 957, 967, 972, 978, 979, 980, 982, 984, 985, 986, 988, 989, 992, 993, 998, 999, 1000, 1001, 1004, 1005, 1006, 1009, 1029, 1030, 1031, 1032, 1034, 1039, 1048, 1049, 1056], "type": [0, 1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 31, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 80, 90, 92, 93, 94, 95, 96, 101, 102, 104, 105, 108, 109, 112, 113, 118, 119, 120, 123, 124, 133, 152, 156, 158, 159, 160, 171, 172, 212, 218, 220, 223, 254, 264, 266, 268, 270, 271, 272, 273, 274, 275, 278, 286, 288, 289, 290, 293, 294, 295, 298, 299, 300, 301, 302, 311, 316, 319, 320, 321, 322, 323, 324, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 349, 352, 353, 354, 356, 363, 365, 378, 383, 385, 386, 387, 388, 403, 404, 406, 411, 416, 429, 439, 472, 476, 477, 479, 500, 501, 508, 510, 512, 514, 515, 516, 518, 523, 528, 529, 530, 531, 534, 549, 551, 552, 553, 559, 567, 569, 576, 586, 587, 588, 589, 590, 592, 593, 600, 601, 602, 603, 604, 612, 615, 625, 626, 627, 630, 638, 649, 656, 661, 663, 670, 671, 675, 689, 699, 707, 734, 741, 742, 754, 760, 762, 766, 768, 769, 774, 775, 776, 792, 795, 796, 797, 798, 799, 800, 802, 803, 804, 805, 809, 810, 811, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 832, 833, 834, 836, 844, 854, 862, 864, 865, 867, 868, 870, 871, 872, 873, 877, 886, 887, 889, 894, 899, 912, 942, 944, 967, 978, 979, 980, 982, 984, 985, 986, 988, 989, 992, 993, 998, 999, 1000, 1001, 1004, 1029, 1030, 1032, 1040, 1049, 1056], "config": [0, 67, 200, 231, 254, 590, 649, 695, 712, 734], "except": [0, 161, 173, 175, 210, 254, 592, 649, 676, 734, 737, 855, 882, 1019, 1030, 1039, 1049], "test": [0, 103, 105, 649, 672, 679, 734], "util": [0, 97, 596, 649, 663, 734], "sql": [0, 29, 52, 56, 103, 172, 254, 619, 649], "These": [1, 31, 130, 222, 254, 352, 637, 825, 832], "allow": [1, 30, 31, 47, 48, 58, 80, 91, 112, 114, 115, 116, 117, 124, 126, 132, 170, 173, 174, 195, 196, 198, 217, 218, 223, 233, 254, 268, 341, 348, 351, 437, 475, 492, 534, 535, 536, 638, 675, 676, 680, 684, 707, 713, 734, 737, 744, 821, 828, 831, 940, 957, 959, 1004, 1005, 1006, 1031, 1049, 1057], "you": [1, 13, 31, 35, 48, 57, 67, 74, 90, 92, 93, 94, 96, 101, 102, 103, 105, 106, 108, 109, 110, 112, 119, 130, 133, 142, 146, 158, 159, 170, 183, 195, 196, 197, 214, 217, 222, 236, 254, 268, 298, 299, 300, 337, 338, 344, 348, 351, 352, 369, 383, 410, 429, 437, 439, 475, 480, 482, 483, 484, 485, 486, 488, 489, 490, 519, 522, 534, 536, 567, 582, 594, 612, 615, 630, 638, 656, 659, 670, 671, 672, 676, 679, 699, 718, 734, 737, 743, 744, 774, 775, 776, 817, 818, 824, 828, 831, 832, 845, 860, 893, 940, 945, 989, 992, 1004, 1006, 1030, 1039, 1049, 1057], "regist": [1, 52, 54, 55, 56, 57, 68, 69, 70, 71, 125, 127, 1056], "custom": [1, 31, 68, 69, 70, 71, 125, 126, 127, 133, 236, 254, 268, 348, 351, 429, 437, 481, 567, 604, 638, 680, 718, 734, 744, 828, 831, 912, 946, 1049, 1057], "dedic": [1, 91, 170, 196, 254], "namespac": [1, 253, 637, 649, 733], "underli": [1, 76, 83, 90, 92, 93, 94, 96, 108, 109, 110, 121, 124, 126, 146, 170, 171, 196, 212, 254, 287, 317, 318, 322, 326, 328, 329, 330, 332, 334, 336, 339, 342, 343, 344, 346, 353, 354, 355, 356, 475, 491, 509, 511, 638, 734, 737, 743, 761, 793, 794, 798, 802, 804, 805, 809, 811, 814, 816, 819, 822, 823, 824, 826, 833, 834, 835, 836, 845, 940, 956, 967, 979, 981, 1025, 1030, 1049], "polar": [1, 254, 637, 638, 643, 649, 734, 737, 1049, 1056], "class": [1, 2, 3, 4, 5, 15, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 121, 122, 197, 218, 254, 626, 638, 643, 649, 734, 1029, 1030, 1049, 1056], "without": [1, 6, 97, 104, 107, 111, 113, 117, 225, 226, 254, 268, 309, 345, 482, 483, 484, 485, 486, 488, 489, 490, 618, 638, 709, 734, 784, 790, 825, 856, 936, 1030, 1049], "requir": [1, 30, 31, 35, 48, 67, 95, 119, 120, 134, 138, 195, 218, 221, 254, 284, 360, 361, 362, 431, 497, 534, 535, 536, 556, 615, 638, 652, 701, 706, 734, 759, 840, 841, 842, 914, 966, 1004, 1005, 1006, 1030, 1031, 1034, 1049], "subclass": [1, 254], "mixin": 1, "expr": [1, 67, 68, 69, 70, 71, 145, 147, 149, 172, 173, 183, 187, 195, 200, 231, 254, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 634, 638, 639, 640, 643, 644, 645, 646, 662, 664, 675, 676, 690, 695, 698, 712, 734, 784, 794, 847, 884, 885, 890, 893, 897, 907, 910, 965, 979, 983, 1002, 1020, 1049], "ar": [1, 6, 9, 11, 15, 18, 26, 30, 31, 47, 48, 57, 58, 67, 74, 75, 82, 89, 90, 91, 92, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 108, 109, 110, 112, 113, 114, 115, 117, 119, 120, 122, 124, 130, 132, 133, 134, 138, 142, 144, 147, 151, 152, 157, 158, 159, 170, 172, 173, 174, 179, 180, 185, 187, 195, 196, 197, 200, 201, 207, 213, 218, 221, 226, 227, 231, 234, 254, 264, 266, 292, 305, 307, 308, 314, 315, 345, 352, 357, 359, 360, 361, 362, 383, 385, 387, 388, 389, 391, 392, 393, 396, 401, 429, 439, 461, 464, 473, 476, 477, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 499, 502, 504, 505, 517, 518, 519, 522, 523, 534, 536, 547, 563, 564, 565, 566, 572, 575, 577, 578, 579, 584, 585, 587, 588, 605, 606, 609, 610, 618, 621, 622, 623, 626, 627, 629, 631, 632, 634, 637, 638, 639, 640, 643, 644, 645, 646, 649, 652, 659, 664, 669, 670, 671, 672, 675, 676, 679, 680, 684, 685, 689, 692, 695, 696, 701, 706, 709, 712, 713, 716, 734, 737, 741, 743, 782, 783, 825, 832, 838, 839, 840, 841, 842, 853, 860, 864, 867, 868, 870, 871, 872, 873, 880, 884, 912, 938, 942, 946, 952, 969, 972, 987, 989, 992, 993, 1004, 1006, 1018, 1030, 1031, 1039, 1041, 1043, 1045, 1049, 1050, 1053, 1054, 1055, 1057], "all": [1, 8, 15, 18, 23, 26, 31, 36, 54, 67, 73, 90, 93, 95, 96, 101, 102, 104, 105, 106, 110, 112, 114, 115, 121, 122, 126, 139, 142, 148, 161, 166, 168, 170, 171, 174, 175, 179, 182, 183, 190, 195, 196, 197, 206, 210, 215, 217, 223, 225, 227, 254, 265, 266, 267, 285, 303, 309, 315, 316, 363, 368, 374, 378, 380, 382, 385, 388, 392, 393, 395, 399, 410, 416, 426, 429, 437, 438, 455, 462, 468, 473, 478, 497, 503, 505, 510, 516, 517, 518, 521, 524, 525, 527, 533, 546, 559, 564, 576, 584, 585, 587, 592, 594, 599, 614, 621, 622, 623, 629, 638, 643, 649, 656, 659, 661, 663, 665, 680, 684, 689, 699, 700, 707, 713, 734, 737, 784, 786, 790, 792, 855, 862, 877, 882, 893, 899, 909, 912, 938, 973, 980, 986, 987, 988, 991, 994, 995, 997, 1003, 1019, 1049, 1056, 1057], "support": [1, 30, 31, 35, 74, 90, 91, 92, 93, 94, 95, 96, 97, 103, 104, 105, 108, 109, 113, 121, 126, 130, 132, 170, 171, 172, 196, 197, 206, 207, 214, 218, 254, 424, 464, 503, 505, 528, 576, 638, 643, 675, 700, 701, 734, 737, 907, 973, 998, 1031, 1049, 1056], "target": [1, 29, 30, 31, 72, 254, 515, 534, 535, 536, 587, 985, 1004, 1005, 1006], "thi": [1, 6, 8, 12, 13, 26, 28, 30, 31, 33, 35, 39, 47, 48, 52, 53, 57, 58, 67, 73, 74, 75, 90, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 108, 109, 110, 112, 113, 114, 115, 116, 117, 119, 120, 121, 122, 123, 124, 126, 128, 130, 132, 133, 134, 138, 142, 143, 144, 146, 151, 152, 157, 158, 159, 160, 164, 166, 168, 169, 170, 172, 173, 174, 176, 177, 178, 179, 180, 181, 182, 183, 185, 188, 189, 190, 195, 196, 197, 198, 200, 204, 206, 208, 209, 212, 214, 217, 218, 221, 222, 223, 225, 226, 227, 228, 229, 231, 232, 236, 237, 253, 254, 264, 267, 268, 269, 278, 284, 291, 292, 294, 295, 303, 309, 316, 317, 329, 337, 338, 341, 344, 345, 348, 351, 355, 359, 365, 381, 382, 383, 387, 395, 399, 409, 410, 411, 415, 416, 425, 429, 430, 431, 434, 435, 437, 443, 444, 445, 446, 447, 448, 458, 459, 461, 464, 468, 470, 473, 474, 475, 476, 477, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 492, 494, 496, 497, 498, 503, 504, 505, 515, 520, 521, 526, 527, 533, 534, 536, 537, 542, 546, 554, 556, 557, 558, 559, 563, 565, 567, 568, 577, 580, 582, 584, 587, 588, 593, 594, 596, 602, 605, 609, 615, 618, 622, 626, 638, 649, 650, 652, 653, 656, 659, 661, 663, 669, 670, 671, 673, 675, 676, 680, 684, 685, 689, 692, 695, 698, 699, 700, 701, 706, 707, 709, 712, 713, 714, 715, 718, 719, 733, 734, 737, 743, 744, 753, 759, 765, 768, 769, 784, 790, 792, 793, 794, 805, 817, 818, 821, 824, 825, 828, 831, 835, 839, 844, 845, 852, 853, 856, 861, 866, 867, 869, 874, 876, 878, 879, 881, 892, 893, 894, 898, 899, 908, 913, 914, 918, 920, 921, 922, 923, 925, 926, 928, 929, 931, 935, 936, 937, 938, 939, 940, 941, 942, 945, 946, 947, 948, 950, 953, 954, 955, 957, 960, 961, 962, 965, 966, 967, 968, 973, 974, 976, 985, 990, 991, 996, 997, 1003, 1004, 1006, 1007, 1012, 1013, 1017, 1018, 1025, 1027, 1029, 1030, 1031, 1033, 1034, 1036, 1038, 1039, 1049, 1056, 1057], "featur": [1, 35, 39, 58, 72, 254], "i": [1, 6, 12, 13, 15, 28, 30, 31, 32, 33, 34, 39, 47, 48, 52, 57, 58, 67, 72, 73, 74, 77, 79, 80, 82, 86, 88, 90, 91, 92, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 108, 109, 110, 112, 113, 114, 115, 116, 117, 121, 122, 123, 124, 126, 128, 132, 133, 134, 142, 144, 146, 153, 156, 157, 158, 159, 160, 161, 164, 165, 167, 169, 170, 171, 172, 173, 174, 175, 177, 179, 180, 183, 185, 186, 187, 195, 196, 197, 198, 206, 207, 208, 209, 210, 212, 217, 218, 221, 222, 223, 225, 226, 227, 228, 233, 236, 237, 253, 254, 261, 264, 266, 267, 268, 269, 279, 303, 309, 316, 318, 328, 341, 345, 348, 352, 360, 361, 362, 365, 378, 381, 383, 396, 402, 410, 413, 424, 428, 429, 434, 437, 439, 443, 446, 448, 464, 473, 475, 476, 477, 480, 482, 483, 484, 485, 486, 488, 489, 490, 492, 493, 494, 498, 499, 502, 503, 504, 505, 507, 509, 510, 515, 516, 518, 520, 521, 523, 524, 526, 527, 528, 531, 533, 534, 535, 536, 539, 542, 559, 560, 563, 565, 567, 568, 573, 576, 577, 579, 580, 582, 583, 584, 587, 588, 594, 603, 605, 609, 615, 616, 617, 618, 620, 622, 626, 628, 629, 638, 652, 656, 659, 661, 663, 669, 670, 671, 674, 675, 676, 678, 680, 684, 685, 689, 699, 700, 701, 702, 706, 707, 709, 710, 715, 718, 719, 734, 737, 742, 743, 744, 784, 792, 794, 804, 821, 825, 828, 832, 839, 840, 841, 842, 844, 845, 853, 854, 855, 856, 861, 863, 869, 874, 875, 876, 878, 879, 880, 882, 885, 893, 896, 907, 911, 912, 936, 938, 940, 942, 945, 953, 955, 957, 958, 959, 960, 961, 962, 968, 969, 972, 973, 976, 979, 980, 985, 986, 988, 990, 991, 993, 994, 996, 997, 998, 1001, 1003, 1004, 1005, 1006, 1009, 1012, 1019, 1025, 1030, 1031, 1037, 1038, 1039, 1049, 1056, 1057], "primarili": 1, "intend": [1, 587], "us": [1, 10, 12, 13, 18, 23, 24, 28, 29, 31, 35, 38, 48, 52, 53, 54, 55, 57, 58, 67, 74, 91, 93, 94, 96, 98, 101, 102, 103, 104, 105, 106, 110, 112, 113, 114, 115, 116, 117, 121, 122, 123, 124, 125, 126, 128, 133, 140, 142, 147, 148, 152, 157, 158, 159, 166, 168, 170, 171, 173, 177, 179, 182, 183, 185, 186, 187, 195, 196, 197, 198, 200, 207, 208, 209, 214, 215, 216, 217, 218, 222, 223, 225, 226, 227, 228, 231, 234, 236, 254, 262, 268, 269, 279, 287, 288, 292, 295, 309, 314, 315, 344, 348, 351, 352, 355, 357, 360, 361, 362, 368, 369, 382, 383, 396, 410, 429, 437, 439, 442, 464, 470, 473, 475, 477, 480, 482, 483, 484, 485, 486, 488, 489, 490, 492, 494, 497, 498, 502, 504, 505, 507, 509, 511, 512, 513, 515, 516, 517, 519, 520, 524, 526, 528, 530, 532, 534, 535, 536, 539, 560, 563, 564, 565, 566, 567, 568, 576, 578, 579, 582, 584, 585, 587, 588, 594, 596, 603, 605, 606, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 626, 628, 630, 637, 638, 648, 649, 656, 658, 659, 664, 665, 669, 670, 671, 672, 676, 678, 679, 684, 695, 701, 702, 707, 709, 710, 712, 716, 718, 734, 737, 743, 744, 761, 762, 769, 784, 785, 824, 828, 831, 832, 835, 838, 840, 841, 842, 847, 848, 853, 856, 859, 860, 880, 893, 912, 919, 936, 938, 940, 942, 945, 957, 960, 961, 962, 966, 968, 972, 976, 979, 981, 982, 985, 986, 987, 989, 990, 994, 996, 998, 1000, 1004, 1005, 1006, 1009, 1020, 1026, 1028, 1029, 1030, 1031, 1038, 1039, 1049, 1056, 1057], "librari": [1, 76, 83, 437, 638, 1057], "author": 1, "domain": [1, 516, 986], "specif": [1, 26, 30, 31, 90, 92, 94, 96, 101, 103, 104, 108, 109, 113, 123, 124, 170, 254, 348, 351, 481, 534, 535, 536, 539, 638, 734, 737, 828, 831, 946, 1004, 1005, 1006, 1009, 1049, 1057], "capabl": [1, 31, 254], "which": [1, 9, 18, 27, 28, 31, 32, 33, 34, 35, 47, 48, 67, 68, 69, 70, 71, 93, 101, 102, 103, 104, 105, 112, 113, 119, 125, 127, 134, 142, 146, 147, 157, 158, 159, 173, 217, 221, 223, 227, 254, 264, 341, 345, 348, 352, 366, 383, 385, 388, 389, 391, 392, 393, 429, 448, 480, 482, 483, 484, 485, 486, 488, 489, 490, 523, 569, 587, 588, 626, 627, 629, 638, 652, 659, 661, 670, 671, 676, 706, 707, 715, 734, 743, 821, 825, 828, 832, 845, 846, 860, 864, 868, 870, 871, 872, 873, 912, 945, 960, 993, 1030, 1049, 1057], "mai": [1, 30, 39, 48, 74, 90, 92, 93, 94, 96, 101, 104, 106, 108, 109, 113, 114, 117, 133, 144, 146, 158, 159, 173, 203, 204, 218, 225, 226, 227, 254, 268, 309, 316, 317, 329, 341, 345, 352, 423, 428, 429, 437, 447, 482, 483, 484, 485, 486, 488, 489, 490, 495, 496, 534, 536, 582, 583, 587, 594, 614, 638, 670, 671, 676, 680, 697, 698, 709, 714, 718, 734, 743, 744, 784, 792, 793, 805, 821, 825, 832, 839, 845, 856, 906, 911, 936, 964, 965, 1004, 1006, 1030, 1049, 1057], "exist": [1, 29, 30, 31, 67, 104, 113, 124, 222, 231, 254, 263, 286, 289, 290, 318, 638, 712, 734, 794], "belong": [1, 158, 254, 670, 734], "core": [1, 218, 254, 1057], "cannot": [1, 91, 101, 102, 105, 106, 119, 128, 133, 197, 198, 236, 254, 268, 287, 439, 492, 511, 530, 544, 567, 638, 699, 718, 734, 744, 761, 957, 981, 1000, 1049], "overrid": [1, 31, 90, 92, 93, 94, 95, 96, 101, 108, 109, 121, 122, 126, 128, 254, 439, 638, 734, 919, 1049], "str": [1, 7, 9, 12, 14, 15, 18, 19, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 38, 47, 48, 52, 53, 54, 55, 56, 57, 58, 67, 68, 69, 70, 71, 72, 75, 90, 92, 93, 94, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 121, 122, 124, 125, 126, 127, 130, 134, 137, 139, 140, 141, 142, 143, 144, 145, 149, 150, 151, 152, 154, 156, 157, 158, 159, 161, 163, 166, 168, 169, 170, 172, 173, 176, 177, 178, 179, 180, 181, 183, 185, 187, 189, 191, 192, 193, 194, 195, 196, 197, 198, 201, 203, 204, 206, 207, 208, 209, 210, 213, 214, 215, 216, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 261, 262, 263, 268, 286, 288, 289, 290, 294, 310, 313, 319, 341, 344, 345, 348, 351, 352, 363, 365, 369, 371, 375, 381, 383, 390, 405, 406, 413, 414, 416, 424, 427, 429, 438, 439, 447, 449, 450, 452, 464, 466, 468, 470, 476, 478, 480, 482, 483, 484, 485, 486, 488, 489, 490, 496, 497, 504, 505, 543, 544, 546, 549, 561, 562, 564, 566, 567, 568, 570, 571, 574, 576, 578, 579, 580, 581, 582, 583, 585, 586, 587, 588, 589, 590, 592, 593, 594, 595, 596, 597, 598, 599, 602, 604, 606, 607, 608, 610, 611, 613, 614, 615, 616, 617, 619, 620, 621, 623, 624, 625, 626, 627, 628, 638, 644, 652, 656, 657, 658, 659, 661, 662, 663, 666, 668, 669, 670, 671, 673, 675, 676, 684, 685, 689, 691, 692, 693, 696, 698, 699, 700, 701, 706, 707, 708, 709, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 740, 766, 768, 785, 786, 795, 821, 824, 825, 828, 831, 832, 844, 848, 889, 890, 899, 912, 919, 928, 929, 936, 941, 960, 961, 1013, 1015, 1026, 1027, 1028, 1049, 1053, 1056, 1057], "dt": [1, 67, 159, 254, 587, 590, 646, 671, 734, 737, 1055], "attempt": [1, 217, 254, 587, 588], "do": [1, 31, 47, 48, 67, 73, 74, 112, 146, 158, 159, 173, 187, 212, 222, 225, 254, 292, 309, 410, 464, 521, 527, 533, 612, 615, 630, 638, 656, 661, 670, 671, 676, 680, 689, 699, 734, 737, 743, 784, 845, 893, 991, 997, 1003, 1030, 1039, 1049], "so": [1, 58, 103, 112, 128, 156, 158, 159, 187, 254, 279, 383, 413, 429, 521, 527, 533, 638, 670, 671, 734, 896, 991, 997, 1003], "rais": [1, 14, 18, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 119, 120, 187, 195, 254, 287, 344, 352, 428, 447, 509, 511, 523, 534, 535, 536, 539, 603, 761, 824, 832, 911, 979, 981, 993, 1004, 1005, 1006, 1009, 1030, 1039, 1049], "an": [1, 6, 26, 29, 30, 31, 39, 68, 70, 71, 73, 76, 80, 81, 83, 90, 101, 102, 103, 104, 105, 107, 110, 112, 114, 122, 124, 126, 133, 135, 136, 144, 147, 149, 152, 158, 159, 170, 171, 173, 183, 187, 193, 195, 212, 217, 222, 225, 231, 236, 254, 263, 264, 268, 287, 293, 298, 299, 300, 304, 305, 306, 307, 308, 309, 318, 319, 344, 348, 355, 366, 368, 369, 375, 395, 407, 410, 413, 428, 429, 437, 438, 448, 469, 477, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 509, 511, 516, 534, 535, 536, 539, 549, 555, 563, 565, 569, 573, 576, 584, 587, 588, 591, 596, 600, 601, 603, 605, 609, 612, 614, 615, 618, 621, 622, 626, 627, 629, 630, 638, 649, 654, 655, 656, 661, 663, 666, 670, 671, 676, 680, 689, 699, 712, 713, 718, 734, 737, 744, 761, 766, 773, 774, 775, 776, 777, 780, 781, 782, 783, 784, 794, 828, 835, 839, 846, 869, 890, 893, 896, 911, 945, 946, 947, 948, 949, 950, 951, 953, 954, 955, 960, 961, 979, 981, 986, 1004, 1005, 1006, 1009, 1030, 1039, 1049, 1056], "attributeerror": 1, "howev": [1, 93, 133, 144, 217, 254, 587, 839, 1049], "can": [1, 13, 31, 38, 57, 67, 81, 93, 101, 102, 105, 106, 110, 112, 114, 116, 117, 122, 123, 124, 126, 128, 130, 133, 134, 135, 143, 152, 157, 158, 159, 166, 168, 183, 187, 197, 200, 207, 217, 221, 222, 225, 231, 236, 254, 268, 305, 308, 309, 337, 338, 341, 344, 352, 366, 383, 395, 410, 429, 447, 455, 464, 468, 470, 475, 482, 483, 484, 485, 486, 488, 489, 490, 492, 494, 497, 498, 499, 502, 505, 518, 521, 527, 533, 534, 536, 546, 559, 572, 576, 594, 596, 629, 637, 638, 648, 652, 656, 661, 670, 671, 695, 701, 706, 712, 714, 734, 737, 744, 784, 817, 818, 821, 824, 825, 832, 846, 860, 893, 912, 924, 936, 940, 960, 961, 962, 966, 969, 972, 988, 991, 997, 1003, 1004, 1006, 1030, 1049, 1056], "other": [1, 18, 31, 57, 101, 102, 105, 112, 119, 120, 142, 146, 153, 172, 173, 179, 180, 195, 197, 200, 226, 229, 231, 252, 254, 261, 265, 267, 279, 298, 299, 300, 313, 358, 359, 373, 376, 377, 383, 387, 398, 405, 409, 415, 430, 436, 439, 443, 446, 454, 456, 460, 461, 463, 505, 545, 553, 555, 562, 563, 564, 565, 566, 575, 577, 578, 584, 585, 587, 605, 606, 609, 610, 618, 621, 622, 623, 638, 649, 659, 675, 676, 684, 685, 695, 709, 712, 713, 734, 737, 743, 774, 775, 776, 788, 845, 867, 888, 892, 898, 913, 959, 1032, 1040, 1048, 1049], "onli": [1, 18, 26, 31, 52, 54, 58, 67, 72, 74, 101, 102, 104, 105, 106, 110, 112, 113, 114, 115, 116, 124, 126, 130, 133, 142, 146, 158, 159, 170, 172, 173, 177, 196, 197, 209, 214, 216, 217, 227, 236, 254, 262, 268, 279, 297, 298, 299, 300, 341, 349, 363, 372, 395, 464, 468, 475, 482, 483, 484, 485, 486, 488, 489, 490, 546, 557, 567, 587, 588, 638, 656, 659, 670, 671, 672, 675, 676, 679, 718, 734, 743, 744, 771, 774, 775, 776, 785, 821, 845, 851, 869, 936, 940, 1025, 1028, 1049, 1056, 1057], "gener": [1, 103, 121, 122, 123, 124, 126, 138, 187, 198, 215, 217, 222, 254, 492, 498, 569, 587, 600, 601, 615, 626, 627, 638, 734, 957, 968, 1026, 1049, 1057], "userwarn": 1, "pl": [1, 2, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 28, 30, 31, 32, 33, 34, 35, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 67, 68, 69, 70, 71, 74, 75, 90, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 112, 113, 117, 118, 119, 120, 121, 122, 123, 124, 126, 130, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 202, 203, 204, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 587, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 638, 650, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 692, 693, 694, 695, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 740, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 765, 766, 768, 769, 770, 771, 772, 773, 774, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 838, 839, 841, 842, 845, 846, 847, 848, 849, 851, 854, 855, 856, 859, 860, 861, 862, 863, 864, 866, 867, 868, 869, 870, 871, 872, 873, 874, 876, 877, 878, 879, 881, 884, 885, 891, 892, 893, 894, 897, 898, 899, 901, 906, 907, 908, 910, 912, 913, 918, 919, 920, 921, 922, 923, 924, 925, 926, 932, 933, 934, 936, 937, 938, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 959, 960, 961, 962, 964, 968, 969, 970, 971, 973, 974, 975, 976, 978, 979, 980, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1049, 1056, 1057], "register_expr_namespac": [1, 68, 70, 71], "greet": 1, "def": [1, 68, 69, 70, 71, 122, 123, 124, 126, 130, 186, 222, 254, 261, 466, 516, 562, 604, 638, 688, 734, 737, 986, 1057], "__init__": [1, 2, 3, 4, 5, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 121, 1056], "self": [1, 53, 54, 55, 57, 68, 69, 70, 71, 73, 135, 136, 139, 146, 161, 163, 164, 175, 176, 177, 178, 179, 181, 184, 185, 187, 189, 190, 192, 193, 198, 203, 205, 206, 208, 209, 210, 215, 222, 224, 227, 228, 229, 232, 233, 254, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 285, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 638, 652, 653, 655, 656, 658, 659, 661, 662, 663, 664, 665, 666, 667, 668, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 689, 690, 691, 692, 693, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 734, 743, 744, 766, 777, 845, 849, 857, 918, 919, 930, 933, 934, 939, 960, 961, 962, 974, 1036, 1040, 1049], "_expr": [1, 69], "hello": [1, 18, 53, 56, 521, 527, 533, 899, 991, 997, 1003], "return": [1, 9, 26, 28, 31, 32, 33, 34, 47, 48, 52, 56, 67, 68, 69, 70, 71, 72, 73, 82, 84, 89, 90, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 104, 105, 106, 107, 109, 110, 111, 112, 113, 123, 129, 133, 134, 135, 138, 141, 142, 143, 144, 145, 146, 147, 148, 151, 152, 156, 157, 158, 159, 161, 163, 169, 170, 171, 172, 174, 175, 182, 183, 185, 186, 187, 195, 196, 197, 198, 210, 211, 217, 218, 221, 222, 223, 227, 231, 236, 239, 243, 248, 254, 264, 266, 270, 271, 272, 273, 274, 275, 278, 279, 286, 288, 289, 290, 291, 301, 302, 311, 316, 320, 321, 322, 323, 324, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 345, 346, 347, 349, 350, 352, 353, 354, 356, 365, 379, 383, 385, 386, 387, 388, 389, 391, 392, 393, 400, 403, 404, 406, 411, 413, 414, 416, 427, 428, 435, 439, 448, 450, 455, 466, 472, 476, 477, 479, 492, 493, 499, 500, 501, 508, 510, 512, 514, 515, 516, 518, 519, 520, 522, 523, 526, 528, 529, 530, 531, 542, 548, 549, 550, 551, 552, 554, 555, 557, 558, 559, 562, 563, 567, 569, 570, 571, 572, 573, 576, 586, 587, 588, 589, 590, 596, 598, 600, 601, 603, 604, 612, 615, 618, 621, 624, 625, 626, 627, 629, 630, 638, 652, 654, 656, 659, 660, 661, 663, 670, 671, 672, 678, 679, 680, 688, 689, 699, 704, 705, 706, 707, 712, 715, 721, 725, 730, 734, 737, 741, 742, 743, 744, 751, 752, 754, 755, 760, 762, 765, 773, 785, 786, 792, 796, 797, 798, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 833, 834, 836, 839, 844, 845, 853, 855, 856, 862, 864, 865, 867, 868, 870, 871, 872, 873, 877, 879, 882, 886, 887, 889, 894, 896, 897, 899, 910, 911, 918, 919, 924, 936, 942, 943, 944, 945, 957, 958, 959, 961, 969, 978, 979, 980, 982, 984, 985, 986, 988, 989, 990, 992, 993, 996, 998, 999, 1000, 1001, 1012, 1019, 1021, 1033, 1035, 1036, 1040, 1049, 1056, 1057], "lit": [1, 263, 383, 395, 582, 594, 612, 615, 629, 630, 638, 848, 1049], "alia": [1, 12, 67, 69, 71, 158, 159, 175, 224, 231, 254, 261, 265, 268, 286, 288, 289, 290, 291, 298, 299, 300, 304, 305, 306, 307, 308, 312, 316, 317, 318, 319, 322, 323, 324, 325, 327, 329, 330, 331, 333, 335, 340, 341, 342, 344, 345, 346, 347, 348, 350, 351, 352, 354, 355, 358, 359, 369, 371, 373, 376, 377, 381, 383, 386, 387, 395, 398, 399, 400, 407, 409, 410, 415, 430, 436, 438, 439, 451, 454, 456, 460, 461, 463, 465, 467, 473, 475, 493, 509, 510, 513, 515, 516, 519, 522, 528, 530, 531, 532, 543, 544, 545, 553, 554, 555, 561, 562, 563, 565, 567, 569, 570, 571, 574, 575, 577, 578, 582, 583, 584, 587, 590, 591, 594, 595, 604, 605, 609, 614, 615, 621, 622, 626, 629, 638, 670, 671, 673, 679, 708, 712, 734, 793, 795, 801, 821, 824, 828, 830, 835, 882, 893, 919, 985, 986, 1000, 1001, 1049], "hi": [1, 470, 638], "goodby": 1, "say\u014dnara": 1, "bye": 1, "world": [1, 18, 53, 56, 521, 527, 533, 540, 899, 991, 997, 1003, 1010], "select": [1, 29, 52, 53, 54, 67, 68, 69, 70, 100, 101, 102, 103, 104, 106, 110, 112, 117, 123, 133, 169, 173, 183, 186, 195, 206, 219, 224, 227, 254, 260, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 289, 290, 291, 294, 296, 297, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 315, 317, 318, 319, 323, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 343, 344, 345, 346, 347, 350, 352, 353, 355, 356, 357, 360, 361, 362, 363, 364, 365, 366, 370, 372, 374, 378, 380, 381, 382, 384, 385, 387, 388, 390, 394, 395, 396, 397, 399, 401, 402, 403, 404, 405, 406, 407, 408, 410, 411, 412, 413, 416, 417, 418, 419, 420, 421, 422, 425, 426, 429, 431, 432, 433, 434, 435, 437, 440, 441, 442, 453, 455, 457, 458, 459, 462, 463, 469, 471, 472, 473, 474, 475, 476, 477, 478, 479, 481, 487, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 512, 514, 515, 516, 517, 518, 520, 521, 523, 526, 527, 529, 530, 531, 533, 534, 537, 538, 540, 541, 543, 544, 547, 550, 551, 552, 554, 556, 557, 558, 559, 560, 563, 565, 567, 568, 570, 571, 572, 573, 574, 576, 577, 579, 580, 581, 582, 583, 584, 587, 590, 592, 593, 594, 595, 596, 598, 602, 605, 607, 608, 609, 611, 614, 615, 619, 620, 621, 622, 624, 628, 638, 657, 673, 676, 688, 700, 708, 713, 715, 734, 737, 758, 759, 824, 832, 884, 885, 893, 960, 961, 973, 988, 1004, 1020, 1049, 1056], "shape": [1, 2, 10, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 49, 52, 53, 54, 56, 58, 59, 67, 68, 69, 70, 71, 74, 75, 87, 90, 92, 93, 94, 95, 96, 97, 112, 117, 124, 126, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 145, 146, 147, 148, 149, 152, 154, 155, 157, 158, 159, 160, 161, 163, 164, 165, 166, 168, 169, 172, 173, 176, 177, 178, 179, 180, 181, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 198, 200, 203, 204, 206, 207, 208, 209, 210, 211, 213, 215, 216, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 587, 588, 590, 591, 592, 593, 594, 595, 596, 598, 600, 601, 602, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 638, 652, 654, 656, 658, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 692, 693, 695, 697, 698, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 740, 743, 744, 745, 746, 747, 748, 749, 750, 753, 754, 755, 756, 757, 758, 759, 765, 766, 768, 769, 770, 771, 773, 774, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 841, 842, 845, 846, 847, 848, 849, 851, 854, 855, 856, 859, 860, 862, 864, 867, 868, 870, 871, 872, 873, 877, 879, 884, 885, 891, 892, 893, 894, 897, 898, 899, 901, 906, 907, 908, 910, 912, 913, 918, 919, 924, 932, 933, 934, 936, 938, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 960, 961, 964, 968, 969, 970, 971, 973, 974, 975, 979, 980, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1017, 1019, 1020, 1021, 1022, 1023, 1026, 1027, 1028, 1032, 1033, 1034, 1035, 1036, 1037, 1040, 1049, 1056], "3": [1, 2, 10, 14, 15, 16, 17, 19, 20, 21, 22, 23, 27, 28, 30, 31, 32, 33, 34, 35, 49, 52, 54, 55, 57, 58, 59, 67, 68, 69, 70, 71, 74, 75, 90, 92, 93, 94, 95, 96, 97, 103, 105, 112, 117, 118, 119, 120, 123, 124, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 145, 146, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 172, 173, 174, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 202, 203, 204, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 261, 262, 263, 264, 268, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 293, 294, 295, 296, 297, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 317, 318, 319, 323, 325, 326, 328, 334, 336, 343, 344, 345, 346, 348, 350, 351, 352, 353, 355, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 371, 372, 373, 374, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 394, 395, 396, 398, 399, 400, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 417, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 432, 433, 434, 435, 436, 438, 439, 454, 455, 456, 460, 461, 462, 464, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 502, 504, 505, 506, 509, 512, 513, 515, 516, 517, 519, 522, 524, 528, 529, 530, 531, 532, 535, 539, 543, 544, 545, 546, 548, 549, 550, 554, 557, 558, 559, 561, 562, 567, 569, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 587, 588, 591, 592, 593, 594, 595, 598, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 612, 614, 615, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 638, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 692, 693, 694, 695, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 740, 743, 744, 745, 747, 748, 749, 751, 752, 753, 754, 755, 756, 757, 758, 759, 765, 766, 768, 769, 770, 771, 772, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 793, 794, 795, 798, 799, 801, 802, 804, 806, 807, 808, 810, 812, 813, 814, 816, 820, 822, 824, 825, 826, 828, 830, 831, 832, 834, 835, 839, 841, 842, 845, 846, 847, 848, 849, 851, 854, 855, 856, 859, 860, 862, 864, 866, 867, 868, 869, 870, 871, 872, 873, 874, 876, 877, 880, 881, 891, 892, 893, 894, 897, 898, 901, 906, 907, 908, 910, 912, 913, 918, 919, 920, 921, 922, 923, 924, 925, 926, 932, 933, 934, 936, 937, 938, 941, 942, 943, 944, 945, 946, 949, 950, 951, 952, 953, 954, 955, 956, 957, 959, 960, 961, 962, 964, 968, 970, 971, 972, 973, 974, 976, 982, 983, 985, 986, 987, 989, 992, 994, 998, 1002, 1005, 1009, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1025, 1026, 1029, 1030, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1040, 1049, 1056, 1057], "1": [1, 2, 10, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 27, 28, 30, 31, 32, 33, 34, 35, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 67, 68, 69, 70, 71, 74, 75, 90, 92, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 112, 113, 117, 118, 119, 120, 121, 124, 126, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 202, 203, 204, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 291, 293, 294, 295, 296, 297, 298, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 322, 323, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 510, 512, 513, 514, 515, 516, 517, 518, 520, 521, 523, 524, 525, 526, 527, 529, 530, 531, 532, 533, 537, 538, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 565, 568, 569, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 598, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 628, 629, 638, 652, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 686, 687, 688, 689, 690, 692, 693, 694, 695, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 740, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 765, 766, 769, 770, 771, 772, 774, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 792, 793, 794, 795, 796, 797, 798, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 838, 840, 841, 842, 845, 846, 847, 848, 849, 851, 854, 855, 856, 859, 860, 862, 864, 866, 867, 868, 869, 870, 871, 872, 873, 874, 876, 877, 879, 881, 884, 885, 891, 892, 893, 894, 896, 897, 898, 901, 906, 907, 908, 910, 912, 913, 918, 920, 921, 922, 923, 924, 925, 926, 932, 933, 934, 936, 937, 938, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 964, 965, 968, 969, 970, 971, 972, 973, 974, 975, 976, 978, 985, 987, 988, 994, 1000, 1001, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1049, 1056, 1057], "2": [1, 2, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 27, 28, 30, 31, 32, 33, 34, 35, 49, 52, 54, 55, 57, 58, 59, 67, 68, 69, 70, 71, 74, 75, 90, 92, 93, 94, 95, 96, 97, 103, 112, 117, 118, 119, 120, 123, 124, 126, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 166, 167, 168, 169, 170, 172, 174, 176, 177, 178, 179, 180, 181, 182, 183, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 202, 203, 204, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 276, 278, 279, 280, 281, 282, 283, 284, 285, 291, 293, 295, 296, 297, 298, 299, 300, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 316, 318, 319, 322, 323, 324, 326, 327, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 351, 352, 354, 355, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 373, 374, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 454, 455, 456, 457, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 502, 503, 504, 505, 506, 508, 510, 513, 515, 516, 517, 518, 519, 521, 522, 523, 524, 525, 527, 528, 530, 531, 532, 533, 534, 536, 537, 538, 540, 541, 543, 544, 545, 546, 548, 549, 550, 551, 553, 554, 555, 556, 557, 558, 559, 561, 562, 563, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 587, 588, 590, 591, 592, 593, 594, 595, 596, 598, 600, 601, 602, 603, 604, 605, 607, 608, 609, 611, 614, 618, 619, 620, 621, 622, 624, 627, 628, 629, 638, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 688, 689, 690, 692, 693, 694, 695, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 740, 743, 744, 746, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 765, 769, 770, 771, 772, 773, 777, 778, 781, 782, 783, 784, 785, 786, 787, 788, 792, 794, 796, 797, 800, 802, 807, 808, 814, 816, 817, 818, 823, 824, 825, 826, 829, 832, 834, 836, 838, 839, 840, 841, 842, 845, 846, 847, 848, 849, 851, 854, 855, 856, 859, 860, 862, 864, 866, 867, 868, 869, 870, 871, 872, 873, 874, 876, 877, 881, 891, 892, 893, 894, 897, 898, 899, 901, 906, 907, 908, 910, 912, 913, 915, 918, 919, 920, 921, 922, 923, 924, 925, 926, 932, 933, 934, 936, 937, 938, 941, 942, 943, 944, 945, 946, 947, 948, 949, 951, 952, 953, 954, 955, 956, 957, 959, 960, 961, 962, 964, 968, 970, 972, 973, 974, 975, 976, 978, 980, 985, 986, 987, 988, 991, 992, 993, 994, 995, 997, 1000, 1001, 1003, 1004, 1006, 1007, 1008, 1010, 1011, 1017, 1018, 1019, 1020, 1021, 1022, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1040, 1049, 1056, 1057], "column_0": [1, 133, 222, 254], "register_dataframe_namespac": [1, 69, 70, 71], "split": [1, 31, 68, 171, 254, 530, 531, 1000, 1001], "splitfram": [1, 68], "df": [1, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 27, 28, 30, 31, 32, 33, 34, 35, 49, 52, 53, 68, 69, 90, 91, 92, 93, 94, 95, 96, 97, 102, 103, 112, 122, 124, 130, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 147, 148, 149, 150, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 174, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 202, 203, 204, 206, 207, 208, 209, 210, 212, 213, 214, 215, 216, 217, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 291, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 415, 416, 417, 418, 419, 420, 421, 422, 425, 426, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 537, 538, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 588, 590, 591, 592, 593, 594, 595, 596, 598, 601, 602, 604, 605, 606, 607, 608, 609, 610, 611, 614, 618, 619, 620, 621, 622, 623, 624, 627, 628, 629, 638, 670, 671, 708, 709, 715, 718, 721, 730, 734, 737, 758, 759, 769, 824, 884, 885, 893, 988, 995, 1000, 1001, 1027, 1049, 1057], "_df": [1, 68], "by_alternate_row": 1, "list": [1, 2, 30, 31, 38, 52, 56, 67, 68, 70, 73, 90, 92, 93, 94, 96, 97, 99, 100, 101, 102, 103, 104, 106, 108, 109, 110, 112, 113, 122, 123, 124, 126, 137, 140, 143, 144, 145, 149, 155, 157, 158, 163, 170, 182, 185, 195, 196, 197, 200, 207, 213, 214, 222, 223, 224, 225, 231, 234, 235, 254, 262, 284, 310, 365, 371, 380, 437, 448, 449, 464, 470, 476, 477, 481, 482, 483, 484, 485, 486, 488, 489, 490, 504, 505, 516, 529, 543, 544, 549, 553, 569, 572, 576, 577, 588, 591, 599, 601, 603, 619, 621, 622, 627, 638, 657, 658, 660, 662, 669, 670, 684, 695, 701, 707, 708, 712, 713, 716, 717, 734, 737, 759, 772, 785, 839, 844, 849, 852, 856, 857, 867, 936, 942, 946, 947, 948, 949, 950, 951, 953, 954, 955, 958, 986, 999, 1020, 1029, 1032, 1049, 1057], "with_row_count": [1, 254, 439, 482, 483, 485, 488, 489, 490, 638, 734, 961, 1049], "name": [1, 16, 20, 22, 29, 31, 33, 53, 54, 55, 56, 57, 68, 69, 70, 71, 74, 79, 90, 92, 93, 94, 95, 96, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 114, 115, 116, 120, 121, 122, 124, 125, 126, 127, 133, 134, 137, 140, 141, 142, 145, 150, 151, 154, 156, 157, 169, 170, 172, 173, 179, 180, 185, 187, 191, 195, 196, 197, 199, 200, 207, 213, 215, 217, 220, 221, 222, 223, 224, 225, 226, 231, 232, 233, 234, 254, 263, 268, 286, 288, 289, 290, 363, 383, 395, 429, 438, 447, 449, 464, 468, 505, 516, 543, 544, 546, 563, 564, 565, 566, 568, 570, 571, 572, 575, 576, 577, 578, 579, 581, 584, 585, 587, 592, 598, 599, 605, 606, 609, 610, 613, 615, 616, 617, 618, 621, 622, 623, 624, 626, 629, 638, 652, 657, 658, 659, 662, 669, 675, 676, 684, 685, 692, 694, 695, 701, 706, 707, 708, 709, 712, 714, 715, 716, 734, 737, 740, 773, 785, 912, 936, 941, 985, 986, 994, 1013, 1015, 1026, 1027, 1031, 1049, 1056, 1057], "n": [1, 12, 15, 23, 34, 38, 40, 54, 55, 68, 69, 70, 71, 99, 101, 102, 112, 133, 135, 146, 158, 161, 170, 171, 175, 196, 197, 198, 208, 210, 211, 214, 216, 228, 239, 248, 254, 291, 309, 312, 317, 318, 325, 350, 355, 366, 379, 400, 408, 409, 414, 427, 429, 465, 466, 476, 488, 490, 492, 502, 507, 524, 527, 530, 531, 533, 536, 548, 550, 554, 555, 560, 562, 579, 587, 588, 596, 598, 612, 615, 616, 617, 620, 624, 628, 630, 638, 654, 656, 670, 672, 679, 702, 704, 705, 710, 721, 730, 734, 737, 743, 765, 773, 784, 787, 793, 794, 801, 830, 835, 845, 846, 855, 882, 891, 892, 897, 910, 912, 932, 953, 955, 957, 972, 976, 994, 1000, 1001, 1006, 1019, 1021, 1028, 1033, 1038, 1049, 1056, 1057], "filter": [1, 68, 104, 112, 113, 117, 142, 166, 167, 168, 236, 254, 513, 532, 561, 594, 638, 659, 663, 673, 718, 734, 737, 960, 1049], "col": [1, 12, 28, 31, 67, 68, 69, 70, 94, 96, 112, 122, 124, 133, 145, 149, 157, 158, 159, 167, 169, 174, 183, 186, 195, 200, 207, 224, 231, 234, 254, 260, 261, 262, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 286, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 376, 377, 381, 382, 383, 384, 386, 387, 389, 390, 391, 394, 395, 396, 397, 398, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 415, 416, 417, 418, 419, 420, 421, 422, 425, 426, 429, 430, 431, 432, 433, 434, 435, 436, 439, 440, 441, 442, 453, 454, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 498, 499, 500, 501, 502, 504, 505, 506, 507, 508, 509, 510, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 542, 543, 544, 545, 547, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 565, 567, 573, 575, 577, 578, 582, 583, 584, 590, 593, 594, 595, 596, 597, 602, 605, 609, 613, 614, 622, 629, 638, 655, 662, 666, 669, 670, 671, 673, 678, 688, 695, 701, 708, 712, 713, 716, 734, 737, 758, 759, 769, 821, 824, 884, 885, 893, 942, 960, 961, 988, 1004, 1049, 1057], "0": [1, 10, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 31, 35, 48, 49, 52, 57, 67, 68, 69, 71, 101, 102, 103, 105, 106, 110, 112, 114, 115, 116, 117, 118, 121, 122, 123, 124, 126, 133, 135, 136, 138, 139, 140, 143, 147, 148, 152, 153, 155, 156, 157, 158, 160, 164, 169, 170, 171, 172, 174, 176, 177, 178, 181, 182, 183, 184, 187, 188, 189, 193, 196, 197, 198, 199, 200, 204, 206, 207, 208, 209, 215, 216, 217, 218, 219, 222, 225, 227, 228, 231, 232, 234, 236, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 254, 260, 262, 263, 265, 270, 271, 272, 273, 274, 275, 278, 279, 280, 292, 293, 296, 297, 299, 300, 301, 302, 304, 309, 310, 311, 314, 315, 326, 330, 331, 333, 334, 340, 346, 347, 352, 358, 359, 360, 361, 362, 364, 366, 367, 368, 369, 372, 373, 376, 377, 378, 382, 385, 388, 389, 391, 392, 393, 395, 396, 398, 403, 404, 407, 410, 413, 420, 429, 432, 433, 434, 436, 437, 439, 440, 441, 442, 453, 454, 456, 458, 459, 460, 461, 462, 463, 465, 466, 467, 470, 471, 472, 473, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 497, 499, 500, 501, 502, 506, 507, 515, 516, 534, 536, 542, 545, 547, 551, 552, 553, 555, 560, 561, 563, 569, 570, 571, 572, 573, 574, 575, 577, 579, 581, 582, 587, 589, 591, 594, 600, 601, 607, 608, 612, 613, 614, 615, 619, 625, 626, 627, 628, 629, 630, 638, 654, 655, 658, 660, 664, 665, 669, 670, 675, 678, 683, 687, 689, 690, 694, 695, 698, 699, 701, 702, 710, 712, 713, 714, 716, 718, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729, 734, 737, 743, 745, 746, 747, 748, 749, 750, 751, 753, 755, 766, 770, 771, 773, 778, 779, 784, 785, 786, 788, 802, 806, 807, 808, 809, 810, 811, 812, 813, 814, 819, 820, 826, 827, 832, 838, 840, 841, 842, 847, 851, 854, 856, 864, 866, 868, 870, 871, 872, 873, 879, 880, 893, 896, 912, 918, 921, 922, 932, 936, 937, 938, 945, 946, 948, 949, 951, 952, 953, 955, 956, 957, 969, 970, 971, 975, 976, 978, 985, 986, 988, 1004, 1006, 1012, 1022, 1023, 1026, 1031, 1032, 1036, 1038, 1039, 1049, 1057], "drop": [1, 93, 133, 141, 142, 223, 231, 254, 312, 314, 315, 408, 470, 638, 659, 707, 712, 734, 787, 789, 790, 891, 936, 1049], "aaa": [1, 31, 254, 509, 543, 544, 979], "bbb": [1, 31, 254, 543, 544, 737], "ccc": [1, 31, 254, 543, 544], "ddd": [1, 31, 254, 543, 544], "eee": [1, 31, 254, 737], "fff": 1, "column": [1, 15, 16, 19, 20, 22, 31, 33, 38, 58, 67, 68, 74, 77, 79, 90, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 104, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 119, 124, 132, 133, 134, 138, 140, 141, 142, 143, 145, 150, 151, 154, 156, 157, 158, 159, 163, 164, 169, 170, 172, 173, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 195, 196, 197, 199, 200, 201, 207, 208, 209, 213, 215, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 231, 232, 234, 254, 263, 264, 266, 268, 278, 310, 318, 320, 321, 322, 326, 328, 329, 330, 332, 334, 336, 339, 342, 343, 346, 348, 349, 351, 353, 354, 356, 363, 365, 369, 371, 383, 395, 405, 411, 425, 428, 429, 439, 445, 447, 449, 464, 468, 470, 474, 476, 477, 482, 483, 484, 485, 486, 488, 489, 490, 497, 504, 505, 514, 530, 531, 534, 535, 536, 537, 539, 546, 561, 563, 564, 565, 566, 568, 569, 570, 571, 572, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 592, 593, 594, 596, 597, 598, 599, 600, 601, 602, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 638, 652, 658, 659, 660, 662, 669, 670, 671, 675, 676, 680, 681, 682, 683, 684, 686, 687, 688, 690, 692, 694, 695, 696, 701, 702, 703, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 718, 734, 737, 741, 742, 785, 796, 797, 798, 802, 804, 805, 809, 811, 814, 816, 819, 822, 823, 826, 828, 829, 831, 833, 834, 836, 844, 888, 894, 908, 911, 936, 942, 966, 984, 1000, 1001, 1004, 1005, 1006, 1007, 1009, 1017, 1026, 1027, 1049, 1057], "txt": [1, 12, 112], "utf8": [1, 10, 18, 58, 75, 93, 97, 101, 102, 112, 121, 123, 126, 143, 144, 145, 152, 199, 217, 254, 288, 348, 351, 416, 439, 508, 512, 514, 515, 516, 518, 519, 528, 529, 530, 531, 534, 535, 536, 537, 539, 576, 578, 638, 660, 662, 694, 734, 737, 828, 831, 878, 899, 978, 982, 984, 985, 986, 988, 989, 998, 999, 1000, 1001, 1004, 1005, 1006, 1007, 1009, 1049], "register_lazyframe_namespac": [1, 68, 69, 71], "dtypeoper": [1, 70], "ldf": [1, 70, 716, 717, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729], "_ldf": [1, 70], "upcast_integer_typ": [1, 70], "with_column": [1, 12, 70, 159, 186, 254, 261, 263, 268, 279, 288, 293, 295, 298, 299, 300, 305, 308, 310, 312, 316, 322, 324, 342, 344, 348, 351, 354, 358, 359, 367, 368, 373, 376, 377, 378, 382, 383, 386, 389, 391, 392, 393, 395, 398, 409, 410, 415, 430, 436, 438, 439, 454, 456, 460, 461, 464, 465, 466, 467, 468, 470, 473, 480, 482, 483, 484, 485, 486, 488, 489, 490, 509, 513, 516, 519, 522, 524, 525, 528, 530, 531, 532, 542, 545, 546, 553, 555, 562, 564, 566, 567, 575, 578, 585, 588, 591, 601, 604, 606, 610, 619, 623, 627, 629, 638, 671, 688, 734, 737, 769, 824, 893], "tp": [1, 70], "cast": [1, 69, 70, 75, 90, 152, 158, 159, 186, 218, 231, 254, 267, 295, 307, 308, 317, 348, 351, 439, 463, 466, 475, 517, 518, 542, 547, 553, 578, 619, 638, 670, 671, 688, 712, 734, 737, 769, 782, 783, 793, 828, 831, 940, 987, 988, 1018, 1027, 1032, 1049], "int64": [1, 2, 31, 33, 69, 70, 97, 101, 143, 152, 158, 159, 174, 186, 199, 212, 218, 254, 281, 282, 283, 284, 307, 308, 323, 327, 331, 333, 335, 340, 347, 363, 466, 475, 517, 547, 553, 569, 576, 592, 600, 601, 603, 615, 621, 638, 655, 660, 670, 671, 673, 678, 688, 694, 715, 734, 756, 757, 758, 759, 782, 783, 799, 803, 810, 812, 815, 820, 827, 940, 959, 1018, 1030, 1031, 1032, 1049], "int8": [1, 70, 152, 254, 307, 308, 547, 612, 615, 630, 638, 782, 783, 787, 919, 943, 1018, 1036, 1049], "int16": [1, 70, 307, 308, 547, 638, 737, 782, 783, 919, 1018, 1028, 1049], "int32": [1, 70, 90, 93, 97, 123, 124, 158, 159, 171, 254, 293, 329, 356, 523, 553, 615, 638, 670, 671, 734, 737, 805, 836, 918, 993, 1032, 1049], "b": [1, 27, 28, 30, 32, 35, 54, 55, 57, 58, 59, 70, 74, 75, 90, 92, 93, 94, 95, 96, 97, 105, 134, 135, 136, 137, 139, 140, 141, 142, 143, 144, 145, 147, 148, 149, 150, 152, 153, 155, 156, 157, 158, 160, 161, 163, 164, 166, 168, 169, 170, 171, 172, 174, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 193, 194, 195, 196, 197, 198, 199, 200, 203, 204, 206, 207, 208, 209, 210, 211, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 261, 263, 267, 268, 280, 285, 286, 288, 289, 290, 293, 295, 303, 310, 313, 314, 315, 363, 365, 367, 368, 369, 371, 374, 378, 380, 382, 383, 385, 388, 389, 390, 391, 392, 393, 395, 399, 405, 409, 410, 415, 416, 418, 430, 438, 455, 462, 464, 466, 468, 470, 473, 478, 480, 497, 503, 505, 514, 517, 524, 546, 557, 559, 561, 563, 564, 565, 566, 567, 568, 572, 574, 575, 576, 578, 579, 580, 581, 582, 583, 584, 585, 591, 592, 593, 594, 595, 598, 602, 604, 605, 606, 607, 608, 609, 610, 611, 614, 616, 617, 620, 621, 622, 623, 624, 628, 638, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 669, 670, 672, 675, 677, 678, 679, 680, 681, 682, 683, 684, 686, 687, 688, 689, 690, 692, 693, 694, 695, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 740, 743, 769, 786, 788, 838, 839, 845, 848, 860, 867, 878, 892, 893, 898, 913, 941, 959, 984, 987, 994, 1017, 1031, 1035, 1049, 1056], "4": [1, 2, 15, 23, 27, 28, 30, 31, 32, 35, 49, 52, 54, 55, 57, 58, 59, 67, 68, 69, 70, 71, 74, 75, 90, 92, 93, 94, 95, 96, 97, 112, 118, 119, 120, 126, 133, 134, 135, 136, 139, 142, 145, 146, 147, 148, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 172, 173, 174, 177, 179, 180, 182, 183, 185, 186, 187, 188, 192, 196, 197, 202, 207, 210, 211, 212, 213, 214, 215, 220, 221, 222, 224, 225, 226, 227, 229, 230, 231, 232, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 260, 261, 262, 263, 265, 267, 268, 280, 281, 282, 283, 285, 291, 293, 296, 297, 298, 299, 300, 303, 304, 305, 306, 307, 308, 309, 311, 313, 314, 315, 318, 322, 327, 334, 335, 336, 342, 343, 345, 346, 347, 348, 351, 352, 353, 354, 356, 358, 359, 364, 365, 367, 368, 371, 372, 373, 374, 376, 377, 379, 380, 381, 382, 383, 392, 393, 395, 398, 399, 400, 407, 408, 409, 410, 411, 414, 415, 423, 424, 427, 430, 433, 436, 438, 439, 454, 456, 460, 461, 463, 464, 466, 467, 468, 470, 471, 473, 477, 478, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 493, 495, 496, 499, 503, 504, 505, 506, 509, 519, 520, 522, 523, 524, 526, 528, 530, 531, 534, 543, 544, 545, 546, 548, 549, 550, 553, 554, 555, 562, 564, 566, 567, 568, 570, 571, 572, 573, 574, 575, 576, 578, 579, 580, 581, 582, 583, 584, 585, 591, 593, 594, 598, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 619, 620, 621, 622, 623, 624, 626, 628, 629, 638, 652, 654, 655, 656, 659, 661, 662, 663, 664, 665, 667, 669, 670, 671, 672, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 688, 689, 690, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 711, 712, 714, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 743, 746, 753, 756, 757, 758, 765, 771, 772, 774, 784, 786, 788, 802, 803, 809, 811, 814, 815, 816, 817, 818, 819, 823, 825, 826, 827, 828, 831, 832, 833, 834, 845, 847, 848, 855, 856, 859, 860, 862, 867, 870, 871, 872, 873, 877, 891, 892, 893, 894, 897, 898, 906, 907, 910, 913, 919, 925, 932, 933, 934, 936, 938, 942, 945, 949, 951, 952, 953, 954, 955, 957, 959, 969, 973, 974, 979, 989, 990, 992, 993, 996, 998, 1000, 1001, 1004, 1017, 1019, 1020, 1021, 1028, 1031, 1032, 1033, 1040, 1049, 1057], "c": [1, 27, 28, 30, 32, 35, 54, 55, 57, 58, 59, 68, 70, 74, 75, 93, 95, 97, 105, 112, 122, 134, 135, 136, 137, 139, 140, 141, 142, 143, 145, 149, 150, 152, 153, 155, 156, 157, 158, 161, 163, 164, 171, 172, 174, 176, 177, 178, 179, 181, 182, 183, 184, 185, 187, 188, 189, 191, 193, 194, 195, 198, 199, 200, 203, 204, 206, 207, 208, 209, 210, 212, 216, 217, 218, 219, 221, 222, 225, 226, 228, 229, 231, 234, 237, 238, 239, 240, 241, 242, 244, 247, 248, 254, 261, 263, 268, 285, 383, 395, 405, 416, 418, 438, 464, 466, 497, 530, 534, 557, 559, 564, 566, 568, 574, 575, 576, 578, 579, 580, 581, 582, 583, 585, 593, 594, 595, 598, 602, 604, 605, 606, 607, 608, 609, 610, 611, 620, 622, 623, 624, 628, 638, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 669, 670, 675, 678, 684, 687, 689, 692, 693, 694, 695, 699, 700, 701, 706, 709, 712, 713, 716, 719, 720, 721, 722, 723, 724, 726, 729, 730, 734, 737, 786, 860, 878, 1000, 1004, 1035, 1049], "5": [1, 10, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 27, 28, 30, 32, 35, 55, 57, 59, 67, 68, 70, 71, 74, 90, 93, 94, 95, 96, 97, 99, 102, 118, 124, 133, 135, 136, 139, 145, 146, 147, 148, 152, 154, 155, 156, 157, 158, 159, 161, 162, 164, 165, 167, 169, 170, 173, 174, 175, 177, 179, 182, 183, 185, 187, 188, 189, 192, 197, 202, 207, 210, 211, 212, 213, 214, 217, 220, 225, 227, 230, 231, 232, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 261, 262, 265, 286, 289, 290, 291, 293, 295, 297, 298, 299, 300, 309, 310, 311, 312, 313, 318, 319, 323, 344, 346, 347, 348, 351, 353, 359, 362, 363, 366, 368, 372, 373, 376, 377, 379, 380, 383, 386, 389, 391, 392, 393, 395, 398, 400, 407, 409, 410, 411, 414, 415, 420, 426, 427, 430, 454, 456, 461, 463, 464, 465, 466, 470, 471, 473, 477, 478, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 493, 499, 505, 510, 518, 519, 522, 523, 542, 545, 548, 550, 554, 555, 567, 568, 569, 573, 574, 575, 577, 579, 580, 581, 582, 583, 584, 585, 587, 590, 591, 592, 593, 594, 598, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 614, 620, 622, 623, 624, 628, 638, 654, 655, 656, 661, 662, 663, 664, 665, 667, 669, 670, 671, 672, 674, 676, 677, 678, 679, 682, 683, 684, 689, 697, 698, 699, 700, 701, 702, 703, 704, 705, 711, 712, 714, 716, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 743, 746, 750, 753, 765, 769, 772, 774, 780, 784, 785, 786, 787, 788, 794, 795, 796, 797, 798, 799, 824, 826, 827, 828, 829, 831, 833, 834, 842, 845, 846, 855, 856, 859, 860, 892, 893, 894, 897, 898, 901, 910, 913, 918, 919, 925, 932, 933, 934, 936, 937, 938, 942, 945, 946, 947, 948, 950, 951, 954, 957, 959, 969, 975, 980, 988, 989, 993, 1019, 1033, 1036, 1040, 1049, 1057], "6": [1, 27, 28, 30, 31, 32, 33, 34, 35, 55, 57, 59, 68, 70, 74, 90, 93, 94, 95, 96, 133, 137, 140, 141, 142, 143, 145, 146, 149, 150, 153, 154, 155, 156, 158, 159, 161, 163, 164, 165, 167, 169, 170, 172, 176, 177, 178, 179, 181, 184, 187, 188, 189, 191, 192, 193, 195, 196, 197, 198, 199, 200, 203, 204, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 222, 224, 225, 226, 227, 228, 229, 231, 232, 239, 247, 248, 254, 261, 265, 268, 285, 293, 307, 308, 310, 313, 318, 322, 341, 342, 343, 346, 354, 357, 359, 367, 368, 374, 379, 380, 382, 400, 401, 402, 409, 411, 415, 430, 461, 463, 469, 470, 472, 473, 474, 477, 479, 482, 483, 484, 485, 486, 488, 489, 490, 493, 505, 510, 514, 519, 522, 523, 545, 548, 550, 562, 567, 582, 583, 584, 591, 594, 604, 622, 638, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 670, 671, 672, 674, 675, 677, 679, 680, 684, 687, 689, 692, 694, 695, 697, 698, 699, 700, 701, 704, 705, 708, 709, 711, 712, 714, 715, 721, 729, 730, 734, 737, 772, 778, 782, 783, 788, 821, 834, 856, 884, 885, 892, 894, 898, 913, 925, 938, 942, 944, 949, 951, 953, 955, 959, 980, 984, 989, 993, 1018, 1049, 1056, 1057], "7": [1, 27, 28, 30, 31, 32, 33, 34, 35, 57, 68, 70, 74, 118, 137, 138, 139, 140, 141, 143, 145, 149, 150, 153, 158, 159, 161, 163, 165, 172, 176, 177, 178, 180, 181, 184, 187, 189, 191, 193, 195, 197, 198, 199, 200, 203, 204, 206, 208, 209, 210, 211, 216, 217, 218, 219, 225, 226, 227, 228, 229, 254, 261, 265, 283, 308, 310, 318, 322, 342, 344, 345, 352, 354, 356, 364, 379, 382, 400, 409, 415, 430, 439, 463, 470, 473, 477, 489, 505, 537, 548, 550, 567, 582, 583, 587, 594, 604, 622, 638, 657, 658, 660, 662, 666, 670, 671, 672, 674, 675, 679, 685, 687, 690, 692, 694, 695, 704, 705, 709, 715, 734, 737, 750, 758, 794, 798, 805, 824, 825, 832, 834, 879, 892, 898, 913, 919, 942, 954, 1007, 1049, 1057], "float32": [1, 28, 70, 152, 216, 217, 254, 603, 734, 737, 863, 918, 1049], "lazi": [1, 52, 53, 54, 55, 57, 70, 74, 112, 124, 173, 186, 254, 268, 596, 612, 615, 630, 638, 675, 676, 713, 716, 717, 718, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729, 734, 1056, 1057], "i16": [1, 70, 497, 638, 737, 919, 1028, 1049, 1057], "i32": [1, 70, 90, 93, 97, 123, 124, 200, 254, 293, 329, 356, 479, 497, 523, 629, 638, 695, 734, 805, 836, 918, 944, 993, 1049, 1057], "f32": [1, 70, 142, 216, 254, 410, 473, 497, 579, 591, 638, 659, 734, 737, 893, 918, 938, 1049], "i64": [1, 2, 15, 19, 49, 52, 54, 68, 69, 70, 71, 74, 90, 92, 93, 94, 95, 96, 97, 112, 133, 134, 135, 136, 137, 140, 142, 143, 145, 146, 148, 149, 154, 155, 156, 157, 158, 159, 161, 163, 164, 165, 166, 168, 172, 173, 176, 179, 180, 181, 185, 186, 187, 188, 191, 192, 193, 194, 198, 200, 203, 204, 206, 207, 209, 210, 211, 213, 219, 221, 222, 223, 224, 225, 226, 227, 229, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 244, 247, 248, 254, 261, 263, 267, 268, 281, 282, 283, 284, 285, 291, 295, 298, 299, 300, 305, 306, 307, 308, 310, 312, 313, 323, 325, 327, 331, 333, 335, 340, 347, 350, 363, 365, 366, 368, 369, 370, 371, 373, 374, 379, 380, 381, 382, 383, 386, 389, 391, 392, 393, 395, 397, 400, 408, 409, 410, 411, 412, 413, 414, 415, 417, 419, 421, 422, 423, 424, 425, 426, 427, 430, 431, 435, 437, 438, 454, 455, 456, 464, 465, 466, 467, 468, 469, 470, 473, 474, 475, 477, 478, 479, 480, 492, 494, 495, 497, 498, 499, 503, 504, 505, 524, 525, 543, 544, 545, 546, 547, 548, 549, 550, 554, 555, 556, 558, 561, 567, 569, 575, 576, 578, 582, 583, 584, 585, 590, 591, 592, 593, 594, 598, 600, 601, 602, 603, 604, 605, 606, 609, 610, 614, 618, 619, 622, 623, 624, 629, 638, 652, 654, 656, 658, 659, 662, 663, 665, 666, 667, 669, 670, 671, 672, 674, 675, 676, 677, 679, 680, 681, 684, 685, 686, 688, 689, 692, 693, 695, 697, 698, 700, 701, 703, 704, 705, 706, 707, 708, 709, 712, 714, 716, 717, 718, 720, 721, 722, 723, 726, 729, 730, 734, 737, 740, 743, 744, 756, 757, 758, 759, 765, 769, 774, 777, 780, 781, 782, 783, 786, 799, 801, 803, 810, 812, 815, 820, 827, 830, 845, 846, 848, 849, 855, 859, 867, 891, 892, 893, 894, 897, 898, 906, 907, 908, 910, 912, 913, 924, 936, 941, 942, 944, 947, 950, 954, 957, 960, 961, 964, 968, 969, 973, 974, 1017, 1019, 1020, 1021, 1027, 1033, 1034, 1037, 1040, 1049, 1056, 1057], "register_series_namespac": [1, 68, 69, 70], "math": [1, 71, 311, 570, 571, 638, 778, 970, 1022, 1049], "mathshortcut": [1, 71], "": [1, 2, 28, 31, 52, 55, 59, 71, 90, 97, 101, 102, 103, 113, 126, 134, 140, 142, 144, 145, 157, 158, 164, 172, 173, 185, 187, 192, 193, 197, 200, 207, 211, 215, 221, 223, 224, 225, 231, 254, 268, 325, 348, 351, 363, 396, 414, 416, 423, 424, 427, 437, 448, 455, 458, 459, 464, 465, 475, 479, 481, 505, 509, 515, 516, 519, 520, 522, 524, 526, 528, 529, 531, 534, 535, 536, 539, 540, 542, 543, 544, 563, 564, 565, 566, 572, 576, 579, 584, 585, 592, 595, 596, 605, 606, 609, 610, 618, 619, 621, 622, 623, 638, 652, 658, 659, 662, 669, 670, 676, 695, 701, 706, 707, 708, 712, 718, 734, 737, 740, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 765, 766, 768, 771, 772, 773, 774, 777, 778, 779, 780, 781, 782, 783, 784, 785, 787, 788, 794, 801, 817, 818, 825, 828, 831, 832, 839, 841, 842, 846, 847, 848, 849, 851, 854, 855, 859, 860, 861, 862, 863, 864, 866, 867, 868, 869, 870, 871, 872, 873, 874, 876, 877, 878, 879, 880, 881, 891, 894, 897, 899, 901, 906, 907, 908, 910, 918, 919, 920, 921, 922, 923, 924, 925, 926, 928, 929, 932, 933, 934, 936, 937, 938, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 953, 954, 955, 956, 957, 959, 960, 961, 962, 964, 968, 969, 970, 971, 973, 974, 976, 979, 980, 982, 983, 984, 985, 986, 987, 989, 990, 991, 992, 993, 994, 996, 997, 998, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1015, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1025, 1026, 1027, 1028, 1029, 1030, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1049], "_": [1, 67, 71, 187, 215, 254, 516, 530, 986, 1000, 1026, 1049], "squar": [1, 71, 236, 396, 506, 638, 718, 880, 975, 1049], "cube": [1, 71, 296, 467, 638, 770, 1049], "s2": [1, 120, 152, 254, 772, 788, 867, 879, 912, 925, 959, 1031, 1040, 1049], "renam": [1, 93, 101, 102, 200, 231, 234, 254, 263, 438, 451, 468, 544, 546, 618, 621, 638, 695, 712, 716, 734, 740, 792, 800, 1015, 1027, 1049], "n2": [1, 429], "in_plac": [1, 163, 205, 229, 254, 939, 941, 967, 974, 1049], "true": [1, 6, 10, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 30, 31, 33, 47, 48, 52, 54, 56, 73, 74, 75, 90, 91, 95, 97, 99, 101, 102, 104, 105, 106, 110, 112, 113, 114, 115, 116, 117, 119, 120, 121, 122, 124, 125, 126, 130, 132, 134, 135, 136, 139, 148, 152, 153, 155, 156, 157, 158, 159, 164, 166, 167, 168, 170, 173, 174, 177, 182, 183, 185, 187, 188, 195, 196, 197, 198, 200, 207, 213, 217, 218, 221, 222, 223, 224, 225, 227, 231, 235, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 254, 262, 263, 264, 265, 266, 267, 268, 279, 286, 287, 289, 290, 293, 304, 305, 306, 307, 308, 310, 317, 319, 322, 323, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 350, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 376, 377, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 396, 398, 401, 402, 406, 425, 428, 429, 436, 450, 460, 461, 463, 470, 475, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 497, 498, 502, 504, 505, 509, 511, 513, 517, 518, 523, 529, 530, 532, 534, 535, 536, 539, 543, 544, 549, 556, 559, 562, 563, 564, 565, 566, 567, 569, 572, 573, 579, 580, 587, 588, 594, 600, 601, 612, 615, 621, 626, 627, 629, 630, 638, 652, 654, 655, 656, 661, 663, 665, 669, 670, 671, 675, 676, 678, 680, 684, 689, 695, 699, 701, 706, 707, 708, 712, 717, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729, 734, 737, 741, 742, 743, 744, 754, 761, 766, 772, 773, 785, 792, 793, 795, 798, 799, 800, 801, 802, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 830, 832, 833, 834, 835, 836, 838, 840, 841, 842, 849, 853, 860, 861, 862, 863, 864, 866, 867, 868, 869, 870, 871, 872, 873, 874, 876, 877, 878, 880, 884, 885, 908, 911, 925, 933, 934, 936, 940, 952, 959, 972, 974, 979, 981, 983, 987, 988, 993, 999, 1000, 1002, 1004, 1005, 1006, 1009, 1030, 1031, 1039, 1040, 1049, 1056, 1057], "s3": [1, 30, 104, 113, 117, 254, 912, 1049], "n3": 1, "8": [1, 27, 28, 30, 32, 33, 34, 35, 46, 52, 57, 64, 66, 67, 68, 70, 71, 74, 118, 122, 133, 137, 138, 139, 140, 141, 142, 143, 145, 149, 150, 153, 156, 161, 163, 172, 176, 177, 178, 181, 189, 191, 193, 195, 197, 198, 199, 200, 203, 204, 206, 208, 209, 210, 211, 216, 217, 218, 219, 225, 226, 228, 229, 231, 254, 265, 267, 280, 292, 303, 305, 308, 309, 310, 314, 315, 318, 382, 399, 408, 409, 410, 415, 430, 456, 463, 467, 470, 477, 478, 497, 503, 505, 520, 526, 534, 550, 562, 568, 574, 579, 580, 581, 583, 585, 591, 593, 598, 602, 604, 605, 606, 607, 608, 609, 610, 611, 620, 623, 624, 628, 638, 657, 658, 659, 660, 662, 666, 672, 675, 679, 680, 689, 692, 694, 695, 704, 705, 709, 712, 715, 734, 737, 743, 784, 805, 856, 879, 891, 892, 893, 898, 913, 932, 936, 942, 945, 946, 949, 951, 953, 955, 990, 996, 1004, 1049, 1057], "9": [1, 27, 28, 30, 31, 32, 35, 52, 57, 67, 74, 133, 138, 139, 152, 159, 161, 165, 196, 197, 200, 210, 225, 226, 229, 231, 247, 254, 261, 265, 267, 280, 292, 303, 305, 308, 310, 311, 314, 315, 318, 353, 382, 387, 395, 399, 408, 422, 425, 463, 470, 472, 477, 481, 487, 489, 499, 503, 516, 537, 550, 567, 577, 582, 583, 627, 638, 671, 672, 674, 679, 695, 704, 709, 712, 729, 734, 786, 798, 809, 811, 819, 825, 826, 832, 833, 867, 879, 891, 908, 942, 946, 952, 954, 956, 969, 986, 1007, 1049], "27": [1, 71, 247, 308, 329, 343, 356, 638, 729, 1049, 1057], "16": [1, 31, 43, 61, 69, 158, 159, 231, 254, 305, 308, 382, 456, 467, 523, 567, 582, 590, 591, 594, 638, 670, 671, 699, 712, 734, 737, 825, 832, 932, 970, 993, 1022, 1049], "64": [1, 42, 45, 48, 63, 69, 71, 456, 467, 638, 734, 932, 1049], "25": [1, 31, 71, 97, 124, 139, 158, 159, 173, 227, 231, 254, 312, 322, 324, 329, 342, 345, 352, 354, 356, 470, 482, 483, 484, 485, 486, 488, 489, 490, 555, 596, 638, 670, 671, 676, 682, 710, 712, 734, 737, 786, 787, 800, 825, 832, 838, 856, 932, 936, 1049], "125": [1, 31, 71, 254, 261, 638, 932, 1049], "arg": [2, 3, 4, 5, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 55, 58, 59, 60, 61, 62, 63, 64, 65, 66, 186, 218, 254, 466, 572, 595, 638, 688, 734, 744, 1030, 1031, 1049], "ani": [2, 3, 4, 5, 8, 28, 30, 31, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 59, 60, 61, 62, 63, 64, 65, 66, 72, 90, 91, 92, 93, 94, 95, 96, 101, 102, 104, 105, 106, 108, 109, 110, 112, 113, 114, 116, 121, 123, 124, 126, 130, 133, 138, 142, 146, 148, 149, 152, 169, 170, 171, 185, 186, 195, 196, 197, 213, 214, 217, 218, 223, 225, 254, 261, 264, 265, 268, 293, 346, 358, 359, 368, 373, 376, 377, 387, 398, 405, 410, 436, 437, 439, 451, 454, 456, 460, 461, 463, 464, 466, 468, 477, 481, 493, 523, 534, 535, 536, 539, 545, 546, 549, 555, 562, 563, 566, 567, 579, 593, 602, 603, 629, 638, 659, 665, 688, 707, 734, 737, 743, 744, 788, 826, 845, 848, 867, 879, 888, 893, 919, 942, 946, 958, 961, 993, 1004, 1005, 1006, 1009, 1020, 1029, 1030, 1031, 1049, 1056, 1057], "kwarg": [2, 3, 4, 5, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 55, 58, 59, 60, 61, 62, 63, 64, 65, 66, 138, 186, 218, 254, 466, 638, 688, 734, 1031, 1049, 1056], "sourc": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 638, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1015, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1049, 1056], "nest": [2, 49, 58, 97, 144, 254, 649, 839, 1049, 1056, 1057], "fix": [2, 105, 122, 124, 355, 482, 483, 484, 485, 486, 488, 489, 490, 638, 835], "length": [2, 12, 49, 74, 112, 122, 158, 159, 206, 254, 309, 310, 345, 352, 424, 429, 448, 470, 479, 481, 482, 483, 484, 485, 486, 488, 489, 490, 503, 520, 522, 526, 528, 542, 612, 615, 616, 617, 630, 638, 670, 671, 689, 700, 734, 772, 784, 785, 794, 825, 832, 881, 907, 912, 930, 936, 944, 946, 947, 948, 949, 950, 951, 953, 954, 955, 973, 990, 992, 996, 998, 1012, 1049], "inner": [2, 49, 58, 75, 123, 172, 226, 254, 281, 282, 283, 284, 313, 416, 476, 553, 638, 675, 709, 715, 734, 756, 757, 758, 759, 788, 899, 1032, 1049], "width": [2, 24, 31, 101, 102, 254, 281, 282, 283, 284, 520, 526, 542, 734, 756, 757, 758, 759, 990, 996, 1012], "int": [2, 12, 13, 15, 23, 24, 28, 31, 35, 39, 48, 54, 57, 69, 93, 96, 99, 100, 101, 102, 103, 104, 105, 106, 110, 112, 113, 114, 115, 116, 122, 123, 124, 125, 126, 127, 128, 133, 134, 135, 144, 147, 148, 150, 160, 161, 162, 164, 169, 170, 171, 173, 175, 176, 177, 181, 182, 183, 193, 195, 198, 202, 203, 204, 206, 208, 209, 210, 211, 216, 219, 221, 225, 228, 230, 232, 239, 248, 254, 261, 285, 291, 298, 299, 300, 309, 312, 360, 361, 362, 366, 367, 368, 374, 378, 379, 400, 406, 408, 413, 414, 423, 424, 427, 428, 429, 463, 465, 466, 467, 470, 473, 476, 477, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 498, 503, 507, 515, 517, 520, 523, 524, 526, 528, 530, 531, 537, 542, 548, 549, 550, 554, 560, 562, 569, 579, 580, 586, 589, 590, 596, 598, 600, 601, 608, 611, 612, 615, 616, 617, 620, 621, 622, 624, 625, 628, 630, 638, 652, 654, 663, 664, 665, 672, 676, 679, 689, 697, 698, 700, 702, 704, 705, 706, 710, 711, 714, 721, 730, 734, 751, 752, 765, 766, 772, 773, 774, 775, 776, 784, 787, 839, 840, 841, 842, 846, 847, 848, 854, 855, 856, 879, 881, 882, 889, 890, 891, 896, 897, 906, 907, 910, 911, 912, 921, 925, 926, 928, 929, 930, 931, 932, 935, 936, 938, 942, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 960, 961, 964, 965, 968, 973, 976, 985, 987, 990, 993, 994, 996, 998, 1000, 1001, 1007, 1012, 1018, 1019, 1020, 1021, 1028, 1033, 1038, 1049, 1056, 1057], "polarsdatatyp": [2, 49, 101, 102, 107, 111, 112, 121, 122, 123, 124, 126, 133, 143, 254, 268, 293, 363, 437, 439, 517, 567, 569, 576, 592, 603, 604, 612, 615, 630, 638, 660, 734, 737, 744, 766, 919, 987, 1049], "pythondatatyp": [2, 49], "null": [2, 28, 30, 54, 67, 74, 93, 101, 102, 109, 112, 117, 132, 134, 135, 139, 142, 148, 152, 153, 165, 172, 177, 178, 184, 187, 189, 203, 204, 207, 208, 209, 213, 218, 221, 224, 226, 228, 231, 237, 254, 264, 266, 267, 268, 278, 285, 287, 298, 299, 300, 303, 305, 308, 312, 314, 315, 323, 327, 331, 333, 335, 340, 347, 359, 360, 361, 362, 363, 366, 367, 368, 374, 382, 389, 390, 391, 392, 393, 399, 401, 402, 408, 409, 412, 413, 415, 417, 423, 428, 429, 430, 439, 461, 462, 465, 474, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 495, 496, 497, 499, 504, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 523, 526, 528, 530, 531, 532, 542, 543, 544, 553, 564, 566, 575, 577, 578, 580, 585, 592, 603, 606, 610, 616, 617, 621, 623, 629, 638, 652, 654, 659, 665, 674, 675, 687, 697, 698, 701, 706, 708, 709, 712, 713, 715, 719, 734, 744, 753, 761, 773, 774, 787, 790, 799, 803, 810, 812, 815, 820, 827, 840, 841, 842, 846, 848, 853, 859, 872, 873, 884, 885, 891, 898, 906, 911, 912, 913, 931, 932, 944, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 959, 964, 965, 969, 978, 979, 980, 981, 982, 983, 985, 986, 987, 988, 989, 990, 992, 993, 996, 998, 1000, 1001, 1002, 1028, 1030, 1031, 1032, 1039, 1049, 1056, 1057], "paramet": [2, 7, 9, 11, 12, 13, 14, 15, 18, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 38, 40, 47, 48, 49, 52, 53, 54, 55, 57, 59, 67, 68, 69, 70, 71, 73, 74, 75, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 119, 120, 121, 122, 123, 124, 125, 126, 127, 132, 133, 134, 135, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 157, 158, 159, 160, 161, 163, 164, 169, 170, 171, 172, 173, 175, 177, 179, 180, 182, 183, 185, 186, 187, 189, 191, 192, 193, 195, 196, 197, 198, 200, 201, 203, 204, 206, 207, 208, 209, 210, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 234, 236, 239, 246, 248, 254, 261, 263, 264, 265, 266, 267, 268, 278, 284, 285, 286, 287, 288, 289, 290, 291, 293, 295, 298, 299, 300, 304, 305, 306, 307, 308, 309, 310, 312, 313, 317, 318, 319, 325, 341, 344, 345, 346, 348, 350, 351, 352, 355, 357, 358, 359, 360, 361, 362, 363, 366, 368, 369, 373, 374, 375, 376, 377, 378, 379, 382, 383, 387, 396, 398, 400, 405, 406, 407, 408, 409, 410, 413, 414, 415, 416, 423, 424, 425, 427, 428, 429, 430, 431, 432, 436, 437, 438, 439, 450, 454, 456, 460, 461, 463, 464, 465, 466, 467, 468, 470, 471, 473, 475, 476, 477, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 498, 502, 503, 504, 505, 507, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 520, 521, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 539, 542, 543, 544, 545, 546, 548, 549, 554, 555, 556, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 592, 594, 595, 596, 598, 599, 600, 601, 603, 604, 605, 606, 609, 610, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 638, 652, 654, 656, 658, 659, 661, 662, 663, 664, 665, 666, 668, 669, 670, 671, 672, 675, 676, 679, 680, 684, 685, 688, 689, 690, 691, 692, 695, 696, 697, 698, 699, 700, 701, 702, 704, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 718, 721, 728, 730, 734, 737, 740, 743, 744, 753, 759, 760, 761, 762, 763, 764, 765, 766, 769, 773, 774, 775, 776, 780, 781, 782, 783, 784, 785, 786, 787, 788, 793, 794, 795, 801, 821, 824, 825, 826, 828, 830, 831, 832, 835, 838, 839, 840, 841, 842, 845, 846, 847, 848, 849, 854, 855, 856, 859, 860, 869, 875, 876, 880, 882, 888, 889, 890, 891, 892, 893, 896, 897, 898, 899, 906, 907, 908, 910, 911, 912, 913, 914, 919, 932, 936, 937, 938, 939, 940, 941, 942, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 964, 965, 968, 972, 973, 974, 976, 978, 979, 980, 981, 982, 983, 985, 986, 987, 988, 990, 991, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1009, 1012, 1013, 1015, 1019, 1020, 1026, 1027, 1028, 1029, 1030, 1031, 1033, 1034, 1037, 1038, 1039, 1040, 1049, 1056], "The": [2, 18, 29, 31, 35, 48, 49, 52, 56, 59, 67, 72, 73, 90, 92, 93, 94, 96, 99, 101, 103, 108, 109, 110, 112, 128, 133, 141, 143, 146, 156, 157, 158, 159, 160, 165, 170, 173, 180, 185, 195, 196, 197, 200, 217, 224, 227, 231, 234, 236, 254, 263, 285, 286, 287, 288, 322, 336, 341, 342, 345, 348, 352, 353, 363, 366, 374, 378, 428, 437, 464, 473, 476, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 498, 499, 502, 508, 511, 512, 517, 519, 520, 521, 526, 527, 533, 534, 542, 576, 592, 596, 616, 617, 618, 621, 629, 631, 632, 634, 638, 639, 640, 644, 645, 646, 670, 671, 672, 674, 676, 679, 680, 685, 689, 695, 708, 712, 716, 718, 734, 740, 743, 744, 760, 761, 762, 773, 798, 816, 821, 822, 825, 828, 832, 833, 845, 846, 854, 911, 938, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 961, 969, 972, 978, 981, 982, 987, 989, 990, 991, 996, 997, 1003, 1004, 1012, 1041, 1043, 1045, 1049, 1050, 1053, 1054, 1055, 1057], "size": [2, 13, 35, 48, 101, 102, 122, 123, 124, 126, 128, 144, 158, 225, 254, 477, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 569, 600, 601, 616, 617, 638, 670, 734, 839, 942, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 1049, 1057], "datatyp": [2, 28, 33, 49, 65, 90, 92, 93, 94, 96, 98, 105, 107, 108, 109, 111, 126, 143, 145, 152, 199, 254, 293, 363, 497, 553, 576, 592, 603, 638, 649, 662, 694, 715, 734, 744, 766, 786, 869, 874, 876, 878, 966, 1032, 1049], "valu": [2, 8, 11, 12, 15, 26, 28, 31, 33, 49, 50, 52, 56, 58, 65, 67, 74, 75, 93, 95, 101, 102, 103, 112, 117, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 132, 133, 134, 139, 142, 146, 147, 148, 153, 156, 158, 159, 160, 161, 165, 169, 170, 173, 175, 176, 177, 178, 179, 181, 183, 185, 187, 188, 189, 191, 195, 196, 197, 198, 203, 204, 207, 208, 209, 210, 213, 214, 218, 221, 222, 225, 226, 227, 228, 237, 238, 240, 241, 242, 244, 245, 254, 260, 261, 262, 264, 266, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 285, 287, 288, 289, 290, 291, 295, 296, 297, 298, 299, 300, 301, 302, 303, 305, 308, 309, 310, 312, 314, 315, 318, 322, 336, 342, 353, 358, 359, 360, 361, 362, 364, 365, 366, 367, 368, 370, 371, 372, 373, 374, 375, 376, 377, 378, 380, 381, 382, 383, 384, 385, 386, 388, 389, 391, 392, 393, 394, 397, 398, 399, 401, 402, 403, 404, 407, 408, 412, 413, 414, 417, 419, 420, 421, 423, 426, 427, 431, 433, 435, 436, 437, 439, 440, 441, 442, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 464, 465, 466, 467, 470, 471, 473, 476, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 493, 494, 495, 496, 499, 500, 501, 502, 504, 505, 506, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 524, 525, 528, 530, 531, 532, 542, 545, 547, 549, 550, 551, 552, 554, 555, 556, 557, 558, 559, 562, 568, 575, 578, 580, 582, 583, 584, 585, 593, 594, 599, 602, 603, 605, 606, 607, 608, 609, 610, 611, 614, 615, 616, 617, 622, 623, 629, 638, 652, 659, 664, 665, 670, 671, 673, 674, 676, 681, 682, 683, 684, 686, 687, 690, 692, 697, 698, 701, 702, 703, 706, 709, 710, 715, 719, 720, 722, 723, 724, 726, 727, 734, 737, 739, 741, 742, 743, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 756, 757, 758, 759, 761, 762, 763, 764, 769, 771, 774, 775, 776, 778, 779, 784, 785, 786, 787, 789, 790, 794, 798, 816, 822, 833, 839, 840, 841, 842, 845, 846, 847, 848, 851, 853, 854, 855, 856, 857, 859, 860, 862, 864, 865, 867, 868, 870, 871, 872, 873, 877, 882, 884, 885, 886, 887, 890, 891, 895, 896, 897, 900, 902, 903, 904, 906, 910, 914, 919, 920, 921, 923, 924, 926, 928, 929, 930, 931, 932, 935, 936, 937, 938, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 957, 958, 959, 960, 961, 964, 965, 969, 970, 971, 972, 978, 979, 980, 981, 982, 983, 985, 986, 987, 988, 989, 992, 994, 995, 998, 1000, 1001, 1002, 1012, 1018, 1019, 1020, 1021, 1022, 1023, 1030, 1031, 1032, 1035, 1037, 1039, 1040, 1049, 1057], "within": [2, 49, 119, 120, 157, 158, 159, 173, 227, 254, 473, 505, 638, 670, 671, 676, 734, 1056], "exampl": [2, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 67, 68, 69, 70, 71, 74, 75, 90, 92, 93, 94, 95, 96, 97, 99, 102, 103, 104, 105, 112, 113, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 202, 203, 204, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 587, 588, 590, 591, 592, 593, 594, 595, 596, 598, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 638, 649, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 692, 693, 694, 695, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 740, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 765, 766, 768, 769, 771, 772, 773, 774, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 838, 839, 840, 841, 842, 845, 846, 847, 848, 849, 851, 854, 855, 856, 859, 860, 861, 862, 863, 864, 866, 867, 868, 869, 870, 871, 872, 873, 874, 876, 877, 878, 879, 881, 884, 885, 891, 892, 893, 894, 897, 898, 899, 901, 906, 907, 908, 910, 912, 913, 918, 919, 920, 921, 922, 923, 924, 925, 926, 932, 933, 934, 936, 937, 938, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 959, 960, 961, 962, 964, 968, 969, 970, 971, 973, 974, 976, 978, 979, 980, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1049, 1056], "dtype": [2, 31, 38, 70, 74, 75, 90, 92, 94, 96, 97, 101, 102, 108, 109, 112, 121, 122, 123, 124, 126, 132, 158, 159, 173, 216, 217, 218, 254, 268, 293, 294, 298, 299, 300, 307, 308, 355, 363, 405, 428, 435, 437, 439, 475, 476, 482, 483, 484, 485, 486, 488, 489, 490, 497, 517, 534, 547, 549, 553, 558, 567, 569, 580, 592, 596, 600, 601, 603, 604, 612, 615, 621, 630, 638, 670, 671, 676, 734, 737, 756, 757, 766, 768, 773, 774, 775, 776, 782, 783, 786, 787, 835, 839, 863, 869, 876, 888, 911, 918, 919, 943, 959, 966, 987, 1004, 1018, 1028, 1030, 1031, 1032, 1036, 1049, 1057], "method": [2, 3, 4, 5, 8, 27, 32, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 74, 91, 101, 102, 105, 121, 130, 133, 142, 146, 157, 165, 170, 183, 189, 195, 196, 197, 223, 231, 236, 246, 254, 261, 264, 265, 268, 292, 348, 351, 358, 359, 366, 373, 376, 377, 382, 395, 398, 436, 454, 456, 460, 461, 463, 467, 468, 471, 473, 482, 483, 484, 485, 486, 488, 489, 490, 537, 545, 546, 555, 557, 562, 567, 579, 587, 613, 615, 626, 631, 632, 634, 638, 639, 640, 643, 644, 645, 646, 649, 659, 674, 690, 707, 712, 718, 728, 734, 743, 744, 828, 831, 845, 846, 859, 937, 938, 951, 1007, 1032, 1041, 1043, 1045, 1049, 1050, 1053, 1054, 1055], "attribut": [2, 3, 4, 5, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 59, 60, 61, 62, 63, 64, 65, 66, 121, 254, 631, 632, 634, 639, 640, 644, 645, 646, 734, 1041, 1043, 1045, 1050, 1053, 1054, 1055], "A": [5, 28, 31, 52, 55, 73, 97, 101, 102, 103, 110, 112, 128, 152, 158, 173, 187, 213, 225, 226, 227, 231, 254, 260, 292, 310, 318, 358, 359, 366, 376, 377, 385, 388, 389, 391, 398, 429, 436, 437, 448, 460, 461, 478, 481, 482, 483, 484, 485, 486, 488, 489, 490, 509, 510, 515, 516, 518, 524, 525, 542, 577, 591, 595, 638, 670, 676, 692, 709, 712, 734, 737, 785, 794, 846, 946, 947, 948, 950, 953, 954, 955, 979, 980, 985, 986, 988, 994, 995, 1012, 1049, 1056], "encod": [5, 66, 101, 102, 112, 215, 254, 286, 287, 289, 290, 375, 511, 638, 761, 981], "set": [5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 23, 24, 26, 28, 30, 31, 32, 33, 34, 47, 48, 67, 68, 91, 93, 96, 101, 102, 105, 106, 110, 112, 114, 115, 116, 119, 120, 122, 123, 124, 125, 126, 127, 128, 130, 132, 137, 142, 151, 157, 158, 159, 160, 170, 173, 179, 198, 200, 206, 215, 217, 222, 223, 225, 231, 254, 268, 355, 378, 387, 409, 415, 424, 428, 429, 430, 439, 466, 470, 481, 482, 483, 484, 485, 486, 488, 489, 490, 492, 498, 502, 503, 521, 527, 528, 533, 534, 535, 536, 539, 569, 573, 587, 588, 600, 601, 612, 615, 616, 617, 621, 626, 627, 629, 630, 638, 649, 659, 661, 669, 670, 671, 675, 676, 680, 684, 695, 700, 707, 712, 715, 718, 734, 743, 744, 835, 854, 867, 892, 898, 907, 911, 912, 913, 919, 946, 947, 948, 949, 950, 951, 953, 954, 955, 957, 961, 968, 972, 973, 991, 997, 998, 1003, 1004, 1005, 1006, 1009, 1030, 1049, 1057], "string": [5, 7, 9, 12, 13, 14, 18, 28, 29, 31, 33, 34, 38, 52, 58, 66, 75, 97, 101, 102, 112, 121, 122, 123, 126, 129, 134, 152, 156, 157, 158, 159, 173, 187, 197, 200, 207, 216, 221, 222, 225, 227, 231, 234, 254, 261, 289, 295, 341, 345, 348, 351, 352, 365, 371, 375, 383, 416, 439, 450, 464, 466, 482, 483, 484, 485, 486, 488, 489, 490, 505, 508, 509, 512, 513, 514, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 542, 563, 564, 565, 566, 572, 575, 577, 578, 584, 585, 587, 588, 595, 605, 606, 609, 610, 618, 621, 622, 623, 626, 627, 629, 638, 652, 661, 668, 669, 670, 671, 676, 695, 701, 706, 712, 715, 716, 734, 737, 763, 769, 821, 825, 828, 831, 832, 844, 860, 899, 977, 978, 979, 983, 984, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1008, 1010, 1011, 1012, 1028, 1049, 1057], "classmethod": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 375, 638, 668, 691, 734], "activ": [6, 10, 16, 17, 19, 20, 21, 22, 25, 292, 410, 516, 638, 893, 986], "bool": [6, 10, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 30, 31, 33, 35, 47, 48, 67, 73, 74, 75, 90, 91, 95, 97, 101, 102, 106, 109, 110, 112, 114, 115, 116, 117, 119, 120, 121, 122, 123, 124, 125, 126, 129, 132, 134, 135, 136, 148, 149, 151, 152, 153, 155, 156, 157, 158, 159, 163, 164, 166, 167, 168, 173, 185, 187, 197, 198, 201, 205, 207, 213, 215, 217, 218, 221, 222, 223, 224, 227, 229, 231, 238, 240, 241, 244, 254, 263, 264, 265, 266, 267, 268, 278, 284, 286, 287, 289, 290, 293, 304, 305, 306, 307, 308, 309, 310, 328, 344, 346, 352, 357, 358, 359, 360, 361, 362, 376, 377, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 396, 398, 401, 402, 406, 410, 425, 428, 431, 436, 437, 443, 444, 445, 446, 450, 460, 461, 463, 470, 473, 475, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 494, 497, 498, 502, 504, 505, 509, 511, 513, 523, 524, 525, 529, 530, 532, 534, 535, 536, 539, 544, 556, 559, 562, 563, 564, 565, 566, 567, 569, 572, 573, 579, 582, 587, 588, 600, 601, 603, 612, 615, 621, 626, 627, 630, 638, 652, 654, 656, 661, 663, 665, 669, 670, 671, 675, 676, 680, 684, 689, 696, 699, 701, 706, 707, 708, 712, 720, 722, 723, 726, 734, 737, 741, 742, 743, 744, 753, 759, 761, 766, 773, 780, 781, 782, 783, 784, 785, 804, 824, 826, 832, 838, 840, 841, 842, 849, 853, 860, 861, 862, 863, 864, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 880, 884, 885, 889, 890, 893, 908, 911, 914, 933, 934, 936, 938, 939, 940, 941, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 957, 959, 961, 962, 967, 972, 974, 979, 981, 983, 993, 994, 995, 999, 1000, 1002, 1004, 1005, 1006, 1009, 1029, 1030, 1031, 1034, 1037, 1039, 1049, 1056], "decim": [6, 28, 31, 254, 491, 537, 638, 956, 1007, 1049], "temporari": 6, "remov": [6, 8, 140, 215, 226, 254, 268, 363, 438, 521, 527, 533, 534, 536, 592, 638, 658, 709, 734, 743, 991, 997, 1003, 1004, 1006, 1049], "later": [6, 587], "onc": [6, 55, 101, 102, 105, 128, 132, 133, 196, 198, 234, 254, 268, 492, 638, 653, 716, 734, 744, 957, 1049], "stabil": 6, "happen": [6, 470, 638, 936, 1049], "being": [6, 101, 102, 112, 117, 215, 225, 226, 254, 268, 309, 345, 482, 483, 484, 485, 486, 488, 489, 490, 492, 498, 591, 638, 709, 734, 784, 825, 856, 936, 1049, 1057], "consid": [6, 101, 102, 112, 117, 133, 142, 153, 179, 196, 223, 225, 226, 254, 268, 298, 299, 300, 309, 345, 437, 482, 483, 484, 485, 486, 488, 489, 490, 582, 594, 638, 659, 672, 679, 684, 707, 709, 718, 734, 744, 774, 775, 776, 784, 825, 856, 869, 936, 959, 960, 961, 1049], "break": [6, 117, 225, 226, 254, 268, 309, 310, 345, 470, 482, 483, 484, 485, 486, 488, 489, 490, 638, 709, 734, 784, 785, 825, 856, 936, 1049], "chang": [6, 26, 67, 101, 102, 117, 225, 226, 227, 254, 268, 309, 312, 345, 465, 482, 483, 484, 485, 486, 488, 489, 490, 492, 498, 638, 709, 734, 743, 784, 825, 856, 932, 936, 967, 1049], "current": [6, 9, 26, 54, 91, 97, 103, 129, 132, 135, 136, 172, 254, 324, 345, 429, 465, 638, 649, 654, 655, 675, 734, 737, 773, 777, 792, 800, 825, 932, 1049, 1056], "alpha": [6, 73, 268, 360, 361, 362, 638, 656, 661, 663, 689, 699, 734, 840, 841, 842, 1049], "state": [6, 8, 73, 83, 129, 582, 649, 656, 661, 663, 689, 699, 734], "cfg": [7, 8, 9, 15, 130], "path": [7, 9, 27, 28, 29, 30, 31, 32, 33, 34, 35, 47, 48, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 254, 452, 494, 518, 638, 691, 699, 715, 734, 962, 988, 1049], "previous": 7, "save": [7, 158, 159, 173, 227, 254, 316, 324, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 649, 670, 671, 676, 734, 800, 821, 825, 832], "share": [7, 58, 144, 254, 839, 1049], "option": [7, 8, 9, 26, 30, 31, 39, 67, 101, 104, 105, 106, 110, 113, 114, 116, 118, 121, 122, 123, 124, 125, 126, 127, 169, 173, 179, 213, 217, 222, 254, 396, 481, 482, 483, 484, 485, 486, 488, 489, 490, 502, 528, 603, 621, 629, 638, 649, 675, 676, 684, 734, 737, 876, 880, 946, 947, 948, 949, 950, 951, 953, 954, 955, 972, 998, 1027, 1049], "from": [7, 8, 28, 31, 52, 53, 54, 67, 74, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 112, 113, 114, 115, 116, 119, 120, 121, 122, 123, 124, 125, 126, 127, 139, 140, 144, 146, 151, 156, 158, 159, 170, 171, 173, 174, 179, 187, 191, 195, 197, 198, 200, 215, 222, 223, 225, 227, 254, 304, 311, 316, 317, 318, 319, 320, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 359, 363, 375, 382, 396, 429, 458, 459, 461, 465, 466, 472, 482, 483, 485, 488, 489, 490, 492, 505, 515, 516, 517, 523, 534, 535, 536, 539, 557, 559, 570, 571, 575, 586, 587, 588, 589, 590, 615, 620, 625, 626, 627, 637, 638, 658, 663, 668, 670, 671, 676, 684, 691, 692, 695, 707, 713, 734, 737, 743, 790, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 839, 845, 876, 880, 912, 928, 929, 930, 932, 957, 985, 986, 987, 993, 1004, 1005, 1006, 1009, 1037, 1040, 1049, 1056, 1057], "json": [7, 9, 33, 34, 108, 109, 115, 254, 375, 452, 517, 518, 638, 649, 668, 691, 715, 734, 987, 988], "file": [7, 9, 27, 28, 32, 33, 34, 35, 47, 48, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 146, 254, 452, 663, 691, 715, 734, 743, 845, 1049], "produc": [7, 123, 124, 126, 407, 447, 587, 588, 604, 680, 734, 890], "filepath": 7, "same": [7, 18, 30, 31, 56, 58, 67, 73, 74, 75, 106, 112, 122, 130, 133, 140, 157, 197, 207, 223, 231, 234, 236, 254, 260, 267, 443, 446, 464, 481, 482, 483, 484, 485, 486, 488, 489, 490, 505, 544, 549, 576, 587, 638, 658, 669, 680, 701, 707, 712, 716, 734, 739, 743, 744, 794, 946, 947, 948, 949, 950, 951, 953, 954, 955, 1040, 1049], "reset": [8, 130], "default": [8, 13, 26, 27, 28, 30, 31, 32, 33, 34, 35, 48, 67, 74, 90, 92, 93, 94, 95, 96, 97, 101, 102, 105, 108, 109, 110, 112, 121, 122, 123, 124, 125, 126, 142, 144, 157, 159, 160, 170, 172, 173, 179, 185, 187, 195, 196, 197, 198, 208, 215, 223, 225, 228, 232, 254, 263, 295, 310, 344, 352, 357, 359, 360, 361, 362, 378, 424, 428, 429, 432, 439, 458, 459, 461, 465, 470, 473, 482, 483, 484, 485, 486, 488, 489, 490, 492, 498, 507, 515, 521, 523, 527, 528, 533, 534, 535, 536, 539, 560, 569, 573, 579, 587, 588, 596, 600, 601, 603, 612, 615, 620, 621, 626, 627, 628, 630, 638, 659, 661, 669, 671, 675, 676, 684, 702, 707, 710, 715, 734, 743, 769, 824, 832, 838, 839, 840, 841, 842, 854, 907, 911, 912, 919, 928, 929, 932, 938, 957, 968, 976, 979, 985, 991, 993, 997, 998, 1003, 1004, 1005, 1006, 1009, 1038, 1049, 1057], "note": [8, 18, 30, 31, 39, 52, 56, 57, 67, 90, 91, 92, 94, 96, 97, 101, 103, 104, 108, 109, 110, 112, 113, 122, 124, 126, 128, 130, 132, 133, 134, 138, 147, 158, 159, 169, 170, 172, 173, 183, 186, 195, 196, 197, 214, 217, 221, 222, 226, 227, 231, 254, 268, 307, 308, 314, 315, 337, 338, 341, 345, 352, 383, 389, 391, 395, 410, 428, 468, 482, 483, 484, 485, 486, 487, 488, 489, 490, 502, 509, 515, 516, 519, 521, 522, 524, 527, 533, 534, 546, 547, 555, 582, 587, 588, 594, 612, 614, 615, 629, 630, 638, 648, 652, 656, 663, 664, 670, 671, 672, 676, 679, 692, 699, 701, 706, 709, 712, 734, 744, 782, 783, 817, 818, 821, 832, 893, 911, 952, 960, 961, 967, 972, 979, 985, 986, 989, 991, 992, 994, 997, 1003, 1004, 1018, 1030, 1049, 1056], "oper": [8, 31, 58, 74, 80, 81, 90, 92, 93, 94, 95, 96, 101, 110, 133, 146, 152, 157, 164, 174, 180, 183, 185, 186, 190, 197, 212, 217, 218, 222, 225, 233, 234, 254, 261, 262, 265, 304, 305, 306, 307, 308, 309, 358, 359, 373, 376, 377, 395, 398, 409, 415, 429, 430, 436, 451, 454, 456, 460, 461, 463, 467, 468, 475, 545, 546, 555, 562, 563, 565, 577, 578, 591, 638, 649, 663, 669, 672, 675, 679, 684, 685, 716, 734, 743, 780, 781, 782, 783, 784, 845, 892, 898, 913, 940, 1025, 1029, 1030, 1031, 1039, 1049], "environ": [8, 26, 125, 128], "local": [8, 30, 104, 113, 126, 254, 352, 796, 797, 829, 832, 933, 934, 1049], "non": [8, 31, 39, 67, 95, 159, 171, 179, 200, 222, 226, 231, 254, 383, 429, 439, 465, 481, 482, 483, 484, 485, 486, 488, 489, 490, 510, 516, 563, 564, 565, 566, 575, 577, 578, 584, 585, 587, 605, 606, 609, 610, 616, 617, 618, 621, 622, 623, 638, 671, 684, 695, 709, 712, 734, 860, 912, 932, 946, 947, 948, 949, 950, 951, 953, 954, 955, 980, 986, 1030, 1049], "env": [8, 127], "back": [8, 67, 146, 218, 254, 464, 540, 638, 743, 845, 1010, 1031, 1049], "none": [9, 18, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 38, 39, 47, 48, 50, 52, 54, 55, 57, 67, 75, 90, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 112, 113, 114, 115, 116, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 130, 133, 135, 139, 142, 147, 148, 156, 158, 159, 160, 165, 169, 172, 173, 174, 177, 179, 183, 184, 187, 195, 198, 204, 206, 207, 213, 215, 218, 222, 223, 224, 225, 226, 227, 254, 264, 266, 267, 268, 280, 285, 298, 299, 300, 303, 305, 308, 310, 314, 315, 344, 345, 352, 359, 360, 361, 362, 363, 366, 367, 368, 374, 378, 382, 383, 389, 390, 391, 392, 393, 399, 401, 402, 409, 413, 415, 424, 429, 430, 437, 439, 450, 452, 461, 462, 465, 467, 470, 473, 474, 479, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 492, 496, 497, 498, 499, 503, 504, 508, 509, 512, 513, 517, 518, 519, 520, 521, 522, 523, 526, 527, 528, 530, 531, 532, 533, 534, 535, 536, 539, 542, 543, 544, 553, 563, 564, 566, 567, 569, 575, 578, 580, 585, 587, 588, 589, 590, 592, 593, 602, 603, 604, 605, 606, 609, 610, 615, 616, 617, 620, 621, 623, 625, 626, 627, 628, 629, 638, 654, 655, 659, 664, 665, 670, 671, 674, 675, 676, 678, 680, 684, 687, 698, 699, 700, 701, 707, 708, 709, 713, 715, 718, 734, 737, 741, 742, 743, 744, 751, 752, 773, 774, 785, 786, 788, 806, 807, 808, 813, 824, 825, 832, 837, 838, 840, 841, 842, 846, 847, 848, 850, 853, 854, 856, 858, 859, 860, 869, 872, 873, 876, 879, 880, 884, 885, 892, 896, 898, 907, 912, 913, 919, 920, 921, 922, 923, 927, 936, 937, 938, 941, 944, 945, 946, 947, 948, 949, 950, 951, 953, 954, 955, 957, 961, 963, 965, 968, 969, 972, 973, 976, 978, 979, 982, 983, 987, 988, 989, 990, 991, 992, 993, 996, 997, 998, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1009, 1024, 1027, 1028, 1031, 1032, 1038, 1039, 1049, 1056], "written": [9, 27, 28, 31, 32, 33, 34, 35, 47, 48, 254, 715, 734], "contain": [9, 29, 31, 67, 72, 92, 95, 97, 104, 113, 119, 123, 134, 142, 158, 171, 183, 187, 221, 254, 268, 289, 290, 387, 439, 510, 513, 515, 516, 518, 531, 532, 638, 652, 659, 670, 689, 706, 734, 737, 919, 925, 980, 983, 985, 986, 988, 1001, 1002, 1025, 1049], "where": [9, 31, 52, 67, 103, 123, 142, 146, 170, 179, 196, 208, 228, 254, 279, 354, 357, 359, 461, 476, 493, 502, 505, 507, 560, 573, 579, 616, 617, 620, 628, 629, 638, 684, 702, 710, 734, 743, 754, 834, 838, 845, 958, 972, 976, 1038, 1040, 1049, 1056], "ascii": [10, 18, 520, 522, 526, 542, 990, 992, 996, 1012], "charact": [10, 12, 18, 24, 28, 29, 101, 102, 112, 254, 341, 514, 516, 519, 520, 521, 526, 527, 529, 530, 533, 542, 689, 734, 737, 821, 984, 986, 989, 990, 991, 996, 997, 999, 1000, 1003, 1012], "displai": [10, 11, 12, 15, 17, 21, 23, 31, 254], "tabl": [10, 14, 15, 17, 18, 19, 20, 21, 23, 24, 29, 30, 31, 53, 54, 55, 57, 90, 97, 101, 102, 104, 112, 113, 187, 212, 218, 225, 226, 254, 709, 734, 1031, 1049, 1056], "outlin": 10, "fals": [10, 14, 16, 17, 18, 19, 20, 21, 22, 23, 26, 30, 31, 33, 35, 47, 48, 52, 67, 73, 91, 95, 97, 101, 102, 105, 106, 109, 110, 112, 115, 116, 119, 120, 121, 122, 123, 124, 125, 126, 132, 134, 135, 136, 139, 152, 153, 155, 156, 157, 158, 159, 163, 164, 166, 167, 168, 170, 173, 174, 177, 182, 183, 185, 187, 188, 195, 196, 197, 198, 201, 205, 207, 213, 215, 217, 218, 221, 222, 223, 227, 229, 231, 237, 238, 240, 241, 242, 244, 247, 254, 264, 265, 266, 268, 278, 284, 286, 289, 290, 304, 305, 306, 307, 308, 309, 310, 328, 344, 346, 352, 357, 358, 359, 360, 361, 362, 376, 377, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 396, 398, 401, 402, 406, 410, 425, 428, 431, 436, 437, 450, 460, 461, 463, 470, 473, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 494, 497, 498, 502, 504, 505, 509, 513, 517, 523, 524, 525, 529, 530, 532, 534, 535, 536, 556, 559, 562, 563, 564, 565, 566, 569, 572, 573, 579, 582, 587, 588, 600, 601, 603, 612, 615, 621, 626, 627, 629, 630, 638, 652, 654, 655, 656, 661, 663, 669, 670, 671, 675, 676, 678, 680, 689, 696, 699, 701, 706, 707, 712, 719, 720, 722, 723, 724, 726, 729, 734, 737, 743, 753, 759, 766, 772, 773, 780, 781, 782, 783, 784, 785, 804, 824, 826, 832, 838, 840, 841, 842, 849, 860, 861, 862, 864, 867, 868, 869, 870, 871, 872, 873, 875, 876, 877, 880, 884, 885, 893, 908, 911, 914, 925, 933, 934, 936, 938, 939, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 957, 959, 962, 967, 972, 974, 979, 983, 987, 993, 994, 995, 999, 1000, 1002, 1004, 1005, 1006, 1029, 1030, 1031, 1034, 1037, 1039, 1040, 1049, 1056], "revert": 10, "abc": [10, 16, 17, 18, 19, 20, 21, 22, 23, 261, 516, 524, 638, 737, 986, 994], "xyz": [10, 16, 17, 18, 19, 20, 21, 22, 23, 261, 510, 516, 638, 980, 986, 1027, 1049], "f64": [10, 14, 16, 17, 19, 20, 21, 22, 23, 49, 52, 67, 69, 71, 93, 117, 124, 135, 136, 138, 139, 140, 143, 147, 148, 152, 155, 156, 157, 164, 172, 173, 177, 178, 187, 188, 189, 206, 207, 208, 228, 231, 234, 238, 240, 241, 242, 243, 244, 246, 247, 254, 260, 263, 270, 271, 272, 273, 274, 275, 293, 296, 297, 301, 302, 309, 311, 314, 315, 346, 357, 358, 359, 360, 361, 362, 363, 364, 367, 368, 372, 373, 376, 377, 382, 389, 391, 392, 393, 395, 396, 398, 420, 432, 433, 434, 436, 440, 441, 442, 453, 456, 458, 459, 460, 461, 465, 467, 471, 472, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 500, 501, 502, 506, 507, 551, 552, 555, 560, 570, 571, 574, 575, 577, 579, 581, 592, 607, 608, 619, 620, 628, 638, 654, 658, 664, 665, 669, 675, 676, 682, 683, 690, 701, 702, 710, 712, 713, 716, 720, 722, 723, 724, 725, 726, 728, 729, 734, 737, 745, 746, 747, 748, 749, 750, 770, 771, 778, 779, 784, 785, 786, 826, 841, 842, 847, 851, 856, 932, 936, 946, 948, 949, 951, 952, 953, 955, 956, 970, 971, 975, 1022, 1023, 1036, 1049, 1057], "fmt": [11, 381, 595, 638, 673, 734], "floatfmt": 11, "mix": [11, 534, 536, 786, 1004, 1006, 1049], "control": [11, 31, 57, 74, 122, 254, 661, 734], "how": [11, 30, 31, 58, 67, 74, 75, 93, 96, 103, 142, 172, 225, 226, 254, 295, 312, 344, 352, 382, 407, 408, 464, 476, 487, 517, 629, 638, 659, 675, 709, 734, 769, 787, 824, 832, 890, 891, 952, 987, 1049], "float": [11, 31, 41, 42, 117, 119, 120, 121, 124, 126, 139, 144, 147, 173, 189, 198, 204, 246, 254, 297, 298, 299, 300, 310, 314, 315, 346, 357, 358, 359, 360, 361, 362, 367, 372, 376, 377, 382, 385, 388, 389, 391, 392, 393, 398, 406, 432, 436, 440, 453, 458, 459, 460, 461, 467, 470, 471, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 492, 493, 555, 574, 607, 608, 613, 615, 620, 622, 628, 638, 664, 676, 690, 698, 699, 728, 734, 737, 766, 771, 774, 775, 776, 785, 786, 788, 826, 838, 839, 840, 841, 842, 847, 851, 856, 866, 880, 889, 890, 915, 921, 922, 928, 929, 935, 936, 937, 946, 947, 948, 949, 950, 951, 953, 954, 955, 956, 957, 958, 960, 961, 972, 976, 1018, 1030, 1038, 1049, 1057], "point": [11, 31, 41, 42, 124, 126, 147, 158, 174, 254, 297, 310, 314, 315, 346, 367, 372, 389, 391, 491, 492, 587, 638, 664, 670, 680, 692, 734, 771, 785, 826, 847, 851, 866, 956, 957, 1030, 1049], "full": [11, 38, 67, 72, 74, 101, 102, 104, 112, 113, 158, 159, 254, 534, 535, 536, 539, 670, 671, 680, 734, 737, 1004, 1005, 1006, 1009], "format": [11, 14, 18, 28, 31, 100, 101, 102, 112, 117, 145, 156, 170, 179, 196, 197, 214, 252, 254, 345, 348, 351, 450, 534, 535, 536, 539, 662, 668, 684, 715, 734, 828, 831, 1004, 1005, 1006, 1009, 1048], "number": [11, 12, 13, 15, 23, 24, 28, 31, 35, 48, 67, 84, 90, 92, 94, 96, 99, 101, 102, 103, 105, 108, 109, 112, 115, 122, 124, 125, 127, 128, 134, 135, 144, 145, 147, 148, 161, 170, 171, 174, 175, 182, 183, 198, 203, 204, 208, 210, 221, 225, 228, 237, 239, 248, 254, 279, 285, 291, 303, 309, 312, 326, 329, 334, 336, 346, 353, 354, 356, 360, 361, 362, 366, 368, 374, 379, 389, 391, 399, 400, 408, 414, 423, 427, 429, 466, 470, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 492, 495, 496, 498, 507, 519, 522, 524, 530, 531, 537, 548, 554, 560, 579, 580, 587, 598, 616, 617, 620, 624, 628, 638, 652, 654, 662, 663, 664, 665, 672, 679, 689, 697, 698, 702, 704, 706, 710, 719, 721, 730, 734, 765, 773, 784, 787, 802, 805, 814, 816, 826, 833, 834, 836, 839, 840, 841, 842, 846, 848, 855, 866, 882, 891, 897, 906, 910, 912, 925, 926, 936, 946, 947, 948, 949, 950, 951, 953, 954, 955, 956, 957, 964, 965, 968, 976, 989, 992, 994, 1000, 1001, 1007, 1019, 1033, 1038, 1049, 1057], "plai": [12, 578], "sam": 12, "As": [12, 90, 92, 93, 94, 96, 105, 108, 109, 254, 734], "time": [12, 30, 38, 40, 52, 57, 72, 73, 112, 146, 158, 159, 173, 227, 254, 291, 316, 317, 318, 319, 320, 324, 325, 341, 344, 345, 348, 350, 351, 352, 355, 405, 406, 429, 482, 483, 484, 485, 486, 488, 489, 490, 534, 536, 539, 553, 554, 577, 578, 587, 588, 590, 596, 626, 627, 638, 656, 670, 671, 676, 689, 734, 737, 743, 765, 792, 793, 794, 795, 800, 801, 821, 824, 825, 828, 830, 831, 832, 835, 845, 888, 890, 1004, 1006, 1009, 1032, 1033, 1049, 1057], "goe": 12, "By": [12, 13, 67, 101, 102, 105, 112, 158, 159, 173, 208, 227, 228, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 507, 523, 560, 579, 603, 620, 628, 638, 670, 671, 676, 702, 710, 734, 821, 825, 832, 976, 993, 1030, 1038, 1049], "begin": [12, 31, 254, 360, 361, 362, 515, 587, 638, 840, 841, 842, 985, 1049], "beauti": 12, "friendship": 12, "len": [12, 31, 122, 124, 171, 254, 304, 310, 470, 520, 526, 542, 638, 785, 936, 990, 996, 1012, 1049], "u32": [12, 52, 158, 184, 232, 237, 245, 247, 254, 262, 269, 276, 277, 278, 279, 280, 303, 304, 322, 326, 330, 334, 336, 342, 343, 346, 353, 354, 399, 403, 404, 407, 418, 439, 457, 462, 473, 480, 482, 483, 485, 488, 489, 490, 493, 510, 519, 522, 553, 557, 563, 568, 572, 573, 580, 611, 638, 670, 687, 714, 719, 727, 729, 734, 753, 754, 755, 766, 798, 802, 809, 811, 814, 816, 819, 822, 823, 826, 833, 834, 856, 901, 938, 945, 980, 989, 992, 1032, 1035, 1037, 1049], "37": 12, "beaut": 12, "48": [12, 159, 254, 671, 734], "fmt_str_length": 12, "50": [12, 31, 146, 254, 298, 299, 300, 345, 352, 638, 774, 832, 1049], "print": [12, 15, 17, 18, 23, 102, 118, 143, 156, 157, 171, 174, 216, 233, 254, 381, 450, 590, 638, 673, 734, 867, 946, 1028, 1049, 1057], "overwrit": [13, 29, 30, 90, 92, 93, 94, 96, 101, 102, 108, 109, 112, 132, 254, 263, 638, 663, 734], "chunk": [13, 48, 99, 101, 102, 110, 112, 114, 115, 116, 124, 126, 146, 171, 182, 254, 267, 474, 638, 734, 743, 772, 845, 852, 925, 939, 1025, 1049], "stream": [13, 32, 47, 48, 73, 134, 157, 172, 221, 223, 254, 652, 656, 661, 663, 669, 675, 680, 684, 689, 699, 701, 706, 707, 734], "engin": [13, 29, 103, 128, 133, 157, 172, 223, 236, 254, 669, 675, 680, 684, 707, 718, 734, 744, 1049], "determin": [13, 31, 65, 67, 74, 93, 96, 101, 102, 105, 110, 112, 116, 133, 152, 158, 159, 170, 171, 222, 227, 254, 295, 328, 344, 352, 429, 439, 447, 470, 476, 482, 483, 484, 485, 486, 488, 489, 490, 502, 517, 537, 612, 615, 630, 638, 670, 671, 734, 769, 804, 824, 832, 856, 912, 919, 936, 972, 987, 1007, 1049], "schema": [13, 30, 52, 58, 68, 69, 70, 74, 75, 85, 86, 88, 90, 92, 93, 94, 96, 97, 101, 102, 103, 107, 108, 109, 111, 112, 115, 122, 124, 133, 135, 136, 143, 144, 180, 183, 217, 254, 281, 282, 283, 429, 447, 517, 562, 621, 638, 654, 655, 660, 680, 685, 715, 718, 734, 737, 758, 777, 987, 1049], "thread": [13, 28, 99, 101, 102, 103, 128, 254, 268, 410, 492, 498, 638, 893], "pool": [13, 128], "For": [13, 30, 31, 103, 104, 105, 113, 146, 159, 172, 173, 236, 254, 293, 360, 361, 362, 429, 448, 475, 502, 509, 515, 516, 524, 582, 587, 594, 595, 638, 671, 676, 718, 734, 743, 840, 841, 842, 845, 940, 972, 979, 985, 986, 994, 1030, 1049], "some": [13, 26, 30, 31, 93, 101, 102, 112, 142, 254, 659, 734, 867, 1049, 1057], "dataset": [13, 101, 102, 112, 117, 172, 254, 396, 638, 649, 675, 680, 734, 880, 1049], "esp": 13, "when": [13, 15, 17, 21, 31, 35, 38, 48, 57, 58, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 101, 102, 106, 110, 112, 113, 114, 115, 124, 126, 133, 134, 143, 144, 146, 148, 152, 158, 159, 172, 186, 195, 197, 200, 207, 215, 217, 221, 223, 254, 298, 299, 300, 344, 352, 360, 361, 362, 368, 429, 437, 439, 448, 466, 480, 504, 505, 521, 527, 533, 534, 572, 582, 587, 594, 638, 652, 665, 670, 671, 675, 680, 695, 701, 706, 707, 734, 743, 774, 775, 776, 824, 832, 839, 840, 841, 842, 845, 848, 919, 945, 960, 961, 991, 997, 1003, 1004, 1026, 1049], "have": [13, 26, 31, 38, 67, 75, 91, 101, 102, 103, 105, 124, 126, 146, 159, 170, 190, 196, 197, 214, 254, 309, 360, 361, 362, 448, 470, 473, 534, 536, 587, 638, 671, 684, 699, 714, 734, 737, 743, 784, 840, 841, 842, 845, 853, 936, 938, 1004, 1006, 1049, 1057], "larg": [13, 67, 158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 821, 825, 832], "element": [13, 23, 123, 126, 134, 169, 187, 195, 208, 221, 228, 254, 268, 270, 271, 272, 273, 274, 275, 291, 296, 301, 302, 304, 305, 306, 307, 308, 309, 364, 365, 378, 387, 407, 409, 410, 411, 415, 430, 433, 434, 464, 465, 473, 476, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 493, 499, 500, 501, 506, 507, 530, 531, 537, 551, 552, 554, 560, 579, 616, 617, 620, 628, 638, 652, 701, 702, 706, 710, 734, 744, 745, 746, 747, 748, 749, 750, 765, 770, 773, 778, 779, 780, 781, 782, 783, 784, 843, 844, 849, 855, 867, 879, 882, 890, 892, 893, 894, 898, 913, 916, 917, 932, 938, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 958, 969, 970, 971, 975, 976, 1000, 1001, 1007, 1019, 1022, 1023, 1028, 1033, 1034, 1038, 1049], "too": [13, 158, 159, 173, 227, 254, 341, 345, 352, 480, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 821, 825, 832], "optimist": 13, "lead": [13, 97, 117, 158, 159, 254, 268, 437, 494, 521, 533, 542, 549, 559, 579, 638, 670, 671, 680, 718, 734, 744, 962, 991, 1003, 1012, 1049], "out": [13, 47, 48, 97, 118, 159, 197, 254, 287, 413, 428, 509, 511, 629, 671, 734, 761, 896, 911, 979, 981], "memori": [13, 48, 74, 90, 91, 94, 95, 96, 101, 102, 106, 110, 112, 114, 115, 116, 132, 133, 146, 197, 205, 236, 254, 464, 474, 497, 638, 734, 743, 744, 845, 939, 966, 967, 1049], "error": [13, 30, 76, 101, 102, 112, 158, 159, 173, 187, 195, 227, 254, 263, 287, 293, 341, 345, 352, 395, 416, 428, 482, 483, 484, 485, 486, 488, 489, 490, 509, 511, 515, 517, 518, 534, 535, 536, 539, 638, 670, 671, 676, 718, 734, 761, 766, 821, 825, 832, 899, 911, 979, 981, 985, 987, 988, 1004, 1005, 1006, 1009, 1049], "row": [13, 18, 23, 28, 31, 33, 35, 48, 67, 68, 70, 74, 82, 84, 89, 93, 94, 96, 97, 101, 102, 105, 106, 110, 112, 114, 115, 116, 119, 122, 124, 133, 134, 135, 142, 146, 149, 152, 156, 157, 158, 160, 161, 166, 168, 169, 170, 171, 173, 174, 175, 179, 183, 197, 198, 206, 210, 211, 214, 216, 221, 223, 225, 226, 232, 236, 239, 248, 254, 268, 279, 365, 379, 400, 411, 429, 464, 465, 477, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 503, 505, 514, 517, 548, 569, 572, 582, 583, 594, 598, 600, 601, 614, 616, 617, 624, 629, 638, 652, 654, 656, 659, 663, 666, 667, 670, 672, 676, 677, 679, 680, 684, 700, 704, 705, 706, 707, 709, 714, 718, 721, 730, 734, 743, 844, 845, 855, 879, 894, 932, 942, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 973, 984, 987, 1019, 1049, 1057], "per": [13, 28, 31, 122, 124, 134, 156, 183, 184, 207, 221, 243, 245, 246, 254, 268, 410, 413, 428, 505, 572, 638, 652, 701, 706, 725, 727, 728, 734, 893, 896, 911], "everi": [13, 101, 102, 112, 158, 211, 214, 227, 254, 304, 305, 306, 307, 308, 309, 345, 352, 365, 403, 404, 408, 409, 411, 413, 414, 424, 427, 514, 550, 582, 583, 638, 663, 670, 705, 734, 780, 781, 782, 783, 784, 825, 832, 844, 886, 887, 891, 892, 894, 896, 897, 907, 910, 984, 1021, 1049], "process": [13, 28, 47, 48, 128, 254, 734], "liter": [14, 18, 30, 52, 105, 124, 125, 126, 127, 156, 170, 176, 177, 181, 182, 185, 195, 196, 200, 209, 213, 226, 231, 254, 263, 286, 318, 358, 359, 366, 373, 376, 377, 383, 398, 436, 439, 454, 456, 460, 461, 467, 509, 524, 525, 545, 555, 563, 564, 565, 566, 569, 573, 575, 577, 578, 584, 585, 586, 587, 588, 589, 600, 601, 603, 605, 606, 609, 610, 612, 615, 618, 621, 622, 623, 625, 626, 627, 630, 638, 665, 695, 709, 712, 734, 737, 760, 794, 846, 860, 960, 961, 979, 994, 995, 1049, 1056], "left": [14, 31, 54, 67, 119, 120, 158, 159, 172, 173, 226, 254, 360, 361, 362, 382, 383, 482, 483, 484, 485, 486, 488, 489, 490, 493, 520, 542, 553, 575, 582, 583, 587, 588, 594, 614, 626, 627, 629, 638, 670, 671, 675, 676, 709, 734, 840, 841, 842, 860, 958, 990, 1012, 1032, 1049], "center": [14, 31, 254, 360, 361, 362, 481, 482, 483, 484, 485, 486, 488, 489, 490, 638, 840, 841, 842, 946, 947, 948, 949, 950, 951, 953, 954, 955, 1049], "right": [14, 16, 31, 101, 102, 119, 120, 158, 159, 172, 173, 254, 310, 360, 361, 362, 383, 409, 415, 430, 470, 482, 483, 484, 485, 486, 488, 489, 490, 493, 502, 526, 575, 587, 588, 626, 627, 638, 670, 671, 675, 676, 734, 785, 840, 841, 842, 860, 892, 898, 913, 936, 958, 972, 996, 1049], "cell": [14, 31, 254], "align": [14, 31, 67, 74, 254, 542, 1012], "keyerror": [14, 18], "recognis": [14, 18, 121], "column_abc": 14, "column_xyz": 14, "visibl": [15, 144, 254, 839, 1049], "eg": [15, 23, 31, 103, 254, 345, 534, 536, 555, 638, 1004, 1006], "low": [15, 128], "rang": [15, 31, 103, 139, 144, 158, 171, 254, 310, 311, 322, 336, 342, 343, 345, 352, 353, 382, 470, 569, 577, 586, 587, 588, 589, 600, 601, 625, 626, 627, 638, 670, 734, 785, 786, 798, 816, 822, 823, 825, 832, 833, 839, 932, 936, 1049], "100": [15, 31, 93, 96, 101, 102, 112, 115, 254, 517, 537, 542, 734, 947, 948, 950, 987, 1007, 1049, 1057], "98": [15, 164, 254, 291, 504, 537, 549, 554, 638, 1007], "99": [15, 31, 147, 148, 164, 167, 254, 262, 291, 366, 368, 504, 549, 554, 638, 664, 665, 734, 838, 846, 1049], "tbl_col": 15, "10": [15, 27, 28, 30, 31, 32, 35, 48, 52, 67, 74, 97, 103, 112, 124, 126, 136, 146, 155, 158, 159, 161, 163, 164, 165, 182, 186, 188, 192, 193, 200, 210, 231, 234, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 254, 263, 267, 276, 277, 278, 280, 298, 303, 305, 308, 310, 312, 314, 315, 316, 318, 324, 337, 338, 344, 345, 352, 355, 378, 379, 382, 387, 395, 399, 400, 408, 414, 423, 424, 427, 433, 465, 466, 470, 503, 542, 548, 562, 575, 582, 587, 591, 594, 596, 598, 603, 604, 624, 627, 638, 656, 670, 671, 672, 674, 679, 688, 689, 695, 703, 704, 712, 716, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729, 734, 737, 744, 774, 785, 787, 792, 794, 800, 824, 832, 835, 838, 855, 867, 882, 891, 897, 906, 907, 910, 916, 932, 960, 961, 1019, 1049, 1057], "95": [15, 262, 638], "96": [15, 262, 638], "97": [15, 164, 254, 262, 638], "move": [16, 197, 254, 360, 361, 362, 482, 483, 485, 489, 638, 840, 841, 842, 947, 948, 950, 954, 1049], "inlin": [16, 197, 254, 509, 515, 516, 524, 979, 985, 986, 994], "parenthes": 16, "below": [17, 31, 104, 113, 142, 254, 368, 587, 588, 629, 638, 659, 734], "ascii_ful": 18, "ascii_full_condens": 18, "ascii_no_bord": 18, "ascii_borders_onli": 18, "ascii_borders_only_condens": 18, "ascii_horizontal_onli": 18, "ascii_markdown": 18, "utf8_ful": [18, 67, 97], "utf8_full_condens": [18, 97], "utf8_no_bord": 18, "utf8_borders_onli": 18, "utf8_horizontal_onli": 18, "noth": [18, 292, 510, 515, 518, 638, 980, 985, 988], "rounded_corn": 18, "style": [18, 31, 187, 254], "border": 18, "line": [18, 31, 101, 102, 105, 112, 156, 166, 168, 254, 515, 985], "includ": [18, 26, 28, 30, 31, 72, 104, 113, 124, 134, 139, 144, 158, 185, 197, 221, 222, 225, 254, 310, 346, 383, 470, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 527, 529, 530, 533, 582, 616, 617, 638, 652, 670, 706, 734, 785, 786, 826, 839, 860, 936, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 999, 1000, 1003, 1039, 1049], "divid": [18, 345, 352, 360, 361, 362, 396, 638, 825, 832, 840, 841, 842, 880, 1049], "dens": [18, 156, 254, 473, 638, 938, 1049], "space": [18, 158, 254, 470, 638, 670, 734, 936, 1049], "horizont": [18, 74, 152, 163, 225, 254, 563, 564, 565, 566, 577, 578, 582, 583, 584, 585, 591, 594, 605, 606, 609, 610, 614, 622, 623], "markdown": 18, "compat": [18, 31, 35, 48, 254, 509, 510, 515, 516, 524, 525, 734, 737, 979, 980, 985, 986, 994, 995], "No": [18, 540, 1010], "appli": [18, 28, 31, 52, 74, 112, 121, 124, 126, 152, 186, 254, 320, 321, 322, 326, 328, 329, 330, 332, 334, 336, 339, 342, 343, 346, 349, 353, 354, 356, 361, 362, 437, 466, 481, 482, 483, 485, 489, 524, 534, 535, 536, 539, 562, 582, 583, 594, 604, 614, 629, 638, 672, 679, 680, 688, 734, 796, 797, 798, 802, 804, 805, 809, 811, 814, 816, 819, 822, 823, 826, 829, 833, 834, 836, 841, 842, 946, 947, 948, 950, 954, 994, 1004, 1005, 1006, 1009, 1049], "round": [18, 31, 69, 97, 254, 297, 372, 551, 638, 771, 851, 1049], "corner": [18, 31, 97, 254], "op": [18, 126, 254, 292, 476, 534, 536, 638, 734, 1004, 1006, 1049], "one": [18, 29, 31, 57, 67, 82, 90, 92, 93, 94, 95, 96, 108, 109, 125, 126, 127, 130, 148, 149, 156, 157, 158, 159, 170, 179, 187, 195, 196, 201, 217, 220, 235, 254, 262, 368, 429, 434, 481, 504, 516, 549, 587, 619, 622, 629, 638, 665, 666, 669, 670, 671, 684, 696, 713, 717, 734, 743, 848, 876, 912, 917, 946, 986, 1013, 1049], "more": [18, 31, 33, 35, 48, 57, 67, 74, 89, 90, 91, 92, 93, 94, 95, 96, 103, 104, 108, 109, 110, 113, 124, 126, 130, 133, 138, 139, 170, 174, 179, 183, 195, 196, 198, 217, 223, 236, 254, 265, 268, 284, 298, 299, 300, 396, 431, 434, 437, 463, 492, 502, 516, 534, 535, 536, 556, 619, 622, 629, 638, 684, 707, 734, 737, 744, 759, 774, 775, 776, 786, 876, 880, 914, 957, 972, 986, 1004, 1005, 1006, 1034, 1049, 1057], "semigraph": 18, "box": [18, 133, 254], "draw": [18, 23, 24, 123, 492, 498, 638, 1057], "found": [18, 28, 54, 77, 86, 88, 93, 97, 143, 226, 254, 493, 518, 534, 536, 638, 709, 734, 958, 988, 1004, 1006, 1049, 1056], "unicod": 18, "block": [18, 157, 223, 254, 669, 692, 707, 714, 718, 734, 960, 961, 1049], "http": [18, 31, 91, 103, 132, 138, 254, 515, 985], "en": [18, 31, 254], "wikipedia": 18, "org": [18, 91, 103, 132, 138, 254], "wiki": 18, "drawing_charact": 18, "box_draw": 18, "mno": 18, "tbl_format": 18, "tbl_hide_column_data_typ": 18, "tbl_hide_dataframe_shap": 18, "hide": [19, 20, 21, 22, 31, 254], "etc": [19, 30, 31, 101, 104, 106, 110, 113, 114, 116, 254, 737, 960, 961, 1049], "inform": [21, 72, 104, 113, 138, 254, 298, 299, 300, 396, 502, 509, 515, 516, 524, 587, 588, 638, 689, 734, 774, 775, 776, 880, 972, 979, 985, 986, 994, 1049], "separ": [22, 28, 99, 101, 102, 112, 185, 187, 215, 222, 224, 254, 268, 411, 416, 514, 578, 582, 583, 638, 708, 734, 894, 899, 984, 1017, 1026, 1049], "between": [22, 74, 121, 122, 124, 126, 138, 189, 246, 254, 293, 313, 383, 409, 415, 416, 430, 465, 470, 471, 486, 492, 498, 508, 570, 571, 579, 581, 613, 616, 617, 638, 690, 728, 734, 766, 788, 860, 892, 898, 899, 913, 932, 936, 937, 951, 978, 1049], "set_tbl_column_data_type_inlin": 22, "max": [23, 31, 35, 48, 52, 128, 139, 148, 157, 158, 159, 187, 254, 298, 299, 305, 368, 429, 464, 473, 482, 494, 531, 606, 619, 638, 665, 669, 670, 671, 734, 774, 775, 780, 786, 848, 912, 938, 947, 962, 1001, 1049], "both": [23, 28, 58, 158, 159, 172, 173, 180, 195, 254, 267, 383, 482, 483, 484, 485, 486, 488, 489, 490, 587, 588, 626, 627, 638, 648, 670, 671, 675, 676, 685, 734, 860, 869, 1049], "tbl_row": 23, "char": [24, 58, 75, 516, 522, 986, 992], "enabl": [25, 75, 129, 200, 231, 254, 494, 638, 695, 712, 734, 962, 1049], "addit": [25, 30, 31, 93, 104, 113, 122, 140, 145, 157, 185, 200, 201, 207, 224, 231, 234, 254, 261, 324, 363, 366, 464, 505, 509, 515, 516, 524, 563, 565, 572, 575, 576, 577, 578, 584, 592, 605, 609, 618, 621, 622, 638, 658, 662, 669, 695, 696, 701, 708, 712, 716, 734, 792, 800, 846, 979, 985, 986, 994, 1049], "verbos": [25, 130, 516, 986], "debug": [25, 656, 663, 680, 734, 1057], "log": [25, 69, 291, 357, 434, 456, 467, 554, 638, 765, 838, 1033, 1049], "if_set": 26, "env_onli": 26, "dict": [26, 30, 31, 35, 55, 68, 70, 72, 90, 92, 93, 94, 95, 96, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 124, 151, 170, 185, 191, 195, 196, 197, 199, 213, 214, 222, 254, 264, 266, 310, 439, 470, 480, 638, 692, 694, 734, 919, 1049], "show": [26, 31, 56, 142, 156, 174, 184, 254, 659, 689, 699, 734], "variabl": [26, 49, 54, 125, 128, 179, 215, 254, 684, 734, 1026, 1049, 1056], "restrict": [26, 531, 587, 588, 1001], "dictionari": [26, 31, 90, 92, 93, 94, 96, 101, 102, 107, 108, 109, 111, 112, 170, 185, 195, 196, 197, 213, 214, 254, 439, 638, 734, 919, 1049], "those": [26, 31, 101, 197, 254, 473, 515, 638, 737, 938, 985, 1049], "been": [26, 31, 254, 473, 482, 483, 484, 485, 486, 488, 489, 490, 569, 638, 938, 1049], "set_fmt_float": 26, "directli": [26, 54, 124, 126, 130, 197, 254, 360, 361, 362, 615, 638, 734, 840, 841, 842, 1049, 1057], "via": [26, 101, 102, 105, 112, 114, 115, 116, 170, 196, 254, 268, 638], "set_stat": 26, "all_stat": 26, "binaryio": [27, 32, 100, 101, 105, 106, 107, 110, 111, 254], "bytesio": [27, 28, 31, 32, 35, 100, 101, 102, 105, 106, 110, 254], "compress": [27, 32, 35, 47, 48, 254, 734], "avrocompress": [27, 254], "uncompress": [27, 32, 35, 48, 106, 114, 254, 734], "write": [27, 28, 29, 30, 31, 32, 33, 35, 48, 102, 106, 130, 254, 298, 299, 300, 452, 638, 678, 699, 715, 734, 774, 775, 776, 1049], "apach": [27, 35, 100, 103, 254], "avro": [27, 100, 254, 649], "should": [27, 28, 29, 31, 32, 33, 34, 35, 47, 48, 74, 90, 92, 94, 96, 104, 108, 109, 112, 121, 122, 126, 132, 133, 134, 140, 158, 159, 170, 173, 195, 196, 197, 214, 215, 221, 224, 227, 236, 254, 262, 268, 295, 309, 310, 341, 345, 352, 355, 363, 389, 391, 410, 470, 481, 482, 483, 484, 485, 486, 488, 489, 490, 493, 502, 576, 592, 599, 603, 616, 617, 629, 638, 652, 658, 670, 671, 675, 676, 680, 699, 701, 706, 708, 715, 734, 737, 744, 769, 784, 785, 821, 825, 832, 835, 893, 936, 946, 947, 948, 949, 950, 951, 953, 954, 955, 958, 972, 1049], "snappi": [27, 35, 48, 254, 734], "deflat": [27, 254], "import": [27, 28, 31, 32, 35, 38, 67, 90, 94, 95, 112, 117, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 139, 156, 158, 171, 173, 217, 218, 225, 227, 254, 311, 316, 317, 318, 319, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 482, 483, 485, 488, 489, 490, 570, 571, 587, 588, 590, 626, 627, 638, 649, 670, 676, 680, 734, 778, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 864, 868, 870, 871, 876, 946, 970, 1022, 1049, 1057], "pathlib": [27, 28, 32, 35, 112, 254], "foo": [27, 28, 30, 32, 33, 34, 35, 56, 133, 137, 138, 140, 141, 142, 143, 146, 149, 150, 152, 153, 154, 155, 160, 161, 162, 163, 164, 165, 167, 172, 176, 177, 178, 181, 184, 187, 189, 191, 192, 193, 195, 198, 199, 200, 202, 203, 204, 206, 208, 209, 210, 212, 214, 215, 216, 217, 218, 219, 222, 223, 224, 228, 229, 230, 233, 254, 294, 298, 299, 300, 341, 379, 381, 400, 406, 412, 413, 417, 418, 477, 495, 496, 508, 510, 512, 514, 516, 521, 527, 529, 531, 533, 538, 541, 548, 550, 568, 574, 576, 579, 580, 581, 593, 597, 598, 602, 605, 607, 608, 609, 611, 613, 618, 620, 624, 628, 629, 638, 657, 658, 659, 660, 666, 673, 674, 675, 687, 692, 694, 695, 707, 708, 711, 713, 715, 734, 737, 768, 774, 821, 899, 942, 980, 982, 984, 986, 1001, 1008, 1011, 1049], "bar": [27, 28, 30, 32, 33, 34, 35, 56, 133, 137, 138, 140, 141, 142, 143, 146, 149, 150, 152, 153, 154, 155, 161, 163, 164, 165, 167, 172, 176, 177, 178, 181, 184, 187, 189, 191, 192, 193, 195, 198, 199, 200, 203, 204, 206, 208, 209, 210, 212, 214, 215, 216, 217, 218, 219, 223, 224, 228, 229, 233, 254, 294, 381, 418, 502, 512, 514, 529, 531, 568, 574, 576, 579, 580, 581, 593, 598, 602, 605, 607, 608, 609, 611, 618, 620, 624, 628, 629, 638, 657, 658, 659, 660, 666, 673, 674, 675, 687, 692, 694, 695, 707, 708, 711, 715, 734, 737, 768, 899, 972, 982, 984, 1001, 1049], "ham": [27, 28, 30, 32, 35, 137, 138, 140, 141, 142, 143, 149, 150, 153, 160, 161, 163, 172, 176, 177, 178, 181, 184, 189, 191, 193, 195, 198, 199, 200, 203, 204, 206, 208, 209, 210, 215, 216, 217, 218, 219, 223, 228, 229, 254, 294, 576, 657, 658, 659, 660, 666, 675, 687, 692, 694, 695, 707, 713, 734, 768], "d": [27, 28, 30, 31, 32, 35, 58, 75, 93, 117, 139, 156, 158, 160, 161, 164, 172, 210, 212, 225, 229, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 254, 261, 263, 325, 348, 351, 383, 466, 497, 510, 516, 530, 534, 535, 536, 575, 596, 638, 670, 675, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729, 734, 801, 828, 831, 860, 980, 986, 1000, 1004, 1005, 1006, 1049], "e": [27, 28, 30, 32, 35, 58, 75, 91, 101, 102, 105, 106, 110, 114, 116, 139, 156, 158, 159, 161, 173, 210, 212, 217, 225, 227, 254, 261, 268, 341, 345, 352, 357, 363, 383, 432, 439, 482, 483, 484, 485, 486, 488, 489, 490, 497, 502, 592, 629, 638, 670, 671, 676, 678, 692, 734, 737, 821, 825, 832, 838, 860, 959, 972, 1030, 1049], "dirpath": [27, 28, 32, 35, 112, 254], "new_fil": [27, 28, 32, 35, 254], "has_head": [28, 31, 101, 102, 105, 112, 254], "quot": [28, 29, 101, 102, 112, 254], "batch_siz": [28, 101, 102, 115, 254], "1024": [28, 48, 101, 102, 115, 254, 734], "datetime_format": [28, 254], "date_format": [28, 254], "time_format": [28, 254], "float_precis": [28, 31, 254], "null_valu": [28, 101, 102, 112, 254], "textiowrapp": [28, 254], "comma": [28, 254], "csv": [28, 47, 48, 101, 102, 105, 112, 254, 649, 734], "result": [28, 33, 34, 47, 48, 67, 74, 94, 96, 103, 104, 112, 114, 116, 117, 126, 146, 158, 159, 172, 183, 197, 204, 218, 227, 234, 254, 268, 310, 348, 351, 360, 361, 362, 366, 396, 429, 437, 464, 470, 477, 481, 482, 483, 484, 485, 486, 488, 489, 490, 494, 496, 529, 530, 536, 555, 569, 582, 583, 587, 588, 604, 612, 615, 616, 617, 630, 638, 653, 670, 671, 675, 680, 689, 698, 715, 716, 734, 743, 744, 828, 831, 840, 841, 842, 845, 880, 936, 942, 946, 947, 948, 949, 950, 951, 953, 954, 955, 962, 965, 999, 1000, 1006, 1030, 1049, 1056, 1057], "If": [28, 29, 30, 31, 32, 33, 34, 48, 52, 58, 72, 74, 90, 91, 92, 93, 94, 95, 96, 101, 102, 104, 105, 106, 108, 109, 110, 112, 113, 114, 115, 116, 125, 132, 133, 134, 142, 146, 156, 158, 159, 161, 169, 170, 173, 175, 179, 183, 196, 197, 198, 206, 210, 214, 215, 217, 221, 222, 223, 225, 226, 254, 264, 266, 268, 298, 299, 300, 310, 318, 337, 338, 352, 369, 396, 424, 429, 437, 439, 450, 464, 470, 473, 475, 477, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 493, 498, 502, 503, 517, 519, 521, 522, 527, 528, 529, 530, 531, 533, 534, 535, 536, 539, 563, 565, 567, 569, 573, 579, 580, 582, 584, 587, 588, 594, 600, 601, 603, 605, 609, 612, 615, 616, 617, 621, 622, 626, 627, 629, 630, 638, 652, 659, 661, 670, 671, 675, 676, 680, 684, 692, 700, 706, 707, 709, 715, 718, 734, 737, 743, 744, 774, 775, 776, 785, 794, 817, 818, 832, 845, 853, 855, 856, 879, 880, 882, 907, 912, 936, 938, 940, 942, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 957, 958, 962, 968, 972, 973, 987, 989, 991, 992, 997, 998, 999, 1000, 1001, 1003, 1004, 1005, 1006, 1009, 1019, 1025, 1030, 1039, 1049, 1056], "instead": [28, 33, 34, 52, 56, 67, 74, 101, 110, 124, 133, 158, 159, 170, 173, 183, 185, 195, 196, 197, 200, 218, 227, 231, 254, 278, 310, 341, 345, 352, 470, 482, 483, 484, 485, 486, 488, 489, 490, 519, 521, 527, 533, 563, 565, 569, 573, 584, 587, 588, 600, 601, 605, 609, 612, 615, 621, 622, 626, 627, 630, 638, 664, 670, 671, 676, 695, 712, 715, 734, 737, 753, 785, 821, 825, 832, 936, 960, 961, 989, 991, 997, 1003, 1031, 1049, 1056], "whether": [28, 94, 96, 126, 134, 201, 221, 254, 310, 328, 346, 401, 402, 444, 445, 470, 494, 638, 652, 680, 696, 701, 706, 734, 737, 785, 804, 826, 884, 885, 936, 1049, 1056], "header": [28, 31, 35, 48, 97, 101, 102, 105, 112, 143, 187, 222, 254, 734], "field": [28, 59, 86, 88, 93, 217, 224, 254, 429, 439, 479, 516, 517, 530, 531, 544, 582, 583, 604, 621, 638, 708, 734, 785, 912, 936, 944, 998, 1000, 1001, 1015, 1017, 1049], "symbol": [28, 254], "byte": [28, 48, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 144, 254, 286, 289, 290, 519, 522, 734, 760, 763, 764, 839, 989, 992, 1049], "specifi": [28, 31, 67, 77, 86, 88, 105, 124, 134, 140, 144, 145, 148, 157, 158, 159, 172, 185, 195, 197, 200, 201, 207, 221, 224, 231, 234, 254, 360, 361, 362, 363, 368, 439, 464, 476, 482, 483, 484, 485, 486, 488, 489, 490, 505, 520, 526, 563, 565, 572, 575, 576, 577, 578, 584, 587, 588, 592, 605, 609, 618, 621, 622, 626, 627, 638, 652, 658, 662, 665, 669, 670, 671, 675, 695, 696, 701, 706, 708, 712, 716, 734, 839, 840, 841, 842, 848, 990, 996, 1049], "defin": [28, 31, 38, 121, 122, 124, 133, 158, 159, 183, 186, 236, 254, 268, 383, 428, 466, 480, 482, 483, 484, 485, 486, 488, 489, 490, 567, 587, 588, 603, 621, 626, 627, 638, 670, 671, 688, 718, 734, 737, 744, 860, 911, 945, 1049], "chrono": [28, 254, 348, 351, 534, 535, 536, 539, 828, 831, 1004, 1005, 1006, 1009], "rust": [28, 35, 83, 106, 110, 133, 236, 254, 744, 1049], "crate": [28, 254, 509, 510, 515, 516, 524, 525, 534, 535, 536, 539, 737, 979, 980, 985, 986, 994, 995, 1004, 1005, 1006, 1009], "fraction": [28, 119, 120, 198, 254, 346, 465, 492, 534, 536, 638, 826, 932, 957, 1004, 1006, 1049], "second": [28, 123, 158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 534, 536, 589, 590, 625, 629, 638, 670, 671, 676, 734, 737, 821, 825, 832, 1004, 1006, 1057], "precis": [28, 31, 38, 39, 170, 196, 197, 214, 254, 317, 537, 737, 793, 1007], "infer": [28, 90, 92, 93, 94, 95, 96, 101, 102, 105, 108, 109, 112, 115, 133, 254, 477, 517, 534, 535, 536, 537, 539, 615, 638, 734, 942, 987, 1004, 1005, 1006, 1007, 1009, 1049], "maximum": [28, 101, 102, 112, 122, 123, 124, 126, 176, 254, 403, 440, 458, 473, 605, 606, 638, 681, 734, 774, 806, 886, 920, 928, 933, 938, 1049], "timeunit": [28, 38, 40, 254, 317, 318, 350, 355, 536, 587, 588, 737, 793, 794, 830, 835, 1006], "frame": [28, 29, 31, 52, 53, 54, 55, 56, 57, 67, 74, 93, 119, 124, 133, 135, 170, 171, 180, 183, 186, 195, 196, 197, 218, 225, 254, 654, 685, 688, 734, 737, 773, 1049, 1056, 1057], "datetim": [28, 31, 67, 97, 124, 139, 156, 158, 159, 171, 173, 227, 254, 316, 317, 318, 319, 320, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 406, 482, 483, 484, 485, 486, 488, 489, 490, 534, 536, 553, 587, 588, 590, 596, 603, 626, 627, 638, 670, 671, 676, 734, 737, 791, 792, 793, 794, 795, 796, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 876, 889, 890, 928, 929, 961, 1004, 1006, 1032, 1049], "place": [28, 134, 141, 146, 163, 164, 187, 192, 197, 203, 204, 207, 221, 229, 254, 278, 416, 423, 495, 496, 504, 638, 652, 697, 698, 701, 706, 734, 743, 753, 845, 899, 906, 939, 941, 964, 965, 974, 1049], "float64": [28, 31, 93, 101, 124, 143, 144, 152, 199, 218, 231, 254, 270, 271, 272, 273, 274, 275, 293, 301, 302, 311, 346, 363, 389, 391, 472, 500, 501, 551, 552, 576, 592, 612, 615, 630, 638, 660, 694, 712, 734, 737, 826, 1031, 1036, 1049], "repres": [28, 50, 65, 90, 92, 94, 95, 96, 208, 228, 233, 254, 389, 391, 507, 560, 563, 576, 579, 592, 603, 616, 617, 620, 628, 638, 702, 710, 734, 961, 976, 1038, 1049], "empti": [28, 81, 93, 101, 102, 105, 112, 135, 136, 158, 167, 179, 254, 603, 618, 654, 655, 670, 684, 734, 737, 773, 777, 863, 1049], "table_nam": [29, 31, 254], "connect": [29, 101, 103, 106, 110, 114, 116, 117, 254, 650], "if_exist": [29, 254], "dbwritemod": [29, 254], "fail": [29, 30, 91, 104, 106, 109, 113, 132, 223, 254, 279, 349, 429, 534, 535, 536, 539, 638, 707, 734, 744, 1004, 1005, 1006, 1009, 1049], "dbwriteengin": [29, 254], "sqlalchemi": [29, 254], "databas": [29, 103, 254, 649], "creat": [29, 31, 90, 94, 96, 113, 122, 123, 124, 125, 126, 127, 135, 136, 158, 159, 184, 187, 227, 231, 254, 318, 345, 352, 429, 474, 482, 483, 485, 488, 489, 490, 528, 559, 577, 586, 587, 588, 589, 590, 625, 626, 627, 638, 654, 655, 661, 670, 671, 712, 734, 773, 777, 790, 794, 825, 832, 930, 939, 998, 1030, 1049, 1056, 1057], "append": [29, 30, 124, 146, 172, 173, 254, 310, 470, 474, 587, 588, 629, 638, 675, 676, 734, 845, 1049], "your": [29, 31, 67, 101, 102, 119, 120, 133, 170, 196, 197, 200, 214, 231, 234, 236, 254, 268, 534, 535, 536, 567, 638, 656, 672, 679, 680, 695, 712, 716, 718, 734, 744, 1004, 1005, 1006, 1049, 1057], "special": [29, 101, 102, 112, 254, 516, 744, 986, 1049], "uri": [29, 30, 103, 104, 113, 254], "postgresql": [29, 103, 254, 464, 638], "user": [29, 103, 133, 186, 236, 254, 268, 437, 466, 494, 567, 587, 638, 688, 718, 734, 744, 962, 1049], "pass": [29, 31, 35, 55, 67, 92, 103, 105, 112, 122, 124, 126, 134, 138, 140, 157, 158, 159, 161, 175, 185, 186, 200, 207, 210, 221, 227, 231, 234, 254, 268, 325, 344, 366, 381, 464, 466, 482, 483, 484, 485, 486, 488, 489, 490, 505, 521, 527, 533, 563, 565, 572, 576, 584, 587, 596, 605, 609, 621, 622, 638, 652, 658, 669, 670, 671, 673, 680, 688, 695, 699, 701, 706, 712, 716, 718, 734, 744, 801, 824, 846, 855, 882, 991, 997, 1003, 1019, 1049], "server": [29, 103, 254], "port": [29, 101, 103, 106, 110, 114, 116, 254], "sqlite": [29, 254], "db": [29, 103, 254], "replac": [29, 30, 101, 102, 112, 147, 148, 193, 222, 231, 254, 318, 344, 439, 525, 569, 638, 664, 712, 734, 794, 824, 919, 960, 961, 995, 1049], "insert": [29, 101, 102, 106, 110, 112, 114, 115, 116, 164, 192, 222, 224, 254, 493, 508, 542, 638, 708, 734, 958, 978, 1012, 1049], "mode": [29, 30, 52, 254, 516, 612, 615, 630, 638, 734, 986, 1049, 1056], "new": [29, 30, 31, 112, 130, 133, 142, 163, 164, 183, 184, 191, 192, 211, 222, 224, 225, 231, 254, 263, 318, 365, 382, 438, 524, 525, 530, 531, 543, 544, 550, 569, 638, 649, 659, 692, 705, 708, 712, 718, 734, 740, 790, 794, 844, 930, 941, 994, 995, 1000, 1001, 1013, 1015, 1021, 1027, 1049, 1056], "alreadi": [29, 30, 254, 309, 410, 638, 784, 893, 1049], "adbc": [29, 103, 254], "deltalak": [30, 104, 113, 118, 254], "deltat": [30, 254], "ignor": [30, 123, 124, 126, 177, 209, 254, 312, 344, 360, 361, 362, 408, 458, 459, 638, 787, 824, 840, 841, 842, 891, 928, 929, 1049], "overwrite_schema": [30, 254], "storage_opt": [30, 101, 104, 106, 110, 113, 114, 116, 254], "delta_write_opt": [30, 254], "delta": [30, 40, 104, 113, 208, 228, 254, 488, 490, 507, 560, 579, 616, 617, 620, 628, 638, 649, 702, 710, 734, 953, 955, 976, 1038, 1049], "like": [30, 91, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 166, 168, 172, 217, 254, 316, 410, 451, 473, 515, 587, 588, 622, 626, 627, 638, 663, 691, 734, 743, 792, 893, 938, 985, 1049], "categor": [30, 58, 75, 172, 215, 216, 254, 294, 295, 439, 553, 638, 737, 767, 768, 769, 785, 936, 1032, 1049], "protocol": [30, 91, 103, 132, 254], "object": [30, 31, 32, 35, 57, 74, 91, 92, 97, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 113, 122, 124, 126, 132, 157, 158, 159, 174, 197, 217, 218, 254, 587, 588, 603, 626, 627, 649, 670, 671, 691, 734, 737, 767, 791, 883, 977, 1025, 1049], "handl": [30, 74, 97, 101, 102, 112, 117, 254, 312, 408, 542, 638, 787, 891, 1012, 1049], "throw": [30, 91, 254, 293, 517, 518, 638, 766, 987, 988, 1049], "add": [30, 31, 102, 133, 146, 158, 231, 232, 254, 468, 546, 590, 594, 629, 638, 670, 675, 712, 713, 714, 734, 743, 845, 1049], "anyth": [30, 195, 254, 292, 516, 638, 986], "updat": [30, 254, 734], "extra": [30, 35, 48, 101, 104, 105, 106, 110, 113, 114, 116, 146, 158, 254, 670, 734, 743, 845, 1049], "storag": [30, 101, 104, 106, 110, 113, 114, 116, 254], "backend": [30, 103, 104, 113, 254], "cloud": [30, 104, 113, 117, 254], "configur": [30, 104, 113, 254], "authent": [30, 104, 113, 254], "see": [30, 31, 38, 103, 104, 105, 113, 119, 120, 124, 126, 138, 172, 186, 254, 298, 299, 300, 368, 396, 437, 502, 509, 515, 516, 524, 587, 588, 614, 638, 737, 774, 775, 776, 880, 972, 979, 985, 986, 994, 1049, 1057], "here": [30, 31, 90, 92, 93, 94, 96, 103, 104, 108, 109, 113, 122, 124, 126, 254, 518, 734, 988], "gc": [30, 104, 113, 254], "azur": [30, 104, 113, 254], "keyword": [30, 55, 104, 110, 113, 138, 186, 195, 200, 231, 234, 254, 466, 618, 621, 638, 688, 695, 712, 716, 734, 1049], "argument": [30, 35, 101, 104, 110, 113, 138, 140, 145, 157, 158, 159, 177, 185, 186, 187, 200, 201, 207, 209, 218, 224, 227, 231, 234, 254, 345, 352, 363, 383, 464, 466, 482, 483, 484, 485, 486, 488, 489, 490, 505, 521, 527, 533, 563, 565, 570, 571, 572, 575, 576, 577, 578, 584, 587, 592, 605, 609, 615, 618, 621, 622, 626, 638, 658, 662, 669, 670, 671, 688, 695, 696, 701, 708, 712, 716, 734, 743, 825, 832, 860, 991, 997, 1003, 1031, 1049], "while": [30, 102, 104, 105, 113, 124, 126, 170, 179, 222, 254, 684, 734], "lake": [30, 104, 113, 254, 649], "instanti": [30, 31, 200, 231, 254, 695, 712, 734], "basic": [30, 31, 254, 1057], "filesystem": [30, 104, 113, 254], "table_path": [30, 104, 113, 254], "doe": [30, 67, 74, 84, 90, 92, 93, 94, 96, 97, 101, 102, 104, 105, 108, 109, 112, 113, 117, 119, 120, 146, 171, 172, 195, 196, 197, 223, 231, 254, 292, 355, 429, 439, 557, 587, 593, 602, 638, 663, 675, 680, 707, 712, 734, 743, 835, 845, 853, 919, 967, 1039, 1049], "match": [30, 31, 38, 74, 84, 90, 92, 93, 94, 96, 108, 109, 119, 120, 148, 173, 195, 254, 445, 487, 509, 510, 513, 515, 516, 517, 518, 524, 525, 532, 534, 535, 536, 576, 638, 665, 676, 734, 737, 869, 876, 952, 979, 980, 983, 985, 986, 987, 988, 994, 995, 1002, 1004, 1005, 1006, 1049], "version": [30, 72, 104, 113, 118, 254, 292, 337, 338, 534, 536, 569, 587, 614, 615, 626, 638, 743, 817, 818, 1004, 1006, 1049], "old": [30, 191, 254, 692, 734], "existing_table_path": [30, 254], "store": [30, 101, 110, 146, 170, 196, 254, 294, 743, 768, 845, 1049], "bucket": [30, 104, 113, 254, 345, 352, 825, 832, 856, 1049], "prefix": [30, 130, 254, 263, 290, 438, 532, 542, 546, 638, 737, 764, 1002, 1012], "aws_region": [30, 113, 254], "the_aws_region": [30, 254], "aws_access_key_id": [30, 104, 113, 254], "the_aws_access_key_id": [30, 104, 113, 254], "aws_secret_access_kei": [30, 104, 113, 254], "the_aws_secret_access_kei": [30, 104, 113, 254], "workbook": [31, 254], "worksheet": [31, 254], "posit": [31, 140, 145, 157, 185, 200, 201, 207, 224, 231, 234, 254, 360, 361, 362, 363, 464, 470, 505, 523, 563, 565, 570, 571, 572, 575, 576, 577, 578, 584, 592, 605, 609, 618, 621, 622, 638, 658, 662, 669, 695, 696, 701, 708, 712, 716, 734, 840, 841, 842, 936, 993, 1049], "tupl": [31, 103, 133, 170, 195, 196, 197, 202, 233, 254, 477, 638, 689, 699, 734, 737, 942, 1049], "a1": [31, 68, 70, 254], "table_styl": [31, 254], "column_format": [31, 254], "dtype_format": [31, 254], "oneormoredatatyp": [31, 122, 254, 876, 1049], "conditional_format": [31, 254], "conditionalformatdict": [31, 254], "column_tot": [31, 254], "columntotalsdefinit": [31, 254], "column_width": [31, 254], "row_tot": [31, 254], "rowtotalsdefinit": [31, 254], "row_height": [31, 254], "sparklin": [31, 254], "sequenc": [31, 59, 67, 73, 90, 92, 93, 94, 96, 101, 102, 108, 109, 112, 122, 123, 124, 134, 139, 145, 146, 172, 173, 179, 183, 186, 187, 197, 207, 215, 221, 223, 224, 225, 226, 227, 254, 387, 429, 437, 466, 505, 544, 567, 572, 582, 583, 594, 596, 604, 614, 619, 638, 652, 662, 675, 676, 688, 701, 706, 707, 708, 709, 734, 743, 786, 788, 845, 912, 961, 1015, 1049], "formula": [31, 254, 357, 638, 838, 1049], "autofilt": [31, 254], "autofit": [31, 254], "hidden_column": [31, 254], "hide_gridlin": [31, 254], "sheet_zoom": [31, 254], "freeze_pan": [31, 254], "excel": [31, 105, 254, 649], "open": [31, 101, 102, 105, 106, 110, 114, 116, 254], "xlsxwriter": [31, 118, 254], "ha": [31, 67, 112, 132, 158, 159, 227, 254, 268, 291, 309, 448, 482, 483, 484, 485, 486, 488, 489, 490, 554, 567, 569, 638, 670, 671, 718, 734, 765, 773, 784, 786, 853, 866, 1033, 1049], "close": [31, 158, 159, 254, 383, 434, 482, 483, 484, 485, 486, 488, 489, 490, 502, 587, 588, 626, 627, 638, 670, 671, 734, 860, 972, 1049], "xlsx": [31, 105, 254], "work": [31, 39, 102, 105, 192, 254, 268, 284, 297, 298, 299, 300, 363, 372, 410, 431, 464, 480, 522, 556, 638, 759, 771, 774, 775, 776, 851, 893, 914, 992, 1034, 1049], "directori": [31, 110, 254], "sheet1": [31, 254], "valid": [31, 38, 52, 106, 110, 126, 130, 144, 172, 254, 309, 509, 510, 515, 516, 518, 524, 525, 587, 588, 638, 675, 734, 737, 784, 839, 853, 979, 980, 985, 986, 988, 994, 995, 1049], "notat": [31, 254], "integ": [31, 43, 44, 45, 46, 61, 62, 63, 64, 122, 124, 125, 127, 158, 159, 254, 265, 297, 346, 372, 373, 463, 470, 475, 482, 483, 484, 485, 486, 487, 488, 489, 490, 523, 562, 569, 596, 600, 601, 615, 638, 670, 671, 734, 737, 771, 826, 851, 869, 936, 940, 952, 961, 993, 1049, 1056, 1057], "medium": [31, 254], "kei": [31, 67, 72, 74, 158, 170, 172, 173, 180, 185, 187, 191, 194, 196, 197, 254, 621, 670, 675, 676, 685, 692, 693, 734], "follow": [31, 72, 101, 102, 104, 112, 113, 133, 158, 159, 173, 186, 227, 254, 268, 341, 345, 352, 466, 473, 482, 483, 484, 485, 486, 487, 488, 489, 490, 544, 555, 567, 587, 629, 631, 632, 634, 638, 639, 640, 644, 645, 646, 670, 671, 676, 688, 734, 821, 825, 832, 938, 960, 961, 1041, 1043, 1045, 1049, 1050, 1053, 1054, 1055, 1057], "first_column": [31, 254], "last_column": [31, 254], "banded_column": [31, 254], "banded_row": [31, 254], "sheet": [31, 105, 254], "chart": [31, 254, 689, 734], "subsequ": [31, 57, 190, 218, 254, 429, 629, 661, 734], "colnam": [31, 112, 124, 143, 254, 660, 734], "given": [31, 52, 53, 67, 90, 92, 93, 94, 96, 101, 102, 108, 109, 112, 121, 122, 124, 125, 126, 127, 133, 134, 144, 145, 147, 158, 159, 169, 185, 186, 195, 197, 203, 204, 207, 221, 226, 254, 268, 310, 316, 319, 348, 350, 351, 357, 383, 406, 423, 429, 432, 464, 466, 470, 473, 476, 477, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 493, 495, 496, 516, 534, 536, 544, 567, 592, 604, 615, 616, 617, 638, 652, 662, 670, 671, 680, 688, 697, 698, 701, 706, 709, 718, 734, 737, 744, 785, 792, 795, 828, 830, 831, 838, 839, 856, 860, 879, 889, 906, 912, 915, 918, 930, 936, 938, 942, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 958, 964, 965, 986, 1004, 1006, 1036, 1040, 1049, 1056, 1057], "dd": [31, 254], "mm": [31, 254], "yyyi": [31, 254], "00": [31, 124, 158, 173, 227, 254, 316, 317, 319, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 482, 483, 485, 488, 489, 490, 534, 536, 539, 587, 590, 626, 627, 638, 670, 676, 734, 737, 792, 793, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 835, 836, 1004, 1006, 1009], "overridden": [31, 90, 92, 94, 96, 108, 109, 128, 254, 734], "basi": [31, 124, 254], "param": [31, 90, 92, 93, 94, 96, 101, 102, 108, 109, 112, 123, 124, 126, 195, 254, 734], "It": [31, 180, 186, 236, 254, 268, 447, 480, 587, 588, 638, 680, 685, 718, 734, 960, 961, 1049], "also": [31, 57, 93, 112, 122, 123, 124, 125, 126, 130, 143, 157, 158, 159, 180, 183, 196, 200, 207, 231, 254, 305, 308, 344, 383, 473, 482, 483, 484, 485, 486, 488, 489, 490, 505, 527, 533, 582, 583, 587, 594, 596, 614, 629, 637, 638, 643, 669, 670, 671, 685, 695, 701, 712, 713, 734, 737, 824, 860, 938, 1003, 1049], "group": [31, 35, 48, 52, 102, 157, 158, 159, 171, 183, 185, 187, 197, 225, 227, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 262, 268, 365, 371, 410, 464, 470, 473, 480, 504, 505, 509, 515, 516, 524, 549, 567, 638, 669, 670, 671, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 893, 945, 979, 985, 986, 994, 1049], "float_dtyp": [31, 254], "simplifi": [31, 47, 48, 73, 254, 656, 661, 663, 689, 699, 734], "uniform": [31, 254], "condit": [31, 142, 149, 195, 254, 513, 532, 573, 594, 629, 659, 666, 734], "suppli": [31, 90, 92, 93, 94, 96, 108, 109, 195, 254, 466, 638, 734], "typenam": [31, 254], "3_color_scal": [31, 254], "data_bar": [31, 254], "make": [31, 59, 74, 90, 95, 101, 102, 106, 110, 114, 116, 180, 183, 190, 227, 254, 361, 362, 439, 464, 476, 492, 498, 530, 542, 638, 685, 734, 841, 842, 856, 919, 1000, 1012, 1049, 1057], "icon": [31, 254], "multipl": [31, 55, 73, 74, 101, 102, 112, 114, 115, 116, 122, 126, 134, 140, 144, 146, 149, 157, 158, 163, 171, 185, 187, 197, 200, 201, 207, 221, 231, 234, 254, 428, 444, 448, 455, 456, 464, 477, 480, 482, 483, 484, 485, 486, 488, 489, 490, 505, 563, 565, 569, 572, 576, 582, 583, 584, 594, 604, 605, 609, 614, 619, 622, 629, 638, 652, 658, 666, 669, 670, 695, 696, 701, 706, 712, 716, 718, 734, 743, 839, 845, 911, 924, 942, 1049], "singl": [31, 53, 67, 74, 101, 102, 103, 110, 112, 122, 133, 140, 141, 142, 146, 154, 169, 172, 185, 195, 197, 207, 254, 268, 341, 369, 407, 428, 437, 474, 477, 505, 508, 561, 563, 565, 567, 569, 572, 576, 577, 578, 584, 601, 604, 605, 609, 619, 622, 627, 638, 658, 659, 675, 701, 734, 743, 821, 845, 890, 911, 939, 942, 978, 1025, 1049], "across": [31, 67, 254, 563, 564, 565, 566, 584, 585, 605, 606, 609, 610, 622, 623], "effect": [31, 132, 152, 158, 217, 254, 268, 324, 587, 588, 638, 670, 714, 734, 792, 800], "heatmap": [31, 254], "min": [31, 35, 48, 139, 148, 158, 159, 187, 254, 298, 300, 306, 368, 464, 473, 485, 610, 618, 638, 665, 670, 671, 734, 774, 776, 781, 786, 848, 938, 950, 1049, 1057], "entir": [31, 254], "final": [31, 67, 116, 254, 360, 361, 362, 638, 663, 734, 840, 841, 842, 1049], "made": [31, 254, 1030, 1049], "up": [31, 59, 103, 170, 173, 196, 197, 214, 254, 268, 297, 542, 638, 675, 676, 680, 734, 737, 771, 1012, 1049], "abov": [31, 254, 629], "order": [31, 47, 48, 52, 54, 67, 73, 93, 119, 133, 134, 157, 158, 159, 185, 186, 187, 198, 201, 207, 217, 221, 223, 227, 254, 268, 278, 284, 295, 425, 431, 473, 492, 493, 494, 498, 504, 505, 544, 556, 557, 572, 638, 648, 652, 669, 670, 671, 684, 696, 701, 706, 707, 734, 744, 753, 759, 769, 785, 875, 908, 914, 936, 938, 943, 957, 958, 962, 974, 1015, 1034, 1035, 1049], "than": [31, 47, 48, 89, 94, 96, 101, 102, 112, 117, 124, 126, 133, 135, 156, 157, 170, 173, 185, 195, 196, 198, 225, 236, 254, 268, 376, 377, 398, 436, 450, 480, 492, 502, 520, 526, 531, 542, 567, 579, 587, 622, 638, 669, 676, 718, 734, 744, 945, 957, 972, 990, 996, 1001, 1012, 1049, 1057], "total": [31, 144, 254, 839, 1049], "export": [31, 170, 171, 196, 197, 214, 217, 254], "numer": [31, 173, 254, 261, 298, 299, 300, 373, 383, 434, 454, 456, 467, 476, 497, 545, 555, 638, 649, 676, 734, 737, 774, 775, 776, 786, 860, 874, 959, 966, 1030, 1049, 1057], "associ": [31, 53, 55, 67, 103, 123, 197, 254], "sum": [31, 52, 144, 152, 157, 158, 159, 169, 187, 234, 254, 268, 307, 308, 357, 369, 429, 482, 485, 489, 561, 563, 582, 584, 585, 594, 614, 623, 638, 656, 661, 663, 669, 670, 671, 687, 689, 699, 716, 734, 737, 782, 783, 838, 839, 947, 948, 950, 953, 954, 955, 1049], "must": [31, 91, 92, 104, 113, 139, 145, 158, 159, 173, 180, 195, 254, 310, 429, 437, 470, 482, 483, 484, 485, 486, 488, 489, 490, 638, 662, 670, 671, 676, 680, 685, 734, 785, 786, 936, 1049], "funcnam": [31, 254], "averag": [31, 254, 360, 361, 362, 473, 638, 840, 841, 842, 938, 1049], "count_num": [31, 254], "count": [31, 52, 101, 102, 106, 110, 112, 114, 115, 116, 139, 158, 159, 173, 183, 184, 187, 222, 226, 227, 232, 236, 245, 254, 269, 304, 341, 399, 407, 457, 462, 482, 483, 484, 485, 486, 488, 489, 490, 510, 557, 559, 568, 611, 638, 670, 671, 676, 687, 709, 714, 718, 727, 734, 786, 821, 856, 890, 926, 931, 980, 1035, 1037, 1049], "std_dev": [31, 254], "var": [31, 127, 254, 490, 638, 734, 1049], "pixel": [31, 254], "unit": [31, 38, 40, 124, 126, 144, 254, 317, 318, 325, 350, 355, 435, 448, 534, 536, 558, 587, 588, 596, 638, 689, 734, 737, 793, 794, 801, 830, 835, 839, 918, 1004, 1006, 1036, 1049, 1057], "hand": [31, 101, 102, 112, 254, 409, 415, 430, 892, 898, 913], "side": [31, 158, 159, 254, 383, 409, 415, 430, 482, 483, 484, 485, 486, 488, 489, 490, 493, 587, 588, 626, 627, 638, 670, 671, 734, 860, 892, 898, 913, 958, 1049], "call": [31, 56, 102, 124, 126, 130, 133, 157, 158, 159, 174, 253, 254, 268, 305, 308, 395, 468, 546, 605, 609, 638, 650, 669, 670, 671, 733, 734, 737, 744, 1049], "ad": [31, 93, 132, 158, 222, 231, 254, 267, 366, 582, 583, 638, 670, 712, 734, 846, 1049], "end": [31, 101, 102, 110, 112, 158, 254, 286, 289, 290, 316, 341, 345, 346, 363, 383, 424, 509, 513, 516, 528, 532, 569, 576, 587, 588, 592, 600, 601, 626, 627, 629, 638, 670, 672, 679, 689, 734, 737, 763, 792, 821, 825, 860, 907, 983, 986, 998, 1002, 1049], "wise": [31, 67, 152, 254, 270, 271, 272, 273, 274, 275, 301, 302, 364, 433, 499, 500, 501, 551, 552, 582, 583, 594, 605, 609, 614, 638, 745, 746, 747, 748, 749, 750, 778, 779, 843, 916, 917, 969, 970, 971, 1022, 1023, 1049], "particip": [31, 254], "distinct": [31, 126, 185, 254, 284, 431, 473, 590, 638, 759, 914, 938, 1049, 1057], "referenc": [31, 254, 544], "differ": [31, 101, 117, 119, 146, 158, 159, 170, 196, 197, 214, 222, 254, 312, 322, 341, 342, 344, 353, 359, 408, 439, 458, 459, 461, 492, 498, 534, 557, 587, 593, 596, 602, 638, 661, 670, 671, 734, 737, 743, 744, 787, 798, 821, 822, 824, 833, 845, 891, 928, 929, 959, 1004, 1049], "row_index": [31, 254], "height": [31, 142, 254], "provid": [31, 47, 48, 55, 101, 102, 103, 104, 112, 113, 124, 126, 169, 254, 268, 287, 288, 429, 437, 511, 512, 515, 517, 518, 596, 621, 638, 649, 734, 744, 761, 762, 856, 879, 981, 982, 985, 987, 988, 1049, 1056, 1057], "intersect": [31, 254, 737], "bodi": [31, 254], "start": [31, 100, 101, 102, 103, 106, 110, 112, 114, 115, 116, 128, 157, 158, 174, 206, 227, 232, 254, 286, 289, 290, 322, 325, 326, 328, 329, 334, 336, 342, 343, 345, 346, 350, 352, 353, 354, 356, 363, 383, 424, 482, 483, 485, 488, 489, 490, 503, 509, 513, 516, 528, 532, 569, 576, 582, 587, 588, 592, 594, 600, 601, 626, 627, 629, 638, 669, 670, 689, 700, 714, 734, 737, 764, 793, 795, 798, 801, 802, 804, 809, 811, 814, 816, 819, 822, 823, 825, 826, 830, 832, 833, 834, 835, 836, 860, 907, 973, 983, 986, 998, 1002, 1049, 1057], "zero": [31, 90, 91, 100, 101, 102, 106, 110, 123, 132, 148, 170, 195, 212, 217, 218, 254, 368, 429, 434, 493, 502, 542, 555, 638, 654, 665, 734, 773, 848, 912, 972, 1012, 1025, 1030, 1031, 1049], "unless": [31, 67, 92, 218, 254, 527, 533, 615, 734, 1003, 1031, 1039, 1049], "marker": [31, 254], "compliant": [31, 254], "case": [31, 67, 90, 92, 93, 94, 96, 108, 109, 116, 128, 133, 146, 158, 159, 170, 196, 197, 214, 254, 316, 437, 438, 447, 448, 509, 516, 524, 638, 670, 671, 734, 737, 743, 792, 845, 979, 986, 994, 1049], "three": [31, 220, 254, 429, 493, 638, 912], "avail": [31, 99, 103, 104, 113, 122, 130, 253, 254, 473, 569, 631, 632, 634, 637, 638, 639, 640, 643, 644, 645, 646, 649, 650, 663, 733, 734, 737, 938, 1041, 1043, 1045, 1049, 1050, 1053, 1054, 1055], "insert_befor": [31, 254], "insert_aft": [31, 254], "respect": [31, 254], "direct": [31, 103, 110, 116, 225, 254], "far": [31, 254], "thei": [31, 93, 112, 119, 130, 174, 197, 254, 481, 638, 737, 946, 1049], "strongli": [31, 128, 133, 195, 236, 254, 268, 638, 744, 1049], "advis": [31, 174, 254], "structur": [31, 81, 85, 87, 146, 186, 197, 217, 254, 466, 638, 688, 734, 743, 845, 1049], "wherev": [31, 133, 236, 254, 268, 638, 744, 1049], "possibl": [31, 101, 133, 134, 157, 170, 196, 221, 223, 236, 254, 268, 435, 447, 531, 558, 638, 652, 669, 701, 706, 707, 734, 744, 1001, 1049], "simpl": [31, 126, 183, 254], "colx": [31, 57, 254, 737, 1057], "coli": [31, 254, 737, 1057], "after": [31, 57, 74, 93, 100, 101, 102, 106, 110, 112, 114, 115, 116, 146, 224, 253, 254, 363, 439, 464, 473, 542, 638, 708, 734, 743, 845, 919, 938, 1012, 1049], "befor": [31, 101, 112, 128, 130, 146, 158, 173, 224, 254, 307, 308, 309, 439, 464, 465, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 542, 547, 616, 617, 638, 670, 673, 676, 708, 734, 743, 782, 783, 784, 845, 919, 932, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 1012, 1018, 1049], "most": [31, 54, 90, 101, 102, 103, 112, 254, 448, 455, 465, 531, 559, 638, 924, 932, 1001, 1037, 1049, 1056], "mandatori": [31, 254], "return_dtyp": [31, 133, 254, 268, 437, 439, 567, 604, 638, 744, 919, 1049], "latter": [31, 146, 254, 743, 845, 1049], "appropri": [31, 217, 254, 473, 638, 938, 1049], "pure": [31, 254, 1030, 1049], "actual": [31, 93, 105, 124, 126, 197, 254, 967, 1049], "indic": [31, 100, 101, 102, 106, 110, 112, 121, 122, 126, 158, 159, 173, 197, 201, 215, 227, 254, 279, 341, 345, 352, 385, 388, 389, 391, 392, 393, 428, 443, 446, 482, 483, 484, 485, 486, 488, 489, 490, 493, 499, 549, 572, 573, 638, 670, 671, 676, 696, 734, 737, 821, 825, 832, 864, 868, 870, 871, 872, 873, 911, 958, 969, 1020, 1026, 1049, 1057], "calcul": [31, 67, 158, 208, 228, 254, 312, 360, 361, 362, 396, 408, 409, 435, 487, 502, 507, 558, 560, 567, 579, 616, 617, 620, 628, 638, 670, 702, 710, 734, 787, 840, 841, 842, 880, 891, 892, 952, 972, 976, 1038, 1049], "individu": [31, 48, 124, 159, 217, 254, 268, 516, 638, 671, 734, 772, 986, 1049], "gridlin": [31, 254], "zoom": [31, 254], "level": [31, 35, 48, 112, 114, 115, 116, 124, 133, 152, 183, 254, 369, 638, 672, 679, 734], "freez": [31, 254], "pane": [31, 254], "top": [31, 134, 221, 254, 652, 706, 734], "index": [31, 91, 95, 98, 118, 132, 150, 158, 159, 164, 169, 170, 173, 187, 193, 195, 196, 206, 217, 219, 227, 232, 254, 262, 276, 277, 278, 280, 341, 403, 404, 413, 424, 428, 429, 482, 483, 484, 485, 486, 488, 489, 490, 493, 503, 515, 528, 549, 638, 670, 671, 676, 700, 714, 734, 751, 752, 753, 754, 755, 821, 879, 886, 887, 896, 907, 911, 912, 930, 958, 961, 973, 985, 998, 1020, 1049], "thu": [31, 146, 254, 579, 743, 845, 1049], "altern": [31, 254, 1030, 1049], "a2": [31, 68, 70, 254], "occur": [31, 73, 254, 407, 455, 473, 638, 656, 661, 663, 689, 699, 734, 890, 924, 938, 1049], "equival": [31, 90, 92, 93, 94, 96, 104, 108, 109, 158, 169, 183, 254, 261, 265, 358, 359, 373, 376, 377, 398, 436, 454, 456, 460, 461, 463, 467, 522, 545, 555, 562, 638, 670, 734, 879, 992, 1008, 1010, 1011, 1049], "top_row": [31, 254], "top_col": [31, 254], "base": [31, 36, 142, 149, 158, 159, 254, 316, 324, 357, 360, 361, 362, 432, 433, 470, 523, 638, 659, 666, 670, 671, 734, 737, 792, 800, 838, 840, 841, 842, 856, 915, 916, 936, 993, 1040, 1049, 1057], "scroll": [31, 254], "region": [31, 254], "initit": [31, 254], "5th": [31, 254], "definit": [31, 122, 254, 396, 638, 880, 1049], "take": [31, 124, 130, 152, 158, 180, 186, 187, 211, 217, 254, 341, 505, 550, 587, 588, 591, 593, 602, 638, 670, 685, 705, 734, 821, 1021, 1040, 1049], "care": [31, 254, 268, 494, 638, 962, 1049], "rel": [31, 103, 104, 113, 119, 120, 254, 341, 360, 361, 362, 484, 486, 488, 490, 638, 821, 840, 841, 842, 1049], "readthedoc": [31, 254], "io": [31, 254], "working_with_conditional_format": [31, 254], "html": [31, 91, 132, 138, 254], "similarli": [31, 93, 158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 821, 825, 832], "well": [31, 101, 102, 112, 145, 187, 254, 383, 587, 638, 662, 734, 860, 1049], "adjac": [31, 254], "two": [31, 57, 92, 94, 96, 103, 152, 179, 180, 187, 220, 235, 236, 254, 262, 313, 318, 429, 504, 549, 569, 570, 571, 579, 581, 616, 617, 638, 684, 685, 717, 718, 734, 788, 794, 912, 1049], "help": [31, 254, 663, 734], "appear": [31, 93, 119, 254, 557, 638, 1035, 1049], "working_with_sparklin": [31, 254], "inject": [31, 67, 254], "locat": [31, 146, 193, 219, 224, 254, 493, 638, 708, 734, 743, 845, 958, 961, 1020, 1049], "syntax": [31, 133, 183, 254, 509, 515, 516, 524, 699, 734, 979, 985, 986, 994, 1049], "ensur": [31, 75, 103, 123, 124, 126, 157, 185, 195, 254, 383, 559, 638, 669, 680, 734, 737, 1030, 1037, 1049], "correctli": [31, 254], "microsoft": [31, 118, 254], "com": [31, 103, 254, 360, 361, 362, 515, 516, 638, 840, 841, 842, 985, 986, 1049], "u": [31, 38, 40, 55, 97, 254, 317, 318, 325, 350, 355, 534, 536, 587, 588, 596, 737, 793, 794, 801, 830, 835, 1004, 1006], "offic": [31, 254], "f5ed2452": [31, 254], "2337": [31, 254], "4f71": [31, 254], "bed3": [31, 254], "c8ae6d2b276": [31, 254], "random": [31, 122, 124, 126, 160, 198, 254, 378, 473, 492, 498, 638, 854, 938, 957, 968, 1049], "date": [31, 38, 67, 101, 102, 103, 112, 117, 124, 139, 156, 158, 159, 171, 173, 227, 254, 317, 318, 319, 322, 323, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 406, 482, 483, 484, 485, 486, 488, 489, 490, 534, 535, 553, 587, 588, 596, 603, 625, 638, 670, 671, 676, 734, 737, 792, 793, 794, 795, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 876, 889, 890, 928, 929, 961, 1004, 1005, 1032, 1049], "dtm": [31, 254, 318, 794], "2023": [31, 97, 118, 171, 254, 318, 587, 603, 737, 794], "num": [31, 220, 254, 383, 386, 542, 638, 860, 1049], "500": [31, 170, 226, 254, 663, 709, 734, 809, 811, 819, 826, 947, 948, 950, 1049], "val": [31, 194, 254, 295, 466, 553, 629, 638, 693, 734, 769], "10_000": [31, 254], "20_000": [31, 254], "30_000": [31, 254], "increas": [31, 67, 101, 110, 254, 309, 638, 784, 1049], "b4": [31, 254], "light": [31, 254], "twice": [31, 105, 254], "each": [31, 67, 102, 115, 119, 120, 122, 133, 156, 157, 158, 159, 171, 173, 185, 218, 224, 227, 233, 234, 236, 237, 239, 248, 254, 268, 310, 341, 345, 352, 414, 427, 434, 470, 473, 480, 484, 486, 488, 490, 505, 516, 530, 531, 567, 569, 572, 578, 587, 600, 601, 621, 638, 670, 671, 676, 689, 708, 716, 718, 719, 721, 730, 734, 772, 785, 821, 825, 832, 897, 910, 936, 938, 945, 986, 1000, 1001, 1017, 1049, 1057], "titl": [31, 52, 254], "explicit": [31, 112, 122, 254, 614], "integr": [31, 254, 1057], "multi_fram": [31, 254], "wb": [31, 254], "coordin": [31, 254], "advanc": [31, 254, 429, 912, 1057], "min_color": [31, 254], "76933c": [31, 254], "mid_color": [31, 254], "c4d79b": [31, 254], "max_color": [31, 254], "ebf1d": [31, 254], "data_bar_2010": [31, 254], "bar_color": [31, 254], "9bbb59": [31, 254], "bar_negative_color_sam": [31, 254], "bar_negative_border_color_sam": [31, 254], "000": [31, 254, 1057], "white": [31, 254], "w": [31, 54, 55, 158, 197, 254, 515, 564, 566, 670, 734, 737, 985, 997], "get_worksheet_by_nam": [31, 254], "fmt_titl": [31, 254], "add_format": [31, 254], "font_color": [31, 254], "4f6228": [31, 254], "font_siz": [31, 254], "12": [31, 67, 97, 123, 124, 158, 159, 173, 227, 254, 263, 307, 316, 318, 322, 326, 329, 336, 337, 338, 342, 343, 345, 352, 354, 356, 465, 472, 489, 497, 537, 583, 586, 587, 589, 604, 638, 670, 671, 672, 676, 679, 699, 704, 734, 737, 744, 785, 792, 794, 816, 825, 832, 956, 1007, 1049, 1057], "ital": [31, 254], "bold": [31, 254], "customis": [31, 254], "trend": [31, 254], "win_loss": [31, 254], "subtl": [31, 254], "tone": [31, 254], "hidden": [31, 254], "id": [31, 74, 222, 236, 254, 480, 524, 525, 557, 559, 638, 718, 945, 1035, 1049, 1057], "q1": [31, 254], "55": [31, 69, 254], "20": [31, 124, 146, 163, 164, 180, 186, 188, 192, 193, 254, 276, 277, 278, 312, 345, 352, 378, 382, 466, 482, 483, 485, 596, 603, 626, 638, 685, 688, 734, 737, 787, 832, 1049], "35": [31, 118, 254, 312, 638, 787, 1049], "q2": [31, 254], "30": [31, 146, 158, 163, 186, 192, 193, 213, 231, 254, 276, 277, 278, 312, 318, 323, 329, 337, 343, 344, 345, 352, 356, 378, 497, 587, 603, 626, 638, 670, 688, 712, 734, 737, 785, 787, 794, 799, 817, 824, 825, 832, 1049, 1057], "15": [31, 118, 123, 133, 158, 159, 164, 254, 309, 312, 338, 345, 352, 466, 489, 583, 615, 626, 638, 670, 671, 734, 737, 784, 787, 825, 832, 1049], "60": [31, 146, 254, 346, 347, 489, 534, 638, 822, 826, 827, 1004], "q3": [31, 254], "40": [31, 146, 186, 254, 345, 352, 378, 537, 638, 688, 734, 805, 832, 1007], "80": [31, 254], "q4": [31, 254], "75": [31, 139, 254, 265, 463, 482, 483, 484, 485, 488, 489, 490, 638, 786, 856, 936, 1049, 1057], "account": [31, 97, 103, 254, 341, 360, 361, 362, 638, 821, 840, 841, 842, 1049], "flavour": [31, 254], "integer_dtyp": [31, 200, 254, 695, 734, 737], "0_": [31, 254], "just": [31, 112, 179, 254, 684, 734], "unifi": [31, 254, 737], "multi": [31, 101, 102, 254, 363, 515, 605, 609, 638, 985], "2_color_scal": [31, 254], "95b3d7": [31, 254], "ffffff": [31, 254], "standardis": [31, 254], "z": [31, 54, 74, 97, 122, 124, 144, 166, 168, 172, 179, 196, 197, 254, 261, 263, 265, 295, 378, 405, 438, 463, 468, 476, 516, 534, 536, 546, 564, 566, 585, 606, 610, 615, 623, 638, 675, 684, 700, 734, 737, 769, 848, 986, 1004, 1006, 1049, 1056], "score": [31, 254], "conjunct": [31, 105, 254], "a123": [31, 254], "b345": [31, 254], "c567": [31, 254], "d789": [31, 254], "e101": [31, 254], "45": [31, 159, 254, 318, 345, 352, 489, 510, 516, 570, 571, 603, 626, 638, 671, 734, 737, 794, 825, 832, 980, 986, 1057], "85": [31, 254, 1057], "font": [31, 254], "consola": [31, 254], "standard": [31, 118, 208, 217, 254, 329, 361, 488, 502, 507, 518, 620, 638, 702, 734, 805, 841, 972, 976, 988, 1049, 1057], "stdev": [31, 254], "ipccompress": [32, 254], "arrow": [32, 47, 76, 90, 103, 106, 114, 170, 196, 197, 212, 214, 254, 734, 1025, 1030, 1049], "ipc": [32, 106, 107, 114, 117, 254, 649], "binari": [32, 254, 286, 288, 289, 290, 760, 763, 764], "feather": [32, 106, 114, 254, 649], "lz4": [32, 35, 47, 48, 254, 734], "zstd": [32, 35, 47, 48, 254, 734], "pretti": [33, 254], "row_ori": [33, 254], "iobas": [33, 34, 108, 109, 254, 452, 691, 715, 734], "serial": [33, 34, 254], "represent": [33, 34, 216, 254, 295, 322, 326, 329, 330, 332, 334, 336, 339, 342, 343, 346, 353, 354, 356, 553, 638, 661, 678, 734, 769, 798, 802, 804, 805, 809, 811, 814, 816, 819, 822, 823, 826, 833, 834, 836, 1028, 1032, 1049], "orient": [33, 68, 70, 94, 96, 254, 734], "slower": [33, 94, 96, 133, 157, 185, 227, 236, 254, 268, 567, 638, 669, 718, 734, 744, 1049], "common": [33, 67, 73, 74, 254, 438, 587, 588, 638, 643, 656, 661, 663, 689, 699, 734], "write_ndjson": [33, 254], "newlin": [34, 109, 115, 254], "delimit": [34, 101, 102, 109, 112, 115, 187, 215, 254, 508, 978, 1026, 1049], "parquetcompress": [35, 254], "compression_level": [35, 48, 254, 734], "statist": [35, 48, 101, 102, 110, 116, 139, 254, 361, 362, 396, 482, 483, 484, 485, 486, 487, 488, 489, 490, 502, 638, 734, 786, 841, 842, 880, 952, 972, 1049], "row_group_s": [35, 48, 254, 734], "use_pyarrow": [35, 48, 101, 106, 110, 254, 734, 1029, 1030, 1049], "pyarrow_opt": [35, 104, 110, 113, 254], "parquet": [35, 48, 110, 111, 116, 254, 649, 734], "gzip": [35, 48, 254, 734], "lzo": [35, 48, 254, 734], "brotli": [35, 48, 254, 734], "choos": [35, 47, 48, 187, 254, 734], "good": [35, 47, 48, 170, 254, 734], "perform": [35, 47, 48, 67, 81, 91, 101, 102, 106, 110, 112, 114, 115, 116, 132, 133, 134, 157, 158, 159, 173, 190, 197, 221, 236, 254, 268, 464, 534, 535, 536, 638, 652, 670, 671, 676, 701, 706, 714, 734, 744, 1004, 1005, 1006, 1049], "fast": [35, 47, 48, 125, 127, 254, 366, 494, 638, 734, 846, 962, 1049, 1057], "decompress": [35, 47, 48, 254, 734], "backward": [35, 48, 148, 173, 254, 285, 338, 368, 638, 665, 676, 734, 818, 848, 1049], "guarante": [35, 48, 91, 101, 102, 223, 254, 663, 707, 734], "deal": [35, 48, 170, 254, 344, 352, 473, 534, 638, 734, 824, 832, 938, 1004, 1049], "older": [35, 48, 254, 734], "reader": [35, 48, 99, 101, 102, 106, 110, 254, 650, 734], "higher": [35, 48, 189, 246, 254, 471, 486, 613, 638, 690, 728, 734, 937, 951, 1049], "mean": [35, 48, 101, 102, 106, 110, 112, 139, 148, 157, 158, 159, 173, 187, 227, 234, 254, 341, 345, 352, 365, 368, 482, 483, 484, 485, 486, 488, 489, 490, 502, 515, 569, 574, 587, 638, 665, 669, 670, 671, 676, 680, 716, 734, 786, 821, 825, 832, 844, 848, 853, 948, 972, 985, 1049], "smaller": [35, 48, 144, 254, 663, 734, 839, 1049], "disk": [35, 47, 48, 106, 254, 699, 734], "11": [35, 48, 118, 124, 159, 254, 263, 314, 315, 329, 337, 338, 341, 345, 352, 382, 465, 473, 489, 503, 542, 562, 576, 622, 627, 638, 656, 671, 672, 679, 689, 704, 734, 737, 744, 821, 825, 832, 946, 1049], "22": [35, 48, 123, 254, 322, 342, 345, 352, 354, 355, 482, 483, 485, 488, 489, 490, 534, 576, 638, 734, 737, 825, 832, 835, 1004, 1057], "comput": [35, 48, 73, 74, 78, 144, 157, 173, 218, 223, 234, 246, 254, 260, 270, 271, 272, 273, 274, 275, 281, 282, 283, 296, 301, 302, 304, 305, 306, 307, 308, 313, 357, 364, 396, 409, 415, 419, 420, 421, 430, 432, 433, 434, 455, 464, 465, 469, 470, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 499, 500, 501, 502, 506, 551, 552, 563, 564, 565, 566, 570, 571, 572, 579, 581, 584, 591, 605, 609, 616, 617, 622, 638, 669, 673, 675, 676, 707, 713, 716, 728, 734, 739, 745, 746, 747, 748, 749, 750, 756, 757, 758, 770, 778, 779, 780, 781, 782, 783, 788, 838, 839, 843, 880, 892, 898, 902, 903, 904, 913, 915, 916, 917, 924, 932, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 969, 970, 971, 972, 975, 1022, 1023, 1031, 1049], "512": [35, 254, 467, 638, 932, 1049], "implement": [35, 91, 132, 133, 236, 254, 268, 395, 468, 546, 567, 638, 718, 744, 960, 961, 1049], "v": [35, 54, 55, 144, 254, 493, 638, 785, 958, 1049], "At": [35, 254], "moment": [35, 138, 254, 396, 502, 638, 880, 972, 1049], "pyarrow": [35, 90, 95, 101, 103, 104, 106, 110, 113, 117, 118, 171, 212, 217, 218, 254, 650, 1025, 1029, 1030, 1031, 1049], "write_t": [35, 254], "calendar": [37, 38, 158, 159, 173, 227, 254, 329, 341, 345, 352, 356, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 805, 821, 825, 832, 836], "time_unit": [38, 40, 97, 317, 318, 325, 350, 355, 534, 536, 587, 588, 596, 737, 793, 794, 801, 830, 835, 1004, 1006], "time_zon": [38, 97, 319, 344, 352, 536, 587, 588, 737, 792, 795, 800, 824, 832, 1006], "timezon": [38, 737], "m": [38, 40, 55, 172, 254, 316, 317, 318, 324, 325, 348, 350, 351, 355, 515, 534, 535, 536, 539, 587, 588, 596, 675, 734, 737, 792, 793, 794, 800, 801, 828, 830, 831, 835, 985, 1004, 1005, 1006, 1009], "zone": [38, 316, 319, 344, 534, 536, 587, 588, 737, 792, 795, 824, 1004, 1006], "zoneinfo": [38, 737], "run": [38, 47, 48, 73, 125, 127, 133, 157, 174, 187, 223, 236, 254, 268, 309, 410, 479, 480, 618, 638, 656, 661, 663, 669, 680, 684, 689, 699, 707, 734, 737, 744, 784, 893, 944, 945, 1049, 1056, 1057], "available_timezon": [38, 737], "check": [38, 101, 102, 112, 119, 120, 153, 158, 159, 167, 169, 172, 254, 264, 266, 286, 289, 290, 383, 387, 406, 509, 513, 532, 638, 670, 671, 675, 680, 734, 741, 742, 760, 763, 764, 861, 863, 866, 867, 869, 874, 875, 876, 878, 879, 889, 959, 979, 983, 1002, 1049], "128": [39, 69, 932, 1049], "bit": [39, 41, 42, 43, 44, 45, 46, 61, 62, 63, 64, 475, 509, 638, 940, 979, 1049], "neg": [39, 158, 159, 161, 175, 203, 204, 206, 210, 254, 423, 424, 466, 495, 496, 503, 528, 638, 670, 671, 697, 698, 700, 714, 734, 855, 882, 906, 907, 964, 965, 973, 998, 1019, 1049], "scale": [39, 144, 254, 466, 537, 638, 839, 1007, 1049], "experiment": [39, 117, 200, 225, 226, 231, 254, 309, 345, 482, 483, 484, 485, 486, 488, 489, 490, 638, 695, 709, 712, 734, 784, 825, 856, 936, 1049], "progress": 39, "expect": [39, 82, 84, 89, 268, 567, 603, 638, 678, 680, 734], "32": [41, 44, 62, 69, 159, 169, 254, 456, 497, 638, 671, 734, 788, 822, 932, 951, 1049], "sign": [43, 44, 45, 46, 341, 475, 542, 638, 821, 869, 940, 1012, 1049], "maintain_ord": [47, 48, 134, 157, 185, 187, 221, 223, 227, 235, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 254, 262, 268, 284, 431, 549, 556, 580, 638, 652, 656, 661, 663, 669, 689, 699, 701, 706, 707, 717, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729, 734, 759, 914, 1034, 1049], "type_coercion": [47, 48, 73, 656, 661, 663, 689, 699, 734], "predicate_pushdown": [47, 48, 73, 656, 661, 663, 680, 689, 699, 734], "projection_pushdown": [47, 48, 73, 656, 661, 663, 680, 689, 699, 734], "simplify_express": [47, 48, 73, 656, 661, 663, 689, 699, 734], "no_optim": [47, 48, 73, 656, 663, 680, 689, 734], "slice_pushdown": [47, 48, 73, 656, 661, 663, 680, 689, 699, 734], "persist": [47, 48, 57, 734], "larger": [47, 48, 579, 734], "ram": [47, 48, 734], "maintain": [47, 48, 134, 221, 254, 284, 431, 493, 556, 638, 652, 701, 706, 734, 759, 914, 958, 1034, 1049], "slightli": [47, 48, 734], "faster": [47, 48, 146, 217, 225, 254, 268, 481, 522, 557, 638, 734, 743, 744, 845, 946, 992, 1049], "coercion": [47, 48, 73, 476, 638, 656, 661, 663, 689, 699, 734], "optim": [47, 48, 73, 110, 112, 114, 115, 116, 170, 174, 186, 190, 196, 223, 254, 656, 661, 663, 680, 689, 699, 707, 714, 718, 734, 770, 1049], "predic": [47, 48, 73, 112, 114, 115, 116, 117, 149, 169, 195, 254, 369, 561, 594, 638, 656, 661, 663, 666, 680, 689, 692, 699, 714, 734, 849, 960, 961, 1049], "pushdown": [47, 48, 73, 656, 661, 663, 680, 689, 692, 699, 714, 734, 960, 961, 1049], "project": [47, 48, 73, 112, 114, 115, 116, 268, 504, 505, 638, 656, 661, 663, 680, 689, 692, 699, 715, 734], "turn": [47, 48, 73, 101, 102, 112, 540, 559, 638, 656, 661, 663, 680, 689, 734, 1010], "off": [47, 48, 73, 101, 102, 112, 559, 638, 656, 661, 663, 680, 689, 734], "certain": [47, 48, 80, 104, 113, 164, 227, 254, 576, 656, 689, 734, 1049], "slice": [47, 48, 68, 73, 144, 161, 171, 210, 254, 414, 427, 481, 482, 483, 484, 485, 486, 488, 489, 490, 638, 656, 661, 663, 680, 689, 699, 734, 839, 855, 897, 910, 946, 947, 948, 949, 950, 951, 953, 954, 955, 1019, 1049], "lf": [47, 48, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 669, 670, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 686, 687, 688, 689, 690, 692, 693, 694, 695, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 710, 711, 712, 713, 714, 715, 734, 1056, 1057], "scan_csv": [47, 48, 101, 102, 734], "my_larger_than_ram_fil": [47, 48, 734], "data_pagesize_limit": [48, 734], "reduc": [48, 101, 102, 110, 112, 114, 115, 116, 241, 242, 244, 247, 497, 594, 638, 723, 724, 726, 729, 734, 921, 935, 966, 1018, 1049], "pressur": [48, 110, 115, 116, 497, 638, 734, 966, 1049], "improv": [48, 106, 114, 734], "speed": [48, 268, 638, 734], "minimum": [48, 122, 123, 124, 126, 152, 181, 254, 360, 361, 362, 453, 459, 473, 609, 610, 638, 686, 734, 774, 813, 840, 841, 842, 929, 934, 938, 1049, 1057], "limit": [48, 103, 112, 148, 254, 285, 298, 299, 300, 368, 374, 638, 665, 672, 734, 774, 775, 776, 848, 1049], "page": [48, 106, 110, 114, 116, 254, 638, 649, 734, 1049], "arrai": [49, 90, 94, 101, 102, 110, 144, 212, 217, 218, 254, 281, 282, 283, 284, 298, 299, 300, 304, 305, 306, 307, 308, 405, 418, 419, 420, 421, 422, 425, 426, 433, 482, 483, 485, 489, 494, 591, 638, 734, 756, 757, 758, 759, 774, 775, 776, 780, 781, 782, 783, 788, 839, 888, 901, 902, 903, 904, 905, 908, 909, 916, 917, 947, 948, 950, 953, 954, 955, 962, 967, 1025, 1030, 1031, 1039, 1049], "integer_list": 49, "float_list": 49, "wrap": [51, 97, 383, 638], "arbitrari": [51, 124, 737], "python": [51, 101, 102, 118, 133, 170, 196, 197, 214, 236, 254, 268, 318, 437, 567, 587, 588, 626, 627, 629, 638, 643, 718, 744, 794, 806, 807, 808, 813, 1029, 1049], "queri": [52, 54, 73, 103, 106, 112, 114, 115, 116, 146, 174, 186, 254, 268, 437, 439, 518, 638, 656, 661, 663, 672, 679, 689, 699, 714, 718, 734, 743, 744, 845, 988, 1049, 1056], "eager": [52, 53, 54, 55, 56, 57, 158, 225, 254, 310, 317, 319, 322, 323, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 350, 352, 353, 354, 355, 356, 470, 482, 483, 485, 488, 489, 490, 569, 573, 587, 588, 596, 600, 601, 612, 615, 621, 626, 627, 630, 637, 638, 670, 734, 792, 793, 795, 798, 799, 800, 801, 802, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 830, 832, 833, 834, 835, 836, 1056], "pars": [52, 101, 102, 105, 109, 112, 114, 115, 134, 157, 200, 207, 221, 231, 234, 254, 383, 439, 464, 505, 517, 523, 534, 536, 537, 563, 564, 565, 566, 572, 575, 577, 578, 584, 585, 596, 605, 606, 609, 610, 618, 619, 621, 622, 623, 629, 638, 652, 669, 695, 701, 706, 712, 716, 734, 860, 987, 993, 1004, 1006, 1007, 1049], "against": [52, 410, 734, 893, 1056, 1057], "eagerli": [52, 429], "unset": [52, 123, 344, 429, 824], "init": [52, 130], "eager_execut": [52, 1056], "itself": [52, 122, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 616, 617, 638, 678, 734, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 1049, 1056], "alwai": [52, 101, 123, 133, 157, 236, 254, 447, 534, 587, 629, 680, 734, 743, 744, 1004, 1049, 1056, 1057], "impact": [52, 158, 254, 670, 734, 1056], "declar": [52, 90, 92, 93, 94, 96, 108, 109, 254, 734], "godfath": 52, "1972": 52, "6_000_000": 52, "134_821_952": 52, "dark": 52, "knight": 52, "2008": 52, "185_000_000": 52, "533_316_061": 52, "schindler": 52, "1993": 52, "22_000_000": 52, "96_067_179": 52, "pulp": 52, "fiction": 52, "1994": 52, "8_000_000": 52, "107_930_000": 52, "shawshank": 52, "redempt": 52, "25_000_000": 52, "28_341_469": 52, "release_year": 52, "budget": 52, "gross": 52, "imdb_scor": 52, "ctx": [52, 53, 54, 55, 56, 57], "film": 52, "1990": 52, "BY": [52, 54], "desc": [52, 54], "AS": [52, 619, 1056], "decad": 52, "total_gross": 52, "n_film": 52, "2000": [52, 328, 330, 337, 338, 341, 737, 804, 817, 818, 821], "533316061": 52, "232338648": 52, "1970": [52, 117], "134821952": 52, "register_glob": [53, 55, 57, 1056], "register_mani": [53, 54, 57], "unregist": [53, 54, 55, 1056], "frame_data": [53, 56], "execut": [53, 54, 56, 74, 174, 254, 410, 653, 680, 689, 734, 893, 1056], "collect": [53, 54, 57, 70, 73, 112, 113, 117, 124, 126, 140, 142, 174, 212, 254, 268, 387, 577, 596, 621, 638, 652, 658, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 690, 692, 693, 695, 697, 698, 700, 701, 702, 703, 704, 705, 706, 707, 708, 710, 712, 713, 714, 716, 717, 718, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729, 734, 737, 867, 1049, 1056, 1057], "global": [54, 58, 75, 124, 129, 217, 254, 439, 638, 1056], "scope": [54, 57, 130, 648, 737, 1056], "automat": [54, 57, 90, 92, 93, 94, 96, 97, 101, 102, 103, 108, 109, 112, 124, 126, 128, 200, 231, 254, 292, 439, 521, 527, 533, 638, 695, 712, 734, 919, 991, 997, 1003, 1049, 1056], "map": [54, 55, 92, 93, 101, 102, 106, 107, 110, 111, 112, 114, 133, 143, 151, 170, 191, 195, 196, 197, 213, 254, 345, 352, 438, 439, 464, 480, 559, 567, 638, 660, 692, 734, 786, 825, 832, 919, 945, 1049, 1056], "recent": [54, 465, 638, 932, 1049, 1056], "df1": [54, 56, 57, 58, 67, 74, 75, 119, 146, 153, 180, 218, 229, 254, 685, 734], "x": [54, 55, 67, 74, 97, 101, 102, 103, 112, 122, 124, 144, 163, 166, 168, 172, 179, 187, 196, 197, 254, 261, 263, 264, 265, 266, 268, 310, 311, 358, 359, 373, 376, 377, 378, 398, 405, 416, 434, 436, 437, 438, 454, 456, 460, 461, 463, 467, 468, 470, 476, 480, 499, 502, 530, 545, 546, 553, 555, 562, 564, 566, 567, 570, 571, 582, 583, 585, 594, 603, 604, 606, 610, 614, 623, 638, 675, 680, 684, 700, 734, 737, 744, 848, 878, 969, 972, 1000, 1032, 1049, 1056], "df2": [54, 56, 57, 58, 67, 74, 75, 119, 146, 153, 218, 229, 254], "t": [54, 55, 74, 105, 112, 133, 158, 186, 223, 225, 254, 268, 292, 309, 316, 324, 344, 357, 360, 361, 362, 410, 464, 466, 470, 515, 521, 534, 536, 567, 629, 638, 670, 688, 707, 734, 737, 744, 784, 824, 838, 840, 841, 842, 893, 936, 959, 985, 991, 997, 1004, 1006, 1030, 1039, 1049], "join": [54, 58, 67, 73, 74, 75, 173, 226, 254, 382, 464, 638, 656, 661, 663, 676, 689, 699, 709, 713, 734], "named_fram": [55, 1056], "lf1": [55, 57], "o": [55, 106, 114, 291, 309, 514, 554, 638, 765, 784, 984, 1003, 1033, 1049], "lf2": [55, 57, 734], "p": [55, 69, 186, 254, 466, 621, 638, 688, 734], "q": [55, 197, 254, 310, 470, 621, 638, 936, 1049], "r": [55, 466, 510, 514, 515, 516, 524, 638, 737, 980, 984, 985, 986, 994], "lf3": [55, 734], "lf4": [55, 734], "either": [55, 124, 159, 169, 174, 177, 185, 195, 209, 217, 254, 470, 534, 563, 572, 621, 638, 671, 678, 734, 737, 936, 1004, 1049], "tbl1": [55, 57], "tbl2": [55, 57], "tbl3": 55, "tbl4": 55, "statement": [56, 629], "hello_world": 56, "baz": [56, 164, 165, 187, 224, 254, 529, 531, 674, 708, 734, 737, 1001], "hello_data": 56, "foo_bar": [56, 603], "registr": [57, 649], "lifetim": [57, 130, 648], "context": [57, 58, 128, 183, 237, 254, 262, 268, 303, 369, 410, 447, 504, 505, 559, 567, 580, 593, 596, 602, 615, 618, 637, 638, 648, 649, 713, 719, 734, 893, 1056], "manag": [57, 58, 648, 649, 1056], "often": [57, 130, 158, 159, 254, 407, 476, 638, 670, 671, 734, 890], "want": [57, 93, 133, 146, 183, 254, 268, 298, 299, 300, 352, 369, 437, 439, 480, 482, 483, 484, 485, 486, 488, 489, 490, 582, 594, 612, 615, 630, 638, 656, 672, 679, 734, 737, 743, 744, 774, 775, 776, 832, 845, 945, 1030, 1049], "df0": [57, 180, 254, 685, 734], "exit": [57, 58, 130, 1056], "construct": [57, 90, 92, 93, 94, 95, 96, 254, 375, 439, 612, 615, 630, 638, 668, 691, 734, 1049], "through": [57, 737, 1049], "tbl0": 57, "remain": [57, 101, 102, 112, 144, 254, 530, 531, 569, 680, 734, 839, 1000, 1001, 1049], "text": [57, 522, 524, 525, 619, 992, 1057], "misc": 57, "testing1234": 57, "test1": 57, "test2": 57, "test3": 57, "temporarili": [58, 128, 130, 158, 159, 254, 670, 671, 734], "cach": [58, 73, 75, 106, 112, 114, 116, 129, 439, 482, 483, 484, 485, 486, 488, 489, 490, 534, 535, 536, 539, 638, 648, 656, 661, 663, 689, 699, 734, 1004, 1005, 1006, 1009], "categori": [58, 75, 215, 254, 294, 295, 310, 470, 638, 768, 769, 785, 856, 936, 1049], "until": [58, 174, 254, 587], "finish": [58, 78, 146, 254, 743, 845, 1049], "invalid": [58, 101, 102, 112, 517, 518, 523, 555, 587, 588, 638, 987, 988, 993], "outermost": 58, "color": [58, 75, 236, 286, 288, 289, 290, 718], "red": [58, 75, 236, 718], "green": [58, 75, 236, 718], "blue": [58, 75, 286, 288, 289, 290], "orang": [58, 75, 137, 237, 238, 240, 241, 242, 244, 246, 247, 254, 719, 720, 722, 723, 724, 726, 728, 729], "uint8": [58, 75, 121, 123, 216, 217, 254, 307, 308, 439, 547, 562, 638, 737, 782, 783, 1018, 1049, 1057], "yellow": [58, 75, 286, 288, 289, 290], "black": [58, 75, 133, 254, 286, 288, 289, 290], "succe": [58, 101, 102, 112], "df_join": [58, 75], "cat": [58, 75, 216, 254, 310, 470, 509, 538, 541, 553, 578, 634, 638, 737, 785, 856, 936, 979, 1008, 1011, 1045, 1049], "u8": [58, 75, 215, 216, 254, 439, 562, 638, 737, 1026, 1049, 1057], "composit": [59, 123, 1057], "schemadict": [59, 90, 92, 93, 94, 95, 96, 112, 199, 254, 621, 680, 694, 718, 734], "struct_seri": [59, 718], "dai": [60, 158, 159, 171, 173, 227, 254, 325, 329, 336, 337, 338, 341, 342, 343, 345, 350, 352, 353, 354, 356, 482, 483, 484, 485, 486, 488, 489, 490, 586, 587, 589, 590, 638, 670, 671, 676, 734, 737, 817, 818, 821, 822, 825, 832, 834], "unsign": [61, 62, 63, 64, 475, 638, 869, 940, 1049], "could": [65, 78, 142, 158, 254, 293, 582, 594, 638, 659, 670, 734, 766, 1049], "static": [65, 718], "utf": 66, "frametyp": [67, 1056], "joinstrategi": [67, 172, 254, 675, 734], "outer": [67, 74, 172, 254, 675, 734], "descend": [67, 134, 201, 207, 221, 254, 278, 425, 473, 494, 504, 505, 572, 638, 652, 696, 701, 706, 734, 753, 875, 908, 938, 962, 974, 1049], "fill": [67, 74, 135, 147, 148, 204, 225, 254, 285, 305, 308, 367, 368, 374, 382, 482, 483, 485, 489, 496, 520, 526, 542, 595, 612, 615, 630, 638, 664, 665, 698, 713, 734, 847, 848, 859, 930, 947, 948, 950, 953, 954, 955, 965, 990, 996, 1012, 1049], "sort": [67, 68, 119, 123, 134, 158, 159, 173, 180, 186, 187, 201, 221, 227, 239, 248, 254, 278, 295, 369, 464, 494, 505, 559, 561, 572, 638, 652, 661, 670, 671, 676, 685, 688, 689, 696, 699, 706, 721, 730, 734, 737, 753, 769, 875, 962, 1034, 1037, 1049, 1057], "origin": [67, 101, 102, 223, 254, 344, 395, 439, 464, 475, 476, 477, 510, 515, 516, 518, 520, 526, 542, 570, 571, 638, 707, 734, 785, 824, 919, 936, 942, 980, 985, 986, 988, 990, 996, 1012, 1049], "In": [67, 104, 113, 116, 124, 126, 130, 133, 144, 146, 158, 159, 183, 217, 254, 268, 587, 638, 670, 671, 734, 743, 839, 845, 939, 1049], "duplic": [67, 79, 166, 172, 173, 223, 254, 263, 384, 395, 470, 638, 675, 676, 707, 734, 862, 936, 1049], "behaviour": [67, 74, 509, 515, 516, 524, 555, 638, 979, 985, 986, 994], "strategi": [67, 74, 101, 121, 122, 123, 124, 126, 148, 158, 172, 173, 182, 254, 268, 368, 429, 638, 665, 670, 675, 676, 734, 848, 912, 1049], "suitabl": [67, 74, 122, 133, 254, 268, 493, 638, 744, 958, 1049, 1057], "get": [67, 98, 107, 111, 128, 134, 137, 143, 151, 154, 155, 158, 159, 161, 162, 166, 168, 169, 175, 182, 195, 199, 202, 206, 210, 221, 230, 239, 248, 254, 262, 276, 277, 278, 280, 284, 294, 304, 305, 306, 307, 308, 325, 341, 370, 379, 384, 386, 394, 397, 400, 412, 417, 418, 431, 440, 441, 442, 447, 449, 453, 458, 459, 471, 479, 503, 507, 519, 522, 547, 548, 556, 560, 587, 593, 598, 602, 605, 606, 607, 608, 609, 610, 620, 624, 628, 638, 652, 657, 660, 667, 670, 671, 672, 677, 679, 694, 700, 704, 706, 711, 721, 730, 734, 751, 752, 753, 754, 755, 759, 768, 772, 780, 781, 782, 783, 801, 821, 852, 855, 860, 862, 865, 877, 882, 895, 900, 901, 914, 920, 922, 923, 925, 928, 929, 933, 934, 937, 944, 973, 976, 989, 992, 1019, 1025, 1026, 1034, 1038, 1039, 1049], "speedup": [67, 133, 170, 254, 268, 638, 744, 1049], "receiv": [67, 112, 133, 186, 254, 466, 638, 688, 734, 1057], "now": [67, 159, 254, 470, 534, 536, 638, 671, 734, 1004, 1006], "One": [67, 139, 183, 187, 254, 265, 463, 619, 638, 737, 786, 1049], "whose": [67, 173, 187, 254, 363, 592, 638, 676, 734], "uniqu": [67, 121, 122, 123, 126, 168, 172, 183, 197, 245, 254, 269, 280, 310, 386, 394, 457, 470, 534, 535, 536, 539, 557, 559, 568, 611, 638, 675, 727, 734, 755, 785, 786, 865, 877, 926, 936, 1004, 1005, 1006, 1009, 1035, 1037, 1049], "post": 67, "constrain": 67, "newli": 67, "boolean": [67, 134, 149, 152, 174, 207, 221, 254, 264, 265, 266, 286, 289, 290, 328, 369, 383, 385, 386, 387, 388, 389, 390, 391, 392, 393, 401, 402, 406, 463, 505, 517, 561, 562, 572, 573, 621, 629, 638, 652, 655, 666, 678, 701, 706, 734, 737, 741, 742, 754, 760, 762, 804, 849, 860, 861, 862, 864, 865, 867, 868, 870, 871, 872, 873, 877, 884, 885, 889, 933, 934, 960, 979, 1030, 1040, 1049], "know": [67, 429, 522, 992, 1030, 1039, 1049], "first": [67, 101, 102, 105, 112, 115, 123, 133, 156, 158, 161, 173, 175, 182, 186, 187, 210, 215, 216, 222, 223, 227, 239, 254, 278, 280, 309, 338, 341, 345, 379, 386, 400, 410, 413, 414, 429, 439, 466, 493, 505, 515, 517, 518, 524, 525, 575, 582, 587, 594, 598, 629, 638, 656, 670, 672, 676, 679, 688, 707, 713, 721, 734, 737, 753, 784, 786, 818, 821, 825, 855, 865, 882, 893, 896, 897, 912, 919, 958, 985, 987, 988, 994, 995, 1019, 1028, 1049, 1057], "2022": [67, 139, 156, 158, 159, 173, 227, 254, 318, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 534, 587, 588, 590, 596, 638, 670, 671, 676, 734, 737, 794, 805, 821, 825, 832, 1004], "y": [67, 74, 97, 122, 124, 144, 166, 168, 172, 179, 187, 196, 197, 254, 261, 263, 264, 265, 266, 348, 351, 358, 359, 376, 377, 398, 405, 416, 436, 438, 460, 461, 463, 468, 476, 480, 534, 535, 536, 546, 555, 562, 564, 566, 570, 571, 585, 603, 606, 610, 623, 638, 675, 684, 700, 734, 737, 828, 831, 1004, 1005, 1006], "df3": [67, 254], "set_tbl_format": 67, "09": [67, 124, 159, 254, 318, 329, 337, 338, 537, 627, 671, 734, 798, 1007], "01": [67, 124, 139, 156, 158, 159, 227, 254, 316, 317, 318, 319, 323, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 355, 356, 482, 483, 485, 488, 489, 490, 534, 535, 536, 539, 587, 588, 590, 638, 670, 671, 734, 737, 793, 794, 795, 796, 797, 798, 799, 801, 802, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 1004, 1005, 1006, 1009], "02": [67, 156, 158, 159, 173, 227, 254, 317, 318, 325, 326, 327, 334, 335, 336, 337, 338, 341, 344, 345, 346, 347, 350, 352, 353, 355, 482, 483, 484, 485, 486, 488, 489, 490, 491, 534, 535, 536, 539, 587, 588, 590, 638, 670, 671, 676, 734, 737, 793, 794, 796, 797, 801, 802, 803, 806, 807, 808, 809, 811, 813, 814, 815, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 835, 912, 1004, 1005, 1006, 1009], "03": [67, 97, 158, 159, 227, 254, 317, 318, 319, 323, 325, 327, 335, 336, 337, 338, 344, 345, 346, 347, 348, 350, 351, 352, 353, 355, 482, 483, 485, 488, 489, 490, 535, 539, 587, 588, 638, 670, 671, 734, 793, 794, 795, 798, 799, 801, 802, 803, 806, 807, 808, 809, 811, 813, 815, 816, 817, 818, 819, 822, 823, 824, 825, 826, 827, 828, 830, 831, 833, 834, 835, 1005, 1009], "af1": 67, "af2": 67, "af3": 67, "keep": [67, 101, 102, 112, 223, 226, 227, 254, 395, 439, 575, 638, 707, 709, 734, 919, 1049], "easili": [67, 200, 231, 234, 254, 576, 621, 695, 712, 716, 734], "dot": [67, 638, 699, 734, 1049], "product": [67, 138, 254, 307, 313, 567, 638, 782, 788, 1049], "fill_nul": [67, 147, 254, 638, 664, 713, 734, 1049], "sum_horizont": [67, 622], "167": 67, "47": 67, "callabl": [68, 69, 70, 71, 112, 133, 152, 186, 236, 254, 268, 429, 437, 438, 466, 481, 567, 582, 583, 594, 604, 614, 638, 680, 688, 718, 734, 744, 912, 946, 1049], "decor": [68, 69, 70, 71, 124, 126, 133, 254, 268, 638, 648, 649, 744, 1049], "under": [68, 69, 70, 71, 631, 632, 634, 639, 640, 644, 645, 646, 1041, 1043, 1045, 1050, 1053, 1054, 1055], "access": [68, 69, 70, 71, 170, 195, 196, 254, 439, 638, 713, 734, 1057], "by_first_letter_of_column_nam": 68, "f": [68, 102, 139, 156, 171, 212, 222, 225, 254, 261, 268, 429, 497, 514, 534, 536, 567, 577, 604, 638, 912, 984, 1004, 1006], "fromkei": [68, 70], "by_first_letter_of_column_valu": 68, "starts_with": [68, 286, 289, 509, 513, 737, 983], "to_seri": [68, 154, 254, 534, 573, 615, 1004], "xx": [68, 70, 123, 126, 737], "xy": [68, 70], "yy": [68, 70, 123, 126, 737], "yz": [68, 70], "b1": [68, 70], "b2": [68, 70], "pow_n": 69, "powersofn": 69, "next": [69, 158, 159, 173, 227, 254, 285, 341, 345, 352, 473, 482, 483, 484, 485, 486, 488, 489, 490, 587, 638, 670, 671, 676, 734, 821, 825, 832, 938, 1049], "ceil": [69, 638, 1049], "previou": [69, 130, 465, 468, 544, 546, 638, 743, 932, 1049], "floor": [69, 638, 1049], "nearest": [69, 173, 189, 246, 254, 297, 372, 382, 471, 486, 613, 638, 676, 690, 728, 734, 771, 851, 859, 937, 951, 1049], "24": [69, 118, 133, 144, 158, 159, 173, 227, 254, 307, 309, 322, 327, 341, 342, 345, 352, 354, 456, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 784, 803, 821, 825, 832, 879, 1049], "001": [69, 330, 331, 333, 340, 590, 810, 812, 820], "next_pow2": 69, "prev_pow2": 69, "nearest_pow2": 69, "split_by_column_dtyp": 70, "collect_al": 70, "31": [71, 124, 318, 322, 323, 336, 337, 341, 353, 534, 586, 587, 589, 596, 603, 737, 792, 794, 798, 799, 817, 821, 1004, 1057], "42": [71, 159, 160, 180, 254, 671, 685, 734, 854, 1049], "961": 71, "1764": 71, "4160": 71, "build": [72, 91, 737, 1057], "wa": 72, "compil": [72, 403, 404, 886, 887], "gate": 72, "info": [72, 104, 113, 118], "otherwis": [72, 123, 128, 133, 180, 197, 200, 236, 254, 268, 287, 298, 299, 300, 344, 352, 360, 361, 362, 429, 466, 475, 509, 511, 563, 565, 567, 584, 605, 609, 622, 629, 638, 685, 695, 718, 734, 744, 761, 774, 775, 776, 824, 832, 840, 841, 842, 912, 940, 960, 961, 979, 981, 1049], "depend": [72, 118, 268, 403, 404, 447, 470, 473, 567, 593, 596, 602, 638, 886, 887, 936, 938, 1049, 1057], "host": [72, 101, 106, 110, 114, 116], "git": 72, "lazy_fram": 73, "comm_subplan_elim": [73, 656, 661, 663, 689, 699, 734], "comm_subexpr_elim": [73, 292, 638, 656, 661, 663, 689, 699, 734], "graph": [73, 174, 254, 673, 713, 734], "parallel": [73, 74, 99, 103, 110, 116, 158, 173, 174, 186, 254, 309, 410, 638, 649, 670, 675, 676, 718, 734, 784, 893, 1049], "threadpool": [73, 128], "Will": [73, 656, 661, 663, 689, 699, 734, 1049], "try": [73, 85, 87, 101, 102, 105, 106, 110, 112, 114, 116, 656, 661, 663, 689, 699, 734], "branch": [73, 656, 661, 663, 689, 699, 734], "subplan": [73, 656, 661, 663, 689, 699, 734], "union": [73, 74, 656, 661, 663, 689, 699, 734, 737], "subexpress": [73, 656, 661, 663, 689, 699, 734], "reus": [73, 656, 661, 663, 689, 699, 734], "part": [73, 90, 124, 516, 530, 531, 656, 661, 663, 689, 699, 713, 734, 986, 1000, 1001], "fashion": [73, 172, 254, 656, 661, 663, 689, 699, 734], "item": [74, 102, 195, 198, 254, 365, 406, 413, 416, 492, 531, 638, 844, 889, 896, 899, 957, 1001, 1049], "iter": [74, 125, 127, 134, 157, 158, 159, 170, 171, 185, 195, 196, 197, 200, 201, 207, 221, 222, 231, 233, 234, 254, 309, 363, 464, 505, 563, 564, 565, 566, 572, 575, 576, 577, 578, 584, 585, 592, 605, 606, 609, 610, 618, 621, 622, 623, 638, 652, 669, 670, 671, 695, 696, 701, 706, 712, 716, 734, 784, 1049, 1057], "polarstyp": 74, "concatmethod": 74, "vertic": [74, 146, 225, 229, 254, 508, 978], "rechunk": [74, 90, 95, 101, 102, 106, 110, 112, 114, 115, 116, 146, 254, 638, 743, 772, 845, 925, 1049], "combin": [74, 85, 87, 158, 159, 160, 173, 227, 254, 265, 279, 341, 352, 463, 521, 527, 533, 587, 638, 670, 671, 676, 699, 734, 821, 825, 832, 991, 997, 1003], "concaten": [74, 152, 186, 254, 466, 577, 578, 638, 688, 734, 772, 925, 1049], "diagon": [74, 222, 254], "vstack": [74, 146, 254], "vertical_relax": 74, "coerc": [74, 476, 638], "equal": [74, 75, 101, 102, 112, 119, 120, 134, 153, 158, 173, 180, 221, 254, 292, 358, 359, 376, 398, 429, 461, 476, 481, 482, 483, 484, 485, 486, 488, 489, 490, 519, 520, 526, 542, 616, 617, 638, 652, 670, 676, 685, 701, 706, 734, 912, 946, 947, 948, 949, 950, 951, 953, 954, 955, 959, 989, 990, 996, 1012, 1049, 1057], "supertyp": [74, 148, 254, 267, 638, 665, 734], "find": [74, 150, 254, 493, 638, 958, 1049], "miss": [74, 101, 102, 112, 147, 254, 285, 360, 361, 362, 374, 389, 391, 638, 664, 734, 840, 841, 842, 1039, 1049], "stack": [74, 163, 229, 254], "don": [74, 133, 223, 225, 254, 268, 292, 309, 410, 464, 470, 567, 638, 707, 734, 737, 744, 784, 893, 936, 959, 1039, 1049], "auto": [74, 90, 92, 93, 94, 96, 108, 109, 110, 116, 222, 254, 734, 1057], "logic": [74, 133, 236, 254, 268, 553, 567, 638, 668, 675, 691, 715, 718, 734, 744, 1032, 1049], "align_fram": 74, "pattern": [74, 101, 102, 112, 114, 115, 116, 170, 254, 445, 509, 510, 515, 516, 524, 525, 718, 737, 960, 961, 979, 980, 985, 986, 994, 995, 1049], "collis": 74, "need": [74, 97, 101, 102, 103, 105, 119, 120, 158, 159, 197, 205, 217, 254, 429, 439, 497, 519, 537, 612, 615, 630, 638, 670, 671, 734, 966, 989, 1007, 1049], "sure": [74, 90, 95, 101, 102, 106, 110, 158, 159, 190, 254, 670, 671, 734], "contigu": [74, 90, 95, 101, 102, 106, 110, 112, 114, 115, 116, 190, 254], "relev": 74, "df_h1": 74, "l1": 74, "l2": 74, "df_h2": 74, "r1": 74, "r2": 74, "r3": 74, "df_d1": 74, "df_d2": 74, "df_a1": 74, "df_a2": 74, "df_a3": 74, "disabl": [75, 129, 170, 254], "encount": [76, 158, 254, 458, 459, 517, 518, 579, 582, 594, 638, 670, 734, 928, 929, 987, 988, 1049], "least": [82, 124, 465, 559, 638, 932, 1037, 1049], "unexpect": [83, 254, 268, 437, 638, 744, 1049], "caus": [83, 91, 101, 102, 112, 132, 146, 254, 743, 845, 1049], "panic": 83, "mismatch": [85, 109], "incompat": 87, "pa": [90, 117], "chunkedarrai": [90, 182, 254, 788, 1049], "recordbatch": [90, 171, 254], "schemadefinit": [90, 92, 93, 94, 96, 108, 109, 254, 734], "schema_overrid": [90, 92, 93, 94, 95, 96, 108, 109, 171, 217, 254, 284, 734, 737, 759], "copi": [90, 91, 132, 135, 136, 171, 212, 217, 218, 231, 254, 366, 542, 638, 654, 655, 712, 734, 773, 777, 790, 846, 1012, 1025, 1030, 1031, 1049], "closest": 90, "pair": [90, 92, 93, 94, 96, 108, 109, 123, 191, 254, 692, 734, 1057], "sever": [90, 92, 93, 94, 96, 108, 109, 254, 734, 1057], "wai": [90, 92, 93, 94, 96, 108, 109, 140, 157, 171, 186, 207, 234, 254, 464, 466, 505, 515, 576, 638, 658, 669, 688, 701, 716, 718, 734, 985], "form": [90, 92, 93, 94, 96, 108, 109, 170, 196, 225, 254, 465, 638, 734, 932, 1049], "them": [90, 92, 93, 94, 96, 108, 109, 112, 146, 158, 159, 173, 180, 227, 254, 383, 416, 458, 459, 464, 577, 638, 670, 671, 676, 685, 734, 737, 743, 845, 899, 928, 929, 1049], "dimens": [90, 92, 94, 96, 108, 109, 254, 477, 638, 734, 942, 1049], "allow_copi": [91, 132], "interchang": [91, 132], "__dataframe__": 91, "convers": [91, 132, 170, 171, 196, 197, 214, 218, 254, 534, 535, 536, 539, 587, 649, 1004, 1005, 1006, 1009, 1029, 1030, 1031, 1049], "detail": [91, 103, 119, 120, 132, 254, 734, 1057], "latest": [91, 104, 113, 132, 344, 352, 374, 448, 638, 824, 832], "runtimeerror": 91, "from_panda": [91, 105], "from_arrow": 91, "effici": [91, 171, 254], "clone": [92, 93, 94, 95, 96, 135, 217, 218, 254, 654, 734, 773, 1029, 1030, 1031, 1039, 1049], "dimension": [92, 94, 96, 217, 254, 734, 1049], "infer_schema_length": [93, 96, 101, 102, 105, 112, 115, 254, 517, 734, 987], "NOT": [93, 119, 120, 446, 1056], "typic": [93, 133, 254, 324, 737, 744, 800, 1049], "clearer": 93, "load": [93, 95, 104, 113, 125, 127, 254, 649, 672, 679, 734, 1057], "_partial_": [93, 254, 734], "omit": [93, 97, 122, 124, 126, 130, 183, 197, 254, 626, 627, 737], "mani": [93, 96, 103, 146, 254, 517, 743, 845, 987, 1049], "scan": [93, 96, 101, 102, 110, 112, 113, 114, 115, 116, 117, 158, 159, 254, 663, 670, 671, 672, 679, 734], "slow": [93, 96, 101, 102, 112, 268, 309, 638, 718, 784, 1049], "partial": 93, "present": [93, 119, 124, 387, 638, 1039, 1049], "np": [94, 149, 217, 254, 549, 638, 734, 864, 868, 870, 871, 946, 1020, 1049], "ndarrai": [94, 149, 217, 254, 549, 638, 734, 788, 958, 961, 1020, 1030, 1049], "numpi": [94, 118, 138, 170, 196, 197, 214, 217, 218, 254, 458, 459, 638, 734, 864, 868, 870, 871, 928, 929, 946, 1030, 1031, 1039, 1049], "columnar": [94, 96, 170, 196, 254], "interpret": [94, 96, 101, 102, 112, 254, 734], "yield": [94, 96, 101, 102, 112, 144, 146, 222, 254, 464, 638, 734, 743, 839, 845, 1049], "conclus": [94, 96, 254, 734], "nan_to_nul": [95, 254, 734, 1049], "include_index": 95, "pd": [95, 105, 553, 638, 1031, 1032, 1049], "panda": [95, 105, 118, 158, 218, 254, 337, 338, 553, 638, 670, 734, 817, 818, 1031, 1032, 1049], "instal": [95, 101, 102, 103, 106, 110, 118, 138, 217, 218, 254, 699, 734, 1031, 1049], "nan": [95, 119, 120, 124, 132, 147, 218, 254, 314, 315, 358, 359, 367, 376, 377, 382, 389, 391, 392, 393, 398, 436, 440, 453, 458, 459, 460, 461, 555, 579, 638, 664, 734, 746, 750, 789, 847, 870, 871, 928, 929, 946, 1030, 1031, 1049, 1057], "convert": [95, 104, 105, 113, 132, 213, 214, 215, 216, 217, 220, 254, 311, 319, 348, 351, 429, 438, 472, 523, 534, 535, 536, 537, 539, 638, 734, 795, 828, 831, 912, 993, 1004, 1005, 1006, 1007, 1009, 1017, 1028, 1029, 1030, 1031, 1039, 1049], "pd_df": 95, "pd_seri": 95, "tbl": [97, 99, 102], "reconstruct": 97, "repr": [97, 124, 126], "trim": 97, "whitespac": [97, 521, 527, 533, 991, 997, 1003], "prompt": 97, "extract": [97, 320, 322, 323, 326, 327, 329, 330, 331, 332, 333, 334, 335, 336, 339, 340, 342, 343, 346, 347, 349, 353, 354, 356, 466, 516, 517, 518, 638, 796, 797, 798, 799, 802, 803, 805, 809, 810, 811, 812, 814, 815, 816, 819, 820, 822, 823, 826, 827, 829, 833, 834, 836, 986, 987, 988], "to_init_repr": [97, 254, 1049], "truncat": [97, 158, 170, 196, 197, 214, 254, 341, 670, 689, 734, 821], "identifi": [97, 179, 185, 223, 254, 684, 707, 734], "compound": [97, 197, 254, 737], "struct": [97, 183, 200, 220, 224, 231, 254, 310, 429, 439, 470, 479, 480, 517, 530, 531, 559, 582, 583, 585, 604, 638, 695, 708, 712, 718, 734, 785, 912, 936, 944, 987, 998, 1000, 1001, 1049], "neither": [97, 105, 198, 254, 429, 912], "source_ac": 97, "source_cha": 97, "ident": [97, 135, 136, 254, 348, 479, 480, 638, 654, 655, 734, 773, 777, 828, 944, 945, 1049], "timestamp": [97, 344, 596, 824], "tor_id": 97, "nnel_id": 97, "\u03bc": [97, 124, 158, 159, 170, 173, 196, 197, 214, 227, 254, 316, 317, 318, 319, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 482, 483, 485, 488, 489, 490, 534, 536, 587, 590, 596, 638, 670, 671, 676, 734, 737, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 835, 836, 1004, 1006], "asia": [97, 737, 796, 797, 829], "tokyo": [97, 737], "123456780": 97, "9876543210": 97, "56": [97, 551, 638], "59": [97, 123, 318, 334, 346, 589, 625, 626, 627, 737, 794, 814, 826], "663053": 97, "jst": [97, 737], "803065983": 97, "2055938745": 97, "38": [97, 124], "18": [97, 159, 180, 254, 308, 345, 352, 355, 382, 395, 534, 536, 569, 587, 626, 638, 671, 685, 689, 734, 737, 743, 835, 1004, 1006, 1049], "050545": 97, "source_actor_id": 97, "source_channel_id": 97, "sr": 97, "to_list": [97, 159, 254, 671, 734, 979, 1049], "datatypeclass": 98, "uint32": [98, 118, 144, 254, 278, 322, 326, 330, 332, 334, 336, 339, 342, 343, 346, 353, 354, 403, 404, 418, 476, 510, 519, 522, 549, 553, 638, 737, 754, 766, 798, 802, 809, 811, 814, 816, 819, 822, 823, 826, 833, 834, 839, 869, 886, 887, 901, 959, 980, 989, 992, 1032, 1049], "regular": [98, 170, 195, 196, 227, 254, 363, 509, 510, 515, 516, 524, 525, 576, 592, 605, 609, 622, 638, 737, 979, 980, 985, 986, 994, 995], "uint64": [98, 160, 254, 378, 403, 404, 475, 638, 854, 886, 887, 940, 1049], "bigidx": 98, "read": [99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 146, 254, 375, 437, 629, 638, 663, 668, 691, 734, 743, 845, 1049], "batch": [99, 102, 115, 680, 734], "over": [99, 101, 102, 104, 112, 124, 133, 146, 170, 171, 195, 196, 197, 222, 233, 236, 254, 268, 309, 368, 437, 438, 470, 473, 481, 482, 483, 484, 485, 486, 488, 489, 490, 567, 582, 583, 594, 604, 614, 638, 718, 737, 743, 744, 784, 845, 946, 947, 948, 950, 954, 1049], "fetch": [99, 112, 174, 254, 654, 656, 672, 679, 734], "ideal": 99, "read_csv_batch": [99, 650], "tpch": [99, 102], "tables_scale_100": [99, 102], "lineitem": [99, 102, 103], "try_parse_d": [99, 101, 102, 112], "n_row": [100, 101, 102, 106, 110, 112, 114, 115, 116, 171, 254, 663, 734], "accept": [100, 101, 102, 104, 106, 110, 134, 145, 157, 200, 207, 221, 231, 234, 254, 261, 363, 383, 439, 464, 505, 562, 563, 564, 565, 566, 572, 575, 576, 577, 578, 584, 585, 592, 605, 606, 609, 610, 618, 621, 622, 623, 629, 638, 652, 662, 669, 695, 701, 706, 712, 716, 734, 860, 1049], "stop": [100, 101, 102, 106, 110, 112, 114, 115, 116, 322, 325, 326, 328, 329, 334, 336, 342, 343, 345, 346, 350, 352, 353, 354, 356, 482, 483, 485, 488, 489, 490, 638, 793, 795, 798, 801, 802, 804, 809, 811, 814, 816, 819, 822, 823, 825, 826, 830, 832, 833, 834, 835, 836], "textio": 101, "new_column": [101, 102, 105, 112, 192, 254], "comment_char": [101, 102, 112], "quote_char": [101, 102, 112], "skip_row": [101, 102, 112], "missing_utf8_is_empty_str": [101, 102, 112], "ignore_error": [101, 102, 109, 112], "n_thread": [101, 102], "8192": 101, "csvencod": [101, 102, 112], "low_memori": [101, 102, 110, 112, 115, 116], "skip_rows_after_head": [101, 102, 112], "row_count_nam": [101, 102, 106, 110, 112, 114, 115, 116], "row_count_offset": [101, 102, 106, 110, 112, 114, 115, 116], "sample_s": [101, 102], "eol_char": [101, 102, 112], "we": [101, 102, 105, 112, 158, 159, 173, 227, 254, 268, 341, 345, 352, 410, 437, 482, 483, 484, 485, 486, 488, 489, 490, 523, 603, 629, 638, 670, 671, 676, 680, 734, 744, 821, 825, 832, 856, 893, 993, 1049], "handler": [101, 102, 105], "g": [101, 102, 104, 105, 106, 110, 113, 114, 116, 158, 159, 173, 217, 225, 227, 254, 261, 268, 310, 341, 345, 352, 363, 470, 482, 483, 484, 485, 486, 488, 489, 490, 497, 592, 638, 670, 671, 676, 692, 734, 821, 825, 832, 959, 1030, 1049], "builtin": [101, 102, 105], "stringio": [101, 102], "fsspec": [101, 102, 106, 110, 113, 114, 116, 118], "remot": [101, 102, 106, 110], "autogener": [101, 102, 112], "column_x": [101, 102, 112], "enumer": [101, 102, 112, 171, 254], "shorter": [101, 102], "comment": [101, 102, 112], "instanc": [101, 102, 112, 124, 126, 130, 146, 152, 254, 293, 448, 482, 483, 484, 485, 486, 488, 489, 490, 582, 594, 638, 680, 714, 734, 743, 766, 845, 1049], "escap": [101, 102, 112], "dure": [101, 102, 112, 130, 146, 254, 743, 845, 1049], "would": [101, 102, 112, 278, 413, 447, 473, 572, 587, 638, 737, 753, 896, 938, 1030, 1049], "prefer": [101, 102, 104, 112, 127, 133, 146, 170, 195, 196, 236, 254, 268, 481, 638, 734, 743, 744, 845, 946, 1049, 1057], "treat": [101, 102, 112, 509, 524, 525, 979, 994, 995], "10000": [101, 171, 254, 542], "might": [101, 102, 112, 128, 134, 217, 221, 254, 268, 557, 638, 652, 701, 706, 734, 1031, 1049], "issu": [101, 102, 105, 112, 307, 308, 547, 638, 782, 783, 1018, 1049], "iso8601": [101, 102, 112], "physic": [101, 102, 173, 254, 295, 553, 638, 653, 675, 676, 734, 769, 1032, 1049], "cpu": [101, 102], "system": [101, 102], "wrongli": 101, "done": [101, 102, 112, 117, 156, 173, 254, 267, 269, 293, 464, 520, 526, 568, 638, 676, 734, 766, 990, 996, 1049], "buffer": [101, 102, 144, 170, 254, 839, 1049], "modifi": [101, 102, 112, 128, 130, 146, 163, 170, 229, 254, 279, 344, 355, 509, 515, 516, 524, 638, 743, 824, 835, 845, 941, 979, 985, 986, 994, 1008, 1010, 1011, 1049], "upper": [101, 102, 144, 158, 254, 298, 299, 383, 429, 558, 569, 587, 588, 600, 601, 626, 627, 638, 670, 734, 775, 839, 860, 918, 1036, 1049], "bound": [101, 102, 144, 158, 254, 298, 299, 300, 383, 413, 428, 429, 435, 558, 569, 587, 588, 600, 601, 626, 627, 638, 670, 734, 775, 776, 839, 860, 896, 911, 918, 1036, 1049], "lossi": [101, 102, 112], "decod": [101, 102], "usag": [101, 102, 112, 124, 126, 205, 254, 737, 967, 1049], "expens": [101, 102, 110, 112, 115, 116, 125, 127, 133, 158, 159, 170, 195, 196, 197, 222, 223, 254, 268, 638, 670, 671, 707, 734, 743, 744, 845, 1049, 1057], "aggreg": [101, 102, 110, 152, 157, 158, 159, 176, 177, 178, 181, 183, 187, 188, 189, 208, 209, 225, 228, 234, 235, 238, 240, 254, 262, 369, 380, 437, 464, 481, 482, 483, 484, 485, 486, 488, 489, 490, 559, 563, 564, 565, 566, 582, 583, 584, 585, 594, 599, 605, 606, 609, 610, 614, 622, 623, 638, 670, 671, 680, 681, 682, 683, 686, 687, 690, 702, 703, 710, 716, 717, 720, 722, 734, 857, 946, 947, 948, 950, 953, 954, 955, 1049], "nativ": [101, 106, 110, 122, 133, 170, 196, 197, 214, 236, 254, 268, 567, 638, 643, 718, 744, 1049, 1057], "parser": 101, "even": [101, 466, 470, 638, 936, 1049], "regard": [101, 579], "sens": [101, 106, 110, 114, 116, 180, 227, 254, 464, 638, 685, 734], "particular": [101, 106, 110, 114, 116, 144, 254, 839, 1049], "usernam": [101, 103, 106, 110, 114, 116], "password": [101, 103, 106, 110, 114, 116], "skip": [101, 102, 105, 110, 112, 116, 225, 254, 744, 1049], "offset": [101, 102, 106, 110, 112, 114, 115, 116, 158, 159, 206, 227, 232, 254, 316, 324, 337, 338, 341, 345, 352, 424, 503, 528, 534, 536, 587, 588, 638, 670, 671, 700, 714, 734, 792, 800, 817, 818, 821, 825, 832, 907, 973, 998, 1004, 1006, 1049], "row_count": [101, 102, 106, 110, 112, 114, 115, 116], "sampl": [101, 102, 236, 254, 502, 638, 718, 972, 1049], "estim": [101, 102, 144, 254, 269, 361, 362, 396, 568, 638, 734, 839, 841, 842, 880, 1049], "alloc": [101, 102, 144, 190, 254, 839, 1049], "lazili": [101, 102, 112, 113, 114, 115, 116, 439, 638], "glob": [101, 102, 112, 114, 115, 116], "continu": [101, 110, 310, 470, 502, 638, 785, 936, 972, 1049], "benchmark": [101, 110], "50000": 102, "batchedcsvread": [102, 649], "upon": 102, "creation": 102, "gather": 102, "next_batch": 102, "big": 102, "interest": 102, "seen_group": 102, "big_fil": 102, "df_current_batch": 102, "concat": [102, 772, 925, 1049], "partition_df": 102, "partition_bi": [102, 171, 254], "as_dict": [102, 185, 254], "fh": 102, "write_csv": [102, 112, 254], "els": [102, 629], "partition_on": 103, "partition_rang": 103, "partition_num": 103, "dbreadengin": 103, "connectorx": [103, 118], "raw": 103, "driver": 103, "snowflak": 103, "warehous": 103, "role": 103, "partit": [103, 104, 110, 113, 117, 171, 185, 254], "transfer": 103, "document": [103, 105, 348, 351, 518, 534, 535, 536, 539, 828, 831, 988, 1004, 1005, 1006, 1009], "redshift": 103, "mysql": 103, "mariadb": 103, "clickhous": 103, "oracl": 103, "bigqueri": 103, "pleas": [103, 158, 254, 670, 734], "doc": [103, 138, 254], "github": 103, "sfu": 103, "connector": 103, "destin": 103, "small": [103, 123, 174, 254, 345, 663, 734, 1057], "still": 103, "develop": [103, 124, 126], "partition_col": 103, "explicitli": [103, 122, 124, 130, 439, 621, 638, 648], "test_tabl": 103, "compani": 103, "testdb": 103, "public": [103, 254, 638, 649, 734, 1049], "myrol": 103, "delta_table_opt": [104, 113], "root": [104, 113, 296, 395, 438, 449, 468, 506, 546, 637, 638, 770, 975, 1049], "absolut": [104, 113, 119, 120, 260, 360, 361, 362, 638, 739, 840, 841, 842, 1049], "sinc": [104, 113, 134, 221, 254, 292, 325, 534, 536, 569, 587, 596, 615, 626, 638, 652, 701, 706, 734, 743, 801, 1004, 1006, 1049], "avoid": [104, 196, 254, 263, 638], "year": [104, 113, 158, 159, 173, 227, 254, 328, 329, 341, 342, 345, 352, 353, 482, 483, 484, 485, 486, 488, 489, 490, 586, 587, 589, 638, 670, 671, 676, 734, 804, 805, 821, 822, 825, 832, 833], "2021": [104, 113, 139, 156, 158, 227, 254, 534, 603, 670, 734, 737, 796, 797, 805, 829, 876, 1004, 1049], "aw": [104, 113], "googl": [104, 113], "service_account": [104, 113], "service_account_json_absolute_path": [104, 113], "az": [104, 113], "adl": [104, 113], "abf": [104, 113], "azure_storage_account_nam": [104, 113], "azure_storage_account_kei": [104, 113], "without_fil": [104, 113], "track": [104, 113, 133, 254, 429, 1056], "sheet_id": 105, "sheet_nam": 105, "xlsx2csv_option": 105, "read_csv_opt": 105, "noreturn": 105, "xlsx2csv": [105, 118], "read_csv": [105, 112], "nor": [105, 198, 254], "skip_empty_lin": 105, "my": [105, 117, 540, 1010], "datasheet": 105, "correct": [105, 361, 362, 396, 487, 502, 638, 680, 734, 841, 842, 880, 952, 972, 1049], "look": [105, 286, 429, 760], "whole": [105, 504, 505, 515, 638, 718, 734, 985], "With": [105, 133, 169, 254, 268, 482, 483, 484, 485, 486, 488, 489, 490, 638, 744, 879, 1049], "1000": [105, 144, 216, 254, 330, 331, 542, 810, 1028, 1049, 1057], "spreadsheet": [105, 187, 254], "xl": 105, "xlsm": 105, "xlsb": 105, "odf": 105, "od": 105, "odt": 105, "memory_map": [106, 110, 114], "v2": [106, 114], "greatli": [106, 114], "repeat": [106, 114, 310, 470, 474, 476, 612, 630, 638], "give": [106, 110, 114, 115, 116, 179, 223, 254, 325, 396, 476, 555, 638, 649, 684, 707, 734, 801, 880, 1049], "That": [106, 680, 734], "filenam": 106, "my_fil": 106, "write_ipc": [106, 254], "read_ndjson": 108, "becaus": [109, 133, 144, 158, 174, 225, 236, 254, 410, 492, 498, 587, 638, 670, 718, 734, 744, 839, 893, 1049], "parallelstrategi": [110, 116], "use_statist": [110, 116], "awar": [110, 170, 196, 197, 214, 254, 534, 536, 1004, 1006], "stabl": [110, 134, 138, 198, 221, 254, 434, 638, 652, 684, 701, 706, 734], "row_group": [110, 116], "read_tabl": 110, "with_column_nam": 112, "push": [112, 114, 115, 116, 117], "down": [112, 114, 115, 116, 117, 372, 638, 851, 1049], "therebi": [112, 114, 115, 116], "potenti": [112, 114, 115, 116, 170, 195, 197, 254], "overhead": [112, 114, 115, 116], "realloc": [112, 114, 115, 146, 254, 743, 845, 1049], "headerless": 112, "unlik": [112, 158, 254, 670, 734], "fewer": [112, 470, 638, 936, 1049], "my_long_fil": 112, "doesn": [112, 158, 254, 292, 357, 638, 670, 734, 838, 1039, 1049], "thing": [112, 593, 602], "less": [112, 173, 254, 398, 436, 520, 526, 531, 542, 638, 676, 734, 990, 996, 1001, 1012, 1057], "breezah": 112, "languag": [112, 158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 821, 825, 832], "hard": [112, 680, 734], "mydf": 112, "lambda": [112, 133, 152, 186, 236, 254, 268, 360, 361, 362, 429, 437, 438, 481, 567, 582, 583, 594, 604, 614, 638, 680, 688, 718, 734, 744, 840, 841, 842, 912, 1049], "lower": [112, 158, 189, 246, 254, 298, 300, 383, 435, 438, 471, 475, 486, 569, 587, 588, 600, 601, 613, 626, 627, 638, 663, 670, 690, 728, 734, 776, 860, 918, 937, 940, 951, 1036, 1049], "simpli": [112, 464, 582, 594, 638], "idx": [112, 158, 171, 254, 429, 670, 734, 912, 961, 1049], "uint16": [112, 307, 308, 547, 638, 737, 782, 783, 1018, 1049], "u16": [112, 124, 1057], "eu": 113, "central": [113, 396, 502, 638, 880, 972, 1049], "allow_pyarrow_filt": 117, "comparison": 117, "dset": 117, "folder": 117, "05": [117, 119, 120, 124, 173, 227, 254, 318, 319, 323, 344, 346, 348, 351, 587, 676, 734, 737, 794, 795, 796, 797, 798, 799, 824, 825, 828, 829, 831, 832, 834], "04": [117, 158, 227, 254, 318, 319, 323, 327, 334, 335, 336, 337, 338, 344, 345, 346, 347, 348, 351, 353, 355, 534, 587, 590, 670, 734, 737, 795, 799, 803, 809, 811, 814, 815, 816, 817, 818, 819, 823, 824, 826, 827, 828, 831, 833, 834, 835, 1004], "stdout": [118, 130, 156, 254, 450], "17": [118, 124, 234, 491, 596, 615, 626, 638, 716, 778, 825, 1049, 1057], "platform": 118, "linux": 118, "90": [118, 537, 1007], "wsl2": 118, "x86_64": 118, "glibc2": 118, "main": 118, "apr": 118, "14": [118, 124, 133, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 254, 316, 329, 382, 473, 626, 638, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729, 737, 792, 825], "44": [118, 180, 254, 313, 638, 685, 734], "51": 118, "gcc": 118, "matplotlib": [118, 689, 699, 734], "check_dtyp": [119, 120], "check_exact": [119, 120], "rtol": [119, 120], "1e": [119, 120], "atol": [119, 120], "08": [119, 120, 124, 159, 254, 318, 345, 534, 587, 590, 671, 734, 737, 825, 832, 1004], "nans_compare_equ": [119, 120], "check_column_ord": 119, "check_row_ord": 119, "assertionerror": [119, 120], "compar": [119, 120, 153, 254, 358, 359, 376, 377, 398, 436, 460, 461, 638, 959, 1049], "exactli": [119, 120, 123, 124, 126, 530, 531, 967, 1000, 1001, 1049], "toler": [119, 120, 173, 254, 676, 734], "inexact": [119, 120], "assert": [119, 120, 122, 124, 126, 159, 254, 649, 671, 734, 737, 853, 1049], "irrespect": 119, "unsort": 119, "check_nam": 120, "s1": [120, 152, 254, 879, 912, 1031, 1040, 1049], "searchstrategi": [121, 123, 124, 126], "null_prob": [121, 124, 126], "percentag": [121, 124, 126, 465, 638, 932, 1049], "chanc": [121, 124, 126, 1057], "independ": [121, 122, 124, 126], "flag": [121, 254, 494, 509, 515, 516, 524, 638, 661, 680, 734, 962, 979, 985, 986, 994, 1049], "hypothesi": [121, 122, 123, 124, 125, 126, 1057], "sampled_from": [121, 1057], "unique_small_int": 121, "ccy": [121, 1057], "gbp": [121, 1057], "eur": [121, 139, 156, 254, 1057], "jpy": [121, 1057], "min_col": [122, 124], "max_col": [122, 124], "standalon": [122, 124], "mincol": 122, "assign": [122, 158, 254, 310, 429, 464, 470, 473, 530, 531, 638, 670, 734, 785, 912, 919, 936, 938, 1000, 1001, 1049], "exact": [122, 124, 126, 205, 254, 534, 535, 536, 555, 638, 1004, 1005, 1006], "especi": [122, 480, 638, 945, 1049], "test_unique_xyz": 122, "assert_someth": 122, "punctuat": 122, "test_special_char_colname_init": 122, "inner_dtyp": [123, 126], "select_from": [123, 126], "min_siz": [123, 124, 126, 1057], "max_siz": [123, 124, 126, 1057], "anoth": [123, 157, 254, 309, 317, 428, 443, 446, 638, 669, 713, 734, 784, 793, 845, 911, 959, 1049], "randomli": 123, "innermost": 123, "2x": 123, "lst": 123, "11330": 123, "24030": 123, "116": 123, "zz": [123, 126], "uint8_pair": [123, 1057], "uint": [123, 1057], "zip": [123, 1057], "131": 123, "176": 123, "149": [123, 1057], "max_data_s": [124, 126], "include_col": 124, "allow_infin": [124, 126], "allowed_dtyp": [124, 126, 1057], "excluded_dtyp": [124, 126], "describ": [124, 156, 254, 1049], "desir": [124, 429, 587, 588, 912], "n_chunk": [124, 126, 254, 743, 845, 1049], "randomis": 124, "onto": 124, "pct": 124, "preced": [124, 737], "disallow": [124, 126], "inf": [124, 126, 275, 310, 385, 388, 470, 555, 638, 750, 785, 856, 864, 868, 918, 932, 936, 1036, 1049], "exclud": [124, 126, 305, 308, 383, 576, 638, 860, 876, 1049], "deploi": [124, 126], "characterist": [124, 126], "concret": [124, 126], "test_repr": 124, "isinst": [124, 126, 254], "0x11f561580": 124, "known": [124, 429, 718, 912], "0565": 124, "34715": 124, "5844": 124, "33": [124, 180, 254, 491, 576, 638, 685, 734, 951, 1049], "076854": 124, "3382": 124, "48662": 124, "7540": 124, "29": [124, 158, 159, 173, 227, 254, 316, 337, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 792, 817, 821, 825, 832], "836271": 124, "4063": 124, "06": [124, 227, 254, 318, 329, 343, 344, 356, 737, 824, 825, 834], "39092": 124, "1889": 124, "13": [124, 135, 136, 147, 148, 155, 159, 164, 174, 182, 231, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 254, 263, 481, 537, 577, 582, 585, 594, 623, 628, 638, 654, 655, 664, 665, 671, 678, 712, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729, 734, 744, 825, 832, 833, 1007, 1049], "41": [124, 489, 638, 1057], "874455": 124, "15836": 124, "1755e": 124, "575050513": 124, "profil": [125, 127, 734], "balanc": [125, 127, 1057], "set_environ": 125, "polars_hypothesis_profil": [125, 127], "1500": 125, "constructor": 126, "normal": [126, 158, 254, 357, 396, 502, 638, 670, 734, 838, 880, 972, 1049], "test_repr_is_valid_str": 126, "experi": 126, "create_list_strategi": [126, 1057], "polars_max_thread": 128, "behind": 128, "lock": 128, "reason": 128, "pyspark": 128, "udf": [128, 133, 186, 236, 254, 268, 466, 567, 638, 688, 718, 734, 744, 1049], "similar": [128, 152, 173, 254, 348, 351, 464, 480, 629, 638, 676, 734, 828, 831, 945, 1049], "recommend": [128, 170, 186, 254, 587, 737], "initi": [130, 582, 594, 629], "whatev": 130, "were": 130, "enter": 130, "advantag": [130, 186, 254], "initialis": [130, 734, 1056], "set_": 130, "set_verbos": 130, "do_various_th": 130, "restor": 130, "cleaner": 130, "breviti": 130, "vein": 130, "durat": [130, 173, 227, 254, 316, 323, 324, 327, 331, 333, 335, 340, 347, 352, 355, 553, 587, 588, 626, 627, 638, 676, 734, 737, 792, 799, 800, 803, 810, 812, 815, 820, 827, 832, 835, 1032, 1049], "set_ascii_t": 130, "write_ascii_frame_to_stdout": 130, "sy": 130, "nan_as_nul": 132, "_pyarrowdatafram": 132, "nullabl": 132, "extens": [132, 218, 254, 1031, 1049], "propag": [132, 177, 209, 254, 359, 458, 459, 461, 638, 928, 929, 1049], "inference_s": [133, 254], "256": [133, 254, 932, 1049], "much": [133, 225, 236, 254, 268, 309, 428, 567, 638, 718, 744, 784, 911, 1049], "almost": [133, 236, 254, 534, 535, 536, 587, 744, 1004, 1005, 1006, 1049], "_significantly_": [133, 236, 254, 744, 1049], "intens": [133, 236, 254, 464, 638, 744, 1049], "forc": [133, 173, 236, 254, 675, 676, 718, 734, 744, 1049], "materi": [133, 236, 254, 689, 718, 734, 737, 744, 1049], "parallelis": [133, 236, 254, 744, 1049], "optimis": [133, 197, 236, 254, 734, 744, 960, 961, 1049], "achiev": [133, 236, 254, 268, 638, 744, 1049], "best": [133, 236, 254, 268, 638, 744, 1049], "tri": [133, 254], "arbitrarili": [133, 254], "rearrang": [133, 254], "transform": [133, 254, 437, 538, 540, 541, 638], "preserv": [133, 157, 217, 218, 254, 499, 638, 969, 1031, 1049], "lru_cach": [133, 254, 268, 638, 744, 1049], "magnitud": [133, 254, 268, 638, 744, 1049], "column_1": [133, 222, 254], "better": [133, 217, 236, 254, 268, 559, 638, 718, 960, 961, 1049], "scalar": [133, 169, 195, 254, 493, 567, 603, 638, 879, 958, 1049], "k": [134, 197, 221, 254, 291, 295, 396, 554, 638, 652, 706, 734, 765, 769, 880, 1033, 1049], "intoexpr": [134, 157, 158, 159, 200, 207, 221, 231, 234, 254, 267, 383, 407, 409, 415, 430, 464, 496, 505, 563, 564, 565, 566, 569, 572, 575, 577, 578, 582, 584, 585, 587, 588, 594, 600, 601, 605, 606, 609, 610, 615, 618, 621, 622, 623, 626, 627, 629, 638, 652, 666, 669, 670, 671, 695, 701, 706, 712, 716, 734, 860, 1049], "nulls_last": [134, 207, 221, 254, 278, 504, 638, 652, 701, 706, 734, 753, 1049], "smallest": [134, 221, 254, 291, 638, 652, 706, 734, 765, 1049], "largest": [134, 158, 159, 173, 221, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 554, 638, 652, 670, 671, 676, 706, 734, 821, 825, 832, 1033, 1049], "last": [134, 161, 173, 175, 187, 197, 207, 210, 221, 223, 248, 254, 278, 309, 322, 337, 342, 353, 395, 413, 427, 468, 504, 531, 546, 548, 587, 624, 638, 652, 676, 701, 704, 706, 707, 730, 734, 737, 753, 784, 798, 817, 822, 833, 855, 882, 896, 910, 1001, 1019, 1049], "wors": [134, 221, 254, 652, 701, 706, 734], "search": [134, 173, 221, 254, 652, 676, 701, 706, 734], "top_k": [134, 254, 291, 638, 652, 734, 765, 1049], "greater": [135, 173, 254, 376, 377, 502, 531, 638, 676, 734, 972, 1001, 1049], "cheap": [135, 136, 254, 654, 655, 734, 743, 773, 777, 1049], "deepcopi": [135, 136, 254, 654, 655, 734, 773, 777, 1049], "clear": [136, 254, 655, 734, 777, 1049], "properti": [137, 143, 151, 162, 199, 202, 230, 254, 657, 660, 694, 711, 734, 737, 1057], "appl": [137, 163, 172, 191, 193, 213, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 254, 478, 513, 532, 638, 675, 692, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729, 734, 983, 1002], "banana": [137, 213, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 254, 478, 638, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729], "pairwis": [138, 254], "pearson": [138, 254, 396, 502, 579, 638, 880, 972, 1049], "correl": [138, 254, 579, 616], "coeffici": [138, 254, 502, 638, 972, 1049], "corrcoef": [138, 254], "percentil": [139, 254, 786, 1049], "summari": [139, 254, 786, 1049], "glimps": [139, 161, 254], "usd": [139, 156, 254, 1057], "2020": [139, 156, 159, 254, 319, 323, 324, 327, 330, 331, 333, 335, 340, 344, 347, 348, 351, 352, 534, 535, 536, 671, 734, 737, 795, 799, 800, 803, 810, 812, 815, 820, 824, 827, 828, 831, 832, 1004, 1005, 1006], "null_count": [139, 142, 254, 309, 638, 734, 784, 786, 1049], "266667": [139, 254], "666667": [139, 177, 228, 242, 254, 360, 638, 710, 724, 734], "std": [139, 254, 481, 488, 638, 734, 786, 953, 1049], "101514": [139, 254], "707107": [139, 254, 361, 488, 638, 841, 1049], "57735": [139, 254], "median": [139, 187, 254, 368, 484, 638, 713, 734, 786, 949, 1049], "more_column": [140, 145, 201, 224, 254, 363, 592, 638, 658, 662, 696, 708, 734], "Or": [140, 157, 158, 159, 173, 207, 227, 234, 254, 464, 505, 576, 629, 638, 658, 669, 670, 671, 676, 701, 716, 734], "subset": [142, 183, 223, 254, 659, 707, 734], "snippet": [142, 254, 659, 734], "all_horizont": [142, 254, 563, 659, 734], "is_nul": [142, 254, 638, 659, 734, 1049], "sizeunit": [144, 254, 839, 1049], "heap": [144, 254, 839, 1049], "its": [144, 254, 318, 345, 352, 505, 638, 794, 825, 832, 839, 1049], "bitmap": [144, 254, 839, 1049], "therefor": [144, 254, 629, 839, 1049], "structarrai": [144, 254, 839, 1049], "constant": [144, 159, 254, 316, 366, 638, 671, 734, 792, 839, 846, 1049], "unchang": [144, 254, 553, 638, 680, 718, 734, 839, 1032, 1049], "capac": [144, 205, 254, 839, 967, 1049], "ffi": [144, 254, 839, 1049], "kb": [144, 254, 839, 1049], "mb": [144, 254, 839, 1049], "gb": [144, 254, 839, 1049], "tb": [144, 254, 839, 1049], "revers": [144, 254, 304, 305, 306, 307, 308, 438, 468, 546, 638, 734, 780, 781, 782, 783, 1049], "1_000_000": [144, 254, 839, 1049], "25888898": [144, 254], "689577102661133": [144, 254], "long": [145, 179, 225, 254, 662, 684, 734], "letter": [145, 239, 248, 254, 363, 516, 592, 638, 662, 721, 730, 734, 737, 986], "onlin": [146, 254, 743, 845, 1049], "rerun": [146, 254, 743, 845, 1049], "conveni": [146, 254, 743, 845, 1049], "evalu": [147, 149, 173, 254, 265, 279, 309, 381, 401, 402, 429, 439, 463, 563, 565, 569, 573, 587, 588, 591, 600, 601, 612, 615, 621, 626, 627, 629, 630, 638, 666, 673, 675, 676, 734, 754, 784, 884, 885, 1040, 1049], "Not": [147, 254, 389, 391, 439, 638, 664, 734], "To": [147, 254, 314, 315, 341, 368, 509, 515, 516, 524, 540, 622, 638, 664, 734, 821, 979, 985, 986, 994, 1010, 1030, 1049], "fillnullstrategi": [148, 254, 368, 638, 665, 734, 848, 1049], "matches_supertyp": [148, 254, 665, 734], "forward": [148, 173, 254, 337, 368, 374, 638, 665, 676, 734, 817, 848, 1049], "consecut": [148, 254, 285, 368, 374, 508, 638, 665, 734, 848, 978, 1049], "fill_nan": [148, 254, 638, 734, 1049], "OR": [149, 254, 565, 566, 666, 734, 737], "reduct": [152, 254], "supercast": [152, 254], "parent": [152, 254], "rule": [152, 254], "arithmet": [152, 254], "zip_with": [152, 254, 1049], "foo11": [152, 254], "bar22": [152, 254], "null_equ": [153, 254, 959, 1049], "retriev": [154, 254, 403, 404, 543, 886, 887, 1013], "return_as_str": [156, 254, 450], "preview": [156, 254], "wide": [156, 179, 225, 254, 684, 734], "nice": [156, 254], "few": [156, 254], "rather": [156, 173, 254, 450, 480, 542, 638, 676, 734, 945, 1012, 1049], "head": [156, 175, 210, 254, 267, 400, 638, 679, 734, 882, 1019, 1049], "tail": [156, 161, 254, 267, 502, 638, 734, 855, 972, 1049], "more_bi": [157, 185, 207, 254, 505, 638, 669, 701, 734], "consist": [157, 185, 254, 534, 669, 734, 743, 845, 1004, 1049], "regardless": [157, 254, 518, 988], "agg": [157, 158, 159, 254, 262, 268, 369, 371, 504, 505, 549, 561, 580, 638, 656, 661, 663, 669, 670, 671, 689, 699, 734, 737], "index_column": [158, 159, 254, 670, 671, 734], "timedelta": [158, 159, 227, 254, 322, 325, 326, 329, 334, 336, 341, 342, 343, 345, 346, 350, 352, 353, 354, 356, 482, 483, 484, 485, 486, 488, 489, 490, 587, 588, 626, 627, 638, 670, 671, 734, 737, 806, 808, 813, 821, 825, 832, 928, 929, 1049], "period": [158, 159, 203, 204, 254, 345, 352, 360, 361, 362, 423, 465, 495, 496, 587, 588, 626, 627, 638, 670, 671, 697, 698, 734, 825, 832, 840, 841, 842, 906, 932, 964, 965, 1049], "include_boundari": [158, 254, 670, 734], "closedinterv": [158, 159, 254, 383, 482, 483, 484, 485, 486, 488, 489, 490, 587, 588, 626, 627, 638, 670, 671, 734, 860, 1049], "start_bi": [158, 254, 670, 734], "startbi": [158, 254, 670, 734], "window": [158, 159, 254, 309, 345, 352, 360, 361, 362, 464, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 577, 616, 617, 638, 670, 671, 734, 784, 825, 832, 840, 841, 842, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 1049], "check_sort": [158, 159, 254, 670, 671, 734], "dynamicgroupbi": [158, 254], "groupbi": [158, 159, 183, 254, 262, 268, 309, 369, 371, 410, 464, 504, 505, 549, 561, 567, 580, 638, 656, 661, 663, 670, 671, 689, 699, 734, 737, 784, 893, 1049], "member": [158, 254, 670, 734, 867, 1049], "seen": [158, 254, 285, 374, 638, 670, 734], "roll": [158, 159, 254, 337, 338, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 577, 616, 617, 638, 670, 671, 734, 817, 818, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 1049], "slot": [158, 254, 309, 312, 408, 638, 670, 734, 784, 787, 891, 1049], "interv": [158, 159, 227, 254, 310, 328, 345, 346, 352, 383, 470, 482, 483, 484, 485, 486, 488, 489, 490, 587, 588, 626, 627, 638, 670, 671, 734, 785, 798, 801, 802, 804, 809, 811, 814, 816, 819, 822, 823, 825, 826, 830, 832, 833, 834, 836, 860, 936, 1049], "1n": [158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 821, 825, 832], "nanosecond": [158, 159, 173, 227, 254, 341, 345, 346, 352, 482, 483, 484, 485, 486, 488, 489, 490, 590, 638, 670, 671, 676, 734, 821, 825, 826, 832], "1u": [158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 821, 825, 832], "microsecond": [158, 159, 170, 173, 196, 197, 214, 227, 254, 341, 345, 346, 352, 482, 483, 484, 485, 486, 488, 489, 490, 589, 590, 625, 638, 670, 671, 676, 689, 734, 737, 821, 825, 832], "1m": [158, 159, 173, 227, 254, 330, 331, 333, 340, 341, 345, 347, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 810, 812, 820, 821, 825, 827, 832], "millisecond": [158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 590, 638, 670, 671, 676, 734, 737, 821, 825, 832], "minut": [158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 589, 590, 625, 626, 638, 670, 671, 676, 734, 737, 821, 825, 832], "1h": [158, 159, 173, 227, 254, 324, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 626, 627, 638, 670, 671, 676, 734, 800, 802, 821, 825, 832], "hour": [158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 587, 589, 590, 625, 626, 638, 670, 671, 676, 734, 737, 821, 825, 832], "1d": [158, 159, 173, 227, 254, 317, 327, 335, 341, 345, 352, 355, 482, 483, 484, 485, 486, 488, 489, 490, 587, 588, 603, 638, 670, 671, 676, 734, 737, 793, 801, 803, 806, 807, 808, 813, 815, 821, 825, 830, 832, 834, 835], "1w": [158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 821, 825, 832], "week": [158, 159, 173, 227, 254, 341, 345, 352, 354, 482, 483, 484, 485, 486, 488, 489, 490, 590, 638, 670, 671, 676, 734, 737, 821, 825, 832, 834], "1mo": [158, 159, 173, 227, 254, 319, 323, 337, 338, 341, 344, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 587, 588, 638, 670, 671, 676, 734, 795, 799, 816, 817, 818, 821, 822, 823, 824, 825, 832, 833], "month": [158, 159, 173, 227, 254, 322, 337, 338, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 586, 587, 588, 589, 638, 670, 671, 676, 734, 798, 817, 818, 821, 825, 832], "1q": [158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 821, 825, 832], "quarter": [158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 821, 825, 832], "1y": [158, 159, 173, 227, 254, 328, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 587, 638, 670, 671, 676, 734, 804, 821, 825, 832, 836], "1i": [158, 159, 173, 227, 254, 341, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 821], "3d12h4m25": [158, 159, 173, 227, 254, 345, 352, 670, 671, 676, 734, 825, 832], "suffix": [158, 159, 172, 173, 200, 227, 231, 234, 254, 263, 289, 341, 345, 352, 389, 391, 392, 393, 438, 464, 468, 478, 482, 483, 484, 485, 486, 488, 489, 490, 513, 638, 670, 671, 675, 676, 695, 712, 713, 716, 734, 737, 763, 821, 825, 832, 983], "_satur": [158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 587, 588, 638, 670, 671, 676, 734, 821, 825, 832], "satur": [158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 821, 825, 832], "28": [158, 159, 173, 213, 227, 254, 261, 341, 344, 345, 352, 355, 482, 483, 484, 485, 486, 488, 489, 490, 587, 638, 670, 671, 676, 734, 821, 824, 825, 832, 835, 1057], "correspond": [158, 159, 173, 217, 227, 254, 329, 341, 345, 352, 473, 480, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 805, 821, 825, 832, 938, 945, 1049], "due": [158, 159, 173, 197, 227, 254, 263, 293, 324, 341, 345, 352, 395, 468, 482, 483, 484, 485, 486, 488, 489, 490, 492, 498, 546, 638, 670, 671, 676, 734, 766, 800, 821, 825, 832, 1049], "daylight": [158, 159, 173, 227, 254, 316, 324, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 800, 821, 825, 832], "10i": [158, 159, 254, 670, 671, 734], "ascend": [158, 159, 254, 670, 671, 734], "dynam": [158, 254, 429, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 734, 912], "matter": [158, 159, 170, 196, 197, 214, 254, 670, 671, 734], "_lower_bound": [158, 254, 670, 734], "_upper_bound": [158, 254, 670, 734], "harder": [158, 254, 670, 734], "tempor": [158, 159, 170, 196, 197, 214, 254, 383, 482, 483, 484, 485, 486, 488, 489, 490, 638, 649, 670, 671, 734, 737, 860, 876, 1049], "inclus": [158, 159, 254, 383, 482, 483, 484, 485, 486, 488, 489, 490, 529, 530, 569, 587, 588, 600, 601, 626, 627, 638, 670, 671, 734, 860, 999, 1000, 1049], "datapoint": [158, 254, 670, 734], "mondai": [158, 254, 352, 354, 670, 734, 832, 834], "tuesdai": [158, 254, 670, 734], "wednesdai": [158, 254, 670, 734], "thursdai": [158, 254, 670, 734], "fridai": [158, 254, 670, 734], "saturdai": [158, 254, 670, 734], "sundai": [158, 254, 354, 670, 734, 834], "weekli": [158, 254, 352, 670, 734, 832], "sorted": [158, 159, 254, 670, 671, 734], "metadata": [158, 159, 254, 670, 671, 734], "verifi": [158, 159, 254, 670, 671, 734], "incorrectli": [158, 159, 254, 429, 670, 671, 734], "incorrect": [158, 159, 254, 355, 494, 638, 670, 671, 718, 734, 835, 962, 1049], "re": [158, 217, 254, 337, 338, 670, 734, 817, 818, 1056], "come": [158, 254, 337, 338, 396, 638, 650, 670, 733, 734, 817, 818, 880, 1049], "set_index": [158, 254, 670, 734], "resampl": [158, 254, 670, 734], "reset_index": [158, 254, 670, 734], "though": [158, 254, 670, 734], "evenli": [158, 254, 470, 638, 670, 734, 936, 1049], "upsampl": [158, 254, 670, 734], "date_rang": [158, 227, 254, 317, 319, 322, 323, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 350, 352, 353, 354, 355, 356, 482, 483, 485, 488, 489, 490, 638, 670, 734, 792, 793, 795, 798, 799, 800, 801, 802, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 830, 832, 833, 834, 835, 836], "30m": [158, 254, 345, 352, 670, 734, 825, 832], "time_min": [158, 254, 670, 734], "time_max": [158, 254, 670, 734], "23": [158, 159, 254, 318, 322, 326, 342, 345, 354, 482, 483, 485, 488, 489, 490, 589, 625, 626, 627, 638, 670, 671, 734, 737, 794, 802, 1057], "boundari": [158, 254, 298, 299, 300, 352, 638, 670, 734, 774, 775, 776, 832, 856, 1049], "time_count": [158, 254, 670, 734], "_lower_boundari": [158, 254, 670, 734], "_upper_boundari": [158, 254, 670, 734], "lower_bound": [158, 254, 298, 300, 383, 638, 670, 734, 774, 776, 860, 1036, 1049], "upper_bound": [158, 254, 298, 299, 383, 429, 638, 670, 734, 774, 775, 860, 918, 1049], "time_agg_list": [158, 254, 670, 734], "int_rang": [158, 225, 236, 254, 569, 670, 718, 734], "2i": [158, 254, 670, 734], "3i": [158, 254, 670, 734], "a_agg_list": [158, 254, 670, 734], "rollinggroupbi": [159, 254], "dynamic_groupbi": [159, 254, 671, 734], "groupby_dynam": [159, 254, 671, 734], "t_0": [159, 254, 482, 483, 484, 485, 486, 488, 489, 490, 638, 671, 734], "t_1": [159, 254, 482, 483, 484, 485, 486, 488, 489, 490, 638, 671, 734], "t_n": [159, 254, 482, 483, 484, 485, 486, 488, 489, 490, 638, 671, 734], "19": [159, 173, 254, 345, 483, 485, 537, 638, 671, 676, 734, 825, 832, 1007], "43": [159, 254, 308, 489, 638, 671, 734], "strptime": [159, 254, 344, 671, 734, 824], "set_sort": [159, 173, 227, 254, 638, 671, 676, 734, 1049], "2d": [159, 217, 254, 603, 671, 734, 792, 798], "sum_a": [159, 254, 671, 734], "min_a": [159, 254, 671, 734], "max_a": [159, 254, 671, 734], "seed": [160, 198, 254, 378, 473, 492, 498, 638, 854, 938, 957, 968, 1049], "seed_1": [160, 254, 378, 638, 854, 1049], "seed_2": [160, 254, 378, 638, 854, 1049], "seed_3": [160, 254, 378, 638, 854, 1049], "hash": [160, 254, 638, 1049], "u64": [160, 254, 378, 475, 638, 689, 734, 854, 1049], "10783150408545073287": [160, 254], "1438741209321515184": [160, 254], "10047419486152048166": [160, 254], "2047317070637311557": [160, 254], "ab": [161, 175, 210, 231, 254, 543, 544, 638, 712, 734, 855, 882, 1019, 1049], "grown": [163, 254], "intermedi": [165, 254, 674, 734, 1057], "linear": [165, 189, 246, 254, 382, 405, 442, 471, 486, 577, 578, 613, 638, 674, 690, 728, 734, 859, 888, 937, 951, 1049], "mask": [166, 168, 254, 287, 384, 386, 394, 509, 511, 638, 761, 849, 860, 862, 865, 877, 933, 934, 960, 979, 981, 1040, 1049], "visual": [166, 168, 254], "buffer_s": [170, 254], "intern": [170, 254], "veri": [170, 222, 254, 268, 638, 655, 718, 734, 777, 1049], "fit": [170, 205, 225, 254, 497, 615, 638, 966, 967, 1049], "signific": [170, 254, 268, 638], "4x": [170, 254], "materialis": [170, 171, 195, 196, 197, 254], "rows_by_kei": [170, 196, 254], "iter_row": [171, 195, 196, 197, 254], "17_500": [171, 254], "klmnoopqrstuvwxyz": [171, 254], "__name__": [171, 254], "7500": [171, 254], "15_000": [171, 254], "record_batch": [171, 254], "to_arrow": [171, 254, 1049], "to_batch": [171, 254], "date32": [171, 254], "large_str": [171, 212, 218, 254], "15000": [171, 254], "2500": [171, 254], "left_on": [172, 173, 254, 675, 676, 734], "right_on": [172, 173, 254, 675, 676, 734], "_right": [172, 173, 254, 675, 676, 734], "joinvalid": [172, 254, 675, 734], "semi": [172, 254, 675, 734], "anti": [172, 254, 675, 718, 734, 960, 961, 1049], "cross": [172, 254, 352, 675, 734, 832], "many_to_mani": [172, 254, 675, 734], "one_to_on": [172, 254, 675, 734], "one_to_mani": [172, 254, 675, 734], "many_to_on": [172, 254, 675, 734], "join_asof": [172, 254, 675, 734], "stringcach": [172, 254, 649], "other_df": [172, 254], "by_left": [173, 254, 676, 734], "by_right": [173, 254, 676, 734], "asofjoinstrategi": [173, 254, 676, 734], "allow_parallel": [173, 254, 675, 676, 734], "force_parallel": [173, 254, 675, 676, 734], "asof": [173, 254, 676, 734], "asof_join": [173, 254], "distanc": [173, 254, 676, 734, 856, 1049], "plan": [173, 174, 254, 653, 661, 668, 675, 676, 691, 699, 715, 734], "gdp": [173, 254, 676, 734], "2016": [173, 254, 676, 734], "2017": [173, 254, 676, 734], "2018": [173, 254, 344, 676, 734, 824], "2019": [173, 254, 676, 734], "record": [173, 217, 254, 676, 734], "jan": [173, 254, 676, 734], "1st": [173, 254, 587, 676, 734], "4164": [173, 254, 676, 734], "4411": [173, 254, 676, 734], "4566": [173, 254, 676, 734], "4696": [173, 254, 676, 734], "popul": [173, 254, 676, 734], "12th": [173, 254, 676, 734], "82": [173, 254, 676, 734], "66": [173, 254, 489, 562, 638, 676, 734, 951, 1049], "83": [173, 254, 676, 734], "52": [173, 231, 254, 491, 638, 676, 712, 734], "request": [174, 254], "describe_plan": [174, 254], "unoptim": [174, 254], "describe_optimized_plan": [174, 254], "show_graph": [174, 254, 734], "un": [174, 254], "graphviz": [174, 254, 699, 734], "axi": [176, 177, 179, 181, 209, 254, 570, 571, 684, 734], "null_strategi": [177, 209, 254], "nullstrategi": [177, 209, 254], "spam": [177, 254, 516, 986], "id_var": [179, 254, 684, 734], "value_var": [179, 254, 684, 734], "variable_nam": [179, 254, 684, 734], "value_nam": [179, 254, 684, 734], "unpivot": [179, 254, 684, 734], "leav": [179, 254, 429, 684, 734], "massag": [179, 254, 684, 734], "measur": [179, 254, 684, 734], "merg": [180, 254, 685, 734], "caller": [180, 254, 429, 680, 685, 718, 734], "respons": [180, 254, 685, 734], "steve": [180, 254, 685, 734], "elis": [180, 254, 685, 734], "bob": [180, 254, 685, 734], "ag": [180, 254, 685, 734], "anna": [180, 254, 685, 734], "megan": [180, 254, 685, 734], "thoma": [180, 254, 685, 734], "21": [180, 209, 254, 482, 483, 485, 488, 489, 490, 596, 638, 685, 734, 737], "what": [183, 254, 1030, 1039, 1049], "pack": [183, 254], "expr_unique_subset": [183, 254], "df_nuniqu": [183, 254], "df_agg_nuniqu": [183, 254], "include_kei": [185, 197, 254], "offer": [186, 254, 466, 638, 688, 734], "fulli": [186, 198, 254], "cast_str_to_int": [186, 254, 688, 734], "col_nam": [186, 254, 688, 734], "tdf": [186, 254, 688, 734], "aggregate_funct": [187, 254], "pivotagg": [187, 254], "nodefault": [187, 254], "_nodefault": [187, 254], "no_default": [187, 254], "sort_column": [187, 254], "predefin": [187, 254], "predict": [187, 190, 227, 254, 492, 498, 638], "transpos": [187, 254], "discoveri": [187, 254], "col1": [187, 222, 225, 254, 734, 1057], "col2": [187, 222, 225, 254, 734, 1057], "col3": [187, 254, 1057], "tanh": [187, 254, 638, 1049], "998347": [187, 254], "964028": [187, 254], "999954": [187, 254], "interpol": [189, 246, 254, 368, 442, 471, 486, 613, 638, 690, 728, 734, 937, 951, 1049], "rollinginterpolationmethod": [189, 246, 254, 471, 486, 613, 638, 690, 728, 734, 937, 951, 1049], "midpoint": [189, 246, 254, 471, 486, 613, 638, 690, 728, 734, 937, 951, 1049], "by_pred": [195, 254], "accord": [195, 254, 439, 587, 638, 805], "never": [195, 254, 587], "mutual": [195, 254], "exclus": [195, 254, 562, 569, 600, 601, 638], "addition": [195, 254], "clariti": [195, 254], "toomanyrowsreturnederror": [195, 254, 649], "norowsreturnederror": [195, 254, 649], "inherit": [195, 254], "rowserror": [195, 254, 649], "selectortyp": [197, 254, 737], "high": [197, 254], "cost": [197, 254], "reoconstruct": [197, 254], "defaultdict": [197, 254], "assum": [197, 254, 680, 718, 734], "with_replac": [198, 254, 492, 638, 957, 1049], "shuffl": [198, 236, 254, 492, 638, 718, 957, 1049], "modul": [198, 254, 492, 498, 637, 638, 737, 957, 968, 1049], "named_expr": [200, 231, 254, 618, 621, 695, 712, 734], "threshold": [200, 254, 695, 734], "set_auto_structifi": [200, 231, 254, 695, 712, 734], "auto_structifi": [200, 231, 254, 695, 712, 734], "is_odd": [200, 254, 695, 734], "_is_odd": [200, 254, 695, 734], "shift_and_fil": [203, 254, 638, 734, 1049], "fill_valu": [204, 225, 254, 496, 638, 698, 734, 965, 1049], "shift": [204, 254, 312, 408, 465, 496, 577, 638, 698, 734, 787, 891, 932, 965, 1049], "shrink": [205, 254, 497, 638, 966, 967, 1049], "hold": [205, 254], "ddof": [208, 228, 254, 488, 490, 507, 560, 579, 616, 617, 620, 628, 638, 702, 710, 734, 953, 955, 976, 1038, 1049], "deviat": [208, 254, 361, 488, 507, 620, 638, 702, 734, 841, 976, 1049], "degre": [208, 228, 254, 472, 488, 490, 507, 560, 571, 579, 616, 617, 620, 628, 638, 702, 710, 734, 953, 955, 976, 1038, 1049], "freedom": [208, 228, 254, 488, 490, 507, 560, 579, 616, 617, 620, 628, 638, 702, 710, 734, 953, 955, 976, 1038, 1049], "divisor": [208, 228, 254, 488, 490, 507, 560, 579, 616, 617, 620, 628, 638, 702, 710, 734, 953, 955, 976, 1038, 1049], "816497": [208, 254], "16a": [209, 254], "27b": [209, 254], "38c": [209, 254], "nth": [211, 254, 531, 550, 638, 705, 734, 1001, 1021, 1049], "mostli": [212, 254, 369, 638], "categoricaltyp": [212, 254], "as_seri": [213, 254], "fruit": [213, 254, 478, 513, 532, 638, 983, 1002], "car": [213, 254, 478, 638], "beetl": [213, 254, 478, 638], "audi": [213, 254, 478, 638], "300": [213, 254, 947, 948, 950, 1049], "drop_first": [215, 254], "dummi": [215, 254, 1026, 1049], "foo_1": [215, 254], "foo_2": [215, 254], "bar_3": [215, 254], "bar_4": [215, 254], "ham_a": [215, 254], "ham_b": [215, 254], "instantiat": [216, 254, 1028, 1049], "from_repr": [216, 254, 1028, 1049], "df_from_str_repr": [216, 254], "eval": [216, 254, 591, 1028, 1049], "indexord": [217, 254], "fortran": [217, 254], "downstream": [217, 254, 494, 638, 962, 1049], "applic": [217, 254, 482, 483, 484, 485, 486, 488, 489, 490, 638], "prevent": [217, 254, 263, 307, 308, 395, 547, 638, 734, 782, 783, 1018, 1049], "reshap": [217, 254, 411, 638, 894, 1049], "ll": [217, 254], "u1": [217, 254], "f4": [217, 254], "view": [217, 254, 1030, 1049], "recarrai": [217, 254], "rec": [217, 254], "use_pyarrow_extension_arrai": [218, 254, 1031, 1049], "trigger": [218, 254, 1031, 1049], "sent": [218, 254, 1030, 1031, 1049], "pandas_df1": [218, 254], "pandas_df2": [218, 254], "pandas_df2_pa": [218, 254], "na": [218, 254, 1031, 1049], "get_column": [219, 254], "four": [220, 254], "five": [220, 254, 1057], "bottom_k": [221, 254, 554, 638, 706, 734, 1033, 1049], "include_head": [222, 254], "header_nam": [222, 254], "column_nam": [222, 254], "perhap": [222, 254], "column_2": [222, 254], "name_gener": [222, 254], "base_nam": [222, 254], "my_column_": [222, 254], "my_column_0": [222, 254], "my_column_1": [222, 254], "my_column_2": [222, 254], "new_id": [222, 254], "uniquekeepstrategi": [223, 254, 707, 734], "kept": [223, 254, 707, 734], "decompos": [224, 254, 708, 734], "t_a": [224, 254, 708, 734], "t_b": [224, 254, 708, 734], "t_c": [224, 254, 708, 734], "t_d": [224, 254, 708, 734], "womp": [224, 254, 708, 734], "t_": [224, 254, 708, 734], "t_struct": [224, 254, 708, 734], "step": [225, 254, 569, 600, 601], "unstackdirect": [225, 254], "pivot": [225, 254], "phase": [225, 254], "subject": [225, 254], "ascii_uppercas": [225, 254], "h": [225, 254, 261, 348, 351, 497, 534, 536, 539, 638, 1004, 1006, 1009], "col1_0": [225, 254], "col1_1": [225, 254], "col1_2": [225, 254], "col2_0": [225, 254], "col2_1": [225, 254], "col2_2": [225, 254], "syntact": [226, 254, 592, 593, 597, 602, 612, 613, 618, 630, 709, 734, 975, 1049], "sugar": [226, 254, 592, 593, 597, 602, 612, 613, 618, 630, 709, 734, 975, 1049], "coalesc": [226, 254, 534, 709, 734, 1004], "400": [226, 254, 709, 734, 947, 948, 950, 1049], "600": [226, 254, 709, 734, 737], "700": [226, 254, 709, 734], "new_df": [226, 254, 709, 734], "time_column": [227, 254], "frequenc": [227, 254], "forward_fil": [227, 254, 305, 308, 638], "varianc": [228, 254, 362, 396, 490, 560, 628, 638, 710, 734, 842, 880, 955, 1038, 1049], "grow": [229, 254], "is_not": [231, 254, 638, 712, 734], "not_c": [231, 254, 712, 734], "diff": [231, 254, 323, 327, 331, 333, 335, 340, 347, 409, 638, 712, 734, 799, 803, 810, 812, 815, 820, 827, 892, 1049], "_diff": [231, 254, 712, 734], "row_nr": [232, 254, 439, 482, 483, 485, 488, 489, 490, 638, 714, 734, 961, 1049], "named_agg": [234, 716], "_sum": [234, 716], "_mean_squar": [234, 716], "b_sum": [234, 716], "c_mean_squar": [234, 716], "sub": [236, 281, 282, 283, 638, 756, 757, 758], "triangl": [236, 718], "group_df": [236, 718], "deem": [237, 303, 580, 638, 719], "nr": [239, 248, 721, 730], "maxim": [241, 276, 638, 723, 751, 1049], "833333": [242, 724], "minim": [244, 277, 404, 497, 505, 638, 726, 752, 887, 923, 966, 1049], "overview": [254, 638, 649, 734, 1049, 1057], "frameinittyp": [254, 734], "variou": [254, 638, 734, 737, 1049], "entri": [254, 734, 1056], "behavior": [254, 268, 428, 567, 638, 743, 911, 1049], "mydatafram": 254, "notic": [254, 734, 1049], "df4": 254, "df5": 254, "df6": 254, "corr": 254, "drop_in_plac": 254, "drop_nul": [254, 264, 266, 314, 638, 734, 741, 742, 1049], "estimated_s": [254, 1049], "explod": [254, 371, 464, 477, 638, 734, 942, 1049], "find_idx_by_nam": 254, "fold": [254, 448, 575, 582, 583, 614], "frame_equ": [254, 345, 352], "groupby_rol": [254, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 734], "hash_row": 254, "hstack": 254, "insert_at_idx": 254, "is_dupl": [254, 638, 1049], "is_empti": [254, 1049], "is_uniqu": [254, 638, 1049], "iter_slic": 254, "melt": [254, 734], "merge_sort": [254, 734], "n_uniqu": [254, 638, 1049], "pipe": [254, 638, 734], "quantil": [254, 470, 486, 638, 734, 936, 951, 1049], "replace_at_idx": 254, "shrink_to_fit": [254, 1049], "take_everi": [254, 638, 734, 1049], "to_dict": 254, "to_dummi": [254, 1049], "to_numpi": [254, 437, 638, 1049], "to_panda": [254, 1049], "to_struct": [254, 516], "unnest": [254, 479, 516, 530, 531, 544, 638, 734, 912, 944, 1000, 1001, 1049], "unstack": 254, "write_avro": 254, "write_databas": 254, "write_delta": 254, "write_excel": 254, "write_json": [254, 691, 734], "write_parquet": 254, "cumprod": [261, 638, 1049], "ghi": [261, 516, 638, 737, 986], "94": [262, 638], "map_alia": [263, 638], "to_uppercas": [263, 638], "confus": [264, 389, 391, 638], "tt": [264, 638], "tf": [264, 266, 638], "ff": [264, 266, 638], "bitwis": [265, 463, 562, 563, 564, 565, 566, 638], "upcast": [267, 638], "skip_nul": [268, 638, 744, 1049], "pass_nam": [268, 638], "applystrategi": [268, 638], "thread_loc": [268, 638], "unknown": [268, 439, 515, 603, 638, 985], "stage": [268, 638], "code": [268, 286, 288, 289, 290, 494, 638, 678, 734, 962, 1049], "amount": [268, 638], "releas": [268, 638, 1057], "gil": [268, 638], "bug": [268, 437, 638, 680, 718, 734, 744, 1049], "discourag": [268, 638], "loop": [268, 638], "a_times_2": [268, 638], "approx": [269, 568, 638, 734], "hyperloglog": [269, 568, 638, 734], "algorithm": [269, 568, 638, 734], "cardin": [269, 568, 638, 734], "invers": [270, 271, 272, 273, 274, 275, 638, 745, 746, 747, 748, 749, 750, 1049], "cosin": [270, 271, 301, 302, 437, 638, 745, 746, 778, 779, 1049], "570796": [270, 272, 638, 745, 747, 1049], "hyperbol": [271, 273, 275, 302, 501, 552, 638, 746, 748, 750, 779, 971, 1023, 1049], "sine": [272, 273, 437, 500, 501, 638, 747, 748, 970, 971, 1049], "881374": [273, 638, 748, 1049], "tangent": [274, 275, 551, 552, 638, 749, 750, 1022, 1023, 1049], "785398": [274, 570, 571, 638, 749, 1049], "arg_wher": [279, 638], "substr": [286, 289, 290, 509, 513, 524, 525, 529, 530, 531, 532, 737, 760, 763, 764, 979, 983, 994, 995, 999, 1000, 1001, 1002], "ends_with": [286, 290, 509, 532, 737, 1002], "x00": [286, 288, 289, 290], "xff": [286, 288, 289, 290], "hex": [286, 287, 288, 289, 290, 511, 512, 523, 761, 762, 981, 982, 993], "code_encoded_hex": [286, 288, 289, 290], "contains_ff": [286, 289, 290], "starts_with_ff": [286, 289, 290], "ends_with_ff": [286, 289, 290], "000000": [286, 288, 289, 290], "ffff00": [286, 288, 289, 290], "0000ff": [286, 288, 289, 290], "transferencod": [287, 288, 511, 512, 761, 762, 981, 982], "strict": [287, 293, 509, 511, 523, 534, 535, 536, 539, 638, 761, 766, 959, 979, 981, 993, 1004, 1005, 1006, 1009, 1049], "base64": [287, 288, 511, 512, 761, 762, 981, 982], "anywher": [289, 290, 534, 535, 536, 1004, 1005, 1006], "complex": [291, 309, 554, 638, 765, 784, 1033, 1049], "frac": [291, 360, 361, 362, 502, 554, 638, 765, 840, 841, 842, 972, 1033, 1049], "deprec": [292, 534, 536, 563, 565, 569, 584, 587, 605, 609, 615, 622, 626, 638, 743, 1004, 1006, 1049], "overflow": [293, 307, 308, 523, 547, 638, 766, 782, 783, 993, 1018, 1049], "to_fram": [294, 345, 352, 534, 960, 961, 1000, 1001, 1004, 1049], "categoricalord": [295, 769], "lexic": [295, 737, 769], "259921": [296, 638, 770, 1049], "587401": [296, 638], "foo_clip": [298, 299, 300, 638], "clip": [299, 300, 638, 775, 776, 1049], "543081": [302, 638, 779, 1049], "cumul": [304, 305, 306, 307, 308, 582, 583, 584, 585, 638, 780, 781, 782, 783, 1049], "a_revers": [304, 305, 306, 307, 308, 438, 478, 546, 638], "value_cummax": [305, 638], "value_cummax_all_fil": [305, 638], "value_cumsum": [308, 638], "value_cumsum_all_fil": [308, 638], "min_period": [309, 360, 361, 362, 481, 482, 483, 484, 485, 486, 488, 489, 490, 616, 617, 638, 784, 840, 841, 842, 946, 947, 948, 949, 950, 951, 953, 954, 955, 1049], "slide": [309, 638, 784, 1049], "realli": [309, 638, 784, 1049], "visit": [309, 638, 784, 1049], "label": [310, 470, 481, 482, 483, 484, 485, 486, 488, 489, 490, 638, 689, 734, 785, 936, 946, 947, 948, 949, 950, 951, 953, 954, 955, 1049], "left_clos": [310, 470, 638, 785, 936, 1049], "include_break": [310, 470, 638, 785, 936, 1049], "bin": [310, 470, 523, 562, 632, 638, 785, 856, 936, 993, 1043, 1049], "discret": [310, 312, 357, 408, 409, 470, 638, 785, 787, 838, 856, 891, 892, 936, 1049], "endpoint": [310, 470, 482, 483, 484, 485, 486, 488, 489, 490, 638, 785, 936, 1049], "observ": [310, 360, 361, 362, 470, 638, 785, 840, 841, 842, 936, 1049], "fall": [310, 470, 480, 638, 785, 860, 936, 945, 1049], "radian": [311, 570, 638], "pi": [311, 638, 778, 970, 1022, 1049], "720": [311, 472, 638], "540": [311, 472, 638], "360": [311, 472, 638], "180": [311, 329, 343, 356, 472, 638], "null_behavior": [312, 408, 638, 787, 891, 1049], "nullbehavior": [312, 408, 638, 787, 891, 1049], "th": [312, 408, 409, 502, 638, 787, 891, 892, 972, 1049], "drop_nan": [315, 638, 1049], "utc": [316, 319, 324, 344, 534, 536, 737, 792, 795, 800, 824, 1004, 1006], "usual": [316, 792], "vari": [316, 587, 792, 1057], "rare": [316, 792], "countri": [316, 792], "switch": [316, 792], "samoa": [316, 792], "apia": [316, 792], "did": [316, 516, 792, 986], "2011": [316, 792], "dst_offset": [316, 352, 792, 832], "2012": [316, 792], "replace_time_zon": [316, 324, 796, 797, 829], "pacif": [316, 792], "11h": [316, 792], "13h": [316, 792], "lose": [317, 569, 793], "2001": [317, 322, 325, 326, 328, 329, 334, 336, 341, 342, 343, 345, 346, 350, 352, 353, 354, 355, 356, 482, 483, 485, 488, 489, 490, 534, 638, 793, 798, 801, 802, 804, 806, 807, 808, 809, 811, 813, 814, 816, 819, 821, 822, 823, 825, 826, 830, 832, 833, 834, 835, 836, 1004], "time_unit_m": [317, 793], "time_unit_n": [317, 793], "naiv": [318, 534, 536, 794, 1004, 1006], "compon": [318, 346, 534, 536, 590, 794, 826, 1004, 1006], "resolv": 318, "tm": [318, 737], "456000": [318, 794], "101000": 318, "456": [318, 737, 794, 1027, 1049], "07": [318, 344, 345, 352, 534, 587, 596, 737, 794, 798, 824, 834, 1004], "101": [318, 523, 993, 1057], "d1": 318, "d2": 318, "d3": 318, "europ": [319, 324, 344, 352, 795, 800, 824, 832], "london": [319, 324, 344, 352, 795, 800, 824, 832], "gmt": [319, 324, 344, 352, 795, 800, 824, 832], "bst": [319, 324, 344, 352, 795, 800, 824, 832], "weekdai": [322, 342], "ordinal_dai": [322, 354], "day_of_month": [322, 342, 354], "day_of_year": [322, 342, 354], "356": [322, 342, 354], "357": [322, 342, 354], "358": [322, 342, 354], "359": [322, 342, 354], "days_diff": 323, "base_utc_offset": [324, 800], "26": [324, 800], "0m": [324, 800], "epochtimeunit": [325, 596, 801], "unix": [325, 596, 801], "epoch_n": [325, 801], "epoch_": [325, 801], "978307200000000": [325, 350, 801, 830], "978307200": [325, 801], "978393600000000": [325, 350, 801, 830], "978393600": [325, 801], "978480000000000": [325, 350, 801, 830], "978480000": [325, 801], "hours_diff": 327, "leap": [328, 341, 587, 804, 821], "2002": [328, 329, 341, 343, 356, 804, 821, 836], "iso": [329, 353, 354, 805, 833, 834], "2006": [329, 341, 821], "2004": [329, 341, 821], "2005": [329, 341, 821], "1_001": [330, 331, 333, 340], "002": [330, 331, 333, 340, 590, 810, 812, 820], "003": [330, 331, 333, 340], "3000": 330, "997": [330, 331, 333, 340], "997000": 330, "998": [330, 331, 333, 340], "998000": 330, "999": [330, 331, 333, 340, 737, 1057], "999000": [330, 737], "microseconds_diff": 331, "milliseconds_diff": 333, "minutes_diff": 335, "1440": [335, 815], "think": [337, 338, 817, 818], "vectoris": [337, 338, 817, 818], "tseri": [337, 338, 817, 818], "monthend": [337, 817], "rollforward": [337, 817], "monthbegin": [338, 818], "rollback": [338, 818], "nanoseconds_diff": 340, "1000000": [340, 542, 820], "minu": [341, 821], "dictat": [341, 821], "date_plus_1i": [341, 821], "1y2mo": [341, 821], "date_min": 341, "1998": [341, 821], "1999": [341, 737, 821], "2003": [341, 596, 821], "ordin": [342, 473, 638, 822, 938, 1049], "366": [342, 822], "use_earliest": [344, 352, 824, 832], "convert_time_zon": [344, 824], "ambigu": [344, 352, 824, 832], "earliest": [344, 352, 824, 832], "london_timezon": [344, 824], "amsterdam": [344, 824], "london_to_amsterdam": [344, 824], "cet": [344, 824], "cest": [344, 824], "dst": [344, 824], "ts_local": [344, 824], "brussel": [344, 824], "half": [345, 360, 361, 362, 638, 825, 840, 841, 842, 1049], "225": [345, 352], "10m": [345, 352, 825, 832], "milli": [346, 826], "micro": [346, 826], "456789": [346, 737], "654321": 346, "111110": 346, "765431": 346, "sec": [346, 1057], "11111": 346, "seconds_diff": 347, "to_str": [348, 828], "datetime_str": [348, 351], "timestamp_n": [350, 830], "timestamp_m": 350, "978307200000": 350, "978393600000": 350, "978480000000": 350, "strftime": [351, 831], "offset_bi": [352, 832], "15m": [352, 832], "53": [353, 833], "time_unit_u": [355, 835], "32971": [355, 835], "32974": [355, 835], "32976": [355, 835], "718281828459045": [357, 432, 638, 838, 915, 1049], "pk": [357, 638, 838, 1049], "probabl": [357, 470, 638, 838, 936, 1049], "459148": [357, 638], "754888": [357, 638], "eq": [359, 638, 1049], "span": [360, 361, 362, 638, 840, 841, 842, 1049], "half_lif": [360, 361, 362, 638, 840, 841, 842, 1049], "adjust": [360, 361, 362, 502, 638, 840, 841, 842, 972, 1049], "ignore_nul": [360, 361, 362, 638, 840, 841, 842, 1039, 1049], "exponenti": [360, 361, 362, 364, 467, 638, 840, 841, 842, 843, 1049], "weight": [360, 361, 362, 481, 482, 483, 484, 485, 486, 488, 489, 490, 502, 638, 840, 841, 842, 946, 947, 948, 949, 950, 951, 953, 954, 955, 972, 1049], "decai": [360, 361, 362, 638, 840, 841, 842, 1049], "term": [360, 361, 362, 519, 522, 638, 840, 841, 842, 989, 992, 1049], "mass": [360, 361, 362, 638, 840, 841, 842, 1049], "gamma": [360, 361, 362, 638, 840, 841, 842, 1049], "foral": [360, 361, 362, 638, 840, 841, 842, 1049], "geq": [360, 361, 362, 638, 840, 841, 842, 1049], "theta": [360, 361, 362, 638, 840, 841, 842, 1049], "life": [360, 361, 362, 638, 840, 841, 842, 1049], "exp": [360, 361, 362, 638, 840, 841, 842, 1049], "ln": [360, 361, 362, 638, 840, 841, 842, 1049], "smooth": [360, 361, 362, 638, 840, 841, 842, 1049], "factor": [360, 361, 362, 553, 638, 840, 841, 842, 1032, 1049], "leq": [360, 361, 362, 638, 840, 841, 842, 1049], "imbal": [360, 361, 362, 638, 840, 841, 842, 1049], "ew": [360, 361, 362, 638, 840, 841, 842, 1049], "w_i": [360, 361, 362, 638, 840, 841, 842, 1049], "recurs": [360, 361, 362, 638, 840, 841, 842, 1049], "y_0": [360, 361, 362, 638, 840, 841, 842, 1049], "x_0": [360, 361, 362, 638, 840, 841, 842, 1049], "y_t": [360, 361, 362, 638, 840, 841, 842, 1049], "y_": [360, 361, 362, 638, 840, 841, 842, 1049], "x_t": [360, 361, 362, 638, 840, 841, 842, 1049], "x_2": [360, 361, 362, 638, 840, 841, 842, 1049], "428571": [360, 638], "bia": [361, 362, 396, 487, 502, 638, 841, 842, 880, 952, 972, 1049], "unbias": [361, 362, 638, 841, 842, 1049], "963624": [361, 638, 841, 1049], "928571": [362, 638, 842, 1049], "wildcard": [363, 576, 582, 583, 594, 614, 638], "regex": [363, 445, 509, 510, 513, 515, 516, 524, 525, 532, 592, 622, 638, 737, 979, 980, 983, 985, 986, 994, 995, 1002], "aa": [363, 509, 592, 638, 979], "ba": [363, 592, 638, 737], "cc": [363, 592, 638], "718282": [364, 638], "389056": [364, 638], "54": [364, 638, 1057], "59815": [364, 638], "expand": [365, 444, 445, 476, 638, 844, 1049], "pythonliter": [366, 605, 609, 638, 846, 920, 923, 1049], "extrem": [366, 638, 846, 1049], "group_col": [369, 561, 638], "g1": [369, 561, 638], "g2": [369, 561, 638], "lt": [369, 561, 638, 1049], "gte": [369, 561, 638], "exprlistnamespac": [371, 638], "divis": [373, 555, 638], "truediv": [373, 638], "9774092659964970114": [378, 638], "13614470193936745724": [378, 638], "1101441246220388612": [378, 638], "11638928888656214026": [378, 638], "13382926553367784577": [378, 638], "cumsum": [381, 545, 585, 638, 673, 734, 879, 1049], "interpolationmethod": [382, 638, 859, 1049], "regrid": [382, 638], "grid": [382, 638], "df_original_grid": [382, 638], "grid_point": [382, 638], "df_new_grid": [382, 638], "conflat": [383, 638], "finit": [385, 555, 579, 638, 864, 1049], "primit": [387, 638, 1030, 1049], "optional_memb": [387, 638, 867, 1049], "infinit": [388, 555, 638, 868, 1049], "_isnan": [389, 638], "b_isnan": [389, 638], "negat": [390, 638], "_is_not_nan": [391, 638], "b_is_not_nan": [391, 638], "_not_nul": [392, 638], "a_not_nul": [392, 638], "b_not_nul": [392, 638], "_isnul": [393, 638], "a_isnul": [393, 638], "b_isnul": [393, 638], "constraint": [395, 468, 546, 638], "chain": [395, 468, 546, 629, 638], "undo": [395, 451, 468, 546, 638], "333333": [395, 638, 932, 955, 1049], "fisher": [396, 502, 638, 880, 972, 1049], "fourth": [396, 638, 880, 1049], "subtract": [396, 545, 638, 880, 1049], "distribut": [396, 502, 638, 880, 972, 1049], "elimin": [396, 638, 880, 1049], "bias": [396, 502, 638, 880, 972, 1049], "scipi": [396, 502, 638, 880, 972, 1049], "stat": [396, 502, 638, 880, 972, 1049], "153061": [396, 638], "sublist": [403, 404, 406, 408, 409, 412, 413, 414, 416, 417, 424, 427, 428, 429, 867, 886, 887, 889, 891, 892, 895, 896, 897, 899, 900, 907, 910, 911, 912, 1049], "membership": [406, 889], "listcol": 407, "number_of_two": 407, "blindli": [410, 893], "worth": [410, 893], "enough": [410, 502, 638, 893, 972, 1049], "concat_list": [410, 591, 893], "rank": [410, 579, 591, 638, 893, 1049], "exprnamespac": 411, "flat": [411, 477, 638, 894, 942, 1049], "taken": [424, 528, 907, 998], "null_on_oob": [428, 911], "cheaper": [428, 911], "n_field_strategi": [429, 912], "tostructstrategi": [429, 912], "first_non_nul": [429, 912], "max_width": [429, 912], "field_0": [429, 912], "field_1": [429, 912], "field_n": [429, 912], "pre": [429, 612, 615, 630], "n0": 429, "n1": 429, "logarithm": [432, 433, 434, 638, 915, 916, 917, 1049], "584963": [432, 638], "30103": [433, 638], "60206": [433, 638], "natur": [434, 638, 917, 1049], "plu": [434, 638, 917, 1049], "693147": [434, 638], "098612": [434, 638], "386294": [434, 638], "lowest": [435, 638], "9223372036854775808": [435, 638], "agg_list": [437, 638], "elementwis": [437, 481, 482, 483, 485, 489, 638, 946, 947, 948, 949, 950, 951, 953, 954, 955, 1049], "third": [437, 638], "parti": [437, 638], "book": [437, 638], "map_dict": [437, 638, 1049], "argmax": [437, 638], "b_revers": [438, 478, 546, 638], "rstrip": [438, 638], "_revers": [438, 478, 546, 638], "remap": [439, 638, 919, 1049], "lookup": [439, 638, 919, 1049], "country_code_dict": [439, 638], "ca": [439, 638], "canada": [439, 638], "de": [439, 638], "germani": [439, 638], "fr": [439, 638], "franc": [439, 638], "country_cod": [439, 638], "rest": [439, 638], "exprmetanamespac": [443, 446], "computeerror": [447, 523, 649, 993], "tree": 450, "keep_nam": [451, 638], "modulu": [454, 638], "xlog2": [456, 467, 638], "poison": [458, 459, 638, 928, 929, 1049], "nanmax": [458, 459, 638, 928, 929, 1049], "wherea": [458, 459, 587, 638, 672, 679, 734, 928, 929, 1049], "inequ": [460, 638], "ne": [461, 638, 1049], "more_expr": [464, 563, 565, 572, 575, 577, 578, 584, 605, 609, 622, 638], "mapping_strategi": [464, 638], "windowmappingstrategi": [464, 638], "group_to_row": [464, 638], "outcom": [464, 638], "group_dtyp": [464, 638], "warn": [464, 638], "flatten": [464, 638], "_max": [464, 638], "c_max": [464, 638], "_min": [464, 638], "c_min": [464, 638], "percent": [465, 638, 932, 1049], "090909": [465, 638], "extract_numb": [466, 638], "digit": [466, 491, 516, 542, 638, 956, 980, 986, 1012, 1049, 1057], "scale_negative_even": [466, 638], "expon": [467, 638, 1049], "reverse_": [468, 638], "reverse_a": [468, 638], "reverse_b": [468, 638], "allow_dupl": [470, 638, 936, 1049], "prob": [470, 638, 936, 1049], "lo": [470, 638], "566371": [472, 638], "424778": [472, 638], "283185": [472, 638], "141593": [472, 638, 745, 1049], "rankmethod": [473, 638, 938, 1049], "ti": [473, 638, 938, 1049], "competit": [473, 638, 938, 1049], "highest": [473, 558, 579, 638, 734, 938, 1049], "immedi": [473, 569, 573, 587, 588, 600, 601, 612, 615, 621, 626, 627, 630, 638, 938, 1049], "64bit": [475, 638, 940, 1049], "safe": [475, 534, 536, 638, 940, 1004, 1006, 1030, 1049], "fruits_revers": [478, 638], "cars_revers": [478, 638], "rle": [480, 638, 945, 1049], "themselv": [480, 638, 945, 1049], "a_r": [480, 638], "ab_r": [480, 638], "window_s": [481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 616, 617, 638, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 1049], "rolling_min": [481, 638, 946, 1049], "rolling_max": [481, 638, 946, 1049], "rolling_mean": [481, 638, 946, 1049], "rolling_sum": [481, 638, 946, 1049], "multipli": [481, 482, 483, 485, 488, 489, 490, 638, 946, 947, 948, 949, 950, 951, 953, 954, 955, 1049], "358899": [481, 638], "041452": [481, 638], "567764": [481, 638], "travers": [482, 483, 485, 489, 638, 947, 948, 950, 953, 954, 955, 1049], "vector": [482, 483, 485, 489, 638, 947, 948, 950, 953, 954, 955, 1049], "5h": [482, 483, 484, 485, 486, 488, 489, 490, 638], "df_tempor": [482, 483, 485, 488, 489, 490, 638], "closur": [482, 483, 488, 489, 490, 638], "rolling_row_max": [482, 638], "2h": [482, 483, 485, 488, 489, 490, 638], "rolling_row_mean": [483, 638], "contribut": [484, 486, 488, 490, 638], "rolling_row_min": [485, 638], "625": [486, 638], "skew": [487, 638, 952, 1049], "381802": [487, 638, 952, 1049], "47033": [487, 638, 952, 1049], "38180177416060584": [487, 638, 952, 1049], "47033046033698594": [487, 638, 952, 1049], "433013": [488, 638, 702, 734], "rolling_row_std": [488, 638], "rolling_row_sum": [489, 638], "39": [489, 596, 638], "63": [489, 638], "69": [489, 638], "1875": [490, 638, 710, 734], "rolling_row_var": [490, 638], "fixed_se": [492, 498, 638], "increment": [492, 498, 638], "schedul": [492, 498, 638], "searchsortedsid": [493, 638, 958, 1049], "leftmost": [493, 638, 958, 1049], "rightmost": [493, 638, 958, 1049], "six": [493, 638], "extrema": [497, 638, 966, 1049], "112": [497, 638, 1057], "129": [497, 638], "i8": [497, 612, 615, 630, 638, 787, 943, 1036, 1049], "8589934592": [497, 638], "1073741824": [497, 638], "content": [498, 559, 638, 968, 1049], "175201": [501, 638, 971, 1049], "about": [502, 509, 515, 516, 524, 638, 972, 979, 985, 986, 994, 1049, 1057], "unimod": [502, 638, 972, 1049], "skewtest": [502, 638, 972, 1049], "speak": [502, 638, 972, 1049], "g_1": [502, 638, 972, 1049], "m_3": [502, 638, 972, 1049], "m_2": [502, 638, 972, 1049], "m_i": [502, 638, 972, 1049], "sum_": [502, 638, 972, 1049], "texttt": [502, 638, 972, 1049], "k_3": [502, 638, 972, 1049], "k_2": [502, 638, 972, 1049], "sqrt": [502, 570, 571, 638, 972, 1049], "343622": [502, 638], "value1": [505, 638], "value2": [505, 638], "attain": [505, 638], "414214": [506, 638, 975, 1049], "sensit": [509, 516, 524, 979, 986, 994], "ilmsuxu": [509, 515, 516, 524, 979, 985, 986, 994], "default_match": 509, "insensitive_match": 509, "section": [509, 515, 516, 524, 979, 985, 986, 994], "crab": [509, 979], "dog": [509, 538, 541, 578, 979, 1008, 1011], "rab": [509, 979], "success": [510, 516, 980, 986], "overlap": [510, 516, 980, 986], "captur": [510, 515, 516, 980, 985, 986], "123": [510, 516, 525, 737, 980, 986, 995, 1027, 1049], "bla": [510, 516, 980, 986], "asd": [510, 516, 980, 986], "678": [510, 516, 980, 986], "910t": [510, 516, 980, 986], "count_digit": 510, "666f6f": [512, 982], "626172": [512, 982], "mango": [513, 532, 983, 1002], "go": [513, 983], "has_suffix": 513, "group_index": [515, 985], "nthose": [515, 985], "nodd": [515, 985], "nthe": [515, 985], "url": [515, 985], "vote": [515, 985], "ballon_dor": [515, 985], "404": [515, 985], "ref": [515, 985], "candid": [515, 985], "messi": [515, 985], "ronaldo": [515, 985], "email": [516, 986], "real": [516, 986], "some_account": [516, 986], "somewher": [516, 986], "net": [516, 986], "jkl": [516, 986], "uvw": [516, 986], "co": [516, 638, 986, 1049], "uk": [516, 986], "address": 516, "xi": [516, 986], "insensit": [516, 524, 737, 979, 986, 994], "quantifi": [516, 986], "email_part": [516, 986], "extracted_nr": 516, "910": [516, 986], "json_path_match": [517, 987], "jsonpath": [517, 518, 987, 988], "json_path": [518, 988], "json_val": [518, 988], "n_char": [519, 989], "caf\u00e9": [519, 522, 989, 992], "345": [519, 522, 989, 992], "\u6771\u4eac": [519, 522, 989, 992], "nchar": [519, 522], "fill_char": [520, 526, 990, 996], "justifi": [520, 526, 990, 996], "pad": [520, 526, 542, 990, 996, 1012], "cow": [520, 526, 990, 996], "monkei": [520, 526, 990, 996], "hippopotamu": [520, 526, 990, 996], "strip": [521, 527, 991, 997], "tworld": [521, 991, 1003], "wod": [521, 991], "rld": [521, 533, 991], "radix": [523, 993], "parseerror": [523, 993], "becom": [523, 993], "silent": [523, 993], "110": [523, 993], "010": [523, 993], "fa1e": [523, 993], "ff00": [523, 993], "cafe": [523, 993], "64030": [523, 993], "65280": [523, 993], "51966": [523, 993], "replace_al": [524, 994], "citi": 524, "philadelphia": 524, "season": 524, "spring": 524, "summer": 524, "autumn": 524, "winter": 524, "weather": [524, 994], "raini": [524, 994], "sunni": [524, 994], "cloudi": 524, "snowi": 524, "foggi": [524, 994], "123abc": [524, 994], "abc456": [524, 994], "abcabc": [525, 995], "123a123": [525, 995], "bc": [525, 622, 995], "trail": [527, 533, 997, 1003], "oldw": 527, "he": 527, "subslic": [528, 998], "pear": [528, 998], "papaya": [528, 998], "dragonfruit": [528, 998], "s_slice": 528, "ear": [528, 998], "aya": [528, 998], "uit": [528, 998], "ya": [528, 998], "onf": [528, 998], "a_1": [530, 1000, 1026, 1049], "d_4": [530, 1000], "rename_field": [530, 531, 1000, 1001], "first_part": [530, 531, 1000, 1001], "second_part": [530, 531, 1000, 1001], "remaind": [531, 1001], "app": [532, 1002], "has_prefix": 532, "nworld": 533, "ow": 533, "hell": [533, 1003], "polarstemporaltyp": [534, 1004], "introduc": [534, 535, 536, 1004, 1005, 1006], "penalti": [534, 535, 536, 1004, 1005, 1006], "clean": [534, 535, 536, 1004, 1005, 1006], "beforehand": [534, 535, 536, 1004, 1005, 1006], "certainli": [534, 535, 536, 1004, 1005, 1006], "3f": [534, 536, 1004, 1006], "00z": [534, 536, 1004, 1006], "sun": [534, 1004], "jul": [534, 1004], "34": [534, 1004], "inference_length": [537, 1007], "3420": [537, 1007], "120134": [537, 1007], "3212": [537, 1007], "143": [537, 1007, 1057], "lowercas": [538, 1008], "variant": [538, 540, 541], "titlecas": [540, 1010], "sing": [540, 1010], "welcom": [540, 1010], "THERE": [540, 1010], "NO": [540, 737, 1010], "There": [540, 1010], "uppercas": [541, 1011], "100000": 542, "0010": 542, "0001": 542, "00000": 542, "00001": 542, "cd": [543, 544], "struct_col": [543, 544], "www": 544, "xxx": 544, "yyi": 544, "zzz": 544, "obvious": 544, "structfieldnotfounderror": [544, 649], "761594": [552, 638, 1023, 1049], "replic": [553, 638, 1032, 1049], "vals_phys": [553, 638], "floordiv": [555, 638], "ieee": [555, 638], "754": [555, 638], "mathemat": [555, 591, 638], "undefin": [555, 638], "On": [555, 638], "operand": [555, 638], "infin": [555, 638], "value_count": [557, 638, 1049], "9223372036854775807": [558, 638], "multithread": [559, 638], "binary_str": [562, 638], "zfill": [562, 638], "250": [562, 638, 948, 1049, 1057], "bin_x": [562, 638], "bin_i": [562, 638], "xor_xi": [562, 638], "bin_xor_xi": [562, 638], "00001010": [562, 638], "00000001": [562, 638], "00001011": [562, 638], "00001000": [562, 638], "00000010": [562, 638], "11111010": [562, 638], "00000011": [562, 638], "249": [562, 638], "11111001": [562, 638], "01000010": [562, 638], "00000100": [562, 638], "70": [562, 638], "01000110": [562, 638], "AND": [563, 564, 737, 1030, 1049], "any_horizont": 565, "returns_scalar": 567, "product_a": 567, "49": 567, "arctan": [570, 571, 638, 1049], "angl": [570, 571], "plane": [570, 571], "rai": [570, 571], "tworoottwo": [570, 571], "arctan2d": 570, "atan2d": [570, 571], "atan2": [570, 571], "135": [570, 571], "356194": [570, 571], "arctan2": 571, "arg_tru": [573, 638, 1049], "more_nam": 576, "hamburg": 576, "lag": 577, "mimic": 577, "a_lag_": 577, "a_rol": 577, "swim": 578, "walk": 578, "full_sent": 578, "correlationmethod": 579, "propagate_nan": 579, "spearman": 579, "544705": 579, "covari": [581, 617], "acc": [582, 583, 594, 614], "include_init": 582, "accumul": [582, 583, 594, 614], "fn": [582, 583, 594, 614], "new_valu": [582, 583, 594, 614], "cumreduc": 582, "cumsum_horizont": 584, "1h30m25": [587, 588, 626, 627], "further": [587, 588, 1031, 1049], "granular": 587, "finer": 587, "permut": 587, "februari": 587, "febrari": 587, "28th": 587, "march": 587, "31st": 587, "approach": 587, "prior": 587, "began": 587, "januari": 587, "1mo_satur": 587, "month_end": 587, "routin": 587, "1985": 587, "america": 587, "new_york": 587, "est": 587, "999999": [589, 625, 626, 627, 737], "tbl_width_char": 590, "120": 590, "add_week": 590, "add_dai": 590, "add_second": 590, "add_milli": 590, "add_hour": 590, "a_b_doubl": 591, "f_string": 595, "placehold": 595, "hello_": 595, "_world": 595, "foo_": 595, "_bar_": 595, "foo_a_bar_1": 595, "foo_b_bar_2": 595, "foo_c_bar_3": 595, "epoch": 596, "timestep": 596, "1666683077": 596, "1666683099": 596, "12345": [596, 771, 851, 956, 1049], "12346": 596, "agg_group": [597, 638], "polarsintegertyp": [600, 601], "allow_object": 603, "valueexcept": 603, "test_func": 604, "max_horizont": 605, "min_horizont": [609, 618], "power": [619, 1049], "a_a": 619, "a_txt": 619, "605551": 620, "605551275463989": 620, "my_struct": 621, "isn": 629, "thens": 629, "elif": 629, "pick": 629, "arr": [631, 1030, 1041, 1049], "sometim": 637, "and_": 638, "approx_uniqu": [638, 734], "arcco": [638, 1049], "arccosh": [638, 1049], "arcsin": [638, 1049], "arcsinh": [638, 1049], "arctanh": [638, 1049], "arg_max": [638, 1049], "arg_min": [638, 1049], "arg_sort": [638, 1049], "arg_uniqu": [638, 1049], "backward_fil": 638, "cbrt": [638, 1049], "clip_max": [638, 1049], "clip_min": [638, 1049], "cosh": [638, 1049], "cumcount": 638, "cummax": [638, 1049], "cummin": [638, 1049], "cumulative_ev": [638, 1049], "cut": [638, 1049], "entropi": [638, 1049], "eq_miss": [638, 1049], "ewm_mean": [638, 1049], "ewm_std": [638, 1049], "ewm_var": [638, 1049], "extend_const": [638, 1049], "from_json": [638, 691, 734], "ge": [638, 1049], "gt": [638, 1049], "implod": [638, 1049], "inspect": [638, 734], "is_between": [638, 1049], "is_finit": [638, 1049], "is_first": [638, 1049], "is_in": [638, 1049], "is_infinit": [638, 1049], "is_nan": [638, 1049], "is_not_nan": [638, 1049], "is_not_nul": [638, 1049], "kurtosi": [638, 1049], "le": [638, 1049], "log10": [638, 1049], "log1p": [638, 1049], "mod": 638, "mul": 638, "nan_max": [638, 1049], "nan_min": [638, 1049], "ne_miss": [638, 1049], "or_": 638, "pct_chang": [638, 1049], "pow": [638, 1049], "qcut": [638, 1049], "reinterpret": [638, 1049], "repeat_bi": 638, "rle_id": [638, 1049], "rolling_appli": [638, 1049], "rolling_median": [638, 1049], "rolling_quantil": [638, 1049], "rolling_skew": [638, 1049], "rolling_std": [638, 1049], "rolling_var": [638, 1049], "search_sort": [638, 1049], "shrink_dtyp": [638, 1049], "sin": [638, 1049], "sinh": [638, 1049], "sort_bi": 638, "tan": [638, 1049], "to_phys": [638, 1049], "unique_count": [638, 1049], "xor": 638, "expos": 649, "miscellan": 649, "arrowerror": 649, "columnnotfounderror": 649, "duplicateerror": 649, "invalidoperationerror": 649, "nodataerror": 649, "polarspanicerror": 649, "schemaerror": 649, "schemafieldnotfounderror": 649, "shapeerror": 649, "parametr": 649, "build_info": 649, "get_index_typ": 649, "show_vers": 649, "threadpool_s": 649, "sqlcontext": [649, 1056], "hit": [653, 734], "node": [653, 673, 680, 684, 689, 692, 734], "huge": [656, 734], "saver": [656, 734], "purpos": [663, 734], "influenc": [663, 680, 734], "read_json": [668, 715, 734], "lazygroupbi": [669, 670, 671, 734], "other_lf": [675, 734], "validate_output_schema": [680, 734], "streamabl": [680, 684, 734], "past": [680, 734], "paramount": [680, 734], "elig": [680, 734], "invari": [680, 734], "upheld": [680, 734], "prune": [680, 734], "show_plot": [689, 734], "truncate_nod": [689, 734], "figsiz": [689, 699, 734], "gantt": [689, 734], "plot": [689, 699, 734], "groupby_partit": [689, 734], "470": [689, 734], "475": [689, 734], "1964": [689, 734], "swap": [692, 734], "output_path": [699, 734], "raw_output": [699, 734], "figur": [699, 734], "290994": [702, 734], "118034": [702, 734], "extern": [713, 734], "lf_other": [713, 734], "afoo": [713, 734], "cfoo": [713, 734], "train_lf": [713, 734], "feature_0": [713, 734], "feature_1": [713, 734], "test_lf": [713, 734], "_train": [713, 734], "feature_0_train": [713, 734], "dataframescan": [715, 734], "output_schema": [715, 734], "opaqu": 718, "idiomat": 718, "my_column": 718, "lf5": 734, "lf6": 734, "explain": 734, "sink_ipc": 734, "sink_parquet": 734, "with_context": 734, "intuit": 737, "relat": 737, "broadcast": 737, "emploi": 737, "complement": 737, "plenti": 737, "cde": 737, "fgg": 737, "jjk": 737, "lmn": 737, "opp": 737, "qqr": 737, "by_dtyp": 737, "as_expr": 737, "dispatch": 737, "2024": 737, "1_234_500": 737, "5_000_555": 737, "1234500": 737, "5000555": 737, "2010": 737, "4_500_000": 737, "4500000": 737, "3265500": 737, "by_nam": 737, "zap": 737, "tstamp_tokyo": 737, "987654": 737, "123465": 737, "tstamp_utc": 737, "2025": 737, "666000": 737, "tstamp": 737, "600000": 737, "123000": 737, "666": 737, "td1": 737, "123456": 737, "987000": 737, "td2": 737, "td3": 737, "2m": [737, 814], "456m": 737, "7d": 737, "456789\u00b5": 737, "18d": 737, "999999\u00b5": 737, "23h": 737, "987m": 737, "14d": 737, "16h": 737, "39m": 737, "21d": 737, "456001\u00b5": 737, "is_selector": 737, "obj": 737, "selector_column_nam": 737, "colz": [737, 1057], "include_categor": 737, "set_ord": 737, "2345": 737, "3456": 737, "append_chunk": [743, 1049], "behav": [743, 1049], "super": [743, 1049], "292432": [746, 1049], "549306": [750, 1049], "catnamespac": 767, "56789": [771, 851, 956, 1049], "901234": [771, 851, 956, 1049], "1232e": [778, 1049], "break_point_label": [785, 936, 1049], "break_point": [785, 856, 936, 1049], "category_label": [785, 936, 1049], "breakpoint": [785, 936, 1049], "quick": [786, 1049, 1057], "series_num": [786, 1049], "581139": [786, 1049], "series_str": [786, 1049], "datetimeindex": [788, 1049], "datetimenamespac": 791, "ser": [792, 796, 797, 800, 829, 832], "kathmandu": [796, 797, 829], "0545": [796, 797, 829], "500m": [809, 811, 819, 826], "500000": 809, "500000000": 819, "date_minus_1y_2mon": 821, "165": [825, 832], "series_equ": [825, 832, 1049], "timestamp_u": 830, "978307200000000000": 830, "978393600000000000": 830, "978480000000000000": 830, "005": [838, 1049], "06293300616044681": [838, 1049], "65": [838, 1049], "8568409950394724": [838, 1049], "4000000": [839, 1049], "814697265625": [839, 1049], "bitmask": [853, 1049], "swiftli": [853, 1049], "10734580197236529959": [854, 1049], "3022416320763508302": [854, 1049], "13756996518000038261": [854, 1049], "bin_count": [856, 1049], "occurr": [856, 1049], "a_count": [856, 1049], "listnamespac": 883, "field_2": 912, "n00": 912, "n01": 912, "n02": 912, "2147483648": [918, 1049], "iso3166": [919, 1049], "tur": [919, 1010, 1049], "jpn": [919, 1049], "nld": [919, 1049], "country_lookup": [919, 1049], "japan": [919, 1049], "t\u00fcrkiy": [919, 1049], "netherland": [919, 1049], "unrecognis": [919, 1049], "unspecifi": [919, 1049], "country_nam": [919, 1049], "166667": [932, 1049], "142857": [932, 1049], "peak": [933, 934, 1049], "nanstd": [946, 1049], "858612": [946, 1049], "200": [947, 948, 950, 1049], "150": [948, 1049], "350": [948, 1049], "450": [948, 1049], "dev": [953, 1049], "527525": [953, 1049], "57": [956, 1049, 1057], "frequent": [960, 961, 1049], "mutat": [961, 1049], "2246e": [970, 1022, 1049], "stringnamespac": 977, "orld": 997, "6331e16": [1022, 1049], "lib": [1025, 1049], "int64arrai": [1025, 1049], "a_2": [1026, 1049], "a_3": [1026, 1049], "s_from_str_repr": [1028, 1049], "zero_copy_onli": [1030, 1049], "writabl": [1030, 1049], "complet": [1030, 1049], "presenc": [1030, 1049], "immut": [1030, 1049], "127": [1036, 1049], "seriesview": [1039, 1049], "arraylik": 1049, "dtype_if_empti": 1049, "position": 1049, "scenario": 1049, "chunk_length": 1049, "get_chunk": 1049, "has_valid": 1049, "hist": 1049, "is_boolean": 1049, "is_float": 1049, "is_integ": 1049, "is_numer": [1049, 1057], "is_sort": 1049, "is_tempor": 1049, "is_utf8": 1049, "new_from_index": 1049, "peak_max": 1049, "peak_min": 1049, "set_at_idx": 1049, "two_a": 1056, "__enter__": 1056, "__exit__": 1056, "exc_typ": 1056, "baseexcept": 1056, "exc_val": 1056, "exc_tb": 1056, "tracebacktyp": 1056, "guid": 1057, "easi": 1057, "approxim": 1057, "own": 1057, "machin": 1057, "xdist": 1057, "significantli": 1057, "hardwar": 1057, "setup": 1057, "numeric_dtyp": 1057, "null_probabililti": 1057, "test_numer": 1057, "col0": 1057, "col4": 1057, "29096": 1057, "485": 1057, "2147483647": 1057, "8257e14": 1057, "7508": 1057, "37338": 1057, "7264": 1057, "321": 1057, "16996": 1057, "121": 1057, "361": 1057, "63204": 1057, "1443e235": 1057, "conform": 1057, "ascii_lett": 1057, "id_char": 1057, "alphabet": 1057, "price": 1057, "min_valu": 1057, "max_valu": 1057, "test_price_calcul": 1057, "a101": 1057, "8nin": 1057, "qhoo": 1057, "714": 1057, "544": 1057, "i0e0": 1057, "0000": 1057, "test_miscellan": 1057, "235": 1057, "87": 1057, "186": 1057, "174": 1057, "179": 1057, "213": 1057, "221": 1057, "86": 1057, "255": 1057}, "objects": {"polars": [[2, 0, 1, "", "Array"], [3, 0, 1, "", "Binary"], [4, 0, 1, "", "Boolean"], [5, 0, 1, "", "Categorical"], [36, 0, 1, "", "DataType"], [37, 0, 1, "", "Date"], [38, 0, 1, "", "Datetime"], [39, 0, 1, "", "Decimal"], [40, 0, 1, "", "Duration"], [41, 0, 1, "", "Float32"], [42, 0, 1, "", "Float64"], [43, 0, 1, "", "Int16"], [44, 0, 1, "", "Int32"], [45, 0, 1, "", "Int64"], [46, 0, 1, "", "Int8"], [49, 0, 1, "", "List"], [50, 0, 1, "", "Null"], [51, 0, 1, "", "Object"], [1056, 0, 1, "", "SQLContext"], [58, 0, 1, "", "StringCache"], [59, 0, 1, "", "Struct"], [60, 0, 1, "", "Time"], [61, 0, 1, "", "UInt16"], [62, 0, 1, "", "UInt32"], [63, 0, 1, "", "UInt64"], [64, 0, 1, "", "UInt8"], [65, 0, 1, "", "Unknown"], [66, 0, 1, "", "Utf8"], [67, 4, 1, "", "align_frames"], [563, 4, 1, "", "all"], [564, 4, 1, "", "all_horizontal"], [565, 4, 1, "", "any"], [566, 4, 1, "", "any_horizontal"], [567, 4, 1, "", "apply"], [568, 4, 1, "", "approx_unique"], [569, 4, 1, "", "arange"], [570, 4, 1, "", "arctan2"], [571, 4, 1, "", "arctan2d"], [572, 4, 1, "", "arg_sort_by"], [573, 4, 1, "", "arg_where"], [574, 4, 1, "", "avg"], [72, 4, 1, "", "build_info"], [575, 4, 1, "", "coalesce"], [576, 4, 1, "", "col"], [73, 4, 1, "", "collect_all"], [74, 4, 1, "", "concat"], [577, 4, 1, "", "concat_list"], [578, 4, 1, "", "concat_str"], [579, 4, 1, "", "corr"], [580, 4, 1, "", "count"], [581, 4, 1, "", "cov"], [582, 4, 1, "", "cumfold"], [583, 4, 1, "", "cumreduce"], [584, 4, 1, "", "cumsum"], [585, 4, 1, "", "cumsum_horizontal"], [586, 4, 1, "", "date"], [587, 4, 1, "", "date_range"], [588, 4, 1, "", "date_ranges"], [589, 4, 1, "", "datetime"], [590, 4, 1, "", "duration"], [591, 4, 1, "", "element"], [75, 4, 1, "", "enable_string_cache"], [592, 4, 1, "", "exclude"], [593, 4, 1, "", "first"], [594, 4, 1, "", "fold"], [595, 4, 1, "", "format"], [90, 4, 1, "", "from_arrow"], [91, 4, 1, "", "from_dataframe"], [92, 4, 1, "", "from_dict"], [93, 4, 1, "", "from_dicts"], [596, 4, 1, "", "from_epoch"], [94, 4, 1, "", "from_numpy"], [95, 4, 1, "", "from_pandas"], [96, 4, 1, "", "from_records"], [97, 4, 1, "", "from_repr"], [98, 4, 1, "", "get_index_type"], [597, 4, 1, "", "groups"], [598, 4, 1, "", "head"], [599, 4, 1, "", "implode"], [600, 4, 1, "", "int_range"], [601, 4, 1, "", "int_ranges"], [602, 4, 1, "", "last"], [603, 4, 1, "", "lit"], [604, 4, 1, "", "map"], [605, 4, 1, "", "max"], [606, 4, 1, "", "max_horizontal"], [607, 4, 1, "", "mean"], [608, 4, 1, "", "median"], [609, 4, 1, "", "min"], [610, 4, 1, "", "min_horizontal"], [611, 4, 1, "", "n_unique"], [612, 4, 1, "", "ones"], [613, 4, 1, "", "quantile"], [100, 4, 1, "", "read_avro"], [101, 4, 1, "", "read_csv"], [102, 4, 1, "", "read_csv_batched"], [103, 4, 1, "", "read_database"], [104, 4, 1, "", "read_delta"], [105, 4, 1, "", "read_excel"], [106, 4, 1, "", "read_ipc"], [107, 4, 1, "", "read_ipc_schema"], [108, 4, 1, "", "read_json"], [109, 4, 1, "", "read_ndjson"], [110, 4, 1, "", "read_parquet"], [111, 4, 1, "", "read_parquet_schema"], [614, 4, 1, "", "reduce"], [615, 4, 1, "", "repeat"], [616, 4, 1, "", "rolling_corr"], [617, 4, 1, "", "rolling_cov"], [112, 4, 1, "", "scan_csv"], [113, 4, 1, "", "scan_delta"], [114, 4, 1, "", "scan_ipc"], [115, 4, 1, "", "scan_ndjson"], [116, 4, 1, "", "scan_parquet"], [117, 4, 1, "", "scan_pyarrow_dataset"], [618, 4, 1, "", "select"], [737, 6, 0, "-", "selectors"], [118, 4, 1, "", "show_versions"], [619, 4, 1, "", "sql_expr"], [620, 4, 1, "", "std"], [621, 4, 1, "", "struct"], [622, 4, 1, "", "sum"], [623, 4, 1, "", "sum_horizontal"], [624, 4, 1, "", "tail"], [128, 4, 1, "", "threadpool_size"], [625, 4, 1, "", "time"], [626, 4, 1, "", "time_range"], [627, 4, 1, "", "time_ranges"], [129, 4, 1, "", "using_string_cache"], [628, 4, 1, "", "var"], [629, 4, 1, "", "when"], [630, 4, 1, "", "zeros"]], "polars.Array": [[2, 1, 1, "", "__init__"]], "polars.Binary": [[3, 1, 1, "", "__init__"]], "polars.Boolean": [[4, 1, 1, "", "__init__"]], "polars.Categorical": [[5, 1, 1, "", "__init__"]], "polars.Config": [[6, 1, 1, "", "activate_decimals"], [7, 1, 1, "", "load"], [8, 1, 1, "", "restore_defaults"], [9, 1, 1, "", "save"], [10, 1, 1, "", "set_ascii_tables"], [11, 1, 1, "", "set_fmt_float"], [12, 1, 1, "", "set_fmt_str_lengths"], [13, 1, 1, "", "set_streaming_chunk_size"], [14, 1, 1, "", "set_tbl_cell_alignment"], [15, 1, 1, "", "set_tbl_cols"], [16, 1, 1, "", "set_tbl_column_data_type_inline"], [17, 1, 1, "", "set_tbl_dataframe_shape_below"], [18, 1, 1, "", "set_tbl_formatting"], [19, 1, 1, "", "set_tbl_hide_column_data_types"], [20, 1, 1, "", "set_tbl_hide_column_names"], [21, 1, 1, "", "set_tbl_hide_dataframe_shape"], [22, 1, 1, "", "set_tbl_hide_dtype_separator"], [23, 1, 1, "", "set_tbl_rows"], [24, 1, 1, "", "set_tbl_width_chars"], [25, 1, 1, "", "set_verbose"], [26, 1, 1, "", "state"]], "polars.DataFrame": [[132, 1, 1, "", "__dataframe__"], [133, 1, 1, "", "apply"], [134, 1, 1, "", "bottom_k"], [135, 1, 1, "", "clear"], [136, 1, 1, "", "clone"], [137, 2, 1, "", "columns"], [138, 1, 1, "", "corr"], [139, 1, 1, "", "describe"], [140, 1, 1, "", "drop"], [141, 1, 1, "", "drop_in_place"], [142, 1, 1, "", "drop_nulls"], [143, 2, 1, "", "dtypes"], [144, 1, 1, "", "estimated_size"], [145, 1, 1, "", "explode"], [146, 1, 1, "", "extend"], [147, 1, 1, "", "fill_nan"], [148, 1, 1, "", "fill_null"], [149, 1, 1, "", "filter"], [150, 1, 1, "", "find_idx_by_name"], [151, 2, 1, "", "flags"], [152, 1, 1, "", "fold"], [153, 1, 1, "", "frame_equal"], [154, 1, 1, "", "get_column"], [155, 1, 1, "", "get_columns"], [156, 1, 1, "", "glimpse"], [157, 1, 1, "", "groupby"], [158, 1, 1, "", "groupby_dynamic"], [159, 1, 1, "", "groupby_rolling"], [160, 1, 1, "", "hash_rows"], [161, 1, 1, "", "head"], [162, 2, 1, "", "height"], [163, 1, 1, "", "hstack"], [164, 1, 1, "", "insert_at_idx"], [165, 1, 1, "", "interpolate"], [166, 1, 1, "", "is_duplicated"], [167, 1, 1, "", "is_empty"], [168, 1, 1, "", "is_unique"], [169, 1, 1, "", "item"], [170, 1, 1, "", "iter_rows"], [171, 1, 1, "", "iter_slices"], [172, 1, 1, "", "join"], [173, 1, 1, "", "join_asof"], [174, 1, 1, "", "lazy"], [175, 1, 1, "", "limit"], [176, 1, 1, "", "max"], [177, 1, 1, "", "mean"], [178, 1, 1, "", "median"], [179, 1, 1, "", "melt"], [180, 1, 1, "", "merge_sorted"], [181, 1, 1, "", "min"], [182, 1, 1, "", "n_chunks"], [183, 1, 1, "", "n_unique"], [184, 1, 1, "", "null_count"], [185, 1, 1, "", "partition_by"], [186, 1, 1, "", "pipe"], [187, 1, 1, "", "pivot"], [188, 1, 1, "", "product"], [189, 1, 1, "", "quantile"], [190, 1, 1, "", "rechunk"], [191, 1, 1, "", "rename"], [192, 1, 1, "", "replace"], [193, 1, 1, "", "replace_at_idx"], [194, 1, 1, "", "reverse"], [195, 1, 1, "", "row"], [196, 1, 1, "", "rows"], [197, 1, 1, "", "rows_by_key"], [198, 1, 1, "", "sample"], [199, 2, 1, "", "schema"], [200, 1, 1, "", "select"], [201, 1, 1, "", "set_sorted"], [202, 2, 1, "", "shape"], [203, 1, 1, "", "shift"], [204, 1, 1, "", "shift_and_fill"], [205, 1, 1, "", "shrink_to_fit"], [206, 1, 1, "", "slice"], [207, 1, 1, "", "sort"], [208, 1, 1, "", "std"], [209, 1, 1, "", "sum"], [210, 1, 1, "", "tail"], [211, 1, 1, "", "take_every"], [212, 1, 1, "", "to_arrow"], [213, 1, 1, "", "to_dict"], [214, 1, 1, "", "to_dicts"], [215, 1, 1, "", "to_dummies"], [216, 1, 1, "", "to_init_repr"], [217, 1, 1, "", "to_numpy"], [218, 1, 1, "", "to_pandas"], [219, 1, 1, "", "to_series"], [220, 1, 1, "", "to_struct"], [221, 1, 1, "", "top_k"], [222, 1, 1, "", "transpose"], [223, 1, 1, "", "unique"], [224, 1, 1, "", "unnest"], [225, 1, 1, "", "unstack"], [226, 1, 1, "", "update"], [227, 1, 1, "", "upsample"], [228, 1, 1, "", "var"], [229, 1, 1, "", "vstack"], [230, 2, 1, "", "width"], [231, 1, 1, "", "with_columns"], [232, 1, 1, "", "with_row_count"], [27, 1, 1, "", "write_avro"], [28, 1, 1, "", "write_csv"], [29, 1, 1, "", "write_database"], [30, 1, 1, "", "write_delta"], [31, 1, 1, "", "write_excel"], [32, 1, 1, "", "write_ipc"], [33, 1, 1, "", "write_json"], [34, 1, 1, "", "write_ndjson"], [35, 1, 1, "", "write_parquet"]], "polars.DataType": [[36, 1, 1, "", "__init__"]], "polars.Date": [[37, 1, 1, "", "__init__"]], "polars.Datetime": [[38, 1, 1, "", "__init__"]], "polars.Decimal": [[39, 1, 1, "", "__init__"]], "polars.Duration": [[40, 1, 1, "", "__init__"]], "polars.Expr": [[260, 1, 1, "", "abs"], [261, 1, 1, "", "add"], [262, 1, 1, "", "agg_groups"], [263, 1, 1, "", "alias"], [264, 1, 1, "", "all"], [265, 1, 1, "", "and_"], [266, 1, 1, "", "any"], [267, 1, 1, "", "append"], [268, 1, 1, "", "apply"], [269, 1, 1, "", "approx_unique"], [270, 1, 1, "", "arccos"], [271, 1, 1, "", "arccosh"], [272, 1, 1, "", "arcsin"], [273, 1, 1, "", "arcsinh"], [274, 1, 1, "", "arctan"], [275, 1, 1, "", "arctanh"], [276, 1, 1, "", "arg_max"], [277, 1, 1, "", "arg_min"], [278, 1, 1, "", "arg_sort"], [279, 1, 1, "", "arg_true"], [280, 1, 1, "", "arg_unique"], [285, 1, 1, "", "backward_fill"], [291, 1, 1, "", "bottom_k"], [292, 1, 1, "", "cache"], [293, 1, 1, "", "cast"], [296, 1, 1, "", "cbrt"], [297, 1, 1, "", "ceil"], [298, 1, 1, "", "clip"], [299, 1, 1, "", "clip_max"], [300, 1, 1, "", "clip_min"], [301, 1, 1, "", "cos"], [302, 1, 1, "", "cosh"], [303, 1, 1, "", "count"], [304, 1, 1, "", "cumcount"], [305, 1, 1, "", "cummax"], [306, 1, 1, "", "cummin"], [307, 1, 1, "", "cumprod"], [308, 1, 1, "", "cumsum"], [309, 1, 1, "", "cumulative_eval"], [310, 1, 1, "", "cut"], [311, 1, 1, "", "degrees"], [312, 1, 1, "", "diff"], [313, 1, 1, "", "dot"], [314, 1, 1, "", "drop_nans"], [315, 1, 1, "", "drop_nulls"], [357, 1, 1, "", "entropy"], [358, 1, 1, "", "eq"], [359, 1, 1, "", "eq_missing"], [360, 1, 1, "", "ewm_mean"], [361, 1, 1, "", "ewm_std"], [362, 1, 1, "", "ewm_var"], [363, 1, 1, "", "exclude"], [364, 1, 1, "", "exp"], [365, 1, 1, "", "explode"], [366, 1, 1, "", "extend_constant"], [367, 1, 1, "", "fill_nan"], [368, 1, 1, "", "fill_null"], [369, 1, 1, "", "filter"], [370, 1, 1, "", "first"], [371, 1, 1, "", "flatten"], [372, 1, 1, "", "floor"], [373, 1, 1, "", "floordiv"], [374, 1, 1, "", "forward_fill"], [375, 1, 1, "", "from_json"], [376, 1, 1, "", "ge"], [377, 1, 1, "", "gt"], [378, 1, 1, "", "hash"], [379, 1, 1, "", "head"], [380, 1, 1, "", "implode"], [381, 1, 1, "", "inspect"], [382, 1, 1, "", "interpolate"], [383, 1, 1, "", "is_between"], [384, 1, 1, "", "is_duplicated"], [385, 1, 1, "", "is_finite"], [386, 1, 1, "", "is_first"], [387, 1, 1, "", "is_in"], [388, 1, 1, "", "is_infinite"], [389, 1, 1, "", "is_nan"], [390, 1, 1, "", "is_not"], [391, 1, 1, "", "is_not_nan"], [392, 1, 1, "", "is_not_null"], [393, 1, 1, "", "is_null"], [394, 1, 1, "", "is_unique"], [395, 1, 1, "", "keep_name"], [396, 1, 1, "", "kurtosis"], [397, 1, 1, "", "last"], [398, 1, 1, "", "le"], [399, 1, 1, "", "len"], [400, 1, 1, "", "limit"], [432, 1, 1, "", "log"], [433, 1, 1, "", "log10"], [434, 1, 1, "", "log1p"], [435, 1, 1, "", "lower_bound"], [436, 1, 1, "", "lt"], [437, 1, 1, "", "map"], [438, 1, 1, "", "map_alias"], [439, 1, 1, "", "map_dict"], [440, 1, 1, "", "max"], [441, 1, 1, "", "mean"], [442, 1, 1, "", "median"], [453, 1, 1, "", "min"], [454, 1, 1, "", "mod"], [455, 1, 1, "", "mode"], [456, 1, 1, "", "mul"], [457, 1, 1, "", "n_unique"], [458, 1, 1, "", "nan_max"], [459, 1, 1, "", "nan_min"], [460, 1, 1, "", "ne"], [461, 1, 1, "", "ne_missing"], [462, 1, 1, "", "null_count"], [463, 1, 1, "", "or_"], [464, 1, 1, "", "over"], [465, 1, 1, "", "pct_change"], [466, 1, 1, "", "pipe"], [467, 1, 1, "", "pow"], [468, 1, 1, "", "prefix"], [469, 1, 1, "", "product"], [470, 1, 1, "", "qcut"], [471, 1, 1, "", "quantile"], [472, 1, 1, "", "radians"], [473, 1, 1, "", "rank"], [474, 1, 1, "", "rechunk"], [475, 1, 1, "", "reinterpret"], [476, 1, 1, "", "repeat_by"], [477, 1, 1, "", "reshape"], [478, 1, 1, "", "reverse"], [479, 1, 1, "", "rle"], [480, 1, 1, "", "rle_id"], [481, 1, 1, "", "rolling_apply"], [482, 1, 1, "", "rolling_max"], [483, 1, 1, "", "rolling_mean"], [484, 1, 1, "", "rolling_median"], [485, 1, 1, "", "rolling_min"], [486, 1, 1, "", "rolling_quantile"], [487, 1, 1, "", "rolling_skew"], [488, 1, 1, "", "rolling_std"], [489, 1, 1, "", "rolling_sum"], [490, 1, 1, "", "rolling_var"], [491, 1, 1, "", "round"], [492, 1, 1, "", "sample"], [493, 1, 1, "", "search_sorted"], [494, 1, 1, "", "set_sorted"], [495, 1, 1, "", "shift"], [496, 1, 1, "", "shift_and_fill"], [497, 1, 1, "", "shrink_dtype"], [498, 1, 1, "", "shuffle"], [499, 1, 1, "", "sign"], [500, 1, 1, "", "sin"], [501, 1, 1, "", "sinh"], [502, 1, 1, "", "skew"], [503, 1, 1, "", "slice"], [504, 1, 1, "", "sort"], [505, 1, 1, "", "sort_by"], [506, 1, 1, "", "sqrt"], [507, 1, 1, "", "std"], [545, 1, 1, "", "sub"], [546, 1, 1, "", "suffix"], [547, 1, 1, "", "sum"], [548, 1, 1, "", "tail"], [549, 1, 1, "", "take"], [550, 1, 1, "", "take_every"], [551, 1, 1, "", "tan"], [552, 1, 1, "", "tanh"], [553, 1, 1, "", "to_physical"], [554, 1, 1, "", "top_k"], [555, 1, 1, "", "truediv"], [556, 1, 1, "", "unique"], [557, 1, 1, "", "unique_counts"], [558, 1, 1, "", "upper_bound"], [559, 1, 1, "", "value_counts"], [560, 1, 1, "", "var"], [561, 1, 1, "", "where"], [562, 1, 1, "", "xor"]], "polars.Expr.arr": [[281, 1, 1, "", "max"], [282, 1, 1, "", "min"], [283, 1, 1, "", "sum"], [284, 1, 1, "", "unique"]], "polars.Expr.bin": [[286, 1, 1, "", "contains"], [287, 1, 1, "", "decode"], [288, 1, 1, "", "encode"], [289, 1, 1, "", "ends_with"], [290, 1, 1, "", "starts_with"]], "polars.Expr.cat": [[294, 1, 1, "", "get_categories"], [295, 1, 1, "", "set_ordering"]], "polars.Expr.dt": [[316, 1, 1, "", "base_utc_offset"], [317, 1, 1, "", "cast_time_unit"], [318, 1, 1, "", "combine"], [319, 1, 1, "", "convert_time_zone"], [320, 1, 1, "", "date"], [321, 1, 1, "", "datetime"], [322, 1, 1, "", "day"], [323, 1, 1, "", "days"], [324, 1, 1, "", "dst_offset"], [325, 1, 1, "", "epoch"], [326, 1, 1, "", "hour"], [327, 1, 1, "", "hours"], [328, 1, 1, "", "is_leap_year"], [329, 1, 1, "", "iso_year"], [330, 1, 1, "", "microsecond"], [331, 1, 1, "", "microseconds"], [332, 1, 1, "", "millisecond"], [333, 1, 1, "", "milliseconds"], [334, 1, 1, "", "minute"], [335, 1, 1, "", "minutes"], [336, 1, 1, "", "month"], [337, 1, 1, "", "month_end"], [338, 1, 1, "", "month_start"], [339, 1, 1, "", "nanosecond"], [340, 1, 1, "", "nanoseconds"], [341, 1, 1, "", "offset_by"], [342, 1, 1, "", "ordinal_day"], [343, 1, 1, "", "quarter"], [344, 1, 1, "", "replace_time_zone"], [345, 1, 1, "", "round"], [346, 1, 1, "", "second"], [347, 1, 1, "", "seconds"], [348, 1, 1, "", "strftime"], [349, 1, 1, "", "time"], [350, 1, 1, "", "timestamp"], [351, 1, 1, "", "to_string"], [352, 1, 1, "", "truncate"], [353, 1, 1, "", "week"], [354, 1, 1, "", "weekday"], [355, 1, 1, "", "with_time_unit"], [356, 1, 1, "", "year"]], "polars.Expr.list": [[401, 1, 1, "", "all"], [402, 1, 1, "", "any"], [403, 1, 1, "", "arg_max"], [404, 1, 1, "", "arg_min"], [405, 1, 1, "", "concat"], [406, 1, 1, "", "contains"], [407, 1, 1, "", "count_match"], [408, 1, 1, "", "diff"], [409, 1, 1, "", "difference"], [410, 1, 1, "", "eval"], [411, 1, 1, "", "explode"], [412, 1, 1, "", "first"], [413, 1, 1, "", "get"], [414, 1, 1, "", "head"], [415, 1, 1, "", "intersection"], [416, 1, 1, "", "join"], [417, 1, 1, "", "last"], [418, 1, 1, "", "lengths"], [419, 1, 1, "", "max"], [420, 1, 1, "", "mean"], [421, 1, 1, "", "min"], [422, 1, 1, "", "reverse"], [423, 1, 1, "", "shift"], [424, 1, 1, "", "slice"], [425, 1, 1, "", "sort"], [426, 1, 1, "", "sum"], [427, 1, 1, "", "tail"], [428, 1, 1, "", "take"], [429, 1, 1, "", "to_struct"], [430, 1, 1, "", "union"], [431, 1, 1, "", "unique"]], "polars.Expr.meta": [[443, 1, 1, "", "eq"], [444, 1, 1, "", "has_multiple_outputs"], [445, 1, 1, "", "is_regex_projection"], [446, 1, 1, "", "ne"], [447, 1, 1, "", "output_name"], [448, 1, 1, "", "pop"], [449, 1, 1, "", "root_names"], [450, 1, 1, "", "tree_format"], [451, 1, 1, "", "undo_aliases"], [452, 1, 1, "", "write_json"]], "polars.Expr.str": [[508, 1, 1, "", "concat"], [509, 1, 1, "", "contains"], [510, 1, 1, "", "count_match"], [511, 1, 1, "", "decode"], [512, 1, 1, "", "encode"], [513, 1, 1, "", "ends_with"], [514, 1, 1, "", "explode"], [515, 1, 1, "", "extract"], [516, 1, 1, "", "extract_all"], [517, 1, 1, "", "json_extract"], [518, 1, 1, "", "json_path_match"], [519, 1, 1, "", "lengths"], [520, 1, 1, "", "ljust"], [521, 1, 1, "", "lstrip"], [522, 1, 1, "", "n_chars"], [523, 1, 1, "", "parse_int"], [524, 1, 1, "", "replace"], [525, 1, 1, "", "replace_all"], [526, 1, 1, "", "rjust"], [527, 1, 1, "", "rstrip"], [528, 1, 1, "", "slice"], [529, 1, 1, "", "split"], [530, 1, 1, "", "split_exact"], [531, 1, 1, "", "splitn"], [532, 1, 1, "", "starts_with"], [533, 1, 1, "", "strip"], [534, 1, 1, "", "strptime"], [535, 1, 1, "", "to_date"], [536, 1, 1, "", "to_datetime"], [537, 1, 1, "", "to_decimal"], [538, 1, 1, "", "to_lowercase"], [539, 1, 1, "", "to_time"], [540, 1, 1, "", "to_titlecase"], [541, 1, 1, "", "to_uppercase"], [542, 1, 1, "", "zfill"]], "polars.Expr.struct": [[543, 1, 1, "", "field"], [544, 1, 1, "", "rename_fields"]], "polars.Float32": [[41, 1, 1, "", "__init__"]], "polars.Float64": [[42, 1, 1, "", "__init__"]], "polars.Int16": [[43, 1, 1, "", "__init__"]], "polars.Int32": [[44, 1, 1, "", "__init__"]], "polars.Int64": [[45, 1, 1, "", "__init__"]], "polars.Int8": [[46, 1, 1, "", "__init__"]], "polars.LazyFrame": [[652, 1, 1, "", "bottom_k"], [653, 1, 1, "", "cache"], [654, 1, 1, "", "clear"], [655, 1, 1, "", "clone"], [656, 1, 1, "", "collect"], [657, 2, 1, "", "columns"], [658, 1, 1, "", "drop"], [659, 1, 1, "", "drop_nulls"], [660, 2, 1, "", "dtypes"], [661, 1, 1, "", "explain"], [662, 1, 1, "", "explode"], [663, 1, 1, "", "fetch"], [664, 1, 1, "", "fill_nan"], [665, 1, 1, "", "fill_null"], [666, 1, 1, "", "filter"], [667, 1, 1, "", "first"], [668, 1, 1, "", "from_json"], [669, 1, 1, "", "groupby"], [670, 1, 1, "", "groupby_dynamic"], [671, 1, 1, "", "groupby_rolling"], [672, 1, 1, "", "head"], [673, 1, 1, "", "inspect"], [674, 1, 1, "", "interpolate"], [675, 1, 1, "", "join"], [676, 1, 1, "", "join_asof"], [677, 1, 1, "", "last"], [678, 1, 1, "", "lazy"], [679, 1, 1, "", "limit"], [680, 1, 1, "", "map"], [681, 1, 1, "", "max"], [682, 1, 1, "", "mean"], [683, 1, 1, "", "median"], [684, 1, 1, "", "melt"], [685, 1, 1, "", "merge_sorted"], [686, 1, 1, "", "min"], [687, 1, 1, "", "null_count"], [688, 1, 1, "", "pipe"], [689, 1, 1, "", "profile"], [690, 1, 1, "", "quantile"], [691, 1, 1, "", "read_json"], [692, 1, 1, "", "rename"], [693, 1, 1, "", "reverse"], [694, 2, 1, "", "schema"], [695, 1, 1, "", "select"], [696, 1, 1, "", "set_sorted"], [697, 1, 1, "", "shift"], [698, 1, 1, "", "shift_and_fill"], [699, 1, 1, "", "show_graph"], [47, 1, 1, "", "sink_ipc"], [48, 1, 1, "", "sink_parquet"], [700, 1, 1, "", "slice"], [701, 1, 1, "", "sort"], [702, 1, 1, "", "std"], [703, 1, 1, "", "sum"], [704, 1, 1, "", "tail"], [705, 1, 1, "", "take_every"], [706, 1, 1, "", "top_k"], [707, 1, 1, "", "unique"], [708, 1, 1, "", "unnest"], [709, 1, 1, "", "update"], [710, 1, 1, "", "var"], [711, 2, 1, "", "width"], [712, 1, 1, "", "with_columns"], [713, 1, 1, "", "with_context"], [714, 1, 1, "", "with_row_count"], [715, 1, 1, "", "write_json"]], "polars.List": [[49, 1, 1, "", "__init__"]], "polars.Null": [[50, 1, 1, "", "__init__"]], "polars.Object": [[51, 1, 1, "", "__init__"]], "polars.SQLContext": [[1056, 1, 1, "", "__enter__"], [1056, 1, 1, "", "__exit__"], [1056, 1, 1, "", "__init__"], [52, 1, 1, "", "execute"], [53, 1, 1, "", "register"], [54, 1, 1, "", "register_globals"], [55, 1, 1, "", "register_many"], [56, 1, 1, "", "tables"], [57, 1, 1, "", "unregister"]], "polars.Series": [[739, 1, 1, "", "abs"], [740, 1, 1, "", "alias"], [741, 1, 1, "", "all"], [742, 1, 1, "", "any"], [743, 1, 1, "", "append"], [744, 1, 1, "", "apply"], [745, 1, 1, "", "arccos"], [746, 1, 1, "", "arccosh"], [747, 1, 1, "", "arcsin"], [748, 1, 1, "", "arcsinh"], [749, 1, 1, "", "arctan"], [750, 1, 1, "", "arctanh"], [751, 1, 1, "", "arg_max"], [752, 1, 1, "", "arg_min"], [753, 1, 1, "", "arg_sort"], [754, 1, 1, "", "arg_true"], [755, 1, 1, "", "arg_unique"], [765, 1, 1, "", "bottom_k"], [766, 1, 1, "", "cast"], [767, 3, 1, "", "cat"], [770, 1, 1, "", "cbrt"], [771, 1, 1, "", "ceil"], [772, 1, 1, "", "chunk_lengths"], [773, 1, 1, "", "clear"], [774, 1, 1, "", "clip"], [775, 1, 1, "", "clip_max"], [776, 1, 1, "", "clip_min"], [777, 1, 1, "", "clone"], [778, 1, 1, "", "cos"], [779, 1, 1, "", "cosh"], [780, 1, 1, "", "cummax"], [781, 1, 1, "", "cummin"], [782, 1, 1, "", "cumprod"], [783, 1, 1, "", "cumsum"], [784, 1, 1, "", "cumulative_eval"], [785, 1, 1, "", "cut"], [786, 1, 1, "", "describe"], [787, 1, 1, "", "diff"], [788, 1, 1, "", "dot"], [789, 1, 1, "", "drop_nans"], [790, 1, 1, "", "drop_nulls"], [791, 3, 1, "", "dt"], [837, 3, 1, "", "dtype"], [838, 1, 1, "", "entropy"], [839, 1, 1, "", "estimated_size"], [840, 1, 1, "", "ewm_mean"], [841, 1, 1, "", "ewm_std"], [842, 1, 1, "", "ewm_var"], [843, 1, 1, "", "exp"], [844, 1, 1, "", "explode"], [845, 1, 1, "", "extend"], [846, 1, 1, "", "extend_constant"], [847, 1, 1, "", "fill_nan"], [848, 1, 1, "", "fill_null"], [849, 1, 1, "", "filter"], [850, 3, 1, "", "flags"], [851, 1, 1, "", "floor"], [852, 1, 1, "", "get_chunks"], [853, 1, 1, "", "has_validity"], [854, 1, 1, "", "hash"], [855, 1, 1, "", "head"], [856, 1, 1, "", "hist"], [857, 1, 1, "", "implode"], [858, 3, 1, "", "inner_dtype"], [859, 1, 1, "", "interpolate"], [860, 1, 1, "", "is_between"], [861, 1, 1, "", "is_boolean"], [862, 1, 1, "", "is_duplicated"], [863, 1, 1, "", "is_empty"], [864, 1, 1, "", "is_finite"], [865, 1, 1, "", "is_first"], [866, 1, 1, "", "is_float"], [867, 1, 1, "", "is_in"], [868, 1, 1, "", "is_infinite"], [869, 1, 1, "", "is_integer"], [870, 1, 1, "", "is_nan"], [871, 1, 1, "", "is_not_nan"], [872, 1, 1, "", "is_not_null"], [873, 1, 1, "", "is_null"], [874, 1, 1, "", "is_numeric"], [875, 1, 1, "", "is_sorted"], [876, 1, 1, "", "is_temporal"], [877, 1, 1, "", "is_unique"], [878, 1, 1, "", "is_utf8"], [879, 1, 1, "", "item"], [880, 1, 1, "", "kurtosis"], [881, 1, 1, "", "len"], [882, 1, 1, "", "limit"], [883, 3, 1, "", "list"], [915, 1, 1, "", "log"], [916, 1, 1, "", "log10"], [917, 1, 1, "", "log1p"], [918, 1, 1, "", "lower_bound"], [919, 1, 1, "", "map_dict"], [920, 1, 1, "", "max"], [921, 1, 1, "", "mean"], [922, 1, 1, "", "median"], [923, 1, 1, "", "min"], [924, 1, 1, "", "mode"], [925, 1, 1, "", "n_chunks"], [926, 1, 1, "", "n_unique"], [927, 3, 1, "", "name"], [928, 1, 1, "", "nan_max"], [929, 1, 1, "", "nan_min"], [930, 1, 1, "", "new_from_index"], [931, 1, 1, "", "null_count"], [932, 1, 1, "", "pct_change"], [933, 1, 1, "", "peak_max"], [934, 1, 1, "", "peak_min"], [935, 1, 1, "", "product"], [936, 1, 1, "", "qcut"], [937, 1, 1, "", "quantile"], [938, 1, 1, "", "rank"], [939, 1, 1, "", "rechunk"], [940, 1, 1, "", "reinterpret"], [941, 1, 1, "", "rename"], [942, 1, 1, "", "reshape"], [943, 1, 1, "", "reverse"], [944, 1, 1, "", "rle"], [945, 1, 1, "", "rle_id"], [946, 1, 1, "", "rolling_apply"], [947, 1, 1, "", "rolling_max"], [948, 1, 1, "", "rolling_mean"], [949, 1, 1, "", "rolling_median"], [950, 1, 1, "", "rolling_min"], [951, 1, 1, "", "rolling_quantile"], [952, 1, 1, "", "rolling_skew"], [953, 1, 1, "", "rolling_std"], [954, 1, 1, "", "rolling_sum"], [955, 1, 1, "", "rolling_var"], [956, 1, 1, "", "round"], [957, 1, 1, "", "sample"], [958, 1, 1, "", "search_sorted"], [959, 1, 1, "", "series_equal"], [960, 1, 1, "", "set"], [961, 1, 1, "", "set_at_idx"], [962, 1, 1, "", "set_sorted"], [963, 3, 1, "", "shape"], [964, 1, 1, "", "shift"], [965, 1, 1, "", "shift_and_fill"], [966, 1, 1, "", "shrink_dtype"], [967, 1, 1, "", "shrink_to_fit"], [968, 1, 1, "", "shuffle"], [969, 1, 1, "", "sign"], [970, 1, 1, "", "sin"], [971, 1, 1, "", "sinh"], [972, 1, 1, "", "skew"], [973, 1, 1, "", "slice"], [974, 1, 1, "", "sort"], [975, 1, 1, "", "sqrt"], [976, 1, 1, "", "std"], [977, 3, 1, "", "str"], [1018, 1, 1, "", "sum"], [1019, 1, 1, "", "tail"], [1020, 1, 1, "", "take"], [1021, 1, 1, "", "take_every"], [1022, 1, 1, "", "tan"], [1023, 1, 1, "", "tanh"], [1024, 3, 1, "", "time_unit"], [1025, 1, 1, "", "to_arrow"], [1026, 1, 1, "", "to_dummies"], [1027, 1, 1, "", "to_frame"], [1028, 1, 1, "", "to_init_repr"], [1029, 1, 1, "", "to_list"], [1030, 1, 1, "", "to_numpy"], [1031, 1, 1, "", "to_pandas"], [1032, 1, 1, "", "to_physical"], [1033, 1, 1, "", "top_k"], [1034, 1, 1, "", "unique"], [1035, 1, 1, "", "unique_counts"], [1036, 1, 1, "", "upper_bound"], [1037, 1, 1, "", "value_counts"], [1038, 1, 1, "", "var"], [1039, 1, 1, "", "view"], [1040, 1, 1, "", "zip_with"]], "polars.Series.arr": [[756, 1, 1, "", "max"], [757, 1, 1, "", "min"], [758, 1, 1, "", "sum"], [759, 1, 1, "", "unique"]], "polars.Series.bin": [[760, 1, 1, "", "contains"], [761, 1, 1, "", "decode"], [762, 1, 1, "", "encode"], [763, 1, 1, "", "ends_with"], [764, 1, 1, "", "starts_with"]], "polars.Series.cat": [[768, 1, 1, "", "get_categories"], [769, 1, 1, "", "set_ordering"]], "polars.Series.dt": [[792, 1, 1, "", "base_utc_offset"], [793, 1, 1, "", "cast_time_unit"], [794, 1, 1, "", "combine"], [795, 1, 1, "", "convert_time_zone"], [796, 1, 1, "", "date"], [797, 1, 1, "", "datetime"], [798, 1, 1, "", "day"], [799, 1, 1, "", "days"], [800, 1, 1, "", "dst_offset"], [801, 1, 1, "", "epoch"], [802, 1, 1, "", "hour"], [803, 1, 1, "", "hours"], [804, 1, 1, "", "is_leap_year"], [805, 1, 1, "", "iso_year"], [806, 1, 1, "", "max"], [807, 1, 1, "", "mean"], [808, 1, 1, "", "median"], [809, 1, 1, "", "microsecond"], [810, 1, 1, "", "microseconds"], [811, 1, 1, "", "millisecond"], [812, 1, 1, "", "milliseconds"], [813, 1, 1, "", "min"], [814, 1, 1, "", "minute"], [815, 1, 1, "", "minutes"], [816, 1, 1, "", "month"], [817, 1, 1, "", "month_end"], [818, 1, 1, "", "month_start"], [819, 1, 1, "", "nanosecond"], [820, 1, 1, "", "nanoseconds"], [821, 1, 1, "", "offset_by"], [822, 1, 1, "", "ordinal_day"], [823, 1, 1, "", "quarter"], [824, 1, 1, "", "replace_time_zone"], [825, 1, 1, "", "round"], [826, 1, 1, "", "second"], [827, 1, 1, "", "seconds"], [828, 1, 1, "", "strftime"], [829, 1, 1, "", "time"], [830, 1, 1, "", "timestamp"], [831, 1, 1, "", "to_string"], [832, 1, 1, "", "truncate"], [833, 1, 1, "", "week"], [834, 1, 1, "", "weekday"], [835, 1, 1, "", "with_time_unit"], [836, 1, 1, "", "year"]], "polars.Series.list": [[884, 1, 1, "", "all"], [885, 1, 1, "", "any"], [886, 1, 1, "", "arg_max"], [887, 1, 1, "", "arg_min"], [888, 1, 1, "", "concat"], [889, 1, 1, "", "contains"], [890, 1, 1, "", "count_match"], [891, 1, 1, "", "diff"], [892, 1, 1, "", "difference"], [893, 1, 1, "", "eval"], [894, 1, 1, "", "explode"], [895, 1, 1, "", "first"], [896, 1, 1, "", "get"], [897, 1, 1, "", "head"], [898, 1, 1, "", "intersection"], [899, 1, 1, "", "join"], [900, 1, 1, "", "last"], [901, 1, 1, "", "lengths"], [902, 1, 1, "", "max"], [903, 1, 1, "", "mean"], [904, 1, 1, "", "min"], [905, 1, 1, "", "reverse"], [906, 1, 1, "", "shift"], [907, 1, 1, "", "slice"], [908, 1, 1, "", "sort"], [909, 1, 1, "", "sum"], [910, 1, 1, "", "tail"], [911, 1, 1, "", "take"], [912, 1, 1, "", "to_struct"], [913, 1, 1, "", "union"], [914, 1, 1, "", "unique"]], "polars.Series.str": [[978, 1, 1, "", "concat"], [979, 1, 1, "", "contains"], [980, 1, 1, "", "count_match"], [981, 1, 1, "", "decode"], [982, 1, 1, "", "encode"], [983, 1, 1, "", "ends_with"], [984, 1, 1, "", "explode"], [985, 1, 1, "", "extract"], [986, 1, 1, "", "extract_all"], [987, 1, 1, "", "json_extract"], [988, 1, 1, "", "json_path_match"], [989, 1, 1, "", "lengths"], [990, 1, 1, "", "ljust"], [991, 1, 1, "", "lstrip"], [992, 1, 1, "", "n_chars"], [993, 1, 1, "", "parse_int"], [994, 1, 1, "", "replace"], [995, 1, 1, "", "replace_all"], [996, 1, 1, "", "rjust"], [997, 1, 1, "", "rstrip"], [998, 1, 1, "", "slice"], [999, 1, 1, "", "split"], [1000, 1, 1, "", "split_exact"], [1001, 1, 1, "", "splitn"], [1002, 1, 1, "", "starts_with"], [1003, 1, 1, "", "strip"], [1004, 1, 1, "", "strptime"], [1005, 1, 1, "", "to_date"], [1006, 1, 1, "", "to_datetime"], [1007, 1, 1, "", "to_decimal"], [1008, 1, 1, "", "to_lowercase"], [1009, 1, 1, "", "to_time"], [1010, 1, 1, "", "to_titlecase"], [1011, 1, 1, "", "to_uppercase"], [1012, 1, 1, "", "zfill"]], "polars.Series.struct": [[1013, 1, 1, "", "field"], [1014, 3, 1, "", "fields"], [1015, 1, 1, "", "rename_fields"], [1016, 3, 1, "", "schema"], [1017, 1, 1, "", "unnest"]], "polars.StringCache": [[58, 1, 1, "", "__init__"]], "polars.Struct": [[59, 1, 1, "", "__init__"]], "polars.Time": [[60, 1, 1, "", "__init__"]], "polars.UInt16": [[61, 1, 1, "", "__init__"]], "polars.UInt32": [[62, 1, 1, "", "__init__"]], "polars.UInt64": [[63, 1, 1, "", "__init__"]], "polars.UInt8": [[64, 1, 1, "", "__init__"]], "polars.Unknown": [[65, 1, 1, "", "__init__"]], "polars.Utf8": [[66, 1, 1, "", "__init__"]], "polars.api": [[68, 4, 1, "", "register_dataframe_namespace"], [69, 4, 1, "", "register_expr_namespace"], [70, 4, 1, "", "register_lazyframe_namespace"], [71, 4, 1, "", "register_series_namespace"]], "polars.dataframe.groupby.GroupBy": [[233, 1, 1, "", "__iter__"], [234, 1, 1, "", "agg"], [235, 1, 1, "", "all"], [236, 1, 1, "", "apply"], [237, 1, 1, "", "count"], [238, 1, 1, "", "first"], [239, 1, 1, "", "head"], [240, 1, 1, "", "last"], [241, 1, 1, "", "max"], [242, 1, 1, "", "mean"], [243, 1, 1, "", "median"], [244, 1, 1, "", "min"], [245, 1, 1, "", "n_unique"], [246, 1, 1, "", "quantile"], [247, 1, 1, "", "sum"], [248, 1, 1, "", "tail"]], "polars.exceptions": [[76, 5, 1, "", "ArrowError"], [77, 5, 1, "", "ColumnNotFoundError"], [78, 5, 1, "", "ComputeError"], [79, 5, 1, "", "DuplicateError"], [80, 5, 1, "", "InvalidOperationError"], [81, 5, 1, "", "NoDataError"], [82, 5, 1, "", "NoRowsReturnedError"], [83, 5, 1, "", "PolarsPanicError"], [84, 5, 1, "", "RowsError"], [85, 5, 1, "", "SchemaError"], [86, 5, 1, "", "SchemaFieldNotFoundError"], [87, 5, 1, "", "ShapeError"], [88, 5, 1, "", "StructFieldNotFoundError"], [89, 5, 1, "", "TooManyRowsReturnedError"]], "polars.io.csv.batched_reader.BatchedCsvReader": [[99, 1, 1, "", "next_batches"]], "polars.lazyframe.groupby.LazyGroupBy": [[716, 1, 1, "", "agg"], [717, 1, 1, "", "all"], [718, 1, 1, "", "apply"], [719, 1, 1, "", "count"], [720, 1, 1, "", "first"], [721, 1, 1, "", "head"], [722, 1, 1, "", "last"], [723, 1, 1, "", "max"], [724, 1, 1, "", "mean"], [725, 1, 1, "", "median"], [726, 1, 1, "", "min"], [727, 1, 1, "", "n_unique"], [728, 1, 1, "", "quantile"], [729, 1, 1, "", "sum"], [730, 1, 1, "", "tail"]], "polars.selectors": [[737, 4, 1, "", "all"], [737, 4, 1, "", "by_dtype"], [737, 4, 1, "", "by_name"], [737, 4, 1, "", "contains"], [737, 4, 1, "", "datetime"], [737, 4, 1, "", "duration"], [737, 4, 1, "", "ends_with"], [737, 4, 1, "", "first"], [737, 4, 1, "", "float"], [737, 4, 1, "", "integer"], [737, 4, 1, "", "is_selector"], [737, 4, 1, "", "last"], [737, 4, 1, "", "matches"], [737, 4, 1, "", "numeric"], [737, 4, 1, "", "selector_column_names"], [737, 4, 1, "", "starts_with"], [737, 4, 1, "", "string"], [737, 4, 1, "", "temporal"]], "polars.testing": [[119, 4, 1, "", "assert_frame_equal"], [120, 4, 1, "", "assert_series_equal"]], "polars.testing.parametric": [[121, 0, 1, "", "column"], [122, 4, 1, "", "columns"], [123, 4, 1, "", "create_list_strategy"], [124, 4, 1, "", "dataframes"], [125, 4, 1, "", "load_profile"], [126, 4, 1, "", "series"], [127, 4, 1, "", "set_profile"]], "polars.testing.parametric.column": [[121, 1, 1, "", "__init__"]]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:property", "3": "py:attribute", "4": "py:function", "5": "py:exception", "6": "py:module"}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "property", "Python property"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "function", "Python function"], "5": ["py", "exception", "Python exception"], "6": ["py", "module", "Python module"]}, "titleterms": {"extend": [1, 146, 845], "api": [1, 68, 69, 70, 71, 649], "provid": 1, "new": 1, "function": [1, 130, 637, 648, 737], "avail": 1, "registr": 1, "exampl": [1, 737, 1057], "polar": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1057], "arrai": [2, 631, 1041], "binari": [3, 632, 643, 1043], "boolean": [4, 633, 1044], "categor": 5, "config": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 130], "activate_decim": 6, "load": [7, 130], "restore_default": 8, "save": [9, 130], "set_ascii_t": 10, "set_fmt_float": 11, "set_fmt_str_length": 12, "set_streaming_chunk_s": 13, "set_tbl_cell_align": 14, "set_tbl_col": 15, "set_tbl_column_data_type_inlin": 16, "set_tbl_dataframe_shape_below": 17, "set_tbl_format": 18, "set_tbl_hide_column_data_typ": 19, "set_tbl_hide_column_nam": 20, "set_tbl_hide_dataframe_shap": 21, "set_tbl_hide_dtype_separ": 22, "set_tbl_row": 23, "set_tbl_width_char": 24, "set_verbos": 25, "state": [26, 130], "datafram": [27, 28, 29, 30, 31, 32, 33, 34, 35, 124, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254], "write_avro": 27, "write_csv": 28, "write_databas": 29, "write_delta": 30, "write_excel": 31, "write_ipc": 32, "write_json": [33, 452, 715], "write_ndjson": 34, "write_parquet": 35, "datatyp": 36, "date": [37, 320, 586, 796], "datetim": [38, 321, 589, 797], "decim": 39, "durat": [40, 590], "float32": 41, "float64": 42, "int16": 43, "int32": 44, "int64": 45, "int8": 46, "lazyfram": [47, 48, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734], "sink_ipc": 47, "sink_parquet": 48, "list": [49, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 639, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 1050], "null": 50, "object": 51, "sqlcontext": [52, 53, 54, 55, 56, 57], "execut": 52, "regist": 53, "register_glob": 54, "register_mani": 55, "tabl": 56, "unregist": 57, "stringcach": [58, 648], "struct": [59, 543, 544, 621, 645, 1013, 1014, 1015, 1016, 1017, 1054], "time": [60, 349, 625, 829], "uint16": 61, "uint32": 62, "uint64": 63, "uint8": 64, "unknown": 65, "utf8": 66, "align_fram": 67, "register_dataframe_namespac": 68, "register_expr_namespac": 69, "register_lazyframe_namespac": 70, "register_series_namespac": 71, "build_info": 72, "collect_al": 73, "concat": [74, 405, 508, 888, 978], "enable_string_cach": 75, "except": [76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 258], "arrowerror": 76, "columnnotfounderror": 77, "computeerror": 78, "duplicateerror": 79, "invalidoperationerror": 80, "nodataerror": 81, "norowsreturnederror": 82, "polarspanicerror": 83, "rowserror": 84, "schemaerror": 85, "schemafieldnotfounderror": 86, "shapeerror": 87, "structfieldnotfounderror": 88, "toomanyrowsreturnederror": 89, "from_arrow": 90, "from_datafram": 91, "from_dict": [92, 93], "from_numpi": 94, "from_panda": 95, "from_record": 96, "from_repr": 97, "get_index_typ": 98, "io": 99, "csv": [99, 650], "batched_read": 99, "batchedcsvread": [99, 650], "next_batch": 99, "read_avro": 100, "read_csv": 101, "read_csv_batch": 102, "read_databas": 103, "read_delta": 104, "read_excel": 105, "read_ipc": 106, "read_ipc_schema": 107, "read_json": [108, 691], "read_ndjson": 109, "read_parquet": 110, "read_parquet_schema": 111, "scan_csv": 112, "scan_delta": 113, "scan_ipc": 114, "scan_ndjson": 115, "scan_parquet": 116, "scan_pyarrow_dataset": 117, "show_vers": 118, "test": [119, 120, 121, 122, 123, 124, 125, 126, 127, 1057], "assert_frame_equ": 119, "assert_series_equ": 120, "parametr": [121, 122, 123, 124, 125, 126, 127, 1057], "column": [121, 122, 137, 635, 657], "create_list_strategi": 123, "load_profil": 125, "seri": [126, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1049], "set_profil": 127, "threadpool_s": 128, "using_string_cach": 129, "option": 130, "current": 130, "us": 130, "context": 130, "manag": 130, "decor": 130, "aggreg": [131, 259, 651, 738], "__dataframe__": 132, "appli": [133, 236, 268, 567, 718, 744], "bottom_k": [134, 291, 652, 765], "clear": [135, 654, 773], "clone": [136, 655, 777], "corr": [138, 579], "describ": [139, 786], "drop": [140, 658], "drop_in_plac": 141, "drop_nul": [142, 315, 659, 790], "dtype": [143, 660, 837], "estimated_s": [144, 839], "explod": [145, 365, 411, 514, 662, 844, 894, 984], "fill_nan": [147, 367, 664, 847], "fill_nul": [148, 368, 665, 848], "filter": [149, 369, 666, 849], "find_idx_by_nam": 150, "flag": [151, 850], "fold": [152, 594], "frame_equ": 153, "get_column": [154, 155], "glimps": 156, "groupbi": [157, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 253, 669, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 733], "groupby_dynam": [158, 670], "groupby_rol": [159, 671], "hash_row": 160, "head": [161, 239, 379, 414, 598, 672, 721, 855, 897], "height": 162, "hstack": 163, "insert_at_idx": 164, "interpol": [165, 382, 674, 859], "is_dupl": [166, 384, 862], "is_empti": [167, 863], "is_uniqu": [168, 394, 877], "item": [169, 879], "iter_row": 170, "iter_slic": 171, "join": [172, 416, 675, 899], "join_asof": [173, 676], "lazi": [174, 678], "limit": [175, 400, 679, 882], "max": [176, 241, 281, 419, 440, 605, 681, 723, 756, 806, 902, 920], "mean": [177, 242, 420, 441, 607, 682, 724, 807, 903, 921], "median": [178, 243, 442, 608, 683, 725, 808, 922], "melt": [179, 684], "merge_sort": [180, 685], "min": [181, 244, 282, 421, 453, 609, 686, 726, 757, 813, 904, 923], "n_chunk": [182, 925], "n_uniqu": [183, 245, 457, 611, 727, 926], "null_count": [184, 462, 687, 931], "partition_bi": 185, "pipe": [186, 466, 688], "pivot": 187, "product": [188, 469, 935], "quantil": [189, 246, 471, 613, 690, 728, 937], "rechunk": [190, 474, 939], "renam": [191, 692, 941], "replac": [192, 524, 994], "replace_at_idx": 193, "revers": [194, 422, 478, 693, 905, 943], "row": [195, 196], "rows_by_kei": 197, "sampl": [198, 492, 957], "schema": [199, 694, 1016], "select": [200, 256, 618, 642, 695, 736, 1052], "set_sort": [201, 494, 696, 962], "shape": [202, 963], "shift": [203, 423, 495, 697, 906, 964], "shift_and_fil": [204, 496, 698, 965], "shrink_to_fit": [205, 967], "slice": [206, 424, 503, 528, 700, 907, 973, 998], "sort": [207, 425, 504, 701, 908, 974], "std": [208, 507, 620, 702, 976], "sum": [209, 247, 283, 426, 547, 622, 703, 729, 758, 909, 1018], "tail": [210, 248, 427, 548, 624, 704, 730, 910, 1019], "take_everi": [211, 550, 705, 1021], "to_arrow": [212, 1025], "to_dict": [213, 214], "to_dummi": [215, 1026], "to_init_repr": [216, 1028], "to_numpi": [217, 1030], "to_panda": [218, 1031], "to_seri": 219, "to_struct": [220, 429, 912], "top_k": [221, 554, 706, 1033], "transpos": 222, "uniqu": [223, 284, 431, 556, 707, 759, 914, 1034], "unnest": [224, 708, 1017], "unstack": 225, "updat": [226, 709], "upsampl": 227, "var": [228, 560, 628, 710, 1038], "vstack": 229, "width": [230, 711], "with_column": [231, 712], "with_row_count": [232, 714], "__iter__": 233, "agg": [234, 716], "all": [235, 264, 401, 563, 717, 741, 884], "count": [237, 303, 580, 719], "first": [238, 370, 412, 593, 667, 720, 895], "last": [240, 397, 417, 602, 677, 722, 900], "attribut": [249, 731, 1042], "comput": [250, 636, 1046], "descript": [251, 732, 1047], "export": [252, 1048], "miscellan": [255, 641, 648, 735, 1051], "manipul": [256, 642, 736, 1052], "data": 257, "type": 257, "numer": [257, 643], "tempor": [257, 646, 1055], "nest": 257, "other": 257, "expr": [260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562], "ab": [260, 739], "add": 261, "agg_group": 262, "alia": [263, 740], "and_": 265, "ani": [266, 402, 565, 742, 885], "append": [267, 743], "approx_uniqu": [269, 568], "arcco": [270, 745], "arccosh": [271, 746], "arcsin": [272, 747], "arcsinh": [273, 748], "arctan": [274, 749], "arctanh": [275, 750], "arg_max": [276, 403, 751, 886], "arg_min": [277, 404, 752, 887], "arg_sort": [278, 753], "arg_tru": [279, 754], "arg_uniqu": [280, 755], "arr": [281, 282, 283, 284, 756, 757, 758, 759], "backward_fil": 285, "bin": [286, 287, 288, 289, 290, 760, 761, 762, 763, 764], "contain": [286, 406, 509, 760, 889, 979], "decod": [287, 511, 761, 981], "encod": [288, 512, 762, 982], "ends_with": [289, 513, 763, 983], "starts_with": [290, 532, 764, 1002], "cach": [292, 653], "cast": [293, 766], "cat": [294, 295, 767, 768, 769], "get_categori": [294, 768], "set_ord": [295, 769], "cbrt": [296, 770], "ceil": [297, 771], "clip": [298, 774], "clip_max": [299, 775], "clip_min": [300, 776], "co": [301, 778], "cosh": [302, 779], "cumcount": 304, "cummax": [305, 780], "cummin": [306, 781], "cumprod": [307, 782], "cumsum": [308, 584, 783], "cumulative_ev": [309, 784], "cut": [310, 785], "degre": 311, "diff": [312, 408, 787, 891], "dot": [313, 788], "drop_nan": [314, 789], "dt": [316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836], "base_utc_offset": [316, 792], "cast_time_unit": [317, 793], "combin": [318, 794], "convert_time_zon": [319, 795], "dai": [322, 323, 798, 799], "dst_offset": [324, 800], "epoch": [325, 801], "hour": [326, 327, 802, 803], "is_leap_year": [328, 804], "iso_year": [329, 805], "microsecond": [330, 331, 809, 810], "millisecond": [332, 333, 811, 812], "minut": [334, 335, 814, 815], "month": [336, 816], "month_end": [337, 817], "month_start": [338, 818], "nanosecond": [339, 340, 819, 820], "offset_bi": [341, 821], "ordinal_dai": [342, 822], "quarter": [343, 823], "replace_time_zon": [344, 824], "round": [345, 491, 825, 956], "second": [346, 347, 826, 827], "strftime": [348, 828], "timestamp": [350, 830], "to_str": [351, 831], "truncat": [352, 832], "week": [353, 833], "weekdai": [354, 834], "with_time_unit": [355, 835], "year": [356, 836], "entropi": [357, 838], "eq": [358, 443], "eq_miss": 359, "ewm_mean": [360, 840], "ewm_std": [361, 841], "ewm_var": [362, 842], "exclud": [363, 592], "exp": [364, 843], "extend_const": [366, 846], "flatten": 371, "floor": [372, 851], "floordiv": 373, "forward_fil": 374, "from_json": [375, 668], "ge": 376, "gt": 377, "hash": [378, 854], "implod": [380, 599, 857], "inspect": [381, 673], "is_between": [383, 860], "is_finit": [385, 864], "is_first": [386, 865], "is_in": [387, 867], "is_infinit": [388, 868], "is_nan": [389, 870], "is_not": 390, "is_not_nan": [391, 871], "is_not_nul": [392, 872], "is_nul": [393, 873], "keep_nam": 395, "kurtosi": [396, 880], "le": 398, "len": [399, 881], "count_match": [407, 510, 890, 980], "differ": [409, 892], "eval": [410, 893], "get": [413, 896], "intersect": [415, 898], "length": [418, 519, 901, 989], "take": [428, 549, 911, 1020], "union": [430, 913], "log": [432, 915], "log10": [433, 916], "log1p": [434, 917], "lower_bound": [435, 918], "lt": 436, "map": [437, 604, 680], "map_alia": 438, "map_dict": [439, 919], "meta": [443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 640], "has_multiple_output": 444, "is_regex_project": 445, "ne": [446, 460], "output_nam": 447, "pop": 448, "root_nam": 449, "tree_format": 450, "undo_alias": 451, "mod": 454, "mode": [455, 924], "mul": 456, "nan_max": [458, 928], "nan_min": [459, 929], "ne_miss": 461, "or_": 463, "over": 464, "pct_chang": [465, 932], "pow": 467, "prefix": 468, "qcut": [470, 936], "radian": 472, "rank": [473, 938], "reinterpret": [475, 940], "repeat_bi": 476, "reshap": [477, 942], "rle": [479, 944], "rle_id": [480, 945], "rolling_appli": [481, 946], "rolling_max": [482, 947], "rolling_mean": [483, 948], "rolling_median": [484, 949], "rolling_min": [485, 950], "rolling_quantil": [486, 951], "rolling_skew": [487, 952], "rolling_std": [488, 953], "rolling_sum": [489, 954], "rolling_var": [490, 955], "search_sort": [493, 958], "shrink_dtyp": [497, 966], "shuffl": [498, 968], "sign": [499, 969], "sin": [500, 970], "sinh": [501, 971], "skew": [502, 972], "sort_bi": 505, "sqrt": [506, 975], "str": [508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012], "extract": [515, 985], "extract_al": [516, 986], "json_extract": [517, 987], "json_path_match": [518, 988], "ljust": [520, 990], "lstrip": [521, 991], "n_char": [522, 992], "parse_int": [523, 993], "replace_al": [525, 995], "rjust": [526, 996], "rstrip": [527, 997], "split": [529, 999], "split_exact": [530, 1000], "splitn": [531, 1001], "strip": [533, 1003], "strptime": [534, 1004], "to_dat": [535, 1005], "to_datetim": [536, 1006], "to_decim": [537, 1007], "to_lowercas": [538, 1008], "to_tim": [539, 1009], "to_titlecas": [540, 1010], "to_uppercas": [541, 1011], "zfill": [542, 1012], "field": [543, 1013, 1014], "rename_field": [544, 1015], "sub": 545, "suffix": 546, "tan": [551, 1022], "tanh": [552, 1023], "to_phys": [553, 1032], "truediv": 555, "unique_count": [557, 1035], "upper_bound": [558, 1036], "value_count": [559, 1037], "where": 561, "xor": 562, "all_horizont": 564, "any_horizont": 566, "arang": 569, "arctan2": 570, "arctan2d": 571, "arg_sort_bi": 572, "arg_wher": 573, "avg": 574, "coalesc": 575, "col": 576, "concat_list": 577, "concat_str": 578, "cov": 581, "cumfold": 582, "cumreduc": 583, "cumsum_horizont": 585, "date_rang": [587, 588], "element": 591, "format": 595, "from_epoch": 596, "group": 597, "int_rang": [600, 601], "lit": 603, "max_horizont": 606, "min_horizont": 610, "ones": 612, "reduc": 614, "repeat": 615, "rolling_corr": 616, "rolling_cov": 617, "sql_expr": 619, "sum_horizont": 623, "time_rang": [626, 627], "when": 629, "zero": 630, "categori": [634, 1045], "name": [635, 927], "express": 638, "oper": [643, 737], "conjunct": 643, "comparison": 643, "string": [644, 1053], "window": 647, "convers": 648, "parallel": 648, "refer": 649, "input": 650, "output": 650, "feather": 650, "ipc": 650, "parquet": 650, "databas": 650, "json": 650, "avro": 650, "excel": 650, "delta": 650, "lake": 650, "dataset": 650, "collect": 656, "explain": 661, "fetch": 663, "profil": [689, 1057], "show_graph": 699, "with_context": 713, "lazygroupbi": [716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730], "read": 735, "write": 735, "logic": 735, "plan": 735, "selector": 737, "import": 737, "set": [737, 960], "chunk_length": 772, "get_chunk": 852, "has_valid": 853, "hist": 856, "inner_dtyp": 858, "is_boolean": 861, "is_float": 866, "is_integ": 869, "is_numer": 874, "is_sort": 875, "is_tempor": 876, "is_utf8": 878, "new_from_index": 930, "peak_max": 933, "peak_min": 934, "series_equ": 959, "set_at_idx": 961, "time_unit": 1024, "to_fram": 1027, "to_list": 1029, "view": 1039, "zip_with": 1040, "sql": 1056, "method": 1056, "assert": 1057, "primit": 1057, "strategi": 1057, "helper": 1057, "util": 1058}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.todo": 2, "sphinx": 57}, "alltitles": {"Config": [[130, "config"]], "Config options": [[130, "config-options"]], "Config load, save, and current state": [[130, "config-load-save-and-current-state"]], "Use as a context manager": [[130, "use-as-a-context-manager"]], "Use as a function decorator": [[130, "use-as-a-function-decorator"]], "polars.from_dataframe": [[91, "polars-from-dataframe"]], "polars.from_repr": [[97, "polars-from-repr"]], "polars.testing.assert_frame_equal": [[119, "polars-testing-assert-frame-equal"]], "polars.testing.parametric.dataframes": [[124, "polars-testing-parametric-dataframes"]], "polars.read_ipc_schema": [[107, "polars-read-ipc-schema"]], "polars.exceptions.TooManyRowsReturnedError": [[89, "polars-exceptions-toomanyrowsreturnederror"]], "polars.DataFrame.drop": [[140, "polars-dataframe-drop"]], "polars.read_parquet": [[110, "polars-read-parquet"]], "polars.from_dicts": [[93, "polars-from-dicts"]], "polars.DataFrame.dtypes": [[143, "polars-dataframe-dtypes"]], "polars.DataFrame.clone": [[136, "polars-dataframe-clone"]], "polars.read_ndjson": [[109, "polars-read-ndjson"]], "polars.exceptions.SchemaFieldNotFoundError": [[86, "polars-exceptions-schemafieldnotfounderror"]], "polars.read_csv_batched": [[102, "polars-read-csv-batched"]], "polars.from_dict": [[92, "polars-from-dict"]], "polars.scan_ipc": [[114, "polars-scan-ipc"]], "polars.testing.parametric.set_profile": [[127, "polars-testing-parametric-set-profile"]], "polars.exceptions.InvalidOperationError": [[80, "polars-exceptions-invalidoperationerror"]], "polars.exceptions.SchemaError": [[85, "polars-exceptions-schemaerror"]], "polars.io.csv.batched_reader.BatchedCsvReader.next_batches": [[99, "polars-io-csv-batched-reader-batchedcsvreader-next-batches"]], "polars.using_string_cache": [[129, "polars-using-string-cache"]], "polars.testing.parametric.create_list_strategy": [[123, "polars-testing-parametric-create-list-strategy"]], "polars.get_index_type": [[98, "polars-get-index-type"]], "polars.enable_string_cache": [[75, "polars-enable-string-cache"]], "polars.DataFrame.__dataframe__": [[132, "polars-dataframe-dataframe"]], "polars.read_excel": [[105, "polars-read-excel"]], "polars.exceptions.ArrowError": [[76, "polars-exceptions-arrowerror"]], "polars.read_parquet_schema": [[111, "polars-read-parquet-schema"]], "polars.exceptions.DuplicateError": [[79, "polars-exceptions-duplicateerror"]], "polars.DataFrame.drop_nulls": [[142, "polars-dataframe-drop-nulls"]], "polars.scan_pyarrow_dataset": [[117, "polars-scan-pyarrow-dataset"]], "polars.from_arrow": [[90, "polars-from-arrow"]], "polars.DataFrame.apply": [[133, "polars-dataframe-apply"]], "polars.DataFrame.describe": [[139, "polars-dataframe-describe"]], "polars.exceptions.PolarsPanicError": [[83, "polars-exceptions-polarspanicerror"]], "polars.read_ipc": [[106, "polars-read-ipc"]], "polars.exceptions.ComputeError": [[78, "polars-exceptions-computeerror"]], "polars.from_records": [[96, "polars-from-records"]], "polars.read_csv": [[101, "polars-read-csv"]], "polars.scan_csv": [[112, "polars-scan-csv"]], "polars.read_json": [[108, "polars-read-json"]], "polars.testing.assert_series_equal": [[120, "polars-testing-assert-series-equal"]], "polars.exceptions.ShapeError": [[87, "polars-exceptions-shapeerror"]], "polars.from_pandas": [[95, "polars-from-pandas"]], "polars.exceptions.StructFieldNotFoundError": [[88, "polars-exceptions-structfieldnotfounderror"]], "polars.scan_delta": [[113, "polars-scan-delta"]], "polars.read_avro": [[100, "polars-read-avro"]], "polars.build_info": [[72, "polars-build-info"]], "polars.DataFrame.columns": [[137, "polars-dataframe-columns"]], "polars.scan_ndjson": [[115, "polars-scan-ndjson"]], "polars.exceptions.NoRowsReturnedError": [[82, "polars-exceptions-norowsreturnederror"]], "polars.exceptions.NoDataError": [[81, "polars-exceptions-nodataerror"]], "polars.testing.parametric.load_profile": [[125, "polars-testing-parametric-load-profile"]], "polars.DataFrame.drop_in_place": [[141, "polars-dataframe-drop-in-place"]], "polars.scan_parquet": [[116, "polars-scan-parquet"]], "polars.concat": [[74, "polars-concat"]], "polars.collect_all": [[73, "polars-collect-all"]], "polars.from_numpy": [[94, "polars-from-numpy"]], "polars.exceptions.RowsError": [[84, "polars-exceptions-rowserror"]], "polars.exceptions.ColumnNotFoundError": [[77, "polars-exceptions-columnnotfounderror"]], "polars.testing.parametric.column": [[121, "polars-testing-parametric-column"]], "polars.DataFrame.clear": [[135, "polars-dataframe-clear"]], "polars.read_database": [[103, "polars-read-database"]], "polars.testing.parametric.columns": [[122, "polars-testing-parametric-columns"]], "polars.show_versions": [[118, "polars-show-versions"]], "polars.DataFrame.bottom_k": [[134, "polars-dataframe-bottom-k"]], "polars.testing.parametric.series": [[126, "polars-testing-parametric-series"]], "Aggregation": [[131, "aggregation"], [738, "aggregation"], [651, "aggregation"], [259, "aggregation"]], "polars.DataFrame.corr": [[138, "polars-dataframe-corr"]], "polars.threadpool_size": [[128, "polars-threadpool-size"]], "polars.read_delta": [[104, "polars-read-delta"]], "polars.Config.save": [[9, "polars-config-save"]], "polars.DataFrame.write_csv": [[28, "polars-dataframe-write-csv"]], "polars.Config.set_tbl_cols": [[15, "polars-config-set-tbl-cols"]], "polars.SQLContext.unregister": [[57, "polars-sqlcontext-unregister"]], "polars.api.register_lazyframe_namespace": [[70, "polars-api-register-lazyframe-namespace"]], "polars.Struct": [[59, "polars-struct"]], "polars.Config.set_tbl_rows": [[23, "polars-config-set-tbl-rows"]], "polars.Config.set_tbl_hide_column_names": [[20, "polars-config-set-tbl-hide-column-names"]], "polars.Config.restore_defaults": [[8, "polars-config-restore-defaults"]], "polars.Duration": [[40, "polars-duration"]], "polars.Int8": [[46, "polars-int8"]], "polars.Config.set_streaming_chunk_size": [[13, "polars-config-set-streaming-chunk-size"]], "polars.Config.set_tbl_dataframe_shape_below": [[17, "polars-config-set-tbl-dataframe-shape-below"]], "polars.Null": [[50, "polars-null"]], "polars.UInt16": [[61, "polars-uint16"]], "polars.align_frames": [[67, "polars-align-frames"]], "polars.Unknown": [[65, "polars-unknown"]], "polars.Utf8": [[66, "polars-utf8"]], "polars.Categorical": [[5, "polars-categorical"]], "polars.Config.load": [[7, "polars-config-load"]], "polars.DataFrame.write_json": [[33, "polars-dataframe-write-json"]], "polars.Decimal": [[39, "polars-decimal"]], "polars.DataFrame.write_ndjson": [[34, "polars-dataframe-write-ndjson"]], "polars.List": [[49, "polars-list"]], "polars.Int64": [[45, "polars-int64"]], "polars.Float64": [[42, "polars-float64"]], "polars.Int32": [[44, "polars-int32"]], "polars.StringCache": [[58, "polars-stringcache"]], "polars.UInt32": [[62, "polars-uint32"]], "polars.SQLContext.register_globals": [[54, "polars-sqlcontext-register-globals"]], "polars.SQLContext.execute": [[52, "polars-sqlcontext-execute"]], "polars.Config.set_tbl_formatting": [[18, "polars-config-set-tbl-formatting"]], "polars.api.register_expr_namespace": [[69, "polars-api-register-expr-namespace"]], "polars.Float32": [[41, "polars-float32"]], "polars.Config.set_tbl_hide_column_data_types": [[19, "polars-config-set-tbl-hide-column-data-types"]], "polars.DataFrame.write_ipc": [[32, "polars-dataframe-write-ipc"]], "polars.LazyFrame.sink_parquet": [[48, "polars-lazyframe-sink-parquet"]], "polars.SQLContext.register_many": [[55, "polars-sqlcontext-register-many"]], "polars.DataFrame.write_database": [[29, "polars-dataframe-write-database"]], "polars.DataFrame.write_avro": [[27, "polars-dataframe-write-avro"]], "polars.Time": [[60, "polars-time"]], "polars.Config.activate_decimals": [[6, "polars-config-activate-decimals"]], "polars.UInt8": [[64, "polars-uint8"]], "polars.Config.set_tbl_column_data_type_inline": [[16, "polars-config-set-tbl-column-data-type-inline"]], "polars.DataFrame.write_excel": [[31, "polars-dataframe-write-excel"]], "polars.SQLContext.register": [[53, "polars-sqlcontext-register"]], "polars.Int16": [[43, "polars-int16"]], "polars.Config.set_ascii_tables": [[10, "polars-config-set-ascii-tables"]], "polars.Binary": [[3, "polars-binary"]], "polars.DataType": [[36, "polars-datatype"]], "polars.Datetime": [[38, "polars-datetime"]], "polars.api.register_dataframe_namespace": [[68, "polars-api-register-dataframe-namespace"]], "polars.DataFrame.write_parquet": [[35, "polars-dataframe-write-parquet"]], "polars.Object": [[51, "polars-object"]], "polars.LazyFrame.sink_ipc": [[47, "polars-lazyframe-sink-ipc"]], "polars.Config.set_fmt_float": [[11, "polars-config-set-fmt-float"]], "polars.Config.set_fmt_str_lengths": [[12, "polars-config-set-fmt-str-lengths"]], "polars.Config.set_tbl_hide_dataframe_shape": [[21, "polars-config-set-tbl-hide-dataframe-shape"]], "polars.Config.set_tbl_hide_dtype_separator": [[22, "polars-config-set-tbl-hide-dtype-separator"]], "polars.SQLContext.tables": [[56, "polars-sqlcontext-tables"]], "polars.Array": [[2, "polars-array"]], "polars.Config.set_verbose": [[25, "polars-config-set-verbose"]], "polars.Config.state": [[26, "polars-config-state"]], "polars.api.register_series_namespace": [[71, "polars-api-register-series-namespace"]], "Extending the API": [[1, "extending-the-api"]], "Providing new functionality": [[1, "providing-new-functionality"]], "Available registrations": [[1, "available-registrations"]], "Examples": [[1, "examples"], [1057, "examples"], [737, "examples"]], "polars.Config.set_tbl_cell_alignment": [[14, "polars-config-set-tbl-cell-alignment"]], "polars.Config.set_tbl_width_chars": [[24, "polars-config-set-tbl-width-chars"]], "polars.DataFrame.write_delta": [[30, "polars-dataframe-write-delta"]], "polars.Date": [[37, "polars-date"]], "polars.Boolean": [[4, "polars-boolean"]], "polars.UInt64": [[63, "polars-uint64"]], "polars.Series.shift_and_fill": [[965, "polars-series-shift-and-fill"]], "polars.Series.set_sorted": [[962, "polars-series-set-sorted"]], "polars.Series.str.lstrip": [[991, "polars-series-str-lstrip"]], "polars.Series.reshape": [[942, "polars-series-reshape"]], "polars.Series.shrink_dtype": [[966, "polars-series-shrink-dtype"]], "polars.Series.str.parse_int": [[993, "polars-series-str-parse-int"]], "polars.Series.str.json_path_match": [[988, "polars-series-str-json-path-match"]], "polars.Series.str.to_decimal": [[1007, "polars-series-str-to-decimal"]], "polars.Series.rle_id": [[945, "polars-series-rle-id"]], "polars.Series.rolling_median": [[949, "polars-series-rolling-median"]], "polars.Series.str.ends_with": [[983, "polars-series-str-ends-with"]], "polars.Series.slice": [[973, "polars-series-slice"]], "polars.Series.rle": [[944, "polars-series-rle"]], "polars.Series.str.encode": [[982, "polars-series-str-encode"]], "polars.Series.str.to_datetime": [[1006, "polars-series-str-to-datetime"]], "polars.Series.str.json_extract": [[987, "polars-series-str-json-extract"]], "polars.Series.std": [[976, "polars-series-std"]], "polars.Series.shuffle": [[968, "polars-series-shuffle"]], "polars.Series.skew": [[972, "polars-series-skew"]], "polars.Series.str.to_date": [[1005, "polars-series-str-to-date"]], "polars.Series.rolling_skew": [[952, "polars-series-rolling-skew"]], "polars.Series.rolling_sum": [[954, "polars-series-rolling-sum"]], "polars.Series.str.extract": [[985, "polars-series-str-extract"]], "polars.Series.reinterpret": [[940, "polars-series-reinterpret"]], "polars.Series.rolling_quantile": [[951, "polars-series-rolling-quantile"]], "polars.Series.shape": [[963, "polars-series-shape"]], "polars.Series.sinh": [[971, "polars-series-sinh"]], "polars.Series.reverse": [[943, "polars-series-reverse"]], "polars.Series.str.starts_with": [[1002, "polars-series-str-starts-with"]], "polars.Series.shift": [[964, "polars-series-shift"]], "polars.Series.str.replace_all": [[995, "polars-series-str-replace-all"]], "polars.Series.sign": [[969, "polars-series-sign"]], "polars.Series.str.slice": [[998, "polars-series-str-slice"]], "polars.Series.rolling_mean": [[948, "polars-series-rolling-mean"]], "polars.Series.str.contains": [[979, "polars-series-str-contains"]], "polars.Series.str.rstrip": [[997, "polars-series-str-rstrip"]], "polars.Series.str.extract_all": [[986, "polars-series-str-extract-all"]], "polars.Series.shrink_to_fit": [[967, "polars-series-shrink-to-fit"]], "polars.Series.sin": [[970, "polars-series-sin"]], "polars.Series.str.split_exact": [[1000, "polars-series-str-split-exact"]], "polars.Series.round": [[956, "polars-series-round"]], "polars.Series.sort": [[974, "polars-series-sort"]], "polars.Series.rolling_min": [[950, "polars-series-rolling-min"]], "polars.Series.str.ljust": [[990, "polars-series-str-ljust"]], "polars.Series.set": [[960, "polars-series-set"]], "polars.Series.str.count_match": [[980, "polars-series-str-count-match"]], "polars.Series.str.rjust": [[996, "polars-series-str-rjust"]], "polars.Series.quantile": [[937, "polars-series-quantile"]], "polars.Series.set_at_idx": [[961, "polars-series-set-at-idx"]], "polars.Series.str.explode": [[984, "polars-series-str-explode"]], "polars.Series.search_sorted": [[958, "polars-series-search-sorted"]], "polars.Series.str.strip": [[1003, "polars-series-str-strip"]], "polars.Series.rolling_max": [[947, "polars-series-rolling-max"]], "polars.Series.str.strptime": [[1004, "polars-series-str-strptime"]], "polars.Series.qcut": [[936, "polars-series-qcut"]], "polars.Series.rolling_var": [[955, "polars-series-rolling-var"]], "polars.Series.sample": [[957, "polars-series-sample"]], "polars.Series.str.replace": [[994, "polars-series-str-replace"]], "polars.Series.series_equal": [[959, "polars-series-series-equal"]], "polars.Series.str.splitn": [[1001, "polars-series-str-splitn"]], "polars.Series.rolling_std": [[953, "polars-series-rolling-std"]], "polars.Series.rename": [[941, "polars-series-rename"]], "polars.Series.str.lengths": [[989, "polars-series-str-lengths"]], "polars.Series.rolling_apply": [[946, "polars-series-rolling-apply"]], "polars.Series.sqrt": [[975, "polars-series-sqrt"]], "polars.Series.str": [[977, "polars-series-str"]], "polars.Series.str.concat": [[978, "polars-series-str-concat"]], "polars.Series.str.decode": [[981, "polars-series-str-decode"]], "polars.Series.rank": [[938, "polars-series-rank"]], "polars.Series.str.n_chars": [[992, "polars-series-str-n-chars"]], "polars.Series.str.split": [[999, "polars-series-str-split"]], "polars.Series.rechunk": [[939, "polars-series-rechunk"]], "polars.Series.nan_max": [[928, "polars-series-nan-max"]], "polars.Series.lower_bound": [[918, "polars-series-lower-bound"]], "polars.Series.log10": [[916, "polars-series-log10"]], "polars.Series.map_dict": [[919, "polars-series-map-dict"]], "polars.Series.max": [[920, "polars-series-max"]], "polars.Series.len": [[881, "polars-series-len"]], "polars.Series.mode": [[924, "polars-series-mode"]], "polars.Series.list.any": [[885, "polars-series-list-any"]], "polars.Series.list": [[883, "polars-series-list"]], "polars.Series.list.max": [[902, "polars-series-list-max"]], "polars.Series.is_infinite": [[868, "polars-series-is-infinite"]], "polars.Series.list.min": [[904, "polars-series-list-min"]], "polars.Series.name": [[927, "polars-series-name"]], "polars.Series.is_in": [[867, "polars-series-is-in"]], "polars.Series.list.arg_max": [[886, "polars-series-list-arg-max"]], "polars.Series.new_from_index": [[930, "polars-series-new-from-index"]], "polars.Series.list.explode": [[894, "polars-series-list-explode"]], "polars.Series.list.join": [[899, "polars-series-list-join"]], "polars.Series.list.unique": [[914, "polars-series-list-unique"]], "polars.Series.item": [[879, "polars-series-item"]], "polars.Series.list.shift": [[906, "polars-series-list-shift"]], "polars.Series.list.sum": [[909, "polars-series-list-sum"]], "polars.Series.null_count": [[931, "polars-series-null-count"]], "polars.Series.list.eval": [[893, "polars-series-list-eval"]], "polars.Series.n_unique": [[926, "polars-series-n-unique"]], "polars.Series.list.all": [[884, "polars-series-list-all"]], "polars.Series.is_not_null": [[872, "polars-series-is-not-null"]], "polars.Series.log": [[915, "polars-series-log"]], "polars.Series.is_not_nan": [[871, "polars-series-is-not-nan"]], "polars.Series.is_finite": [[864, "polars-series-is-finite"]], "polars.Series.list.last": [[900, "polars-series-list-last"]], "polars.Series.list.take": [[911, "polars-series-list-take"]], "polars.Series.peak_max": [[933, "polars-series-peak-max"]], "polars.Series.list.first": [[895, "polars-series-list-first"]], "polars.Series.list.difference": [[892, "polars-series-list-difference"]], "polars.Series.is_numeric": [[874, "polars-series-is-numeric"]], "polars.Series.list.sort": [[908, "polars-series-list-sort"]], "polars.Series.log1p": [[917, "polars-series-log1p"]], "polars.Series.is_sorted": [[875, "polars-series-is-sorted"]], "polars.Series.list.reverse": [[905, "polars-series-list-reverse"]], "polars.Series.list.union": [[913, "polars-series-list-union"]], "polars.Series.limit": [[882, "polars-series-limit"]], "polars.Series.nan_min": [[929, "polars-series-nan-min"]], "polars.Series.product": [[935, "polars-series-product"]], "polars.Series.is_temporal": [[876, "polars-series-is-temporal"]], "polars.Series.list.head": [[897, "polars-series-list-head"]], "polars.Series.mean": [[921, "polars-series-mean"]], "polars.Series.median": [[922, "polars-series-median"]], "polars.Series.n_chunks": [[925, "polars-series-n-chunks"]], "polars.Series.min": [[923, "polars-series-min"]], "polars.Series.kurtosis": [[880, "polars-series-kurtosis"]], "polars.Series.is_integer": [[869, "polars-series-is-integer"]], "polars.Series.is_first": [[865, "polars-series-is-first"]], "polars.Series.pct_change": [[932, "polars-series-pct-change"]], "polars.Series.list.concat": [[888, "polars-series-list-concat"]], "polars.Series.list.lengths": [[901, "polars-series-list-lengths"]], "polars.Series.is_nan": [[870, "polars-series-is-nan"]], "polars.Series.list.tail": [[910, "polars-series-list-tail"]], "polars.Series.list.contains": [[889, "polars-series-list-contains"]], "polars.Series.list.to_struct": [[912, "polars-series-list-to-struct"]], "polars.Series.list.arg_min": [[887, "polars-series-list-arg-min"]], "polars.Series.list.mean": [[903, "polars-series-list-mean"]], "polars.Series.peak_min": [[934, "polars-series-peak-min"]], "polars.Series.list.get": [[896, "polars-series-list-get"]], "polars.Series.list.slice": [[907, "polars-series-list-slice"]], "polars.Series.is_float": [[866, "polars-series-is-float"]], "polars.Series.is_unique": [[877, "polars-series-is-unique"]], "polars.Series.is_null": [[873, "polars-series-is-null"]], "polars.Series.list.intersection": [[898, "polars-series-list-intersection"]], "polars.Series.is_utf8": [[878, "polars-series-is-utf8"]], "polars.Series.list.diff": [[891, "polars-series-list-diff"]], "polars.Series.list.count_match": [[890, "polars-series-list-count-match"]], "polars.Series.dt.timestamp": [[830, "polars-series-dt-timestamp"]], "polars.Series.dt.month_start": [[818, "polars-series-dt-month-start"]], "polars.Series.dt.month": [[816, "polars-series-dt-month"]], "polars.Series.dt.millisecond": [[811, "polars-series-dt-millisecond"]], "polars.Series.dt.dst_offset": [[800, "polars-series-dt-dst-offset"]], "polars.Series.dt.month_end": [[817, "polars-series-dt-month-end"]], "polars.Series.dt.microseconds": [[810, "polars-series-dt-microseconds"]], "polars.Series.dt.iso_year": [[805, "polars-series-dt-iso-year"]], "polars.Series.dt.seconds": [[827, "polars-series-dt-seconds"]], "polars.Series.dt.datetime": [[797, "polars-series-dt-datetime"]], "polars.Series.dt.milliseconds": [[812, "polars-series-dt-milliseconds"]], "polars.Series.dt.days": [[799, "polars-series-dt-days"]], "polars.Series.dt.weekday": [[834, "polars-series-dt-weekday"]], "polars.Series.dt.cast_time_unit": [[793, "polars-series-dt-cast-time-unit"]], "polars.Series.dt.week": [[833, "polars-series-dt-week"]], "polars.Series.ewm_std": [[841, "polars-series-ewm-std"]], "polars.Series.dt.epoch": [[801, "polars-series-dt-epoch"]], "polars.Series.get_chunks": [[852, "polars-series-get-chunks"]], "polars.Series.is_between": [[860, "polars-series-is-between"]], "polars.Series.dt.truncate": [[832, "polars-series-dt-truncate"]], "polars.Series.dt.combine": [[794, "polars-series-dt-combine"]], "polars.Series.head": [[855, "polars-series-head"]], "polars.Series.is_boolean": [[861, "polars-series-is-boolean"]], "polars.Series.dt.min": [[813, "polars-series-dt-min"]], "polars.Series.hash": [[854, "polars-series-hash"]], "polars.Series.flags": [[850, "polars-series-flags"]], "polars.Series.dt.nanoseconds": [[820, "polars-series-dt-nanoseconds"]], "polars.Series.dtype": [[837, "polars-series-dtype"]], "polars.Series.dt.replace_time_zone": [[824, "polars-series-dt-replace-time-zone"]], "polars.Series.dt.base_utc_offset": [[792, "polars-series-dt-base-utc-offset"]], "polars.Series.dt.convert_time_zone": [[795, "polars-series-dt-convert-time-zone"]], "polars.Series.dt.is_leap_year": [[804, "polars-series-dt-is-leap-year"]], "polars.Series.dt.offset_by": [[821, "polars-series-dt-offset-by"]], "polars.Series.dt.quarter": [[823, "polars-series-dt-quarter"]], "polars.Series.dt.round": [[825, "polars-series-dt-round"]], "polars.Series.dt.time": [[829, "polars-series-dt-time"]], "polars.Series.fill_null": [[848, "polars-series-fill-null"]], "polars.Series.dt.microsecond": [[809, "polars-series-dt-microsecond"]], "polars.Series.dt.to_string": [[831, "polars-series-dt-to-string"]], "polars.Series.extend": [[845, "polars-series-extend"]], "polars.Series.fill_nan": [[847, "polars-series-fill-nan"]], "polars.Series.hist": [[856, "polars-series-hist"]], "polars.Series.dt.hours": [[803, "polars-series-dt-hours"]], "polars.Series.dt.strftime": [[828, "polars-series-dt-strftime"]], "polars.Series.inner_dtype": [[858, "polars-series-inner-dtype"]], "polars.Series.dt.with_time_unit": [[835, "polars-series-dt-with-time-unit"]], "polars.Series.is_empty": [[863, "polars-series-is-empty"]], "polars.Series.ewm_var": [[842, "polars-series-ewm-var"]], "polars.Series.ewm_mean": [[840, "polars-series-ewm-mean"]], "polars.Series.exp": [[843, "polars-series-exp"]], "polars.Series.filter": [[849, "polars-series-filter"]], "polars.Series.dt.max": [[806, "polars-series-dt-max"]], "polars.Series.dt.nanosecond": [[819, "polars-series-dt-nanosecond"]], "polars.Series.dt.day": [[798, "polars-series-dt-day"]], "polars.Series.dt.minutes": [[815, "polars-series-dt-minutes"]], "polars.Series.entropy": [[838, "polars-series-entropy"]], "polars.Series.is_duplicated": [[862, "polars-series-is-duplicated"]], "polars.Series.dt.hour": [[802, "polars-series-dt-hour"]], "polars.Series.dt.ordinal_day": [[822, "polars-series-dt-ordinal-day"]], "polars.Series.has_validity": [[853, "polars-series-has-validity"]], "polars.Series.dt.median": [[808, "polars-series-dt-median"]], "polars.Series.implode": [[857, "polars-series-implode"]], "polars.Series.floor": [[851, "polars-series-floor"]], "polars.Series.dt.mean": [[807, "polars-series-dt-mean"]], "polars.Series.extend_constant": [[846, "polars-series-extend-constant"]], "polars.Series.dt.second": [[826, "polars-series-dt-second"]], "polars.Series.dt.minute": [[814, "polars-series-dt-minute"]], "polars.Series.dt.year": [[836, "polars-series-dt-year"]], "polars.Series.dt.date": [[796, "polars-series-dt-date"]], "polars.Series.explode": [[844, "polars-series-explode"]], "polars.Series.interpolate": [[859, "polars-series-interpolate"]], "polars.Series.estimated_size": [[839, "polars-series-estimated-size"]], "Computation": [[1046, "computation"], [636, "computation"], [250, "computation"]], "polars.Series.tail": [[1019, "polars-series-tail"]], "Miscellaneous": [[1051, "miscellaneous"], [735, "miscellaneous"], [648, "miscellaneous"], [641, "miscellaneous"], [255, "miscellaneous"]], "Export": [[1048, "export"], [252, "export"]], "polars.Series.unique": [[1034, "polars-series-unique"]], "Boolean": [[1044, "boolean"], [633, "boolean"]], "polars.Series.struct.field": [[1013, "polars-series-struct-field"]], "String": [[1053, "string"], [644, "string"]], "SQL": [[1056, "sql"]], "Methods": [[1056, "methods"]], "Utils": [[1058, "utils"]], "polars.Series.tan": [[1022, "polars-series-tan"]], "polars.Series.str.zfill": [[1012, "polars-series-str-zfill"]], "polars.Series.struct.fields": [[1014, "polars-series-struct-fields"]], "polars.Series.sum": [[1018, "polars-series-sum"]], "polars.Series.value_counts": [[1037, "polars-series-value-counts"]], "Series": [[1049, "series"]], "Temporal": [[1055, "temporal"], [646, "temporal"], [257, "temporal"]], "polars.Series.str.to_time": [[1009, "polars-series-str-to-time"]], "polars.Series.tanh": [[1023, "polars-series-tanh"]], "Struct": [[1054, "struct"], [645, "struct"]], "polars.Series.view": [[1039, "polars-series-view"]], "polars.Series.to_frame": [[1027, "polars-series-to-frame"]], "polars.Series.to_pandas": [[1031, "polars-series-to-pandas"]], "Testing": [[1057, "testing"]], "Asserts": [[1057, "asserts"]], "Parametric testing": [[1057, "parametric-testing"]], "Polars primitives": [[1057, "polars-primitives"]], "Strategy helpers": [[1057, "strategy-helpers"]], "Profiles": [[1057, "profiles"]], "polars.Series.struct.rename_fields": [[1015, "polars-series-struct-rename-fields"]], "polars.Series.str.to_titlecase": [[1010, "polars-series-str-to-titlecase"]], "polars.Series.to_physical": [[1032, "polars-series-to-physical"]], "polars.Series.zip_with": [[1040, "polars-series-zip-with"]], "polars.Series.to_dummies": [[1026, "polars-series-to-dummies"]], "Binary": [[1043, "binary"], [632, "binary"], [643, "binary"]], "polars.Series.to_numpy": [[1030, "polars-series-to-numpy"]], "polars.Series.take": [[1020, "polars-series-take"]], "Array": [[1041, "array"], [631, "array"]], "polars.Series.time_unit": [[1024, "polars-series-time-unit"]], "polars.Series.struct.unnest": [[1017, "polars-series-struct-unnest"]], "Attributes": [[1042, "attributes"], [731, "attributes"], [249, "attributes"]], "polars.Series.struct.schema": [[1016, "polars-series-struct-schema"]], "List": [[1050, "list"], [639, "list"]], "polars.Series.to_init_repr": [[1028, "polars-series-to-init-repr"]], "polars.Series.take_every": [[1021, "polars-series-take-every"]], "polars.Series.to_list": [[1029, "polars-series-to-list"]], "polars.Series.top_k": [[1033, "polars-series-top-k"]], "polars.Series.upper_bound": [[1036, "polars-series-upper-bound"]], "polars.Series.var": [[1038, "polars-series-var"]], "Descriptive": [[1047, "descriptive"], [732, "descriptive"], [251, "descriptive"]], "Manipulation/selection": [[1052, "manipulation-selection"], [736, "manipulation-selection"], [642, "manipulation-selection"], [256, "manipulation-selection"]], "polars.Series.str.to_lowercase": [[1008, "polars-series-str-to-lowercase"]], "Categories": [[1045, "categories"], [634, "categories"]], "polars.Series.str.to_uppercase": [[1011, "polars-series-str-to-uppercase"]], "polars.Series.unique_counts": [[1035, "polars-series-unique-counts"]], "polars.Series.to_arrow": [[1025, "polars-series-to-arrow"]], "polars.Series.arctanh": [[750, "polars-series-arctanh"]], "polars.lazyframe.groupby.LazyGroupBy.n_unique": [[727, "polars-lazyframe-groupby-lazygroupby-n-unique"]], "polars.lazyframe.groupby.LazyGroupBy.min": [[726, "polars-lazyframe-groupby-lazygroupby-min"]], "polars.Series.arg_max": [[751, "polars-series-arg-max"]], "polars.Series.arg_min": [[752, "polars-series-arg-min"]], "polars.Series.arcsin": [[747, "polars-series-arcsin"]], "polars.lazyframe.groupby.LazyGroupBy.head": [[721, "polars-lazyframe-groupby-lazygroupby-head"]], "polars.Series.all": [[741, "polars-series-all"]], "polars.Series.arccos": [[745, "polars-series-arccos"]], "polars.Series.bin.starts_with": [[764, "polars-series-bin-starts-with"]], "polars.Series.clip": [[774, "polars-series-clip"]], "polars.Series.clone": [[777, "polars-series-clone"]], "polars.Series.drop_nulls": [[790, "polars-series-drop-nulls"]], "Read/write logical plan": [[735, "read-write-logical-plan"]], "polars.Series.cos": [[778, "polars-series-cos"]], "GroupBy": [[733, "groupby"], [253, "groupby"]], "polars.Series.cumprod": [[782, "polars-series-cumprod"]], "Selectors": [[737, "selectors"]], "Importing": [[737, "importing"]], "Set operations": [[737, "set-operations"]], "Functions": [[737, "functions"], [648, "functions"], [637, "functions"]], "polars.lazyframe.groupby.LazyGroupBy.mean": [[724, "polars-lazyframe-groupby-lazygroupby-mean"]], "polars.Series.cummin": [[781, "polars-series-cummin"]], "polars.Series.ceil": [[771, "polars-series-ceil"]], "polars.Series.apply": [[744, "polars-series-apply"]], "polars.lazyframe.groupby.LazyGroupBy.max": [[723, "polars-lazyframe-groupby-lazygroupby-max"]], "polars.Series.clip_min": [[776, "polars-series-clip-min"]], "polars.Series.cat.set_ordering": [[769, "polars-series-cat-set-ordering"]], "polars.Series.arg_sort": [[753, "polars-series-arg-sort"]], "polars.lazyframe.groupby.LazyGroupBy.quantile": [[728, "polars-lazyframe-groupby-lazygroupby-quantile"]], "polars.lazyframe.groupby.LazyGroupBy.first": [[720, "polars-lazyframe-groupby-lazygroupby-first"]], "LazyFrame": [[734, "lazyframe"]], "polars.lazyframe.groupby.LazyGroupBy.sum": [[729, "polars-lazyframe-groupby-lazygroupby-sum"]], "polars.lazyframe.groupby.LazyGroupBy.last": [[722, "polars-lazyframe-groupby-lazygroupby-last"]], "polars.Series.cumulative_eval": [[784, "polars-series-cumulative-eval"]], "polars.Series.arr.unique": [[759, "polars-series-arr-unique"]], "polars.Series.bin.decode": [[761, "polars-series-bin-decode"]], "polars.lazyframe.groupby.LazyGroupBy.median": [[725, "polars-lazyframe-groupby-lazygroupby-median"]], "polars.Series.append": [[743, "polars-series-append"]], "polars.Series.arctan": [[749, "polars-series-arctan"]], "polars.Series.arg_unique": [[755, "polars-series-arg-unique"]], "polars.Series.arr.max": [[756, "polars-series-arr-max"]], "polars.Series.bin.contains": [[760, "polars-series-bin-contains"]], "polars.Series.bottom_k": [[765, "polars-series-bottom-k"]], "polars.Series.clear": [[773, "polars-series-clear"]], "polars.Series.describe": [[786, "polars-series-describe"]], "polars.Series.cat": [[767, "polars-series-cat"]], "polars.Series.drop_nans": [[789, "polars-series-drop-nans"]], "polars.Series.chunk_lengths": [[772, "polars-series-chunk-lengths"]], "polars.Series.clip_max": [[775, "polars-series-clip-max"]], "polars.Series.bin.encode": [[762, "polars-series-bin-encode"]], "polars.Series.diff": [[787, "polars-series-diff"]], "polars.Series.dt": [[791, "polars-series-dt"]], "polars.Series.arg_true": [[754, "polars-series-arg-true"]], "polars.lazyframe.groupby.LazyGroupBy.tail": [[730, "polars-lazyframe-groupby-lazygroupby-tail"]], "polars.Series.arr.min": [[757, "polars-series-arr-min"]], "polars.Series.cast": [[766, "polars-series-cast"]], "polars.Series.dot": [[788, "polars-series-dot"]], "polars.Series.any": [[742, "polars-series-any"]], "polars.Series.cbrt": [[770, "polars-series-cbrt"]], "polars.Series.cat.get_categories": [[768, "polars-series-cat-get-categories"]], "polars.Series.arr.sum": [[758, "polars-series-arr-sum"]], "polars.Series.cumsum": [[783, "polars-series-cumsum"]], "polars.Series.cut": [[785, "polars-series-cut"]], "polars.Series.alias": [[740, "polars-series-alias"]], "polars.Series.arcsinh": [[748, "polars-series-arcsinh"]], "polars.Series.arccosh": [[746, "polars-series-arccosh"]], "polars.Series.cummax": [[780, "polars-series-cummax"]], "polars.Series.bin.ends_with": [[763, "polars-series-bin-ends-with"]], "polars.Series.abs": [[739, "polars-series-abs"]], "polars.Series.cosh": [[779, "polars-series-cosh"]], "polars.LazyFrame.first": [[667, "polars-lazyframe-first"]], "polars.LazyFrame.mean": [[682, "polars-lazyframe-mean"]], "polars.LazyFrame.shift": [[697, "polars-lazyframe-shift"]], "polars.LazyFrame.cache": [[653, "polars-lazyframe-cache"]], "polars.LazyFrame.write_json": [[715, "polars-lazyframe-write-json"]], "polars.LazyFrame.with_context": [[713, "polars-lazyframe-with-context"]], "polars.LazyFrame.std": [[702, "polars-lazyframe-std"]], "polars.LazyFrame.bottom_k": [[652, "polars-lazyframe-bottom-k"]], "polars.LazyFrame.show_graph": [[699, "polars-lazyframe-show-graph"]], "polars.LazyFrame.melt": [[684, "polars-lazyframe-melt"]], "polars.LazyFrame.merge_sorted": [[685, "polars-lazyframe-merge-sorted"]], "polars.LazyFrame.unnest": [[708, "polars-lazyframe-unnest"]], "polars.LazyFrame.sum": [[703, "polars-lazyframe-sum"]], "polars.LazyFrame.groupby_dynamic": [[670, "polars-lazyframe-groupby-dynamic"]], "polars.LazyFrame.interpolate": [[674, "polars-lazyframe-interpolate"]], "polars.LazyFrame.sort": [[701, "polars-lazyframe-sort"]], "polars.LazyFrame.join": [[675, "polars-lazyframe-join"]], "polars.LazyFrame.columns": [[657, "polars-lazyframe-columns"]], "polars.LazyFrame.lazy": [[678, "polars-lazyframe-lazy"]], "polars.LazyFrame.null_count": [[687, "polars-lazyframe-null-count"]], "polars.LazyFrame.schema": [[694, "polars-lazyframe-schema"]], "polars.LazyFrame.filter": [[666, "polars-lazyframe-filter"]], "polars.LazyFrame.map": [[680, "polars-lazyframe-map"]], "polars.LazyFrame.pipe": [[688, "polars-lazyframe-pipe"]], "polars.LazyFrame.top_k": [[706, "polars-lazyframe-top-k"]], "polars.lazyframe.groupby.LazyGroupBy.apply": [[718, "polars-lazyframe-groupby-lazygroupby-apply"]], "polars.LazyFrame.join_asof": [[676, "polars-lazyframe-join-asof"]], "polars.LazyFrame.select": [[695, "polars-lazyframe-select"]], "polars.LazyFrame.set_sorted": [[696, "polars-lazyframe-set-sorted"]], "polars.LazyFrame.drop": [[658, "polars-lazyframe-drop"]], "polars.LazyFrame.clone": [[655, "polars-lazyframe-clone"]], "polars.LazyFrame.dtypes": [[660, "polars-lazyframe-dtypes"]], "polars.LazyFrame.drop_nulls": [[659, "polars-lazyframe-drop-nulls"]], "polars.LazyFrame.median": [[683, "polars-lazyframe-median"]], "polars.LazyFrame.profile": [[689, "polars-lazyframe-profile"]], "polars.LazyFrame.limit": [[679, "polars-lazyframe-limit"]], "polars.LazyFrame.width": [[711, "polars-lazyframe-width"]], "polars.LazyFrame.explain": [[661, "polars-lazyframe-explain"]], "polars.LazyFrame.min": [[686, "polars-lazyframe-min"]], "polars.LazyFrame.fill_null": [[665, "polars-lazyframe-fill-null"]], "polars.LazyFrame.last": [[677, "polars-lazyframe-last"]], "polars.LazyFrame.quantile": [[690, "polars-lazyframe-quantile"]], "polars.LazyFrame.fetch": [[663, "polars-lazyframe-fetch"]], "polars.LazyFrame.collect": [[656, "polars-lazyframe-collect"]], "polars.LazyFrame.rename": [[692, "polars-lazyframe-rename"]], "polars.LazyFrame.var": [[710, "polars-lazyframe-var"]], "polars.LazyFrame.with_columns": [[712, "polars-lazyframe-with-columns"]], "polars.LazyFrame.groupby_rolling": [[671, "polars-lazyframe-groupby-rolling"]], "polars.LazyFrame.explode": [[662, "polars-lazyframe-explode"]], "polars.LazyFrame.from_json": [[668, "polars-lazyframe-from-json"]], "polars.LazyFrame.max": [[681, "polars-lazyframe-max"]], "polars.LazyFrame.slice": [[700, "polars-lazyframe-slice"]], "polars.LazyFrame.fill_nan": [[664, "polars-lazyframe-fill-nan"]], "polars.LazyFrame.read_json": [[691, "polars-lazyframe-read-json"]], "polars.LazyFrame.inspect": [[673, "polars-lazyframe-inspect"]], "polars.LazyFrame.take_every": [[705, "polars-lazyframe-take-every"]], "API reference": [[649, "api-reference"]], "polars.LazyFrame.unique": [[707, "polars-lazyframe-unique"]], "polars.LazyFrame.update": [[709, "polars-lazyframe-update"]], "polars.lazyframe.groupby.LazyGroupBy.all": [[717, "polars-lazyframe-groupby-lazygroupby-all"]], "polars.lazyframe.groupby.LazyGroupBy.count": [[719, "polars-lazyframe-groupby-lazygroupby-count"]], "polars.lazyframe.groupby.LazyGroupBy.agg": [[716, "polars-lazyframe-groupby-lazygroupby-agg"]], "polars.LazyFrame.with_row_count": [[714, "polars-lazyframe-with-row-count"]], "polars.LazyFrame.shift_and_fill": [[698, "polars-lazyframe-shift-and-fill"]], "Conversion": [[648, "conversion"]], "Parallelization": [[648, "parallelization"]], "StringCache": [[648, "stringcache"]], "polars.LazyFrame.groupby": [[669, "polars-lazyframe-groupby"]], "polars.LazyFrame.reverse": [[693, "polars-lazyframe-reverse"]], "polars.LazyFrame.tail": [[704, "polars-lazyframe-tail"]], "polars.LazyFrame.clear": [[654, "polars-lazyframe-clear"]], "Input/output": [[650, "input-output"]], "CSV": [[650, "csv"]], "Feather/ IPC": [[650, "feather-ipc"]], "Parquet": [[650, "parquet"]], "Database": [[650, "database"]], "JSON": [[650, "json"]], "AVRO": [[650, "avro"]], "Excel": [[650, "excel"]], "Delta Lake": [[650, "delta-lake"]], "Datasets": [[650, "datasets"]], "BatchedCsvReader": [[650, "batchedcsvreader"]], "polars.LazyFrame.head": [[672, "polars-lazyframe-head"]], "polars.Expr.str.starts_with": [[532, "polars-expr-str-starts-with"]], "polars.Expr.str.zfill": [[542, "polars-expr-str-zfill"]], "polars.Expr.struct.field": [[543, "polars-expr-struct-field"]], "polars.Expr.suffix": [[546, "polars-expr-suffix"]], "polars.Expr.std": [[507, "polars-expr-std"]], "polars.Expr.truediv": [[555, "polars-expr-truediv"]], "polars.arctan2": [[570, "polars-arctan2"]], "polars.Expr.sqrt": [[506, "polars-expr-sqrt"]], "polars.Expr.unique_counts": [[557, "polars-expr-unique-counts"]], "polars.Expr.upper_bound": [[558, "polars-expr-upper-bound"]], "polars.approx_unique": [[568, "polars-approx-unique"]], "polars.Expr.str.to_time": [[539, "polars-expr-str-to-time"]], "polars.Expr.str.encode": [[512, "polars-expr-str-encode"]], "polars.Expr.where": [[561, "polars-expr-where"]], "polars.Expr.str.parse_int": [[523, "polars-expr-str-parse-int"]], "polars.Expr.str.splitn": [[531, "polars-expr-str-splitn"]], "polars.Expr.top_k": [[554, "polars-expr-top-k"]], "polars.all": [[563, "polars-all"]], "polars.avg": [[574, "polars-avg"]], "polars.any_horizontal": [[566, "polars-any-horizontal"]], "polars.Expr.str.lengths": [[519, "polars-expr-str-lengths"]], "polars.Expr.str.concat": [[508, "polars-expr-str-concat"]], "polars.coalesce": [[575, "polars-coalesce"]], "polars.Expr.str.extract_all": [[516, "polars-expr-str-extract-all"]], "polars.Expr.sub": [[545, "polars-expr-sub"]], "polars.Expr.str.split_exact": [[530, "polars-expr-str-split-exact"]], "polars.Expr.str.replace_all": [[525, "polars-expr-str-replace-all"]], "polars.Expr.str.to_titlecase": [[540, "polars-expr-str-to-titlecase"]], "polars.Expr.value_counts": [[559, "polars-expr-value-counts"]], "polars.any": [[565, "polars-any"]], "polars.Expr.str.ends_with": [[513, "polars-expr-str-ends-with"]], "polars.Expr.to_physical": [[553, "polars-expr-to-physical"]], "polars.apply": [[567, "polars-apply"]], "polars.Expr.sort_by": [[505, "polars-expr-sort-by"]], "polars.Expr.str.replace": [[524, "polars-expr-str-replace"]], "polars.Expr.str.explode": [[514, "polars-expr-str-explode"]], "polars.Expr.str.extract": [[515, "polars-expr-str-extract"]], "polars.Expr.str.decode": [[511, "polars-expr-str-decode"]], "polars.Expr.xor": [[562, "polars-expr-xor"]], "polars.Expr.tanh": [[552, "polars-expr-tanh"]], "polars.all_horizontal": [[564, "polars-all-horizontal"]], "polars.Expr.tail": [[548, "polars-expr-tail"]], "polars.Expr.str.rjust": [[526, "polars-expr-str-rjust"]], "polars.Expr.str.count_match": [[510, "polars-expr-str-count-match"]], "polars.Expr.str.to_decimal": [[537, "polars-expr-str-to-decimal"]], "polars.Expr.str.to_uppercase": [[541, "polars-expr-str-to-uppercase"]], "polars.Expr.struct.rename_fields": [[544, "polars-expr-struct-rename-fields"]], "polars.Expr.str.to_datetime": [[536, "polars-expr-str-to-datetime"]], "polars.Expr.str.lstrip": [[521, "polars-expr-str-lstrip"]], "polars.Expr.str.strptime": [[534, "polars-expr-str-strptime"]], "polars.Expr.take": [[549, "polars-expr-take"]], "polars.Expr.sort": [[504, "polars-expr-sort"]], "polars.arctan2d": [[571, "polars-arctan2d"]], "polars.arg_sort_by": [[572, "polars-arg-sort-by"]], "polars.Expr.str.n_chars": [[522, "polars-expr-str-n-chars"]], "polars.Expr.str.rstrip": [[527, "polars-expr-str-rstrip"]], "polars.Expr.str.slice": [[528, "polars-expr-str-slice"]], "polars.arg_where": [[573, "polars-arg-where"]], "polars.Expr.str.strip": [[533, "polars-expr-str-strip"]], "polars.Expr.str.contains": [[509, "polars-expr-str-contains"]], "polars.Expr.unique": [[556, "polars-expr-unique"]], "polars.Expr.var": [[560, "polars-expr-var"]], "polars.arange": [[569, "polars-arange"]], "polars.Expr.str.to_date": [[535, "polars-expr-str-to-date"]], "polars.Expr.tan": [[551, "polars-expr-tan"]], "polars.Expr.str.ljust": [[520, "polars-expr-str-ljust"]], "polars.Expr.str.json_path_match": [[518, "polars-expr-str-json-path-match"]], "polars.Expr.str.split": [[529, "polars-expr-str-split"]], "polars.Expr.sum": [[547, "polars-expr-sum"]], "polars.Expr.str.json_extract": [[517, "polars-expr-str-json-extract"]], "polars.Expr.take_every": [[550, "polars-expr-take-every"]], "polars.Expr.str.to_lowercase": [[538, "polars-expr-str-to-lowercase"]], "polars.Expr.max": [[440, "polars-expr-max"]], "polars.Expr.nan_min": [[459, "polars-expr-nan-min"]], "polars.Expr.mean": [[441, "polars-expr-mean"]], "polars.Expr.n_unique": [[457, "polars-expr-n-unique"]], "polars.Expr.rolling_max": [[482, "polars-expr-rolling-max"]], "polars.Expr.ne_missing": [[461, "polars-expr-ne-missing"]], "polars.Expr.rolling_mean": [[483, "polars-expr-rolling-mean"]], "polars.Expr.rle_id": [[480, "polars-expr-rle-id"]], "polars.Expr.reinterpret": [[475, "polars-expr-reinterpret"]], "polars.Expr.sinh": [[501, "polars-expr-sinh"]], "polars.Expr.rechunk": [[474, "polars-expr-rechunk"]], "polars.Expr.meta.output_name": [[447, "polars-expr-meta-output-name"]], "polars.Expr.log10": [[433, "polars-expr-log10"]], "polars.Expr.null_count": [[462, "polars-expr-null-count"]], "polars.Expr.lower_bound": [[435, "polars-expr-lower-bound"]], "polars.Expr.rolling_median": [[484, "polars-expr-rolling-median"]], "polars.Expr.set_sorted": [[494, "polars-expr-set-sorted"]], "polars.Expr.over": [[464, "polars-expr-over"]], "polars.Expr.rolling_skew": [[487, "polars-expr-rolling-skew"]], "polars.Expr.rolling_std": [[488, "polars-expr-rolling-std"]], "polars.Expr.slice": [[503, "polars-expr-slice"]], "polars.Expr.map_dict": [[439, "polars-expr-map-dict"]], "polars.Expr.map": [[437, "polars-expr-map"]], "polars.Expr.mul": [[456, "polars-expr-mul"]], "polars.Expr.rolling_quantile": [[486, "polars-expr-rolling-quantile"]], "polars.Expr.mode": [[455, "polars-expr-mode"]], "polars.Expr.skew": [[502, "polars-expr-skew"]], "polars.Expr.log1p": [[434, "polars-expr-log1p"]], "polars.Expr.meta.undo_aliases": [[451, "polars-expr-meta-undo-aliases"]], "polars.Expr.sample": [[492, "polars-expr-sample"]], "polars.Expr.shuffle": [[498, "polars-expr-shuffle"]], "polars.Expr.lt": [[436, "polars-expr-lt"]], "polars.Expr.mod": [[454, "polars-expr-mod"]], "polars.Expr.product": [[469, "polars-expr-product"]], "polars.Expr.shift_and_fill": [[496, "polars-expr-shift-and-fill"]], "polars.Expr.rolling_apply": [[481, "polars-expr-rolling-apply"]], "polars.Expr.meta.ne": [[446, "polars-expr-meta-ne"]], "polars.Expr.prefix": [[468, "polars-expr-prefix"]], "polars.Expr.rolling_sum": [[489, "polars-expr-rolling-sum"]], "polars.Expr.shift": [[495, "polars-expr-shift"]], "polars.Expr.shrink_dtype": [[497, "polars-expr-shrink-dtype"]], "polars.Expr.meta.eq": [[443, "polars-expr-meta-eq"]], "polars.Expr.meta.has_multiple_outputs": [[444, "polars-expr-meta-has-multiple-outputs"]], "polars.Expr.meta.pop": [[448, "polars-expr-meta-pop"]], "polars.Expr.pct_change": [[465, "polars-expr-pct-change"]], "polars.Expr.meta.write_json": [[452, "polars-expr-meta-write-json"]], "polars.Expr.meta.tree_format": [[450, "polars-expr-meta-tree-format"]], "polars.Expr.radians": [[472, "polars-expr-radians"]], "polars.Expr.rolling_min": [[485, "polars-expr-rolling-min"]], "polars.Expr.search_sorted": [[493, "polars-expr-search-sorted"]], "polars.Expr.sign": [[499, "polars-expr-sign"]], "polars.Expr.meta.root_names": [[449, "polars-expr-meta-root-names"]], "polars.Expr.repeat_by": [[476, "polars-expr-repeat-by"]], "polars.Expr.meta.is_regex_projection": [[445, "polars-expr-meta-is-regex-projection"]], "polars.Expr.rle": [[479, "polars-expr-rle"]], "polars.Expr.rank": [[473, "polars-expr-rank"]], "polars.Expr.or_": [[463, "polars-expr-or"]], "polars.Expr.nan_max": [[458, "polars-expr-nan-max"]], "polars.Expr.min": [[453, "polars-expr-min"]], "polars.Expr.qcut": [[470, "polars-expr-qcut"]], "polars.Expr.quantile": [[471, "polars-expr-quantile"]], "polars.Expr.map_alias": [[438, "polars-expr-map-alias"]], "polars.Expr.rolling_var": [[490, "polars-expr-rolling-var"]], "polars.Expr.log": [[432, "polars-expr-log"]], "polars.Expr.round": [[491, "polars-expr-round"]], "polars.Expr.sin": [[500, "polars-expr-sin"]], "polars.Expr.median": [[442, "polars-expr-median"]], "polars.Expr.pow": [[467, "polars-expr-pow"]], "polars.Expr.reshape": [[477, "polars-expr-reshape"]], "polars.Expr.reverse": [[478, "polars-expr-reverse"]], "polars.Expr.pipe": [[466, "polars-expr-pipe"]], "polars.Expr.ne": [[460, "polars-expr-ne"]], "polars.Expr.fill_nan": [[367, "polars-expr-fill-nan"]], "polars.Expr.is_duplicated": [[384, "polars-expr-is-duplicated"]], "polars.Expr.is_finite": [[385, "polars-expr-is-finite"]], "polars.Expr.list.max": [[419, "polars-expr-list-max"]], "polars.Expr.interpolate": [[382, "polars-expr-interpolate"]], "polars.Expr.list.sort": [[425, "polars-expr-list-sort"]], "polars.Expr.inspect": [[381, "polars-expr-inspect"]], "polars.Expr.list.tail": [[427, "polars-expr-list-tail"]], "polars.Expr.list.eval": [[410, "polars-expr-list-eval"]], "polars.Expr.list.any": [[402, "polars-expr-list-any"]], "polars.Expr.list.diff": [[408, "polars-expr-list-diff"]], "polars.Expr.is_nan": [[389, "polars-expr-is-nan"]], "polars.Expr.list.contains": [[406, "polars-expr-list-contains"]], "polars.Expr.floordiv": [[373, "polars-expr-floordiv"]], "polars.Expr.first": [[370, "polars-expr-first"]], "polars.Expr.list.first": [[412, "polars-expr-list-first"]], "polars.Expr.list.mean": [[420, "polars-expr-list-mean"]], "polars.Expr.hash": [[378, "polars-expr-hash"]], "polars.Expr.ewm_std": [[361, "polars-expr-ewm-std"]], "polars.Expr.list.arg_min": [[404, "polars-expr-list-arg-min"]], "polars.Expr.list.shift": [[423, "polars-expr-list-shift"]], "polars.Expr.list.arg_max": [[403, "polars-expr-list-arg-max"]], "polars.Expr.is_in": [[387, "polars-expr-is-in"]], "polars.Expr.is_not": [[390, "polars-expr-is-not"]], "polars.Expr.exclude": [[363, "polars-expr-exclude"]], "polars.Expr.list.union": [[430, "polars-expr-list-union"]], "polars.Expr.len": [[399, "polars-expr-len"]], "polars.Expr.gt": [[377, "polars-expr-gt"]], "polars.Expr.list.slice": [[424, "polars-expr-list-slice"]], "polars.Expr.list.head": [[414, "polars-expr-list-head"]], "polars.Expr.list.concat": [[405, "polars-expr-list-concat"]], "polars.Expr.list.sum": [[426, "polars-expr-list-sum"]], "polars.Expr.forward_fill": [[374, "polars-expr-forward-fill"]], "polars.Expr.is_not_nan": [[391, "polars-expr-is-not-nan"]], "polars.Expr.from_json": [[375, "polars-expr-from-json"]], "polars.Expr.flatten": [[371, "polars-expr-flatten"]], "polars.Expr.ewm_mean": [[360, "polars-expr-ewm-mean"]], "polars.Expr.list.intersection": [[415, "polars-expr-list-intersection"]], "polars.Expr.list.difference": [[409, "polars-expr-list-difference"]], "polars.Expr.is_first": [[386, "polars-expr-is-first"]], "polars.Expr.is_unique": [[394, "polars-expr-is-unique"]], "polars.Expr.head": [[379, "polars-expr-head"]], "polars.Expr.kurtosis": [[396, "polars-expr-kurtosis"]], "polars.Expr.list.count_match": [[407, "polars-expr-list-count-match"]], "polars.Expr.list.last": [[417, "polars-expr-list-last"]], "polars.Expr.extend_constant": [[366, "polars-expr-extend-constant"]], "polars.Expr.le": [[398, "polars-expr-le"]], "polars.Expr.list.min": [[421, "polars-expr-list-min"]], "polars.Expr.exp": [[364, "polars-expr-exp"]], "polars.Expr.filter": [[369, "polars-expr-filter"]], "polars.Expr.is_not_null": [[392, "polars-expr-is-not-null"]], "polars.Expr.limit": [[400, "polars-expr-limit"]], "polars.Expr.explode": [[365, "polars-expr-explode"]], "polars.Expr.list.take": [[428, "polars-expr-list-take"]], "polars.Expr.last": [[397, "polars-expr-last"]], "polars.Expr.fill_null": [[368, "polars-expr-fill-null"]], "polars.Expr.is_infinite": [[388, "polars-expr-is-infinite"]], "polars.Expr.list.lengths": [[418, "polars-expr-list-lengths"]], "polars.Expr.ewm_var": [[362, "polars-expr-ewm-var"]], "polars.Expr.list.join": [[416, "polars-expr-list-join"]], "polars.Expr.implode": [[380, "polars-expr-implode"]], "polars.Expr.list.explode": [[411, "polars-expr-list-explode"]], "polars.Expr.list.reverse": [[422, "polars-expr-list-reverse"]], "polars.Expr.floor": [[372, "polars-expr-floor"]], "polars.Expr.keep_name": [[395, "polars-expr-keep-name"]], "polars.Expr.list.to_struct": [[429, "polars-expr-list-to-struct"]], "polars.Expr.list.get": [[413, "polars-expr-list-get"]], "polars.Expr.is_null": [[393, "polars-expr-is-null"]], "polars.Expr.ge": [[376, "polars-expr-ge"]], "polars.Expr.list.unique": [[431, "polars-expr-list-unique"]], "polars.Expr.is_between": [[383, "polars-expr-is-between"]], "polars.Expr.list.all": [[401, "polars-expr-list-all"]], "polars.Expr.cat.set_ordering": [[295, "polars-expr-cat-set-ordering"]], "polars.Expr.dt.truncate": [[352, "polars-expr-dt-truncate"]], "polars.Expr.dt.cast_time_unit": [[317, "polars-expr-dt-cast-time-unit"]], "polars.Expr.dt.month": [[336, "polars-expr-dt-month"]], "polars.Expr.dt.quarter": [[343, "polars-expr-dt-quarter"]], "polars.Expr.dt.microseconds": [[331, "polars-expr-dt-microseconds"]], "polars.Expr.dt.week": [[353, "polars-expr-dt-week"]], "polars.Expr.bin.starts_with": [[290, "polars-expr-bin-starts-with"]], "polars.Expr.clip_max": [[299, "polars-expr-clip-max"]], "polars.Expr.cat.get_categories": [[294, "polars-expr-cat-get-categories"]], "polars.Expr.dt.seconds": [[347, "polars-expr-dt-seconds"]], "polars.Expr.cumulative_eval": [[309, "polars-expr-cumulative-eval"]], "polars.Expr.ceil": [[297, "polars-expr-ceil"]], "polars.Expr.dt.dst_offset": [[324, "polars-expr-dt-dst-offset"]], "polars.Expr.bottom_k": [[291, "polars-expr-bottom-k"]], "polars.Expr.cumsum": [[308, "polars-expr-cumsum"]], "polars.Expr.dt.year": [[356, "polars-expr-dt-year"]], "polars.Expr.dt.milliseconds": [[333, "polars-expr-dt-milliseconds"]], "polars.Expr.cut": [[310, "polars-expr-cut"]], "polars.Expr.dt.combine": [[318, "polars-expr-dt-combine"]], "polars.Expr.count": [[303, "polars-expr-count"]], "polars.Expr.drop_nans": [[314, "polars-expr-drop-nans"]], "polars.Expr.bin.encode": [[288, "polars-expr-bin-encode"]], "polars.Expr.dt.weekday": [[354, "polars-expr-dt-weekday"]], "polars.Expr.dt.nanoseconds": [[340, "polars-expr-dt-nanoseconds"]], "polars.Expr.degrees": [[311, "polars-expr-degrees"]], "polars.Expr.dt.hour": [[326, "polars-expr-dt-hour"]], "polars.Expr.cumprod": [[307, "polars-expr-cumprod"]], "polars.Expr.drop_nulls": [[315, "polars-expr-drop-nulls"]], "polars.Expr.cbrt": [[296, "polars-expr-cbrt"]], "polars.Expr.dt.is_leap_year": [[328, "polars-expr-dt-is-leap-year"]], "polars.Expr.dt.replace_time_zone": [[344, "polars-expr-dt-replace-time-zone"]], "polars.Expr.dt.round": [[345, "polars-expr-dt-round"]], "polars.Expr.cos": [[301, "polars-expr-cos"]], "polars.Expr.dt.epoch": [[325, "polars-expr-dt-epoch"]], "polars.Expr.cast": [[293, "polars-expr-cast"]], "polars.Expr.dt.time": [[349, "polars-expr-dt-time"]], "polars.Expr.dt.month_start": [[338, "polars-expr-dt-month-start"]], "polars.Expr.dt.convert_time_zone": [[319, "polars-expr-dt-convert-time-zone"]], "polars.Expr.dt.with_time_unit": [[355, "polars-expr-dt-with-time-unit"]], "polars.Expr.dt.second": [[346, "polars-expr-dt-second"]], "polars.Expr.dt.microsecond": [[330, "polars-expr-dt-microsecond"]], "polars.Expr.clip": [[298, "polars-expr-clip"]], "polars.Expr.diff": [[312, "polars-expr-diff"]], "polars.Expr.clip_min": [[300, "polars-expr-clip-min"]], "polars.Expr.dt.timestamp": [[350, "polars-expr-dt-timestamp"]], "polars.Expr.dt.to_string": [[351, "polars-expr-dt-to-string"]], "polars.Expr.eq": [[358, "polars-expr-eq"]], "polars.Expr.cache": [[292, "polars-expr-cache"]], "polars.Expr.dt.minutes": [[335, "polars-expr-dt-minutes"]], "polars.Expr.dt.nanosecond": [[339, "polars-expr-dt-nanosecond"]], "polars.Expr.cumcount": [[304, "polars-expr-cumcount"]], "polars.Expr.dt.millisecond": [[332, "polars-expr-dt-millisecond"]], "polars.Expr.cosh": [[302, "polars-expr-cosh"]], "polars.Expr.dot": [[313, "polars-expr-dot"]], "polars.Expr.dt.day": [[322, "polars-expr-dt-day"]], "polars.Expr.dt.hours": [[327, "polars-expr-dt-hours"]], "polars.Expr.dt.datetime": [[321, "polars-expr-dt-datetime"]], "polars.Expr.dt.minute": [[334, "polars-expr-dt-minute"]], "polars.Expr.dt.month_end": [[337, "polars-expr-dt-month-end"]], "polars.Expr.dt.base_utc_offset": [[316, "polars-expr-dt-base-utc-offset"]], "polars.Expr.dt.iso_year": [[329, "polars-expr-dt-iso-year"]], "polars.Expr.dt.offset_by": [[341, "polars-expr-dt-offset-by"]], "polars.Expr.entropy": [[357, "polars-expr-entropy"]], "polars.Expr.cummin": [[306, "polars-expr-cummin"]], "polars.Expr.dt.strftime": [[348, "polars-expr-dt-strftime"]], "polars.Expr.eq_missing": [[359, "polars-expr-eq-missing"]], "polars.Expr.dt.days": [[323, "polars-expr-dt-days"]], "polars.Expr.dt.ordinal_day": [[342, "polars-expr-dt-ordinal-day"]], "polars.Expr.cummax": [[305, "polars-expr-cummax"]], "polars.Expr.bin.ends_with": [[289, "polars-expr-bin-ends-with"]], "polars.Expr.dt.date": [[320, "polars-expr-dt-date"]], "polars.date_ranges": [[588, "polars-date-ranges"]], "polars.time_range": [[626, "polars-time-range"]], "polars.fold": [[594, "polars-fold"]], "polars.mean": [[607, "polars-mean"]], "polars.lit": [[603, "polars-lit"]], "polars.int_range": [[600, "polars-int-range"]], "polars.last": [[602, "polars-last"]], "polars.implode": [[599, "polars-implode"]], "polars.time": [[625, "polars-time"]], "polars.var": [[628, "polars-var"]], "polars.count": [[580, "polars-count"]], "polars.tail": [[624, "polars-tail"]], "polars.n_unique": [[611, "polars-n-unique"]], "polars.median": [[608, "polars-median"]], "polars.min": [[609, "polars-min"]], "polars.cumreduce": [[583, "polars-cumreduce"]], "polars.map": [[604, "polars-map"]], "polars.max_horizontal": [[606, "polars-max-horizontal"]], "polars.datetime": [[589, "polars-datetime"]], "Columns / names": [[635, "columns-names"]], "polars.concat_str": [[578, "polars-concat-str"]], "polars.element": [[591, "polars-element"]], "polars.head": [[598, "polars-head"]], "Expressions": [[638, "expressions"]], "Meta": [[640, "meta"]], "polars.min_horizontal": [[610, "polars-min-horizontal"]], "polars.sum": [[622, "polars-sum"]], "polars.reduce": [[614, "polars-reduce"]], "polars.sql_expr": [[619, "polars-sql-expr"]], "polars.corr": [[579, "polars-corr"]], "polars.cov": [[581, "polars-cov"]], "polars.sum_horizontal": [[623, "polars-sum-horizontal"]], "polars.int_ranges": [[601, "polars-int-ranges"]], "polars.when": [[629, "polars-when"]], "Window": [[647, "window"]], "Operators": [[643, "operators"]], "Conjunction": [[643, "conjunction"]], "Comparison": [[643, "comparison"]], "Numeric": [[643, "numeric"], [257, "numeric"]], "polars.first": [[593, "polars-first"]], "polars.format": [[595, "polars-format"]], "polars.repeat": [[615, "polars-repeat"]], "polars.duration": [[590, "polars-duration"]], "polars.cumfold": [[582, "polars-cumfold"]], "polars.date_range": [[587, "polars-date-range"]], "polars.rolling_cov": [[617, "polars-rolling-cov"]], "polars.col": [[576, "polars-col"]], "polars.time_ranges": [[627, "polars-time-ranges"]], "polars.from_epoch": [[596, "polars-from-epoch"]], "polars.rolling_corr": [[616, "polars-rolling-corr"]], "polars.exclude": [[592, "polars-exclude"]], "polars.zeros": [[630, "polars-zeros"]], "polars.ones": [[612, "polars-ones"]], "polars.select": [[618, "polars-select"]], "polars.date": [[586, "polars-date"]], "polars.quantile": [[613, "polars-quantile"]], "polars.concat_list": [[577, "polars-concat-list"]], "polars.groups": [[597, "polars-groups"]], "polars.struct": [[621, "polars-struct"]], "polars.cumsum": [[584, "polars-cumsum"]], "polars.std": [[620, "polars-std"]], "polars.max": [[605, "polars-max"]], "polars.cumsum_horizontal": [[585, "polars-cumsum-horizontal"]], "polars.DataFrame.groupby_dynamic": [[158, "polars-dataframe-groupby-dynamic"]], "polars.DataFrame.row": [[195, "polars-dataframe-row"]], "polars.DataFrame.replace_at_idx": [[193, "polars-dataframe-replace-at-idx"]], "polars.DataFrame.item": [[169, "polars-dataframe-item"]], "polars.DataFrame.fill_null": [[148, "polars-dataframe-fill-null"]], "polars.DataFrame.mean": [[177, "polars-dataframe-mean"]], "polars.DataFrame.sample": [[198, "polars-dataframe-sample"]], "polars.DataFrame.tail": [[210, "polars-dataframe-tail"]], "polars.DataFrame.hash_rows": [[160, "polars-dataframe-hash-rows"]], "polars.DataFrame.iter_slices": [[171, "polars-dataframe-iter-slices"]], "polars.DataFrame.rename": [[191, "polars-dataframe-rename"]], "polars.DataFrame.replace": [[192, "polars-dataframe-replace"]], "polars.DataFrame.sum": [[209, "polars-dataframe-sum"]], "polars.DataFrame.shrink_to_fit": [[205, "polars-dataframe-shrink-to-fit"]], "polars.DataFrame.n_chunks": [[182, "polars-dataframe-n-chunks"]], "polars.DataFrame.rows": [[196, "polars-dataframe-rows"]], "polars.DataFrame.explode": [[145, "polars-dataframe-explode"]], "polars.DataFrame.max": [[176, "polars-dataframe-max"]], "polars.DataFrame.null_count": [[184, "polars-dataframe-null-count"]], "polars.DataFrame.glimpse": [[156, "polars-dataframe-glimpse"]], "polars.DataFrame.is_empty": [[167, "polars-dataframe-is-empty"]], "polars.DataFrame.find_idx_by_name": [[150, "polars-dataframe-find-idx-by-name"]], "polars.DataFrame.is_unique": [[168, "polars-dataframe-is-unique"]], "polars.DataFrame.rechunk": [[190, "polars-dataframe-rechunk"]], "polars.DataFrame.reverse": [[194, "polars-dataframe-reverse"]], "polars.DataFrame.join_asof": [[173, "polars-dataframe-join-asof"]], "polars.DataFrame.melt": [[179, "polars-dataframe-melt"]], "polars.DataFrame.flags": [[151, "polars-dataframe-flags"]], "polars.DataFrame.filter": [[149, "polars-dataframe-filter"]], "polars.DataFrame.extend": [[146, "polars-dataframe-extend"]], "polars.DataFrame.sort": [[207, "polars-dataframe-sort"]], "polars.DataFrame.select": [[200, "polars-dataframe-select"]], "polars.DataFrame.merge_sorted": [[180, "polars-dataframe-merge-sorted"]], "polars.DataFrame.set_sorted": [[201, "polars-dataframe-set-sorted"]], "polars.DataFrame.groupby": [[157, "polars-dataframe-groupby"]], "polars.DataFrame.pipe": [[186, "polars-dataframe-pipe"]], "polars.DataFrame.fill_nan": [[147, "polars-dataframe-fill-nan"]], "polars.DataFrame.schema": [[199, "polars-dataframe-schema"]], "polars.DataFrame.std": [[208, "polars-dataframe-std"]], "polars.DataFrame.to_dicts": [[214, "polars-dataframe-to-dicts"]], "polars.DataFrame.insert_at_idx": [[164, "polars-dataframe-insert-at-idx"]], "polars.DataFrame.slice": [[206, "polars-dataframe-slice"]], "polars.DataFrame.interpolate": [[165, "polars-dataframe-interpolate"]], "polars.DataFrame.n_unique": [[183, "polars-dataframe-n-unique"]], "polars.DataFrame.limit": [[175, "polars-dataframe-limit"]], "polars.DataFrame.groupby_rolling": [[159, "polars-dataframe-groupby-rolling"]], "polars.DataFrame.shape": [[202, "polars-dataframe-shape"]], "polars.DataFrame.take_every": [[211, "polars-dataframe-take-every"]], "polars.DataFrame.frame_equal": [[153, "polars-dataframe-frame-equal"]], "polars.DataFrame.is_duplicated": [[166, "polars-dataframe-is-duplicated"]], "polars.DataFrame.lazy": [[174, "polars-dataframe-lazy"]], "polars.DataFrame.partition_by": [[185, "polars-dataframe-partition-by"]], "polars.DataFrame.hstack": [[163, "polars-dataframe-hstack"]], "polars.DataFrame.product": [[188, "polars-dataframe-product"]], "polars.DataFrame.iter_rows": [[170, "polars-dataframe-iter-rows"]], "polars.DataFrame.get_column": [[154, "polars-dataframe-get-column"]], "polars.DataFrame.rows_by_key": [[197, "polars-dataframe-rows-by-key"]], "polars.DataFrame.fold": [[152, "polars-dataframe-fold"]], "polars.DataFrame.shift_and_fill": [[204, "polars-dataframe-shift-and-fill"]], "polars.DataFrame.estimated_size": [[144, "polars-dataframe-estimated-size"]], "polars.DataFrame.height": [[162, "polars-dataframe-height"]], "polars.DataFrame.min": [[181, "polars-dataframe-min"]], "polars.DataFrame.pivot": [[187, "polars-dataframe-pivot"]], "polars.DataFrame.shift": [[203, "polars-dataframe-shift"]], "polars.DataFrame.to_arrow": [[212, "polars-dataframe-to-arrow"]], "polars.DataFrame.to_dummies": [[215, "polars-dataframe-to-dummies"]], "polars.DataFrame.get_columns": [[155, "polars-dataframe-get-columns"]], "polars.DataFrame.median": [[178, "polars-dataframe-median"]], "polars.DataFrame.quantile": [[189, "polars-dataframe-quantile"]], "polars.DataFrame.head": [[161, "polars-dataframe-head"]], "polars.DataFrame.join": [[172, "polars-dataframe-join"]], "polars.DataFrame.to_dict": [[213, "polars-dataframe-to-dict"]], "polars.Expr.apply": [[268, "polars-expr-apply"]], "polars.Expr.arg_true": [[279, "polars-expr-arg-true"]], "polars.dataframe.groupby.GroupBy.median": [[243, "polars-dataframe-groupby-groupby-median"]], "polars.Expr.alias": [[263, "polars-expr-alias"]], "polars.dataframe.groupby.GroupBy.apply": [[236, "polars-dataframe-groupby-groupby-apply"]], "polars.DataFrame.to_pandas": [[218, "polars-dataframe-to-pandas"]], "polars.dataframe.groupby.GroupBy.count": [[237, "polars-dataframe-groupby-groupby-count"]], "polars.DataFrame.with_columns": [[231, "polars-dataframe-with-columns"]], "polars.dataframe.groupby.GroupBy.min": [[244, "polars-dataframe-groupby-groupby-min"]], "polars.Expr.bin.decode": [[287, "polars-expr-bin-decode"]], "polars.DataFrame.transpose": [[222, "polars-dataframe-transpose"]], "polars.dataframe.groupby.GroupBy.mean": [[242, "polars-dataframe-groupby-groupby-mean"]], "polars.Expr.arg_max": [[276, "polars-expr-arg-max"]], "polars.dataframe.groupby.GroupBy.first": [[238, "polars-dataframe-groupby-groupby-first"]], "polars.Expr.arcsinh": [[273, "polars-expr-arcsinh"]], "polars.Expr.arg_min": [[277, "polars-expr-arg-min"]], "polars.Expr.arr.unique": [[284, "polars-expr-arr-unique"]], "polars.Expr.arg_unique": [[280, "polars-expr-arg-unique"]], "polars.Expr.any": [[266, "polars-expr-any"]], "polars.DataFrame.unstack": [[225, "polars-dataframe-unstack"]], "polars.DataFrame.top_k": [[221, "polars-dataframe-top-k"]], "polars.DataFrame.to_struct": [[220, "polars-dataframe-to-struct"]], "polars.dataframe.groupby.GroupBy.max": [[241, "polars-dataframe-groupby-groupby-max"]], "polars.DataFrame.unique": [[223, "polars-dataframe-unique"]], "polars.dataframe.groupby.GroupBy.all": [[235, "polars-dataframe-groupby-groupby-all"]], "polars.dataframe.groupby.GroupBy.head": [[239, "polars-dataframe-groupby-groupby-head"]], "polars.dataframe.groupby.GroupBy.tail": [[248, "polars-dataframe-groupby-groupby-tail"]], "polars.dataframe.groupby.GroupBy.quantile": [[246, "polars-dataframe-groupby-groupby-quantile"]], "polars.Expr.bin.contains": [[286, "polars-expr-bin-contains"]], "polars.Expr.arr.min": [[282, "polars-expr-arr-min"]], "polars.DataFrame.to_numpy": [[217, "polars-dataframe-to-numpy"]], "polars.dataframe.groupby.GroupBy.__iter__": [[233, "polars-dataframe-groupby-groupby-iter"]], "polars.dataframe.groupby.GroupBy.n_unique": [[245, "polars-dataframe-groupby-groupby-n-unique"]], "polars.DataFrame.vstack": [[229, "polars-dataframe-vstack"]], "polars.DataFrame.to_series": [[219, "polars-dataframe-to-series"]], "polars.Expr.agg_groups": [[262, "polars-expr-agg-groups"]], "polars.DataFrame.to_init_repr": [[216, "polars-dataframe-to-init-repr"]], "polars.Expr.append": [[267, "polars-expr-append"]], "polars.Expr.arcsin": [[272, "polars-expr-arcsin"]], "polars.Expr.arctanh": [[275, "polars-expr-arctanh"]], "polars.Expr.backward_fill": [[285, "polars-expr-backward-fill"]], "polars.DataFrame.with_row_count": [[232, "polars-dataframe-with-row-count"]], "polars.Expr.add": [[261, "polars-expr-add"]], "polars.Expr.arccosh": [[271, "polars-expr-arccosh"]], "polars.DataFrame.width": [[230, "polars-dataframe-width"]], "polars.Expr.all": [[264, "polars-expr-all"]], "polars.dataframe.groupby.GroupBy.sum": [[247, "polars-dataframe-groupby-groupby-sum"]], "polars.Expr.and_": [[265, "polars-expr-and"]], "polars.DataFrame.unnest": [[224, "polars-dataframe-unnest"]], "polars.Expr.arg_sort": [[278, "polars-expr-arg-sort"]], "polars.DataFrame.upsample": [[227, "polars-dataframe-upsample"]], "polars.Expr.approx_unique": [[269, "polars-expr-approx-unique"]], "Data types": [[257, "data-types"]], "Nested": [[257, "nested"]], "Other": [[257, "other"]], "polars.Expr.arccos": [[270, "polars-expr-arccos"]], "polars.dataframe.groupby.GroupBy.last": [[240, "polars-dataframe-groupby-groupby-last"]], "DataFrame": [[254, "dataframe"]], "polars.Expr.arctan": [[274, "polars-expr-arctan"]], "polars.DataFrame.var": [[228, "polars-dataframe-var"]], "polars.Expr.arr.max": [[281, "polars-expr-arr-max"]], "polars.DataFrame.update": [[226, "polars-dataframe-update"]], "Exceptions": [[258, "exceptions"]], "polars.dataframe.groupby.GroupBy.agg": [[234, "polars-dataframe-groupby-groupby-agg"]], "polars.Expr.abs": [[260, "polars-expr-abs"]], "polars.Expr.arr.sum": [[283, "polars-expr-arr-sum"]]}, "indexentries": {"array (class in polars)": [[2, "polars.Array"]], "__init__() (polars.array method)": [[2, "polars.Array.__init__"]], "binary (class in polars)": [[3, "polars.Binary"]], "__init__() (polars.binary method)": [[3, "polars.Binary.__init__"]], "boolean (class in polars)": [[4, "polars.Boolean"]], "__init__() (polars.boolean method)": [[4, "polars.Boolean.__init__"]], "categorical (class in polars)": [[5, "polars.Categorical"]], "__init__() (polars.categorical method)": [[5, "polars.Categorical.__init__"]], "activate_decimals() (polars.config class method)": [[6, "polars.Config.activate_decimals"]], "load() (polars.config class method)": [[7, "polars.Config.load"]], "restore_defaults() (polars.config class method)": [[8, "polars.Config.restore_defaults"]], "save() (polars.config class method)": [[9, "polars.Config.save"]], "set_ascii_tables() (polars.config class method)": [[10, "polars.Config.set_ascii_tables"]], "set_fmt_float() (polars.config class method)": [[11, "polars.Config.set_fmt_float"]], "set_fmt_str_lengths() (polars.config class method)": [[12, "polars.Config.set_fmt_str_lengths"]], "set_streaming_chunk_size() (polars.config class method)": [[13, "polars.Config.set_streaming_chunk_size"]], "set_tbl_cell_alignment() (polars.config class method)": [[14, "polars.Config.set_tbl_cell_alignment"]], "set_tbl_cols() (polars.config class method)": [[15, "polars.Config.set_tbl_cols"]], "set_tbl_column_data_type_inline() (polars.config class method)": [[16, "polars.Config.set_tbl_column_data_type_inline"]], "set_tbl_dataframe_shape_below() (polars.config class method)": [[17, "polars.Config.set_tbl_dataframe_shape_below"]], "set_tbl_formatting() (polars.config class method)": [[18, "polars.Config.set_tbl_formatting"]], "set_tbl_hide_column_data_types() (polars.config class method)": [[19, "polars.Config.set_tbl_hide_column_data_types"]], "set_tbl_hide_column_names() (polars.config class method)": [[20, "polars.Config.set_tbl_hide_column_names"]], "set_tbl_hide_dataframe_shape() (polars.config class method)": [[21, "polars.Config.set_tbl_hide_dataframe_shape"]], "set_tbl_hide_dtype_separator() (polars.config class method)": [[22, "polars.Config.set_tbl_hide_dtype_separator"]], "set_tbl_rows() (polars.config class method)": [[23, "polars.Config.set_tbl_rows"]], "set_tbl_width_chars() (polars.config class method)": [[24, "polars.Config.set_tbl_width_chars"]], "set_verbose() (polars.config class method)": [[25, "polars.Config.set_verbose"]], "state() (polars.config class method)": [[26, "polars.Config.state"]], "write_avro() (polars.dataframe method)": [[27, "polars.DataFrame.write_avro"]], "write_csv() (polars.dataframe method)": [[28, "polars.DataFrame.write_csv"]], "write_database() (polars.dataframe method)": [[29, "polars.DataFrame.write_database"]], "write_delta() (polars.dataframe method)": [[30, "polars.DataFrame.write_delta"]], "write_excel() (polars.dataframe method)": [[31, "polars.DataFrame.write_excel"]], "write_ipc() (polars.dataframe method)": [[32, "polars.DataFrame.write_ipc"]], "write_json() (polars.dataframe method)": [[33, "polars.DataFrame.write_json"]], "write_ndjson() (polars.dataframe method)": [[34, "polars.DataFrame.write_ndjson"]], "write_parquet() (polars.dataframe method)": [[35, "polars.DataFrame.write_parquet"]], "datatype (class in polars)": [[36, "polars.DataType"]], "__init__() (polars.datatype method)": [[36, "polars.DataType.__init__"]], "date (class in polars)": [[37, "polars.Date"]], "__init__() (polars.date method)": [[37, "polars.Date.__init__"]], "datetime (class in polars)": [[38, "polars.Datetime"]], "__init__() (polars.datetime method)": [[38, "polars.Datetime.__init__"]], "decimal (class in polars)": [[39, "polars.Decimal"]], "__init__() (polars.decimal method)": [[39, "polars.Decimal.__init__"]], "duration (class in polars)": [[40, "polars.Duration"]], "__init__() (polars.duration method)": [[40, "polars.Duration.__init__"]], "float32 (class in polars)": [[41, "polars.Float32"]], "__init__() (polars.float32 method)": [[41, "polars.Float32.__init__"]], "float64 (class in polars)": [[42, "polars.Float64"]], "__init__() (polars.float64 method)": [[42, "polars.Float64.__init__"]], "int16 (class in polars)": [[43, "polars.Int16"]], "__init__() (polars.int16 method)": [[43, "polars.Int16.__init__"]], "int32 (class in polars)": [[44, "polars.Int32"]], "__init__() (polars.int32 method)": [[44, "polars.Int32.__init__"]], "int64 (class in polars)": [[45, "polars.Int64"]], "__init__() (polars.int64 method)": [[45, "polars.Int64.__init__"]], "int8 (class in polars)": [[46, "polars.Int8"]], "__init__() (polars.int8 method)": [[46, "polars.Int8.__init__"]], "sink_ipc() (polars.lazyframe method)": [[47, "polars.LazyFrame.sink_ipc"]], "sink_parquet() (polars.lazyframe method)": [[48, "polars.LazyFrame.sink_parquet"]], "list (class in polars)": [[49, "polars.List"]], "__init__() (polars.list method)": [[49, "polars.List.__init__"]], "null (class in polars)": [[50, "polars.Null"]], "__init__() (polars.null method)": [[50, "polars.Null.__init__"]], "object (class in polars)": [[51, "polars.Object"]], "__init__() (polars.object method)": [[51, "polars.Object.__init__"]], "execute() (polars.sqlcontext method)": [[52, "polars.SQLContext.execute"]], "register() (polars.sqlcontext method)": [[53, "polars.SQLContext.register"]], "register_globals() (polars.sqlcontext method)": [[54, "polars.SQLContext.register_globals"]], "register_many() (polars.sqlcontext method)": [[55, "polars.SQLContext.register_many"]], "tables() (polars.sqlcontext method)": [[56, "polars.SQLContext.tables"]], "unregister() (polars.sqlcontext method)": [[57, "polars.SQLContext.unregister"]], "stringcache (class in polars)": [[58, "polars.StringCache"]], "__init__() (polars.stringcache method)": [[58, "polars.StringCache.__init__"]], "struct (class in polars)": [[59, "polars.Struct"]], "__init__() (polars.struct method)": [[59, "polars.Struct.__init__"]], "time (class in polars)": [[60, "polars.Time"]], "__init__() (polars.time method)": [[60, "polars.Time.__init__"]], "uint16 (class in polars)": [[61, "polars.UInt16"]], "__init__() (polars.uint16 method)": [[61, "polars.UInt16.__init__"]], "uint32 (class in polars)": [[62, "polars.UInt32"]], "__init__() (polars.uint32 method)": [[62, "polars.UInt32.__init__"]], "uint64 (class in polars)": [[63, "polars.UInt64"]], "__init__() (polars.uint64 method)": [[63, "polars.UInt64.__init__"]], "uint8 (class in polars)": [[64, "polars.UInt8"]], "__init__() (polars.uint8 method)": [[64, "polars.UInt8.__init__"]], "unknown (class in polars)": [[65, "polars.Unknown"]], "__init__() (polars.unknown method)": [[65, "polars.Unknown.__init__"]], "utf8 (class in polars)": [[66, "polars.Utf8"]], "__init__() (polars.utf8 method)": [[66, "polars.Utf8.__init__"]], "align_frames() (in module polars)": [[67, "polars.align_frames"]], "register_dataframe_namespace() (in module polars.api)": [[68, "polars.api.register_dataframe_namespace"]], "register_expr_namespace() (in module polars.api)": [[69, "polars.api.register_expr_namespace"]], "register_lazyframe_namespace() (in module polars.api)": [[70, "polars.api.register_lazyframe_namespace"]], "register_series_namespace() (in module polars.api)": [[71, "polars.api.register_series_namespace"]], "build_info() (in module polars)": [[72, "polars.build_info"]], "collect_all() (in module polars)": [[73, "polars.collect_all"]], "concat() (in module polars)": [[74, "polars.concat"]], "enable_string_cache() (in module polars)": [[75, "polars.enable_string_cache"]], "arrowerror": [[76, "polars.exceptions.ArrowError"]], "columnnotfounderror": [[77, "polars.exceptions.ColumnNotFoundError"]], "computeerror": [[78, "polars.exceptions.ComputeError"]], "duplicateerror": [[79, "polars.exceptions.DuplicateError"]], "invalidoperationerror": [[80, "polars.exceptions.InvalidOperationError"]], "nodataerror": [[81, "polars.exceptions.NoDataError"]], "norowsreturnederror": [[82, "polars.exceptions.NoRowsReturnedError"]], "polarspanicerror": [[83, "polars.exceptions.PolarsPanicError"]], "rowserror": [[84, "polars.exceptions.RowsError"]], "schemaerror": [[85, "polars.exceptions.SchemaError"]], "schemafieldnotfounderror": [[86, "polars.exceptions.SchemaFieldNotFoundError"]], "shapeerror": [[87, "polars.exceptions.ShapeError"]], "structfieldnotfounderror": [[88, "polars.exceptions.StructFieldNotFoundError"]], "toomanyrowsreturnederror": [[89, "polars.exceptions.TooManyRowsReturnedError"]], "from_arrow() (in module polars)": [[90, "polars.from_arrow"]], "from_dataframe() (in module polars)": [[91, "polars.from_dataframe"]], "from_dict() (in module polars)": [[92, "polars.from_dict"]], "from_dicts() (in module polars)": [[93, "polars.from_dicts"]], "from_numpy() (in module polars)": [[94, "polars.from_numpy"]], "from_pandas() (in module polars)": [[95, "polars.from_pandas"]], "from_records() (in module polars)": [[96, "polars.from_records"]], "from_repr() (in module polars)": [[97, "polars.from_repr"]], "get_index_type() (in module polars)": [[98, "polars.get_index_type"]], "next_batches() (polars.io.csv.batched_reader.batchedcsvreader method)": [[99, "polars.io.csv.batched_reader.BatchedCsvReader.next_batches"]], "read_avro() (in module polars)": [[100, "polars.read_avro"]], "read_csv() (in module polars)": [[101, "polars.read_csv"]], "read_csv_batched() (in module polars)": [[102, "polars.read_csv_batched"]], "read_database() (in module polars)": [[103, "polars.read_database"]], "read_delta() (in module polars)": [[104, "polars.read_delta"]], "read_excel() (in module polars)": [[105, "polars.read_excel"]], "read_ipc() (in module polars)": [[106, "polars.read_ipc"]], "read_ipc_schema() (in module polars)": [[107, "polars.read_ipc_schema"]], "read_json() (in module polars)": [[108, "polars.read_json"]], "read_ndjson() (in module polars)": [[109, "polars.read_ndjson"]], "read_parquet() (in module polars)": [[110, "polars.read_parquet"]], "read_parquet_schema() (in module polars)": [[111, "polars.read_parquet_schema"]], "scan_csv() (in module polars)": [[112, "polars.scan_csv"]], "scan_delta() (in module polars)": [[113, "polars.scan_delta"]], "scan_ipc() (in module polars)": [[114, "polars.scan_ipc"]], "scan_ndjson() (in module polars)": [[115, "polars.scan_ndjson"]], "scan_parquet() (in module polars)": [[116, "polars.scan_parquet"]], "scan_pyarrow_dataset() (in module polars)": [[117, "polars.scan_pyarrow_dataset"]], "show_versions() (in module polars)": [[118, "polars.show_versions"]], "assert_frame_equal() (in module polars.testing)": [[119, "polars.testing.assert_frame_equal"]], "assert_series_equal() (in module polars.testing)": [[120, "polars.testing.assert_series_equal"]], "__init__() (polars.testing.parametric.column method)": [[121, "polars.testing.parametric.column.__init__"]], "column (class in polars.testing.parametric)": [[121, "polars.testing.parametric.column"]], "columns() (in module polars.testing.parametric)": [[122, "polars.testing.parametric.columns"]], "create_list_strategy() (in module polars.testing.parametric)": [[123, "polars.testing.parametric.create_list_strategy"]], "dataframes() (in module polars.testing.parametric)": [[124, "polars.testing.parametric.dataframes"]], "load_profile() (in module polars.testing.parametric)": [[125, "polars.testing.parametric.load_profile"]], "series() (in module polars.testing.parametric)": [[126, "polars.testing.parametric.series"]], "set_profile() (in module polars.testing.parametric)": [[127, "polars.testing.parametric.set_profile"]], "threadpool_size() (in module polars)": [[128, "polars.threadpool_size"]], "using_string_cache() (in module polars)": [[129, "polars.using_string_cache"]], "__dataframe__() (polars.dataframe method)": [[132, "polars.DataFrame.__dataframe__"]], "apply() (polars.dataframe method)": [[133, "polars.DataFrame.apply"]], "bottom_k() (polars.dataframe method)": [[134, "polars.DataFrame.bottom_k"]], "clear() (polars.dataframe method)": [[135, "polars.DataFrame.clear"]], "clone() (polars.dataframe method)": [[136, "polars.DataFrame.clone"]], "columns (polars.dataframe property)": [[137, "polars.DataFrame.columns"]], "corr() (polars.dataframe method)": [[138, "polars.DataFrame.corr"]], "describe() (polars.dataframe method)": [[139, "polars.DataFrame.describe"]], "drop() (polars.dataframe method)": [[140, "polars.DataFrame.drop"]], "drop_in_place() (polars.dataframe method)": [[141, "polars.DataFrame.drop_in_place"]], "drop_nulls() (polars.dataframe method)": [[142, "polars.DataFrame.drop_nulls"]], "dtypes (polars.dataframe property)": [[143, "polars.DataFrame.dtypes"]], "estimated_size() (polars.dataframe method)": [[144, "polars.DataFrame.estimated_size"]], "explode() (polars.dataframe method)": [[145, "polars.DataFrame.explode"]], "extend() (polars.dataframe method)": [[146, "polars.DataFrame.extend"]], "fill_nan() (polars.dataframe method)": [[147, "polars.DataFrame.fill_nan"]], "fill_null() (polars.dataframe method)": [[148, "polars.DataFrame.fill_null"]], "filter() (polars.dataframe method)": [[149, "polars.DataFrame.filter"]], "find_idx_by_name() (polars.dataframe method)": [[150, "polars.DataFrame.find_idx_by_name"]], "flags (polars.dataframe property)": [[151, "polars.DataFrame.flags"]], "fold() (polars.dataframe method)": [[152, "polars.DataFrame.fold"]], "frame_equal() (polars.dataframe method)": [[153, "polars.DataFrame.frame_equal"]], "get_column() (polars.dataframe method)": [[154, "polars.DataFrame.get_column"]], "get_columns() (polars.dataframe method)": [[155, "polars.DataFrame.get_columns"]], "glimpse() (polars.dataframe method)": [[156, "polars.DataFrame.glimpse"]], "groupby() (polars.dataframe method)": [[157, "polars.DataFrame.groupby"]], "groupby_dynamic() (polars.dataframe method)": [[158, "polars.DataFrame.groupby_dynamic"]], "groupby_rolling() (polars.dataframe method)": [[159, "polars.DataFrame.groupby_rolling"]], "hash_rows() (polars.dataframe method)": [[160, "polars.DataFrame.hash_rows"]], "head() (polars.dataframe method)": [[161, "polars.DataFrame.head"]], "height (polars.dataframe property)": [[162, "polars.DataFrame.height"]], "hstack() (polars.dataframe method)": [[163, "polars.DataFrame.hstack"]], "insert_at_idx() (polars.dataframe method)": [[164, "polars.DataFrame.insert_at_idx"]], "interpolate() (polars.dataframe method)": [[165, "polars.DataFrame.interpolate"]], "is_duplicated() (polars.dataframe method)": [[166, "polars.DataFrame.is_duplicated"]], "is_empty() (polars.dataframe method)": [[167, "polars.DataFrame.is_empty"]], "is_unique() (polars.dataframe method)": [[168, "polars.DataFrame.is_unique"]], "item() (polars.dataframe method)": [[169, "polars.DataFrame.item"]], "iter_rows() (polars.dataframe method)": [[170, "polars.DataFrame.iter_rows"]], "iter_slices() (polars.dataframe method)": [[171, "polars.DataFrame.iter_slices"]], "join() (polars.dataframe method)": [[172, "polars.DataFrame.join"]], "join_asof() (polars.dataframe method)": [[173, "polars.DataFrame.join_asof"]], "lazy() (polars.dataframe method)": [[174, "polars.DataFrame.lazy"]], "limit() (polars.dataframe method)": [[175, "polars.DataFrame.limit"]], "max() (polars.dataframe method)": [[176, "polars.DataFrame.max"]], "mean() (polars.dataframe method)": [[177, "polars.DataFrame.mean"]], "median() (polars.dataframe method)": [[178, "polars.DataFrame.median"]], "melt() (polars.dataframe method)": [[179, "polars.DataFrame.melt"]], "merge_sorted() (polars.dataframe method)": [[180, "polars.DataFrame.merge_sorted"]], "min() (polars.dataframe method)": [[181, "polars.DataFrame.min"]], "n_chunks() (polars.dataframe method)": [[182, "polars.DataFrame.n_chunks"]], "n_unique() (polars.dataframe method)": [[183, "polars.DataFrame.n_unique"]], "null_count() (polars.dataframe method)": [[184, "polars.DataFrame.null_count"]], "partition_by() (polars.dataframe method)": [[185, "polars.DataFrame.partition_by"]], "pipe() (polars.dataframe method)": [[186, "polars.DataFrame.pipe"]], "pivot() (polars.dataframe method)": [[187, "polars.DataFrame.pivot"]], "product() (polars.dataframe method)": [[188, "polars.DataFrame.product"]], "quantile() (polars.dataframe method)": [[189, "polars.DataFrame.quantile"]], "rechunk() (polars.dataframe method)": [[190, "polars.DataFrame.rechunk"]], "rename() (polars.dataframe method)": [[191, "polars.DataFrame.rename"]], "replace() (polars.dataframe method)": [[192, "polars.DataFrame.replace"]], "replace_at_idx() (polars.dataframe method)": [[193, "polars.DataFrame.replace_at_idx"]], "reverse() (polars.dataframe method)": [[194, "polars.DataFrame.reverse"]], "row() (polars.dataframe method)": [[195, "polars.DataFrame.row"]], "rows() (polars.dataframe method)": [[196, "polars.DataFrame.rows"]], "rows_by_key() (polars.dataframe method)": [[197, "polars.DataFrame.rows_by_key"]], "sample() (polars.dataframe method)": [[198, "polars.DataFrame.sample"]], "schema (polars.dataframe property)": [[199, "polars.DataFrame.schema"]], "select() (polars.dataframe method)": [[200, "polars.DataFrame.select"]], "set_sorted() (polars.dataframe method)": [[201, "polars.DataFrame.set_sorted"]], "shape (polars.dataframe property)": [[202, "polars.DataFrame.shape"]], "shift() (polars.dataframe method)": [[203, "polars.DataFrame.shift"]], "shift_and_fill() (polars.dataframe method)": [[204, "polars.DataFrame.shift_and_fill"]], "shrink_to_fit() (polars.dataframe method)": [[205, "polars.DataFrame.shrink_to_fit"]], "slice() (polars.dataframe method)": [[206, "polars.DataFrame.slice"]], "sort() (polars.dataframe method)": [[207, "polars.DataFrame.sort"]], "std() (polars.dataframe method)": [[208, "polars.DataFrame.std"]], "sum() (polars.dataframe method)": [[209, "polars.DataFrame.sum"]], "tail() (polars.dataframe method)": [[210, "polars.DataFrame.tail"]], "take_every() (polars.dataframe method)": [[211, "polars.DataFrame.take_every"]], "to_arrow() (polars.dataframe method)": [[212, "polars.DataFrame.to_arrow"]], "to_dict() (polars.dataframe method)": [[213, "polars.DataFrame.to_dict"]], "to_dicts() (polars.dataframe method)": [[214, "polars.DataFrame.to_dicts"]], "to_dummies() (polars.dataframe method)": [[215, "polars.DataFrame.to_dummies"]], "to_init_repr() (polars.dataframe method)": [[216, "polars.DataFrame.to_init_repr"]], "to_numpy() (polars.dataframe method)": [[217, "polars.DataFrame.to_numpy"]], "to_pandas() (polars.dataframe method)": [[218, "polars.DataFrame.to_pandas"]], "to_series() (polars.dataframe method)": [[219, "polars.DataFrame.to_series"]], "to_struct() (polars.dataframe method)": [[220, "polars.DataFrame.to_struct"]], "top_k() (polars.dataframe method)": [[221, "polars.DataFrame.top_k"]], "transpose() (polars.dataframe method)": [[222, "polars.DataFrame.transpose"]], "unique() (polars.dataframe method)": [[223, "polars.DataFrame.unique"]], "unnest() (polars.dataframe method)": [[224, "polars.DataFrame.unnest"]], "unstack() (polars.dataframe method)": [[225, "polars.DataFrame.unstack"]], "update() (polars.dataframe method)": [[226, "polars.DataFrame.update"]], "upsample() (polars.dataframe method)": [[227, "polars.DataFrame.upsample"]], "var() (polars.dataframe method)": [[228, "polars.DataFrame.var"]], "vstack() (polars.dataframe method)": [[229, "polars.DataFrame.vstack"]], "width (polars.dataframe property)": [[230, "polars.DataFrame.width"]], "with_columns() (polars.dataframe method)": [[231, "polars.DataFrame.with_columns"]], "with_row_count() (polars.dataframe method)": [[232, "polars.DataFrame.with_row_count"]], "__iter__() (polars.dataframe.groupby.groupby method)": [[233, "polars.dataframe.groupby.GroupBy.__iter__"]], "agg() (polars.dataframe.groupby.groupby method)": [[234, "polars.dataframe.groupby.GroupBy.agg"]], "all() (polars.dataframe.groupby.groupby method)": [[235, "polars.dataframe.groupby.GroupBy.all"]], "apply() (polars.dataframe.groupby.groupby method)": [[236, "polars.dataframe.groupby.GroupBy.apply"]], "count() (polars.dataframe.groupby.groupby method)": [[237, "polars.dataframe.groupby.GroupBy.count"]], "first() (polars.dataframe.groupby.groupby method)": [[238, "polars.dataframe.groupby.GroupBy.first"]], "head() (polars.dataframe.groupby.groupby method)": [[239, "polars.dataframe.groupby.GroupBy.head"]], "last() (polars.dataframe.groupby.groupby method)": [[240, "polars.dataframe.groupby.GroupBy.last"]], "max() (polars.dataframe.groupby.groupby method)": [[241, "polars.dataframe.groupby.GroupBy.max"]], "mean() (polars.dataframe.groupby.groupby method)": [[242, "polars.dataframe.groupby.GroupBy.mean"]], "median() (polars.dataframe.groupby.groupby method)": [[243, "polars.dataframe.groupby.GroupBy.median"]], "min() (polars.dataframe.groupby.groupby method)": [[244, "polars.dataframe.groupby.GroupBy.min"]], "n_unique() (polars.dataframe.groupby.groupby method)": [[245, "polars.dataframe.groupby.GroupBy.n_unique"]], "quantile() (polars.dataframe.groupby.groupby method)": [[246, "polars.dataframe.groupby.GroupBy.quantile"]], "sum() (polars.dataframe.groupby.groupby method)": [[247, "polars.dataframe.groupby.GroupBy.sum"]], "tail() (polars.dataframe.groupby.groupby method)": [[248, "polars.dataframe.groupby.GroupBy.tail"]], "abs() (polars.expr method)": [[260, "polars.Expr.abs"]], "add() (polars.expr method)": [[261, "polars.Expr.add"]], "agg_groups() (polars.expr method)": [[262, "polars.Expr.agg_groups"]], "alias() (polars.expr method)": [[263, "polars.Expr.alias"]], "all() (polars.expr method)": [[264, "polars.Expr.all"]], "and_() (polars.expr method)": [[265, "polars.Expr.and_"]], "any() (polars.expr method)": [[266, "polars.Expr.any"]], "append() (polars.expr method)": [[267, "polars.Expr.append"]], "apply() (polars.expr method)": [[268, "polars.Expr.apply"]], "approx_unique() (polars.expr method)": [[269, "polars.Expr.approx_unique"]], "arccos() (polars.expr method)": [[270, "polars.Expr.arccos"]], "arccosh() (polars.expr method)": [[271, "polars.Expr.arccosh"]], "arcsin() (polars.expr method)": [[272, "polars.Expr.arcsin"]], "arcsinh() (polars.expr method)": [[273, "polars.Expr.arcsinh"]], "arctan() (polars.expr method)": [[274, "polars.Expr.arctan"]], "arctanh() (polars.expr method)": [[275, "polars.Expr.arctanh"]], "arg_max() (polars.expr method)": [[276, "polars.Expr.arg_max"]], "arg_min() (polars.expr method)": [[277, "polars.Expr.arg_min"]], "arg_sort() (polars.expr method)": [[278, "polars.Expr.arg_sort"]], "arg_true() (polars.expr method)": [[279, "polars.Expr.arg_true"]], "arg_unique() (polars.expr method)": [[280, "polars.Expr.arg_unique"]], "max() (polars.expr.arr method)": [[281, "polars.Expr.arr.max"]], "min() (polars.expr.arr method)": [[282, "polars.Expr.arr.min"]], "sum() (polars.expr.arr method)": [[283, "polars.Expr.arr.sum"]], "unique() (polars.expr.arr method)": [[284, "polars.Expr.arr.unique"]], "backward_fill() (polars.expr method)": [[285, "polars.Expr.backward_fill"]], "contains() (polars.expr.bin method)": [[286, "polars.Expr.bin.contains"]], "decode() (polars.expr.bin method)": [[287, "polars.Expr.bin.decode"]], "encode() (polars.expr.bin method)": [[288, "polars.Expr.bin.encode"]], "ends_with() (polars.expr.bin method)": [[289, "polars.Expr.bin.ends_with"]], "starts_with() (polars.expr.bin method)": [[290, "polars.Expr.bin.starts_with"]], "bottom_k() (polars.expr method)": [[291, "polars.Expr.bottom_k"]], "cache() (polars.expr method)": [[292, "polars.Expr.cache"]], "cast() (polars.expr method)": [[293, "polars.Expr.cast"]], "get_categories() (polars.expr.cat method)": [[294, "polars.Expr.cat.get_categories"]], "set_ordering() (polars.expr.cat method)": [[295, "polars.Expr.cat.set_ordering"]], "cbrt() (polars.expr method)": [[296, "polars.Expr.cbrt"]], "ceil() (polars.expr method)": [[297, "polars.Expr.ceil"]], "clip() (polars.expr method)": [[298, "polars.Expr.clip"]], "clip_max() (polars.expr method)": [[299, "polars.Expr.clip_max"]], "clip_min() (polars.expr method)": [[300, "polars.Expr.clip_min"]], "cos() (polars.expr method)": [[301, "polars.Expr.cos"]], "cosh() (polars.expr method)": [[302, "polars.Expr.cosh"]], "count() (polars.expr method)": [[303, "polars.Expr.count"]], "cumcount() (polars.expr method)": [[304, "polars.Expr.cumcount"]], "cummax() (polars.expr method)": [[305, "polars.Expr.cummax"]], "cummin() (polars.expr method)": [[306, "polars.Expr.cummin"]], "cumprod() (polars.expr method)": [[307, "polars.Expr.cumprod"]], "cumsum() (polars.expr method)": [[308, "polars.Expr.cumsum"]], "cumulative_eval() (polars.expr method)": [[309, "polars.Expr.cumulative_eval"]], "cut() (polars.expr method)": [[310, "polars.Expr.cut"]], "degrees() (polars.expr method)": [[311, "polars.Expr.degrees"]], "diff() (polars.expr method)": [[312, "polars.Expr.diff"]], "dot() (polars.expr method)": [[313, "polars.Expr.dot"]], "drop_nans() (polars.expr method)": [[314, "polars.Expr.drop_nans"]], "drop_nulls() (polars.expr method)": [[315, "polars.Expr.drop_nulls"]], "base_utc_offset() (polars.expr.dt method)": [[316, "polars.Expr.dt.base_utc_offset"]], "cast_time_unit() (polars.expr.dt method)": [[317, "polars.Expr.dt.cast_time_unit"]], "combine() (polars.expr.dt method)": [[318, "polars.Expr.dt.combine"]], "convert_time_zone() (polars.expr.dt method)": [[319, "polars.Expr.dt.convert_time_zone"]], "date() (polars.expr.dt method)": [[320, "polars.Expr.dt.date"]], "datetime() (polars.expr.dt method)": [[321, "polars.Expr.dt.datetime"]], "day() (polars.expr.dt method)": [[322, "polars.Expr.dt.day"]], "days() (polars.expr.dt method)": [[323, "polars.Expr.dt.days"]], "dst_offset() (polars.expr.dt method)": [[324, "polars.Expr.dt.dst_offset"]], "epoch() (polars.expr.dt method)": [[325, "polars.Expr.dt.epoch"]], "hour() (polars.expr.dt method)": [[326, "polars.Expr.dt.hour"]], "hours() (polars.expr.dt method)": [[327, "polars.Expr.dt.hours"]], "is_leap_year() (polars.expr.dt method)": [[328, "polars.Expr.dt.is_leap_year"]], "iso_year() (polars.expr.dt method)": [[329, "polars.Expr.dt.iso_year"]], "microsecond() (polars.expr.dt method)": [[330, "polars.Expr.dt.microsecond"]], "microseconds() (polars.expr.dt method)": [[331, "polars.Expr.dt.microseconds"]], "millisecond() (polars.expr.dt method)": [[332, "polars.Expr.dt.millisecond"]], "milliseconds() (polars.expr.dt method)": [[333, "polars.Expr.dt.milliseconds"]], "minute() (polars.expr.dt method)": [[334, "polars.Expr.dt.minute"]], "minutes() (polars.expr.dt method)": [[335, "polars.Expr.dt.minutes"]], "month() (polars.expr.dt method)": [[336, "polars.Expr.dt.month"]], "month_end() (polars.expr.dt method)": [[337, "polars.Expr.dt.month_end"]], "month_start() (polars.expr.dt method)": [[338, "polars.Expr.dt.month_start"]], "nanosecond() (polars.expr.dt method)": [[339, "polars.Expr.dt.nanosecond"]], "nanoseconds() (polars.expr.dt method)": [[340, "polars.Expr.dt.nanoseconds"]], "offset_by() (polars.expr.dt method)": [[341, "polars.Expr.dt.offset_by"]], "ordinal_day() (polars.expr.dt method)": [[342, "polars.Expr.dt.ordinal_day"]], "quarter() (polars.expr.dt method)": [[343, "polars.Expr.dt.quarter"]], "replace_time_zone() (polars.expr.dt method)": [[344, "polars.Expr.dt.replace_time_zone"]], "round() (polars.expr.dt method)": [[345, "polars.Expr.dt.round"]], "second() (polars.expr.dt method)": [[346, "polars.Expr.dt.second"]], "seconds() (polars.expr.dt method)": [[347, "polars.Expr.dt.seconds"]], "strftime() (polars.expr.dt method)": [[348, "polars.Expr.dt.strftime"]], "time() (polars.expr.dt method)": [[349, "polars.Expr.dt.time"]], "timestamp() (polars.expr.dt method)": [[350, "polars.Expr.dt.timestamp"]], "to_string() (polars.expr.dt method)": [[351, "polars.Expr.dt.to_string"]], "truncate() (polars.expr.dt method)": [[352, "polars.Expr.dt.truncate"]], "week() (polars.expr.dt method)": [[353, "polars.Expr.dt.week"]], "weekday() (polars.expr.dt method)": [[354, "polars.Expr.dt.weekday"]], "with_time_unit() (polars.expr.dt method)": [[355, "polars.Expr.dt.with_time_unit"]], "year() (polars.expr.dt method)": [[356, "polars.Expr.dt.year"]], "entropy() (polars.expr method)": [[357, "polars.Expr.entropy"]], "eq() (polars.expr method)": [[358, "polars.Expr.eq"]], "eq_missing() (polars.expr method)": [[359, "polars.Expr.eq_missing"]], "ewm_mean() (polars.expr method)": [[360, "polars.Expr.ewm_mean"]], "ewm_std() (polars.expr method)": [[361, "polars.Expr.ewm_std"]], "ewm_var() (polars.expr method)": [[362, "polars.Expr.ewm_var"]], "exclude() (polars.expr method)": [[363, "polars.Expr.exclude"]], "exp() (polars.expr method)": [[364, "polars.Expr.exp"]], "explode() (polars.expr method)": [[365, "polars.Expr.explode"]], "extend_constant() (polars.expr method)": [[366, "polars.Expr.extend_constant"]], "fill_nan() (polars.expr method)": [[367, "polars.Expr.fill_nan"]], "fill_null() (polars.expr method)": [[368, "polars.Expr.fill_null"]], "filter() (polars.expr method)": [[369, "polars.Expr.filter"]], "first() (polars.expr method)": [[370, "polars.Expr.first"]], "flatten() (polars.expr method)": [[371, "polars.Expr.flatten"]], "floor() (polars.expr method)": [[372, "polars.Expr.floor"]], "floordiv() (polars.expr method)": [[373, "polars.Expr.floordiv"]], "forward_fill() (polars.expr method)": [[374, "polars.Expr.forward_fill"]], "from_json() (polars.expr class method)": [[375, "polars.Expr.from_json"]], "ge() (polars.expr method)": [[376, "polars.Expr.ge"]], "gt() (polars.expr method)": [[377, "polars.Expr.gt"]], "hash() (polars.expr method)": [[378, "polars.Expr.hash"]], "head() (polars.expr method)": [[379, "polars.Expr.head"]], "implode() (polars.expr method)": [[380, "polars.Expr.implode"]], "inspect() (polars.expr method)": [[381, "polars.Expr.inspect"]], "interpolate() (polars.expr method)": [[382, "polars.Expr.interpolate"]], "is_between() (polars.expr method)": [[383, "polars.Expr.is_between"]], "is_duplicated() (polars.expr method)": [[384, "polars.Expr.is_duplicated"]], "is_finite() (polars.expr method)": [[385, "polars.Expr.is_finite"]], "is_first() (polars.expr method)": [[386, "polars.Expr.is_first"]], "is_in() (polars.expr method)": [[387, "polars.Expr.is_in"]], "is_infinite() (polars.expr method)": [[388, "polars.Expr.is_infinite"]], "is_nan() (polars.expr method)": [[389, "polars.Expr.is_nan"]], "is_not() (polars.expr method)": [[390, "polars.Expr.is_not"]], "is_not_nan() (polars.expr method)": [[391, "polars.Expr.is_not_nan"]], "is_not_null() (polars.expr method)": [[392, "polars.Expr.is_not_null"]], "is_null() (polars.expr method)": [[393, "polars.Expr.is_null"]], "is_unique() (polars.expr method)": [[394, "polars.Expr.is_unique"]], "keep_name() (polars.expr method)": [[395, "polars.Expr.keep_name"]], "kurtosis() (polars.expr method)": [[396, "polars.Expr.kurtosis"]], "last() (polars.expr method)": [[397, "polars.Expr.last"]], "le() (polars.expr method)": [[398, "polars.Expr.le"]], "len() (polars.expr method)": [[399, "polars.Expr.len"]], "limit() (polars.expr method)": [[400, "polars.Expr.limit"]], "all() (polars.expr.list method)": [[401, "polars.Expr.list.all"]], "any() (polars.expr.list method)": [[402, "polars.Expr.list.any"]], "arg_max() (polars.expr.list method)": [[403, "polars.Expr.list.arg_max"]], "arg_min() (polars.expr.list method)": [[404, "polars.Expr.list.arg_min"]], "concat() (polars.expr.list method)": [[405, "polars.Expr.list.concat"]], "contains() (polars.expr.list method)": [[406, "polars.Expr.list.contains"]], "count_match() (polars.expr.list method)": [[407, "polars.Expr.list.count_match"]], "diff() (polars.expr.list method)": [[408, "polars.Expr.list.diff"]], "difference() (polars.expr.list method)": [[409, "polars.Expr.list.difference"]], "eval() (polars.expr.list method)": [[410, "polars.Expr.list.eval"]], "explode() (polars.expr.list method)": [[411, "polars.Expr.list.explode"]], "first() (polars.expr.list method)": [[412, "polars.Expr.list.first"]], "get() (polars.expr.list method)": [[413, "polars.Expr.list.get"]], "head() (polars.expr.list method)": [[414, "polars.Expr.list.head"]], "intersection() (polars.expr.list method)": [[415, "polars.Expr.list.intersection"]], "join() (polars.expr.list method)": [[416, "polars.Expr.list.join"]], "last() (polars.expr.list method)": [[417, "polars.Expr.list.last"]], "lengths() (polars.expr.list method)": [[418, "polars.Expr.list.lengths"]], "max() (polars.expr.list method)": [[419, "polars.Expr.list.max"]], "mean() (polars.expr.list method)": [[420, "polars.Expr.list.mean"]], "min() (polars.expr.list method)": [[421, "polars.Expr.list.min"]], "reverse() (polars.expr.list method)": [[422, "polars.Expr.list.reverse"]], "shift() (polars.expr.list method)": [[423, "polars.Expr.list.shift"]], "slice() (polars.expr.list method)": [[424, "polars.Expr.list.slice"]], "sort() (polars.expr.list method)": [[425, "polars.Expr.list.sort"]], "sum() (polars.expr.list method)": [[426, "polars.Expr.list.sum"]], "tail() (polars.expr.list method)": [[427, "polars.Expr.list.tail"]], "take() (polars.expr.list method)": [[428, "polars.Expr.list.take"]], "to_struct() (polars.expr.list method)": [[429, "polars.Expr.list.to_struct"]], "union() (polars.expr.list method)": [[430, "polars.Expr.list.union"]], "unique() (polars.expr.list method)": [[431, "polars.Expr.list.unique"]], "log() (polars.expr method)": [[432, "polars.Expr.log"]], "log10() (polars.expr method)": [[433, "polars.Expr.log10"]], "log1p() (polars.expr method)": [[434, "polars.Expr.log1p"]], "lower_bound() (polars.expr method)": [[435, "polars.Expr.lower_bound"]], "lt() (polars.expr method)": [[436, "polars.Expr.lt"]], "map() (polars.expr method)": [[437, "polars.Expr.map"]], "map_alias() (polars.expr method)": [[438, "polars.Expr.map_alias"]], "map_dict() (polars.expr method)": [[439, "polars.Expr.map_dict"]], "max() (polars.expr method)": [[440, "polars.Expr.max"]], "mean() (polars.expr method)": [[441, "polars.Expr.mean"]], "median() (polars.expr method)": [[442, "polars.Expr.median"]], "eq() (polars.expr.meta method)": [[443, "polars.Expr.meta.eq"]], "has_multiple_outputs() (polars.expr.meta method)": [[444, "polars.Expr.meta.has_multiple_outputs"]], "is_regex_projection() (polars.expr.meta method)": [[445, "polars.Expr.meta.is_regex_projection"]], "ne() (polars.expr.meta method)": [[446, "polars.Expr.meta.ne"]], "output_name() (polars.expr.meta method)": [[447, "polars.Expr.meta.output_name"]], "pop() (polars.expr.meta method)": [[448, "polars.Expr.meta.pop"]], "root_names() (polars.expr.meta method)": [[449, "polars.Expr.meta.root_names"]], "tree_format() (polars.expr.meta method)": [[450, "polars.Expr.meta.tree_format"]], "undo_aliases() (polars.expr.meta method)": [[451, "polars.Expr.meta.undo_aliases"]], "write_json() (polars.expr.meta method)": [[452, "polars.Expr.meta.write_json"]], "min() (polars.expr method)": [[453, "polars.Expr.min"]], "mod() (polars.expr method)": [[454, "polars.Expr.mod"]], "mode() (polars.expr method)": [[455, "polars.Expr.mode"]], "mul() (polars.expr method)": [[456, "polars.Expr.mul"]], "n_unique() (polars.expr method)": [[457, "polars.Expr.n_unique"]], "nan_max() (polars.expr method)": [[458, "polars.Expr.nan_max"]], "nan_min() (polars.expr method)": [[459, "polars.Expr.nan_min"]], "ne() (polars.expr method)": [[460, "polars.Expr.ne"]], "ne_missing() (polars.expr method)": [[461, "polars.Expr.ne_missing"]], "null_count() (polars.expr method)": [[462, "polars.Expr.null_count"]], "or_() (polars.expr method)": [[463, "polars.Expr.or_"]], "over() (polars.expr method)": [[464, "polars.Expr.over"]], "pct_change() (polars.expr method)": [[465, "polars.Expr.pct_change"]], "pipe() (polars.expr method)": [[466, "polars.Expr.pipe"]], "pow() (polars.expr method)": [[467, "polars.Expr.pow"]], "prefix() (polars.expr method)": [[468, "polars.Expr.prefix"]], "product() (polars.expr method)": [[469, "polars.Expr.product"]], "qcut() (polars.expr method)": [[470, "polars.Expr.qcut"]], "quantile() (polars.expr method)": [[471, "polars.Expr.quantile"]], "radians() (polars.expr method)": [[472, "polars.Expr.radians"]], "rank() (polars.expr method)": [[473, "polars.Expr.rank"]], "rechunk() (polars.expr method)": [[474, "polars.Expr.rechunk"]], "reinterpret() (polars.expr method)": [[475, "polars.Expr.reinterpret"]], "repeat_by() (polars.expr method)": [[476, "polars.Expr.repeat_by"]], "reshape() (polars.expr method)": [[477, "polars.Expr.reshape"]], "reverse() (polars.expr method)": [[478, "polars.Expr.reverse"]], "rle() (polars.expr method)": [[479, "polars.Expr.rle"]], "rle_id() (polars.expr method)": [[480, "polars.Expr.rle_id"]], "rolling_apply() (polars.expr method)": [[481, "polars.Expr.rolling_apply"]], "rolling_max() (polars.expr method)": [[482, "polars.Expr.rolling_max"]], "rolling_mean() (polars.expr method)": [[483, "polars.Expr.rolling_mean"]], "rolling_median() (polars.expr method)": [[484, "polars.Expr.rolling_median"]], "rolling_min() (polars.expr method)": [[485, "polars.Expr.rolling_min"]], "rolling_quantile() (polars.expr method)": [[486, "polars.Expr.rolling_quantile"]], "rolling_skew() (polars.expr method)": [[487, "polars.Expr.rolling_skew"]], "rolling_std() (polars.expr method)": [[488, "polars.Expr.rolling_std"]], "rolling_sum() (polars.expr method)": [[489, "polars.Expr.rolling_sum"]], "rolling_var() (polars.expr method)": [[490, "polars.Expr.rolling_var"]], "round() (polars.expr method)": [[491, "polars.Expr.round"]], "sample() (polars.expr method)": [[492, "polars.Expr.sample"]], "search_sorted() (polars.expr method)": [[493, "polars.Expr.search_sorted"]], "set_sorted() (polars.expr method)": [[494, "polars.Expr.set_sorted"]], "shift() (polars.expr method)": [[495, "polars.Expr.shift"]], "shift_and_fill() (polars.expr method)": [[496, "polars.Expr.shift_and_fill"]], "shrink_dtype() (polars.expr method)": [[497, "polars.Expr.shrink_dtype"]], "shuffle() (polars.expr method)": [[498, "polars.Expr.shuffle"]], "sign() (polars.expr method)": [[499, "polars.Expr.sign"]], "sin() (polars.expr method)": [[500, "polars.Expr.sin"]], "sinh() (polars.expr method)": [[501, "polars.Expr.sinh"]], "skew() (polars.expr method)": [[502, "polars.Expr.skew"]], "slice() (polars.expr method)": [[503, "polars.Expr.slice"]], "sort() (polars.expr method)": [[504, "polars.Expr.sort"]], "sort_by() (polars.expr method)": [[505, "polars.Expr.sort_by"]], "sqrt() (polars.expr method)": [[506, "polars.Expr.sqrt"]], "std() (polars.expr method)": [[507, "polars.Expr.std"]], "concat() (polars.expr.str method)": [[508, "polars.Expr.str.concat"]], "contains() (polars.expr.str method)": [[509, "polars.Expr.str.contains"]], "count_match() (polars.expr.str method)": [[510, "polars.Expr.str.count_match"]], "decode() (polars.expr.str method)": [[511, "polars.Expr.str.decode"]], "encode() (polars.expr.str method)": [[512, "polars.Expr.str.encode"]], "ends_with() (polars.expr.str method)": [[513, "polars.Expr.str.ends_with"]], "explode() (polars.expr.str method)": [[514, "polars.Expr.str.explode"]], "extract() (polars.expr.str method)": [[515, "polars.Expr.str.extract"]], "extract_all() (polars.expr.str method)": [[516, "polars.Expr.str.extract_all"]], "json_extract() (polars.expr.str method)": [[517, "polars.Expr.str.json_extract"]], "json_path_match() (polars.expr.str method)": [[518, "polars.Expr.str.json_path_match"]], "lengths() (polars.expr.str method)": [[519, "polars.Expr.str.lengths"]], "ljust() (polars.expr.str method)": [[520, "polars.Expr.str.ljust"]], "lstrip() (polars.expr.str method)": [[521, "polars.Expr.str.lstrip"]], "n_chars() (polars.expr.str method)": [[522, "polars.Expr.str.n_chars"]], "parse_int() (polars.expr.str method)": [[523, "polars.Expr.str.parse_int"]], "replace() (polars.expr.str method)": [[524, "polars.Expr.str.replace"]], "replace_all() (polars.expr.str method)": [[525, "polars.Expr.str.replace_all"]], "rjust() (polars.expr.str method)": [[526, "polars.Expr.str.rjust"]], "rstrip() (polars.expr.str method)": [[527, "polars.Expr.str.rstrip"]], "slice() (polars.expr.str method)": [[528, "polars.Expr.str.slice"]], "split() (polars.expr.str method)": [[529, "polars.Expr.str.split"]], "split_exact() (polars.expr.str method)": [[530, "polars.Expr.str.split_exact"]], "splitn() (polars.expr.str method)": [[531, "polars.Expr.str.splitn"]], "starts_with() (polars.expr.str method)": [[532, "polars.Expr.str.starts_with"]], "strip() (polars.expr.str method)": [[533, "polars.Expr.str.strip"]], "strptime() (polars.expr.str method)": [[534, "polars.Expr.str.strptime"]], "to_date() (polars.expr.str method)": [[535, "polars.Expr.str.to_date"]], "to_datetime() (polars.expr.str method)": [[536, "polars.Expr.str.to_datetime"]], "to_decimal() (polars.expr.str method)": [[537, "polars.Expr.str.to_decimal"]], "to_lowercase() (polars.expr.str method)": [[538, "polars.Expr.str.to_lowercase"]], "to_time() (polars.expr.str method)": [[539, "polars.Expr.str.to_time"]], "to_titlecase() (polars.expr.str method)": [[540, "polars.Expr.str.to_titlecase"]], "to_uppercase() (polars.expr.str method)": [[541, "polars.Expr.str.to_uppercase"]], "zfill() (polars.expr.str method)": [[542, "polars.Expr.str.zfill"]], "field() (polars.expr.struct method)": [[543, "polars.Expr.struct.field"]], "rename_fields() (polars.expr.struct method)": [[544, "polars.Expr.struct.rename_fields"]], "sub() (polars.expr method)": [[545, "polars.Expr.sub"]], "suffix() (polars.expr method)": [[546, "polars.Expr.suffix"]], "sum() (polars.expr method)": [[547, "polars.Expr.sum"]], "tail() (polars.expr method)": [[548, "polars.Expr.tail"]], "take() (polars.expr method)": [[549, "polars.Expr.take"]], "take_every() (polars.expr method)": [[550, "polars.Expr.take_every"]], "tan() (polars.expr method)": [[551, "polars.Expr.tan"]], "tanh() (polars.expr method)": [[552, "polars.Expr.tanh"]], "to_physical() (polars.expr method)": [[553, "polars.Expr.to_physical"]], "top_k() (polars.expr method)": [[554, "polars.Expr.top_k"]], "truediv() (polars.expr method)": [[555, "polars.Expr.truediv"]], "unique() (polars.expr method)": [[556, "polars.Expr.unique"]], "unique_counts() (polars.expr method)": [[557, "polars.Expr.unique_counts"]], "upper_bound() (polars.expr method)": [[558, "polars.Expr.upper_bound"]], "value_counts() (polars.expr method)": [[559, "polars.Expr.value_counts"]], "var() (polars.expr method)": [[560, "polars.Expr.var"]], "where() (polars.expr method)": [[561, "polars.Expr.where"]], "xor() (polars.expr method)": [[562, "polars.Expr.xor"]], "all() (in module polars)": [[563, "polars.all"]], "all_horizontal() (in module polars)": [[564, "polars.all_horizontal"]], "any() (in module polars)": [[565, "polars.any"]], "any_horizontal() (in module polars)": [[566, "polars.any_horizontal"]], "apply() (in module polars)": [[567, "polars.apply"]], "approx_unique() (in module polars)": [[568, "polars.approx_unique"]], "arange() (in module polars)": [[569, "polars.arange"]], "arctan2() (in module polars)": [[570, "polars.arctan2"]], "arctan2d() (in module polars)": [[571, "polars.arctan2d"]], "arg_sort_by() (in module polars)": [[572, "polars.arg_sort_by"]], "arg_where() (in module polars)": [[573, "polars.arg_where"]], "avg() (in module polars)": [[574, "polars.avg"]], "coalesce() (in module polars)": [[575, "polars.coalesce"]], "col() (in module polars)": [[576, "polars.col"]], "concat_list() (in module polars)": [[577, "polars.concat_list"]], "concat_str() (in module polars)": [[578, "polars.concat_str"]], "corr() (in module polars)": [[579, "polars.corr"]], "count() (in module polars)": [[580, "polars.count"]], "cov() (in module polars)": [[581, "polars.cov"]], "cumfold() (in module polars)": [[582, "polars.cumfold"]], "cumreduce() (in module polars)": [[583, "polars.cumreduce"]], "cumsum() (in module polars)": [[584, "polars.cumsum"]], "cumsum_horizontal() (in module polars)": [[585, "polars.cumsum_horizontal"]], "date() (in module polars)": [[586, "polars.date"]], "date_range() (in module polars)": [[587, "polars.date_range"]], "date_ranges() (in module polars)": [[588, "polars.date_ranges"]], "datetime() (in module polars)": [[589, "polars.datetime"]], "duration() (in module polars)": [[590, "polars.duration"]], "element() (in module polars)": [[591, "polars.element"]], "exclude() (in module polars)": [[592, "polars.exclude"]], "first() (in module polars)": [[593, "polars.first"]], "fold() (in module polars)": [[594, "polars.fold"]], "format() (in module polars)": [[595, "polars.format"]], "from_epoch() (in module polars)": [[596, "polars.from_epoch"]], "groups() (in module polars)": [[597, "polars.groups"]], "head() (in module polars)": [[598, "polars.head"]], "implode() (in module polars)": [[599, "polars.implode"]], "int_range() (in module polars)": [[600, "polars.int_range"]], "int_ranges() (in module polars)": [[601, "polars.int_ranges"]], "last() (in module polars)": [[602, "polars.last"]], "lit() (in module polars)": [[603, "polars.lit"]], "map() (in module polars)": [[604, "polars.map"]], "max() (in module polars)": [[605, "polars.max"]], "max_horizontal() (in module polars)": [[606, "polars.max_horizontal"]], "mean() (in module polars)": [[607, "polars.mean"]], "median() (in module polars)": [[608, "polars.median"]], "min() (in module polars)": [[609, "polars.min"]], "min_horizontal() (in module polars)": [[610, "polars.min_horizontal"]], "n_unique() (in module polars)": [[611, "polars.n_unique"]], "ones() (in module polars)": [[612, "polars.ones"]], "quantile() (in module polars)": [[613, "polars.quantile"]], "reduce() (in module polars)": [[614, "polars.reduce"]], "repeat() (in module polars)": [[615, "polars.repeat"]], "rolling_corr() (in module polars)": [[616, "polars.rolling_corr"]], "rolling_cov() (in module polars)": [[617, "polars.rolling_cov"]], "select() (in module polars)": [[618, "polars.select"]], "sql_expr() (in module polars)": [[619, "polars.sql_expr"]], "std() (in module polars)": [[620, "polars.std"]], "struct() (in module polars)": [[621, "polars.struct"]], "sum() (in module polars)": [[622, "polars.sum"]], "sum_horizontal() (in module polars)": [[623, "polars.sum_horizontal"]], "tail() (in module polars)": [[624, "polars.tail"]], "time() (in module polars)": [[625, "polars.time"]], "time_range() (in module polars)": [[626, "polars.time_range"]], "time_ranges() (in module polars)": [[627, "polars.time_ranges"]], "var() (in module polars)": [[628, "polars.var"]], "when() (in module polars)": [[629, "polars.when"]], "zeros() (in module polars)": [[630, "polars.zeros"]], "bottom_k() (polars.lazyframe method)": [[652, "polars.LazyFrame.bottom_k"]], "cache() (polars.lazyframe method)": [[653, "polars.LazyFrame.cache"]], "clear() (polars.lazyframe method)": [[654, "polars.LazyFrame.clear"]], "clone() (polars.lazyframe method)": [[655, "polars.LazyFrame.clone"]], "collect() (polars.lazyframe method)": [[656, "polars.LazyFrame.collect"]], "columns (polars.lazyframe property)": [[657, "polars.LazyFrame.columns"]], "drop() (polars.lazyframe method)": [[658, "polars.LazyFrame.drop"]], "drop_nulls() (polars.lazyframe method)": [[659, "polars.LazyFrame.drop_nulls"]], "dtypes (polars.lazyframe property)": [[660, "polars.LazyFrame.dtypes"]], "explain() (polars.lazyframe method)": [[661, "polars.LazyFrame.explain"]], "explode() (polars.lazyframe method)": [[662, "polars.LazyFrame.explode"]], "fetch() (polars.lazyframe method)": [[663, "polars.LazyFrame.fetch"]], "fill_nan() (polars.lazyframe method)": [[664, "polars.LazyFrame.fill_nan"]], "fill_null() (polars.lazyframe method)": [[665, "polars.LazyFrame.fill_null"]], "filter() (polars.lazyframe method)": [[666, "polars.LazyFrame.filter"]], "first() (polars.lazyframe method)": [[667, "polars.LazyFrame.first"]], "from_json() (polars.lazyframe class method)": [[668, "polars.LazyFrame.from_json"]], "groupby() (polars.lazyframe method)": [[669, "polars.LazyFrame.groupby"]], "groupby_dynamic() (polars.lazyframe method)": [[670, "polars.LazyFrame.groupby_dynamic"]], "groupby_rolling() (polars.lazyframe method)": [[671, "polars.LazyFrame.groupby_rolling"]], "head() (polars.lazyframe method)": [[672, "polars.LazyFrame.head"]], "inspect() (polars.lazyframe method)": [[673, "polars.LazyFrame.inspect"]], "interpolate() (polars.lazyframe method)": [[674, "polars.LazyFrame.interpolate"]], "join() (polars.lazyframe method)": [[675, "polars.LazyFrame.join"]], "join_asof() (polars.lazyframe method)": [[676, "polars.LazyFrame.join_asof"]], "last() (polars.lazyframe method)": [[677, "polars.LazyFrame.last"]], "lazy() (polars.lazyframe method)": [[678, "polars.LazyFrame.lazy"]], "limit() (polars.lazyframe method)": [[679, "polars.LazyFrame.limit"]], "map() (polars.lazyframe method)": [[680, "polars.LazyFrame.map"]], "max() (polars.lazyframe method)": [[681, "polars.LazyFrame.max"]], "mean() (polars.lazyframe method)": [[682, "polars.LazyFrame.mean"]], "median() (polars.lazyframe method)": [[683, "polars.LazyFrame.median"]], "melt() (polars.lazyframe method)": [[684, "polars.LazyFrame.melt"]], "merge_sorted() (polars.lazyframe method)": [[685, "polars.LazyFrame.merge_sorted"]], "min() (polars.lazyframe method)": [[686, "polars.LazyFrame.min"]], "null_count() (polars.lazyframe method)": [[687, "polars.LazyFrame.null_count"]], "pipe() (polars.lazyframe method)": [[688, "polars.LazyFrame.pipe"]], "profile() (polars.lazyframe method)": [[689, "polars.LazyFrame.profile"]], "quantile() (polars.lazyframe method)": [[690, "polars.LazyFrame.quantile"]], "read_json() (polars.lazyframe class method)": [[691, "polars.LazyFrame.read_json"]], "rename() (polars.lazyframe method)": [[692, "polars.LazyFrame.rename"]], "reverse() (polars.lazyframe method)": [[693, "polars.LazyFrame.reverse"]], "schema (polars.lazyframe property)": [[694, "polars.LazyFrame.schema"]], "select() (polars.lazyframe method)": [[695, "polars.LazyFrame.select"]], "set_sorted() (polars.lazyframe method)": [[696, "polars.LazyFrame.set_sorted"]], "shift() (polars.lazyframe method)": [[697, "polars.LazyFrame.shift"]], "shift_and_fill() (polars.lazyframe method)": [[698, "polars.LazyFrame.shift_and_fill"]], "show_graph() (polars.lazyframe method)": [[699, "polars.LazyFrame.show_graph"]], "slice() (polars.lazyframe method)": [[700, "polars.LazyFrame.slice"]], "sort() (polars.lazyframe method)": [[701, "polars.LazyFrame.sort"]], "std() (polars.lazyframe method)": [[702, "polars.LazyFrame.std"]], "sum() (polars.lazyframe method)": [[703, "polars.LazyFrame.sum"]], "tail() (polars.lazyframe method)": [[704, "polars.LazyFrame.tail"]], "take_every() (polars.lazyframe method)": [[705, "polars.LazyFrame.take_every"]], "top_k() (polars.lazyframe method)": [[706, "polars.LazyFrame.top_k"]], "unique() (polars.lazyframe method)": [[707, "polars.LazyFrame.unique"]], "unnest() (polars.lazyframe method)": [[708, "polars.LazyFrame.unnest"]], "update() (polars.lazyframe method)": [[709, "polars.LazyFrame.update"]], "var() (polars.lazyframe method)": [[710, "polars.LazyFrame.var"]], "width (polars.lazyframe property)": [[711, "polars.LazyFrame.width"]], "with_columns() (polars.lazyframe method)": [[712, "polars.LazyFrame.with_columns"]], "with_context() (polars.lazyframe method)": [[713, "polars.LazyFrame.with_context"]], "with_row_count() (polars.lazyframe method)": [[714, "polars.LazyFrame.with_row_count"]], "write_json() (polars.lazyframe method)": [[715, "polars.LazyFrame.write_json"]], "agg() (polars.lazyframe.groupby.lazygroupby method)": [[716, "polars.lazyframe.groupby.LazyGroupBy.agg"]], "all() (polars.lazyframe.groupby.lazygroupby method)": [[717, "polars.lazyframe.groupby.LazyGroupBy.all"]], "apply() (polars.lazyframe.groupby.lazygroupby method)": [[718, "polars.lazyframe.groupby.LazyGroupBy.apply"]], "count() (polars.lazyframe.groupby.lazygroupby method)": [[719, "polars.lazyframe.groupby.LazyGroupBy.count"]], "first() (polars.lazyframe.groupby.lazygroupby method)": [[720, "polars.lazyframe.groupby.LazyGroupBy.first"]], "head() (polars.lazyframe.groupby.lazygroupby method)": [[721, "polars.lazyframe.groupby.LazyGroupBy.head"]], "last() (polars.lazyframe.groupby.lazygroupby method)": [[722, "polars.lazyframe.groupby.LazyGroupBy.last"]], "max() (polars.lazyframe.groupby.lazygroupby method)": [[723, "polars.lazyframe.groupby.LazyGroupBy.max"]], "mean() (polars.lazyframe.groupby.lazygroupby method)": [[724, "polars.lazyframe.groupby.LazyGroupBy.mean"]], "median() (polars.lazyframe.groupby.lazygroupby method)": [[725, "polars.lazyframe.groupby.LazyGroupBy.median"]], "min() (polars.lazyframe.groupby.lazygroupby method)": [[726, "polars.lazyframe.groupby.LazyGroupBy.min"]], "n_unique() (polars.lazyframe.groupby.lazygroupby method)": [[727, "polars.lazyframe.groupby.LazyGroupBy.n_unique"]], "quantile() (polars.lazyframe.groupby.lazygroupby method)": [[728, "polars.lazyframe.groupby.LazyGroupBy.quantile"]], "sum() (polars.lazyframe.groupby.lazygroupby method)": [[729, "polars.lazyframe.groupby.LazyGroupBy.sum"]], "tail() (polars.lazyframe.groupby.lazygroupby method)": [[730, "polars.lazyframe.groupby.LazyGroupBy.tail"]], "all() (in module polars.selectors)": [[737, "polars.selectors.all"]], "by_dtype() (in module polars.selectors)": [[737, "polars.selectors.by_dtype"]], "by_name() (in module polars.selectors)": [[737, "polars.selectors.by_name"]], "contains() (in module polars.selectors)": [[737, "polars.selectors.contains"]], "datetime() (in module polars.selectors)": [[737, "polars.selectors.datetime"]], "duration() (in module polars.selectors)": [[737, "polars.selectors.duration"]], "ends_with() (in module polars.selectors)": [[737, "polars.selectors.ends_with"]], "first() (in module polars.selectors)": [[737, "polars.selectors.first"]], "float() (in module polars.selectors)": [[737, "polars.selectors.float"]], "integer() (in module polars.selectors)": [[737, "polars.selectors.integer"]], "is_selector() (in module polars.selectors)": [[737, "polars.selectors.is_selector"]], "last() (in module polars.selectors)": [[737, "polars.selectors.last"]], "matches() (in module polars.selectors)": [[737, "polars.selectors.matches"]], "module": [[737, "module-polars.selectors"]], "numeric() (in module polars.selectors)": [[737, "polars.selectors.numeric"]], "polars.selectors": [[737, "module-polars.selectors"]], "selector_column_names() (in module polars.selectors)": [[737, "polars.selectors.selector_column_names"]], "starts_with() (in module polars.selectors)": [[737, "polars.selectors.starts_with"]], "string() (in module polars.selectors)": [[737, "polars.selectors.string"]], "temporal() (in module polars.selectors)": [[737, "polars.selectors.temporal"]], "abs() (polars.series method)": [[739, "polars.Series.abs"]], "alias() (polars.series method)": [[740, "polars.Series.alias"]], "all() (polars.series method)": [[741, "polars.Series.all"]], "any() (polars.series method)": [[742, "polars.Series.any"]], "append() (polars.series method)": [[743, "polars.Series.append"]], "apply() (polars.series method)": [[744, "polars.Series.apply"]], "arccos() (polars.series method)": [[745, "polars.Series.arccos"]], "arccosh() (polars.series method)": [[746, "polars.Series.arccosh"]], "arcsin() (polars.series method)": [[747, "polars.Series.arcsin"]], "arcsinh() (polars.series method)": [[748, "polars.Series.arcsinh"]], "arctan() (polars.series method)": [[749, "polars.Series.arctan"]], "arctanh() (polars.series method)": [[750, "polars.Series.arctanh"]], "arg_max() (polars.series method)": [[751, "polars.Series.arg_max"]], "arg_min() (polars.series method)": [[752, "polars.Series.arg_min"]], "arg_sort() (polars.series method)": [[753, "polars.Series.arg_sort"]], "arg_true() (polars.series method)": [[754, "polars.Series.arg_true"]], "arg_unique() (polars.series method)": [[755, "polars.Series.arg_unique"]], "max() (polars.series.arr method)": [[756, "polars.Series.arr.max"]], "min() (polars.series.arr method)": [[757, "polars.Series.arr.min"]], "sum() (polars.series.arr method)": [[758, "polars.Series.arr.sum"]], "unique() (polars.series.arr method)": [[759, "polars.Series.arr.unique"]], "contains() (polars.series.bin method)": [[760, "polars.Series.bin.contains"]], "decode() (polars.series.bin method)": [[761, "polars.Series.bin.decode"]], "encode() (polars.series.bin method)": [[762, "polars.Series.bin.encode"]], "ends_with() (polars.series.bin method)": [[763, "polars.Series.bin.ends_with"]], "starts_with() (polars.series.bin method)": [[764, "polars.Series.bin.starts_with"]], "bottom_k() (polars.series method)": [[765, "polars.Series.bottom_k"]], "cast() (polars.series method)": [[766, "polars.Series.cast"]], "cat (polars.series attribute)": [[767, "polars.Series.cat"]], "get_categories() (polars.series.cat method)": [[768, "polars.Series.cat.get_categories"]], "set_ordering() (polars.series.cat method)": [[769, "polars.Series.cat.set_ordering"]], "cbrt() (polars.series method)": [[770, "polars.Series.cbrt"]], "ceil() (polars.series method)": [[771, "polars.Series.ceil"]], "chunk_lengths() (polars.series method)": [[772, "polars.Series.chunk_lengths"]], "clear() (polars.series method)": [[773, "polars.Series.clear"]], "clip() (polars.series method)": [[774, "polars.Series.clip"]], "clip_max() (polars.series method)": [[775, "polars.Series.clip_max"]], "clip_min() (polars.series method)": [[776, "polars.Series.clip_min"]], "clone() (polars.series method)": [[777, "polars.Series.clone"]], "cos() (polars.series method)": [[778, "polars.Series.cos"]], "cosh() (polars.series method)": [[779, "polars.Series.cosh"]], "cummax() (polars.series method)": [[780, "polars.Series.cummax"]], "cummin() (polars.series method)": [[781, "polars.Series.cummin"]], "cumprod() (polars.series method)": [[782, "polars.Series.cumprod"]], "cumsum() (polars.series method)": [[783, "polars.Series.cumsum"]], "cumulative_eval() (polars.series method)": [[784, "polars.Series.cumulative_eval"]], "cut() (polars.series method)": [[785, "polars.Series.cut"]], "describe() (polars.series method)": [[786, "polars.Series.describe"]], "diff() (polars.series method)": [[787, "polars.Series.diff"]], "dot() (polars.series method)": [[788, "polars.Series.dot"]], "drop_nans() (polars.series method)": [[789, "polars.Series.drop_nans"]], "drop_nulls() (polars.series method)": [[790, "polars.Series.drop_nulls"]], "dt (polars.series attribute)": [[791, "polars.Series.dt"]], "base_utc_offset() (polars.series.dt method)": [[792, "polars.Series.dt.base_utc_offset"]], "cast_time_unit() (polars.series.dt method)": [[793, "polars.Series.dt.cast_time_unit"]], "combine() (polars.series.dt method)": [[794, "polars.Series.dt.combine"]], "convert_time_zone() (polars.series.dt method)": [[795, "polars.Series.dt.convert_time_zone"]], "date() (polars.series.dt method)": [[796, "polars.Series.dt.date"]], "datetime() (polars.series.dt method)": [[797, "polars.Series.dt.datetime"]], "day() (polars.series.dt method)": [[798, "polars.Series.dt.day"]], "days() (polars.series.dt method)": [[799, "polars.Series.dt.days"]], "dst_offset() (polars.series.dt method)": [[800, "polars.Series.dt.dst_offset"]], "epoch() (polars.series.dt method)": [[801, "polars.Series.dt.epoch"]], "hour() (polars.series.dt method)": [[802, "polars.Series.dt.hour"]], "hours() (polars.series.dt method)": [[803, "polars.Series.dt.hours"]], "is_leap_year() (polars.series.dt method)": [[804, "polars.Series.dt.is_leap_year"]], "iso_year() (polars.series.dt method)": [[805, "polars.Series.dt.iso_year"]], "max() (polars.series.dt method)": [[806, "polars.Series.dt.max"]], "mean() (polars.series.dt method)": [[807, "polars.Series.dt.mean"]], "median() (polars.series.dt method)": [[808, "polars.Series.dt.median"]], "microsecond() (polars.series.dt method)": [[809, "polars.Series.dt.microsecond"]], "microseconds() (polars.series.dt method)": [[810, "polars.Series.dt.microseconds"]], "millisecond() (polars.series.dt method)": [[811, "polars.Series.dt.millisecond"]], "milliseconds() (polars.series.dt method)": [[812, "polars.Series.dt.milliseconds"]], "min() (polars.series.dt method)": [[813, "polars.Series.dt.min"]], "minute() (polars.series.dt method)": [[814, "polars.Series.dt.minute"]], "minutes() (polars.series.dt method)": [[815, "polars.Series.dt.minutes"]], "month() (polars.series.dt method)": [[816, "polars.Series.dt.month"]], "month_end() (polars.series.dt method)": [[817, "polars.Series.dt.month_end"]], "month_start() (polars.series.dt method)": [[818, "polars.Series.dt.month_start"]], "nanosecond() (polars.series.dt method)": [[819, "polars.Series.dt.nanosecond"]], "nanoseconds() (polars.series.dt method)": [[820, "polars.Series.dt.nanoseconds"]], "offset_by() (polars.series.dt method)": [[821, "polars.Series.dt.offset_by"]], "ordinal_day() (polars.series.dt method)": [[822, "polars.Series.dt.ordinal_day"]], "quarter() (polars.series.dt method)": [[823, "polars.Series.dt.quarter"]], "replace_time_zone() (polars.series.dt method)": [[824, "polars.Series.dt.replace_time_zone"]], "round() (polars.series.dt method)": [[825, "polars.Series.dt.round"]], "second() (polars.series.dt method)": [[826, "polars.Series.dt.second"]], "seconds() (polars.series.dt method)": [[827, "polars.Series.dt.seconds"]], "strftime() (polars.series.dt method)": [[828, "polars.Series.dt.strftime"]], "time() (polars.series.dt method)": [[829, "polars.Series.dt.time"]], "timestamp() (polars.series.dt method)": [[830, "polars.Series.dt.timestamp"]], "to_string() (polars.series.dt method)": [[831, "polars.Series.dt.to_string"]], "truncate() (polars.series.dt method)": [[832, "polars.Series.dt.truncate"]], "week() (polars.series.dt method)": [[833, "polars.Series.dt.week"]], "weekday() (polars.series.dt method)": [[834, "polars.Series.dt.weekday"]], "with_time_unit() (polars.series.dt method)": [[835, "polars.Series.dt.with_time_unit"]], "year() (polars.series.dt method)": [[836, "polars.Series.dt.year"]], "dtype (polars.series attribute)": [[837, "polars.Series.dtype"]], "entropy() (polars.series method)": [[838, "polars.Series.entropy"]], "estimated_size() (polars.series method)": [[839, "polars.Series.estimated_size"]], "ewm_mean() (polars.series method)": [[840, "polars.Series.ewm_mean"]], "ewm_std() (polars.series method)": [[841, "polars.Series.ewm_std"]], "ewm_var() (polars.series method)": [[842, "polars.Series.ewm_var"]], "exp() (polars.series method)": [[843, "polars.Series.exp"]], "explode() (polars.series method)": [[844, "polars.Series.explode"]], "extend() (polars.series method)": [[845, "polars.Series.extend"]], "extend_constant() (polars.series method)": [[846, "polars.Series.extend_constant"]], "fill_nan() (polars.series method)": [[847, "polars.Series.fill_nan"]], "fill_null() (polars.series method)": [[848, "polars.Series.fill_null"]], "filter() (polars.series method)": [[849, "polars.Series.filter"]], "flags (polars.series attribute)": [[850, "polars.Series.flags"]], "floor() (polars.series method)": [[851, "polars.Series.floor"]], "get_chunks() (polars.series method)": [[852, "polars.Series.get_chunks"]], "has_validity() (polars.series method)": [[853, "polars.Series.has_validity"]], "hash() (polars.series method)": [[854, "polars.Series.hash"]], "head() (polars.series method)": [[855, "polars.Series.head"]], "hist() (polars.series method)": [[856, "polars.Series.hist"]], "implode() (polars.series method)": [[857, "polars.Series.implode"]], "inner_dtype (polars.series attribute)": [[858, "polars.Series.inner_dtype"]], "interpolate() (polars.series method)": [[859, "polars.Series.interpolate"]], "is_between() (polars.series method)": [[860, "polars.Series.is_between"]], "is_boolean() (polars.series method)": [[861, "polars.Series.is_boolean"]], "is_duplicated() (polars.series method)": [[862, "polars.Series.is_duplicated"]], "is_empty() (polars.series method)": [[863, "polars.Series.is_empty"]], "is_finite() (polars.series method)": [[864, "polars.Series.is_finite"]], "is_first() (polars.series method)": [[865, "polars.Series.is_first"]], "is_float() (polars.series method)": [[866, "polars.Series.is_float"]], "is_in() (polars.series method)": [[867, "polars.Series.is_in"]], "is_infinite() (polars.series method)": [[868, "polars.Series.is_infinite"]], "is_integer() (polars.series method)": [[869, "polars.Series.is_integer"]], "is_nan() (polars.series method)": [[870, "polars.Series.is_nan"]], "is_not_nan() (polars.series method)": [[871, "polars.Series.is_not_nan"]], "is_not_null() (polars.series method)": [[872, "polars.Series.is_not_null"]], "is_null() (polars.series method)": [[873, "polars.Series.is_null"]], "is_numeric() (polars.series method)": [[874, "polars.Series.is_numeric"]], "is_sorted() (polars.series method)": [[875, "polars.Series.is_sorted"]], "is_temporal() (polars.series method)": [[876, "polars.Series.is_temporal"]], "is_unique() (polars.series method)": [[877, "polars.Series.is_unique"]], "is_utf8() (polars.series method)": [[878, "polars.Series.is_utf8"]], "item() (polars.series method)": [[879, "polars.Series.item"]], "kurtosis() (polars.series method)": [[880, "polars.Series.kurtosis"]], "len() (polars.series method)": [[881, "polars.Series.len"]], "limit() (polars.series method)": [[882, "polars.Series.limit"]], "list (polars.series attribute)": [[883, "polars.Series.list"]], "all() (polars.series.list method)": [[884, "polars.Series.list.all"]], "any() (polars.series.list method)": [[885, "polars.Series.list.any"]], "arg_max() (polars.series.list method)": [[886, "polars.Series.list.arg_max"]], "arg_min() (polars.series.list method)": [[887, "polars.Series.list.arg_min"]], "concat() (polars.series.list method)": [[888, "polars.Series.list.concat"]], "contains() (polars.series.list method)": [[889, "polars.Series.list.contains"]], "count_match() (polars.series.list method)": [[890, "polars.Series.list.count_match"]], "diff() (polars.series.list method)": [[891, "polars.Series.list.diff"]], "difference() (polars.series.list method)": [[892, "polars.Series.list.difference"]], "eval() (polars.series.list method)": [[893, "polars.Series.list.eval"]], "explode() (polars.series.list method)": [[894, "polars.Series.list.explode"]], "first() (polars.series.list method)": [[895, "polars.Series.list.first"]], "get() (polars.series.list method)": [[896, "polars.Series.list.get"]], "head() (polars.series.list method)": [[897, "polars.Series.list.head"]], "intersection() (polars.series.list method)": [[898, "polars.Series.list.intersection"]], "join() (polars.series.list method)": [[899, "polars.Series.list.join"]], "last() (polars.series.list method)": [[900, "polars.Series.list.last"]], "lengths() (polars.series.list method)": [[901, "polars.Series.list.lengths"]], "max() (polars.series.list method)": [[902, "polars.Series.list.max"]], "mean() (polars.series.list method)": [[903, "polars.Series.list.mean"]], "min() (polars.series.list method)": [[904, "polars.Series.list.min"]], "reverse() (polars.series.list method)": [[905, "polars.Series.list.reverse"]], "shift() (polars.series.list method)": [[906, "polars.Series.list.shift"]], "slice() (polars.series.list method)": [[907, "polars.Series.list.slice"]], "sort() (polars.series.list method)": [[908, "polars.Series.list.sort"]], "sum() (polars.series.list method)": [[909, "polars.Series.list.sum"]], "tail() (polars.series.list method)": [[910, "polars.Series.list.tail"]], "take() (polars.series.list method)": [[911, "polars.Series.list.take"]], "to_struct() (polars.series.list method)": [[912, "polars.Series.list.to_struct"]], "union() (polars.series.list method)": [[913, "polars.Series.list.union"]], "unique() (polars.series.list method)": [[914, "polars.Series.list.unique"]], "log() (polars.series method)": [[915, "polars.Series.log"]], "log10() (polars.series method)": [[916, "polars.Series.log10"]], "log1p() (polars.series method)": [[917, "polars.Series.log1p"]], "lower_bound() (polars.series method)": [[918, "polars.Series.lower_bound"]], "map_dict() (polars.series method)": [[919, "polars.Series.map_dict"]], "max() (polars.series method)": [[920, "polars.Series.max"]], "mean() (polars.series method)": [[921, "polars.Series.mean"]], "median() (polars.series method)": [[922, "polars.Series.median"]], "min() (polars.series method)": [[923, "polars.Series.min"]], "mode() (polars.series method)": [[924, "polars.Series.mode"]], "n_chunks() (polars.series method)": [[925, "polars.Series.n_chunks"]], "n_unique() (polars.series method)": [[926, "polars.Series.n_unique"]], "name (polars.series attribute)": [[927, "polars.Series.name"]], "nan_max() (polars.series method)": [[928, "polars.Series.nan_max"]], "nan_min() (polars.series method)": [[929, "polars.Series.nan_min"]], "new_from_index() (polars.series method)": [[930, "polars.Series.new_from_index"]], "null_count() (polars.series method)": [[931, "polars.Series.null_count"]], "pct_change() (polars.series method)": [[932, "polars.Series.pct_change"]], "peak_max() (polars.series method)": [[933, "polars.Series.peak_max"]], "peak_min() (polars.series method)": [[934, "polars.Series.peak_min"]], "product() (polars.series method)": [[935, "polars.Series.product"]], "qcut() (polars.series method)": [[936, "polars.Series.qcut"]], "quantile() (polars.series method)": [[937, "polars.Series.quantile"]], "rank() (polars.series method)": [[938, "polars.Series.rank"]], "rechunk() (polars.series method)": [[939, "polars.Series.rechunk"]], "reinterpret() (polars.series method)": [[940, "polars.Series.reinterpret"]], "rename() (polars.series method)": [[941, "polars.Series.rename"]], "reshape() (polars.series method)": [[942, "polars.Series.reshape"]], "reverse() (polars.series method)": [[943, "polars.Series.reverse"]], "rle() (polars.series method)": [[944, "polars.Series.rle"]], "rle_id() (polars.series method)": [[945, "polars.Series.rle_id"]], "rolling_apply() (polars.series method)": [[946, "polars.Series.rolling_apply"]], "rolling_max() (polars.series method)": [[947, "polars.Series.rolling_max"]], "rolling_mean() (polars.series method)": [[948, "polars.Series.rolling_mean"]], "rolling_median() (polars.series method)": [[949, "polars.Series.rolling_median"]], "rolling_min() (polars.series method)": [[950, "polars.Series.rolling_min"]], "rolling_quantile() (polars.series method)": [[951, "polars.Series.rolling_quantile"]], "rolling_skew() (polars.series method)": [[952, "polars.Series.rolling_skew"]], "rolling_std() (polars.series method)": [[953, "polars.Series.rolling_std"]], "rolling_sum() (polars.series method)": [[954, "polars.Series.rolling_sum"]], "rolling_var() (polars.series method)": [[955, "polars.Series.rolling_var"]], "round() (polars.series method)": [[956, "polars.Series.round"]], "sample() (polars.series method)": [[957, "polars.Series.sample"]], "search_sorted() (polars.series method)": [[958, "polars.Series.search_sorted"]], "series_equal() (polars.series method)": [[959, "polars.Series.series_equal"]], "set() (polars.series method)": [[960, "polars.Series.set"]], "set_at_idx() (polars.series method)": [[961, "polars.Series.set_at_idx"]], "set_sorted() (polars.series method)": [[962, "polars.Series.set_sorted"]], "shape (polars.series attribute)": [[963, "polars.Series.shape"]], "shift() (polars.series method)": [[964, "polars.Series.shift"]], "shift_and_fill() (polars.series method)": [[965, "polars.Series.shift_and_fill"]], "shrink_dtype() (polars.series method)": [[966, "polars.Series.shrink_dtype"]], "shrink_to_fit() (polars.series method)": [[967, "polars.Series.shrink_to_fit"]], "shuffle() (polars.series method)": [[968, "polars.Series.shuffle"]], "sign() (polars.series method)": [[969, "polars.Series.sign"]], "sin() (polars.series method)": [[970, "polars.Series.sin"]], "sinh() (polars.series method)": [[971, "polars.Series.sinh"]], "skew() (polars.series method)": [[972, "polars.Series.skew"]], "slice() (polars.series method)": [[973, "polars.Series.slice"]], "sort() (polars.series method)": [[974, "polars.Series.sort"]], "sqrt() (polars.series method)": [[975, "polars.Series.sqrt"]], "std() (polars.series method)": [[976, "polars.Series.std"]], "str (polars.series attribute)": [[977, "polars.Series.str"]], "concat() (polars.series.str method)": [[978, "polars.Series.str.concat"]], "contains() (polars.series.str method)": [[979, "polars.Series.str.contains"]], "count_match() (polars.series.str method)": [[980, "polars.Series.str.count_match"]], "decode() (polars.series.str method)": [[981, "polars.Series.str.decode"]], "encode() (polars.series.str method)": [[982, "polars.Series.str.encode"]], "ends_with() (polars.series.str method)": [[983, "polars.Series.str.ends_with"]], "explode() (polars.series.str method)": [[984, "polars.Series.str.explode"]], "extract() (polars.series.str method)": [[985, "polars.Series.str.extract"]], "extract_all() (polars.series.str method)": [[986, "polars.Series.str.extract_all"]], "json_extract() (polars.series.str method)": [[987, "polars.Series.str.json_extract"]], "json_path_match() (polars.series.str method)": [[988, "polars.Series.str.json_path_match"]], "lengths() (polars.series.str method)": [[989, "polars.Series.str.lengths"]], "ljust() (polars.series.str method)": [[990, "polars.Series.str.ljust"]], "lstrip() (polars.series.str method)": [[991, "polars.Series.str.lstrip"]], "n_chars() (polars.series.str method)": [[992, "polars.Series.str.n_chars"]], "parse_int() (polars.series.str method)": [[993, "polars.Series.str.parse_int"]], "replace() (polars.series.str method)": [[994, "polars.Series.str.replace"]], "replace_all() (polars.series.str method)": [[995, "polars.Series.str.replace_all"]], "rjust() (polars.series.str method)": [[996, "polars.Series.str.rjust"]], "rstrip() (polars.series.str method)": [[997, "polars.Series.str.rstrip"]], "slice() (polars.series.str method)": [[998, "polars.Series.str.slice"]], "split() (polars.series.str method)": [[999, "polars.Series.str.split"]], "split_exact() (polars.series.str method)": [[1000, "polars.Series.str.split_exact"]], "splitn() (polars.series.str method)": [[1001, "polars.Series.str.splitn"]], "starts_with() (polars.series.str method)": [[1002, "polars.Series.str.starts_with"]], "strip() (polars.series.str method)": [[1003, "polars.Series.str.strip"]], "strptime() (polars.series.str method)": [[1004, "polars.Series.str.strptime"]], "to_date() (polars.series.str method)": [[1005, "polars.Series.str.to_date"]], "to_datetime() (polars.series.str method)": [[1006, "polars.Series.str.to_datetime"]], "to_decimal() (polars.series.str method)": [[1007, "polars.Series.str.to_decimal"]], "to_lowercase() (polars.series.str method)": [[1008, "polars.Series.str.to_lowercase"]], "to_time() (polars.series.str method)": [[1009, "polars.Series.str.to_time"]], "to_titlecase() (polars.series.str method)": [[1010, "polars.Series.str.to_titlecase"]], "to_uppercase() (polars.series.str method)": [[1011, "polars.Series.str.to_uppercase"]], "zfill() (polars.series.str method)": [[1012, "polars.Series.str.zfill"]], "field() (polars.series.struct method)": [[1013, "polars.Series.struct.field"]], "fields (polars.series.struct attribute)": [[1014, "polars.Series.struct.fields"]], "rename_fields() (polars.series.struct method)": [[1015, "polars.Series.struct.rename_fields"]], "schema (polars.series.struct attribute)": [[1016, "polars.Series.struct.schema"]], "unnest() (polars.series.struct method)": [[1017, "polars.Series.struct.unnest"]], "sum() (polars.series method)": [[1018, "polars.Series.sum"]], "tail() (polars.series method)": [[1019, "polars.Series.tail"]], "take() (polars.series method)": [[1020, "polars.Series.take"]], "take_every() (polars.series method)": [[1021, "polars.Series.take_every"]], "tan() (polars.series method)": [[1022, "polars.Series.tan"]], "tanh() (polars.series method)": [[1023, "polars.Series.tanh"]], "time_unit (polars.series attribute)": [[1024, "polars.Series.time_unit"]], "to_arrow() (polars.series method)": [[1025, "polars.Series.to_arrow"]], "to_dummies() (polars.series method)": [[1026, "polars.Series.to_dummies"]], "to_frame() (polars.series method)": [[1027, "polars.Series.to_frame"]], "to_init_repr() (polars.series method)": [[1028, "polars.Series.to_init_repr"]], "to_list() (polars.series method)": [[1029, "polars.Series.to_list"]], "to_numpy() (polars.series method)": [[1030, "polars.Series.to_numpy"]], "to_pandas() (polars.series method)": [[1031, "polars.Series.to_pandas"]], "to_physical() (polars.series method)": [[1032, "polars.Series.to_physical"]], "top_k() (polars.series method)": [[1033, "polars.Series.top_k"]], "unique() (polars.series method)": [[1034, "polars.Series.unique"]], "unique_counts() (polars.series method)": [[1035, "polars.Series.unique_counts"]], "upper_bound() (polars.series method)": [[1036, "polars.Series.upper_bound"]], "value_counts() (polars.series method)": [[1037, "polars.Series.value_counts"]], "var() (polars.series method)": [[1038, "polars.Series.var"]], "view() (polars.series method)": [[1039, "polars.Series.view"]], "zip_with() (polars.series method)": [[1040, "polars.Series.zip_with"]], "sqlcontext (class in polars)": [[1056, "polars.SQLContext"]], "__enter__() (polars.sqlcontext method)": [[1056, "polars.SQLContext.__enter__"]], "__exit__() (polars.sqlcontext method)": [[1056, "polars.SQLContext.__exit__"]], "__init__() (polars.sqlcontext method)": [[1056, "polars.SQLContext.__init__"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["index", "reference/api", "reference/api/polars.Array", "reference/api/polars.Binary", "reference/api/polars.Boolean", "reference/api/polars.Categorical", "reference/api/polars.Config.activate_decimals", "reference/api/polars.Config.load", "reference/api/polars.Config.restore_defaults", "reference/api/polars.Config.save", "reference/api/polars.Config.set_ascii_tables", "reference/api/polars.Config.set_fmt_float", "reference/api/polars.Config.set_fmt_str_lengths", "reference/api/polars.Config.set_streaming_chunk_size", "reference/api/polars.Config.set_tbl_cell_alignment", "reference/api/polars.Config.set_tbl_cols", "reference/api/polars.Config.set_tbl_column_data_type_inline", "reference/api/polars.Config.set_tbl_dataframe_shape_below", "reference/api/polars.Config.set_tbl_formatting", "reference/api/polars.Config.set_tbl_hide_column_data_types", "reference/api/polars.Config.set_tbl_hide_column_names", "reference/api/polars.Config.set_tbl_hide_dataframe_shape", "reference/api/polars.Config.set_tbl_hide_dtype_separator", "reference/api/polars.Config.set_tbl_rows", "reference/api/polars.Config.set_tbl_width_chars", "reference/api/polars.Config.set_verbose", "reference/api/polars.Config.state", "reference/api/polars.DataFrame.write_avro", "reference/api/polars.DataFrame.write_csv", "reference/api/polars.DataFrame.write_database", "reference/api/polars.DataFrame.write_delta", "reference/api/polars.DataFrame.write_excel", "reference/api/polars.DataFrame.write_ipc", "reference/api/polars.DataFrame.write_json", "reference/api/polars.DataFrame.write_ndjson", "reference/api/polars.DataFrame.write_parquet", "reference/api/polars.DataType", "reference/api/polars.Date", "reference/api/polars.Datetime", "reference/api/polars.Decimal", "reference/api/polars.Duration", "reference/api/polars.Float32", "reference/api/polars.Float64", "reference/api/polars.Int16", "reference/api/polars.Int32", "reference/api/polars.Int64", "reference/api/polars.Int8", "reference/api/polars.LazyFrame.sink_ipc", "reference/api/polars.LazyFrame.sink_parquet", "reference/api/polars.List", "reference/api/polars.Null", "reference/api/polars.Object", "reference/api/polars.SQLContext.execute", "reference/api/polars.SQLContext.register", "reference/api/polars.SQLContext.register_globals", "reference/api/polars.SQLContext.register_many", "reference/api/polars.SQLContext.tables", "reference/api/polars.SQLContext.unregister", "reference/api/polars.StringCache", "reference/api/polars.Struct", "reference/api/polars.Time", "reference/api/polars.UInt16", "reference/api/polars.UInt32", "reference/api/polars.UInt64", "reference/api/polars.UInt8", "reference/api/polars.Unknown", "reference/api/polars.Utf8", "reference/api/polars.align_frames", "reference/api/polars.api.register_dataframe_namespace", "reference/api/polars.api.register_expr_namespace", "reference/api/polars.api.register_lazyframe_namespace", "reference/api/polars.api.register_series_namespace", "reference/api/polars.build_info", "reference/api/polars.collect_all", "reference/api/polars.concat", "reference/api/polars.enable_string_cache", "reference/api/polars.exceptions.ArrowError", "reference/api/polars.exceptions.ColumnNotFoundError", "reference/api/polars.exceptions.ComputeError", "reference/api/polars.exceptions.DuplicateError", "reference/api/polars.exceptions.InvalidOperationError", "reference/api/polars.exceptions.NoDataError", "reference/api/polars.exceptions.NoRowsReturnedError", "reference/api/polars.exceptions.PolarsPanicError", "reference/api/polars.exceptions.RowsError", "reference/api/polars.exceptions.SchemaError", "reference/api/polars.exceptions.SchemaFieldNotFoundError", "reference/api/polars.exceptions.ShapeError", "reference/api/polars.exceptions.StructFieldNotFoundError", "reference/api/polars.exceptions.TooManyRowsReturnedError", "reference/api/polars.from_arrow", "reference/api/polars.from_dataframe", "reference/api/polars.from_dict", "reference/api/polars.from_dicts", "reference/api/polars.from_numpy", "reference/api/polars.from_pandas", "reference/api/polars.from_records", "reference/api/polars.from_repr", "reference/api/polars.get_index_type", "reference/api/polars.io.csv.batched_reader.BatchedCsvReader.next_batches", "reference/api/polars.read_avro", "reference/api/polars.read_csv", "reference/api/polars.read_csv_batched", "reference/api/polars.read_database", "reference/api/polars.read_delta", "reference/api/polars.read_excel", "reference/api/polars.read_ipc", "reference/api/polars.read_ipc_schema", "reference/api/polars.read_json", "reference/api/polars.read_ndjson", "reference/api/polars.read_parquet", "reference/api/polars.read_parquet_schema", "reference/api/polars.scan_csv", "reference/api/polars.scan_delta", "reference/api/polars.scan_ipc", "reference/api/polars.scan_ndjson", "reference/api/polars.scan_parquet", "reference/api/polars.scan_pyarrow_dataset", "reference/api/polars.show_versions", "reference/api/polars.testing.assert_frame_equal", "reference/api/polars.testing.assert_series_equal", "reference/api/polars.testing.parametric.column", "reference/api/polars.testing.parametric.columns", "reference/api/polars.testing.parametric.create_list_strategy", "reference/api/polars.testing.parametric.dataframes", "reference/api/polars.testing.parametric.load_profile", "reference/api/polars.testing.parametric.series", "reference/api/polars.testing.parametric.set_profile", "reference/api/polars.threadpool_size", "reference/api/polars.using_string_cache", "reference/config", "reference/dataframe/aggregation", "reference/dataframe/api/polars.DataFrame.__dataframe__", "reference/dataframe/api/polars.DataFrame.apply", "reference/dataframe/api/polars.DataFrame.bottom_k", "reference/dataframe/api/polars.DataFrame.clear", "reference/dataframe/api/polars.DataFrame.clone", "reference/dataframe/api/polars.DataFrame.columns", "reference/dataframe/api/polars.DataFrame.corr", "reference/dataframe/api/polars.DataFrame.describe", "reference/dataframe/api/polars.DataFrame.drop", "reference/dataframe/api/polars.DataFrame.drop_in_place", "reference/dataframe/api/polars.DataFrame.drop_nulls", "reference/dataframe/api/polars.DataFrame.dtypes", "reference/dataframe/api/polars.DataFrame.estimated_size", "reference/dataframe/api/polars.DataFrame.explode", "reference/dataframe/api/polars.DataFrame.extend", "reference/dataframe/api/polars.DataFrame.fill_nan", "reference/dataframe/api/polars.DataFrame.fill_null", "reference/dataframe/api/polars.DataFrame.filter", "reference/dataframe/api/polars.DataFrame.find_idx_by_name", "reference/dataframe/api/polars.DataFrame.flags", "reference/dataframe/api/polars.DataFrame.fold", "reference/dataframe/api/polars.DataFrame.frame_equal", "reference/dataframe/api/polars.DataFrame.get_column", "reference/dataframe/api/polars.DataFrame.get_columns", "reference/dataframe/api/polars.DataFrame.glimpse", "reference/dataframe/api/polars.DataFrame.groupby", "reference/dataframe/api/polars.DataFrame.groupby_dynamic", "reference/dataframe/api/polars.DataFrame.groupby_rolling", "reference/dataframe/api/polars.DataFrame.hash_rows", "reference/dataframe/api/polars.DataFrame.head", "reference/dataframe/api/polars.DataFrame.height", "reference/dataframe/api/polars.DataFrame.hstack", "reference/dataframe/api/polars.DataFrame.insert_at_idx", "reference/dataframe/api/polars.DataFrame.interpolate", "reference/dataframe/api/polars.DataFrame.is_duplicated", "reference/dataframe/api/polars.DataFrame.is_empty", "reference/dataframe/api/polars.DataFrame.is_unique", "reference/dataframe/api/polars.DataFrame.item", "reference/dataframe/api/polars.DataFrame.iter_rows", "reference/dataframe/api/polars.DataFrame.iter_slices", "reference/dataframe/api/polars.DataFrame.join", "reference/dataframe/api/polars.DataFrame.join_asof", "reference/dataframe/api/polars.DataFrame.lazy", "reference/dataframe/api/polars.DataFrame.limit", "reference/dataframe/api/polars.DataFrame.max", "reference/dataframe/api/polars.DataFrame.mean", "reference/dataframe/api/polars.DataFrame.median", "reference/dataframe/api/polars.DataFrame.melt", "reference/dataframe/api/polars.DataFrame.merge_sorted", "reference/dataframe/api/polars.DataFrame.min", "reference/dataframe/api/polars.DataFrame.n_chunks", "reference/dataframe/api/polars.DataFrame.n_unique", "reference/dataframe/api/polars.DataFrame.null_count", "reference/dataframe/api/polars.DataFrame.partition_by", "reference/dataframe/api/polars.DataFrame.pipe", "reference/dataframe/api/polars.DataFrame.pivot", "reference/dataframe/api/polars.DataFrame.product", "reference/dataframe/api/polars.DataFrame.quantile", "reference/dataframe/api/polars.DataFrame.rechunk", "reference/dataframe/api/polars.DataFrame.rename", "reference/dataframe/api/polars.DataFrame.replace", "reference/dataframe/api/polars.DataFrame.replace_at_idx", "reference/dataframe/api/polars.DataFrame.reverse", "reference/dataframe/api/polars.DataFrame.row", "reference/dataframe/api/polars.DataFrame.rows", "reference/dataframe/api/polars.DataFrame.rows_by_key", "reference/dataframe/api/polars.DataFrame.sample", "reference/dataframe/api/polars.DataFrame.schema", "reference/dataframe/api/polars.DataFrame.select", "reference/dataframe/api/polars.DataFrame.set_sorted", "reference/dataframe/api/polars.DataFrame.shape", "reference/dataframe/api/polars.DataFrame.shift", "reference/dataframe/api/polars.DataFrame.shift_and_fill", "reference/dataframe/api/polars.DataFrame.shrink_to_fit", "reference/dataframe/api/polars.DataFrame.slice", "reference/dataframe/api/polars.DataFrame.sort", "reference/dataframe/api/polars.DataFrame.std", "reference/dataframe/api/polars.DataFrame.sum", "reference/dataframe/api/polars.DataFrame.tail", "reference/dataframe/api/polars.DataFrame.take_every", "reference/dataframe/api/polars.DataFrame.to_arrow", "reference/dataframe/api/polars.DataFrame.to_dict", "reference/dataframe/api/polars.DataFrame.to_dicts", "reference/dataframe/api/polars.DataFrame.to_dummies", "reference/dataframe/api/polars.DataFrame.to_init_repr", "reference/dataframe/api/polars.DataFrame.to_numpy", "reference/dataframe/api/polars.DataFrame.to_pandas", "reference/dataframe/api/polars.DataFrame.to_series", "reference/dataframe/api/polars.DataFrame.to_struct", "reference/dataframe/api/polars.DataFrame.top_k", "reference/dataframe/api/polars.DataFrame.transpose", "reference/dataframe/api/polars.DataFrame.unique", "reference/dataframe/api/polars.DataFrame.unnest", "reference/dataframe/api/polars.DataFrame.unstack", "reference/dataframe/api/polars.DataFrame.update", "reference/dataframe/api/polars.DataFrame.upsample", "reference/dataframe/api/polars.DataFrame.var", "reference/dataframe/api/polars.DataFrame.vstack", "reference/dataframe/api/polars.DataFrame.width", "reference/dataframe/api/polars.DataFrame.with_columns", "reference/dataframe/api/polars.DataFrame.with_row_count", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.__iter__", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.agg", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.all", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.apply", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.count", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.first", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.head", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.last", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.max", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.mean", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.median", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.min", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.n_unique", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.quantile", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.sum", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.tail", "reference/dataframe/attributes", "reference/dataframe/computation", "reference/dataframe/descriptive", "reference/dataframe/export", "reference/dataframe/groupby", "reference/dataframe/index", "reference/dataframe/miscellaneous", "reference/dataframe/modify_select", "reference/datatypes", "reference/exceptions", "reference/expressions/aggregation", "reference/expressions/api/polars.Expr.abs", "reference/expressions/api/polars.Expr.add", "reference/expressions/api/polars.Expr.agg_groups", "reference/expressions/api/polars.Expr.alias", "reference/expressions/api/polars.Expr.all", "reference/expressions/api/polars.Expr.and_", "reference/expressions/api/polars.Expr.any", "reference/expressions/api/polars.Expr.append", "reference/expressions/api/polars.Expr.apply", "reference/expressions/api/polars.Expr.approx_unique", "reference/expressions/api/polars.Expr.arccos", "reference/expressions/api/polars.Expr.arccosh", "reference/expressions/api/polars.Expr.arcsin", "reference/expressions/api/polars.Expr.arcsinh", "reference/expressions/api/polars.Expr.arctan", "reference/expressions/api/polars.Expr.arctanh", "reference/expressions/api/polars.Expr.arg_max", "reference/expressions/api/polars.Expr.arg_min", "reference/expressions/api/polars.Expr.arg_sort", "reference/expressions/api/polars.Expr.arg_true", "reference/expressions/api/polars.Expr.arg_unique", "reference/expressions/api/polars.Expr.arr.max", "reference/expressions/api/polars.Expr.arr.min", "reference/expressions/api/polars.Expr.arr.sum", "reference/expressions/api/polars.Expr.arr.unique", "reference/expressions/api/polars.Expr.backward_fill", "reference/expressions/api/polars.Expr.bin.contains", "reference/expressions/api/polars.Expr.bin.decode", "reference/expressions/api/polars.Expr.bin.encode", "reference/expressions/api/polars.Expr.bin.ends_with", "reference/expressions/api/polars.Expr.bin.starts_with", "reference/expressions/api/polars.Expr.bottom_k", "reference/expressions/api/polars.Expr.cache", "reference/expressions/api/polars.Expr.cast", "reference/expressions/api/polars.Expr.cat.get_categories", "reference/expressions/api/polars.Expr.cat.set_ordering", "reference/expressions/api/polars.Expr.cbrt", "reference/expressions/api/polars.Expr.ceil", "reference/expressions/api/polars.Expr.clip", "reference/expressions/api/polars.Expr.clip_max", "reference/expressions/api/polars.Expr.clip_min", "reference/expressions/api/polars.Expr.cos", "reference/expressions/api/polars.Expr.cosh", "reference/expressions/api/polars.Expr.count", "reference/expressions/api/polars.Expr.cumcount", "reference/expressions/api/polars.Expr.cummax", "reference/expressions/api/polars.Expr.cummin", "reference/expressions/api/polars.Expr.cumprod", "reference/expressions/api/polars.Expr.cumsum", "reference/expressions/api/polars.Expr.cumulative_eval", "reference/expressions/api/polars.Expr.cut", "reference/expressions/api/polars.Expr.degrees", "reference/expressions/api/polars.Expr.diff", "reference/expressions/api/polars.Expr.dot", "reference/expressions/api/polars.Expr.drop_nans", "reference/expressions/api/polars.Expr.drop_nulls", "reference/expressions/api/polars.Expr.dt.base_utc_offset", "reference/expressions/api/polars.Expr.dt.cast_time_unit", "reference/expressions/api/polars.Expr.dt.combine", "reference/expressions/api/polars.Expr.dt.convert_time_zone", "reference/expressions/api/polars.Expr.dt.date", "reference/expressions/api/polars.Expr.dt.datetime", "reference/expressions/api/polars.Expr.dt.day", "reference/expressions/api/polars.Expr.dt.days", "reference/expressions/api/polars.Expr.dt.dst_offset", "reference/expressions/api/polars.Expr.dt.epoch", "reference/expressions/api/polars.Expr.dt.hour", "reference/expressions/api/polars.Expr.dt.hours", "reference/expressions/api/polars.Expr.dt.is_leap_year", "reference/expressions/api/polars.Expr.dt.iso_year", "reference/expressions/api/polars.Expr.dt.microsecond", "reference/expressions/api/polars.Expr.dt.microseconds", "reference/expressions/api/polars.Expr.dt.millisecond", "reference/expressions/api/polars.Expr.dt.milliseconds", "reference/expressions/api/polars.Expr.dt.minute", "reference/expressions/api/polars.Expr.dt.minutes", "reference/expressions/api/polars.Expr.dt.month", "reference/expressions/api/polars.Expr.dt.month_end", "reference/expressions/api/polars.Expr.dt.month_start", "reference/expressions/api/polars.Expr.dt.nanosecond", "reference/expressions/api/polars.Expr.dt.nanoseconds", "reference/expressions/api/polars.Expr.dt.offset_by", "reference/expressions/api/polars.Expr.dt.ordinal_day", "reference/expressions/api/polars.Expr.dt.quarter", "reference/expressions/api/polars.Expr.dt.replace_time_zone", "reference/expressions/api/polars.Expr.dt.round", "reference/expressions/api/polars.Expr.dt.second", "reference/expressions/api/polars.Expr.dt.seconds", "reference/expressions/api/polars.Expr.dt.strftime", "reference/expressions/api/polars.Expr.dt.time", "reference/expressions/api/polars.Expr.dt.timestamp", "reference/expressions/api/polars.Expr.dt.to_string", "reference/expressions/api/polars.Expr.dt.truncate", "reference/expressions/api/polars.Expr.dt.week", "reference/expressions/api/polars.Expr.dt.weekday", "reference/expressions/api/polars.Expr.dt.with_time_unit", "reference/expressions/api/polars.Expr.dt.year", "reference/expressions/api/polars.Expr.entropy", "reference/expressions/api/polars.Expr.eq", "reference/expressions/api/polars.Expr.eq_missing", "reference/expressions/api/polars.Expr.ewm_mean", "reference/expressions/api/polars.Expr.ewm_std", "reference/expressions/api/polars.Expr.ewm_var", "reference/expressions/api/polars.Expr.exclude", "reference/expressions/api/polars.Expr.exp", "reference/expressions/api/polars.Expr.explode", "reference/expressions/api/polars.Expr.extend_constant", "reference/expressions/api/polars.Expr.fill_nan", "reference/expressions/api/polars.Expr.fill_null", "reference/expressions/api/polars.Expr.filter", "reference/expressions/api/polars.Expr.first", "reference/expressions/api/polars.Expr.flatten", "reference/expressions/api/polars.Expr.floor", "reference/expressions/api/polars.Expr.floordiv", "reference/expressions/api/polars.Expr.forward_fill", "reference/expressions/api/polars.Expr.from_json", "reference/expressions/api/polars.Expr.ge", "reference/expressions/api/polars.Expr.gt", "reference/expressions/api/polars.Expr.hash", "reference/expressions/api/polars.Expr.head", "reference/expressions/api/polars.Expr.implode", "reference/expressions/api/polars.Expr.inspect", "reference/expressions/api/polars.Expr.interpolate", "reference/expressions/api/polars.Expr.is_between", "reference/expressions/api/polars.Expr.is_duplicated", "reference/expressions/api/polars.Expr.is_finite", "reference/expressions/api/polars.Expr.is_first", "reference/expressions/api/polars.Expr.is_in", "reference/expressions/api/polars.Expr.is_infinite", "reference/expressions/api/polars.Expr.is_nan", "reference/expressions/api/polars.Expr.is_not", "reference/expressions/api/polars.Expr.is_not_nan", "reference/expressions/api/polars.Expr.is_not_null", "reference/expressions/api/polars.Expr.is_null", "reference/expressions/api/polars.Expr.is_unique", "reference/expressions/api/polars.Expr.keep_name", "reference/expressions/api/polars.Expr.kurtosis", "reference/expressions/api/polars.Expr.last", "reference/expressions/api/polars.Expr.le", "reference/expressions/api/polars.Expr.len", "reference/expressions/api/polars.Expr.limit", "reference/expressions/api/polars.Expr.list.all", "reference/expressions/api/polars.Expr.list.any", "reference/expressions/api/polars.Expr.list.arg_max", "reference/expressions/api/polars.Expr.list.arg_min", "reference/expressions/api/polars.Expr.list.concat", "reference/expressions/api/polars.Expr.list.contains", "reference/expressions/api/polars.Expr.list.count_match", "reference/expressions/api/polars.Expr.list.diff", "reference/expressions/api/polars.Expr.list.difference", "reference/expressions/api/polars.Expr.list.eval", "reference/expressions/api/polars.Expr.list.explode", "reference/expressions/api/polars.Expr.list.first", "reference/expressions/api/polars.Expr.list.get", "reference/expressions/api/polars.Expr.list.head", "reference/expressions/api/polars.Expr.list.intersection", "reference/expressions/api/polars.Expr.list.join", "reference/expressions/api/polars.Expr.list.last", "reference/expressions/api/polars.Expr.list.lengths", "reference/expressions/api/polars.Expr.list.max", "reference/expressions/api/polars.Expr.list.mean", "reference/expressions/api/polars.Expr.list.min", "reference/expressions/api/polars.Expr.list.reverse", "reference/expressions/api/polars.Expr.list.shift", "reference/expressions/api/polars.Expr.list.slice", "reference/expressions/api/polars.Expr.list.sort", "reference/expressions/api/polars.Expr.list.sum", "reference/expressions/api/polars.Expr.list.tail", "reference/expressions/api/polars.Expr.list.take", "reference/expressions/api/polars.Expr.list.to_struct", "reference/expressions/api/polars.Expr.list.union", "reference/expressions/api/polars.Expr.list.unique", "reference/expressions/api/polars.Expr.log", "reference/expressions/api/polars.Expr.log10", "reference/expressions/api/polars.Expr.log1p", "reference/expressions/api/polars.Expr.lower_bound", "reference/expressions/api/polars.Expr.lt", "reference/expressions/api/polars.Expr.map", "reference/expressions/api/polars.Expr.map_alias", "reference/expressions/api/polars.Expr.map_dict", "reference/expressions/api/polars.Expr.max", "reference/expressions/api/polars.Expr.mean", "reference/expressions/api/polars.Expr.median", "reference/expressions/api/polars.Expr.meta.eq", "reference/expressions/api/polars.Expr.meta.has_multiple_outputs", "reference/expressions/api/polars.Expr.meta.is_regex_projection", "reference/expressions/api/polars.Expr.meta.ne", "reference/expressions/api/polars.Expr.meta.output_name", "reference/expressions/api/polars.Expr.meta.pop", "reference/expressions/api/polars.Expr.meta.root_names", "reference/expressions/api/polars.Expr.meta.tree_format", "reference/expressions/api/polars.Expr.meta.undo_aliases", "reference/expressions/api/polars.Expr.meta.write_json", "reference/expressions/api/polars.Expr.min", "reference/expressions/api/polars.Expr.mod", "reference/expressions/api/polars.Expr.mode", "reference/expressions/api/polars.Expr.mul", "reference/expressions/api/polars.Expr.n_unique", "reference/expressions/api/polars.Expr.nan_max", "reference/expressions/api/polars.Expr.nan_min", "reference/expressions/api/polars.Expr.ne", "reference/expressions/api/polars.Expr.ne_missing", "reference/expressions/api/polars.Expr.null_count", "reference/expressions/api/polars.Expr.or_", "reference/expressions/api/polars.Expr.over", "reference/expressions/api/polars.Expr.pct_change", "reference/expressions/api/polars.Expr.pipe", "reference/expressions/api/polars.Expr.pow", "reference/expressions/api/polars.Expr.prefix", "reference/expressions/api/polars.Expr.product", "reference/expressions/api/polars.Expr.qcut", "reference/expressions/api/polars.Expr.quantile", "reference/expressions/api/polars.Expr.radians", "reference/expressions/api/polars.Expr.rank", "reference/expressions/api/polars.Expr.rechunk", "reference/expressions/api/polars.Expr.reinterpret", "reference/expressions/api/polars.Expr.repeat_by", "reference/expressions/api/polars.Expr.reshape", "reference/expressions/api/polars.Expr.reverse", "reference/expressions/api/polars.Expr.rle", "reference/expressions/api/polars.Expr.rle_id", "reference/expressions/api/polars.Expr.rolling_apply", "reference/expressions/api/polars.Expr.rolling_max", "reference/expressions/api/polars.Expr.rolling_mean", "reference/expressions/api/polars.Expr.rolling_median", "reference/expressions/api/polars.Expr.rolling_min", "reference/expressions/api/polars.Expr.rolling_quantile", "reference/expressions/api/polars.Expr.rolling_skew", "reference/expressions/api/polars.Expr.rolling_std", "reference/expressions/api/polars.Expr.rolling_sum", "reference/expressions/api/polars.Expr.rolling_var", "reference/expressions/api/polars.Expr.round", "reference/expressions/api/polars.Expr.sample", "reference/expressions/api/polars.Expr.search_sorted", "reference/expressions/api/polars.Expr.set_sorted", "reference/expressions/api/polars.Expr.shift", "reference/expressions/api/polars.Expr.shift_and_fill", "reference/expressions/api/polars.Expr.shrink_dtype", "reference/expressions/api/polars.Expr.shuffle", "reference/expressions/api/polars.Expr.sign", "reference/expressions/api/polars.Expr.sin", "reference/expressions/api/polars.Expr.sinh", "reference/expressions/api/polars.Expr.skew", "reference/expressions/api/polars.Expr.slice", "reference/expressions/api/polars.Expr.sort", "reference/expressions/api/polars.Expr.sort_by", "reference/expressions/api/polars.Expr.sqrt", "reference/expressions/api/polars.Expr.std", "reference/expressions/api/polars.Expr.str.concat", "reference/expressions/api/polars.Expr.str.contains", "reference/expressions/api/polars.Expr.str.count_match", "reference/expressions/api/polars.Expr.str.decode", "reference/expressions/api/polars.Expr.str.encode", "reference/expressions/api/polars.Expr.str.ends_with", "reference/expressions/api/polars.Expr.str.explode", "reference/expressions/api/polars.Expr.str.extract", "reference/expressions/api/polars.Expr.str.extract_all", "reference/expressions/api/polars.Expr.str.json_extract", "reference/expressions/api/polars.Expr.str.json_path_match", "reference/expressions/api/polars.Expr.str.lengths", "reference/expressions/api/polars.Expr.str.ljust", "reference/expressions/api/polars.Expr.str.lstrip", "reference/expressions/api/polars.Expr.str.n_chars", "reference/expressions/api/polars.Expr.str.parse_int", "reference/expressions/api/polars.Expr.str.replace", "reference/expressions/api/polars.Expr.str.replace_all", "reference/expressions/api/polars.Expr.str.rjust", "reference/expressions/api/polars.Expr.str.rstrip", "reference/expressions/api/polars.Expr.str.slice", "reference/expressions/api/polars.Expr.str.split", "reference/expressions/api/polars.Expr.str.split_exact", "reference/expressions/api/polars.Expr.str.splitn", "reference/expressions/api/polars.Expr.str.starts_with", "reference/expressions/api/polars.Expr.str.strip", "reference/expressions/api/polars.Expr.str.strptime", "reference/expressions/api/polars.Expr.str.to_date", "reference/expressions/api/polars.Expr.str.to_datetime", "reference/expressions/api/polars.Expr.str.to_decimal", "reference/expressions/api/polars.Expr.str.to_lowercase", "reference/expressions/api/polars.Expr.str.to_time", "reference/expressions/api/polars.Expr.str.to_titlecase", "reference/expressions/api/polars.Expr.str.to_uppercase", "reference/expressions/api/polars.Expr.str.zfill", "reference/expressions/api/polars.Expr.struct.field", "reference/expressions/api/polars.Expr.struct.rename_fields", "reference/expressions/api/polars.Expr.sub", "reference/expressions/api/polars.Expr.suffix", "reference/expressions/api/polars.Expr.sum", "reference/expressions/api/polars.Expr.tail", "reference/expressions/api/polars.Expr.take", "reference/expressions/api/polars.Expr.take_every", "reference/expressions/api/polars.Expr.tan", "reference/expressions/api/polars.Expr.tanh", "reference/expressions/api/polars.Expr.to_physical", "reference/expressions/api/polars.Expr.top_k", "reference/expressions/api/polars.Expr.truediv", "reference/expressions/api/polars.Expr.unique", "reference/expressions/api/polars.Expr.unique_counts", "reference/expressions/api/polars.Expr.upper_bound", "reference/expressions/api/polars.Expr.value_counts", "reference/expressions/api/polars.Expr.var", "reference/expressions/api/polars.Expr.where", "reference/expressions/api/polars.Expr.xor", "reference/expressions/api/polars.all", "reference/expressions/api/polars.all_horizontal", "reference/expressions/api/polars.any", "reference/expressions/api/polars.any_horizontal", "reference/expressions/api/polars.apply", "reference/expressions/api/polars.approx_unique", "reference/expressions/api/polars.arange", "reference/expressions/api/polars.arctan2", "reference/expressions/api/polars.arctan2d", "reference/expressions/api/polars.arg_sort_by", "reference/expressions/api/polars.arg_where", "reference/expressions/api/polars.avg", "reference/expressions/api/polars.coalesce", "reference/expressions/api/polars.col", "reference/expressions/api/polars.concat_list", "reference/expressions/api/polars.concat_str", "reference/expressions/api/polars.corr", "reference/expressions/api/polars.count", "reference/expressions/api/polars.cov", "reference/expressions/api/polars.cumfold", "reference/expressions/api/polars.cumreduce", "reference/expressions/api/polars.cumsum", "reference/expressions/api/polars.cumsum_horizontal", "reference/expressions/api/polars.date", "reference/expressions/api/polars.date_range", "reference/expressions/api/polars.date_ranges", "reference/expressions/api/polars.datetime", "reference/expressions/api/polars.duration", "reference/expressions/api/polars.element", "reference/expressions/api/polars.exclude", "reference/expressions/api/polars.first", "reference/expressions/api/polars.fold", "reference/expressions/api/polars.format", "reference/expressions/api/polars.from_epoch", "reference/expressions/api/polars.groups", "reference/expressions/api/polars.head", "reference/expressions/api/polars.implode", "reference/expressions/api/polars.int_range", "reference/expressions/api/polars.int_ranges", "reference/expressions/api/polars.last", "reference/expressions/api/polars.lit", "reference/expressions/api/polars.map", "reference/expressions/api/polars.max", "reference/expressions/api/polars.max_horizontal", "reference/expressions/api/polars.mean", "reference/expressions/api/polars.median", "reference/expressions/api/polars.min", "reference/expressions/api/polars.min_horizontal", "reference/expressions/api/polars.n_unique", "reference/expressions/api/polars.ones", "reference/expressions/api/polars.quantile", "reference/expressions/api/polars.reduce", "reference/expressions/api/polars.repeat", "reference/expressions/api/polars.rolling_corr", "reference/expressions/api/polars.rolling_cov", "reference/expressions/api/polars.select", "reference/expressions/api/polars.sql_expr", "reference/expressions/api/polars.std", "reference/expressions/api/polars.struct", "reference/expressions/api/polars.sum", "reference/expressions/api/polars.sum_horizontal", "reference/expressions/api/polars.tail", "reference/expressions/api/polars.time", "reference/expressions/api/polars.time_range", "reference/expressions/api/polars.time_ranges", "reference/expressions/api/polars.var", "reference/expressions/api/polars.when", "reference/expressions/api/polars.zeros", "reference/expressions/array", "reference/expressions/binary", "reference/expressions/boolean", "reference/expressions/categories", "reference/expressions/columns", "reference/expressions/computation", "reference/expressions/functions", "reference/expressions/index", "reference/expressions/list", "reference/expressions/meta", "reference/expressions/miscellaneous", "reference/expressions/modify_select", "reference/expressions/operators", "reference/expressions/string", "reference/expressions/struct", "reference/expressions/temporal", "reference/expressions/window", "reference/functions", "reference/index", "reference/io", "reference/lazyframe/aggregation", "reference/lazyframe/api/polars.LazyFrame.bottom_k", "reference/lazyframe/api/polars.LazyFrame.cache", "reference/lazyframe/api/polars.LazyFrame.clear", "reference/lazyframe/api/polars.LazyFrame.clone", "reference/lazyframe/api/polars.LazyFrame.collect", "reference/lazyframe/api/polars.LazyFrame.columns", "reference/lazyframe/api/polars.LazyFrame.drop", "reference/lazyframe/api/polars.LazyFrame.drop_nulls", "reference/lazyframe/api/polars.LazyFrame.dtypes", "reference/lazyframe/api/polars.LazyFrame.explain", "reference/lazyframe/api/polars.LazyFrame.explode", "reference/lazyframe/api/polars.LazyFrame.fetch", "reference/lazyframe/api/polars.LazyFrame.fill_nan", "reference/lazyframe/api/polars.LazyFrame.fill_null", "reference/lazyframe/api/polars.LazyFrame.filter", "reference/lazyframe/api/polars.LazyFrame.first", "reference/lazyframe/api/polars.LazyFrame.from_json", "reference/lazyframe/api/polars.LazyFrame.groupby", "reference/lazyframe/api/polars.LazyFrame.groupby_dynamic", "reference/lazyframe/api/polars.LazyFrame.groupby_rolling", "reference/lazyframe/api/polars.LazyFrame.head", "reference/lazyframe/api/polars.LazyFrame.inspect", "reference/lazyframe/api/polars.LazyFrame.interpolate", "reference/lazyframe/api/polars.LazyFrame.join", "reference/lazyframe/api/polars.LazyFrame.join_asof", "reference/lazyframe/api/polars.LazyFrame.last", "reference/lazyframe/api/polars.LazyFrame.lazy", "reference/lazyframe/api/polars.LazyFrame.limit", "reference/lazyframe/api/polars.LazyFrame.map", "reference/lazyframe/api/polars.LazyFrame.max", "reference/lazyframe/api/polars.LazyFrame.mean", "reference/lazyframe/api/polars.LazyFrame.median", "reference/lazyframe/api/polars.LazyFrame.melt", "reference/lazyframe/api/polars.LazyFrame.merge_sorted", "reference/lazyframe/api/polars.LazyFrame.min", "reference/lazyframe/api/polars.LazyFrame.null_count", "reference/lazyframe/api/polars.LazyFrame.pipe", "reference/lazyframe/api/polars.LazyFrame.profile", "reference/lazyframe/api/polars.LazyFrame.quantile", "reference/lazyframe/api/polars.LazyFrame.read_json", "reference/lazyframe/api/polars.LazyFrame.rename", "reference/lazyframe/api/polars.LazyFrame.reverse", "reference/lazyframe/api/polars.LazyFrame.schema", "reference/lazyframe/api/polars.LazyFrame.select", "reference/lazyframe/api/polars.LazyFrame.set_sorted", "reference/lazyframe/api/polars.LazyFrame.shift", "reference/lazyframe/api/polars.LazyFrame.shift_and_fill", "reference/lazyframe/api/polars.LazyFrame.show_graph", "reference/lazyframe/api/polars.LazyFrame.slice", "reference/lazyframe/api/polars.LazyFrame.sort", "reference/lazyframe/api/polars.LazyFrame.std", "reference/lazyframe/api/polars.LazyFrame.sum", "reference/lazyframe/api/polars.LazyFrame.tail", "reference/lazyframe/api/polars.LazyFrame.take_every", "reference/lazyframe/api/polars.LazyFrame.top_k", "reference/lazyframe/api/polars.LazyFrame.unique", "reference/lazyframe/api/polars.LazyFrame.unnest", "reference/lazyframe/api/polars.LazyFrame.update", "reference/lazyframe/api/polars.LazyFrame.var", "reference/lazyframe/api/polars.LazyFrame.width", "reference/lazyframe/api/polars.LazyFrame.with_columns", "reference/lazyframe/api/polars.LazyFrame.with_context", "reference/lazyframe/api/polars.LazyFrame.with_row_count", "reference/lazyframe/api/polars.LazyFrame.write_json", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.agg", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.all", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.apply", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.count", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.first", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.head", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.last", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.max", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.mean", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.median", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.min", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.n_unique", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.quantile", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.sum", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.tail", "reference/lazyframe/attributes", "reference/lazyframe/descriptive", "reference/lazyframe/groupby", "reference/lazyframe/index", "reference/lazyframe/miscellaneous", "reference/lazyframe/modify_select", "reference/selectors", "reference/series/aggregation", "reference/series/api/polars.Series.abs", "reference/series/api/polars.Series.alias", "reference/series/api/polars.Series.all", "reference/series/api/polars.Series.any", "reference/series/api/polars.Series.append", "reference/series/api/polars.Series.apply", "reference/series/api/polars.Series.arccos", "reference/series/api/polars.Series.arccosh", "reference/series/api/polars.Series.arcsin", "reference/series/api/polars.Series.arcsinh", "reference/series/api/polars.Series.arctan", "reference/series/api/polars.Series.arctanh", "reference/series/api/polars.Series.arg_max", "reference/series/api/polars.Series.arg_min", "reference/series/api/polars.Series.arg_sort", "reference/series/api/polars.Series.arg_true", "reference/series/api/polars.Series.arg_unique", "reference/series/api/polars.Series.arr.max", "reference/series/api/polars.Series.arr.min", "reference/series/api/polars.Series.arr.sum", "reference/series/api/polars.Series.arr.unique", "reference/series/api/polars.Series.bin.contains", "reference/series/api/polars.Series.bin.decode", "reference/series/api/polars.Series.bin.encode", "reference/series/api/polars.Series.bin.ends_with", "reference/series/api/polars.Series.bin.starts_with", "reference/series/api/polars.Series.bottom_k", "reference/series/api/polars.Series.cast", "reference/series/api/polars.Series.cat", "reference/series/api/polars.Series.cat.get_categories", "reference/series/api/polars.Series.cat.set_ordering", "reference/series/api/polars.Series.cbrt", "reference/series/api/polars.Series.ceil", "reference/series/api/polars.Series.chunk_lengths", "reference/series/api/polars.Series.clear", "reference/series/api/polars.Series.clip", "reference/series/api/polars.Series.clip_max", "reference/series/api/polars.Series.clip_min", "reference/series/api/polars.Series.clone", "reference/series/api/polars.Series.cos", "reference/series/api/polars.Series.cosh", "reference/series/api/polars.Series.cummax", "reference/series/api/polars.Series.cummin", "reference/series/api/polars.Series.cumprod", "reference/series/api/polars.Series.cumsum", "reference/series/api/polars.Series.cumulative_eval", "reference/series/api/polars.Series.cut", "reference/series/api/polars.Series.describe", "reference/series/api/polars.Series.diff", "reference/series/api/polars.Series.dot", "reference/series/api/polars.Series.drop_nans", "reference/series/api/polars.Series.drop_nulls", "reference/series/api/polars.Series.dt", "reference/series/api/polars.Series.dt.base_utc_offset", "reference/series/api/polars.Series.dt.cast_time_unit", "reference/series/api/polars.Series.dt.combine", "reference/series/api/polars.Series.dt.convert_time_zone", "reference/series/api/polars.Series.dt.date", "reference/series/api/polars.Series.dt.datetime", "reference/series/api/polars.Series.dt.day", "reference/series/api/polars.Series.dt.days", "reference/series/api/polars.Series.dt.dst_offset", "reference/series/api/polars.Series.dt.epoch", "reference/series/api/polars.Series.dt.hour", "reference/series/api/polars.Series.dt.hours", "reference/series/api/polars.Series.dt.is_leap_year", "reference/series/api/polars.Series.dt.iso_year", "reference/series/api/polars.Series.dt.max", "reference/series/api/polars.Series.dt.mean", "reference/series/api/polars.Series.dt.median", "reference/series/api/polars.Series.dt.microsecond", "reference/series/api/polars.Series.dt.microseconds", "reference/series/api/polars.Series.dt.millisecond", "reference/series/api/polars.Series.dt.milliseconds", "reference/series/api/polars.Series.dt.min", "reference/series/api/polars.Series.dt.minute", "reference/series/api/polars.Series.dt.minutes", "reference/series/api/polars.Series.dt.month", "reference/series/api/polars.Series.dt.month_end", "reference/series/api/polars.Series.dt.month_start", "reference/series/api/polars.Series.dt.nanosecond", "reference/series/api/polars.Series.dt.nanoseconds", "reference/series/api/polars.Series.dt.offset_by", "reference/series/api/polars.Series.dt.ordinal_day", "reference/series/api/polars.Series.dt.quarter", "reference/series/api/polars.Series.dt.replace_time_zone", "reference/series/api/polars.Series.dt.round", "reference/series/api/polars.Series.dt.second", "reference/series/api/polars.Series.dt.seconds", "reference/series/api/polars.Series.dt.strftime", "reference/series/api/polars.Series.dt.time", "reference/series/api/polars.Series.dt.timestamp", "reference/series/api/polars.Series.dt.to_string", "reference/series/api/polars.Series.dt.truncate", "reference/series/api/polars.Series.dt.week", "reference/series/api/polars.Series.dt.weekday", "reference/series/api/polars.Series.dt.with_time_unit", "reference/series/api/polars.Series.dt.year", "reference/series/api/polars.Series.dtype", "reference/series/api/polars.Series.entropy", "reference/series/api/polars.Series.estimated_size", "reference/series/api/polars.Series.ewm_mean", "reference/series/api/polars.Series.ewm_std", "reference/series/api/polars.Series.ewm_var", "reference/series/api/polars.Series.exp", "reference/series/api/polars.Series.explode", "reference/series/api/polars.Series.extend", "reference/series/api/polars.Series.extend_constant", "reference/series/api/polars.Series.fill_nan", "reference/series/api/polars.Series.fill_null", "reference/series/api/polars.Series.filter", "reference/series/api/polars.Series.flags", "reference/series/api/polars.Series.floor", "reference/series/api/polars.Series.get_chunks", "reference/series/api/polars.Series.has_validity", "reference/series/api/polars.Series.hash", "reference/series/api/polars.Series.head", "reference/series/api/polars.Series.hist", "reference/series/api/polars.Series.implode", "reference/series/api/polars.Series.inner_dtype", "reference/series/api/polars.Series.interpolate", "reference/series/api/polars.Series.is_between", "reference/series/api/polars.Series.is_boolean", "reference/series/api/polars.Series.is_duplicated", "reference/series/api/polars.Series.is_empty", "reference/series/api/polars.Series.is_finite", "reference/series/api/polars.Series.is_first", "reference/series/api/polars.Series.is_float", "reference/series/api/polars.Series.is_in", "reference/series/api/polars.Series.is_infinite", "reference/series/api/polars.Series.is_integer", "reference/series/api/polars.Series.is_nan", "reference/series/api/polars.Series.is_not_nan", "reference/series/api/polars.Series.is_not_null", "reference/series/api/polars.Series.is_null", "reference/series/api/polars.Series.is_numeric", "reference/series/api/polars.Series.is_sorted", "reference/series/api/polars.Series.is_temporal", "reference/series/api/polars.Series.is_unique", "reference/series/api/polars.Series.is_utf8", "reference/series/api/polars.Series.item", "reference/series/api/polars.Series.kurtosis", "reference/series/api/polars.Series.len", "reference/series/api/polars.Series.limit", "reference/series/api/polars.Series.list", "reference/series/api/polars.Series.list.all", "reference/series/api/polars.Series.list.any", "reference/series/api/polars.Series.list.arg_max", "reference/series/api/polars.Series.list.arg_min", "reference/series/api/polars.Series.list.concat", "reference/series/api/polars.Series.list.contains", "reference/series/api/polars.Series.list.count_match", "reference/series/api/polars.Series.list.diff", "reference/series/api/polars.Series.list.difference", "reference/series/api/polars.Series.list.eval", "reference/series/api/polars.Series.list.explode", "reference/series/api/polars.Series.list.first", "reference/series/api/polars.Series.list.get", "reference/series/api/polars.Series.list.head", "reference/series/api/polars.Series.list.intersection", "reference/series/api/polars.Series.list.join", "reference/series/api/polars.Series.list.last", "reference/series/api/polars.Series.list.lengths", "reference/series/api/polars.Series.list.max", "reference/series/api/polars.Series.list.mean", "reference/series/api/polars.Series.list.min", "reference/series/api/polars.Series.list.reverse", "reference/series/api/polars.Series.list.shift", "reference/series/api/polars.Series.list.slice", "reference/series/api/polars.Series.list.sort", "reference/series/api/polars.Series.list.sum", "reference/series/api/polars.Series.list.tail", "reference/series/api/polars.Series.list.take", "reference/series/api/polars.Series.list.to_struct", "reference/series/api/polars.Series.list.union", "reference/series/api/polars.Series.list.unique", "reference/series/api/polars.Series.log", "reference/series/api/polars.Series.log10", "reference/series/api/polars.Series.log1p", "reference/series/api/polars.Series.lower_bound", "reference/series/api/polars.Series.map_dict", "reference/series/api/polars.Series.max", "reference/series/api/polars.Series.mean", "reference/series/api/polars.Series.median", "reference/series/api/polars.Series.min", "reference/series/api/polars.Series.mode", "reference/series/api/polars.Series.n_chunks", "reference/series/api/polars.Series.n_unique", "reference/series/api/polars.Series.name", "reference/series/api/polars.Series.nan_max", "reference/series/api/polars.Series.nan_min", "reference/series/api/polars.Series.new_from_index", "reference/series/api/polars.Series.null_count", "reference/series/api/polars.Series.pct_change", "reference/series/api/polars.Series.peak_max", "reference/series/api/polars.Series.peak_min", "reference/series/api/polars.Series.product", "reference/series/api/polars.Series.qcut", "reference/series/api/polars.Series.quantile", "reference/series/api/polars.Series.rank", "reference/series/api/polars.Series.rechunk", "reference/series/api/polars.Series.reinterpret", "reference/series/api/polars.Series.rename", "reference/series/api/polars.Series.reshape", "reference/series/api/polars.Series.reverse", "reference/series/api/polars.Series.rle", "reference/series/api/polars.Series.rle_id", "reference/series/api/polars.Series.rolling_apply", "reference/series/api/polars.Series.rolling_max", "reference/series/api/polars.Series.rolling_mean", "reference/series/api/polars.Series.rolling_median", "reference/series/api/polars.Series.rolling_min", "reference/series/api/polars.Series.rolling_quantile", "reference/series/api/polars.Series.rolling_skew", "reference/series/api/polars.Series.rolling_std", "reference/series/api/polars.Series.rolling_sum", "reference/series/api/polars.Series.rolling_var", "reference/series/api/polars.Series.round", "reference/series/api/polars.Series.sample", "reference/series/api/polars.Series.search_sorted", "reference/series/api/polars.Series.series_equal", "reference/series/api/polars.Series.set", "reference/series/api/polars.Series.set_at_idx", "reference/series/api/polars.Series.set_sorted", "reference/series/api/polars.Series.shape", "reference/series/api/polars.Series.shift", "reference/series/api/polars.Series.shift_and_fill", "reference/series/api/polars.Series.shrink_dtype", "reference/series/api/polars.Series.shrink_to_fit", "reference/series/api/polars.Series.shuffle", "reference/series/api/polars.Series.sign", "reference/series/api/polars.Series.sin", "reference/series/api/polars.Series.sinh", "reference/series/api/polars.Series.skew", "reference/series/api/polars.Series.slice", "reference/series/api/polars.Series.sort", "reference/series/api/polars.Series.sqrt", "reference/series/api/polars.Series.std", "reference/series/api/polars.Series.str", "reference/series/api/polars.Series.str.concat", "reference/series/api/polars.Series.str.contains", "reference/series/api/polars.Series.str.count_match", "reference/series/api/polars.Series.str.decode", "reference/series/api/polars.Series.str.encode", "reference/series/api/polars.Series.str.ends_with", "reference/series/api/polars.Series.str.explode", "reference/series/api/polars.Series.str.extract", "reference/series/api/polars.Series.str.extract_all", "reference/series/api/polars.Series.str.json_extract", "reference/series/api/polars.Series.str.json_path_match", "reference/series/api/polars.Series.str.lengths", "reference/series/api/polars.Series.str.ljust", "reference/series/api/polars.Series.str.lstrip", "reference/series/api/polars.Series.str.n_chars", "reference/series/api/polars.Series.str.parse_int", "reference/series/api/polars.Series.str.replace", "reference/series/api/polars.Series.str.replace_all", "reference/series/api/polars.Series.str.rjust", "reference/series/api/polars.Series.str.rstrip", "reference/series/api/polars.Series.str.slice", "reference/series/api/polars.Series.str.split", "reference/series/api/polars.Series.str.split_exact", "reference/series/api/polars.Series.str.splitn", "reference/series/api/polars.Series.str.starts_with", "reference/series/api/polars.Series.str.strip", "reference/series/api/polars.Series.str.strptime", "reference/series/api/polars.Series.str.to_date", "reference/series/api/polars.Series.str.to_datetime", "reference/series/api/polars.Series.str.to_decimal", "reference/series/api/polars.Series.str.to_lowercase", "reference/series/api/polars.Series.str.to_time", "reference/series/api/polars.Series.str.to_titlecase", "reference/series/api/polars.Series.str.to_uppercase", "reference/series/api/polars.Series.str.zfill", "reference/series/api/polars.Series.struct.field", "reference/series/api/polars.Series.struct.fields", "reference/series/api/polars.Series.struct.rename_fields", "reference/series/api/polars.Series.struct.schema", "reference/series/api/polars.Series.struct.unnest", "reference/series/api/polars.Series.sum", "reference/series/api/polars.Series.tail", "reference/series/api/polars.Series.take", "reference/series/api/polars.Series.take_every", "reference/series/api/polars.Series.tan", "reference/series/api/polars.Series.tanh", "reference/series/api/polars.Series.time_unit", "reference/series/api/polars.Series.to_arrow", "reference/series/api/polars.Series.to_dummies", "reference/series/api/polars.Series.to_frame", "reference/series/api/polars.Series.to_init_repr", "reference/series/api/polars.Series.to_list", "reference/series/api/polars.Series.to_numpy", "reference/series/api/polars.Series.to_pandas", "reference/series/api/polars.Series.to_physical", "reference/series/api/polars.Series.top_k", "reference/series/api/polars.Series.unique", "reference/series/api/polars.Series.unique_counts", "reference/series/api/polars.Series.upper_bound", "reference/series/api/polars.Series.value_counts", "reference/series/api/polars.Series.var", "reference/series/api/polars.Series.view", "reference/series/api/polars.Series.zip_with", "reference/series/array", "reference/series/attributes", "reference/series/binary", "reference/series/boolean", "reference/series/categories", "reference/series/computation", "reference/series/descriptive", "reference/series/export", "reference/series/index", "reference/series/list", "reference/series/miscellaneous", "reference/series/modify_select", "reference/series/string", "reference/series/struct", "reference/series/temporal", "reference/sql", "reference/testing", "reference/utils"], "filenames": ["index.rst", "reference/api.rst", "reference/api/polars.Array.rst", "reference/api/polars.Binary.rst", "reference/api/polars.Boolean.rst", "reference/api/polars.Categorical.rst", "reference/api/polars.Config.activate_decimals.rst", "reference/api/polars.Config.load.rst", "reference/api/polars.Config.restore_defaults.rst", "reference/api/polars.Config.save.rst", "reference/api/polars.Config.set_ascii_tables.rst", "reference/api/polars.Config.set_fmt_float.rst", "reference/api/polars.Config.set_fmt_str_lengths.rst", "reference/api/polars.Config.set_streaming_chunk_size.rst", "reference/api/polars.Config.set_tbl_cell_alignment.rst", "reference/api/polars.Config.set_tbl_cols.rst", "reference/api/polars.Config.set_tbl_column_data_type_inline.rst", "reference/api/polars.Config.set_tbl_dataframe_shape_below.rst", "reference/api/polars.Config.set_tbl_formatting.rst", "reference/api/polars.Config.set_tbl_hide_column_data_types.rst", "reference/api/polars.Config.set_tbl_hide_column_names.rst", "reference/api/polars.Config.set_tbl_hide_dataframe_shape.rst", "reference/api/polars.Config.set_tbl_hide_dtype_separator.rst", "reference/api/polars.Config.set_tbl_rows.rst", "reference/api/polars.Config.set_tbl_width_chars.rst", "reference/api/polars.Config.set_verbose.rst", "reference/api/polars.Config.state.rst", "reference/api/polars.DataFrame.write_avro.rst", "reference/api/polars.DataFrame.write_csv.rst", "reference/api/polars.DataFrame.write_database.rst", "reference/api/polars.DataFrame.write_delta.rst", "reference/api/polars.DataFrame.write_excel.rst", "reference/api/polars.DataFrame.write_ipc.rst", "reference/api/polars.DataFrame.write_json.rst", "reference/api/polars.DataFrame.write_ndjson.rst", "reference/api/polars.DataFrame.write_parquet.rst", "reference/api/polars.DataType.rst", "reference/api/polars.Date.rst", "reference/api/polars.Datetime.rst", "reference/api/polars.Decimal.rst", "reference/api/polars.Duration.rst", "reference/api/polars.Float32.rst", "reference/api/polars.Float64.rst", "reference/api/polars.Int16.rst", "reference/api/polars.Int32.rst", "reference/api/polars.Int64.rst", "reference/api/polars.Int8.rst", "reference/api/polars.LazyFrame.sink_ipc.rst", "reference/api/polars.LazyFrame.sink_parquet.rst", "reference/api/polars.List.rst", "reference/api/polars.Null.rst", "reference/api/polars.Object.rst", "reference/api/polars.SQLContext.execute.rst", "reference/api/polars.SQLContext.register.rst", "reference/api/polars.SQLContext.register_globals.rst", "reference/api/polars.SQLContext.register_many.rst", "reference/api/polars.SQLContext.tables.rst", "reference/api/polars.SQLContext.unregister.rst", "reference/api/polars.StringCache.rst", "reference/api/polars.Struct.rst", "reference/api/polars.Time.rst", "reference/api/polars.UInt16.rst", "reference/api/polars.UInt32.rst", "reference/api/polars.UInt64.rst", "reference/api/polars.UInt8.rst", "reference/api/polars.Unknown.rst", "reference/api/polars.Utf8.rst", "reference/api/polars.align_frames.rst", "reference/api/polars.api.register_dataframe_namespace.rst", "reference/api/polars.api.register_expr_namespace.rst", "reference/api/polars.api.register_lazyframe_namespace.rst", "reference/api/polars.api.register_series_namespace.rst", "reference/api/polars.build_info.rst", "reference/api/polars.collect_all.rst", "reference/api/polars.concat.rst", "reference/api/polars.enable_string_cache.rst", "reference/api/polars.exceptions.ArrowError.rst", "reference/api/polars.exceptions.ColumnNotFoundError.rst", "reference/api/polars.exceptions.ComputeError.rst", "reference/api/polars.exceptions.DuplicateError.rst", "reference/api/polars.exceptions.InvalidOperationError.rst", "reference/api/polars.exceptions.NoDataError.rst", "reference/api/polars.exceptions.NoRowsReturnedError.rst", "reference/api/polars.exceptions.PolarsPanicError.rst", "reference/api/polars.exceptions.RowsError.rst", "reference/api/polars.exceptions.SchemaError.rst", "reference/api/polars.exceptions.SchemaFieldNotFoundError.rst", "reference/api/polars.exceptions.ShapeError.rst", "reference/api/polars.exceptions.StructFieldNotFoundError.rst", "reference/api/polars.exceptions.TooManyRowsReturnedError.rst", "reference/api/polars.from_arrow.rst", "reference/api/polars.from_dataframe.rst", "reference/api/polars.from_dict.rst", "reference/api/polars.from_dicts.rst", "reference/api/polars.from_numpy.rst", "reference/api/polars.from_pandas.rst", "reference/api/polars.from_records.rst", "reference/api/polars.from_repr.rst", "reference/api/polars.get_index_type.rst", "reference/api/polars.io.csv.batched_reader.BatchedCsvReader.next_batches.rst", "reference/api/polars.read_avro.rst", "reference/api/polars.read_csv.rst", "reference/api/polars.read_csv_batched.rst", "reference/api/polars.read_database.rst", "reference/api/polars.read_delta.rst", "reference/api/polars.read_excel.rst", "reference/api/polars.read_ipc.rst", "reference/api/polars.read_ipc_schema.rst", "reference/api/polars.read_json.rst", "reference/api/polars.read_ndjson.rst", "reference/api/polars.read_parquet.rst", "reference/api/polars.read_parquet_schema.rst", "reference/api/polars.scan_csv.rst", "reference/api/polars.scan_delta.rst", "reference/api/polars.scan_ipc.rst", "reference/api/polars.scan_ndjson.rst", "reference/api/polars.scan_parquet.rst", "reference/api/polars.scan_pyarrow_dataset.rst", "reference/api/polars.show_versions.rst", "reference/api/polars.testing.assert_frame_equal.rst", "reference/api/polars.testing.assert_series_equal.rst", "reference/api/polars.testing.parametric.column.rst", "reference/api/polars.testing.parametric.columns.rst", "reference/api/polars.testing.parametric.create_list_strategy.rst", "reference/api/polars.testing.parametric.dataframes.rst", "reference/api/polars.testing.parametric.load_profile.rst", "reference/api/polars.testing.parametric.series.rst", "reference/api/polars.testing.parametric.set_profile.rst", "reference/api/polars.threadpool_size.rst", "reference/api/polars.using_string_cache.rst", "reference/config.rst", "reference/dataframe/aggregation.rst", "reference/dataframe/api/polars.DataFrame.__dataframe__.rst", "reference/dataframe/api/polars.DataFrame.apply.rst", "reference/dataframe/api/polars.DataFrame.bottom_k.rst", "reference/dataframe/api/polars.DataFrame.clear.rst", "reference/dataframe/api/polars.DataFrame.clone.rst", "reference/dataframe/api/polars.DataFrame.columns.rst", "reference/dataframe/api/polars.DataFrame.corr.rst", "reference/dataframe/api/polars.DataFrame.describe.rst", "reference/dataframe/api/polars.DataFrame.drop.rst", "reference/dataframe/api/polars.DataFrame.drop_in_place.rst", "reference/dataframe/api/polars.DataFrame.drop_nulls.rst", "reference/dataframe/api/polars.DataFrame.dtypes.rst", "reference/dataframe/api/polars.DataFrame.estimated_size.rst", "reference/dataframe/api/polars.DataFrame.explode.rst", "reference/dataframe/api/polars.DataFrame.extend.rst", "reference/dataframe/api/polars.DataFrame.fill_nan.rst", "reference/dataframe/api/polars.DataFrame.fill_null.rst", "reference/dataframe/api/polars.DataFrame.filter.rst", "reference/dataframe/api/polars.DataFrame.find_idx_by_name.rst", "reference/dataframe/api/polars.DataFrame.flags.rst", "reference/dataframe/api/polars.DataFrame.fold.rst", "reference/dataframe/api/polars.DataFrame.frame_equal.rst", "reference/dataframe/api/polars.DataFrame.get_column.rst", "reference/dataframe/api/polars.DataFrame.get_columns.rst", "reference/dataframe/api/polars.DataFrame.glimpse.rst", "reference/dataframe/api/polars.DataFrame.groupby.rst", "reference/dataframe/api/polars.DataFrame.groupby_dynamic.rst", "reference/dataframe/api/polars.DataFrame.groupby_rolling.rst", "reference/dataframe/api/polars.DataFrame.hash_rows.rst", "reference/dataframe/api/polars.DataFrame.head.rst", "reference/dataframe/api/polars.DataFrame.height.rst", "reference/dataframe/api/polars.DataFrame.hstack.rst", "reference/dataframe/api/polars.DataFrame.insert_at_idx.rst", "reference/dataframe/api/polars.DataFrame.interpolate.rst", "reference/dataframe/api/polars.DataFrame.is_duplicated.rst", "reference/dataframe/api/polars.DataFrame.is_empty.rst", "reference/dataframe/api/polars.DataFrame.is_unique.rst", "reference/dataframe/api/polars.DataFrame.item.rst", "reference/dataframe/api/polars.DataFrame.iter_rows.rst", "reference/dataframe/api/polars.DataFrame.iter_slices.rst", "reference/dataframe/api/polars.DataFrame.join.rst", "reference/dataframe/api/polars.DataFrame.join_asof.rst", "reference/dataframe/api/polars.DataFrame.lazy.rst", "reference/dataframe/api/polars.DataFrame.limit.rst", "reference/dataframe/api/polars.DataFrame.max.rst", "reference/dataframe/api/polars.DataFrame.mean.rst", "reference/dataframe/api/polars.DataFrame.median.rst", "reference/dataframe/api/polars.DataFrame.melt.rst", "reference/dataframe/api/polars.DataFrame.merge_sorted.rst", "reference/dataframe/api/polars.DataFrame.min.rst", "reference/dataframe/api/polars.DataFrame.n_chunks.rst", "reference/dataframe/api/polars.DataFrame.n_unique.rst", "reference/dataframe/api/polars.DataFrame.null_count.rst", "reference/dataframe/api/polars.DataFrame.partition_by.rst", "reference/dataframe/api/polars.DataFrame.pipe.rst", "reference/dataframe/api/polars.DataFrame.pivot.rst", "reference/dataframe/api/polars.DataFrame.product.rst", "reference/dataframe/api/polars.DataFrame.quantile.rst", "reference/dataframe/api/polars.DataFrame.rechunk.rst", "reference/dataframe/api/polars.DataFrame.rename.rst", "reference/dataframe/api/polars.DataFrame.replace.rst", "reference/dataframe/api/polars.DataFrame.replace_at_idx.rst", "reference/dataframe/api/polars.DataFrame.reverse.rst", "reference/dataframe/api/polars.DataFrame.row.rst", "reference/dataframe/api/polars.DataFrame.rows.rst", "reference/dataframe/api/polars.DataFrame.rows_by_key.rst", "reference/dataframe/api/polars.DataFrame.sample.rst", "reference/dataframe/api/polars.DataFrame.schema.rst", "reference/dataframe/api/polars.DataFrame.select.rst", "reference/dataframe/api/polars.DataFrame.set_sorted.rst", "reference/dataframe/api/polars.DataFrame.shape.rst", "reference/dataframe/api/polars.DataFrame.shift.rst", "reference/dataframe/api/polars.DataFrame.shift_and_fill.rst", "reference/dataframe/api/polars.DataFrame.shrink_to_fit.rst", "reference/dataframe/api/polars.DataFrame.slice.rst", "reference/dataframe/api/polars.DataFrame.sort.rst", "reference/dataframe/api/polars.DataFrame.std.rst", "reference/dataframe/api/polars.DataFrame.sum.rst", "reference/dataframe/api/polars.DataFrame.tail.rst", "reference/dataframe/api/polars.DataFrame.take_every.rst", "reference/dataframe/api/polars.DataFrame.to_arrow.rst", "reference/dataframe/api/polars.DataFrame.to_dict.rst", "reference/dataframe/api/polars.DataFrame.to_dicts.rst", "reference/dataframe/api/polars.DataFrame.to_dummies.rst", "reference/dataframe/api/polars.DataFrame.to_init_repr.rst", "reference/dataframe/api/polars.DataFrame.to_numpy.rst", "reference/dataframe/api/polars.DataFrame.to_pandas.rst", "reference/dataframe/api/polars.DataFrame.to_series.rst", "reference/dataframe/api/polars.DataFrame.to_struct.rst", "reference/dataframe/api/polars.DataFrame.top_k.rst", "reference/dataframe/api/polars.DataFrame.transpose.rst", "reference/dataframe/api/polars.DataFrame.unique.rst", "reference/dataframe/api/polars.DataFrame.unnest.rst", "reference/dataframe/api/polars.DataFrame.unstack.rst", "reference/dataframe/api/polars.DataFrame.update.rst", "reference/dataframe/api/polars.DataFrame.upsample.rst", "reference/dataframe/api/polars.DataFrame.var.rst", "reference/dataframe/api/polars.DataFrame.vstack.rst", "reference/dataframe/api/polars.DataFrame.width.rst", "reference/dataframe/api/polars.DataFrame.with_columns.rst", "reference/dataframe/api/polars.DataFrame.with_row_count.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.__iter__.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.agg.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.all.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.apply.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.count.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.first.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.head.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.last.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.max.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.mean.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.median.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.min.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.n_unique.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.quantile.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.sum.rst", "reference/dataframe/api/polars.dataframe.groupby.GroupBy.tail.rst", "reference/dataframe/attributes.rst", "reference/dataframe/computation.rst", "reference/dataframe/descriptive.rst", "reference/dataframe/export.rst", "reference/dataframe/groupby.rst", "reference/dataframe/index.rst", "reference/dataframe/miscellaneous.rst", "reference/dataframe/modify_select.rst", "reference/datatypes.rst", "reference/exceptions.rst", "reference/expressions/aggregation.rst", "reference/expressions/api/polars.Expr.abs.rst", "reference/expressions/api/polars.Expr.add.rst", "reference/expressions/api/polars.Expr.agg_groups.rst", "reference/expressions/api/polars.Expr.alias.rst", "reference/expressions/api/polars.Expr.all.rst", "reference/expressions/api/polars.Expr.and_.rst", "reference/expressions/api/polars.Expr.any.rst", "reference/expressions/api/polars.Expr.append.rst", "reference/expressions/api/polars.Expr.apply.rst", "reference/expressions/api/polars.Expr.approx_unique.rst", "reference/expressions/api/polars.Expr.arccos.rst", "reference/expressions/api/polars.Expr.arccosh.rst", "reference/expressions/api/polars.Expr.arcsin.rst", "reference/expressions/api/polars.Expr.arcsinh.rst", "reference/expressions/api/polars.Expr.arctan.rst", "reference/expressions/api/polars.Expr.arctanh.rst", "reference/expressions/api/polars.Expr.arg_max.rst", "reference/expressions/api/polars.Expr.arg_min.rst", "reference/expressions/api/polars.Expr.arg_sort.rst", "reference/expressions/api/polars.Expr.arg_true.rst", "reference/expressions/api/polars.Expr.arg_unique.rst", "reference/expressions/api/polars.Expr.arr.max.rst", "reference/expressions/api/polars.Expr.arr.min.rst", "reference/expressions/api/polars.Expr.arr.sum.rst", "reference/expressions/api/polars.Expr.arr.unique.rst", "reference/expressions/api/polars.Expr.backward_fill.rst", "reference/expressions/api/polars.Expr.bin.contains.rst", "reference/expressions/api/polars.Expr.bin.decode.rst", "reference/expressions/api/polars.Expr.bin.encode.rst", "reference/expressions/api/polars.Expr.bin.ends_with.rst", "reference/expressions/api/polars.Expr.bin.starts_with.rst", "reference/expressions/api/polars.Expr.bottom_k.rst", "reference/expressions/api/polars.Expr.cache.rst", "reference/expressions/api/polars.Expr.cast.rst", "reference/expressions/api/polars.Expr.cat.get_categories.rst", "reference/expressions/api/polars.Expr.cat.set_ordering.rst", "reference/expressions/api/polars.Expr.cbrt.rst", "reference/expressions/api/polars.Expr.ceil.rst", "reference/expressions/api/polars.Expr.clip.rst", "reference/expressions/api/polars.Expr.clip_max.rst", "reference/expressions/api/polars.Expr.clip_min.rst", "reference/expressions/api/polars.Expr.cos.rst", "reference/expressions/api/polars.Expr.cosh.rst", "reference/expressions/api/polars.Expr.count.rst", "reference/expressions/api/polars.Expr.cumcount.rst", "reference/expressions/api/polars.Expr.cummax.rst", "reference/expressions/api/polars.Expr.cummin.rst", "reference/expressions/api/polars.Expr.cumprod.rst", "reference/expressions/api/polars.Expr.cumsum.rst", "reference/expressions/api/polars.Expr.cumulative_eval.rst", "reference/expressions/api/polars.Expr.cut.rst", "reference/expressions/api/polars.Expr.degrees.rst", "reference/expressions/api/polars.Expr.diff.rst", "reference/expressions/api/polars.Expr.dot.rst", "reference/expressions/api/polars.Expr.drop_nans.rst", "reference/expressions/api/polars.Expr.drop_nulls.rst", "reference/expressions/api/polars.Expr.dt.base_utc_offset.rst", "reference/expressions/api/polars.Expr.dt.cast_time_unit.rst", "reference/expressions/api/polars.Expr.dt.combine.rst", "reference/expressions/api/polars.Expr.dt.convert_time_zone.rst", "reference/expressions/api/polars.Expr.dt.date.rst", "reference/expressions/api/polars.Expr.dt.datetime.rst", "reference/expressions/api/polars.Expr.dt.day.rst", "reference/expressions/api/polars.Expr.dt.days.rst", "reference/expressions/api/polars.Expr.dt.dst_offset.rst", "reference/expressions/api/polars.Expr.dt.epoch.rst", "reference/expressions/api/polars.Expr.dt.hour.rst", "reference/expressions/api/polars.Expr.dt.hours.rst", "reference/expressions/api/polars.Expr.dt.is_leap_year.rst", "reference/expressions/api/polars.Expr.dt.iso_year.rst", "reference/expressions/api/polars.Expr.dt.microsecond.rst", "reference/expressions/api/polars.Expr.dt.microseconds.rst", "reference/expressions/api/polars.Expr.dt.millisecond.rst", "reference/expressions/api/polars.Expr.dt.milliseconds.rst", "reference/expressions/api/polars.Expr.dt.minute.rst", "reference/expressions/api/polars.Expr.dt.minutes.rst", "reference/expressions/api/polars.Expr.dt.month.rst", "reference/expressions/api/polars.Expr.dt.month_end.rst", "reference/expressions/api/polars.Expr.dt.month_start.rst", "reference/expressions/api/polars.Expr.dt.nanosecond.rst", "reference/expressions/api/polars.Expr.dt.nanoseconds.rst", "reference/expressions/api/polars.Expr.dt.offset_by.rst", "reference/expressions/api/polars.Expr.dt.ordinal_day.rst", "reference/expressions/api/polars.Expr.dt.quarter.rst", "reference/expressions/api/polars.Expr.dt.replace_time_zone.rst", "reference/expressions/api/polars.Expr.dt.round.rst", "reference/expressions/api/polars.Expr.dt.second.rst", "reference/expressions/api/polars.Expr.dt.seconds.rst", "reference/expressions/api/polars.Expr.dt.strftime.rst", "reference/expressions/api/polars.Expr.dt.time.rst", "reference/expressions/api/polars.Expr.dt.timestamp.rst", "reference/expressions/api/polars.Expr.dt.to_string.rst", "reference/expressions/api/polars.Expr.dt.truncate.rst", "reference/expressions/api/polars.Expr.dt.week.rst", "reference/expressions/api/polars.Expr.dt.weekday.rst", "reference/expressions/api/polars.Expr.dt.with_time_unit.rst", "reference/expressions/api/polars.Expr.dt.year.rst", "reference/expressions/api/polars.Expr.entropy.rst", "reference/expressions/api/polars.Expr.eq.rst", "reference/expressions/api/polars.Expr.eq_missing.rst", "reference/expressions/api/polars.Expr.ewm_mean.rst", "reference/expressions/api/polars.Expr.ewm_std.rst", "reference/expressions/api/polars.Expr.ewm_var.rst", "reference/expressions/api/polars.Expr.exclude.rst", "reference/expressions/api/polars.Expr.exp.rst", "reference/expressions/api/polars.Expr.explode.rst", "reference/expressions/api/polars.Expr.extend_constant.rst", "reference/expressions/api/polars.Expr.fill_nan.rst", "reference/expressions/api/polars.Expr.fill_null.rst", "reference/expressions/api/polars.Expr.filter.rst", "reference/expressions/api/polars.Expr.first.rst", "reference/expressions/api/polars.Expr.flatten.rst", "reference/expressions/api/polars.Expr.floor.rst", "reference/expressions/api/polars.Expr.floordiv.rst", "reference/expressions/api/polars.Expr.forward_fill.rst", "reference/expressions/api/polars.Expr.from_json.rst", "reference/expressions/api/polars.Expr.ge.rst", "reference/expressions/api/polars.Expr.gt.rst", "reference/expressions/api/polars.Expr.hash.rst", "reference/expressions/api/polars.Expr.head.rst", "reference/expressions/api/polars.Expr.implode.rst", "reference/expressions/api/polars.Expr.inspect.rst", "reference/expressions/api/polars.Expr.interpolate.rst", "reference/expressions/api/polars.Expr.is_between.rst", "reference/expressions/api/polars.Expr.is_duplicated.rst", "reference/expressions/api/polars.Expr.is_finite.rst", "reference/expressions/api/polars.Expr.is_first.rst", "reference/expressions/api/polars.Expr.is_in.rst", "reference/expressions/api/polars.Expr.is_infinite.rst", "reference/expressions/api/polars.Expr.is_nan.rst", "reference/expressions/api/polars.Expr.is_not.rst", "reference/expressions/api/polars.Expr.is_not_nan.rst", "reference/expressions/api/polars.Expr.is_not_null.rst", "reference/expressions/api/polars.Expr.is_null.rst", "reference/expressions/api/polars.Expr.is_unique.rst", "reference/expressions/api/polars.Expr.keep_name.rst", "reference/expressions/api/polars.Expr.kurtosis.rst", "reference/expressions/api/polars.Expr.last.rst", "reference/expressions/api/polars.Expr.le.rst", "reference/expressions/api/polars.Expr.len.rst", "reference/expressions/api/polars.Expr.limit.rst", "reference/expressions/api/polars.Expr.list.all.rst", "reference/expressions/api/polars.Expr.list.any.rst", "reference/expressions/api/polars.Expr.list.arg_max.rst", "reference/expressions/api/polars.Expr.list.arg_min.rst", "reference/expressions/api/polars.Expr.list.concat.rst", "reference/expressions/api/polars.Expr.list.contains.rst", "reference/expressions/api/polars.Expr.list.count_match.rst", "reference/expressions/api/polars.Expr.list.diff.rst", "reference/expressions/api/polars.Expr.list.difference.rst", "reference/expressions/api/polars.Expr.list.eval.rst", "reference/expressions/api/polars.Expr.list.explode.rst", "reference/expressions/api/polars.Expr.list.first.rst", "reference/expressions/api/polars.Expr.list.get.rst", "reference/expressions/api/polars.Expr.list.head.rst", "reference/expressions/api/polars.Expr.list.intersection.rst", "reference/expressions/api/polars.Expr.list.join.rst", "reference/expressions/api/polars.Expr.list.last.rst", "reference/expressions/api/polars.Expr.list.lengths.rst", "reference/expressions/api/polars.Expr.list.max.rst", "reference/expressions/api/polars.Expr.list.mean.rst", "reference/expressions/api/polars.Expr.list.min.rst", "reference/expressions/api/polars.Expr.list.reverse.rst", "reference/expressions/api/polars.Expr.list.shift.rst", "reference/expressions/api/polars.Expr.list.slice.rst", "reference/expressions/api/polars.Expr.list.sort.rst", "reference/expressions/api/polars.Expr.list.sum.rst", "reference/expressions/api/polars.Expr.list.tail.rst", "reference/expressions/api/polars.Expr.list.take.rst", "reference/expressions/api/polars.Expr.list.to_struct.rst", "reference/expressions/api/polars.Expr.list.union.rst", "reference/expressions/api/polars.Expr.list.unique.rst", "reference/expressions/api/polars.Expr.log.rst", "reference/expressions/api/polars.Expr.log10.rst", "reference/expressions/api/polars.Expr.log1p.rst", "reference/expressions/api/polars.Expr.lower_bound.rst", "reference/expressions/api/polars.Expr.lt.rst", "reference/expressions/api/polars.Expr.map.rst", "reference/expressions/api/polars.Expr.map_alias.rst", "reference/expressions/api/polars.Expr.map_dict.rst", "reference/expressions/api/polars.Expr.max.rst", "reference/expressions/api/polars.Expr.mean.rst", "reference/expressions/api/polars.Expr.median.rst", "reference/expressions/api/polars.Expr.meta.eq.rst", "reference/expressions/api/polars.Expr.meta.has_multiple_outputs.rst", "reference/expressions/api/polars.Expr.meta.is_regex_projection.rst", "reference/expressions/api/polars.Expr.meta.ne.rst", "reference/expressions/api/polars.Expr.meta.output_name.rst", "reference/expressions/api/polars.Expr.meta.pop.rst", "reference/expressions/api/polars.Expr.meta.root_names.rst", "reference/expressions/api/polars.Expr.meta.tree_format.rst", "reference/expressions/api/polars.Expr.meta.undo_aliases.rst", "reference/expressions/api/polars.Expr.meta.write_json.rst", "reference/expressions/api/polars.Expr.min.rst", "reference/expressions/api/polars.Expr.mod.rst", "reference/expressions/api/polars.Expr.mode.rst", "reference/expressions/api/polars.Expr.mul.rst", "reference/expressions/api/polars.Expr.n_unique.rst", "reference/expressions/api/polars.Expr.nan_max.rst", "reference/expressions/api/polars.Expr.nan_min.rst", "reference/expressions/api/polars.Expr.ne.rst", "reference/expressions/api/polars.Expr.ne_missing.rst", "reference/expressions/api/polars.Expr.null_count.rst", "reference/expressions/api/polars.Expr.or_.rst", "reference/expressions/api/polars.Expr.over.rst", "reference/expressions/api/polars.Expr.pct_change.rst", "reference/expressions/api/polars.Expr.pipe.rst", "reference/expressions/api/polars.Expr.pow.rst", "reference/expressions/api/polars.Expr.prefix.rst", "reference/expressions/api/polars.Expr.product.rst", "reference/expressions/api/polars.Expr.qcut.rst", "reference/expressions/api/polars.Expr.quantile.rst", "reference/expressions/api/polars.Expr.radians.rst", "reference/expressions/api/polars.Expr.rank.rst", "reference/expressions/api/polars.Expr.rechunk.rst", "reference/expressions/api/polars.Expr.reinterpret.rst", "reference/expressions/api/polars.Expr.repeat_by.rst", "reference/expressions/api/polars.Expr.reshape.rst", "reference/expressions/api/polars.Expr.reverse.rst", "reference/expressions/api/polars.Expr.rle.rst", "reference/expressions/api/polars.Expr.rle_id.rst", "reference/expressions/api/polars.Expr.rolling_apply.rst", "reference/expressions/api/polars.Expr.rolling_max.rst", "reference/expressions/api/polars.Expr.rolling_mean.rst", "reference/expressions/api/polars.Expr.rolling_median.rst", "reference/expressions/api/polars.Expr.rolling_min.rst", "reference/expressions/api/polars.Expr.rolling_quantile.rst", "reference/expressions/api/polars.Expr.rolling_skew.rst", "reference/expressions/api/polars.Expr.rolling_std.rst", "reference/expressions/api/polars.Expr.rolling_sum.rst", "reference/expressions/api/polars.Expr.rolling_var.rst", "reference/expressions/api/polars.Expr.round.rst", "reference/expressions/api/polars.Expr.sample.rst", "reference/expressions/api/polars.Expr.search_sorted.rst", "reference/expressions/api/polars.Expr.set_sorted.rst", "reference/expressions/api/polars.Expr.shift.rst", "reference/expressions/api/polars.Expr.shift_and_fill.rst", "reference/expressions/api/polars.Expr.shrink_dtype.rst", "reference/expressions/api/polars.Expr.shuffle.rst", "reference/expressions/api/polars.Expr.sign.rst", "reference/expressions/api/polars.Expr.sin.rst", "reference/expressions/api/polars.Expr.sinh.rst", "reference/expressions/api/polars.Expr.skew.rst", "reference/expressions/api/polars.Expr.slice.rst", "reference/expressions/api/polars.Expr.sort.rst", "reference/expressions/api/polars.Expr.sort_by.rst", "reference/expressions/api/polars.Expr.sqrt.rst", "reference/expressions/api/polars.Expr.std.rst", "reference/expressions/api/polars.Expr.str.concat.rst", "reference/expressions/api/polars.Expr.str.contains.rst", "reference/expressions/api/polars.Expr.str.count_match.rst", "reference/expressions/api/polars.Expr.str.decode.rst", "reference/expressions/api/polars.Expr.str.encode.rst", "reference/expressions/api/polars.Expr.str.ends_with.rst", "reference/expressions/api/polars.Expr.str.explode.rst", "reference/expressions/api/polars.Expr.str.extract.rst", "reference/expressions/api/polars.Expr.str.extract_all.rst", "reference/expressions/api/polars.Expr.str.json_extract.rst", "reference/expressions/api/polars.Expr.str.json_path_match.rst", "reference/expressions/api/polars.Expr.str.lengths.rst", "reference/expressions/api/polars.Expr.str.ljust.rst", "reference/expressions/api/polars.Expr.str.lstrip.rst", "reference/expressions/api/polars.Expr.str.n_chars.rst", "reference/expressions/api/polars.Expr.str.parse_int.rst", "reference/expressions/api/polars.Expr.str.replace.rst", "reference/expressions/api/polars.Expr.str.replace_all.rst", "reference/expressions/api/polars.Expr.str.rjust.rst", "reference/expressions/api/polars.Expr.str.rstrip.rst", "reference/expressions/api/polars.Expr.str.slice.rst", "reference/expressions/api/polars.Expr.str.split.rst", "reference/expressions/api/polars.Expr.str.split_exact.rst", "reference/expressions/api/polars.Expr.str.splitn.rst", "reference/expressions/api/polars.Expr.str.starts_with.rst", "reference/expressions/api/polars.Expr.str.strip.rst", "reference/expressions/api/polars.Expr.str.strptime.rst", "reference/expressions/api/polars.Expr.str.to_date.rst", "reference/expressions/api/polars.Expr.str.to_datetime.rst", "reference/expressions/api/polars.Expr.str.to_decimal.rst", "reference/expressions/api/polars.Expr.str.to_lowercase.rst", "reference/expressions/api/polars.Expr.str.to_time.rst", "reference/expressions/api/polars.Expr.str.to_titlecase.rst", "reference/expressions/api/polars.Expr.str.to_uppercase.rst", "reference/expressions/api/polars.Expr.str.zfill.rst", "reference/expressions/api/polars.Expr.struct.field.rst", "reference/expressions/api/polars.Expr.struct.rename_fields.rst", "reference/expressions/api/polars.Expr.sub.rst", "reference/expressions/api/polars.Expr.suffix.rst", "reference/expressions/api/polars.Expr.sum.rst", "reference/expressions/api/polars.Expr.tail.rst", "reference/expressions/api/polars.Expr.take.rst", "reference/expressions/api/polars.Expr.take_every.rst", "reference/expressions/api/polars.Expr.tan.rst", "reference/expressions/api/polars.Expr.tanh.rst", "reference/expressions/api/polars.Expr.to_physical.rst", "reference/expressions/api/polars.Expr.top_k.rst", "reference/expressions/api/polars.Expr.truediv.rst", "reference/expressions/api/polars.Expr.unique.rst", "reference/expressions/api/polars.Expr.unique_counts.rst", "reference/expressions/api/polars.Expr.upper_bound.rst", "reference/expressions/api/polars.Expr.value_counts.rst", "reference/expressions/api/polars.Expr.var.rst", "reference/expressions/api/polars.Expr.where.rst", "reference/expressions/api/polars.Expr.xor.rst", "reference/expressions/api/polars.all.rst", "reference/expressions/api/polars.all_horizontal.rst", "reference/expressions/api/polars.any.rst", "reference/expressions/api/polars.any_horizontal.rst", "reference/expressions/api/polars.apply.rst", "reference/expressions/api/polars.approx_unique.rst", "reference/expressions/api/polars.arange.rst", "reference/expressions/api/polars.arctan2.rst", "reference/expressions/api/polars.arctan2d.rst", "reference/expressions/api/polars.arg_sort_by.rst", "reference/expressions/api/polars.arg_where.rst", "reference/expressions/api/polars.avg.rst", "reference/expressions/api/polars.coalesce.rst", "reference/expressions/api/polars.col.rst", "reference/expressions/api/polars.concat_list.rst", "reference/expressions/api/polars.concat_str.rst", "reference/expressions/api/polars.corr.rst", "reference/expressions/api/polars.count.rst", "reference/expressions/api/polars.cov.rst", "reference/expressions/api/polars.cumfold.rst", "reference/expressions/api/polars.cumreduce.rst", "reference/expressions/api/polars.cumsum.rst", "reference/expressions/api/polars.cumsum_horizontal.rst", "reference/expressions/api/polars.date.rst", "reference/expressions/api/polars.date_range.rst", "reference/expressions/api/polars.date_ranges.rst", "reference/expressions/api/polars.datetime.rst", "reference/expressions/api/polars.duration.rst", "reference/expressions/api/polars.element.rst", "reference/expressions/api/polars.exclude.rst", "reference/expressions/api/polars.first.rst", "reference/expressions/api/polars.fold.rst", "reference/expressions/api/polars.format.rst", "reference/expressions/api/polars.from_epoch.rst", "reference/expressions/api/polars.groups.rst", "reference/expressions/api/polars.head.rst", "reference/expressions/api/polars.implode.rst", "reference/expressions/api/polars.int_range.rst", "reference/expressions/api/polars.int_ranges.rst", "reference/expressions/api/polars.last.rst", "reference/expressions/api/polars.lit.rst", "reference/expressions/api/polars.map.rst", "reference/expressions/api/polars.max.rst", "reference/expressions/api/polars.max_horizontal.rst", "reference/expressions/api/polars.mean.rst", "reference/expressions/api/polars.median.rst", "reference/expressions/api/polars.min.rst", "reference/expressions/api/polars.min_horizontal.rst", "reference/expressions/api/polars.n_unique.rst", "reference/expressions/api/polars.ones.rst", "reference/expressions/api/polars.quantile.rst", "reference/expressions/api/polars.reduce.rst", "reference/expressions/api/polars.repeat.rst", "reference/expressions/api/polars.rolling_corr.rst", "reference/expressions/api/polars.rolling_cov.rst", "reference/expressions/api/polars.select.rst", "reference/expressions/api/polars.sql_expr.rst", "reference/expressions/api/polars.std.rst", "reference/expressions/api/polars.struct.rst", "reference/expressions/api/polars.sum.rst", "reference/expressions/api/polars.sum_horizontal.rst", "reference/expressions/api/polars.tail.rst", "reference/expressions/api/polars.time.rst", "reference/expressions/api/polars.time_range.rst", "reference/expressions/api/polars.time_ranges.rst", "reference/expressions/api/polars.var.rst", "reference/expressions/api/polars.when.rst", "reference/expressions/api/polars.zeros.rst", "reference/expressions/array.rst", "reference/expressions/binary.rst", "reference/expressions/boolean.rst", "reference/expressions/categories.rst", "reference/expressions/columns.rst", "reference/expressions/computation.rst", "reference/expressions/functions.rst", "reference/expressions/index.rst", "reference/expressions/list.rst", "reference/expressions/meta.rst", "reference/expressions/miscellaneous.rst", "reference/expressions/modify_select.rst", "reference/expressions/operators.rst", "reference/expressions/string.rst", "reference/expressions/struct.rst", "reference/expressions/temporal.rst", "reference/expressions/window.rst", "reference/functions.rst", "reference/index.rst", "reference/io.rst", "reference/lazyframe/aggregation.rst", "reference/lazyframe/api/polars.LazyFrame.bottom_k.rst", "reference/lazyframe/api/polars.LazyFrame.cache.rst", "reference/lazyframe/api/polars.LazyFrame.clear.rst", "reference/lazyframe/api/polars.LazyFrame.clone.rst", "reference/lazyframe/api/polars.LazyFrame.collect.rst", "reference/lazyframe/api/polars.LazyFrame.columns.rst", "reference/lazyframe/api/polars.LazyFrame.drop.rst", "reference/lazyframe/api/polars.LazyFrame.drop_nulls.rst", "reference/lazyframe/api/polars.LazyFrame.dtypes.rst", "reference/lazyframe/api/polars.LazyFrame.explain.rst", "reference/lazyframe/api/polars.LazyFrame.explode.rst", "reference/lazyframe/api/polars.LazyFrame.fetch.rst", "reference/lazyframe/api/polars.LazyFrame.fill_nan.rst", "reference/lazyframe/api/polars.LazyFrame.fill_null.rst", "reference/lazyframe/api/polars.LazyFrame.filter.rst", "reference/lazyframe/api/polars.LazyFrame.first.rst", "reference/lazyframe/api/polars.LazyFrame.from_json.rst", "reference/lazyframe/api/polars.LazyFrame.groupby.rst", "reference/lazyframe/api/polars.LazyFrame.groupby_dynamic.rst", "reference/lazyframe/api/polars.LazyFrame.groupby_rolling.rst", "reference/lazyframe/api/polars.LazyFrame.head.rst", "reference/lazyframe/api/polars.LazyFrame.inspect.rst", "reference/lazyframe/api/polars.LazyFrame.interpolate.rst", "reference/lazyframe/api/polars.LazyFrame.join.rst", "reference/lazyframe/api/polars.LazyFrame.join_asof.rst", "reference/lazyframe/api/polars.LazyFrame.last.rst", "reference/lazyframe/api/polars.LazyFrame.lazy.rst", "reference/lazyframe/api/polars.LazyFrame.limit.rst", "reference/lazyframe/api/polars.LazyFrame.map.rst", "reference/lazyframe/api/polars.LazyFrame.max.rst", "reference/lazyframe/api/polars.LazyFrame.mean.rst", "reference/lazyframe/api/polars.LazyFrame.median.rst", "reference/lazyframe/api/polars.LazyFrame.melt.rst", "reference/lazyframe/api/polars.LazyFrame.merge_sorted.rst", "reference/lazyframe/api/polars.LazyFrame.min.rst", "reference/lazyframe/api/polars.LazyFrame.null_count.rst", "reference/lazyframe/api/polars.LazyFrame.pipe.rst", "reference/lazyframe/api/polars.LazyFrame.profile.rst", "reference/lazyframe/api/polars.LazyFrame.quantile.rst", "reference/lazyframe/api/polars.LazyFrame.read_json.rst", "reference/lazyframe/api/polars.LazyFrame.rename.rst", "reference/lazyframe/api/polars.LazyFrame.reverse.rst", "reference/lazyframe/api/polars.LazyFrame.schema.rst", "reference/lazyframe/api/polars.LazyFrame.select.rst", "reference/lazyframe/api/polars.LazyFrame.set_sorted.rst", "reference/lazyframe/api/polars.LazyFrame.shift.rst", "reference/lazyframe/api/polars.LazyFrame.shift_and_fill.rst", "reference/lazyframe/api/polars.LazyFrame.show_graph.rst", "reference/lazyframe/api/polars.LazyFrame.slice.rst", "reference/lazyframe/api/polars.LazyFrame.sort.rst", "reference/lazyframe/api/polars.LazyFrame.std.rst", "reference/lazyframe/api/polars.LazyFrame.sum.rst", "reference/lazyframe/api/polars.LazyFrame.tail.rst", "reference/lazyframe/api/polars.LazyFrame.take_every.rst", "reference/lazyframe/api/polars.LazyFrame.top_k.rst", "reference/lazyframe/api/polars.LazyFrame.unique.rst", "reference/lazyframe/api/polars.LazyFrame.unnest.rst", "reference/lazyframe/api/polars.LazyFrame.update.rst", "reference/lazyframe/api/polars.LazyFrame.var.rst", "reference/lazyframe/api/polars.LazyFrame.width.rst", "reference/lazyframe/api/polars.LazyFrame.with_columns.rst", "reference/lazyframe/api/polars.LazyFrame.with_context.rst", "reference/lazyframe/api/polars.LazyFrame.with_row_count.rst", "reference/lazyframe/api/polars.LazyFrame.write_json.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.agg.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.all.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.apply.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.count.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.first.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.head.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.last.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.max.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.mean.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.median.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.min.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.n_unique.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.quantile.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.sum.rst", "reference/lazyframe/api/polars.lazyframe.groupby.LazyGroupBy.tail.rst", "reference/lazyframe/attributes.rst", "reference/lazyframe/descriptive.rst", "reference/lazyframe/groupby.rst", "reference/lazyframe/index.rst", "reference/lazyframe/miscellaneous.rst", "reference/lazyframe/modify_select.rst", "reference/selectors.rst", "reference/series/aggregation.rst", "reference/series/api/polars.Series.abs.rst", "reference/series/api/polars.Series.alias.rst", "reference/series/api/polars.Series.all.rst", "reference/series/api/polars.Series.any.rst", "reference/series/api/polars.Series.append.rst", "reference/series/api/polars.Series.apply.rst", "reference/series/api/polars.Series.arccos.rst", "reference/series/api/polars.Series.arccosh.rst", "reference/series/api/polars.Series.arcsin.rst", "reference/series/api/polars.Series.arcsinh.rst", "reference/series/api/polars.Series.arctan.rst", "reference/series/api/polars.Series.arctanh.rst", "reference/series/api/polars.Series.arg_max.rst", "reference/series/api/polars.Series.arg_min.rst", "reference/series/api/polars.Series.arg_sort.rst", "reference/series/api/polars.Series.arg_true.rst", "reference/series/api/polars.Series.arg_unique.rst", "reference/series/api/polars.Series.arr.max.rst", "reference/series/api/polars.Series.arr.min.rst", "reference/series/api/polars.Series.arr.sum.rst", "reference/series/api/polars.Series.arr.unique.rst", "reference/series/api/polars.Series.bin.contains.rst", "reference/series/api/polars.Series.bin.decode.rst", "reference/series/api/polars.Series.bin.encode.rst", "reference/series/api/polars.Series.bin.ends_with.rst", "reference/series/api/polars.Series.bin.starts_with.rst", "reference/series/api/polars.Series.bottom_k.rst", "reference/series/api/polars.Series.cast.rst", "reference/series/api/polars.Series.cat.rst", "reference/series/api/polars.Series.cat.get_categories.rst", "reference/series/api/polars.Series.cat.set_ordering.rst", "reference/series/api/polars.Series.cbrt.rst", "reference/series/api/polars.Series.ceil.rst", "reference/series/api/polars.Series.chunk_lengths.rst", "reference/series/api/polars.Series.clear.rst", "reference/series/api/polars.Series.clip.rst", "reference/series/api/polars.Series.clip_max.rst", "reference/series/api/polars.Series.clip_min.rst", "reference/series/api/polars.Series.clone.rst", "reference/series/api/polars.Series.cos.rst", "reference/series/api/polars.Series.cosh.rst", "reference/series/api/polars.Series.cummax.rst", "reference/series/api/polars.Series.cummin.rst", "reference/series/api/polars.Series.cumprod.rst", "reference/series/api/polars.Series.cumsum.rst", "reference/series/api/polars.Series.cumulative_eval.rst", "reference/series/api/polars.Series.cut.rst", "reference/series/api/polars.Series.describe.rst", "reference/series/api/polars.Series.diff.rst", "reference/series/api/polars.Series.dot.rst", "reference/series/api/polars.Series.drop_nans.rst", "reference/series/api/polars.Series.drop_nulls.rst", "reference/series/api/polars.Series.dt.rst", "reference/series/api/polars.Series.dt.base_utc_offset.rst", "reference/series/api/polars.Series.dt.cast_time_unit.rst", "reference/series/api/polars.Series.dt.combine.rst", "reference/series/api/polars.Series.dt.convert_time_zone.rst", "reference/series/api/polars.Series.dt.date.rst", "reference/series/api/polars.Series.dt.datetime.rst", "reference/series/api/polars.Series.dt.day.rst", "reference/series/api/polars.Series.dt.days.rst", "reference/series/api/polars.Series.dt.dst_offset.rst", "reference/series/api/polars.Series.dt.epoch.rst", "reference/series/api/polars.Series.dt.hour.rst", "reference/series/api/polars.Series.dt.hours.rst", "reference/series/api/polars.Series.dt.is_leap_year.rst", "reference/series/api/polars.Series.dt.iso_year.rst", "reference/series/api/polars.Series.dt.max.rst", "reference/series/api/polars.Series.dt.mean.rst", "reference/series/api/polars.Series.dt.median.rst", "reference/series/api/polars.Series.dt.microsecond.rst", "reference/series/api/polars.Series.dt.microseconds.rst", "reference/series/api/polars.Series.dt.millisecond.rst", "reference/series/api/polars.Series.dt.milliseconds.rst", "reference/series/api/polars.Series.dt.min.rst", "reference/series/api/polars.Series.dt.minute.rst", "reference/series/api/polars.Series.dt.minutes.rst", "reference/series/api/polars.Series.dt.month.rst", "reference/series/api/polars.Series.dt.month_end.rst", "reference/series/api/polars.Series.dt.month_start.rst", "reference/series/api/polars.Series.dt.nanosecond.rst", "reference/series/api/polars.Series.dt.nanoseconds.rst", "reference/series/api/polars.Series.dt.offset_by.rst", "reference/series/api/polars.Series.dt.ordinal_day.rst", "reference/series/api/polars.Series.dt.quarter.rst", "reference/series/api/polars.Series.dt.replace_time_zone.rst", "reference/series/api/polars.Series.dt.round.rst", "reference/series/api/polars.Series.dt.second.rst", "reference/series/api/polars.Series.dt.seconds.rst", "reference/series/api/polars.Series.dt.strftime.rst", "reference/series/api/polars.Series.dt.time.rst", "reference/series/api/polars.Series.dt.timestamp.rst", "reference/series/api/polars.Series.dt.to_string.rst", "reference/series/api/polars.Series.dt.truncate.rst", "reference/series/api/polars.Series.dt.week.rst", "reference/series/api/polars.Series.dt.weekday.rst", "reference/series/api/polars.Series.dt.with_time_unit.rst", "reference/series/api/polars.Series.dt.year.rst", "reference/series/api/polars.Series.dtype.rst", "reference/series/api/polars.Series.entropy.rst", "reference/series/api/polars.Series.estimated_size.rst", "reference/series/api/polars.Series.ewm_mean.rst", "reference/series/api/polars.Series.ewm_std.rst", "reference/series/api/polars.Series.ewm_var.rst", "reference/series/api/polars.Series.exp.rst", "reference/series/api/polars.Series.explode.rst", "reference/series/api/polars.Series.extend.rst", "reference/series/api/polars.Series.extend_constant.rst", "reference/series/api/polars.Series.fill_nan.rst", "reference/series/api/polars.Series.fill_null.rst", "reference/series/api/polars.Series.filter.rst", "reference/series/api/polars.Series.flags.rst", "reference/series/api/polars.Series.floor.rst", "reference/series/api/polars.Series.get_chunks.rst", "reference/series/api/polars.Series.has_validity.rst", "reference/series/api/polars.Series.hash.rst", "reference/series/api/polars.Series.head.rst", "reference/series/api/polars.Series.hist.rst", "reference/series/api/polars.Series.implode.rst", "reference/series/api/polars.Series.inner_dtype.rst", "reference/series/api/polars.Series.interpolate.rst", "reference/series/api/polars.Series.is_between.rst", "reference/series/api/polars.Series.is_boolean.rst", "reference/series/api/polars.Series.is_duplicated.rst", "reference/series/api/polars.Series.is_empty.rst", "reference/series/api/polars.Series.is_finite.rst", "reference/series/api/polars.Series.is_first.rst", "reference/series/api/polars.Series.is_float.rst", "reference/series/api/polars.Series.is_in.rst", "reference/series/api/polars.Series.is_infinite.rst", "reference/series/api/polars.Series.is_integer.rst", "reference/series/api/polars.Series.is_nan.rst", "reference/series/api/polars.Series.is_not_nan.rst", "reference/series/api/polars.Series.is_not_null.rst", "reference/series/api/polars.Series.is_null.rst", "reference/series/api/polars.Series.is_numeric.rst", "reference/series/api/polars.Series.is_sorted.rst", "reference/series/api/polars.Series.is_temporal.rst", "reference/series/api/polars.Series.is_unique.rst", "reference/series/api/polars.Series.is_utf8.rst", "reference/series/api/polars.Series.item.rst", "reference/series/api/polars.Series.kurtosis.rst", "reference/series/api/polars.Series.len.rst", "reference/series/api/polars.Series.limit.rst", "reference/series/api/polars.Series.list.rst", "reference/series/api/polars.Series.list.all.rst", "reference/series/api/polars.Series.list.any.rst", "reference/series/api/polars.Series.list.arg_max.rst", "reference/series/api/polars.Series.list.arg_min.rst", "reference/series/api/polars.Series.list.concat.rst", "reference/series/api/polars.Series.list.contains.rst", "reference/series/api/polars.Series.list.count_match.rst", "reference/series/api/polars.Series.list.diff.rst", "reference/series/api/polars.Series.list.difference.rst", "reference/series/api/polars.Series.list.eval.rst", "reference/series/api/polars.Series.list.explode.rst", "reference/series/api/polars.Series.list.first.rst", "reference/series/api/polars.Series.list.get.rst", "reference/series/api/polars.Series.list.head.rst", "reference/series/api/polars.Series.list.intersection.rst", "reference/series/api/polars.Series.list.join.rst", "reference/series/api/polars.Series.list.last.rst", "reference/series/api/polars.Series.list.lengths.rst", "reference/series/api/polars.Series.list.max.rst", "reference/series/api/polars.Series.list.mean.rst", "reference/series/api/polars.Series.list.min.rst", "reference/series/api/polars.Series.list.reverse.rst", "reference/series/api/polars.Series.list.shift.rst", "reference/series/api/polars.Series.list.slice.rst", "reference/series/api/polars.Series.list.sort.rst", "reference/series/api/polars.Series.list.sum.rst", "reference/series/api/polars.Series.list.tail.rst", "reference/series/api/polars.Series.list.take.rst", "reference/series/api/polars.Series.list.to_struct.rst", "reference/series/api/polars.Series.list.union.rst", "reference/series/api/polars.Series.list.unique.rst", "reference/series/api/polars.Series.log.rst", "reference/series/api/polars.Series.log10.rst", "reference/series/api/polars.Series.log1p.rst", "reference/series/api/polars.Series.lower_bound.rst", "reference/series/api/polars.Series.map_dict.rst", "reference/series/api/polars.Series.max.rst", "reference/series/api/polars.Series.mean.rst", "reference/series/api/polars.Series.median.rst", "reference/series/api/polars.Series.min.rst", "reference/series/api/polars.Series.mode.rst", "reference/series/api/polars.Series.n_chunks.rst", "reference/series/api/polars.Series.n_unique.rst", "reference/series/api/polars.Series.name.rst", "reference/series/api/polars.Series.nan_max.rst", "reference/series/api/polars.Series.nan_min.rst", "reference/series/api/polars.Series.new_from_index.rst", "reference/series/api/polars.Series.null_count.rst", "reference/series/api/polars.Series.pct_change.rst", "reference/series/api/polars.Series.peak_max.rst", "reference/series/api/polars.Series.peak_min.rst", "reference/series/api/polars.Series.product.rst", "reference/series/api/polars.Series.qcut.rst", "reference/series/api/polars.Series.quantile.rst", "reference/series/api/polars.Series.rank.rst", "reference/series/api/polars.Series.rechunk.rst", "reference/series/api/polars.Series.reinterpret.rst", "reference/series/api/polars.Series.rename.rst", "reference/series/api/polars.Series.reshape.rst", "reference/series/api/polars.Series.reverse.rst", "reference/series/api/polars.Series.rle.rst", "reference/series/api/polars.Series.rle_id.rst", "reference/series/api/polars.Series.rolling_apply.rst", "reference/series/api/polars.Series.rolling_max.rst", "reference/series/api/polars.Series.rolling_mean.rst", "reference/series/api/polars.Series.rolling_median.rst", "reference/series/api/polars.Series.rolling_min.rst", "reference/series/api/polars.Series.rolling_quantile.rst", "reference/series/api/polars.Series.rolling_skew.rst", "reference/series/api/polars.Series.rolling_std.rst", "reference/series/api/polars.Series.rolling_sum.rst", "reference/series/api/polars.Series.rolling_var.rst", "reference/series/api/polars.Series.round.rst", "reference/series/api/polars.Series.sample.rst", "reference/series/api/polars.Series.search_sorted.rst", "reference/series/api/polars.Series.series_equal.rst", "reference/series/api/polars.Series.set.rst", "reference/series/api/polars.Series.set_at_idx.rst", "reference/series/api/polars.Series.set_sorted.rst", "reference/series/api/polars.Series.shape.rst", "reference/series/api/polars.Series.shift.rst", "reference/series/api/polars.Series.shift_and_fill.rst", "reference/series/api/polars.Series.shrink_dtype.rst", "reference/series/api/polars.Series.shrink_to_fit.rst", "reference/series/api/polars.Series.shuffle.rst", "reference/series/api/polars.Series.sign.rst", "reference/series/api/polars.Series.sin.rst", "reference/series/api/polars.Series.sinh.rst", "reference/series/api/polars.Series.skew.rst", "reference/series/api/polars.Series.slice.rst", "reference/series/api/polars.Series.sort.rst", "reference/series/api/polars.Series.sqrt.rst", "reference/series/api/polars.Series.std.rst", "reference/series/api/polars.Series.str.rst", "reference/series/api/polars.Series.str.concat.rst", "reference/series/api/polars.Series.str.contains.rst", "reference/series/api/polars.Series.str.count_match.rst", "reference/series/api/polars.Series.str.decode.rst", "reference/series/api/polars.Series.str.encode.rst", "reference/series/api/polars.Series.str.ends_with.rst", "reference/series/api/polars.Series.str.explode.rst", "reference/series/api/polars.Series.str.extract.rst", "reference/series/api/polars.Series.str.extract_all.rst", "reference/series/api/polars.Series.str.json_extract.rst", "reference/series/api/polars.Series.str.json_path_match.rst", "reference/series/api/polars.Series.str.lengths.rst", "reference/series/api/polars.Series.str.ljust.rst", "reference/series/api/polars.Series.str.lstrip.rst", "reference/series/api/polars.Series.str.n_chars.rst", "reference/series/api/polars.Series.str.parse_int.rst", "reference/series/api/polars.Series.str.replace.rst", "reference/series/api/polars.Series.str.replace_all.rst", "reference/series/api/polars.Series.str.rjust.rst", "reference/series/api/polars.Series.str.rstrip.rst", "reference/series/api/polars.Series.str.slice.rst", "reference/series/api/polars.Series.str.split.rst", "reference/series/api/polars.Series.str.split_exact.rst", "reference/series/api/polars.Series.str.splitn.rst", "reference/series/api/polars.Series.str.starts_with.rst", "reference/series/api/polars.Series.str.strip.rst", "reference/series/api/polars.Series.str.strptime.rst", "reference/series/api/polars.Series.str.to_date.rst", "reference/series/api/polars.Series.str.to_datetime.rst", "reference/series/api/polars.Series.str.to_decimal.rst", "reference/series/api/polars.Series.str.to_lowercase.rst", "reference/series/api/polars.Series.str.to_time.rst", "reference/series/api/polars.Series.str.to_titlecase.rst", "reference/series/api/polars.Series.str.to_uppercase.rst", "reference/series/api/polars.Series.str.zfill.rst", "reference/series/api/polars.Series.struct.field.rst", "reference/series/api/polars.Series.struct.fields.rst", "reference/series/api/polars.Series.struct.rename_fields.rst", "reference/series/api/polars.Series.struct.schema.rst", "reference/series/api/polars.Series.struct.unnest.rst", "reference/series/api/polars.Series.sum.rst", "reference/series/api/polars.Series.tail.rst", "reference/series/api/polars.Series.take.rst", "reference/series/api/polars.Series.take_every.rst", "reference/series/api/polars.Series.tan.rst", "reference/series/api/polars.Series.tanh.rst", "reference/series/api/polars.Series.time_unit.rst", "reference/series/api/polars.Series.to_arrow.rst", "reference/series/api/polars.Series.to_dummies.rst", "reference/series/api/polars.Series.to_frame.rst", "reference/series/api/polars.Series.to_init_repr.rst", "reference/series/api/polars.Series.to_list.rst", "reference/series/api/polars.Series.to_numpy.rst", "reference/series/api/polars.Series.to_pandas.rst", "reference/series/api/polars.Series.to_physical.rst", "reference/series/api/polars.Series.top_k.rst", "reference/series/api/polars.Series.unique.rst", "reference/series/api/polars.Series.unique_counts.rst", "reference/series/api/polars.Series.upper_bound.rst", "reference/series/api/polars.Series.value_counts.rst", "reference/series/api/polars.Series.var.rst", "reference/series/api/polars.Series.view.rst", "reference/series/api/polars.Series.zip_with.rst", "reference/series/array.rst", "reference/series/attributes.rst", "reference/series/binary.rst", "reference/series/boolean.rst", "reference/series/categories.rst", "reference/series/computation.rst", "reference/series/descriptive.rst", "reference/series/export.rst", "reference/series/index.rst", "reference/series/list.rst", "reference/series/miscellaneous.rst", "reference/series/modify_select.rst", "reference/series/string.rst", "reference/series/struct.rst", "reference/series/temporal.rst", "reference/sql.rst", "reference/testing.rst", "reference/utils.rst"], "titles": ["<no title>", "Extending the API", "polars.Array", "polars.Binary", "polars.Boolean", "polars.Categorical", "polars.Config.activate_decimals", "polars.Config.load", "polars.Config.restore_defaults", "polars.Config.save", "polars.Config.set_ascii_tables", "polars.Config.set_fmt_float", "polars.Config.set_fmt_str_lengths", "polars.Config.set_streaming_chunk_size", "polars.Config.set_tbl_cell_alignment", "polars.Config.set_tbl_cols", "polars.Config.set_tbl_column_data_type_inline", "polars.Config.set_tbl_dataframe_shape_below", "polars.Config.set_tbl_formatting", "polars.Config.set_tbl_hide_column_data_types", "polars.Config.set_tbl_hide_column_names", "polars.Config.set_tbl_hide_dataframe_shape", "polars.Config.set_tbl_hide_dtype_separator", "polars.Config.set_tbl_rows", "polars.Config.set_tbl_width_chars", "polars.Config.set_verbose", "polars.Config.state", "polars.DataFrame.write_avro", "polars.DataFrame.write_csv", "polars.DataFrame.write_database", "polars.DataFrame.write_delta", "polars.DataFrame.write_excel", "polars.DataFrame.write_ipc", "polars.DataFrame.write_json", "polars.DataFrame.write_ndjson", "polars.DataFrame.write_parquet", "polars.DataType", "polars.Date", "polars.Datetime", "polars.Decimal", "polars.Duration", "polars.Float32", "polars.Float64", "polars.Int16", "polars.Int32", "polars.Int64", "polars.Int8", "polars.LazyFrame.sink_ipc", "polars.LazyFrame.sink_parquet", "polars.List", "polars.Null", "polars.Object", "polars.SQLContext.execute", "polars.SQLContext.register", "polars.SQLContext.register_globals", "polars.SQLContext.register_many", "polars.SQLContext.tables", "polars.SQLContext.unregister", "polars.StringCache", "polars.Struct", "polars.Time", "polars.UInt16", "polars.UInt32", "polars.UInt64", "polars.UInt8", "polars.Unknown", "polars.Utf8", "polars.align_frames", "polars.api.register_dataframe_namespace", "polars.api.register_expr_namespace", "polars.api.register_lazyframe_namespace", "polars.api.register_series_namespace", "polars.build_info", "polars.collect_all", "polars.concat", "polars.enable_string_cache", "polars.exceptions.ArrowError", "polars.exceptions.ColumnNotFoundError", "polars.exceptions.ComputeError", "polars.exceptions.DuplicateError", "polars.exceptions.InvalidOperationError", "polars.exceptions.NoDataError", "polars.exceptions.NoRowsReturnedError", "polars.exceptions.PolarsPanicError", "polars.exceptions.RowsError", "polars.exceptions.SchemaError", "polars.exceptions.SchemaFieldNotFoundError", "polars.exceptions.ShapeError", "polars.exceptions.StructFieldNotFoundError", "polars.exceptions.TooManyRowsReturnedError", "polars.from_arrow", "polars.from_dataframe", "polars.from_dict", "polars.from_dicts", "polars.from_numpy", "polars.from_pandas", "polars.from_records", "polars.from_repr", "polars.get_index_type", "polars.io.csv.batched_reader.BatchedCsvReader.next_batches", "polars.read_avro", "polars.read_csv", "polars.read_csv_batched", "polars.read_database", "polars.read_delta", "polars.read_excel", "polars.read_ipc", "polars.read_ipc_schema", "polars.read_json", "polars.read_ndjson", "polars.read_parquet", "polars.read_parquet_schema", "polars.scan_csv", "polars.scan_delta", "polars.scan_ipc", "polars.scan_ndjson", "polars.scan_parquet", "polars.scan_pyarrow_dataset", "polars.show_versions", "polars.testing.assert_frame_equal", "polars.testing.assert_series_equal", "polars.testing.parametric.column", "polars.testing.parametric.columns", "polars.testing.parametric.create_list_strategy", "polars.testing.parametric.dataframes", "polars.testing.parametric.load_profile", "polars.testing.parametric.series", "polars.testing.parametric.set_profile", "polars.threadpool_size", "polars.using_string_cache", "Config", "Aggregation", "polars.DataFrame.__dataframe__", "polars.DataFrame.apply", "polars.DataFrame.bottom_k", "polars.DataFrame.clear", "polars.DataFrame.clone", "polars.DataFrame.columns", "polars.DataFrame.corr", "polars.DataFrame.describe", "polars.DataFrame.drop", "polars.DataFrame.drop_in_place", "polars.DataFrame.drop_nulls", "polars.DataFrame.dtypes", "polars.DataFrame.estimated_size", "polars.DataFrame.explode", "polars.DataFrame.extend", "polars.DataFrame.fill_nan", "polars.DataFrame.fill_null", "polars.DataFrame.filter", "polars.DataFrame.find_idx_by_name", "polars.DataFrame.flags", "polars.DataFrame.fold", "polars.DataFrame.frame_equal", "polars.DataFrame.get_column", "polars.DataFrame.get_columns", "polars.DataFrame.glimpse", "polars.DataFrame.groupby", "polars.DataFrame.groupby_dynamic", "polars.DataFrame.groupby_rolling", "polars.DataFrame.hash_rows", "polars.DataFrame.head", "polars.DataFrame.height", "polars.DataFrame.hstack", "polars.DataFrame.insert_at_idx", "polars.DataFrame.interpolate", "polars.DataFrame.is_duplicated", "polars.DataFrame.is_empty", "polars.DataFrame.is_unique", "polars.DataFrame.item", "polars.DataFrame.iter_rows", "polars.DataFrame.iter_slices", "polars.DataFrame.join", "polars.DataFrame.join_asof", "polars.DataFrame.lazy", "polars.DataFrame.limit", "polars.DataFrame.max", "polars.DataFrame.mean", "polars.DataFrame.median", "polars.DataFrame.melt", "polars.DataFrame.merge_sorted", "polars.DataFrame.min", "polars.DataFrame.n_chunks", "polars.DataFrame.n_unique", "polars.DataFrame.null_count", "polars.DataFrame.partition_by", "polars.DataFrame.pipe", "polars.DataFrame.pivot", "polars.DataFrame.product", "polars.DataFrame.quantile", "polars.DataFrame.rechunk", "polars.DataFrame.rename", "polars.DataFrame.replace", "polars.DataFrame.replace_at_idx", "polars.DataFrame.reverse", "polars.DataFrame.row", "polars.DataFrame.rows", "polars.DataFrame.rows_by_key", "polars.DataFrame.sample", "polars.DataFrame.schema", "polars.DataFrame.select", "polars.DataFrame.set_sorted", "polars.DataFrame.shape", "polars.DataFrame.shift", "polars.DataFrame.shift_and_fill", "polars.DataFrame.shrink_to_fit", "polars.DataFrame.slice", "polars.DataFrame.sort", "polars.DataFrame.std", "polars.DataFrame.sum", "polars.DataFrame.tail", "polars.DataFrame.take_every", "polars.DataFrame.to_arrow", "polars.DataFrame.to_dict", "polars.DataFrame.to_dicts", "polars.DataFrame.to_dummies", "polars.DataFrame.to_init_repr", "polars.DataFrame.to_numpy", "polars.DataFrame.to_pandas", "polars.DataFrame.to_series", "polars.DataFrame.to_struct", "polars.DataFrame.top_k", "polars.DataFrame.transpose", "polars.DataFrame.unique", "polars.DataFrame.unnest", "polars.DataFrame.unstack", "polars.DataFrame.update", "polars.DataFrame.upsample", "polars.DataFrame.var", "polars.DataFrame.vstack", "polars.DataFrame.width", "polars.DataFrame.with_columns", "polars.DataFrame.with_row_count", "polars.dataframe.groupby.GroupBy.__iter__", "polars.dataframe.groupby.GroupBy.agg", "polars.dataframe.groupby.GroupBy.all", "polars.dataframe.groupby.GroupBy.apply", "polars.dataframe.groupby.GroupBy.count", "polars.dataframe.groupby.GroupBy.first", "polars.dataframe.groupby.GroupBy.head", "polars.dataframe.groupby.GroupBy.last", "polars.dataframe.groupby.GroupBy.max", "polars.dataframe.groupby.GroupBy.mean", "polars.dataframe.groupby.GroupBy.median", "polars.dataframe.groupby.GroupBy.min", "polars.dataframe.groupby.GroupBy.n_unique", "polars.dataframe.groupby.GroupBy.quantile", "polars.dataframe.groupby.GroupBy.sum", "polars.dataframe.groupby.GroupBy.tail", "Attributes", "Computation", "Descriptive", "Export", "GroupBy", "DataFrame", "Miscellaneous", "Manipulation/selection", "Data types", "Exceptions", "Aggregation", "polars.Expr.abs", "polars.Expr.add", "polars.Expr.agg_groups", "polars.Expr.alias", "polars.Expr.all", "polars.Expr.and_", "polars.Expr.any", "polars.Expr.append", "polars.Expr.apply", "polars.Expr.approx_unique", "polars.Expr.arccos", "polars.Expr.arccosh", "polars.Expr.arcsin", "polars.Expr.arcsinh", "polars.Expr.arctan", "polars.Expr.arctanh", "polars.Expr.arg_max", "polars.Expr.arg_min", "polars.Expr.arg_sort", "polars.Expr.arg_true", "polars.Expr.arg_unique", "polars.Expr.arr.max", "polars.Expr.arr.min", "polars.Expr.arr.sum", "polars.Expr.arr.unique", "polars.Expr.backward_fill", "polars.Expr.bin.contains", "polars.Expr.bin.decode", "polars.Expr.bin.encode", "polars.Expr.bin.ends_with", "polars.Expr.bin.starts_with", "polars.Expr.bottom_k", "polars.Expr.cache", "polars.Expr.cast", "polars.Expr.cat.get_categories", "polars.Expr.cat.set_ordering", "polars.Expr.cbrt", "polars.Expr.ceil", "polars.Expr.clip", "polars.Expr.clip_max", "polars.Expr.clip_min", "polars.Expr.cos", "polars.Expr.cosh", "polars.Expr.count", "polars.Expr.cumcount", "polars.Expr.cummax", "polars.Expr.cummin", "polars.Expr.cumprod", "polars.Expr.cumsum", "polars.Expr.cumulative_eval", "polars.Expr.cut", "polars.Expr.degrees", "polars.Expr.diff", "polars.Expr.dot", "polars.Expr.drop_nans", "polars.Expr.drop_nulls", "polars.Expr.dt.base_utc_offset", "polars.Expr.dt.cast_time_unit", "polars.Expr.dt.combine", "polars.Expr.dt.convert_time_zone", "polars.Expr.dt.date", "polars.Expr.dt.datetime", "polars.Expr.dt.day", "polars.Expr.dt.days", "polars.Expr.dt.dst_offset", "polars.Expr.dt.epoch", "polars.Expr.dt.hour", "polars.Expr.dt.hours", "polars.Expr.dt.is_leap_year", "polars.Expr.dt.iso_year", "polars.Expr.dt.microsecond", "polars.Expr.dt.microseconds", "polars.Expr.dt.millisecond", "polars.Expr.dt.milliseconds", "polars.Expr.dt.minute", "polars.Expr.dt.minutes", "polars.Expr.dt.month", "polars.Expr.dt.month_end", "polars.Expr.dt.month_start", "polars.Expr.dt.nanosecond", "polars.Expr.dt.nanoseconds", "polars.Expr.dt.offset_by", "polars.Expr.dt.ordinal_day", "polars.Expr.dt.quarter", "polars.Expr.dt.replace_time_zone", "polars.Expr.dt.round", "polars.Expr.dt.second", "polars.Expr.dt.seconds", "polars.Expr.dt.strftime", "polars.Expr.dt.time", "polars.Expr.dt.timestamp", "polars.Expr.dt.to_string", "polars.Expr.dt.truncate", "polars.Expr.dt.week", "polars.Expr.dt.weekday", "polars.Expr.dt.with_time_unit", "polars.Expr.dt.year", "polars.Expr.entropy", "polars.Expr.eq", "polars.Expr.eq_missing", "polars.Expr.ewm_mean", "polars.Expr.ewm_std", "polars.Expr.ewm_var", "polars.Expr.exclude", "polars.Expr.exp", "polars.Expr.explode", "polars.Expr.extend_constant", "polars.Expr.fill_nan", "polars.Expr.fill_null", "polars.Expr.filter", "polars.Expr.first", "polars.Expr.flatten", "polars.Expr.floor", "polars.Expr.floordiv", "polars.Expr.forward_fill", "polars.Expr.from_json", "polars.Expr.ge", "polars.Expr.gt", "polars.Expr.hash", "polars.Expr.head", "polars.Expr.implode", "polars.Expr.inspect", "polars.Expr.interpolate", "polars.Expr.is_between", "polars.Expr.is_duplicated", "polars.Expr.is_finite", "polars.Expr.is_first", "polars.Expr.is_in", "polars.Expr.is_infinite", "polars.Expr.is_nan", "polars.Expr.is_not", "polars.Expr.is_not_nan", "polars.Expr.is_not_null", "polars.Expr.is_null", "polars.Expr.is_unique", "polars.Expr.keep_name", "polars.Expr.kurtosis", "polars.Expr.last", "polars.Expr.le", "polars.Expr.len", "polars.Expr.limit", "polars.Expr.list.all", "polars.Expr.list.any", "polars.Expr.list.arg_max", "polars.Expr.list.arg_min", "polars.Expr.list.concat", "polars.Expr.list.contains", "polars.Expr.list.count_match", "polars.Expr.list.diff", "polars.Expr.list.difference", "polars.Expr.list.eval", "polars.Expr.list.explode", "polars.Expr.list.first", "polars.Expr.list.get", "polars.Expr.list.head", "polars.Expr.list.intersection", "polars.Expr.list.join", "polars.Expr.list.last", "polars.Expr.list.lengths", "polars.Expr.list.max", "polars.Expr.list.mean", "polars.Expr.list.min", "polars.Expr.list.reverse", "polars.Expr.list.shift", "polars.Expr.list.slice", "polars.Expr.list.sort", "polars.Expr.list.sum", "polars.Expr.list.tail", "polars.Expr.list.take", "polars.Expr.list.to_struct", "polars.Expr.list.union", "polars.Expr.list.unique", "polars.Expr.log", "polars.Expr.log10", "polars.Expr.log1p", "polars.Expr.lower_bound", "polars.Expr.lt", "polars.Expr.map", "polars.Expr.map_alias", "polars.Expr.map_dict", "polars.Expr.max", "polars.Expr.mean", "polars.Expr.median", "polars.Expr.meta.eq", "polars.Expr.meta.has_multiple_outputs", "polars.Expr.meta.is_regex_projection", "polars.Expr.meta.ne", "polars.Expr.meta.output_name", "polars.Expr.meta.pop", "polars.Expr.meta.root_names", "polars.Expr.meta.tree_format", "polars.Expr.meta.undo_aliases", "polars.Expr.meta.write_json", "polars.Expr.min", "polars.Expr.mod", "polars.Expr.mode", "polars.Expr.mul", "polars.Expr.n_unique", "polars.Expr.nan_max", "polars.Expr.nan_min", "polars.Expr.ne", "polars.Expr.ne_missing", "polars.Expr.null_count", "polars.Expr.or_", "polars.Expr.over", "polars.Expr.pct_change", "polars.Expr.pipe", "polars.Expr.pow", "polars.Expr.prefix", "polars.Expr.product", "polars.Expr.qcut", "polars.Expr.quantile", "polars.Expr.radians", "polars.Expr.rank", "polars.Expr.rechunk", "polars.Expr.reinterpret", "polars.Expr.repeat_by", "polars.Expr.reshape", "polars.Expr.reverse", "polars.Expr.rle", "polars.Expr.rle_id", "polars.Expr.rolling_apply", "polars.Expr.rolling_max", "polars.Expr.rolling_mean", "polars.Expr.rolling_median", "polars.Expr.rolling_min", "polars.Expr.rolling_quantile", "polars.Expr.rolling_skew", "polars.Expr.rolling_std", "polars.Expr.rolling_sum", "polars.Expr.rolling_var", "polars.Expr.round", "polars.Expr.sample", "polars.Expr.search_sorted", "polars.Expr.set_sorted", "polars.Expr.shift", "polars.Expr.shift_and_fill", "polars.Expr.shrink_dtype", "polars.Expr.shuffle", "polars.Expr.sign", "polars.Expr.sin", "polars.Expr.sinh", "polars.Expr.skew", "polars.Expr.slice", "polars.Expr.sort", "polars.Expr.sort_by", "polars.Expr.sqrt", "polars.Expr.std", "polars.Expr.str.concat", "polars.Expr.str.contains", "polars.Expr.str.count_match", "polars.Expr.str.decode", "polars.Expr.str.encode", "polars.Expr.str.ends_with", "polars.Expr.str.explode", "polars.Expr.str.extract", "polars.Expr.str.extract_all", "polars.Expr.str.json_extract", "polars.Expr.str.json_path_match", "polars.Expr.str.lengths", "polars.Expr.str.ljust", "polars.Expr.str.lstrip", "polars.Expr.str.n_chars", "polars.Expr.str.parse_int", "polars.Expr.str.replace", "polars.Expr.str.replace_all", "polars.Expr.str.rjust", "polars.Expr.str.rstrip", "polars.Expr.str.slice", "polars.Expr.str.split", "polars.Expr.str.split_exact", "polars.Expr.str.splitn", "polars.Expr.str.starts_with", "polars.Expr.str.strip", "polars.Expr.str.strptime", "polars.Expr.str.to_date", "polars.Expr.str.to_datetime", "polars.Expr.str.to_decimal", "polars.Expr.str.to_lowercase", "polars.Expr.str.to_time", "polars.Expr.str.to_titlecase", "polars.Expr.str.to_uppercase", "polars.Expr.str.zfill", "polars.Expr.struct.field", "polars.Expr.struct.rename_fields", "polars.Expr.sub", "polars.Expr.suffix", "polars.Expr.sum", "polars.Expr.tail", "polars.Expr.take", "polars.Expr.take_every", "polars.Expr.tan", "polars.Expr.tanh", "polars.Expr.to_physical", "polars.Expr.top_k", "polars.Expr.truediv", "polars.Expr.unique", "polars.Expr.unique_counts", "polars.Expr.upper_bound", "polars.Expr.value_counts", "polars.Expr.var", "polars.Expr.where", "polars.Expr.xor", "polars.all", "polars.all_horizontal", "polars.any", "polars.any_horizontal", "polars.apply", "polars.approx_unique", "polars.arange", "polars.arctan2", "polars.arctan2d", "polars.arg_sort_by", "polars.arg_where", "polars.avg", "polars.coalesce", "polars.col", "polars.concat_list", "polars.concat_str", "polars.corr", "polars.count", "polars.cov", "polars.cumfold", "polars.cumreduce", "polars.cumsum", "polars.cumsum_horizontal", "polars.date", "polars.date_range", "polars.date_ranges", "polars.datetime", "polars.duration", "polars.element", "polars.exclude", "polars.first", "polars.fold", "polars.format", "polars.from_epoch", "polars.groups", "polars.head", "polars.implode", "polars.int_range", "polars.int_ranges", "polars.last", "polars.lit", "polars.map", "polars.max", "polars.max_horizontal", "polars.mean", "polars.median", "polars.min", "polars.min_horizontal", "polars.n_unique", "polars.ones", "polars.quantile", "polars.reduce", "polars.repeat", "polars.rolling_corr", "polars.rolling_cov", "polars.select", "polars.sql_expr", "polars.std", "polars.struct", "polars.sum", "polars.sum_horizontal", "polars.tail", "polars.time", "polars.time_range", "polars.time_ranges", "polars.var", "polars.when", "polars.zeros", "Array", "Binary", "Boolean", "Categories", "Columns / names", "Computation", "Functions", "Expressions", "List", "Meta", "Miscellaneous", "Manipulation/selection", "Operators", "String", "Struct", "Temporal", "Window", "Functions", "API reference", "Input/output", "Aggregation", "polars.LazyFrame.bottom_k", "polars.LazyFrame.cache", "polars.LazyFrame.clear", "polars.LazyFrame.clone", "polars.LazyFrame.collect", "polars.LazyFrame.columns", "polars.LazyFrame.drop", "polars.LazyFrame.drop_nulls", "polars.LazyFrame.dtypes", "polars.LazyFrame.explain", "polars.LazyFrame.explode", "polars.LazyFrame.fetch", "polars.LazyFrame.fill_nan", "polars.LazyFrame.fill_null", "polars.LazyFrame.filter", "polars.LazyFrame.first", "polars.LazyFrame.from_json", "polars.LazyFrame.groupby", "polars.LazyFrame.groupby_dynamic", "polars.LazyFrame.groupby_rolling", "polars.LazyFrame.head", "polars.LazyFrame.inspect", "polars.LazyFrame.interpolate", "polars.LazyFrame.join", "polars.LazyFrame.join_asof", "polars.LazyFrame.last", "polars.LazyFrame.lazy", "polars.LazyFrame.limit", "polars.LazyFrame.map", "polars.LazyFrame.max", "polars.LazyFrame.mean", "polars.LazyFrame.median", "polars.LazyFrame.melt", "polars.LazyFrame.merge_sorted", "polars.LazyFrame.min", "polars.LazyFrame.null_count", "polars.LazyFrame.pipe", "polars.LazyFrame.profile", "polars.LazyFrame.quantile", "polars.LazyFrame.read_json", "polars.LazyFrame.rename", "polars.LazyFrame.reverse", "polars.LazyFrame.schema", "polars.LazyFrame.select", "polars.LazyFrame.set_sorted", "polars.LazyFrame.shift", "polars.LazyFrame.shift_and_fill", "polars.LazyFrame.show_graph", "polars.LazyFrame.slice", "polars.LazyFrame.sort", "polars.LazyFrame.std", "polars.LazyFrame.sum", "polars.LazyFrame.tail", "polars.LazyFrame.take_every", "polars.LazyFrame.top_k", "polars.LazyFrame.unique", "polars.LazyFrame.unnest", "polars.LazyFrame.update", "polars.LazyFrame.var", "polars.LazyFrame.width", "polars.LazyFrame.with_columns", "polars.LazyFrame.with_context", "polars.LazyFrame.with_row_count", "polars.LazyFrame.write_json", "polars.lazyframe.groupby.LazyGroupBy.agg", "polars.lazyframe.groupby.LazyGroupBy.all", "polars.lazyframe.groupby.LazyGroupBy.apply", "polars.lazyframe.groupby.LazyGroupBy.count", "polars.lazyframe.groupby.LazyGroupBy.first", "polars.lazyframe.groupby.LazyGroupBy.head", "polars.lazyframe.groupby.LazyGroupBy.last", "polars.lazyframe.groupby.LazyGroupBy.max", "polars.lazyframe.groupby.LazyGroupBy.mean", "polars.lazyframe.groupby.LazyGroupBy.median", "polars.lazyframe.groupby.LazyGroupBy.min", "polars.lazyframe.groupby.LazyGroupBy.n_unique", "polars.lazyframe.groupby.LazyGroupBy.quantile", "polars.lazyframe.groupby.LazyGroupBy.sum", "polars.lazyframe.groupby.LazyGroupBy.tail", "Attributes", "Descriptive", "GroupBy", "LazyFrame", "Miscellaneous", "Manipulation/selection", "Selectors", "Aggregation", "polars.Series.abs", "polars.Series.alias", "polars.Series.all", "polars.Series.any", "polars.Series.append", "polars.Series.apply", "polars.Series.arccos", "polars.Series.arccosh", "polars.Series.arcsin", "polars.Series.arcsinh", "polars.Series.arctan", "polars.Series.arctanh", "polars.Series.arg_max", "polars.Series.arg_min", "polars.Series.arg_sort", "polars.Series.arg_true", "polars.Series.arg_unique", "polars.Series.arr.max", "polars.Series.arr.min", "polars.Series.arr.sum", "polars.Series.arr.unique", "polars.Series.bin.contains", "polars.Series.bin.decode", "polars.Series.bin.encode", "polars.Series.bin.ends_with", "polars.Series.bin.starts_with", "polars.Series.bottom_k", "polars.Series.cast", "polars.Series.cat", "polars.Series.cat.get_categories", "polars.Series.cat.set_ordering", "polars.Series.cbrt", "polars.Series.ceil", "polars.Series.chunk_lengths", "polars.Series.clear", "polars.Series.clip", "polars.Series.clip_max", "polars.Series.clip_min", "polars.Series.clone", "polars.Series.cos", "polars.Series.cosh", "polars.Series.cummax", "polars.Series.cummin", "polars.Series.cumprod", "polars.Series.cumsum", "polars.Series.cumulative_eval", "polars.Series.cut", "polars.Series.describe", "polars.Series.diff", "polars.Series.dot", "polars.Series.drop_nans", "polars.Series.drop_nulls", "polars.Series.dt", "polars.Series.dt.base_utc_offset", "polars.Series.dt.cast_time_unit", "polars.Series.dt.combine", "polars.Series.dt.convert_time_zone", "polars.Series.dt.date", "polars.Series.dt.datetime", "polars.Series.dt.day", "polars.Series.dt.days", "polars.Series.dt.dst_offset", "polars.Series.dt.epoch", "polars.Series.dt.hour", "polars.Series.dt.hours", "polars.Series.dt.is_leap_year", "polars.Series.dt.iso_year", "polars.Series.dt.max", "polars.Series.dt.mean", "polars.Series.dt.median", "polars.Series.dt.microsecond", "polars.Series.dt.microseconds", "polars.Series.dt.millisecond", "polars.Series.dt.milliseconds", "polars.Series.dt.min", "polars.Series.dt.minute", "polars.Series.dt.minutes", "polars.Series.dt.month", "polars.Series.dt.month_end", "polars.Series.dt.month_start", "polars.Series.dt.nanosecond", "polars.Series.dt.nanoseconds", "polars.Series.dt.offset_by", "polars.Series.dt.ordinal_day", "polars.Series.dt.quarter", "polars.Series.dt.replace_time_zone", "polars.Series.dt.round", "polars.Series.dt.second", "polars.Series.dt.seconds", "polars.Series.dt.strftime", "polars.Series.dt.time", "polars.Series.dt.timestamp", "polars.Series.dt.to_string", "polars.Series.dt.truncate", "polars.Series.dt.week", "polars.Series.dt.weekday", "polars.Series.dt.with_time_unit", "polars.Series.dt.year", "polars.Series.dtype", "polars.Series.entropy", "polars.Series.estimated_size", "polars.Series.ewm_mean", "polars.Series.ewm_std", "polars.Series.ewm_var", "polars.Series.exp", "polars.Series.explode", "polars.Series.extend", "polars.Series.extend_constant", "polars.Series.fill_nan", "polars.Series.fill_null", "polars.Series.filter", "polars.Series.flags", "polars.Series.floor", "polars.Series.get_chunks", "polars.Series.has_validity", "polars.Series.hash", "polars.Series.head", "polars.Series.hist", "polars.Series.implode", "polars.Series.inner_dtype", "polars.Series.interpolate", "polars.Series.is_between", "polars.Series.is_boolean", "polars.Series.is_duplicated", "polars.Series.is_empty", "polars.Series.is_finite", "polars.Series.is_first", "polars.Series.is_float", "polars.Series.is_in", "polars.Series.is_infinite", "polars.Series.is_integer", "polars.Series.is_nan", "polars.Series.is_not_nan", "polars.Series.is_not_null", "polars.Series.is_null", "polars.Series.is_numeric", "polars.Series.is_sorted", "polars.Series.is_temporal", "polars.Series.is_unique", "polars.Series.is_utf8", "polars.Series.item", "polars.Series.kurtosis", "polars.Series.len", "polars.Series.limit", "polars.Series.list", "polars.Series.list.all", "polars.Series.list.any", "polars.Series.list.arg_max", "polars.Series.list.arg_min", "polars.Series.list.concat", "polars.Series.list.contains", "polars.Series.list.count_match", "polars.Series.list.diff", "polars.Series.list.difference", "polars.Series.list.eval", "polars.Series.list.explode", "polars.Series.list.first", "polars.Series.list.get", "polars.Series.list.head", "polars.Series.list.intersection", "polars.Series.list.join", "polars.Series.list.last", "polars.Series.list.lengths", "polars.Series.list.max", "polars.Series.list.mean", "polars.Series.list.min", "polars.Series.list.reverse", "polars.Series.list.shift", "polars.Series.list.slice", "polars.Series.list.sort", "polars.Series.list.sum", "polars.Series.list.tail", "polars.Series.list.take", "polars.Series.list.to_struct", "polars.Series.list.union", "polars.Series.list.unique", "polars.Series.log", "polars.Series.log10", "polars.Series.log1p", "polars.Series.lower_bound", "polars.Series.map_dict", "polars.Series.max", "polars.Series.mean", "polars.Series.median", "polars.Series.min", "polars.Series.mode", "polars.Series.n_chunks", "polars.Series.n_unique", "polars.Series.name", "polars.Series.nan_max", "polars.Series.nan_min", "polars.Series.new_from_index", "polars.Series.null_count", "polars.Series.pct_change", "polars.Series.peak_max", "polars.Series.peak_min", "polars.Series.product", "polars.Series.qcut", "polars.Series.quantile", "polars.Series.rank", "polars.Series.rechunk", "polars.Series.reinterpret", "polars.Series.rename", "polars.Series.reshape", "polars.Series.reverse", "polars.Series.rle", "polars.Series.rle_id", "polars.Series.rolling_apply", "polars.Series.rolling_max", "polars.Series.rolling_mean", "polars.Series.rolling_median", "polars.Series.rolling_min", "polars.Series.rolling_quantile", "polars.Series.rolling_skew", "polars.Series.rolling_std", "polars.Series.rolling_sum", "polars.Series.rolling_var", "polars.Series.round", "polars.Series.sample", "polars.Series.search_sorted", "polars.Series.series_equal", "polars.Series.set", "polars.Series.set_at_idx", "polars.Series.set_sorted", "polars.Series.shape", "polars.Series.shift", "polars.Series.shift_and_fill", "polars.Series.shrink_dtype", "polars.Series.shrink_to_fit", "polars.Series.shuffle", "polars.Series.sign", "polars.Series.sin", "polars.Series.sinh", "polars.Series.skew", "polars.Series.slice", "polars.Series.sort", "polars.Series.sqrt", "polars.Series.std", "polars.Series.str", "polars.Series.str.concat", "polars.Series.str.contains", "polars.Series.str.count_match", "polars.Series.str.decode", "polars.Series.str.encode", "polars.Series.str.ends_with", "polars.Series.str.explode", "polars.Series.str.extract", "polars.Series.str.extract_all", "polars.Series.str.json_extract", "polars.Series.str.json_path_match", "polars.Series.str.lengths", "polars.Series.str.ljust", "polars.Series.str.lstrip", "polars.Series.str.n_chars", "polars.Series.str.parse_int", "polars.Series.str.replace", "polars.Series.str.replace_all", "polars.Series.str.rjust", "polars.Series.str.rstrip", "polars.Series.str.slice", "polars.Series.str.split", "polars.Series.str.split_exact", "polars.Series.str.splitn", "polars.Series.str.starts_with", "polars.Series.str.strip", "polars.Series.str.strptime", "polars.Series.str.to_date", "polars.Series.str.to_datetime", "polars.Series.str.to_decimal", "polars.Series.str.to_lowercase", "polars.Series.str.to_time", "polars.Series.str.to_titlecase", "polars.Series.str.to_uppercase", "polars.Series.str.zfill", "polars.Series.struct.field", "polars.Series.struct.fields", "polars.Series.struct.rename_fields", "polars.Series.struct.schema", "polars.Series.struct.unnest", "polars.Series.sum", "polars.Series.tail", "polars.Series.take", "polars.Series.take_every", "polars.Series.tan", "polars.Series.tanh", "polars.Series.time_unit", "polars.Series.to_arrow", "polars.Series.to_dummies", "polars.Series.to_frame", "polars.Series.to_init_repr", "polars.Series.to_list", "polars.Series.to_numpy", "polars.Series.to_pandas", "polars.Series.to_physical", "polars.Series.top_k", "polars.Series.unique", "polars.Series.unique_counts", "polars.Series.upper_bound", "polars.Series.value_counts", "polars.Series.var", "polars.Series.view", "polars.Series.zip_with", "Array", "Attributes", "Binary", "Boolean", "Categories", "Computation", "Descriptive", "Export", "Series", "List", "Miscellaneous", "Manipulation/selection", "String", "Struct", "Temporal", "SQL", "Testing", "Utils"], "terms": {"api": [0, 91, 117, 132, 133, 236, 254, 268, 567, 638, 718, 744, 1049], "refer": [0, 31, 101, 102, 105, 138, 254, 348, 351, 439, 473, 515, 534, 535, 536, 539, 638, 828, 831, 938, 1004, 1005, 1006, 1009, 1049], "input": [0, 67, 73, 93, 101, 102, 105, 133, 134, 145, 157, 185, 200, 207, 221, 231, 234, 254, 261, 268, 363, 383, 433, 439, 448, 464, 505, 562, 563, 564, 565, 566, 567, 569, 572, 575, 576, 577, 578, 584, 585, 592, 593, 600, 601, 602, 604, 605, 606, 609, 610, 618, 621, 622, 623, 629, 638, 649, 652, 662, 669, 695, 701, 706, 712, 716, 734, 744, 860, 916, 917, 919, 1049], "output": [0, 26, 28, 31, 32, 33, 34, 105, 133, 158, 159, 170, 180, 185, 187, 196, 200, 227, 231, 254, 268, 437, 438, 447, 484, 486, 488, 490, 492, 498, 559, 567, 579, 587, 588, 604, 626, 638, 649, 670, 671, 680, 684, 685, 695, 712, 715, 718, 734, 744, 1037, 1049], "seri": [0, 1, 2, 23, 59, 68, 69, 70, 71, 74, 90, 92, 95, 97, 120, 124, 141, 149, 152, 154, 155, 159, 160, 163, 164, 166, 168, 176, 177, 181, 192, 193, 209, 213, 216, 219, 220, 235, 254, 267, 268, 279, 286, 294, 295, 297, 344, 366, 372, 381, 385, 387, 388, 389, 391, 392, 393, 405, 411, 414, 423, 424, 427, 428, 429, 435, 437, 467, 473, 474, 475, 476, 477, 479, 481, 487, 493, 494, 497, 508, 528, 534, 535, 536, 539, 543, 549, 550, 558, 563, 565, 567, 568, 569, 573, 574, 580, 582, 583, 584, 587, 588, 593, 594, 596, 598, 600, 601, 602, 603, 604, 605, 607, 608, 609, 611, 612, 614, 615, 618, 620, 621, 622, 624, 626, 627, 628, 630, 638, 649, 666, 671, 717, 734, 1041, 1043, 1045, 1048, 1050, 1053, 1054, 1055, 1057], "datafram": [0, 1, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 67, 68, 69, 70, 71, 73, 74, 75, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 112, 114, 115, 116, 119, 121, 122, 130, 252, 253, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 293, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 346, 347, 348, 350, 351, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 415, 416, 417, 418, 419, 420, 421, 422, 425, 426, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 537, 538, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 588, 590, 591, 592, 593, 594, 595, 596, 598, 601, 602, 604, 605, 606, 607, 608, 609, 610, 611, 614, 618, 619, 620, 621, 622, 623, 624, 627, 628, 629, 638, 649, 656, 658, 662, 663, 667, 670, 675, 676, 677, 678, 680, 684, 685, 689, 693, 700, 701, 707, 708, 709, 712, 713, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 743, 744, 758, 759, 769, 785, 786, 824, 856, 884, 885, 893, 936, 988, 1000, 1001, 1017, 1026, 1027, 1037, 1049, 1056, 1057], "lazyfram": [0, 1, 52, 53, 55, 57, 67, 68, 69, 70, 71, 73, 74, 112, 113, 114, 115, 116, 117, 119, 124, 174, 186, 254, 369, 429, 638, 649, 733, 737, 1056, 1057], "express": [0, 47, 48, 73, 121, 124, 126, 133, 134, 145, 147, 149, 157, 183, 187, 195, 200, 207, 221, 231, 234, 236, 254, 261, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 278, 279, 286, 288, 289, 290, 292, 298, 299, 300, 301, 302, 303, 309, 311, 313, 316, 317, 318, 319, 320, 321, 322, 323, 324, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 352, 353, 354, 355, 356, 358, 359, 363, 365, 366, 368, 369, 373, 375, 376, 377, 381, 383, 385, 386, 387, 388, 390, 395, 398, 399, 403, 404, 406, 407, 410, 411, 416, 429, 435, 436, 437, 438, 439, 443, 444, 445, 446, 447, 448, 450, 452, 454, 456, 460, 461, 463, 464, 466, 467, 468, 469, 472, 476, 477, 479, 492, 493, 494, 496, 498, 500, 501, 503, 505, 508, 509, 510, 512, 514, 515, 516, 517, 518, 523, 524, 525, 528, 529, 530, 531, 545, 546, 549, 551, 552, 555, 556, 558, 559, 561, 562, 563, 564, 565, 566, 567, 569, 570, 571, 572, 573, 575, 576, 577, 578, 579, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 600, 601, 602, 603, 604, 605, 606, 609, 610, 612, 614, 615, 616, 617, 618, 619, 621, 622, 623, 625, 626, 627, 629, 630, 637, 649, 652, 656, 661, 662, 663, 666, 669, 689, 695, 698, 699, 701, 706, 712, 713, 716, 718, 734, 737, 744, 774, 775, 776, 784, 794, 846, 860, 890, 893, 958, 965, 979, 980, 985, 986, 987, 988, 994, 995, 1049], "selector": [0, 622, 649], "extend": [0, 93, 229, 254, 366, 638, 649, 743, 846, 1049], "function": [0, 31, 67, 68, 69, 70, 71, 91, 97, 101, 102, 105, 112, 122, 133, 138, 144, 152, 179, 186, 187, 218, 222, 225, 226, 236, 254, 264, 268, 309, 345, 360, 361, 362, 429, 437, 438, 464, 466, 481, 482, 483, 484, 485, 486, 488, 489, 490, 502, 553, 563, 565, 567, 569, 582, 583, 584, 593, 594, 596, 602, 604, 605, 609, 614, 622, 638, 649, 680, 684, 688, 709, 718, 734, 744, 784, 825, 839, 840, 841, 842, 856, 912, 936, 946, 960, 961, 967, 972, 1031, 1049, 1057], "data": [0, 1, 6, 16, 19, 29, 30, 31, 32, 36, 47, 48, 52, 58, 67, 68, 70, 74, 75, 80, 81, 85, 87, 90, 91, 92, 93, 94, 95, 96, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 119, 120, 122, 123, 124, 126, 132, 133, 136, 146, 156, 157, 158, 159, 170, 171, 172, 174, 185, 186, 190, 195, 196, 197, 205, 212, 217, 218, 222, 231, 233, 252, 254, 264, 265, 266, 268, 270, 271, 272, 273, 274, 275, 278, 281, 282, 283, 284, 286, 288, 289, 290, 293, 294, 301, 302, 311, 316, 317, 320, 321, 322, 323, 324, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 345, 346, 347, 349, 352, 353, 354, 355, 356, 358, 359, 365, 376, 377, 382, 383, 385, 386, 387, 388, 389, 391, 398, 403, 404, 406, 411, 416, 431, 436, 460, 461, 463, 464, 470, 472, 473, 476, 477, 479, 491, 492, 500, 501, 502, 508, 510, 512, 514, 515, 516, 518, 523, 528, 529, 530, 531, 534, 535, 536, 539, 549, 551, 552, 553, 555, 556, 559, 562, 567, 569, 576, 586, 587, 588, 589, 590, 600, 601, 603, 604, 612, 615, 625, 626, 627, 630, 638, 649, 654, 655, 663, 669, 670, 671, 688, 712, 734, 741, 742, 743, 744, 754, 758, 759, 760, 762, 766, 768, 773, 777, 785, 790, 792, 793, 796, 797, 798, 799, 800, 802, 803, 804, 805, 809, 810, 811, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 832, 833, 834, 835, 836, 844, 845, 856, 862, 864, 865, 867, 868, 870, 871, 872, 873, 877, 886, 887, 889, 894, 899, 914, 936, 938, 942, 944, 956, 957, 967, 972, 978, 979, 980, 982, 984, 985, 986, 988, 989, 992, 993, 998, 999, 1000, 1001, 1004, 1005, 1006, 1009, 1029, 1030, 1031, 1032, 1034, 1039, 1048, 1049, 1056], "type": [0, 1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 31, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 80, 90, 92, 93, 94, 95, 96, 101, 102, 104, 105, 108, 109, 112, 113, 118, 119, 120, 123, 124, 133, 152, 156, 158, 159, 160, 171, 172, 212, 218, 220, 223, 254, 264, 266, 268, 270, 271, 272, 273, 274, 275, 278, 286, 288, 289, 290, 293, 294, 295, 298, 299, 300, 301, 302, 311, 316, 319, 320, 321, 322, 323, 324, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 349, 352, 353, 354, 356, 363, 365, 378, 383, 385, 386, 387, 388, 403, 404, 406, 411, 416, 429, 439, 472, 476, 477, 479, 500, 501, 508, 510, 512, 514, 515, 516, 518, 523, 528, 529, 530, 531, 534, 549, 551, 552, 553, 559, 567, 569, 576, 586, 587, 588, 589, 590, 592, 593, 600, 601, 602, 603, 604, 612, 615, 625, 626, 627, 630, 638, 649, 656, 661, 663, 670, 671, 675, 689, 699, 707, 734, 741, 742, 754, 760, 762, 766, 768, 769, 774, 775, 776, 792, 795, 796, 797, 798, 799, 800, 802, 803, 804, 805, 809, 810, 811, 812, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 832, 833, 834, 836, 844, 854, 862, 864, 865, 867, 868, 870, 871, 872, 873, 877, 886, 887, 889, 894, 899, 912, 942, 944, 967, 978, 979, 980, 982, 984, 985, 986, 988, 989, 992, 993, 998, 999, 1000, 1001, 1004, 1029, 1030, 1032, 1040, 1049, 1056], "config": [0, 67, 200, 231, 254, 590, 649, 695, 712, 734], "except": [0, 161, 173, 175, 210, 254, 592, 649, 676, 734, 737, 855, 882, 1019, 1030, 1039, 1049], "test": [0, 103, 105, 649, 672, 679, 734], "util": [0, 97, 596, 649, 663, 734], "sql": [0, 29, 52, 56, 103, 172, 254, 619, 649], "These": [1, 31, 130, 222, 254, 352, 637, 825, 832], "allow": [1, 30, 31, 47, 48, 58, 80, 91, 112, 114, 115, 116, 117, 124, 126, 132, 170, 173, 174, 195, 196, 198, 217, 218, 223, 233, 254, 268, 341, 348, 351, 437, 475, 492, 534, 535, 536, 638, 675, 676, 680, 684, 707, 713, 734, 737, 744, 821, 828, 831, 940, 957, 959, 1004, 1005, 1006, 1031, 1049, 1057], "you": [1, 13, 31, 35, 48, 57, 67, 74, 90, 92, 93, 94, 96, 101, 102, 103, 105, 106, 108, 109, 110, 112, 119, 130, 133, 142, 146, 158, 159, 170, 183, 195, 196, 197, 214, 217, 222, 236, 254, 268, 298, 299, 300, 337, 338, 344, 348, 351, 352, 369, 383, 410, 429, 437, 439, 475, 480, 482, 483, 484, 485, 486, 488, 489, 490, 519, 522, 534, 536, 567, 582, 594, 612, 615, 630, 638, 656, 659, 670, 671, 672, 676, 679, 699, 718, 734, 737, 743, 744, 774, 775, 776, 817, 818, 824, 828, 831, 832, 845, 860, 893, 940, 945, 989, 992, 1004, 1006, 1030, 1039, 1049, 1057], "regist": [1, 52, 54, 55, 56, 57, 68, 69, 70, 71, 125, 127, 1056], "custom": [1, 31, 68, 69, 70, 71, 125, 126, 127, 133, 236, 254, 268, 348, 351, 429, 437, 481, 567, 604, 638, 680, 718, 734, 744, 828, 831, 912, 946, 1049, 1057], "dedic": [1, 91, 170, 196, 254], "namespac": [1, 253, 637, 649, 733], "underli": [1, 76, 83, 90, 92, 93, 94, 96, 108, 109, 110, 121, 124, 126, 146, 170, 171, 196, 212, 254, 287, 317, 318, 322, 326, 328, 329, 330, 332, 334, 336, 339, 342, 343, 344, 346, 353, 354, 355, 356, 475, 491, 509, 511, 638, 734, 737, 743, 761, 793, 794, 798, 802, 804, 805, 809, 811, 814, 816, 819, 822, 823, 824, 826, 833, 834, 835, 836, 845, 940, 956, 967, 979, 981, 1025, 1030, 1049], "polar": [1, 254, 637, 638, 643, 649, 734, 737, 1049, 1056], "class": [1, 2, 3, 4, 5, 15, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 121, 122, 197, 218, 254, 626, 638, 643, 649, 734, 1029, 1030, 1049, 1056], "without": [1, 6, 97, 104, 107, 111, 113, 117, 225, 226, 254, 268, 309, 345, 482, 483, 484, 485, 486, 488, 489, 490, 618, 638, 709, 734, 784, 790, 825, 856, 936, 1030, 1049], "requir": [1, 30, 31, 35, 48, 67, 95, 119, 120, 134, 138, 195, 218, 221, 254, 284, 360, 361, 362, 431, 497, 534, 535, 536, 556, 615, 638, 652, 701, 706, 734, 759, 840, 841, 842, 914, 966, 1004, 1005, 1006, 1030, 1031, 1034, 1049], "subclass": [1, 254], "mixin": 1, "expr": [1, 67, 68, 69, 70, 71, 145, 147, 149, 172, 173, 183, 187, 195, 200, 231, 254, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 630, 631, 632, 634, 638, 639, 640, 643, 644, 645, 646, 662, 664, 675, 676, 690, 695, 698, 712, 734, 784, 794, 847, 884, 885, 890, 893, 897, 907, 910, 965, 979, 983, 1002, 1020, 1049], "ar": [1, 6, 9, 11, 15, 18, 26, 30, 31, 47, 48, 57, 58, 67, 74, 75, 82, 89, 90, 91, 92, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 108, 109, 110, 112, 113, 114, 115, 117, 119, 120, 122, 124, 130, 132, 133, 134, 138, 142, 144, 147, 151, 152, 157, 158, 159, 170, 172, 173, 174, 179, 180, 185, 187, 195, 196, 197, 200, 201, 207, 213, 218, 221, 226, 227, 231, 234, 254, 264, 266, 292, 305, 307, 308, 314, 315, 345, 352, 357, 359, 360, 361, 362, 383, 385, 387, 388, 389, 391, 392, 393, 396, 401, 429, 439, 461, 464, 473, 476, 477, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 499, 502, 504, 505, 517, 518, 519, 522, 523, 534, 536, 547, 563, 564, 565, 566, 572, 575, 577, 578, 579, 584, 585, 587, 588, 605, 606, 609, 610, 618, 621, 622, 623, 626, 627, 629, 631, 632, 634, 637, 638, 639, 640, 643, 644, 645, 646, 649, 652, 659, 664, 669, 670, 671, 672, 675, 676, 679, 680, 684, 685, 689, 692, 695, 696, 701, 706, 709, 712, 713, 716, 734, 737, 741, 743, 782, 783, 825, 832, 838, 839, 840, 841, 842, 853, 860, 864, 867, 868, 870, 871, 872, 873, 880, 884, 912, 938, 942, 946, 952, 969, 972, 987, 989, 992, 993, 1004, 1006, 1018, 1030, 1031, 1039, 1041, 1043, 1045, 1049, 1050, 1053, 1054, 1055, 1057], "all": [1, 8, 15, 18, 23, 26, 31, 36, 54, 67, 73, 90, 93, 95, 96, 101, 102, 104, 105, 106, 110, 112, 114, 115, 121, 122, 126, 139, 142, 148, 161, 166, 168, 170, 171, 174, 175, 179, 182, 183, 190, 195, 196, 197, 206, 210, 215, 217, 223, 225, 227, 254, 265, 266, 267, 285, 303, 309, 315, 316, 363, 368, 374, 378, 380, 382, 385, 388, 392, 393, 395, 399, 410, 416, 426, 429, 437, 438, 455, 462, 468, 473, 478, 497, 503, 505, 510, 516, 517, 518, 521, 524, 525, 527, 533, 546, 559, 564, 576, 584, 585, 587, 592, 594, 599, 614, 621, 622, 623, 629, 638, 643, 649, 656, 659, 661, 663, 665, 680, 684, 689, 699, 700, 707, 713, 734, 737, 784, 786, 790, 792, 855, 862, 877, 882, 893, 899, 909, 912, 938, 973, 980, 986, 987, 988, 991, 994, 995, 997, 1003, 1019, 1049, 1056, 1057], "support": [1, 30, 31, 35, 74, 90, 91, 92, 93, 94, 95, 96, 97, 103, 104, 105, 108, 109, 113, 121, 126, 130, 132, 170, 171, 172, 196, 197, 206, 207, 214, 218, 254, 424, 464, 503, 505, 528, 576, 638, 643, 675, 700, 701, 734, 737, 907, 973, 998, 1031, 1049, 1056], "target": [1, 29, 30, 31, 72, 254, 515, 534, 535, 536, 587, 985, 1004, 1005, 1006], "thi": [1, 6, 8, 12, 13, 26, 28, 30, 31, 33, 35, 39, 47, 48, 52, 53, 57, 58, 67, 73, 74, 75, 90, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 108, 109, 110, 112, 113, 114, 115, 116, 117, 119, 120, 121, 122, 123, 124, 126, 128, 130, 132, 133, 134, 138, 142, 143, 144, 146, 151, 152, 157, 158, 159, 160, 164, 166, 168, 169, 170, 172, 173, 174, 176, 177, 178, 179, 180, 181, 182, 183, 185, 188, 189, 190, 195, 196, 197, 198, 200, 204, 206, 208, 209, 212, 214, 217, 218, 221, 222, 223, 225, 226, 227, 228, 229, 231, 232, 236, 237, 253, 254, 264, 267, 268, 269, 278, 284, 291, 292, 294, 295, 303, 309, 316, 317, 329, 337, 338, 341, 344, 345, 348, 351, 355, 359, 365, 381, 382, 383, 387, 395, 399, 409, 410, 411, 415, 416, 425, 429, 430, 431, 434, 435, 437, 443, 444, 445, 446, 447, 448, 458, 459, 461, 464, 468, 470, 473, 474, 475, 476, 477, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 492, 494, 496, 497, 498, 503, 504, 505, 515, 520, 521, 526, 527, 533, 534, 536, 537, 542, 546, 554, 556, 557, 558, 559, 563, 565, 567, 568, 577, 580, 582, 584, 587, 588, 593, 594, 596, 602, 605, 609, 615, 618, 622, 626, 638, 649, 650, 652, 653, 656, 659, 661, 663, 669, 670, 671, 673, 675, 676, 680, 684, 685, 689, 692, 695, 698, 699, 700, 701, 706, 707, 709, 712, 713, 714, 715, 718, 719, 733, 734, 737, 743, 744, 753, 759, 765, 768, 769, 784, 790, 792, 793, 794, 805, 817, 818, 821, 824, 825, 828, 831, 835, 839, 844, 845, 852, 853, 856, 861, 866, 867, 869, 874, 876, 878, 879, 881, 892, 893, 894, 898, 899, 908, 913, 914, 918, 920, 921, 922, 923, 925, 926, 928, 929, 931, 935, 936, 937, 938, 939, 940, 941, 942, 945, 946, 947, 948, 950, 953, 954, 955, 957, 960, 961, 962, 965, 966, 967, 968, 973, 974, 976, 985, 990, 991, 996, 997, 1003, 1004, 1006, 1007, 1012, 1013, 1017, 1018, 1025, 1027, 1029, 1030, 1031, 1033, 1034, 1036, 1038, 1039, 1049, 1056, 1057], "featur": [1, 35, 39, 58, 72, 254], "i": [1, 6, 12, 13, 15, 28, 30, 31, 32, 33, 34, 39, 47, 48, 52, 57, 58, 67, 72, 73, 74, 77, 79, 80, 82, 86, 88, 90, 91, 92, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 108, 109, 110, 112, 113, 114, 115, 116, 117, 121, 122, 123, 124, 126, 128, 132, 133, 134, 142, 144, 146, 153, 156, 157, 158, 159, 160, 161, 164, 165, 167, 169, 170, 171, 172, 173, 174, 175, 177, 179, 180, 183, 185, 186, 187, 195, 196, 197, 198, 206, 207, 208, 209, 210, 212, 217, 218, 221, 222, 223, 225, 226, 227, 228, 233, 236, 237, 253, 254, 261, 264, 266, 267, 268, 269, 279, 303, 309, 316, 318, 328, 341, 345, 348, 352, 360, 361, 362, 365, 378, 381, 383, 396, 402, 410, 413, 424, 428, 429, 434, 437, 439, 443, 446, 448, 464, 473, 475, 476, 477, 480, 482, 483, 484, 485, 486, 488, 489, 490, 492, 493, 494, 498, 499, 502, 503, 504, 505, 507, 509, 510, 515, 516, 518, 520, 521, 523, 524, 526, 527, 528, 531, 533, 534, 535, 536, 539, 542, 559, 560, 563, 565, 567, 568, 573, 576, 577, 579, 580, 582, 583, 584, 587, 588, 594, 603, 605, 609, 615, 616, 617, 618, 620, 622, 626, 628, 629, 638, 652, 656, 659, 661, 663, 669, 670, 671, 674, 675, 676, 678, 680, 684, 685, 689, 699, 700, 701, 702, 706, 707, 709, 710, 715, 718, 719, 734, 737, 742, 743, 744, 784, 792, 794, 804, 821, 825, 828, 832, 839, 840, 841, 842, 844, 845, 853, 854, 855, 856, 861, 863, 869, 874, 875, 876, 878, 879, 880, 882, 885, 893, 896, 907, 911, 912, 936, 938, 940, 942, 945, 953, 955, 957, 958, 959, 960, 961, 962, 968, 969, 972, 973, 976, 979, 980, 985, 986, 988, 990, 991, 993, 994, 996, 997, 998, 1001, 1003, 1004, 1005, 1006, 1009, 1012, 1019, 1025, 1030, 1031, 1037, 1038, 1039, 1049, 1056, 1057], "primarili": 1, "intend": [1, 587], "us": [1, 10, 12, 13, 18, 23, 24, 28, 29, 31, 35, 38, 48, 52, 53, 54, 55, 57, 58, 67, 74, 91, 93, 94, 96, 98, 101, 102, 103, 104, 105, 106, 110, 112, 113, 114, 115, 116, 117, 121, 122, 123, 124, 125, 126, 128, 133, 140, 142, 147, 148, 152, 157, 158, 159, 166, 168, 170, 171, 173, 177, 179, 182, 183, 185, 186, 187, 195, 196, 197, 198, 200, 207, 208, 209, 214, 215, 216, 217, 218, 222, 223, 225, 226, 227, 228, 231, 234, 236, 254, 262, 268, 269, 279, 287, 288, 292, 295, 309, 314, 315, 344, 348, 351, 352, 355, 357, 360, 361, 362, 368, 369, 382, 383, 396, 410, 429, 437, 439, 442, 464, 470, 473, 475, 477, 480, 482, 483, 484, 485, 486, 488, 489, 490, 492, 494, 497, 498, 502, 504, 505, 507, 509, 511, 512, 513, 515, 516, 517, 519, 520, 524, 526, 528, 530, 532, 534, 535, 536, 539, 560, 563, 564, 565, 566, 567, 568, 576, 578, 579, 582, 584, 585, 587, 588, 594, 596, 603, 605, 606, 609, 610, 612, 615, 616, 617, 618, 620, 621, 622, 623, 626, 628, 630, 637, 638, 648, 649, 656, 658, 659, 664, 665, 669, 670, 671, 672, 676, 678, 679, 684, 695, 701, 702, 707, 709, 710, 712, 716, 718, 734, 737, 743, 744, 761, 762, 769, 784, 785, 824, 828, 831, 832, 835, 838, 840, 841, 842, 847, 848, 853, 856, 859, 860, 880, 893, 912, 919, 936, 938, 940, 942, 945, 957, 960, 961, 962, 966, 968, 972, 976, 979, 981, 982, 985, 986, 987, 989, 990, 994, 996, 998, 1000, 1004, 1005, 1006, 1009, 1020, 1026, 1028, 1029, 1030, 1031, 1038, 1039, 1049, 1056, 1057], "librari": [1, 76, 83, 437, 638, 1057], "author": 1, "domain": [1, 516, 986], "specif": [1, 26, 30, 31, 90, 92, 94, 96, 101, 103, 104, 108, 109, 113, 123, 124, 170, 254, 348, 351, 481, 534, 535, 536, 539, 638, 734, 737, 828, 831, 946, 1004, 1005, 1006, 1009, 1049, 1057], "capabl": [1, 31, 254], "which": [1, 9, 18, 27, 28, 31, 32, 33, 34, 35, 47, 48, 67, 68, 69, 70, 71, 93, 101, 102, 103, 104, 105, 112, 113, 119, 125, 127, 134, 142, 146, 147, 157, 158, 159, 173, 217, 221, 223, 227, 254, 264, 341, 345, 348, 352, 366, 383, 385, 388, 389, 391, 392, 393, 429, 448, 480, 482, 483, 484, 485, 486, 488, 489, 490, 523, 569, 587, 588, 626, 627, 629, 638, 652, 659, 661, 670, 671, 676, 706, 707, 715, 734, 743, 821, 825, 828, 832, 845, 846, 860, 864, 868, 870, 871, 872, 873, 912, 945, 960, 993, 1030, 1049, 1057], "mai": [1, 30, 39, 48, 74, 90, 92, 93, 94, 96, 101, 104, 106, 108, 109, 113, 114, 117, 133, 144, 146, 158, 159, 173, 203, 204, 218, 225, 226, 227, 254, 268, 309, 316, 317, 329, 341, 345, 352, 423, 428, 429, 437, 447, 482, 483, 484, 485, 486, 488, 489, 490, 495, 496, 534, 536, 582, 583, 587, 594, 614, 638, 670, 671, 676, 680, 697, 698, 709, 714, 718, 734, 743, 744, 784, 792, 793, 805, 821, 825, 832, 839, 845, 856, 906, 911, 936, 964, 965, 1004, 1006, 1030, 1049, 1057], "exist": [1, 29, 30, 31, 67, 104, 113, 124, 222, 231, 254, 263, 286, 289, 290, 318, 638, 712, 734, 794], "belong": [1, 158, 254, 670, 734], "core": [1, 218, 254, 1057], "cannot": [1, 91, 101, 102, 105, 106, 119, 128, 133, 197, 198, 236, 254, 268, 287, 439, 492, 511, 530, 544, 567, 638, 699, 718, 734, 744, 761, 957, 981, 1000, 1049], "overrid": [1, 31, 90, 92, 93, 94, 95, 96, 101, 108, 109, 121, 122, 126, 128, 254, 439, 638, 734, 919, 1049], "str": [1, 7, 9, 12, 14, 15, 18, 19, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 38, 47, 48, 52, 53, 54, 55, 56, 57, 58, 67, 68, 69, 70, 71, 72, 75, 90, 92, 93, 94, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 121, 122, 124, 125, 126, 127, 130, 134, 137, 139, 140, 141, 142, 143, 144, 145, 149, 150, 151, 152, 154, 156, 157, 158, 159, 161, 163, 166, 168, 169, 170, 172, 173, 176, 177, 178, 179, 180, 181, 183, 185, 187, 189, 191, 192, 193, 194, 195, 196, 197, 198, 201, 203, 204, 206, 207, 208, 209, 210, 213, 214, 215, 216, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 261, 262, 263, 268, 286, 288, 289, 290, 294, 310, 313, 319, 341, 344, 345, 348, 351, 352, 363, 365, 369, 371, 375, 381, 383, 390, 405, 406, 413, 414, 416, 424, 427, 429, 438, 439, 447, 449, 450, 452, 464, 466, 468, 470, 476, 478, 480, 482, 483, 484, 485, 486, 488, 489, 490, 496, 497, 504, 505, 543, 544, 546, 549, 561, 562, 564, 566, 567, 568, 570, 571, 574, 576, 578, 579, 580, 581, 582, 583, 585, 586, 587, 588, 589, 590, 592, 593, 594, 595, 596, 597, 598, 599, 602, 604, 606, 607, 608, 610, 611, 613, 614, 615, 616, 617, 619, 620, 621, 623, 624, 625, 626, 627, 628, 638, 644, 652, 656, 657, 658, 659, 661, 662, 663, 666, 668, 669, 670, 671, 673, 675, 676, 684, 685, 689, 691, 692, 693, 696, 698, 699, 700, 701, 706, 707, 708, 709, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 740, 766, 768, 785, 786, 795, 821, 824, 825, 828, 831, 832, 844, 848, 889, 890, 899, 912, 919, 928, 929, 936, 941, 960, 961, 1013, 1015, 1026, 1027, 1028, 1049, 1053, 1056, 1057], "dt": [1, 67, 159, 254, 587, 590, 646, 671, 734, 737, 1055], "attempt": [1, 217, 254, 587, 588], "do": [1, 31, 47, 48, 67, 73, 74, 112, 146, 158, 159, 173, 187, 212, 222, 225, 254, 292, 309, 410, 464, 521, 527, 533, 612, 615, 630, 638, 656, 661, 670, 671, 676, 680, 689, 699, 734, 737, 743, 784, 845, 893, 991, 997, 1003, 1030, 1039, 1049], "so": [1, 58, 103, 112, 128, 156, 158, 159, 187, 254, 279, 383, 413, 429, 521, 527, 533, 638, 670, 671, 734, 896, 991, 997, 1003], "rais": [1, 14, 18, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 119, 120, 187, 195, 254, 287, 344, 352, 428, 447, 509, 511, 523, 534, 535, 536, 539, 603, 761, 824, 832, 911, 979, 981, 993, 1004, 1005, 1006, 1009, 1030, 1039, 1049], "an": [1, 6, 26, 29, 30, 31, 39, 68, 70, 71, 73, 76, 80, 81, 83, 90, 101, 102, 103, 104, 105, 107, 110, 112, 114, 122, 124, 126, 133, 135, 136, 144, 147, 149, 152, 158, 159, 170, 171, 173, 183, 187, 193, 195, 212, 217, 222, 225, 231, 236, 254, 263, 264, 268, 287, 293, 298, 299, 300, 304, 305, 306, 307, 308, 309, 318, 319, 344, 348, 355, 366, 368, 369, 375, 395, 407, 410, 413, 428, 429, 437, 438, 448, 469, 477, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 509, 511, 516, 534, 535, 536, 539, 549, 555, 563, 565, 569, 573, 576, 584, 587, 588, 591, 596, 600, 601, 603, 605, 609, 612, 614, 615, 618, 621, 622, 626, 627, 629, 630, 638, 649, 654, 655, 656, 661, 663, 666, 670, 671, 676, 680, 689, 699, 712, 713, 718, 734, 737, 744, 761, 766, 773, 774, 775, 776, 777, 780, 781, 782, 783, 784, 794, 828, 835, 839, 846, 869, 890, 893, 896, 911, 945, 946, 947, 948, 949, 950, 951, 953, 954, 955, 960, 961, 979, 981, 986, 1004, 1005, 1006, 1009, 1030, 1039, 1049, 1056], "attributeerror": 1, "howev": [1, 93, 133, 144, 217, 254, 587, 839, 1049], "can": [1, 13, 31, 38, 57, 67, 81, 93, 101, 102, 105, 106, 110, 112, 114, 116, 117, 122, 123, 124, 126, 128, 130, 133, 134, 135, 143, 152, 157, 158, 159, 166, 168, 183, 187, 197, 200, 207, 217, 221, 222, 225, 231, 236, 254, 268, 305, 308, 309, 337, 338, 341, 344, 352, 366, 383, 395, 410, 429, 447, 455, 464, 468, 470, 475, 482, 483, 484, 485, 486, 488, 489, 490, 492, 494, 497, 498, 499, 502, 505, 518, 521, 527, 533, 534, 536, 546, 559, 572, 576, 594, 596, 629, 637, 638, 648, 652, 656, 661, 670, 671, 695, 701, 706, 712, 714, 734, 737, 744, 784, 817, 818, 821, 824, 825, 832, 846, 860, 893, 912, 924, 936, 940, 960, 961, 962, 966, 969, 972, 988, 991, 997, 1003, 1004, 1006, 1030, 1049, 1056], "other": [1, 18, 31, 57, 101, 102, 105, 112, 119, 120, 142, 146, 153, 172, 173, 179, 180, 195, 197, 200, 226, 229, 231, 252, 254, 261, 265, 267, 279, 298, 299, 300, 313, 358, 359, 373, 376, 377, 383, 387, 398, 405, 409, 415, 430, 436, 439, 443, 446, 454, 456, 460, 461, 463, 505, 545, 553, 555, 562, 563, 564, 565, 566, 575, 577, 578, 584, 585, 587, 605, 606, 609, 610, 618, 621, 622, 623, 638, 649, 659, 675, 676, 684, 685, 695, 709, 712, 713, 734, 737, 743, 774, 775, 776, 788, 845, 867, 888, 892, 898, 913, 959, 1032, 1040, 1048, 1049], "onli": [1, 18, 26, 31, 52, 54, 58, 67, 72, 74, 101, 102, 104, 105, 106, 110, 112, 113, 114, 115, 116, 124, 126, 130, 133, 142, 146, 158, 159, 170, 172, 173, 177, 196, 197, 209, 214, 216, 217, 227, 236, 254, 262, 268, 279, 297, 298, 299, 300, 341, 349, 363, 372, 395, 464, 468, 475, 482, 483, 484, 485, 486, 488, 489, 490, 546, 557, 567, 587, 588, 638, 656, 659, 670, 671, 672, 675, 676, 679, 718, 734, 743, 744, 771, 774, 775, 776, 785, 821, 845, 851, 869, 936, 940, 1025, 1028, 1049, 1056, 1057], "gener": [1, 103, 121, 122, 123, 124, 126, 138, 187, 198, 215, 217, 222, 254, 492, 498, 569, 587, 600, 601, 615, 626, 627, 638, 734, 957, 968, 1026, 1049, 1057], "userwarn": 1, "pl": [1, 2, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 28, 30, 31, 32, 33, 34, 35, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 67, 68, 69, 70, 71, 74, 75, 90, 92, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 105, 106, 112, 113, 117, 118, 119, 120, 121, 122, 123, 124, 126, 130, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 202, 203, 204, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 587, 588, 590, 591, 592, 593, 594, 595, 596, 597, 598, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 638, 650, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 692, 693, 694, 695, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 740, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 765, 766, 768, 769, 770, 771, 772, 773, 774, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 838, 839, 841, 842, 845, 846, 847, 848, 849, 851, 854, 855, 856, 859, 860, 861, 862, 863, 864, 866, 867, 868, 869, 870, 871, 872, 873, 874, 876, 877, 878, 879, 881, 884, 885, 891, 892, 893, 894, 897, 898, 899, 901, 906, 907, 908, 910, 912, 913, 918, 919, 920, 921, 922, 923, 924, 925, 926, 932, 933, 934, 936, 937, 938, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 959, 960, 961, 962, 964, 968, 969, 970, 971, 973, 974, 975, 976, 978, 979, 980, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1049, 1056, 1057], "register_expr_namespac": [1, 68, 70, 71], "greet": 1, "def": [1, 68, 69, 70, 71, 122, 123, 124, 126, 130, 186, 222, 254, 261, 466, 516, 562, 604, 638, 688, 734, 737, 986, 1057], "__init__": [1, 2, 3, 4, 5, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 121, 1056], "self": [1, 53, 54, 55, 57, 68, 69, 70, 71, 73, 135, 136, 139, 146, 161, 163, 164, 175, 176, 177, 178, 179, 181, 184, 185, 187, 189, 190, 192, 193, 198, 203, 205, 206, 208, 209, 210, 215, 222, 224, 227, 228, 229, 232, 233, 254, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 285, 291, 292, 293, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 638, 652, 653, 655, 656, 658, 659, 661, 662, 663, 664, 665, 666, 667, 668, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 689, 690, 691, 692, 693, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 734, 743, 744, 766, 777, 845, 849, 857, 918, 919, 930, 933, 934, 939, 960, 961, 962, 974, 1036, 1040, 1049], "_expr": [1, 69], "hello": [1, 18, 53, 56, 521, 527, 533, 899, 991, 997, 1003], "return": [1, 9, 26, 28, 31, 32, 33, 34, 47, 48, 52, 56, 67, 68, 69, 70, 71, 72, 73, 82, 84, 89, 90, 92, 93, 94, 95, 96, 98, 99, 100, 101, 102, 104, 105, 106, 107, 109, 110, 111, 112, 113, 123, 129, 133, 134, 135, 138, 141, 142, 143, 144, 145, 146, 147, 148, 151, 152, 156, 157, 158, 159, 161, 163, 169, 170, 171, 172, 174, 175, 182, 183, 185, 186, 187, 195, 196, 197, 198, 210, 211, 217, 218, 221, 222, 223, 227, 231, 236, 239, 243, 248, 254, 264, 266, 270, 271, 272, 273, 274, 275, 278, 279, 286, 288, 289, 290, 291, 301, 302, 311, 316, 320, 321, 322, 323, 324, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 345, 346, 347, 349, 350, 352, 353, 354, 356, 365, 379, 383, 385, 386, 387, 388, 389, 391, 392, 393, 400, 403, 404, 406, 411, 413, 414, 416, 427, 428, 435, 439, 448, 450, 455, 466, 472, 476, 477, 479, 492, 493, 499, 500, 501, 508, 510, 512, 514, 515, 516, 518, 519, 520, 522, 523, 526, 528, 529, 530, 531, 542, 548, 549, 550, 551, 552, 554, 555, 557, 558, 559, 562, 563, 567, 569, 570, 571, 572, 573, 576, 586, 587, 588, 589, 590, 596, 598, 600, 601, 603, 604, 612, 615, 618, 621, 624, 625, 626, 627, 629, 630, 638, 652, 654, 656, 659, 660, 661, 663, 670, 671, 672, 678, 679, 680, 688, 689, 699, 704, 705, 706, 707, 712, 715, 721, 725, 730, 734, 737, 741, 742, 743, 744, 751, 752, 754, 755, 760, 762, 765, 773, 785, 786, 792, 796, 797, 798, 799, 800, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 825, 826, 827, 829, 830, 832, 833, 834, 836, 839, 844, 845, 853, 855, 856, 862, 864, 865, 867, 868, 870, 871, 872, 873, 877, 879, 882, 886, 887, 889, 894, 896, 897, 899, 910, 911, 918, 919, 924, 936, 942, 943, 944, 945, 957, 958, 959, 961, 969, 978, 979, 980, 982, 984, 985, 986, 988, 989, 990, 992, 993, 996, 998, 999, 1000, 1001, 1012, 1019, 1021, 1033, 1035, 1036, 1040, 1049, 1056, 1057], "lit": [1, 263, 383, 395, 582, 594, 612, 615, 629, 630, 638, 848, 1049], "alia": [1, 12, 67, 69, 71, 158, 159, 175, 224, 231, 254, 261, 265, 268, 286, 288, 289, 290, 291, 298, 299, 300, 304, 305, 306, 307, 308, 312, 316, 317, 318, 319, 322, 323, 324, 325, 327, 329, 330, 331, 333, 335, 340, 341, 342, 344, 345, 346, 347, 348, 350, 351, 352, 354, 355, 358, 359, 369, 371, 373, 376, 377, 381, 383, 386, 387, 395, 398, 399, 400, 407, 409, 410, 415, 430, 436, 438, 439, 451, 454, 456, 460, 461, 463, 465, 467, 473, 475, 493, 509, 510, 513, 515, 516, 519, 522, 528, 530, 531, 532, 543, 544, 545, 553, 554, 555, 561, 562, 563, 565, 567, 569, 570, 571, 574, 575, 577, 578, 582, 583, 584, 587, 590, 591, 594, 595, 604, 605, 609, 614, 615, 621, 622, 626, 629, 638, 670, 671, 673, 679, 708, 712, 734, 793, 795, 801, 821, 824, 828, 830, 835, 882, 893, 919, 985, 986, 1000, 1001, 1049], "hi": [1, 470, 638], "goodby": 1, "say\u014dnara": 1, "bye": 1, "world": [1, 18, 53, 56, 521, 527, 533, 540, 899, 991, 997, 1003, 1010], "select": [1, 29, 52, 53, 54, 67, 68, 69, 70, 100, 101, 102, 103, 104, 106, 110, 112, 117, 123, 133, 169, 173, 183, 186, 195, 206, 219, 224, 227, 254, 260, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 289, 290, 291, 294, 296, 297, 301, 302, 303, 304, 305, 306, 307, 308, 309, 311, 312, 313, 314, 315, 317, 318, 319, 323, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 343, 344, 345, 346, 347, 350, 352, 353, 355, 356, 357, 360, 361, 362, 363, 364, 365, 366, 370, 372, 374, 378, 380, 381, 382, 384, 385, 387, 388, 390, 394, 395, 396, 397, 399, 401, 402, 403, 404, 405, 406, 407, 408, 410, 411, 412, 413, 416, 417, 418, 419, 420, 421, 422, 425, 426, 429, 431, 432, 433, 434, 435, 437, 440, 441, 442, 453, 455, 457, 458, 459, 462, 463, 469, 471, 472, 473, 474, 475, 476, 477, 478, 479, 481, 487, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 512, 514, 515, 516, 517, 518, 520, 521, 523, 526, 527, 529, 530, 531, 533, 534, 537, 538, 540, 541, 543, 544, 547, 550, 551, 552, 554, 556, 557, 558, 559, 560, 563, 565, 567, 568, 570, 571, 572, 573, 574, 576, 577, 579, 580, 581, 582, 583, 584, 587, 590, 592, 593, 594, 595, 596, 598, 602, 605, 607, 608, 609, 611, 614, 615, 619, 620, 621, 622, 624, 628, 638, 657, 673, 676, 688, 700, 708, 713, 715, 734, 737, 758, 759, 824, 832, 884, 885, 893, 960, 961, 973, 988, 1004, 1020, 1049, 1056], "shape": [1, 2, 10, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 49, 52, 53, 54, 56, 58, 59, 67, 68, 69, 70, 71, 74, 75, 87, 90, 92, 93, 94, 95, 96, 97, 112, 117, 124, 126, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 145, 146, 147, 148, 149, 152, 154, 155, 157, 158, 159, 160, 161, 163, 164, 165, 166, 168, 169, 172, 173, 176, 177, 178, 179, 180, 181, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 198, 200, 203, 204, 206, 207, 208, 209, 210, 211, 213, 215, 216, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 587, 588, 590, 591, 592, 593, 594, 595, 596, 598, 600, 601, 602, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 638, 652, 654, 656, 658, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 692, 693, 695, 697, 698, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 740, 743, 744, 745, 746, 747, 748, 749, 750, 753, 754, 755, 756, 757, 758, 759, 765, 766, 768, 769, 770, 771, 773, 774, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 841, 842, 845, 846, 847, 848, 849, 851, 854, 855, 856, 859, 860, 862, 864, 867, 868, 870, 871, 872, 873, 877, 879, 884, 885, 891, 892, 893, 894, 897, 898, 899, 901, 906, 907, 908, 910, 912, 913, 918, 919, 924, 932, 933, 934, 936, 938, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 960, 961, 964, 968, 969, 970, 971, 973, 974, 975, 979, 980, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1017, 1019, 1020, 1021, 1022, 1023, 1026, 1027, 1028, 1032, 1033, 1034, 1035, 1036, 1037, 1040, 1049, 1056], "3": [1, 2, 10, 14, 15, 16, 17, 19, 20, 21, 22, 23, 27, 28, 30, 31, 32, 33, 34, 35, 49, 52, 54, 55, 57, 58, 59, 67, 68, 69, 70, 71, 74, 75, 90, 92, 93, 94, 95, 96, 97, 103, 105, 112, 117, 118, 119, 120, 123, 124, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 145, 146, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 172, 173, 174, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 202, 203, 204, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 261, 262, 263, 264, 268, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 293, 294, 295, 296, 297, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 314, 315, 317, 318, 319, 323, 325, 326, 328, 334, 336, 343, 344, 345, 346, 348, 350, 351, 352, 353, 355, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 371, 372, 373, 374, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 394, 395, 396, 398, 399, 400, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 417, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 432, 433, 434, 435, 436, 438, 439, 454, 455, 456, 460, 461, 462, 464, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 502, 504, 505, 506, 509, 512, 513, 515, 516, 517, 519, 522, 524, 528, 529, 530, 531, 532, 535, 539, 543, 544, 545, 546, 548, 549, 550, 554, 557, 558, 559, 561, 562, 567, 569, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 587, 588, 591, 592, 593, 594, 595, 598, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 612, 614, 615, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 638, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 692, 693, 694, 695, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 740, 743, 744, 745, 747, 748, 749, 751, 752, 753, 754, 755, 756, 757, 758, 759, 765, 766, 768, 769, 770, 771, 772, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 793, 794, 795, 798, 799, 801, 802, 804, 806, 807, 808, 810, 812, 813, 814, 816, 820, 822, 824, 825, 826, 828, 830, 831, 832, 834, 835, 839, 841, 842, 845, 846, 847, 848, 849, 851, 854, 855, 856, 859, 860, 862, 864, 866, 867, 868, 869, 870, 871, 872, 873, 874, 876, 877, 880, 881, 891, 892, 893, 894, 897, 898, 901, 906, 907, 908, 910, 912, 913, 918, 919, 920, 921, 922, 923, 924, 925, 926, 932, 933, 934, 936, 937, 938, 941, 942, 943, 944, 945, 946, 949, 950, 951, 952, 953, 954, 955, 956, 957, 959, 960, 961, 962, 964, 968, 970, 971, 972, 973, 974, 976, 982, 983, 985, 986, 987, 989, 992, 994, 998, 1002, 1005, 1009, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1025, 1026, 1029, 1030, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1040, 1049, 1056, 1057], "1": [1, 2, 10, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 27, 28, 30, 31, 32, 33, 34, 35, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 67, 68, 69, 70, 71, 74, 75, 90, 92, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 112, 113, 117, 118, 119, 120, 121, 124, 126, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 202, 203, 204, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 291, 293, 294, 295, 296, 297, 298, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 322, 323, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 510, 512, 513, 514, 515, 516, 517, 518, 520, 521, 523, 524, 525, 526, 527, 529, 530, 531, 532, 533, 537, 538, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 565, 568, 569, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 598, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 616, 617, 618, 619, 620, 621, 622, 623, 624, 628, 629, 638, 652, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 686, 687, 688, 689, 690, 692, 693, 694, 695, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 740, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 765, 766, 769, 770, 771, 772, 774, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 792, 793, 794, 795, 796, 797, 798, 799, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 838, 840, 841, 842, 845, 846, 847, 848, 849, 851, 854, 855, 856, 859, 860, 862, 864, 866, 867, 868, 869, 870, 871, 872, 873, 874, 876, 877, 879, 881, 884, 885, 891, 892, 893, 894, 896, 897, 898, 901, 906, 907, 908, 910, 912, 913, 918, 920, 921, 922, 923, 924, 925, 926, 932, 933, 934, 936, 937, 938, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 964, 965, 968, 969, 970, 971, 972, 973, 974, 975, 976, 978, 985, 987, 988, 994, 1000, 1001, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1049, 1056, 1057], "2": [1, 2, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 27, 28, 30, 31, 32, 33, 34, 35, 49, 52, 54, 55, 57, 58, 59, 67, 68, 69, 70, 71, 74, 75, 90, 92, 93, 94, 95, 96, 97, 103, 112, 117, 118, 119, 120, 123, 124, 126, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 166, 167, 168, 169, 170, 172, 174, 176, 177, 178, 179, 180, 181, 182, 183, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 202, 203, 204, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 276, 278, 279, 280, 281, 282, 283, 284, 285, 291, 293, 295, 296, 297, 298, 299, 300, 303, 304, 305, 306, 307, 308, 309, 310, 312, 313, 316, 318, 319, 322, 323, 324, 326, 327, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 351, 352, 354, 355, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 373, 374, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 454, 455, 456, 457, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 502, 503, 504, 505, 506, 508, 510, 513, 515, 516, 517, 518, 519, 521, 522, 523, 524, 525, 527, 528, 530, 531, 532, 533, 534, 536, 537, 538, 540, 541, 543, 544, 545, 546, 548, 549, 550, 551, 553, 554, 555, 556, 557, 558, 559, 561, 562, 563, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 587, 588, 590, 591, 592, 593, 594, 595, 596, 598, 600, 601, 602, 603, 604, 605, 607, 608, 609, 611, 614, 618, 619, 620, 621, 622, 624, 627, 628, 629, 638, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 675, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 688, 689, 690, 692, 693, 694, 695, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 740, 743, 744, 746, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 765, 769, 770, 771, 772, 773, 777, 778, 781, 782, 783, 784, 785, 786, 787, 788, 792, 794, 796, 797, 800, 802, 807, 808, 814, 816, 817, 818, 823, 824, 825, 826, 829, 832, 834, 836, 838, 839, 840, 841, 842, 845, 846, 847, 848, 849, 851, 854, 855, 856, 859, 860, 862, 864, 866, 867, 868, 869, 870, 871, 872, 873, 874, 876, 877, 881, 891, 892, 893, 894, 897, 898, 899, 901, 906, 907, 908, 910, 912, 913, 915, 918, 919, 920, 921, 922, 923, 924, 925, 926, 932, 933, 934, 936, 937, 938, 941, 942, 943, 944, 945, 946, 947, 948, 949, 951, 952, 953, 954, 955, 956, 957, 959, 960, 961, 962, 964, 968, 970, 972, 973, 974, 975, 976, 978, 980, 985, 986, 987, 988, 991, 992, 993, 994, 995, 997, 1000, 1001, 1003, 1004, 1006, 1007, 1008, 1010, 1011, 1017, 1018, 1019, 1020, 1021, 1022, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1033, 1034, 1035, 1036, 1037, 1038, 1040, 1049, 1056, 1057], "column_0": [1, 133, 222, 254], "register_dataframe_namespac": [1, 69, 70, 71], "split": [1, 31, 68, 171, 254, 530, 531, 1000, 1001], "splitfram": [1, 68], "df": [1, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 27, 28, 30, 31, 32, 33, 34, 35, 49, 52, 53, 68, 69, 90, 91, 92, 93, 94, 95, 96, 97, 102, 103, 112, 122, 124, 130, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 147, 148, 149, 150, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 174, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 202, 203, 204, 206, 207, 208, 209, 210, 212, 213, 214, 215, 216, 217, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 291, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 415, 416, 417, 418, 419, 420, 421, 422, 425, 426, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 537, 538, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 588, 590, 591, 592, 593, 594, 595, 596, 598, 601, 602, 604, 605, 606, 607, 608, 609, 610, 611, 614, 618, 619, 620, 621, 622, 623, 624, 627, 628, 629, 638, 670, 671, 708, 709, 715, 718, 721, 730, 734, 737, 758, 759, 769, 824, 884, 885, 893, 988, 995, 1000, 1001, 1027, 1049, 1057], "_df": [1, 68], "by_alternate_row": 1, "list": [1, 2, 30, 31, 38, 52, 56, 67, 68, 70, 73, 90, 92, 93, 94, 96, 97, 99, 100, 101, 102, 103, 104, 106, 108, 109, 110, 112, 113, 122, 123, 124, 126, 137, 140, 143, 144, 145, 149, 155, 157, 158, 163, 170, 182, 185, 195, 196, 197, 200, 207, 213, 214, 222, 223, 224, 225, 231, 234, 235, 254, 262, 284, 310, 365, 371, 380, 437, 448, 449, 464, 470, 476, 477, 481, 482, 483, 484, 485, 486, 488, 489, 490, 504, 505, 516, 529, 543, 544, 549, 553, 569, 572, 576, 577, 588, 591, 599, 601, 603, 619, 621, 622, 627, 638, 657, 658, 660, 662, 669, 670, 684, 695, 701, 707, 708, 712, 713, 716, 717, 734, 737, 759, 772, 785, 839, 844, 849, 852, 856, 857, 867, 936, 942, 946, 947, 948, 949, 950, 951, 953, 954, 955, 958, 986, 999, 1020, 1029, 1032, 1049, 1057], "with_row_count": [1, 254, 439, 482, 483, 485, 488, 489, 490, 638, 734, 961, 1049], "name": [1, 16, 20, 22, 29, 31, 33, 53, 54, 55, 56, 57, 68, 69, 70, 71, 74, 79, 90, 92, 93, 94, 95, 96, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 114, 115, 116, 120, 121, 122, 124, 125, 126, 127, 133, 134, 137, 140, 141, 142, 145, 150, 151, 154, 156, 157, 169, 170, 172, 173, 179, 180, 185, 187, 191, 195, 196, 197, 199, 200, 207, 213, 215, 217, 220, 221, 222, 223, 224, 225, 226, 231, 232, 233, 234, 254, 263, 268, 286, 288, 289, 290, 363, 383, 395, 429, 438, 447, 449, 464, 468, 505, 516, 543, 544, 546, 563, 564, 565, 566, 568, 570, 571, 572, 575, 576, 577, 578, 579, 581, 584, 585, 587, 592, 598, 599, 605, 606, 609, 610, 613, 615, 616, 617, 618, 621, 622, 623, 624, 626, 629, 638, 652, 657, 658, 659, 662, 669, 675, 676, 684, 685, 692, 694, 695, 701, 706, 707, 708, 709, 712, 714, 715, 716, 734, 737, 740, 773, 785, 912, 936, 941, 985, 986, 994, 1013, 1015, 1026, 1027, 1031, 1049, 1056, 1057], "n": [1, 12, 15, 23, 34, 38, 40, 54, 55, 68, 69, 70, 71, 99, 101, 102, 112, 133, 135, 146, 158, 161, 170, 171, 175, 196, 197, 198, 208, 210, 211, 214, 216, 228, 239, 248, 254, 291, 309, 312, 317, 318, 325, 350, 355, 366, 379, 400, 408, 409, 414, 427, 429, 465, 466, 476, 488, 490, 492, 502, 507, 524, 527, 530, 531, 533, 536, 548, 550, 554, 555, 560, 562, 579, 587, 588, 596, 598, 612, 615, 616, 617, 620, 624, 628, 630, 638, 654, 656, 670, 672, 679, 702, 704, 705, 710, 721, 730, 734, 737, 743, 765, 773, 784, 787, 793, 794, 801, 830, 835, 845, 846, 855, 882, 891, 892, 897, 910, 912, 932, 953, 955, 957, 972, 976, 994, 1000, 1001, 1006, 1019, 1021, 1028, 1033, 1038, 1049, 1056, 1057], "filter": [1, 68, 104, 112, 113, 117, 142, 166, 167, 168, 236, 254, 513, 532, 561, 594, 638, 659, 663, 673, 718, 734, 737, 960, 1049], "col": [1, 12, 28, 31, 67, 68, 69, 70, 94, 96, 112, 122, 124, 133, 145, 149, 157, 158, 159, 167, 169, 174, 183, 186, 195, 200, 207, 224, 231, 234, 254, 260, 261, 262, 263, 264, 265, 266, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 286, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 376, 377, 381, 382, 383, 384, 386, 387, 389, 390, 391, 394, 395, 396, 397, 398, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 415, 416, 417, 418, 419, 420, 421, 422, 425, 426, 429, 430, 431, 432, 433, 434, 435, 436, 439, 440, 441, 442, 453, 454, 456, 457, 458, 459, 460, 461, 463, 464, 465, 466, 467, 469, 470, 471, 472, 473, 474, 475, 476, 477, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 498, 499, 500, 501, 502, 504, 505, 506, 507, 508, 509, 510, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 537, 538, 540, 541, 542, 543, 544, 545, 547, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 565, 567, 573, 575, 577, 578, 582, 583, 584, 590, 593, 594, 595, 596, 597, 602, 605, 609, 613, 614, 622, 629, 638, 655, 662, 666, 669, 670, 671, 673, 678, 688, 695, 701, 708, 712, 713, 716, 734, 737, 758, 759, 769, 821, 824, 884, 885, 893, 942, 960, 961, 988, 1004, 1049, 1057], "0": [1, 10, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 31, 35, 48, 49, 52, 57, 67, 68, 69, 71, 101, 102, 103, 105, 106, 110, 112, 114, 115, 116, 117, 118, 121, 122, 123, 124, 126, 133, 135, 136, 138, 139, 140, 143, 147, 148, 152, 153, 155, 156, 157, 158, 160, 164, 169, 170, 171, 172, 174, 176, 177, 178, 181, 182, 183, 184, 187, 188, 189, 193, 196, 197, 198, 199, 200, 204, 206, 207, 208, 209, 215, 216, 217, 218, 219, 222, 225, 227, 228, 231, 232, 234, 236, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 254, 260, 262, 263, 265, 270, 271, 272, 273, 274, 275, 278, 279, 280, 292, 293, 296, 297, 299, 300, 301, 302, 304, 309, 310, 311, 314, 315, 326, 330, 331, 333, 334, 340, 346, 347, 352, 358, 359, 360, 361, 362, 364, 366, 367, 368, 369, 372, 373, 376, 377, 378, 382, 385, 388, 389, 391, 392, 393, 395, 396, 398, 403, 404, 407, 410, 413, 420, 429, 432, 433, 434, 436, 437, 439, 440, 441, 442, 453, 454, 456, 458, 459, 460, 461, 462, 463, 465, 466, 467, 470, 471, 472, 473, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 497, 499, 500, 501, 502, 506, 507, 515, 516, 534, 536, 542, 545, 547, 551, 552, 553, 555, 560, 561, 563, 569, 570, 571, 572, 573, 574, 575, 577, 579, 581, 582, 587, 589, 591, 594, 600, 601, 607, 608, 612, 613, 614, 615, 619, 625, 626, 627, 628, 629, 630, 638, 654, 655, 658, 660, 664, 665, 669, 670, 675, 678, 683, 687, 689, 690, 694, 695, 698, 699, 701, 702, 710, 712, 713, 714, 716, 718, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729, 734, 737, 743, 745, 746, 747, 748, 749, 750, 751, 753, 755, 766, 770, 771, 773, 778, 779, 784, 785, 786, 788, 802, 806, 807, 808, 809, 810, 811, 812, 813, 814, 819, 820, 826, 827, 832, 838, 840, 841, 842, 847, 851, 854, 856, 864, 866, 868, 870, 871, 872, 873, 879, 880, 893, 896, 912, 918, 921, 922, 932, 936, 937, 938, 945, 946, 948, 949, 951, 952, 953, 955, 956, 957, 969, 970, 971, 975, 976, 978, 985, 986, 988, 1004, 1006, 1012, 1022, 1023, 1026, 1031, 1032, 1036, 1038, 1039, 1049, 1057], "drop": [1, 93, 133, 141, 142, 223, 231, 254, 312, 314, 315, 408, 470, 638, 659, 707, 712, 734, 787, 789, 790, 891, 936, 1049], "aaa": [1, 31, 254, 509, 543, 544, 979], "bbb": [1, 31, 254, 543, 544, 737], "ccc": [1, 31, 254, 543, 544], "ddd": [1, 31, 254, 543, 544], "eee": [1, 31, 254, 737], "fff": 1, "column": [1, 15, 16, 19, 20, 22, 31, 33, 38, 58, 67, 68, 74, 77, 79, 90, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 104, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 119, 124, 132, 133, 134, 138, 140, 141, 142, 143, 145, 150, 151, 154, 156, 157, 158, 159, 163, 164, 169, 170, 172, 173, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 195, 196, 197, 199, 200, 201, 207, 208, 209, 213, 215, 217, 218, 219, 221, 222, 223, 224, 225, 226, 227, 228, 231, 232, 234, 254, 263, 264, 266, 268, 278, 310, 318, 320, 321, 322, 326, 328, 329, 330, 332, 334, 336, 339, 342, 343, 346, 348, 349, 351, 353, 354, 356, 363, 365, 369, 371, 383, 395, 405, 411, 425, 428, 429, 439, 445, 447, 449, 464, 468, 470, 474, 476, 477, 482, 483, 484, 485, 486, 488, 489, 490, 497, 504, 505, 514, 530, 531, 534, 535, 536, 537, 539, 546, 561, 563, 564, 565, 566, 568, 569, 570, 571, 572, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 592, 593, 594, 596, 597, 598, 599, 600, 601, 602, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 638, 652, 658, 659, 660, 662, 669, 670, 671, 675, 676, 680, 681, 682, 683, 684, 686, 687, 688, 690, 692, 694, 695, 696, 701, 702, 703, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 718, 734, 737, 741, 742, 785, 796, 797, 798, 802, 804, 805, 809, 811, 814, 816, 819, 822, 823, 826, 828, 829, 831, 833, 834, 836, 844, 888, 894, 908, 911, 936, 942, 966, 984, 1000, 1001, 1004, 1005, 1006, 1007, 1009, 1017, 1026, 1027, 1049, 1057], "txt": [1, 12, 112], "utf8": [1, 10, 18, 58, 75, 93, 97, 101, 102, 112, 121, 123, 126, 143, 144, 145, 152, 199, 217, 254, 288, 348, 351, 416, 439, 508, 512, 514, 515, 516, 518, 519, 528, 529, 530, 531, 534, 535, 536, 537, 539, 576, 578, 638, 660, 662, 694, 734, 737, 828, 831, 878, 899, 978, 982, 984, 985, 986, 988, 989, 998, 999, 1000, 1001, 1004, 1005, 1006, 1007, 1009, 1049], "register_lazyframe_namespac": [1, 68, 69, 71], "dtypeoper": [1, 70], "ldf": [1, 70, 716, 717, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729], "_ldf": [1, 70], "upcast_integer_typ": [1, 70], "with_column": [1, 12, 70, 159, 186, 254, 261, 263, 268, 279, 288, 293, 295, 298, 299, 300, 305, 308, 310, 312, 316, 322, 324, 342, 344, 348, 351, 354, 358, 359, 367, 368, 373, 376, 377, 378, 382, 383, 386, 389, 391, 392, 393, 395, 398, 409, 410, 415, 430, 436, 438, 439, 454, 456, 460, 461, 464, 465, 466, 467, 468, 470, 473, 480, 482, 483, 484, 485, 486, 488, 489, 490, 509, 513, 516, 519, 522, 524, 525, 528, 530, 531, 532, 542, 545, 546, 553, 555, 562, 564, 566, 567, 575, 578, 585, 588, 591, 601, 604, 606, 610, 619, 623, 627, 629, 638, 671, 688, 734, 737, 769, 824, 893], "tp": [1, 70], "cast": [1, 69, 70, 75, 90, 152, 158, 159, 186, 218, 231, 254, 267, 295, 307, 308, 317, 348, 351, 439, 463, 466, 475, 517, 518, 542, 547, 553, 578, 619, 638, 670, 671, 688, 712, 734, 737, 769, 782, 783, 793, 828, 831, 940, 987, 988, 1018, 1027, 1032, 1049], "int64": [1, 2, 31, 33, 69, 70, 97, 101, 143, 152, 158, 159, 174, 186, 199, 212, 218, 254, 281, 282, 283, 284, 307, 308, 323, 327, 331, 333, 335, 340, 347, 363, 466, 475, 517, 547, 553, 569, 576, 592, 600, 601, 603, 615, 621, 638, 655, 660, 670, 671, 673, 678, 688, 694, 715, 734, 756, 757, 758, 759, 782, 783, 799, 803, 810, 812, 815, 820, 827, 940, 959, 1018, 1030, 1031, 1032, 1049], "int8": [1, 70, 152, 254, 307, 308, 547, 612, 615, 630, 638, 782, 783, 787, 919, 943, 1018, 1036, 1049], "int16": [1, 70, 307, 308, 547, 638, 737, 782, 783, 919, 1018, 1028, 1049], "int32": [1, 70, 90, 93, 97, 123, 124, 158, 159, 171, 254, 293, 329, 356, 523, 553, 615, 638, 670, 671, 734, 737, 805, 836, 918, 993, 1032, 1049], "b": [1, 27, 28, 30, 32, 35, 54, 55, 57, 58, 59, 70, 74, 75, 90, 92, 93, 94, 95, 96, 97, 105, 134, 135, 136, 137, 139, 140, 141, 142, 143, 144, 145, 147, 148, 149, 150, 152, 153, 155, 156, 157, 158, 160, 161, 163, 164, 166, 168, 169, 170, 171, 172, 174, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 193, 194, 195, 196, 197, 198, 199, 200, 203, 204, 206, 207, 208, 209, 210, 211, 212, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 261, 263, 267, 268, 280, 285, 286, 288, 289, 290, 293, 295, 303, 310, 313, 314, 315, 363, 365, 367, 368, 369, 371, 374, 378, 380, 382, 383, 385, 388, 389, 390, 391, 392, 393, 395, 399, 405, 409, 410, 415, 416, 418, 430, 438, 455, 462, 464, 466, 468, 470, 473, 478, 480, 497, 503, 505, 514, 517, 524, 546, 557, 559, 561, 563, 564, 565, 566, 567, 568, 572, 574, 575, 576, 578, 579, 580, 581, 582, 583, 584, 585, 591, 592, 593, 594, 595, 598, 602, 604, 605, 606, 607, 608, 609, 610, 611, 614, 616, 617, 620, 621, 622, 623, 624, 628, 638, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 669, 670, 672, 675, 677, 678, 679, 680, 681, 682, 683, 684, 686, 687, 688, 689, 690, 692, 693, 694, 695, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 712, 713, 714, 716, 717, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 740, 743, 769, 786, 788, 838, 839, 845, 848, 860, 867, 878, 892, 893, 898, 913, 941, 959, 984, 987, 994, 1017, 1031, 1035, 1049, 1056], "4": [1, 2, 15, 23, 27, 28, 30, 31, 32, 35, 49, 52, 54, 55, 57, 58, 59, 67, 68, 69, 70, 71, 74, 75, 90, 92, 93, 94, 95, 96, 97, 112, 118, 119, 120, 126, 133, 134, 135, 136, 139, 142, 145, 146, 147, 148, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 172, 173, 174, 177, 179, 180, 182, 183, 185, 186, 187, 188, 192, 196, 197, 202, 207, 210, 211, 212, 213, 214, 215, 220, 221, 222, 224, 225, 226, 227, 229, 230, 231, 232, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 260, 261, 262, 263, 265, 267, 268, 280, 281, 282, 283, 285, 291, 293, 296, 297, 298, 299, 300, 303, 304, 305, 306, 307, 308, 309, 311, 313, 314, 315, 318, 322, 327, 334, 335, 336, 342, 343, 345, 346, 347, 348, 351, 352, 353, 354, 356, 358, 359, 364, 365, 367, 368, 371, 372, 373, 374, 376, 377, 379, 380, 381, 382, 383, 392, 393, 395, 398, 399, 400, 407, 408, 409, 410, 411, 414, 415, 423, 424, 427, 430, 433, 436, 438, 439, 454, 456, 460, 461, 463, 464, 466, 467, 468, 470, 471, 473, 477, 478, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 493, 495, 496, 499, 503, 504, 505, 506, 509, 519, 520, 522, 523, 524, 526, 528, 530, 531, 534, 543, 544, 545, 546, 548, 549, 550, 553, 554, 555, 562, 564, 566, 567, 568, 570, 571, 572, 573, 574, 575, 576, 578, 579, 580, 581, 582, 583, 584, 585, 591, 593, 594, 598, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 619, 620, 621, 622, 623, 624, 626, 628, 629, 638, 652, 654, 655, 656, 659, 661, 662, 663, 664, 665, 667, 669, 670, 671, 672, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 688, 689, 690, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 708, 709, 710, 711, 712, 714, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 743, 746, 753, 756, 757, 758, 765, 771, 772, 774, 784, 786, 788, 802, 803, 809, 811, 814, 815, 816, 817, 818, 819, 823, 825, 826, 827, 828, 831, 832, 833, 834, 845, 847, 848, 855, 856, 859, 860, 862, 867, 870, 871, 872, 873, 877, 891, 892, 893, 894, 897, 898, 906, 907, 910, 913, 919, 925, 932, 933, 934, 936, 938, 942, 945, 949, 951, 952, 953, 954, 955, 957, 959, 969, 973, 974, 979, 989, 990, 992, 993, 996, 998, 1000, 1001, 1004, 1017, 1019, 1020, 1021, 1028, 1031, 1032, 1033, 1040, 1049, 1057], "c": [1, 27, 28, 30, 32, 35, 54, 55, 57, 58, 59, 68, 70, 74, 75, 93, 95, 97, 105, 112, 122, 134, 135, 136, 137, 139, 140, 141, 142, 143, 145, 149, 150, 152, 153, 155, 156, 157, 158, 161, 163, 164, 171, 172, 174, 176, 177, 178, 179, 181, 182, 183, 184, 185, 187, 188, 189, 191, 193, 194, 195, 198, 199, 200, 203, 204, 206, 207, 208, 209, 210, 212, 216, 217, 218, 219, 221, 222, 225, 226, 228, 229, 231, 234, 237, 238, 239, 240, 241, 242, 244, 247, 248, 254, 261, 263, 268, 285, 383, 395, 405, 416, 418, 438, 464, 466, 497, 530, 534, 557, 559, 564, 566, 568, 574, 575, 576, 578, 579, 580, 581, 582, 583, 585, 593, 594, 595, 598, 602, 604, 605, 606, 607, 608, 609, 610, 611, 620, 622, 623, 624, 628, 638, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 666, 669, 670, 675, 678, 684, 687, 689, 692, 693, 694, 695, 699, 700, 701, 706, 709, 712, 713, 716, 719, 720, 721, 722, 723, 724, 726, 729, 730, 734, 737, 786, 860, 878, 1000, 1004, 1035, 1049], "5": [1, 10, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 27, 28, 30, 32, 35, 55, 57, 59, 67, 68, 70, 71, 74, 90, 93, 94, 95, 96, 97, 99, 102, 118, 124, 133, 135, 136, 139, 145, 146, 147, 148, 152, 154, 155, 156, 157, 158, 159, 161, 162, 164, 165, 167, 169, 170, 173, 174, 175, 177, 179, 182, 183, 185, 187, 188, 189, 192, 197, 202, 207, 210, 211, 212, 213, 214, 217, 220, 225, 227, 230, 231, 232, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 261, 262, 265, 286, 289, 290, 291, 293, 295, 297, 298, 299, 300, 309, 310, 311, 312, 313, 318, 319, 323, 344, 346, 347, 348, 351, 353, 359, 362, 363, 366, 368, 372, 373, 376, 377, 379, 380, 383, 386, 389, 391, 392, 393, 395, 398, 400, 407, 409, 410, 411, 414, 415, 420, 426, 427, 430, 454, 456, 461, 463, 464, 465, 466, 470, 471, 473, 477, 478, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 493, 499, 505, 510, 518, 519, 522, 523, 542, 545, 548, 550, 554, 555, 567, 568, 569, 573, 574, 575, 577, 579, 580, 581, 582, 583, 584, 585, 587, 590, 591, 592, 593, 594, 598, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 614, 620, 622, 623, 624, 628, 638, 654, 655, 656, 661, 662, 663, 664, 665, 667, 669, 670, 671, 672, 674, 676, 677, 678, 679, 682, 683, 684, 689, 697, 698, 699, 700, 701, 702, 703, 704, 705, 711, 712, 714, 716, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 743, 746, 750, 753, 765, 769, 772, 774, 780, 784, 785, 786, 787, 788, 794, 795, 796, 797, 798, 799, 824, 826, 827, 828, 829, 831, 833, 834, 842, 845, 846, 855, 856, 859, 860, 892, 893, 894, 897, 898, 901, 910, 913, 918, 919, 925, 932, 933, 934, 936, 937, 938, 942, 945, 946, 947, 948, 950, 951, 954, 957, 959, 969, 975, 980, 988, 989, 993, 1019, 1033, 1036, 1040, 1049, 1057], "6": [1, 27, 28, 30, 31, 32, 33, 34, 35, 55, 57, 59, 68, 70, 74, 90, 93, 94, 95, 96, 133, 137, 140, 141, 142, 143, 145, 146, 149, 150, 153, 154, 155, 156, 158, 159, 161, 163, 164, 165, 167, 169, 170, 172, 176, 177, 178, 179, 181, 184, 187, 188, 189, 191, 192, 193, 195, 196, 197, 198, 199, 200, 203, 204, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 217, 218, 219, 222, 224, 225, 226, 227, 228, 229, 231, 232, 239, 247, 248, 254, 261, 265, 268, 285, 293, 307, 308, 310, 313, 318, 322, 341, 342, 343, 346, 354, 357, 359, 367, 368, 374, 379, 380, 382, 400, 401, 402, 409, 411, 415, 430, 461, 463, 469, 470, 472, 473, 474, 477, 479, 482, 483, 484, 485, 486, 488, 489, 490, 493, 505, 510, 514, 519, 522, 523, 545, 548, 550, 562, 567, 582, 583, 584, 591, 594, 604, 622, 638, 656, 657, 658, 659, 660, 661, 662, 663, 666, 667, 670, 671, 672, 674, 675, 677, 679, 680, 684, 687, 689, 692, 694, 695, 697, 698, 699, 700, 701, 704, 705, 708, 709, 711, 712, 714, 715, 721, 729, 730, 734, 737, 772, 778, 782, 783, 788, 821, 834, 856, 884, 885, 892, 894, 898, 913, 925, 938, 942, 944, 949, 951, 953, 955, 959, 980, 984, 989, 993, 1018, 1049, 1056, 1057], "7": [1, 27, 28, 30, 31, 32, 33, 34, 35, 57, 68, 70, 74, 118, 137, 138, 139, 140, 141, 143, 145, 149, 150, 153, 158, 159, 161, 163, 165, 172, 176, 177, 178, 180, 181, 184, 187, 189, 191, 193, 195, 197, 198, 199, 200, 203, 204, 206, 208, 209, 210, 211, 216, 217, 218, 219, 225, 226, 227, 228, 229, 254, 261, 265, 283, 308, 310, 318, 322, 342, 344, 345, 352, 354, 356, 364, 379, 382, 400, 409, 415, 430, 439, 463, 470, 473, 477, 489, 505, 537, 548, 550, 567, 582, 583, 587, 594, 604, 622, 638, 657, 658, 660, 662, 666, 670, 671, 672, 674, 675, 679, 685, 687, 690, 692, 694, 695, 704, 705, 709, 715, 734, 737, 750, 758, 794, 798, 805, 824, 825, 832, 834, 879, 892, 898, 913, 919, 942, 954, 1007, 1049, 1057], "float32": [1, 28, 70, 152, 216, 217, 254, 603, 734, 737, 863, 918, 1049], "lazi": [1, 52, 53, 54, 55, 57, 70, 74, 112, 124, 173, 186, 254, 268, 596, 612, 615, 630, 638, 675, 676, 713, 716, 717, 718, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729, 734, 1056, 1057], "i16": [1, 70, 497, 638, 737, 919, 1028, 1049, 1057], "i32": [1, 70, 90, 93, 97, 123, 124, 200, 254, 293, 329, 356, 479, 497, 523, 629, 638, 695, 734, 805, 836, 918, 944, 993, 1049, 1057], "f32": [1, 70, 142, 216, 254, 410, 473, 497, 579, 591, 638, 659, 734, 737, 893, 918, 938, 1049], "i64": [1, 2, 15, 19, 49, 52, 54, 68, 69, 70, 71, 74, 90, 92, 93, 94, 95, 96, 97, 112, 133, 134, 135, 136, 137, 140, 142, 143, 145, 146, 148, 149, 154, 155, 156, 157, 158, 159, 161, 163, 164, 165, 166, 168, 172, 173, 176, 179, 180, 181, 185, 186, 187, 188, 191, 192, 193, 194, 198, 200, 203, 204, 206, 207, 209, 210, 211, 213, 219, 221, 222, 223, 224, 225, 226, 227, 229, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 244, 247, 248, 254, 261, 263, 267, 268, 281, 282, 283, 284, 285, 291, 295, 298, 299, 300, 305, 306, 307, 308, 310, 312, 313, 323, 325, 327, 331, 333, 335, 340, 347, 350, 363, 365, 366, 368, 369, 370, 371, 373, 374, 379, 380, 381, 382, 383, 386, 389, 391, 392, 393, 395, 397, 400, 408, 409, 410, 411, 412, 413, 414, 415, 417, 419, 421, 422, 423, 424, 425, 426, 427, 430, 431, 435, 437, 438, 454, 455, 456, 464, 465, 466, 467, 468, 469, 470, 473, 474, 475, 477, 478, 479, 480, 492, 494, 495, 497, 498, 499, 503, 504, 505, 524, 525, 543, 544, 545, 546, 547, 548, 549, 550, 554, 555, 556, 558, 561, 567, 569, 575, 576, 578, 582, 583, 584, 585, 590, 591, 592, 593, 594, 598, 600, 601, 602, 603, 604, 605, 606, 609, 610, 614, 618, 619, 622, 623, 624, 629, 638, 652, 654, 656, 658, 659, 662, 663, 665, 666, 667, 669, 670, 671, 672, 674, 675, 676, 677, 679, 680, 681, 684, 685, 686, 688, 689, 692, 693, 695, 697, 698, 700, 701, 703, 704, 705, 706, 707, 708, 709, 712, 714, 716, 717, 718, 720, 721, 722, 723, 726, 729, 730, 734, 737, 740, 743, 744, 756, 757, 758, 759, 765, 769, 774, 777, 780, 781, 782, 783, 786, 799, 801, 803, 810, 812, 815, 820, 827, 830, 845, 846, 848, 849, 855, 859, 867, 891, 892, 893, 894, 897, 898, 906, 907, 908, 910, 912, 913, 924, 936, 941, 942, 944, 947, 950, 954, 957, 960, 961, 964, 968, 969, 973, 974, 1017, 1019, 1020, 1021, 1027, 1033, 1034, 1037, 1040, 1049, 1056, 1057], "register_series_namespac": [1, 68, 69, 70], "math": [1, 71, 311, 570, 571, 638, 778, 970, 1022, 1049], "mathshortcut": [1, 71], "": [1, 2, 28, 31, 52, 55, 59, 71, 90, 97, 101, 102, 103, 113, 126, 134, 140, 142, 144, 145, 157, 158, 164, 172, 173, 185, 187, 192, 193, 197, 200, 207, 211, 215, 221, 223, 224, 225, 231, 254, 268, 325, 348, 351, 363, 396, 414, 416, 423, 424, 427, 437, 448, 455, 458, 459, 464, 465, 475, 479, 481, 505, 509, 515, 516, 519, 520, 522, 524, 526, 528, 529, 531, 534, 535, 536, 539, 540, 542, 543, 544, 563, 564, 565, 566, 572, 576, 579, 584, 585, 592, 595, 596, 605, 606, 609, 610, 618, 619, 621, 622, 623, 638, 652, 658, 659, 662, 669, 670, 676, 695, 701, 706, 707, 708, 712, 718, 734, 737, 740, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 765, 766, 768, 771, 772, 773, 774, 777, 778, 779, 780, 781, 782, 783, 784, 785, 787, 788, 794, 801, 817, 818, 825, 828, 831, 832, 839, 841, 842, 846, 847, 848, 849, 851, 854, 855, 859, 860, 861, 862, 863, 864, 866, 867, 868, 869, 870, 871, 872, 873, 874, 876, 877, 878, 879, 880, 881, 891, 894, 897, 899, 901, 906, 907, 908, 910, 918, 919, 920, 921, 922, 923, 924, 925, 926, 928, 929, 932, 933, 934, 936, 937, 938, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 953, 954, 955, 956, 957, 959, 960, 961, 962, 964, 968, 969, 970, 971, 973, 974, 976, 979, 980, 982, 983, 984, 985, 986, 987, 989, 990, 991, 992, 993, 994, 996, 997, 998, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1015, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1025, 1026, 1027, 1028, 1029, 1030, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1049], "_": [1, 67, 71, 187, 215, 254, 516, 530, 986, 1000, 1026, 1049], "squar": [1, 71, 236, 396, 506, 638, 718, 880, 975, 1049], "cube": [1, 71, 296, 467, 638, 770, 1049], "s2": [1, 120, 152, 254, 772, 788, 867, 879, 912, 925, 959, 1031, 1040, 1049], "renam": [1, 93, 101, 102, 200, 231, 234, 254, 263, 438, 451, 468, 544, 546, 618, 621, 638, 695, 712, 716, 734, 740, 792, 800, 1015, 1027, 1049], "n2": [1, 429], "in_plac": [1, 163, 205, 229, 254, 939, 941, 967, 974, 1049], "true": [1, 6, 10, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 30, 31, 33, 47, 48, 52, 54, 56, 73, 74, 75, 90, 91, 95, 97, 99, 101, 102, 104, 105, 106, 110, 112, 113, 114, 115, 116, 117, 119, 120, 121, 122, 124, 125, 126, 130, 132, 134, 135, 136, 139, 148, 152, 153, 155, 156, 157, 158, 159, 164, 166, 167, 168, 170, 173, 174, 177, 182, 183, 185, 187, 188, 195, 196, 197, 198, 200, 207, 213, 217, 218, 221, 222, 223, 224, 225, 227, 231, 235, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 254, 262, 263, 264, 265, 266, 267, 268, 279, 286, 287, 289, 290, 293, 304, 305, 306, 307, 308, 310, 317, 319, 322, 323, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 350, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 376, 377, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 396, 398, 401, 402, 406, 425, 428, 429, 436, 450, 460, 461, 463, 470, 475, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 497, 498, 502, 504, 505, 509, 511, 513, 517, 518, 523, 529, 530, 532, 534, 535, 536, 539, 543, 544, 549, 556, 559, 562, 563, 564, 565, 566, 567, 569, 572, 573, 579, 580, 587, 588, 594, 600, 601, 612, 615, 621, 626, 627, 629, 630, 638, 652, 654, 655, 656, 661, 663, 665, 669, 670, 671, 675, 676, 678, 680, 684, 689, 695, 699, 701, 706, 707, 708, 712, 717, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729, 734, 737, 741, 742, 743, 744, 754, 761, 766, 772, 773, 785, 792, 793, 795, 798, 799, 800, 801, 802, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 830, 832, 833, 834, 835, 836, 838, 840, 841, 842, 849, 853, 860, 861, 862, 863, 864, 866, 867, 868, 869, 870, 871, 872, 873, 874, 876, 877, 878, 880, 884, 885, 908, 911, 925, 933, 934, 936, 940, 952, 959, 972, 974, 979, 981, 983, 987, 988, 993, 999, 1000, 1002, 1004, 1005, 1006, 1009, 1030, 1031, 1039, 1040, 1049, 1056, 1057], "s3": [1, 30, 104, 113, 117, 254, 912, 1049], "n3": 1, "8": [1, 27, 28, 30, 32, 33, 34, 35, 46, 52, 57, 64, 66, 67, 68, 70, 71, 74, 118, 122, 133, 137, 138, 139, 140, 141, 142, 143, 145, 149, 150, 153, 156, 161, 163, 172, 176, 177, 178, 181, 189, 191, 193, 195, 197, 198, 199, 200, 203, 204, 206, 208, 209, 210, 211, 216, 217, 218, 219, 225, 226, 228, 229, 231, 254, 265, 267, 280, 292, 303, 305, 308, 309, 310, 314, 315, 318, 382, 399, 408, 409, 410, 415, 430, 456, 463, 467, 470, 477, 478, 497, 503, 505, 520, 526, 534, 550, 562, 568, 574, 579, 580, 581, 583, 585, 591, 593, 598, 602, 604, 605, 606, 607, 608, 609, 610, 611, 620, 623, 624, 628, 638, 657, 658, 659, 660, 662, 666, 672, 675, 679, 680, 689, 692, 694, 695, 704, 705, 709, 712, 715, 734, 737, 743, 784, 805, 856, 879, 891, 892, 893, 898, 913, 932, 936, 942, 945, 946, 949, 951, 953, 955, 990, 996, 1004, 1049, 1057], "9": [1, 27, 28, 30, 31, 32, 35, 52, 57, 67, 74, 133, 138, 139, 152, 159, 161, 165, 196, 197, 200, 210, 225, 226, 229, 231, 247, 254, 261, 265, 267, 280, 292, 303, 305, 308, 310, 311, 314, 315, 318, 353, 382, 387, 395, 399, 408, 422, 425, 463, 470, 472, 477, 481, 487, 489, 499, 503, 516, 537, 550, 567, 577, 582, 583, 627, 638, 671, 672, 674, 679, 695, 704, 709, 712, 729, 734, 786, 798, 809, 811, 819, 825, 826, 832, 833, 867, 879, 891, 908, 942, 946, 952, 954, 956, 969, 986, 1007, 1049], "27": [1, 71, 247, 308, 329, 343, 356, 638, 729, 1049, 1057], "16": [1, 31, 43, 61, 69, 158, 159, 231, 254, 305, 308, 382, 456, 467, 523, 567, 582, 590, 591, 594, 638, 670, 671, 699, 712, 734, 737, 825, 832, 932, 970, 993, 1022, 1049], "64": [1, 42, 45, 48, 63, 69, 71, 456, 467, 638, 734, 932, 1049], "25": [1, 31, 71, 97, 124, 139, 158, 159, 173, 227, 231, 254, 312, 322, 324, 329, 342, 345, 352, 354, 356, 470, 482, 483, 484, 485, 486, 488, 489, 490, 555, 596, 638, 670, 671, 676, 682, 710, 712, 734, 737, 786, 787, 800, 825, 832, 838, 856, 932, 936, 1049], "125": [1, 31, 71, 254, 261, 638, 932, 1049], "arg": [2, 3, 4, 5, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 55, 58, 59, 60, 61, 62, 63, 64, 65, 66, 186, 218, 254, 466, 572, 595, 638, 688, 734, 744, 1030, 1031, 1049], "ani": [2, 3, 4, 5, 8, 28, 30, 31, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 59, 60, 61, 62, 63, 64, 65, 66, 72, 90, 91, 92, 93, 94, 95, 96, 101, 102, 104, 105, 106, 108, 109, 110, 112, 113, 114, 116, 121, 123, 124, 126, 130, 133, 138, 142, 146, 148, 149, 152, 169, 170, 171, 185, 186, 195, 196, 197, 213, 214, 217, 218, 223, 225, 254, 261, 264, 265, 268, 293, 346, 358, 359, 368, 373, 376, 377, 387, 398, 405, 410, 436, 437, 439, 451, 454, 456, 460, 461, 463, 464, 466, 468, 477, 481, 493, 523, 534, 535, 536, 539, 545, 546, 549, 555, 562, 563, 566, 567, 579, 593, 602, 603, 629, 638, 659, 665, 688, 707, 734, 737, 743, 744, 788, 826, 845, 848, 867, 879, 888, 893, 919, 942, 946, 958, 961, 993, 1004, 1005, 1006, 1009, 1020, 1029, 1030, 1031, 1049, 1056, 1057], "kwarg": [2, 3, 4, 5, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 55, 58, 59, 60, 61, 62, 63, 64, 65, 66, 138, 186, 218, 254, 466, 638, 688, 734, 1031, 1049, 1056], "sourc": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 638, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 851, 852, 853, 854, 855, 856, 857, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1015, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1049, 1056], "nest": [2, 49, 58, 97, 144, 254, 649, 839, 1049, 1056, 1057], "fix": [2, 105, 122, 124, 355, 482, 483, 484, 485, 486, 488, 489, 490, 638, 835], "length": [2, 12, 49, 74, 112, 122, 158, 159, 206, 254, 309, 310, 345, 352, 424, 429, 448, 470, 479, 481, 482, 483, 484, 485, 486, 488, 489, 490, 503, 520, 522, 526, 528, 542, 612, 615, 616, 617, 630, 638, 670, 671, 689, 700, 734, 772, 784, 785, 794, 825, 832, 881, 907, 912, 930, 936, 944, 946, 947, 948, 949, 950, 951, 953, 954, 955, 973, 990, 992, 996, 998, 1012, 1049], "inner": [2, 49, 58, 75, 123, 172, 226, 254, 281, 282, 283, 284, 313, 416, 476, 553, 638, 675, 709, 715, 734, 756, 757, 758, 759, 788, 899, 1032, 1049], "width": [2, 24, 31, 101, 102, 254, 281, 282, 283, 284, 520, 526, 542, 734, 756, 757, 758, 759, 990, 996, 1012], "int": [2, 12, 13, 15, 23, 24, 28, 31, 35, 39, 48, 54, 57, 69, 93, 96, 99, 100, 101, 102, 103, 104, 105, 106, 110, 112, 113, 114, 115, 116, 122, 123, 124, 125, 126, 127, 128, 133, 134, 135, 144, 147, 148, 150, 160, 161, 162, 164, 169, 170, 171, 173, 175, 176, 177, 181, 182, 183, 193, 195, 198, 202, 203, 204, 206, 208, 209, 210, 211, 216, 219, 221, 225, 228, 230, 232, 239, 248, 254, 261, 285, 291, 298, 299, 300, 309, 312, 360, 361, 362, 366, 367, 368, 374, 378, 379, 400, 406, 408, 413, 414, 423, 424, 427, 428, 429, 463, 465, 466, 467, 470, 473, 476, 477, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 495, 496, 498, 503, 507, 515, 517, 520, 523, 524, 526, 528, 530, 531, 537, 542, 548, 549, 550, 554, 560, 562, 569, 579, 580, 586, 589, 590, 596, 598, 600, 601, 608, 611, 612, 615, 616, 617, 620, 621, 622, 624, 625, 628, 630, 638, 652, 654, 663, 664, 665, 672, 676, 679, 689, 697, 698, 700, 702, 704, 705, 706, 710, 711, 714, 721, 730, 734, 751, 752, 765, 766, 772, 773, 774, 775, 776, 784, 787, 839, 840, 841, 842, 846, 847, 848, 854, 855, 856, 879, 881, 882, 889, 890, 891, 896, 897, 906, 907, 910, 911, 912, 921, 925, 926, 928, 929, 930, 931, 932, 935, 936, 938, 942, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 960, 961, 964, 965, 968, 973, 976, 985, 987, 990, 993, 994, 996, 998, 1000, 1001, 1007, 1012, 1018, 1019, 1020, 1021, 1028, 1033, 1038, 1049, 1056, 1057], "polarsdatatyp": [2, 49, 101, 102, 107, 111, 112, 121, 122, 123, 124, 126, 133, 143, 254, 268, 293, 363, 437, 439, 517, 567, 569, 576, 592, 603, 604, 612, 615, 630, 638, 660, 734, 737, 744, 766, 919, 987, 1049], "pythondatatyp": [2, 49], "null": [2, 28, 30, 54, 67, 74, 93, 101, 102, 109, 112, 117, 132, 134, 135, 139, 142, 148, 152, 153, 165, 172, 177, 178, 184, 187, 189, 203, 204, 207, 208, 209, 213, 218, 221, 224, 226, 228, 231, 237, 254, 264, 266, 267, 268, 278, 285, 287, 298, 299, 300, 303, 305, 308, 312, 314, 315, 323, 327, 331, 333, 335, 340, 347, 359, 360, 361, 362, 363, 366, 367, 368, 374, 382, 389, 390, 391, 392, 393, 399, 401, 402, 408, 409, 412, 413, 415, 417, 423, 428, 429, 430, 439, 461, 462, 465, 474, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 495, 496, 497, 499, 504, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 519, 520, 522, 523, 526, 528, 530, 531, 532, 542, 543, 544, 553, 564, 566, 575, 577, 578, 580, 585, 592, 603, 606, 610, 616, 617, 621, 623, 629, 638, 652, 654, 659, 665, 674, 675, 687, 697, 698, 701, 706, 708, 709, 712, 713, 715, 719, 734, 744, 753, 761, 773, 774, 787, 790, 799, 803, 810, 812, 815, 820, 827, 840, 841, 842, 846, 848, 853, 859, 872, 873, 884, 885, 891, 898, 906, 911, 912, 913, 931, 932, 944, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 959, 964, 965, 969, 978, 979, 980, 981, 982, 983, 985, 986, 987, 988, 989, 990, 992, 993, 996, 998, 1000, 1001, 1002, 1028, 1030, 1031, 1032, 1039, 1049, 1056, 1057], "paramet": [2, 7, 9, 11, 12, 13, 14, 15, 18, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 38, 40, 47, 48, 49, 52, 53, 54, 55, 57, 59, 67, 68, 69, 70, 71, 73, 74, 75, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 119, 120, 121, 122, 123, 124, 125, 126, 127, 132, 133, 134, 135, 138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 157, 158, 159, 160, 161, 163, 164, 169, 170, 171, 172, 173, 175, 177, 179, 180, 182, 183, 185, 186, 187, 189, 191, 192, 193, 195, 196, 197, 198, 200, 201, 203, 204, 206, 207, 208, 209, 210, 213, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 234, 236, 239, 246, 248, 254, 261, 263, 264, 265, 266, 267, 268, 278, 284, 285, 286, 287, 288, 289, 290, 291, 293, 295, 298, 299, 300, 304, 305, 306, 307, 308, 309, 310, 312, 313, 317, 318, 319, 325, 341, 344, 345, 346, 348, 350, 351, 352, 355, 357, 358, 359, 360, 361, 362, 363, 366, 368, 369, 373, 374, 375, 376, 377, 378, 379, 382, 383, 387, 396, 398, 400, 405, 406, 407, 408, 409, 410, 413, 414, 415, 416, 423, 424, 425, 427, 428, 429, 430, 431, 432, 436, 437, 438, 439, 450, 454, 456, 460, 461, 463, 464, 465, 466, 467, 468, 470, 471, 473, 475, 476, 477, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 498, 502, 503, 504, 505, 507, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 520, 521, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 539, 542, 543, 544, 545, 546, 548, 549, 554, 555, 556, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 592, 594, 595, 596, 598, 599, 600, 601, 603, 604, 605, 606, 609, 610, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 638, 652, 654, 656, 658, 659, 661, 662, 663, 664, 665, 666, 668, 669, 670, 671, 672, 675, 676, 679, 680, 684, 685, 688, 689, 690, 691, 692, 695, 696, 697, 698, 699, 700, 701, 702, 704, 706, 707, 708, 709, 710, 712, 713, 714, 715, 716, 718, 721, 728, 730, 734, 737, 740, 743, 744, 753, 759, 760, 761, 762, 763, 764, 765, 766, 769, 773, 774, 775, 776, 780, 781, 782, 783, 784, 785, 786, 787, 788, 793, 794, 795, 801, 821, 824, 825, 826, 828, 830, 831, 832, 835, 838, 839, 840, 841, 842, 845, 846, 847, 848, 849, 854, 855, 856, 859, 860, 869, 875, 876, 880, 882, 888, 889, 890, 891, 892, 893, 896, 897, 898, 899, 906, 907, 908, 910, 911, 912, 913, 914, 919, 932, 936, 937, 938, 939, 940, 941, 942, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 964, 965, 968, 972, 973, 974, 976, 978, 979, 980, 981, 982, 983, 985, 986, 987, 988, 990, 991, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1009, 1012, 1013, 1015, 1019, 1020, 1026, 1027, 1028, 1029, 1030, 1031, 1033, 1034, 1037, 1038, 1039, 1040, 1049, 1056], "The": [2, 18, 29, 31, 35, 48, 49, 52, 56, 59, 67, 72, 73, 90, 92, 93, 94, 96, 99, 101, 103, 108, 109, 110, 112, 128, 133, 141, 143, 146, 156, 157, 158, 159, 160, 165, 170, 173, 180, 185, 195, 196, 197, 200, 217, 224, 227, 231, 234, 236, 254, 263, 285, 286, 287, 288, 322, 336, 341, 342, 345, 348, 352, 353, 363, 366, 374, 378, 428, 437, 464, 473, 476, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 498, 499, 502, 508, 511, 512, 517, 519, 520, 521, 526, 527, 533, 534, 542, 576, 592, 596, 616, 617, 618, 621, 629, 631, 632, 634, 638, 639, 640, 644, 645, 646, 670, 671, 672, 674, 676, 679, 680, 685, 689, 695, 708, 712, 716, 718, 734, 740, 743, 744, 760, 761, 762, 773, 798, 816, 821, 822, 825, 828, 832, 833, 845, 846, 854, 911, 938, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 961, 969, 972, 978, 981, 982, 987, 989, 990, 991, 996, 997, 1003, 1004, 1012, 1041, 1043, 1045, 1049, 1050, 1053, 1054, 1055, 1057], "size": [2, 13, 35, 48, 101, 102, 122, 123, 124, 126, 128, 144, 158, 225, 254, 477, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 569, 600, 601, 616, 617, 638, 670, 734, 839, 942, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 1049, 1057], "datatyp": [2, 28, 33, 49, 65, 90, 92, 93, 94, 96, 98, 105, 107, 108, 109, 111, 126, 143, 145, 152, 199, 254, 293, 363, 497, 553, 576, 592, 603, 638, 649, 662, 694, 715, 734, 744, 766, 786, 869, 874, 876, 878, 966, 1032, 1049], "valu": [2, 8, 11, 12, 15, 26, 28, 31, 33, 49, 50, 52, 56, 58, 65, 67, 74, 75, 93, 95, 101, 102, 103, 112, 117, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 132, 133, 134, 139, 142, 146, 147, 148, 153, 156, 158, 159, 160, 161, 165, 169, 170, 173, 175, 176, 177, 178, 179, 181, 183, 185, 187, 188, 189, 191, 195, 196, 197, 198, 203, 204, 207, 208, 209, 210, 213, 214, 218, 221, 222, 225, 226, 227, 228, 237, 238, 240, 241, 242, 244, 245, 254, 260, 261, 262, 264, 266, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 285, 287, 288, 289, 290, 291, 295, 296, 297, 298, 299, 300, 301, 302, 303, 305, 308, 309, 310, 312, 314, 315, 318, 322, 336, 342, 353, 358, 359, 360, 361, 362, 364, 365, 366, 367, 368, 370, 371, 372, 373, 374, 375, 376, 377, 378, 380, 381, 382, 383, 384, 385, 386, 388, 389, 391, 392, 393, 394, 397, 398, 399, 401, 402, 403, 404, 407, 408, 412, 413, 414, 417, 419, 420, 421, 423, 426, 427, 431, 433, 435, 436, 437, 439, 440, 441, 442, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 464, 465, 466, 467, 470, 471, 473, 476, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 493, 494, 495, 496, 499, 500, 501, 502, 504, 505, 506, 508, 509, 510, 511, 512, 513, 515, 516, 517, 518, 524, 525, 528, 530, 531, 532, 542, 545, 547, 549, 550, 551, 552, 554, 555, 556, 557, 558, 559, 562, 568, 575, 578, 580, 582, 583, 584, 585, 593, 594, 599, 602, 603, 605, 606, 607, 608, 609, 610, 611, 614, 615, 616, 617, 622, 623, 629, 638, 652, 659, 664, 665, 670, 671, 673, 674, 676, 681, 682, 683, 684, 686, 687, 690, 692, 697, 698, 701, 702, 703, 706, 709, 710, 715, 719, 720, 722, 723, 724, 726, 727, 734, 737, 739, 741, 742, 743, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 756, 757, 758, 759, 761, 762, 763, 764, 769, 771, 774, 775, 776, 778, 779, 784, 785, 786, 787, 789, 790, 794, 798, 816, 822, 833, 839, 840, 841, 842, 845, 846, 847, 848, 851, 853, 854, 855, 856, 857, 859, 860, 862, 864, 865, 867, 868, 870, 871, 872, 873, 877, 882, 884, 885, 886, 887, 890, 891, 895, 896, 897, 900, 902, 903, 904, 906, 910, 914, 919, 920, 921, 923, 924, 926, 928, 929, 930, 931, 932, 935, 936, 937, 938, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 957, 958, 959, 960, 961, 964, 965, 969, 970, 971, 972, 978, 979, 980, 981, 982, 983, 985, 986, 987, 988, 989, 992, 994, 995, 998, 1000, 1001, 1002, 1012, 1018, 1019, 1020, 1021, 1022, 1023, 1030, 1031, 1032, 1035, 1037, 1039, 1040, 1049, 1057], "within": [2, 49, 119, 120, 157, 158, 159, 173, 227, 254, 473, 505, 638, 670, 671, 676, 734, 1056], "exampl": [2, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 67, 68, 69, 70, 71, 74, 75, 90, 92, 93, 94, 95, 96, 97, 99, 102, 103, 104, 105, 112, 113, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 202, 203, 204, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 288, 289, 290, 291, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 587, 588, 590, 591, 592, 593, 594, 595, 596, 598, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 614, 615, 618, 619, 620, 621, 622, 623, 624, 626, 627, 628, 629, 630, 638, 649, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 692, 693, 694, 695, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 740, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 765, 766, 768, 769, 771, 772, 773, 774, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 838, 839, 840, 841, 842, 845, 846, 847, 848, 849, 851, 854, 855, 856, 859, 860, 861, 862, 863, 864, 866, 867, 868, 869, 870, 871, 872, 873, 874, 876, 877, 878, 879, 881, 884, 885, 891, 892, 893, 894, 897, 898, 899, 901, 906, 907, 908, 910, 912, 913, 918, 919, 920, 921, 922, 923, 924, 925, 926, 932, 933, 934, 936, 937, 938, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 959, 960, 961, 962, 964, 968, 969, 970, 971, 973, 974, 976, 978, 979, 980, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1049, 1056], "dtype": [2, 31, 38, 70, 74, 75, 90, 92, 94, 96, 97, 101, 102, 108, 109, 112, 121, 122, 123, 124, 126, 132, 158, 159, 173, 216, 217, 218, 254, 268, 293, 294, 298, 299, 300, 307, 308, 355, 363, 405, 428, 435, 437, 439, 475, 476, 482, 483, 484, 485, 486, 488, 489, 490, 497, 517, 534, 547, 549, 553, 558, 567, 569, 580, 592, 596, 600, 601, 603, 604, 612, 615, 621, 630, 638, 670, 671, 676, 734, 737, 756, 757, 766, 768, 773, 774, 775, 776, 782, 783, 786, 787, 835, 839, 863, 869, 876, 888, 911, 918, 919, 943, 959, 966, 987, 1004, 1018, 1028, 1030, 1031, 1032, 1036, 1049, 1057], "method": [2, 3, 4, 5, 8, 27, 32, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 74, 91, 101, 102, 105, 121, 130, 133, 142, 146, 157, 165, 170, 183, 189, 195, 196, 197, 223, 231, 236, 246, 254, 261, 264, 265, 268, 292, 348, 351, 358, 359, 366, 373, 376, 377, 382, 395, 398, 436, 454, 456, 460, 461, 463, 467, 468, 471, 473, 482, 483, 484, 485, 486, 488, 489, 490, 537, 545, 546, 555, 557, 562, 567, 579, 587, 613, 615, 626, 631, 632, 634, 638, 639, 640, 643, 644, 645, 646, 649, 659, 674, 690, 707, 712, 718, 728, 734, 743, 744, 828, 831, 845, 846, 859, 937, 938, 951, 1007, 1032, 1041, 1043, 1045, 1049, 1050, 1053, 1054, 1055], "attribut": [2, 3, 4, 5, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 51, 59, 60, 61, 62, 63, 64, 65, 66, 121, 254, 631, 632, 634, 639, 640, 644, 645, 646, 734, 1041, 1043, 1045, 1050, 1053, 1054, 1055], "A": [5, 28, 31, 52, 55, 73, 97, 101, 102, 103, 110, 112, 128, 152, 158, 173, 187, 213, 225, 226, 227, 231, 254, 260, 292, 310, 318, 358, 359, 366, 376, 377, 385, 388, 389, 391, 398, 429, 436, 437, 448, 460, 461, 478, 481, 482, 483, 484, 485, 486, 488, 489, 490, 509, 510, 515, 516, 518, 524, 525, 542, 577, 591, 595, 638, 670, 676, 692, 709, 712, 734, 737, 785, 794, 846, 946, 947, 948, 950, 953, 954, 955, 979, 980, 985, 986, 988, 994, 995, 1012, 1049, 1056], "encod": [5, 66, 101, 102, 112, 215, 254, 286, 287, 289, 290, 375, 511, 638, 761, 981], "set": [5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 23, 24, 26, 28, 30, 31, 32, 33, 34, 47, 48, 67, 68, 91, 93, 96, 101, 102, 105, 106, 110, 112, 114, 115, 116, 119, 120, 122, 123, 124, 125, 126, 127, 128, 130, 132, 137, 142, 151, 157, 158, 159, 160, 170, 173, 179, 198, 200, 206, 215, 217, 222, 223, 225, 231, 254, 268, 355, 378, 387, 409, 415, 424, 428, 429, 430, 439, 466, 470, 481, 482, 483, 484, 485, 486, 488, 489, 490, 492, 498, 502, 503, 521, 527, 528, 533, 534, 535, 536, 539, 569, 573, 587, 588, 600, 601, 612, 615, 616, 617, 621, 626, 627, 629, 630, 638, 649, 659, 661, 669, 670, 671, 675, 676, 680, 684, 695, 700, 707, 712, 715, 718, 734, 743, 744, 835, 854, 867, 892, 898, 907, 911, 912, 913, 919, 946, 947, 948, 949, 950, 951, 953, 954, 955, 957, 961, 968, 972, 973, 991, 997, 998, 1003, 1004, 1005, 1006, 1009, 1030, 1049, 1057], "string": [5, 7, 9, 12, 13, 14, 18, 28, 29, 31, 33, 34, 38, 52, 58, 66, 75, 97, 101, 102, 112, 121, 122, 123, 126, 129, 134, 152, 156, 157, 158, 159, 173, 187, 197, 200, 207, 216, 221, 222, 225, 227, 231, 234, 254, 261, 289, 295, 341, 345, 348, 351, 352, 365, 371, 375, 383, 416, 439, 450, 464, 466, 482, 483, 484, 485, 486, 488, 489, 490, 505, 508, 509, 512, 513, 514, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 542, 563, 564, 565, 566, 572, 575, 577, 578, 584, 585, 587, 588, 595, 605, 606, 609, 610, 618, 621, 622, 623, 626, 627, 629, 638, 652, 661, 668, 669, 670, 671, 676, 695, 701, 706, 712, 715, 716, 734, 737, 763, 769, 821, 825, 828, 831, 832, 844, 860, 899, 977, 978, 979, 983, 984, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1008, 1010, 1011, 1012, 1028, 1049, 1057], "classmethod": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 375, 638, 668, 691, 734], "activ": [6, 10, 16, 17, 19, 20, 21, 22, 25, 292, 410, 516, 638, 893, 986], "bool": [6, 10, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 30, 31, 33, 35, 47, 48, 67, 73, 74, 75, 90, 91, 95, 97, 101, 102, 106, 109, 110, 112, 114, 115, 116, 117, 119, 120, 121, 122, 123, 124, 125, 126, 129, 132, 134, 135, 136, 148, 149, 151, 152, 153, 155, 156, 157, 158, 159, 163, 164, 166, 167, 168, 173, 185, 187, 197, 198, 201, 205, 207, 213, 215, 217, 218, 221, 222, 223, 224, 227, 229, 231, 238, 240, 241, 244, 254, 263, 264, 265, 266, 267, 268, 278, 284, 286, 287, 289, 290, 293, 304, 305, 306, 307, 308, 309, 310, 328, 344, 346, 352, 357, 358, 359, 360, 361, 362, 376, 377, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 396, 398, 401, 402, 406, 410, 425, 428, 431, 436, 437, 443, 444, 445, 446, 450, 460, 461, 463, 470, 473, 475, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 494, 497, 498, 502, 504, 505, 509, 511, 513, 523, 524, 525, 529, 530, 532, 534, 535, 536, 539, 544, 556, 559, 562, 563, 564, 565, 566, 567, 569, 572, 573, 579, 582, 587, 588, 600, 601, 603, 612, 615, 621, 626, 627, 630, 638, 652, 654, 656, 661, 663, 665, 669, 670, 671, 675, 676, 680, 684, 689, 696, 699, 701, 706, 707, 708, 712, 720, 722, 723, 726, 734, 737, 741, 742, 743, 744, 753, 759, 761, 766, 773, 780, 781, 782, 783, 784, 785, 804, 824, 826, 832, 838, 840, 841, 842, 849, 853, 860, 861, 862, 863, 864, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 880, 884, 885, 889, 890, 893, 908, 911, 914, 933, 934, 936, 938, 939, 940, 941, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 957, 959, 961, 962, 967, 972, 974, 979, 981, 983, 993, 994, 995, 999, 1000, 1002, 1004, 1005, 1006, 1009, 1029, 1030, 1031, 1034, 1037, 1039, 1049, 1056], "decim": [6, 28, 31, 254, 491, 537, 638, 956, 1007, 1049], "temporari": 6, "remov": [6, 8, 140, 215, 226, 254, 268, 363, 438, 521, 527, 533, 534, 536, 592, 638, 658, 709, 734, 743, 991, 997, 1003, 1004, 1006, 1049], "later": [6, 587], "onc": [6, 55, 101, 102, 105, 128, 132, 133, 196, 198, 234, 254, 268, 492, 638, 653, 716, 734, 744, 957, 1049], "stabil": 6, "happen": [6, 470, 638, 936, 1049], "being": [6, 101, 102, 112, 117, 215, 225, 226, 254, 268, 309, 345, 482, 483, 484, 485, 486, 488, 489, 490, 492, 498, 591, 638, 709, 734, 784, 825, 856, 936, 1049, 1057], "consid": [6, 101, 102, 112, 117, 133, 142, 153, 179, 196, 223, 225, 226, 254, 268, 298, 299, 300, 309, 345, 437, 482, 483, 484, 485, 486, 488, 489, 490, 582, 594, 638, 659, 672, 679, 684, 707, 709, 718, 734, 744, 774, 775, 776, 784, 825, 856, 869, 936, 959, 960, 961, 1049], "break": [6, 117, 225, 226, 254, 268, 309, 310, 345, 470, 482, 483, 484, 485, 486, 488, 489, 490, 638, 709, 734, 784, 785, 825, 856, 936, 1049], "chang": [6, 26, 67, 101, 102, 117, 225, 226, 227, 254, 268, 309, 312, 345, 465, 482, 483, 484, 485, 486, 488, 489, 490, 492, 498, 638, 709, 734, 743, 784, 825, 856, 932, 936, 967, 1049], "current": [6, 9, 26, 54, 91, 97, 103, 129, 132, 135, 136, 172, 254, 324, 345, 429, 465, 638, 649, 654, 655, 675, 734, 737, 773, 777, 792, 800, 825, 932, 1049, 1056], "alpha": [6, 73, 268, 360, 361, 362, 638, 656, 661, 663, 689, 699, 734, 840, 841, 842, 1049], "state": [6, 8, 73, 83, 129, 582, 649, 656, 661, 663, 689, 699, 734], "cfg": [7, 8, 9, 15, 130], "path": [7, 9, 27, 28, 29, 30, 31, 32, 33, 34, 35, 47, 48, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 254, 452, 494, 518, 638, 691, 699, 715, 734, 962, 988, 1049], "previous": 7, "save": [7, 158, 159, 173, 227, 254, 316, 324, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 649, 670, 671, 676, 734, 800, 821, 825, 832], "share": [7, 58, 144, 254, 839, 1049], "option": [7, 8, 9, 26, 30, 31, 39, 67, 101, 104, 105, 106, 110, 113, 114, 116, 118, 121, 122, 123, 124, 125, 126, 127, 169, 173, 179, 213, 217, 222, 254, 396, 481, 482, 483, 484, 485, 486, 488, 489, 490, 502, 528, 603, 621, 629, 638, 649, 675, 676, 684, 734, 737, 876, 880, 946, 947, 948, 949, 950, 951, 953, 954, 955, 972, 998, 1027, 1049], "from": [7, 8, 28, 31, 52, 53, 54, 67, 74, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 112, 113, 114, 115, 116, 119, 120, 121, 122, 123, 124, 125, 126, 127, 139, 140, 144, 146, 151, 156, 158, 159, 170, 171, 173, 174, 179, 187, 191, 195, 197, 198, 200, 215, 222, 223, 225, 227, 254, 304, 311, 316, 317, 318, 319, 320, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 359, 363, 375, 382, 396, 429, 458, 459, 461, 465, 466, 472, 482, 483, 485, 488, 489, 490, 492, 505, 515, 516, 517, 523, 534, 535, 536, 539, 557, 559, 570, 571, 575, 586, 587, 588, 589, 590, 615, 620, 625, 626, 627, 637, 638, 658, 663, 668, 670, 671, 676, 684, 691, 692, 695, 707, 713, 734, 737, 743, 790, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 839, 845, 876, 880, 912, 928, 929, 930, 932, 957, 985, 986, 987, 993, 1004, 1005, 1006, 1009, 1037, 1040, 1049, 1056, 1057], "json": [7, 9, 33, 34, 108, 109, 115, 254, 375, 452, 517, 518, 638, 649, 668, 691, 715, 734, 987, 988], "file": [7, 9, 27, 28, 32, 33, 34, 35, 47, 48, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 146, 254, 452, 663, 691, 715, 734, 743, 845, 1049], "produc": [7, 123, 124, 126, 407, 447, 587, 588, 604, 680, 734, 890], "filepath": 7, "same": [7, 18, 30, 31, 56, 58, 67, 73, 74, 75, 106, 112, 122, 130, 133, 140, 157, 197, 207, 223, 231, 234, 236, 254, 260, 267, 443, 446, 464, 481, 482, 483, 484, 485, 486, 488, 489, 490, 505, 544, 549, 576, 587, 638, 658, 669, 680, 701, 707, 712, 716, 734, 739, 743, 744, 794, 946, 947, 948, 949, 950, 951, 953, 954, 955, 1040, 1049], "reset": [8, 130], "default": [8, 13, 26, 27, 28, 30, 31, 32, 33, 34, 35, 48, 67, 74, 90, 92, 93, 94, 95, 96, 97, 101, 102, 105, 108, 109, 110, 112, 121, 122, 123, 124, 125, 126, 142, 144, 157, 159, 160, 170, 172, 173, 179, 185, 187, 195, 196, 197, 198, 208, 215, 223, 225, 228, 232, 254, 263, 295, 310, 344, 352, 357, 359, 360, 361, 362, 378, 424, 428, 429, 432, 439, 458, 459, 461, 465, 470, 473, 482, 483, 484, 485, 486, 488, 489, 490, 492, 498, 507, 515, 521, 523, 527, 528, 533, 534, 535, 536, 539, 560, 569, 573, 579, 587, 588, 596, 600, 601, 603, 612, 615, 620, 621, 626, 627, 628, 630, 638, 659, 661, 669, 671, 675, 676, 684, 702, 707, 710, 715, 734, 743, 769, 824, 832, 838, 839, 840, 841, 842, 854, 907, 911, 912, 919, 928, 929, 932, 938, 957, 968, 976, 979, 985, 991, 993, 997, 998, 1003, 1004, 1005, 1006, 1009, 1038, 1049, 1057], "note": [8, 18, 30, 31, 39, 52, 56, 57, 67, 90, 91, 92, 94, 96, 97, 101, 103, 104, 108, 109, 110, 112, 113, 122, 124, 126, 128, 130, 132, 133, 134, 138, 147, 158, 159, 169, 170, 172, 173, 183, 186, 195, 196, 197, 214, 217, 221, 222, 226, 227, 231, 254, 268, 307, 308, 314, 315, 337, 338, 341, 345, 352, 383, 389, 391, 395, 410, 428, 468, 482, 483, 484, 485, 486, 487, 488, 489, 490, 502, 509, 515, 516, 519, 521, 522, 524, 527, 533, 534, 546, 547, 555, 582, 587, 588, 594, 612, 614, 615, 629, 630, 638, 648, 652, 656, 663, 664, 670, 671, 672, 676, 679, 692, 699, 701, 706, 709, 712, 734, 744, 782, 783, 817, 818, 821, 832, 893, 911, 952, 960, 961, 967, 972, 979, 985, 986, 989, 991, 992, 994, 997, 1003, 1004, 1018, 1030, 1049, 1056], "oper": [8, 31, 58, 74, 80, 81, 90, 92, 93, 94, 95, 96, 101, 110, 133, 146, 152, 157, 164, 174, 180, 183, 185, 186, 190, 197, 212, 217, 218, 222, 225, 233, 234, 254, 261, 262, 265, 304, 305, 306, 307, 308, 309, 358, 359, 373, 376, 377, 395, 398, 409, 415, 429, 430, 436, 451, 454, 456, 460, 461, 463, 467, 468, 475, 545, 546, 555, 562, 563, 565, 577, 578, 591, 638, 649, 663, 669, 672, 675, 679, 684, 685, 716, 734, 743, 780, 781, 782, 783, 784, 845, 892, 898, 913, 940, 1025, 1029, 1030, 1031, 1039, 1049], "environ": [8, 26, 125, 128], "local": [8, 30, 104, 113, 126, 254, 352, 796, 797, 829, 832, 933, 934, 1049], "non": [8, 31, 39, 67, 95, 159, 171, 179, 200, 222, 226, 231, 254, 383, 429, 439, 465, 481, 482, 483, 484, 485, 486, 488, 489, 490, 510, 516, 563, 564, 565, 566, 575, 577, 578, 584, 585, 587, 605, 606, 609, 610, 616, 617, 618, 621, 622, 623, 638, 671, 684, 695, 709, 712, 734, 860, 912, 932, 946, 947, 948, 949, 950, 951, 953, 954, 955, 980, 986, 1030, 1049], "env": [8, 127], "back": [8, 67, 146, 218, 254, 464, 540, 638, 743, 845, 1010, 1031, 1049], "none": [9, 18, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 38, 39, 47, 48, 50, 52, 54, 55, 57, 67, 75, 90, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 112, 113, 114, 115, 116, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 130, 133, 135, 139, 142, 147, 148, 156, 158, 159, 160, 165, 169, 172, 173, 174, 177, 179, 183, 184, 187, 195, 198, 204, 206, 207, 213, 215, 218, 222, 223, 224, 225, 226, 227, 254, 264, 266, 267, 268, 280, 285, 298, 299, 300, 303, 305, 308, 310, 314, 315, 344, 345, 352, 359, 360, 361, 362, 363, 366, 367, 368, 374, 378, 382, 383, 389, 390, 391, 392, 393, 399, 401, 402, 409, 413, 415, 424, 429, 430, 437, 439, 450, 452, 461, 462, 465, 467, 470, 473, 474, 479, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 492, 496, 497, 498, 499, 503, 504, 508, 509, 512, 513, 517, 518, 519, 520, 521, 522, 523, 526, 527, 528, 530, 531, 532, 533, 534, 535, 536, 539, 542, 543, 544, 553, 563, 564, 566, 567, 569, 575, 578, 580, 585, 587, 588, 589, 590, 592, 593, 602, 603, 604, 605, 606, 609, 610, 615, 616, 617, 620, 621, 623, 625, 626, 627, 628, 629, 638, 654, 655, 659, 664, 665, 670, 671, 674, 675, 676, 678, 680, 684, 687, 698, 699, 700, 701, 707, 708, 709, 713, 715, 718, 734, 737, 741, 742, 743, 744, 751, 752, 773, 774, 785, 786, 788, 806, 807, 808, 813, 824, 825, 832, 837, 838, 840, 841, 842, 846, 847, 848, 850, 853, 854, 856, 858, 859, 860, 869, 872, 873, 876, 879, 880, 884, 885, 892, 896, 898, 907, 912, 913, 919, 920, 921, 922, 923, 927, 936, 937, 938, 941, 944, 945, 946, 947, 948, 949, 950, 951, 953, 954, 955, 957, 961, 963, 965, 968, 969, 972, 973, 976, 978, 979, 982, 983, 987, 988, 989, 990, 991, 992, 993, 996, 997, 998, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1009, 1024, 1027, 1028, 1031, 1032, 1038, 1039, 1049, 1056], "written": [9, 27, 28, 31, 32, 33, 34, 35, 47, 48, 254, 715, 734], "contain": [9, 29, 31, 67, 72, 92, 95, 97, 104, 113, 119, 123, 134, 142, 158, 171, 183, 187, 221, 254, 268, 289, 290, 387, 439, 510, 513, 515, 516, 518, 531, 532, 638, 652, 659, 670, 689, 706, 734, 737, 919, 925, 980, 983, 985, 986, 988, 1001, 1002, 1025, 1049], "where": [9, 31, 52, 67, 103, 123, 142, 146, 170, 179, 196, 208, 228, 254, 279, 354, 357, 359, 461, 476, 493, 502, 505, 507, 560, 573, 579, 616, 617, 620, 628, 629, 638, 684, 702, 710, 734, 743, 754, 834, 838, 845, 958, 972, 976, 1038, 1040, 1049, 1056], "ascii": [10, 18, 520, 522, 526, 542, 990, 992, 996, 1012], "charact": [10, 12, 18, 24, 28, 29, 101, 102, 112, 254, 341, 514, 516, 519, 520, 521, 526, 527, 529, 530, 533, 542, 689, 734, 737, 821, 984, 986, 989, 990, 991, 996, 997, 999, 1000, 1003, 1012], "displai": [10, 11, 12, 15, 17, 21, 23, 31, 254], "tabl": [10, 14, 15, 17, 18, 19, 20, 21, 23, 24, 29, 30, 31, 53, 54, 55, 57, 90, 97, 101, 102, 104, 112, 113, 187, 212, 218, 225, 226, 254, 709, 734, 1031, 1049, 1056], "outlin": 10, "fals": [10, 14, 16, 17, 18, 19, 20, 21, 22, 23, 26, 30, 31, 33, 35, 47, 48, 52, 67, 73, 91, 95, 97, 101, 102, 105, 106, 109, 110, 112, 115, 116, 119, 120, 121, 122, 123, 124, 125, 126, 132, 134, 135, 136, 139, 152, 153, 155, 156, 157, 158, 159, 163, 164, 166, 167, 168, 170, 173, 174, 177, 182, 183, 185, 187, 188, 195, 196, 197, 198, 201, 205, 207, 213, 215, 217, 218, 221, 222, 223, 227, 229, 231, 237, 238, 240, 241, 242, 244, 247, 254, 264, 265, 266, 268, 278, 284, 286, 289, 290, 304, 305, 306, 307, 308, 309, 310, 328, 344, 346, 352, 357, 358, 359, 360, 361, 362, 376, 377, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 396, 398, 401, 402, 406, 410, 425, 428, 431, 436, 437, 450, 460, 461, 463, 470, 473, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 494, 497, 498, 502, 504, 505, 509, 513, 517, 523, 524, 525, 529, 530, 532, 534, 535, 536, 556, 559, 562, 563, 564, 565, 566, 569, 572, 573, 579, 582, 587, 588, 600, 601, 603, 612, 615, 621, 626, 627, 629, 630, 638, 652, 654, 655, 656, 661, 663, 669, 670, 671, 675, 676, 678, 680, 689, 696, 699, 701, 706, 707, 712, 719, 720, 722, 723, 724, 726, 729, 734, 737, 743, 753, 759, 766, 772, 773, 780, 781, 782, 783, 784, 785, 804, 824, 826, 832, 838, 840, 841, 842, 849, 860, 861, 862, 864, 867, 868, 869, 870, 871, 872, 873, 875, 876, 877, 880, 884, 885, 893, 908, 911, 914, 925, 933, 934, 936, 938, 939, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 957, 959, 962, 967, 972, 974, 979, 983, 987, 993, 994, 995, 999, 1000, 1002, 1004, 1005, 1006, 1029, 1030, 1031, 1034, 1037, 1039, 1040, 1049, 1056], "revert": 10, "abc": [10, 16, 17, 18, 19, 20, 21, 22, 23, 261, 516, 524, 638, 737, 986, 994], "xyz": [10, 16, 17, 18, 19, 20, 21, 22, 23, 261, 510, 516, 638, 980, 986, 1027, 1049], "f64": [10, 14, 16, 17, 19, 20, 21, 22, 23, 49, 52, 67, 69, 71, 93, 117, 124, 135, 136, 138, 139, 140, 143, 147, 148, 152, 155, 156, 157, 164, 172, 173, 177, 178, 187, 188, 189, 206, 207, 208, 228, 231, 234, 238, 240, 241, 242, 243, 244, 246, 247, 254, 260, 263, 270, 271, 272, 273, 274, 275, 293, 296, 297, 301, 302, 309, 311, 314, 315, 346, 357, 358, 359, 360, 361, 362, 363, 364, 367, 368, 372, 373, 376, 377, 382, 389, 391, 392, 393, 395, 396, 398, 420, 432, 433, 434, 436, 440, 441, 442, 453, 456, 458, 459, 460, 461, 465, 467, 471, 472, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 500, 501, 502, 506, 507, 551, 552, 555, 560, 570, 571, 574, 575, 577, 579, 581, 592, 607, 608, 619, 620, 628, 638, 654, 658, 664, 665, 669, 675, 676, 682, 683, 690, 701, 702, 710, 712, 713, 716, 720, 722, 723, 724, 725, 726, 728, 729, 734, 737, 745, 746, 747, 748, 749, 750, 770, 771, 778, 779, 784, 785, 786, 826, 841, 842, 847, 851, 856, 932, 936, 946, 948, 949, 951, 952, 953, 955, 956, 970, 971, 975, 1022, 1023, 1036, 1049, 1057], "fmt": [11, 381, 595, 638, 673, 734], "floatfmt": 11, "mix": [11, 534, 536, 786, 1004, 1006, 1049], "control": [11, 31, 57, 74, 122, 254, 661, 734], "how": [11, 30, 31, 58, 67, 74, 75, 93, 96, 103, 142, 172, 225, 226, 254, 295, 312, 344, 352, 382, 407, 408, 464, 476, 487, 517, 629, 638, 659, 675, 709, 734, 769, 787, 824, 832, 890, 891, 952, 987, 1049], "float": [11, 31, 41, 42, 117, 119, 120, 121, 124, 126, 139, 144, 147, 173, 189, 198, 204, 246, 254, 297, 298, 299, 300, 310, 314, 315, 346, 357, 358, 359, 360, 361, 362, 367, 372, 376, 377, 382, 385, 388, 389, 391, 392, 393, 398, 406, 432, 436, 440, 453, 458, 459, 460, 461, 467, 470, 471, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 492, 493, 555, 574, 607, 608, 613, 615, 620, 622, 628, 638, 664, 676, 690, 698, 699, 728, 734, 737, 766, 771, 774, 775, 776, 785, 786, 788, 826, 838, 839, 840, 841, 842, 847, 851, 856, 866, 880, 889, 890, 915, 921, 922, 928, 929, 935, 936, 937, 946, 947, 948, 949, 950, 951, 953, 954, 955, 956, 957, 958, 960, 961, 972, 976, 1018, 1030, 1038, 1049, 1057], "point": [11, 31, 41, 42, 124, 126, 147, 158, 174, 254, 297, 310, 314, 315, 346, 367, 372, 389, 391, 491, 492, 587, 638, 664, 670, 680, 692, 734, 771, 785, 826, 847, 851, 866, 956, 957, 1030, 1049], "full": [11, 38, 67, 72, 74, 101, 102, 104, 112, 113, 158, 159, 254, 534, 535, 536, 539, 670, 671, 680, 734, 737, 1004, 1005, 1006, 1009], "format": [11, 14, 18, 28, 31, 100, 101, 102, 112, 117, 145, 156, 170, 179, 196, 197, 214, 252, 254, 345, 348, 351, 450, 534, 535, 536, 539, 662, 668, 684, 715, 734, 828, 831, 1004, 1005, 1006, 1009, 1048], "number": [11, 12, 13, 15, 23, 24, 28, 31, 35, 48, 67, 84, 90, 92, 94, 96, 99, 101, 102, 103, 105, 108, 109, 112, 115, 122, 124, 125, 127, 128, 134, 135, 144, 145, 147, 148, 161, 170, 171, 174, 175, 182, 183, 198, 203, 204, 208, 210, 221, 225, 228, 237, 239, 248, 254, 279, 285, 291, 303, 309, 312, 326, 329, 334, 336, 346, 353, 354, 356, 360, 361, 362, 366, 368, 374, 379, 389, 391, 399, 400, 408, 414, 423, 427, 429, 466, 470, 481, 482, 483, 484, 485, 486, 488, 489, 490, 491, 492, 495, 496, 498, 507, 519, 522, 524, 530, 531, 537, 548, 554, 560, 579, 580, 587, 598, 616, 617, 620, 624, 628, 638, 652, 654, 662, 663, 664, 665, 672, 679, 689, 697, 698, 702, 704, 706, 710, 719, 721, 730, 734, 765, 773, 784, 787, 802, 805, 814, 816, 826, 833, 834, 836, 839, 840, 841, 842, 846, 848, 855, 866, 882, 891, 897, 906, 910, 912, 925, 926, 936, 946, 947, 948, 949, 950, 951, 953, 954, 955, 956, 957, 964, 965, 968, 976, 989, 992, 994, 1000, 1001, 1007, 1019, 1033, 1038, 1049, 1057], "plai": [12, 578], "sam": 12, "As": [12, 90, 92, 93, 94, 96, 105, 108, 109, 254, 734], "time": [12, 30, 38, 40, 52, 57, 72, 73, 112, 146, 158, 159, 173, 227, 254, 291, 316, 317, 318, 319, 320, 324, 325, 341, 344, 345, 348, 350, 351, 352, 355, 405, 406, 429, 482, 483, 484, 485, 486, 488, 489, 490, 534, 536, 539, 553, 554, 577, 578, 587, 588, 590, 596, 626, 627, 638, 656, 670, 671, 676, 689, 734, 737, 743, 765, 792, 793, 794, 795, 800, 801, 821, 824, 825, 828, 830, 831, 832, 835, 845, 888, 890, 1004, 1006, 1009, 1032, 1033, 1049, 1057], "goe": 12, "By": [12, 13, 67, 101, 102, 105, 112, 158, 159, 173, 208, 227, 228, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 507, 523, 560, 579, 603, 620, 628, 638, 670, 671, 676, 702, 710, 734, 821, 825, 832, 976, 993, 1030, 1038, 1049], "begin": [12, 31, 254, 360, 361, 362, 515, 587, 638, 840, 841, 842, 985, 1049], "beauti": 12, "friendship": 12, "len": [12, 31, 122, 124, 171, 254, 304, 310, 470, 520, 526, 542, 638, 785, 936, 990, 996, 1012, 1049], "u32": [12, 52, 158, 184, 232, 237, 245, 247, 254, 262, 269, 276, 277, 278, 279, 280, 303, 304, 322, 326, 330, 334, 336, 342, 343, 346, 353, 354, 399, 403, 404, 407, 418, 439, 457, 462, 473, 480, 482, 483, 485, 488, 489, 490, 493, 510, 519, 522, 553, 557, 563, 568, 572, 573, 580, 611, 638, 670, 687, 714, 719, 727, 729, 734, 753, 754, 755, 766, 798, 802, 809, 811, 814, 816, 819, 822, 823, 826, 833, 834, 856, 901, 938, 945, 980, 989, 992, 1032, 1035, 1037, 1049], "37": 12, "beaut": 12, "48": [12, 159, 254, 671, 734], "fmt_str_length": 12, "50": [12, 31, 146, 254, 298, 299, 300, 345, 352, 638, 774, 832, 1049], "print": [12, 15, 17, 18, 23, 102, 118, 143, 156, 157, 171, 174, 216, 233, 254, 381, 450, 590, 638, 673, 734, 867, 946, 1028, 1049, 1057], "overwrit": [13, 29, 30, 90, 92, 93, 94, 96, 101, 102, 108, 109, 112, 132, 254, 263, 638, 663, 734], "chunk": [13, 48, 99, 101, 102, 110, 112, 114, 115, 116, 124, 126, 146, 171, 182, 254, 267, 474, 638, 734, 743, 772, 845, 852, 925, 939, 1025, 1049], "stream": [13, 32, 47, 48, 73, 134, 157, 172, 221, 223, 254, 652, 656, 661, 663, 669, 675, 680, 684, 689, 699, 701, 706, 707, 734], "engin": [13, 29, 103, 128, 133, 157, 172, 223, 236, 254, 669, 675, 680, 684, 707, 718, 734, 744, 1049], "determin": [13, 31, 65, 67, 74, 93, 96, 101, 102, 105, 110, 112, 116, 133, 152, 158, 159, 170, 171, 222, 227, 254, 295, 328, 344, 352, 429, 439, 447, 470, 476, 482, 483, 484, 485, 486, 488, 489, 490, 502, 517, 537, 612, 615, 630, 638, 670, 671, 734, 769, 804, 824, 832, 856, 912, 919, 936, 972, 987, 1007, 1049], "schema": [13, 30, 52, 58, 68, 69, 70, 74, 75, 85, 86, 88, 90, 92, 93, 94, 96, 97, 101, 102, 103, 107, 108, 109, 111, 112, 115, 122, 124, 133, 135, 136, 143, 144, 180, 183, 217, 254, 281, 282, 283, 429, 447, 517, 562, 621, 638, 654, 655, 660, 680, 685, 715, 718, 734, 737, 758, 777, 987, 1049], "thread": [13, 28, 99, 101, 102, 103, 128, 254, 268, 410, 492, 498, 638, 893], "pool": [13, 128], "For": [13, 30, 31, 103, 104, 105, 113, 146, 159, 172, 173, 236, 254, 293, 360, 361, 362, 429, 448, 475, 502, 509, 515, 516, 524, 582, 587, 594, 595, 638, 671, 676, 718, 734, 743, 840, 841, 842, 845, 940, 972, 979, 985, 986, 994, 1030, 1049], "some": [13, 26, 30, 31, 93, 101, 102, 112, 142, 254, 659, 734, 867, 1049, 1057], "dataset": [13, 101, 102, 112, 117, 172, 254, 396, 638, 649, 675, 680, 734, 880, 1049], "esp": 13, "when": [13, 15, 17, 21, 31, 35, 38, 48, 57, 58, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 101, 102, 106, 110, 112, 113, 114, 115, 124, 126, 133, 134, 143, 144, 146, 148, 152, 158, 159, 172, 186, 195, 197, 200, 207, 215, 217, 221, 223, 254, 298, 299, 300, 344, 352, 360, 361, 362, 368, 429, 437, 439, 448, 466, 480, 504, 505, 521, 527, 533, 534, 572, 582, 587, 594, 638, 652, 665, 670, 671, 675, 680, 695, 701, 706, 707, 734, 743, 774, 775, 776, 824, 832, 839, 840, 841, 842, 845, 848, 919, 945, 960, 961, 991, 997, 1003, 1004, 1026, 1049], "have": [13, 26, 31, 38, 67, 75, 91, 101, 102, 103, 105, 124, 126, 146, 159, 170, 190, 196, 197, 214, 254, 309, 360, 361, 362, 448, 470, 473, 534, 536, 587, 638, 671, 684, 699, 714, 734, 737, 743, 784, 840, 841, 842, 845, 853, 936, 938, 1004, 1006, 1049, 1057], "larg": [13, 67, 158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 821, 825, 832], "element": [13, 23, 123, 126, 134, 169, 187, 195, 208, 221, 228, 254, 268, 270, 271, 272, 273, 274, 275, 291, 296, 301, 302, 304, 305, 306, 307, 308, 309, 364, 365, 378, 387, 407, 409, 410, 411, 415, 430, 433, 434, 464, 465, 473, 476, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 493, 499, 500, 501, 506, 507, 530, 531, 537, 551, 552, 554, 560, 579, 616, 617, 620, 628, 638, 652, 701, 702, 706, 710, 734, 744, 745, 746, 747, 748, 749, 750, 765, 770, 773, 778, 779, 780, 781, 782, 783, 784, 843, 844, 849, 855, 867, 879, 882, 890, 892, 893, 894, 898, 913, 916, 917, 932, 938, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 958, 969, 970, 971, 975, 976, 1000, 1001, 1007, 1019, 1022, 1023, 1028, 1033, 1034, 1038, 1049], "too": [13, 158, 159, 173, 227, 254, 341, 345, 352, 480, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 821, 825, 832], "optimist": 13, "lead": [13, 97, 117, 158, 159, 254, 268, 437, 494, 521, 533, 542, 549, 559, 579, 638, 670, 671, 680, 718, 734, 744, 962, 991, 1003, 1012, 1049], "out": [13, 47, 48, 97, 118, 159, 197, 254, 287, 413, 428, 509, 511, 629, 671, 734, 761, 896, 911, 979, 981], "memori": [13, 48, 74, 90, 91, 94, 95, 96, 101, 102, 106, 110, 112, 114, 115, 116, 132, 133, 146, 197, 205, 236, 254, 464, 474, 497, 638, 734, 743, 744, 845, 939, 966, 967, 1049], "error": [13, 30, 76, 101, 102, 112, 158, 159, 173, 187, 195, 227, 254, 263, 287, 293, 341, 345, 352, 395, 416, 428, 482, 483, 484, 485, 486, 488, 489, 490, 509, 511, 515, 517, 518, 534, 535, 536, 539, 638, 670, 671, 676, 718, 734, 761, 766, 821, 825, 832, 899, 911, 979, 981, 985, 987, 988, 1004, 1005, 1006, 1009, 1049], "row": [13, 18, 23, 28, 31, 33, 35, 48, 67, 68, 70, 74, 82, 84, 89, 93, 94, 96, 97, 101, 102, 105, 106, 110, 112, 114, 115, 116, 119, 122, 124, 133, 134, 135, 142, 146, 149, 152, 156, 157, 158, 160, 161, 166, 168, 169, 170, 171, 173, 174, 175, 179, 183, 197, 198, 206, 210, 211, 214, 216, 221, 223, 225, 226, 232, 236, 239, 248, 254, 268, 279, 365, 379, 400, 411, 429, 464, 465, 477, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 503, 505, 514, 517, 548, 569, 572, 582, 583, 594, 598, 600, 601, 614, 616, 617, 624, 629, 638, 652, 654, 656, 659, 663, 666, 667, 670, 672, 676, 677, 679, 680, 684, 700, 704, 705, 706, 707, 709, 714, 718, 721, 730, 734, 743, 844, 845, 855, 879, 894, 932, 942, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 973, 984, 987, 1019, 1049, 1057], "per": [13, 28, 31, 122, 124, 134, 156, 183, 184, 207, 221, 243, 245, 246, 254, 268, 410, 413, 428, 505, 572, 638, 652, 701, 706, 725, 727, 728, 734, 893, 896, 911], "everi": [13, 101, 102, 112, 158, 211, 214, 227, 254, 304, 305, 306, 307, 308, 309, 345, 352, 365, 403, 404, 408, 409, 411, 413, 414, 424, 427, 514, 550, 582, 583, 638, 663, 670, 705, 734, 780, 781, 782, 783, 784, 825, 832, 844, 886, 887, 891, 892, 894, 896, 897, 907, 910, 984, 1021, 1049], "process": [13, 28, 47, 48, 128, 254, 734], "liter": [14, 18, 30, 52, 105, 124, 125, 126, 127, 156, 170, 176, 177, 181, 182, 185, 195, 196, 200, 209, 213, 226, 231, 254, 263, 286, 318, 358, 359, 366, 373, 376, 377, 383, 398, 436, 439, 454, 456, 460, 461, 467, 509, 524, 525, 545, 555, 563, 564, 565, 566, 569, 573, 575, 577, 578, 584, 585, 586, 587, 588, 589, 600, 601, 603, 605, 606, 609, 610, 612, 615, 618, 621, 622, 623, 625, 626, 627, 630, 638, 665, 695, 709, 712, 734, 737, 760, 794, 846, 860, 960, 961, 979, 994, 995, 1049, 1056], "left": [14, 31, 54, 67, 119, 120, 158, 159, 172, 173, 226, 254, 360, 361, 362, 382, 383, 482, 483, 484, 485, 486, 488, 489, 490, 493, 520, 542, 553, 575, 582, 583, 587, 588, 594, 614, 626, 627, 629, 638, 670, 671, 675, 676, 709, 734, 840, 841, 842, 860, 958, 990, 1012, 1032, 1049], "center": [14, 31, 254, 360, 361, 362, 481, 482, 483, 484, 485, 486, 488, 489, 490, 638, 840, 841, 842, 946, 947, 948, 949, 950, 951, 953, 954, 955, 1049], "right": [14, 16, 31, 101, 102, 119, 120, 158, 159, 172, 173, 254, 310, 360, 361, 362, 383, 409, 415, 430, 470, 482, 483, 484, 485, 486, 488, 489, 490, 493, 502, 526, 575, 587, 588, 626, 627, 638, 670, 671, 675, 676, 734, 785, 840, 841, 842, 860, 892, 898, 913, 936, 958, 972, 996, 1049], "cell": [14, 31, 254], "align": [14, 31, 67, 74, 254, 542, 1012], "keyerror": [14, 18], "recognis": [14, 18, 121], "column_abc": 14, "column_xyz": 14, "visibl": [15, 144, 254, 839, 1049], "eg": [15, 23, 31, 103, 254, 345, 534, 536, 555, 638, 1004, 1006], "low": [15, 128], "rang": [15, 31, 103, 139, 144, 158, 171, 254, 310, 311, 322, 336, 342, 343, 345, 352, 353, 382, 470, 569, 577, 586, 587, 588, 589, 600, 601, 625, 626, 627, 638, 670, 734, 785, 786, 798, 816, 822, 823, 825, 832, 833, 839, 932, 936, 1049], "100": [15, 31, 93, 96, 101, 102, 112, 115, 254, 517, 537, 542, 734, 947, 948, 950, 987, 1007, 1049, 1057], "98": [15, 164, 254, 291, 504, 537, 549, 554, 638, 1007], "99": [15, 31, 147, 148, 164, 167, 254, 262, 291, 366, 368, 504, 549, 554, 638, 664, 665, 734, 838, 846, 1049], "tbl_col": 15, "10": [15, 27, 28, 30, 31, 32, 35, 48, 52, 67, 74, 97, 103, 112, 124, 126, 136, 146, 155, 158, 159, 161, 163, 164, 165, 182, 186, 188, 192, 193, 200, 210, 231, 234, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 254, 263, 267, 276, 277, 278, 280, 298, 303, 305, 308, 310, 312, 314, 315, 316, 318, 324, 337, 338, 344, 345, 352, 355, 378, 379, 382, 387, 395, 399, 400, 408, 414, 423, 424, 427, 433, 465, 466, 470, 503, 542, 548, 562, 575, 582, 587, 591, 594, 596, 598, 603, 604, 624, 627, 638, 656, 670, 671, 672, 674, 679, 688, 689, 695, 703, 704, 712, 716, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729, 734, 737, 744, 774, 785, 787, 792, 794, 800, 824, 832, 835, 838, 855, 867, 882, 891, 897, 906, 907, 910, 916, 932, 960, 961, 1019, 1049, 1057], "95": [15, 262, 638], "96": [15, 262, 638], "97": [15, 164, 254, 262, 638], "move": [16, 197, 254, 360, 361, 362, 482, 483, 485, 489, 638, 840, 841, 842, 947, 948, 950, 954, 1049], "inlin": [16, 197, 254, 509, 515, 516, 524, 979, 985, 986, 994], "parenthes": 16, "below": [17, 31, 104, 113, 142, 254, 368, 587, 588, 629, 638, 659, 734], "ascii_ful": 18, "ascii_full_condens": 18, "ascii_no_bord": 18, "ascii_borders_onli": 18, "ascii_borders_only_condens": 18, "ascii_horizontal_onli": 18, "ascii_markdown": 18, "utf8_ful": [18, 67, 97], "utf8_full_condens": [18, 97], "utf8_no_bord": 18, "utf8_borders_onli": 18, "utf8_horizontal_onli": 18, "noth": [18, 292, 510, 515, 518, 638, 980, 985, 988], "rounded_corn": 18, "style": [18, 31, 187, 254], "border": 18, "line": [18, 31, 101, 102, 105, 112, 156, 166, 168, 254, 515, 985], "includ": [18, 26, 28, 30, 31, 72, 104, 113, 124, 134, 139, 144, 158, 185, 197, 221, 222, 225, 254, 310, 346, 383, 470, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 527, 529, 530, 533, 582, 616, 617, 638, 652, 670, 706, 734, 785, 786, 826, 839, 860, 936, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 999, 1000, 1003, 1039, 1049], "divid": [18, 345, 352, 360, 361, 362, 396, 638, 825, 832, 840, 841, 842, 880, 1049], "dens": [18, 156, 254, 473, 638, 938, 1049], "space": [18, 158, 254, 470, 638, 670, 734, 936, 1049], "horizont": [18, 74, 152, 163, 225, 254, 563, 564, 565, 566, 577, 578, 582, 583, 584, 585, 591, 594, 605, 606, 609, 610, 614, 622, 623], "markdown": 18, "compat": [18, 31, 35, 48, 254, 509, 510, 515, 516, 524, 525, 734, 737, 979, 980, 985, 986, 994, 995], "No": [18, 540, 1010], "appli": [18, 28, 31, 52, 74, 112, 121, 124, 126, 152, 186, 254, 320, 321, 322, 326, 328, 329, 330, 332, 334, 336, 339, 342, 343, 346, 349, 353, 354, 356, 361, 362, 437, 466, 481, 482, 483, 485, 489, 524, 534, 535, 536, 539, 562, 582, 583, 594, 604, 614, 629, 638, 672, 679, 680, 688, 734, 796, 797, 798, 802, 804, 805, 809, 811, 814, 816, 819, 822, 823, 826, 829, 833, 834, 836, 841, 842, 946, 947, 948, 950, 954, 994, 1004, 1005, 1006, 1009, 1049], "round": [18, 31, 69, 97, 254, 297, 372, 551, 638, 771, 851, 1049], "corner": [18, 31, 97, 254], "op": [18, 126, 254, 292, 476, 534, 536, 638, 734, 1004, 1006, 1049], "one": [18, 29, 31, 57, 67, 82, 90, 92, 93, 94, 95, 96, 108, 109, 125, 126, 127, 130, 148, 149, 156, 157, 158, 159, 170, 179, 187, 195, 196, 201, 217, 220, 235, 254, 262, 368, 429, 434, 481, 504, 516, 549, 587, 619, 622, 629, 638, 665, 666, 669, 670, 671, 684, 696, 713, 717, 734, 743, 848, 876, 912, 917, 946, 986, 1013, 1049], "more": [18, 31, 33, 35, 48, 57, 67, 74, 89, 90, 91, 92, 93, 94, 95, 96, 103, 104, 108, 109, 110, 113, 124, 126, 130, 133, 138, 139, 170, 174, 179, 183, 195, 196, 198, 217, 223, 236, 254, 265, 268, 284, 298, 299, 300, 396, 431, 434, 437, 463, 492, 502, 516, 534, 535, 536, 556, 619, 622, 629, 638, 684, 707, 734, 737, 744, 759, 774, 775, 776, 786, 876, 880, 914, 957, 972, 986, 1004, 1005, 1006, 1034, 1049, 1057], "semigraph": 18, "box": [18, 133, 254], "draw": [18, 23, 24, 123, 492, 498, 638, 1057], "found": [18, 28, 54, 77, 86, 88, 93, 97, 143, 226, 254, 493, 518, 534, 536, 638, 709, 734, 958, 988, 1004, 1006, 1049, 1056], "unicod": 18, "block": [18, 157, 223, 254, 669, 692, 707, 714, 718, 734, 960, 961, 1049], "http": [18, 31, 91, 103, 132, 138, 254, 515, 985], "en": [18, 31, 254], "wikipedia": 18, "org": [18, 91, 103, 132, 138, 254], "wiki": 18, "drawing_charact": 18, "box_draw": 18, "mno": 18, "tbl_format": 18, "tbl_hide_column_data_typ": 18, "tbl_hide_dataframe_shap": 18, "hide": [19, 20, 21, 22, 31, 254], "etc": [19, 30, 31, 101, 104, 106, 110, 113, 114, 116, 254, 737, 960, 961, 1049], "inform": [21, 72, 104, 113, 138, 254, 298, 299, 300, 396, 502, 509, 515, 516, 524, 587, 588, 638, 689, 734, 774, 775, 776, 880, 972, 979, 985, 986, 994, 1049], "separ": [22, 28, 99, 101, 102, 112, 185, 187, 215, 222, 224, 254, 268, 411, 416, 514, 578, 582, 583, 638, 708, 734, 894, 899, 984, 1017, 1026, 1049], "between": [22, 74, 121, 122, 124, 126, 138, 189, 246, 254, 293, 313, 383, 409, 415, 416, 430, 465, 470, 471, 486, 492, 498, 508, 570, 571, 579, 581, 613, 616, 617, 638, 690, 728, 734, 766, 788, 860, 892, 898, 899, 913, 932, 936, 937, 951, 978, 1049], "set_tbl_column_data_type_inlin": 22, "max": [23, 31, 35, 48, 52, 128, 139, 148, 157, 158, 159, 187, 254, 298, 299, 305, 368, 429, 464, 473, 482, 494, 531, 606, 619, 638, 665, 669, 670, 671, 734, 774, 775, 780, 786, 848, 912, 938, 947, 962, 1001, 1049], "both": [23, 28, 58, 158, 159, 172, 173, 180, 195, 254, 267, 383, 482, 483, 484, 485, 486, 488, 489, 490, 587, 588, 626, 627, 638, 648, 670, 671, 675, 676, 685, 734, 860, 869, 1049], "tbl_row": 23, "char": [24, 58, 75, 516, 522, 986, 992], "enabl": [25, 75, 129, 200, 231, 254, 494, 638, 695, 712, 734, 962, 1049], "addit": [25, 30, 31, 93, 104, 113, 122, 140, 145, 157, 185, 200, 201, 207, 224, 231, 234, 254, 261, 324, 363, 366, 464, 505, 509, 515, 516, 524, 563, 565, 572, 575, 576, 577, 578, 584, 592, 605, 609, 618, 621, 622, 638, 658, 662, 669, 695, 696, 701, 708, 712, 716, 734, 792, 800, 846, 979, 985, 986, 994, 1049], "verbos": [25, 130, 516, 986], "debug": [25, 656, 663, 680, 734, 1057], "log": [25, 69, 291, 357, 434, 456, 467, 554, 638, 765, 838, 1033, 1049], "if_set": 26, "env_onli": 26, "dict": [26, 30, 31, 35, 55, 68, 70, 72, 90, 92, 93, 94, 95, 96, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 124, 151, 170, 185, 191, 195, 196, 197, 199, 213, 214, 222, 254, 264, 266, 310, 439, 470, 480, 638, 692, 694, 734, 919, 1049], "show": [26, 31, 56, 142, 156, 174, 184, 254, 659, 689, 699, 734], "variabl": [26, 49, 54, 125, 128, 179, 215, 254, 684, 734, 1026, 1049, 1056], "restrict": [26, 531, 587, 588, 1001], "dictionari": [26, 31, 90, 92, 93, 94, 96, 101, 102, 107, 108, 109, 111, 112, 170, 185, 195, 196, 197, 213, 214, 254, 439, 638, 734, 919, 1049], "those": [26, 31, 101, 197, 254, 473, 515, 638, 737, 938, 985, 1049], "been": [26, 31, 254, 473, 482, 483, 484, 485, 486, 488, 489, 490, 569, 638, 938, 1049], "set_fmt_float": 26, "directli": [26, 54, 124, 126, 130, 197, 254, 360, 361, 362, 615, 638, 734, 840, 841, 842, 1049, 1057], "via": [26, 101, 102, 105, 112, 114, 115, 116, 170, 196, 254, 268, 638], "set_stat": 26, "all_stat": 26, "binaryio": [27, 32, 100, 101, 105, 106, 107, 110, 111, 254], "bytesio": [27, 28, 31, 32, 35, 100, 101, 102, 105, 106, 110, 254], "compress": [27, 32, 35, 47, 48, 254, 734], "avrocompress": [27, 254], "uncompress": [27, 32, 35, 48, 106, 114, 254, 734], "write": [27, 28, 29, 30, 31, 32, 33, 35, 48, 102, 106, 130, 254, 298, 299, 300, 452, 638, 678, 699, 715, 734, 774, 775, 776, 1049], "apach": [27, 35, 100, 103, 254], "avro": [27, 100, 254, 649], "should": [27, 28, 29, 31, 32, 33, 34, 35, 47, 48, 74, 90, 92, 94, 96, 104, 108, 109, 112, 121, 122, 126, 132, 133, 134, 140, 158, 159, 170, 173, 195, 196, 197, 214, 215, 221, 224, 227, 236, 254, 262, 268, 295, 309, 310, 341, 345, 352, 355, 363, 389, 391, 410, 470, 481, 482, 483, 484, 485, 486, 488, 489, 490, 493, 502, 576, 592, 599, 603, 616, 617, 629, 638, 652, 658, 670, 671, 675, 676, 680, 699, 701, 706, 708, 715, 734, 737, 744, 769, 784, 785, 821, 825, 832, 835, 893, 936, 946, 947, 948, 949, 950, 951, 953, 954, 955, 958, 972, 1049], "snappi": [27, 35, 48, 254, 734], "deflat": [27, 254], "import": [27, 28, 31, 32, 35, 38, 67, 90, 94, 95, 112, 117, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 139, 156, 158, 171, 173, 217, 218, 225, 227, 254, 311, 316, 317, 318, 319, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 482, 483, 485, 488, 489, 490, 570, 571, 587, 588, 590, 626, 627, 638, 649, 670, 676, 680, 734, 778, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 864, 868, 870, 871, 876, 946, 970, 1022, 1049, 1057], "pathlib": [27, 28, 32, 35, 112, 254], "foo": [27, 28, 30, 32, 33, 34, 35, 56, 133, 137, 138, 140, 141, 142, 143, 146, 149, 150, 152, 153, 154, 155, 160, 161, 162, 163, 164, 165, 167, 172, 176, 177, 178, 181, 184, 187, 189, 191, 192, 193, 195, 198, 199, 200, 202, 203, 204, 206, 208, 209, 210, 212, 214, 215, 216, 217, 218, 219, 222, 223, 224, 228, 229, 230, 233, 254, 294, 298, 299, 300, 341, 379, 381, 400, 406, 412, 413, 417, 418, 477, 495, 496, 508, 510, 512, 514, 516, 521, 527, 529, 531, 533, 538, 541, 548, 550, 568, 574, 576, 579, 580, 581, 593, 597, 598, 602, 605, 607, 608, 609, 611, 613, 618, 620, 624, 628, 629, 638, 657, 658, 659, 660, 666, 673, 674, 675, 687, 692, 694, 695, 707, 708, 711, 713, 715, 734, 737, 768, 774, 821, 899, 942, 980, 982, 984, 986, 1001, 1008, 1011, 1049], "bar": [27, 28, 30, 32, 33, 34, 35, 56, 133, 137, 138, 140, 141, 142, 143, 146, 149, 150, 152, 153, 154, 155, 161, 163, 164, 165, 167, 172, 176, 177, 178, 181, 184, 187, 189, 191, 192, 193, 195, 198, 199, 200, 203, 204, 206, 208, 209, 210, 212, 214, 215, 216, 217, 218, 219, 223, 224, 228, 229, 233, 254, 294, 381, 418, 502, 512, 514, 529, 531, 568, 574, 576, 579, 580, 581, 593, 598, 602, 605, 607, 608, 609, 611, 618, 620, 624, 628, 629, 638, 657, 658, 659, 660, 666, 673, 674, 675, 687, 692, 694, 695, 707, 708, 711, 715, 734, 737, 768, 899, 972, 982, 984, 1001, 1049], "ham": [27, 28, 30, 32, 35, 137, 138, 140, 141, 142, 143, 149, 150, 153, 160, 161, 163, 172, 176, 177, 178, 181, 184, 189, 191, 193, 195, 198, 199, 200, 203, 204, 206, 208, 209, 210, 215, 216, 217, 218, 219, 223, 228, 229, 254, 294, 576, 657, 658, 659, 660, 666, 675, 687, 692, 694, 695, 707, 713, 734, 768], "d": [27, 28, 30, 31, 32, 35, 58, 75, 93, 117, 139, 156, 158, 160, 161, 164, 172, 210, 212, 225, 229, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 254, 261, 263, 325, 348, 351, 383, 466, 497, 510, 516, 530, 534, 535, 536, 575, 596, 638, 670, 675, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729, 734, 801, 828, 831, 860, 980, 986, 1000, 1004, 1005, 1006, 1049], "e": [27, 28, 30, 32, 35, 58, 75, 91, 101, 102, 105, 106, 110, 114, 116, 139, 156, 158, 159, 161, 173, 210, 212, 217, 225, 227, 254, 261, 268, 341, 345, 352, 357, 363, 383, 432, 439, 482, 483, 484, 485, 486, 488, 489, 490, 497, 502, 592, 629, 638, 670, 671, 676, 678, 692, 734, 737, 821, 825, 832, 838, 860, 959, 972, 1030, 1049], "dirpath": [27, 28, 32, 35, 112, 254], "new_fil": [27, 28, 32, 35, 254], "has_head": [28, 31, 101, 102, 105, 112, 254], "quot": [28, 29, 101, 102, 112, 254], "batch_siz": [28, 101, 102, 115, 254], "1024": [28, 48, 101, 102, 115, 254, 734], "datetime_format": [28, 254], "date_format": [28, 254], "time_format": [28, 254], "float_precis": [28, 31, 254], "null_valu": [28, 101, 102, 112, 254], "textiowrapp": [28, 254], "comma": [28, 254], "csv": [28, 47, 48, 101, 102, 105, 112, 254, 649, 734], "result": [28, 33, 34, 47, 48, 67, 74, 94, 96, 103, 104, 112, 114, 116, 117, 126, 146, 158, 159, 172, 183, 197, 204, 218, 227, 234, 254, 268, 310, 348, 351, 360, 361, 362, 366, 396, 429, 437, 464, 470, 477, 481, 482, 483, 484, 485, 486, 488, 489, 490, 494, 496, 529, 530, 536, 555, 569, 582, 583, 587, 588, 604, 612, 615, 616, 617, 630, 638, 653, 670, 671, 675, 680, 689, 698, 715, 716, 734, 743, 744, 828, 831, 840, 841, 842, 845, 880, 936, 942, 946, 947, 948, 949, 950, 951, 953, 954, 955, 962, 965, 999, 1000, 1006, 1030, 1049, 1056, 1057], "If": [28, 29, 30, 31, 32, 33, 34, 48, 52, 58, 72, 74, 90, 91, 92, 93, 94, 95, 96, 101, 102, 104, 105, 106, 108, 109, 110, 112, 113, 114, 115, 116, 125, 132, 133, 134, 142, 146, 156, 158, 159, 161, 169, 170, 173, 175, 179, 183, 196, 197, 198, 206, 210, 214, 215, 217, 221, 222, 223, 225, 226, 254, 264, 266, 268, 298, 299, 300, 310, 318, 337, 338, 352, 369, 396, 424, 429, 437, 439, 450, 464, 470, 473, 475, 477, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 492, 493, 498, 502, 503, 517, 519, 521, 522, 527, 528, 529, 530, 531, 533, 534, 535, 536, 539, 563, 565, 567, 569, 573, 579, 580, 582, 584, 587, 588, 594, 600, 601, 603, 605, 609, 612, 615, 616, 617, 621, 622, 626, 627, 629, 630, 638, 652, 659, 661, 670, 671, 675, 676, 680, 684, 692, 700, 706, 707, 709, 715, 718, 734, 737, 743, 744, 774, 775, 776, 785, 794, 817, 818, 832, 845, 853, 855, 856, 879, 880, 882, 907, 912, 936, 938, 940, 942, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 957, 958, 962, 968, 972, 973, 987, 989, 991, 992, 997, 998, 999, 1000, 1001, 1003, 1004, 1005, 1006, 1009, 1019, 1025, 1030, 1039, 1049, 1056], "instead": [28, 33, 34, 52, 56, 67, 74, 101, 110, 124, 133, 158, 159, 170, 173, 183, 185, 195, 196, 197, 200, 218, 227, 231, 254, 278, 310, 341, 345, 352, 470, 482, 483, 484, 485, 486, 488, 489, 490, 519, 521, 527, 533, 563, 565, 569, 573, 584, 587, 588, 600, 601, 605, 609, 612, 615, 621, 622, 626, 627, 630, 638, 664, 670, 671, 676, 695, 712, 715, 734, 737, 753, 785, 821, 825, 832, 936, 960, 961, 989, 991, 997, 1003, 1031, 1049, 1056], "whether": [28, 94, 96, 126, 134, 201, 221, 254, 310, 328, 346, 401, 402, 444, 445, 470, 494, 638, 652, 680, 696, 701, 706, 734, 737, 785, 804, 826, 884, 885, 936, 1049, 1056], "header": [28, 31, 35, 48, 97, 101, 102, 105, 112, 143, 187, 222, 254, 734], "field": [28, 59, 86, 88, 93, 217, 224, 254, 429, 439, 479, 516, 517, 530, 531, 544, 582, 583, 604, 621, 638, 708, 734, 785, 912, 936, 944, 998, 1000, 1001, 1015, 1017, 1049], "symbol": [28, 254], "byte": [28, 48, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 144, 254, 286, 289, 290, 519, 522, 734, 760, 763, 764, 839, 989, 992, 1049], "specifi": [28, 31, 67, 77, 86, 88, 105, 124, 134, 140, 144, 145, 148, 157, 158, 159, 172, 185, 195, 197, 200, 201, 207, 221, 224, 231, 234, 254, 360, 361, 362, 363, 368, 439, 464, 476, 482, 483, 484, 485, 486, 488, 489, 490, 505, 520, 526, 563, 565, 572, 575, 576, 577, 578, 584, 587, 588, 592, 605, 609, 618, 621, 622, 626, 627, 638, 652, 658, 662, 665, 669, 670, 671, 675, 695, 696, 701, 706, 708, 712, 716, 734, 839, 840, 841, 842, 848, 990, 996, 1049], "defin": [28, 31, 38, 121, 122, 124, 133, 158, 159, 183, 186, 236, 254, 268, 383, 428, 466, 480, 482, 483, 484, 485, 486, 488, 489, 490, 567, 587, 588, 603, 621, 626, 627, 638, 670, 671, 688, 718, 734, 737, 744, 860, 911, 945, 1049], "chrono": [28, 254, 348, 351, 534, 535, 536, 539, 828, 831, 1004, 1005, 1006, 1009], "rust": [28, 35, 83, 106, 110, 133, 236, 254, 744, 1049], "crate": [28, 254, 509, 510, 515, 516, 524, 525, 534, 535, 536, 539, 737, 979, 980, 985, 986, 994, 995, 1004, 1005, 1006, 1009], "fraction": [28, 119, 120, 198, 254, 346, 465, 492, 534, 536, 638, 826, 932, 957, 1004, 1006, 1049], "second": [28, 123, 158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 534, 536, 589, 590, 625, 629, 638, 670, 671, 676, 734, 737, 821, 825, 832, 1004, 1006, 1057], "precis": [28, 31, 38, 39, 170, 196, 197, 214, 254, 317, 537, 737, 793, 1007], "infer": [28, 90, 92, 93, 94, 95, 96, 101, 102, 105, 108, 109, 112, 115, 133, 254, 477, 517, 534, 535, 536, 537, 539, 615, 638, 734, 942, 987, 1004, 1005, 1006, 1007, 1009, 1049], "maximum": [28, 101, 102, 112, 122, 123, 124, 126, 176, 254, 403, 440, 458, 473, 605, 606, 638, 681, 734, 774, 806, 886, 920, 928, 933, 938, 1049], "timeunit": [28, 38, 40, 254, 317, 318, 350, 355, 536, 587, 588, 737, 793, 794, 830, 835, 1006], "frame": [28, 29, 31, 52, 53, 54, 55, 56, 57, 67, 74, 93, 119, 124, 133, 135, 170, 171, 180, 183, 186, 195, 196, 197, 218, 225, 254, 654, 685, 688, 734, 737, 773, 1049, 1056, 1057], "datetim": [28, 31, 67, 97, 124, 139, 156, 158, 159, 171, 173, 227, 254, 316, 317, 318, 319, 320, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 406, 482, 483, 484, 485, 486, 488, 489, 490, 534, 536, 553, 587, 588, 590, 596, 603, 626, 627, 638, 670, 671, 676, 734, 737, 791, 792, 793, 794, 795, 796, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 876, 889, 890, 928, 929, 961, 1004, 1006, 1032, 1049], "place": [28, 134, 141, 146, 163, 164, 187, 192, 197, 203, 204, 207, 221, 229, 254, 278, 416, 423, 495, 496, 504, 638, 652, 697, 698, 701, 706, 734, 743, 753, 845, 899, 906, 939, 941, 964, 965, 974, 1049], "float64": [28, 31, 93, 101, 124, 143, 144, 152, 199, 218, 231, 254, 270, 271, 272, 273, 274, 275, 293, 301, 302, 311, 346, 363, 389, 391, 472, 500, 501, 551, 552, 576, 592, 612, 615, 630, 638, 660, 694, 712, 734, 737, 826, 1031, 1036, 1049], "repres": [28, 50, 65, 90, 92, 94, 95, 96, 208, 228, 233, 254, 389, 391, 507, 560, 563, 576, 579, 592, 603, 616, 617, 620, 628, 638, 702, 710, 734, 961, 976, 1038, 1049], "empti": [28, 81, 93, 101, 102, 105, 112, 135, 136, 158, 167, 179, 254, 603, 618, 654, 655, 670, 684, 734, 737, 773, 777, 863, 1049], "table_nam": [29, 31, 254], "connect": [29, 101, 103, 106, 110, 114, 116, 117, 254, 650], "if_exist": [29, 254], "dbwritemod": [29, 254], "fail": [29, 30, 91, 104, 106, 109, 113, 132, 223, 254, 279, 349, 429, 534, 535, 536, 539, 638, 707, 734, 744, 1004, 1005, 1006, 1009, 1049], "dbwriteengin": [29, 254], "sqlalchemi": [29, 254], "databas": [29, 103, 254, 649], "creat": [29, 31, 90, 94, 96, 113, 122, 123, 124, 125, 126, 127, 135, 136, 158, 159, 184, 187, 227, 231, 254, 318, 345, 352, 429, 474, 482, 483, 485, 488, 489, 490, 528, 559, 577, 586, 587, 588, 589, 590, 625, 626, 627, 638, 654, 655, 661, 670, 671, 712, 734, 773, 777, 790, 794, 825, 832, 930, 939, 998, 1030, 1049, 1056, 1057], "append": [29, 30, 124, 146, 172, 173, 254, 310, 470, 474, 587, 588, 629, 638, 675, 676, 734, 845, 1049], "your": [29, 31, 67, 101, 102, 119, 120, 133, 170, 196, 197, 200, 214, 231, 234, 236, 254, 268, 534, 535, 536, 567, 638, 656, 672, 679, 680, 695, 712, 716, 718, 734, 744, 1004, 1005, 1006, 1049, 1057], "special": [29, 101, 102, 112, 254, 516, 744, 986, 1049], "uri": [29, 30, 103, 104, 113, 254], "postgresql": [29, 103, 254, 464, 638], "user": [29, 103, 133, 186, 236, 254, 268, 437, 466, 494, 567, 587, 638, 688, 718, 734, 744, 962, 1049], "pass": [29, 31, 35, 55, 67, 92, 103, 105, 112, 122, 124, 126, 134, 138, 140, 157, 158, 159, 161, 175, 185, 186, 200, 207, 210, 221, 227, 231, 234, 254, 268, 325, 344, 366, 381, 464, 466, 482, 483, 484, 485, 486, 488, 489, 490, 505, 521, 527, 533, 563, 565, 572, 576, 584, 587, 596, 605, 609, 621, 622, 638, 652, 658, 669, 670, 671, 673, 680, 688, 695, 699, 701, 706, 712, 716, 718, 734, 744, 801, 824, 846, 855, 882, 991, 997, 1003, 1019, 1049], "server": [29, 103, 254], "port": [29, 101, 103, 106, 110, 114, 116, 254], "sqlite": [29, 254], "db": [29, 103, 254], "replac": [29, 30, 101, 102, 112, 147, 148, 193, 222, 231, 254, 318, 344, 439, 525, 569, 638, 664, 712, 734, 794, 824, 919, 960, 961, 995, 1049], "insert": [29, 101, 102, 106, 110, 112, 114, 115, 116, 164, 192, 222, 224, 254, 493, 508, 542, 638, 708, 734, 958, 978, 1012, 1049], "mode": [29, 30, 52, 254, 516, 612, 615, 630, 638, 734, 986, 1049, 1056], "new": [29, 30, 31, 112, 130, 133, 142, 163, 164, 183, 184, 191, 192, 211, 222, 224, 225, 231, 254, 263, 318, 365, 382, 438, 524, 525, 530, 531, 543, 544, 550, 569, 638, 649, 659, 692, 705, 708, 712, 718, 734, 740, 790, 794, 844, 930, 941, 994, 995, 1000, 1001, 1013, 1015, 1021, 1027, 1049, 1056], "alreadi": [29, 30, 254, 309, 410, 638, 784, 893, 1049], "adbc": [29, 103, 254], "deltalak": [30, 104, 113, 118, 254], "deltat": [30, 254], "ignor": [30, 123, 124, 126, 177, 209, 254, 312, 344, 360, 361, 362, 408, 458, 459, 638, 787, 824, 840, 841, 842, 891, 928, 929, 1049], "overwrite_schema": [30, 254], "storage_opt": [30, 101, 104, 106, 110, 113, 114, 116, 254], "delta_write_opt": [30, 254], "delta": [30, 40, 104, 113, 208, 228, 254, 488, 490, 507, 560, 579, 616, 617, 620, 628, 638, 649, 702, 710, 734, 953, 955, 976, 1038, 1049], "like": [30, 91, 100, 101, 102, 105, 106, 107, 108, 109, 110, 111, 112, 166, 168, 172, 217, 254, 316, 410, 451, 473, 515, 587, 588, 622, 626, 627, 638, 663, 691, 734, 743, 792, 893, 938, 985, 1049], "categor": [30, 58, 75, 172, 215, 216, 254, 294, 295, 439, 553, 638, 737, 767, 768, 769, 785, 936, 1032, 1049], "protocol": [30, 91, 103, 132, 254], "object": [30, 31, 32, 35, 57, 74, 91, 92, 97, 100, 101, 102, 104, 105, 106, 107, 108, 109, 110, 111, 113, 122, 124, 126, 132, 157, 158, 159, 174, 197, 217, 218, 254, 587, 588, 603, 626, 627, 649, 670, 671, 691, 734, 737, 767, 791, 883, 977, 1025, 1049], "handl": [30, 74, 97, 101, 102, 112, 117, 254, 312, 408, 542, 638, 787, 891, 1012, 1049], "throw": [30, 91, 254, 293, 517, 518, 638, 766, 987, 988, 1049], "add": [30, 31, 102, 133, 146, 158, 231, 232, 254, 468, 546, 590, 594, 629, 638, 670, 675, 712, 713, 714, 734, 743, 845, 1049], "anyth": [30, 195, 254, 292, 516, 638, 986], "updat": [30, 254, 734], "extra": [30, 35, 48, 101, 104, 105, 106, 110, 113, 114, 116, 146, 158, 254, 670, 734, 743, 845, 1049], "storag": [30, 101, 104, 106, 110, 113, 114, 116, 254], "backend": [30, 103, 104, 113, 254], "cloud": [30, 104, 113, 117, 254], "configur": [30, 104, 113, 254], "authent": [30, 104, 113, 254], "see": [30, 31, 38, 103, 104, 105, 113, 119, 120, 124, 126, 138, 172, 186, 254, 298, 299, 300, 368, 396, 437, 502, 509, 515, 516, 524, 587, 588, 614, 638, 737, 774, 775, 776, 880, 972, 979, 985, 986, 994, 1049, 1057], "here": [30, 31, 90, 92, 93, 94, 96, 103, 104, 108, 109, 113, 122, 124, 126, 254, 518, 734, 988], "gc": [30, 104, 113, 254], "azur": [30, 104, 113, 254], "keyword": [30, 55, 104, 110, 113, 138, 186, 195, 200, 231, 234, 254, 466, 618, 621, 638, 688, 695, 712, 716, 734, 1049], "argument": [30, 35, 101, 104, 110, 113, 138, 140, 145, 157, 158, 159, 177, 185, 186, 187, 200, 201, 207, 209, 218, 224, 227, 231, 234, 254, 345, 352, 363, 383, 464, 466, 482, 483, 484, 485, 486, 488, 489, 490, 505, 521, 527, 533, 563, 565, 570, 571, 572, 575, 576, 577, 578, 584, 587, 592, 605, 609, 615, 618, 621, 622, 626, 638, 658, 662, 669, 670, 671, 688, 695, 696, 701, 708, 712, 716, 734, 743, 825, 832, 860, 991, 997, 1003, 1031, 1049], "while": [30, 102, 104, 105, 113, 124, 126, 170, 179, 222, 254, 684, 734], "lake": [30, 104, 113, 254, 649], "instanti": [30, 31, 200, 231, 254, 695, 712, 734], "basic": [30, 31, 254, 1057], "filesystem": [30, 104, 113, 254], "table_path": [30, 104, 113, 254], "doe": [30, 67, 74, 84, 90, 92, 93, 94, 96, 97, 101, 102, 104, 105, 108, 109, 112, 113, 117, 119, 120, 146, 171, 172, 195, 196, 197, 223, 231, 254, 292, 355, 429, 439, 557, 587, 593, 602, 638, 663, 675, 680, 707, 712, 734, 743, 835, 845, 853, 919, 967, 1039, 1049], "match": [30, 31, 38, 74, 84, 90, 92, 93, 94, 96, 108, 109, 119, 120, 148, 173, 195, 254, 445, 487, 509, 510, 513, 515, 516, 517, 518, 524, 525, 532, 534, 535, 536, 576, 638, 665, 676, 734, 737, 869, 876, 952, 979, 980, 983, 985, 986, 987, 988, 994, 995, 1002, 1004, 1005, 1006, 1049], "version": [30, 72, 104, 113, 118, 254, 292, 337, 338, 534, 536, 569, 587, 614, 615, 626, 638, 743, 817, 818, 1004, 1006, 1049], "old": [30, 191, 254, 692, 734], "existing_table_path": [30, 254], "store": [30, 101, 110, 146, 170, 196, 254, 294, 743, 768, 845, 1049], "bucket": [30, 104, 113, 254, 345, 352, 825, 832, 856, 1049], "prefix": [30, 130, 254, 263, 290, 438, 532, 542, 546, 638, 737, 764, 1002, 1012], "aws_region": [30, 113, 254], "the_aws_region": [30, 254], "aws_access_key_id": [30, 104, 113, 254], "the_aws_access_key_id": [30, 104, 113, 254], "aws_secret_access_kei": [30, 104, 113, 254], "the_aws_secret_access_kei": [30, 104, 113, 254], "workbook": [31, 254], "worksheet": [31, 254], "posit": [31, 140, 145, 157, 185, 200, 201, 207, 224, 231, 234, 254, 360, 361, 362, 363, 464, 470, 505, 523, 563, 565, 570, 571, 572, 575, 576, 577, 578, 584, 592, 605, 609, 618, 621, 622, 638, 658, 662, 669, 695, 696, 701, 708, 712, 716, 734, 840, 841, 842, 936, 993, 1049], "tupl": [31, 103, 133, 170, 195, 196, 197, 202, 233, 254, 477, 638, 689, 699, 734, 737, 942, 1049], "a1": [31, 68, 70, 254], "table_styl": [31, 254], "column_format": [31, 254], "dtype_format": [31, 254], "oneormoredatatyp": [31, 122, 254, 876, 1049], "conditional_format": [31, 254], "conditionalformatdict": [31, 254], "column_tot": [31, 254], "columntotalsdefinit": [31, 254], "column_width": [31, 254], "row_tot": [31, 254], "rowtotalsdefinit": [31, 254], "row_height": [31, 254], "sparklin": [31, 254], "sequenc": [31, 59, 67, 73, 90, 92, 93, 94, 96, 101, 102, 108, 109, 112, 122, 123, 124, 134, 139, 145, 146, 172, 173, 179, 183, 186, 187, 197, 207, 215, 221, 223, 224, 225, 226, 227, 254, 387, 429, 437, 466, 505, 544, 567, 572, 582, 583, 594, 596, 604, 614, 619, 638, 652, 662, 675, 676, 688, 701, 706, 707, 708, 709, 734, 743, 786, 788, 845, 912, 961, 1015, 1049], "formula": [31, 254, 357, 638, 838, 1049], "autofilt": [31, 254], "autofit": [31, 254], "hidden_column": [31, 254], "hide_gridlin": [31, 254], "sheet_zoom": [31, 254], "freeze_pan": [31, 254], "excel": [31, 105, 254, 649], "open": [31, 101, 102, 105, 106, 110, 114, 116, 254], "xlsxwriter": [31, 118, 254], "ha": [31, 67, 112, 132, 158, 159, 227, 254, 268, 291, 309, 448, 482, 483, 484, 485, 486, 488, 489, 490, 554, 567, 569, 638, 670, 671, 718, 734, 765, 773, 784, 786, 853, 866, 1033, 1049], "close": [31, 158, 159, 254, 383, 434, 482, 483, 484, 485, 486, 488, 489, 490, 502, 587, 588, 626, 627, 638, 670, 671, 734, 860, 972, 1049], "xlsx": [31, 105, 254], "work": [31, 39, 102, 105, 192, 254, 268, 284, 297, 298, 299, 300, 363, 372, 410, 431, 464, 480, 522, 556, 638, 759, 771, 774, 775, 776, 851, 893, 914, 992, 1034, 1049], "directori": [31, 110, 254], "sheet1": [31, 254], "valid": [31, 38, 52, 106, 110, 126, 130, 144, 172, 254, 309, 509, 510, 515, 516, 518, 524, 525, 587, 588, 638, 675, 734, 737, 784, 839, 853, 979, 980, 985, 986, 988, 994, 995, 1049], "notat": [31, 254], "integ": [31, 43, 44, 45, 46, 61, 62, 63, 64, 122, 124, 125, 127, 158, 159, 254, 265, 297, 346, 372, 373, 463, 470, 475, 482, 483, 484, 485, 486, 487, 488, 489, 490, 523, 562, 569, 596, 600, 601, 615, 638, 670, 671, 734, 737, 771, 826, 851, 869, 936, 940, 952, 961, 993, 1049, 1056, 1057], "medium": [31, 254], "kei": [31, 67, 72, 74, 158, 170, 172, 173, 180, 185, 187, 191, 194, 196, 197, 254, 621, 670, 675, 676, 685, 692, 693, 734], "follow": [31, 72, 101, 102, 104, 112, 113, 133, 158, 159, 173, 186, 227, 254, 268, 341, 345, 352, 466, 473, 482, 483, 484, 485, 486, 487, 488, 489, 490, 544, 555, 567, 587, 629, 631, 632, 634, 638, 639, 640, 644, 645, 646, 670, 671, 676, 688, 734, 821, 825, 832, 938, 960, 961, 1041, 1043, 1045, 1049, 1050, 1053, 1054, 1055, 1057], "first_column": [31, 254], "last_column": [31, 254], "banded_column": [31, 254], "banded_row": [31, 254], "sheet": [31, 105, 254], "chart": [31, 254, 689, 734], "subsequ": [31, 57, 190, 218, 254, 429, 629, 661, 734], "colnam": [31, 112, 124, 143, 254, 660, 734], "given": [31, 52, 53, 67, 90, 92, 93, 94, 96, 101, 102, 108, 109, 112, 121, 122, 124, 125, 126, 127, 133, 134, 144, 145, 147, 158, 159, 169, 185, 186, 195, 197, 203, 204, 207, 221, 226, 254, 268, 310, 316, 319, 348, 350, 351, 357, 383, 406, 423, 429, 432, 464, 466, 470, 473, 476, 477, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 493, 495, 496, 516, 534, 536, 544, 567, 592, 604, 615, 616, 617, 638, 652, 662, 670, 671, 680, 688, 697, 698, 701, 706, 709, 718, 734, 737, 744, 785, 792, 795, 828, 830, 831, 838, 839, 856, 860, 879, 889, 906, 912, 915, 918, 930, 936, 938, 942, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 958, 964, 965, 986, 1004, 1006, 1036, 1040, 1049, 1056, 1057], "dd": [31, 254], "mm": [31, 254], "yyyi": [31, 254], "00": [31, 124, 158, 173, 227, 254, 316, 317, 319, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 482, 483, 485, 488, 489, 490, 534, 536, 539, 587, 590, 626, 627, 638, 670, 676, 734, 737, 792, 793, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 835, 836, 1004, 1006, 1009], "overridden": [31, 90, 92, 94, 96, 108, 109, 128, 254, 734], "basi": [31, 124, 254], "param": [31, 90, 92, 93, 94, 96, 101, 102, 108, 109, 112, 123, 124, 126, 195, 254, 734], "It": [31, 180, 186, 236, 254, 268, 447, 480, 587, 588, 638, 680, 685, 718, 734, 960, 961, 1049], "also": [31, 57, 93, 112, 122, 123, 124, 125, 126, 130, 143, 157, 158, 159, 180, 183, 196, 200, 207, 231, 254, 305, 308, 344, 383, 473, 482, 483, 484, 485, 486, 488, 489, 490, 505, 527, 533, 582, 583, 587, 594, 596, 614, 629, 637, 638, 643, 669, 670, 671, 685, 695, 701, 712, 713, 734, 737, 824, 860, 938, 1003, 1049], "group": [31, 35, 48, 52, 102, 157, 158, 159, 171, 183, 185, 187, 197, 225, 227, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254, 262, 268, 365, 371, 410, 464, 470, 473, 480, 504, 505, 509, 515, 516, 524, 549, 567, 638, 669, 670, 671, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734, 737, 893, 945, 979, 985, 986, 994, 1049], "float_dtyp": [31, 254], "simplifi": [31, 47, 48, 73, 254, 656, 661, 663, 689, 699, 734], "uniform": [31, 254], "condit": [31, 142, 149, 195, 254, 513, 532, 573, 594, 629, 659, 666, 734], "suppli": [31, 90, 92, 93, 94, 96, 108, 109, 195, 254, 466, 638, 734], "typenam": [31, 254], "3_color_scal": [31, 254], "data_bar": [31, 254], "make": [31, 59, 74, 90, 95, 101, 102, 106, 110, 114, 116, 180, 183, 190, 227, 254, 361, 362, 439, 464, 476, 492, 498, 530, 542, 638, 685, 734, 841, 842, 856, 919, 1000, 1012, 1049, 1057], "icon": [31, 254], "multipl": [31, 55, 73, 74, 101, 102, 112, 114, 115, 116, 122, 126, 134, 140, 144, 146, 149, 157, 158, 163, 171, 185, 187, 197, 200, 201, 207, 221, 231, 234, 254, 428, 444, 448, 455, 456, 464, 477, 480, 482, 483, 484, 485, 486, 488, 489, 490, 505, 563, 565, 569, 572, 576, 582, 583, 584, 594, 604, 605, 609, 614, 619, 622, 629, 638, 652, 658, 666, 669, 670, 695, 696, 701, 706, 712, 716, 718, 734, 743, 839, 845, 911, 924, 942, 1049], "singl": [31, 53, 67, 74, 101, 102, 103, 110, 112, 122, 133, 140, 141, 142, 146, 154, 169, 172, 185, 195, 197, 207, 254, 268, 341, 369, 407, 428, 437, 474, 477, 505, 508, 561, 563, 565, 567, 569, 572, 576, 577, 578, 584, 601, 604, 605, 609, 619, 622, 627, 638, 658, 659, 675, 701, 734, 743, 821, 845, 890, 911, 939, 942, 978, 1025, 1049], "across": [31, 67, 254, 563, 564, 565, 566, 584, 585, 605, 606, 609, 610, 622, 623], "effect": [31, 132, 152, 158, 217, 254, 268, 324, 587, 588, 638, 670, 714, 734, 792, 800], "heatmap": [31, 254], "min": [31, 35, 48, 139, 148, 158, 159, 187, 254, 298, 300, 306, 368, 464, 473, 485, 610, 618, 638, 665, 670, 671, 734, 774, 776, 781, 786, 848, 938, 950, 1049, 1057], "entir": [31, 254], "final": [31, 67, 116, 254, 360, 361, 362, 638, 663, 734, 840, 841, 842, 1049], "made": [31, 254, 1030, 1049], "up": [31, 59, 103, 170, 173, 196, 197, 214, 254, 268, 297, 542, 638, 675, 676, 680, 734, 737, 771, 1012, 1049], "abov": [31, 254, 629], "order": [31, 47, 48, 52, 54, 67, 73, 93, 119, 133, 134, 157, 158, 159, 185, 186, 187, 198, 201, 207, 217, 221, 223, 227, 254, 268, 278, 284, 295, 425, 431, 473, 492, 493, 494, 498, 504, 505, 544, 556, 557, 572, 638, 648, 652, 669, 670, 671, 684, 696, 701, 706, 707, 734, 744, 753, 759, 769, 785, 875, 908, 914, 936, 938, 943, 957, 958, 962, 974, 1015, 1034, 1035, 1049], "than": [31, 47, 48, 89, 94, 96, 101, 102, 112, 117, 124, 126, 133, 135, 156, 157, 170, 173, 185, 195, 196, 198, 225, 236, 254, 268, 376, 377, 398, 436, 450, 480, 492, 502, 520, 526, 531, 542, 567, 579, 587, 622, 638, 669, 676, 718, 734, 744, 945, 957, 972, 990, 996, 1001, 1012, 1049, 1057], "total": [31, 144, 254, 839, 1049], "export": [31, 170, 171, 196, 197, 214, 217, 254], "numer": [31, 173, 254, 261, 298, 299, 300, 373, 383, 434, 454, 456, 467, 476, 497, 545, 555, 638, 649, 676, 734, 737, 774, 775, 776, 786, 860, 874, 959, 966, 1030, 1049, 1057], "associ": [31, 53, 55, 67, 103, 123, 197, 254], "sum": [31, 52, 144, 152, 157, 158, 159, 169, 187, 234, 254, 268, 307, 308, 357, 369, 429, 482, 485, 489, 561, 563, 582, 584, 585, 594, 614, 623, 638, 656, 661, 663, 669, 670, 671, 687, 689, 699, 716, 734, 737, 782, 783, 838, 839, 947, 948, 950, 953, 954, 955, 1049], "must": [31, 91, 92, 104, 113, 139, 145, 158, 159, 173, 180, 195, 254, 310, 429, 437, 470, 482, 483, 484, 485, 486, 488, 489, 490, 638, 662, 670, 671, 676, 680, 685, 734, 785, 786, 936, 1049], "funcnam": [31, 254], "averag": [31, 254, 360, 361, 362, 473, 638, 840, 841, 842, 938, 1049], "count_num": [31, 254], "count": [31, 52, 101, 102, 106, 110, 112, 114, 115, 116, 139, 158, 159, 173, 183, 184, 187, 222, 226, 227, 232, 236, 245, 254, 269, 304, 341, 399, 407, 457, 462, 482, 483, 484, 485, 486, 488, 489, 490, 510, 557, 559, 568, 611, 638, 670, 671, 676, 687, 709, 714, 718, 727, 734, 786, 821, 856, 890, 926, 931, 980, 1035, 1037, 1049], "std_dev": [31, 254], "var": [31, 127, 254, 490, 638, 734, 1049], "pixel": [31, 254], "unit": [31, 38, 40, 124, 126, 144, 254, 317, 318, 325, 350, 355, 435, 448, 534, 536, 558, 587, 588, 596, 638, 689, 734, 737, 793, 794, 801, 830, 835, 839, 918, 1004, 1006, 1036, 1049, 1057], "hand": [31, 101, 102, 112, 254, 409, 415, 430, 892, 898, 913], "side": [31, 158, 159, 254, 383, 409, 415, 430, 482, 483, 484, 485, 486, 488, 489, 490, 493, 587, 588, 626, 627, 638, 670, 671, 734, 860, 892, 898, 913, 958, 1049], "call": [31, 56, 102, 124, 126, 130, 133, 157, 158, 159, 174, 253, 254, 268, 305, 308, 395, 468, 546, 605, 609, 638, 650, 669, 670, 671, 733, 734, 737, 744, 1049], "ad": [31, 93, 132, 158, 222, 231, 254, 267, 366, 582, 583, 638, 670, 712, 734, 846, 1049], "end": [31, 101, 102, 110, 112, 158, 254, 286, 289, 290, 316, 341, 345, 346, 363, 383, 424, 509, 513, 516, 528, 532, 569, 576, 587, 588, 592, 600, 601, 626, 627, 629, 638, 670, 672, 679, 689, 734, 737, 763, 792, 821, 825, 860, 907, 983, 986, 998, 1002, 1049], "wise": [31, 67, 152, 254, 270, 271, 272, 273, 274, 275, 301, 302, 364, 433, 499, 500, 501, 551, 552, 582, 583, 594, 605, 609, 614, 638, 745, 746, 747, 748, 749, 750, 778, 779, 843, 916, 917, 969, 970, 971, 1022, 1023, 1049], "particip": [31, 254], "distinct": [31, 126, 185, 254, 284, 431, 473, 590, 638, 759, 914, 938, 1049, 1057], "referenc": [31, 254, 544], "differ": [31, 101, 117, 119, 146, 158, 159, 170, 196, 197, 214, 222, 254, 312, 322, 341, 342, 344, 353, 359, 408, 439, 458, 459, 461, 492, 498, 534, 557, 587, 593, 596, 602, 638, 661, 670, 671, 734, 737, 743, 744, 787, 798, 821, 822, 824, 833, 845, 891, 928, 929, 959, 1004, 1049], "row_index": [31, 254], "height": [31, 142, 254], "provid": [31, 47, 48, 55, 101, 102, 103, 104, 112, 113, 124, 126, 169, 254, 268, 287, 288, 429, 437, 511, 512, 515, 517, 518, 596, 621, 638, 649, 734, 744, 761, 762, 856, 879, 981, 982, 985, 987, 988, 1049, 1056, 1057], "intersect": [31, 254, 737], "bodi": [31, 254], "start": [31, 100, 101, 102, 103, 106, 110, 112, 114, 115, 116, 128, 157, 158, 174, 206, 227, 232, 254, 286, 289, 290, 322, 325, 326, 328, 329, 334, 336, 342, 343, 345, 346, 350, 352, 353, 354, 356, 363, 383, 424, 482, 483, 485, 488, 489, 490, 503, 509, 513, 516, 528, 532, 569, 576, 582, 587, 588, 592, 594, 600, 601, 626, 627, 629, 638, 669, 670, 689, 700, 714, 734, 737, 764, 793, 795, 798, 801, 802, 804, 809, 811, 814, 816, 819, 822, 823, 825, 826, 830, 832, 833, 834, 835, 836, 860, 907, 973, 983, 986, 998, 1002, 1049, 1057], "zero": [31, 90, 91, 100, 101, 102, 106, 110, 123, 132, 148, 170, 195, 212, 217, 218, 254, 368, 429, 434, 493, 502, 542, 555, 638, 654, 665, 734, 773, 848, 912, 972, 1012, 1025, 1030, 1031, 1049], "unless": [31, 67, 92, 218, 254, 527, 533, 615, 734, 1003, 1031, 1039, 1049], "marker": [31, 254], "compliant": [31, 254], "case": [31, 67, 90, 92, 93, 94, 96, 108, 109, 116, 128, 133, 146, 158, 159, 170, 196, 197, 214, 254, 316, 437, 438, 447, 448, 509, 516, 524, 638, 670, 671, 734, 737, 743, 792, 845, 979, 986, 994, 1049], "three": [31, 220, 254, 429, 493, 638, 912], "avail": [31, 99, 103, 104, 113, 122, 130, 253, 254, 473, 569, 631, 632, 634, 637, 638, 639, 640, 643, 644, 645, 646, 649, 650, 663, 733, 734, 737, 938, 1041, 1043, 1045, 1049, 1050, 1053, 1054, 1055], "insert_befor": [31, 254], "insert_aft": [31, 254], "respect": [31, 254], "direct": [31, 103, 110, 116, 225, 254], "far": [31, 254], "thei": [31, 93, 112, 119, 130, 174, 197, 254, 481, 638, 737, 946, 1049], "strongli": [31, 128, 133, 195, 236, 254, 268, 638, 744, 1049], "advis": [31, 174, 254], "structur": [31, 81, 85, 87, 146, 186, 197, 217, 254, 466, 638, 688, 734, 743, 845, 1049], "wherev": [31, 133, 236, 254, 268, 638, 744, 1049], "possibl": [31, 101, 133, 134, 157, 170, 196, 221, 223, 236, 254, 268, 435, 447, 531, 558, 638, 652, 669, 701, 706, 707, 734, 744, 1001, 1049], "simpl": [31, 126, 183, 254], "colx": [31, 57, 254, 737, 1057], "coli": [31, 254, 737, 1057], "after": [31, 57, 74, 93, 100, 101, 102, 106, 110, 112, 114, 115, 116, 146, 224, 253, 254, 363, 439, 464, 473, 542, 638, 708, 734, 743, 845, 919, 938, 1012, 1049], "befor": [31, 101, 112, 128, 130, 146, 158, 173, 224, 254, 307, 308, 309, 439, 464, 465, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 542, 547, 616, 617, 638, 670, 673, 676, 708, 734, 743, 782, 783, 784, 845, 919, 932, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 1012, 1018, 1049], "most": [31, 54, 90, 101, 102, 103, 112, 254, 448, 455, 465, 531, 559, 638, 924, 932, 1001, 1037, 1049, 1056], "mandatori": [31, 254], "return_dtyp": [31, 133, 254, 268, 437, 439, 567, 604, 638, 744, 919, 1049], "latter": [31, 146, 254, 743, 845, 1049], "appropri": [31, 217, 254, 473, 638, 938, 1049], "pure": [31, 254, 1030, 1049], "actual": [31, 93, 105, 124, 126, 197, 254, 967, 1049], "indic": [31, 100, 101, 102, 106, 110, 112, 121, 122, 126, 158, 159, 173, 197, 201, 215, 227, 254, 279, 341, 345, 352, 385, 388, 389, 391, 392, 393, 428, 443, 446, 482, 483, 484, 485, 486, 488, 489, 490, 493, 499, 549, 572, 573, 638, 670, 671, 676, 696, 734, 737, 821, 825, 832, 864, 868, 870, 871, 872, 873, 911, 958, 969, 1020, 1026, 1049, 1057], "calcul": [31, 67, 158, 208, 228, 254, 312, 360, 361, 362, 396, 408, 409, 435, 487, 502, 507, 558, 560, 567, 579, 616, 617, 620, 628, 638, 670, 702, 710, 734, 787, 840, 841, 842, 880, 891, 892, 952, 972, 976, 1038, 1049], "individu": [31, 48, 124, 159, 217, 254, 268, 516, 638, 671, 734, 772, 986, 1049], "gridlin": [31, 254], "zoom": [31, 254], "level": [31, 35, 48, 112, 114, 115, 116, 124, 133, 152, 183, 254, 369, 638, 672, 679, 734], "freez": [31, 254], "pane": [31, 254], "top": [31, 134, 221, 254, 652, 706, 734], "index": [31, 91, 95, 98, 118, 132, 150, 158, 159, 164, 169, 170, 173, 187, 193, 195, 196, 206, 217, 219, 227, 232, 254, 262, 276, 277, 278, 280, 341, 403, 404, 413, 424, 428, 429, 482, 483, 484, 485, 486, 488, 489, 490, 493, 503, 515, 528, 549, 638, 670, 671, 676, 700, 714, 734, 751, 752, 753, 754, 755, 821, 879, 886, 887, 896, 907, 911, 912, 930, 958, 961, 973, 985, 998, 1020, 1049], "thu": [31, 146, 254, 579, 743, 845, 1049], "altern": [31, 254, 1030, 1049], "a2": [31, 68, 70, 254], "occur": [31, 73, 254, 407, 455, 473, 638, 656, 661, 663, 689, 699, 734, 890, 924, 938, 1049], "equival": [31, 90, 92, 93, 94, 96, 104, 108, 109, 158, 169, 183, 254, 261, 265, 358, 359, 373, 376, 377, 398, 436, 454, 456, 460, 461, 463, 467, 522, 545, 555, 562, 638, 670, 734, 879, 992, 1008, 1010, 1011, 1049], "top_row": [31, 254], "top_col": [31, 254], "base": [31, 36, 142, 149, 158, 159, 254, 316, 324, 357, 360, 361, 362, 432, 433, 470, 523, 638, 659, 666, 670, 671, 734, 737, 792, 800, 838, 840, 841, 842, 856, 915, 916, 936, 993, 1040, 1049, 1057], "scroll": [31, 254], "region": [31, 254], "initit": [31, 254], "5th": [31, 254], "definit": [31, 122, 254, 396, 638, 880, 1049], "take": [31, 124, 130, 152, 158, 180, 186, 187, 211, 217, 254, 341, 505, 550, 587, 588, 591, 593, 602, 638, 670, 685, 705, 734, 821, 1021, 1040, 1049], "care": [31, 254, 268, 494, 638, 962, 1049], "rel": [31, 103, 104, 113, 119, 120, 254, 341, 360, 361, 362, 484, 486, 488, 490, 638, 821, 840, 841, 842, 1049], "readthedoc": [31, 254], "io": [31, 254], "working_with_conditional_format": [31, 254], "html": [31, 91, 132, 138, 254], "similarli": [31, 93, 158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 821, 825, 832], "well": [31, 101, 102, 112, 145, 187, 254, 383, 587, 638, 662, 734, 860, 1049], "adjac": [31, 254], "two": [31, 57, 92, 94, 96, 103, 152, 179, 180, 187, 220, 235, 236, 254, 262, 313, 318, 429, 504, 549, 569, 570, 571, 579, 581, 616, 617, 638, 684, 685, 717, 718, 734, 788, 794, 912, 1049], "help": [31, 254, 663, 734], "appear": [31, 93, 119, 254, 557, 638, 1035, 1049], "working_with_sparklin": [31, 254], "inject": [31, 67, 254], "locat": [31, 146, 193, 219, 224, 254, 493, 638, 708, 734, 743, 845, 958, 961, 1020, 1049], "syntax": [31, 133, 183, 254, 509, 515, 516, 524, 699, 734, 979, 985, 986, 994, 1049], "ensur": [31, 75, 103, 123, 124, 126, 157, 185, 195, 254, 383, 559, 638, 669, 680, 734, 737, 1030, 1037, 1049], "correctli": [31, 254], "microsoft": [31, 118, 254], "com": [31, 103, 254, 360, 361, 362, 515, 516, 638, 840, 841, 842, 985, 986, 1049], "u": [31, 38, 40, 55, 97, 254, 317, 318, 325, 350, 355, 534, 536, 587, 588, 596, 737, 793, 794, 801, 830, 835, 1004, 1006], "offic": [31, 254], "f5ed2452": [31, 254], "2337": [31, 254], "4f71": [31, 254], "bed3": [31, 254], "c8ae6d2b276": [31, 254], "random": [31, 122, 124, 126, 160, 198, 254, 378, 473, 492, 498, 638, 854, 938, 957, 968, 1049], "date": [31, 38, 67, 101, 102, 103, 112, 117, 124, 139, 156, 158, 159, 171, 173, 227, 254, 317, 318, 319, 322, 323, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 406, 482, 483, 484, 485, 486, 488, 489, 490, 534, 535, 553, 587, 588, 596, 603, 625, 638, 670, 671, 676, 734, 737, 792, 793, 794, 795, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 876, 889, 890, 928, 929, 961, 1004, 1005, 1032, 1049], "dtm": [31, 254, 318, 794], "2023": [31, 97, 118, 171, 254, 318, 587, 603, 737, 794], "num": [31, 220, 254, 383, 386, 542, 638, 860, 1049], "500": [31, 170, 226, 254, 663, 709, 734, 809, 811, 819, 826, 947, 948, 950, 1049], "val": [31, 194, 254, 295, 466, 553, 629, 638, 693, 734, 769], "10_000": [31, 254], "20_000": [31, 254], "30_000": [31, 254], "increas": [31, 67, 101, 110, 254, 309, 638, 784, 1049], "b4": [31, 254], "light": [31, 254], "twice": [31, 105, 254], "each": [31, 67, 102, 115, 119, 120, 122, 133, 156, 157, 158, 159, 171, 173, 185, 218, 224, 227, 233, 234, 236, 237, 239, 248, 254, 268, 310, 341, 345, 352, 414, 427, 434, 470, 473, 480, 484, 486, 488, 490, 505, 516, 530, 531, 567, 569, 572, 578, 587, 600, 601, 621, 638, 670, 671, 676, 689, 708, 716, 718, 719, 721, 730, 734, 772, 785, 821, 825, 832, 897, 910, 936, 938, 945, 986, 1000, 1001, 1017, 1049, 1057], "titl": [31, 52, 254], "explicit": [31, 112, 122, 254, 614], "integr": [31, 254, 1057], "multi_fram": [31, 254], "wb": [31, 254], "coordin": [31, 254], "advanc": [31, 254, 429, 912, 1057], "min_color": [31, 254], "76933c": [31, 254], "mid_color": [31, 254], "c4d79b": [31, 254], "max_color": [31, 254], "ebf1d": [31, 254], "data_bar_2010": [31, 254], "bar_color": [31, 254], "9bbb59": [31, 254], "bar_negative_color_sam": [31, 254], "bar_negative_border_color_sam": [31, 254], "000": [31, 254, 1057], "white": [31, 254], "w": [31, 54, 55, 158, 197, 254, 515, 564, 566, 670, 734, 737, 985, 997], "get_worksheet_by_nam": [31, 254], "fmt_titl": [31, 254], "add_format": [31, 254], "font_color": [31, 254], "4f6228": [31, 254], "font_siz": [31, 254], "12": [31, 67, 97, 123, 124, 158, 159, 173, 227, 254, 263, 307, 316, 318, 322, 326, 329, 336, 337, 338, 342, 343, 345, 352, 354, 356, 465, 472, 489, 497, 537, 583, 586, 587, 589, 604, 638, 670, 671, 672, 676, 679, 699, 704, 734, 737, 744, 785, 792, 794, 816, 825, 832, 956, 1007, 1049, 1057], "ital": [31, 254], "bold": [31, 254], "customis": [31, 254], "trend": [31, 254], "win_loss": [31, 254], "subtl": [31, 254], "tone": [31, 254], "hidden": [31, 254], "id": [31, 74, 222, 236, 254, 480, 524, 525, 557, 559, 638, 718, 945, 1035, 1049, 1057], "q1": [31, 254], "55": [31, 69, 254], "20": [31, 124, 146, 163, 164, 180, 186, 188, 192, 193, 254, 276, 277, 278, 312, 345, 352, 378, 382, 466, 482, 483, 485, 596, 603, 626, 638, 685, 688, 734, 737, 787, 832, 1049], "35": [31, 118, 254, 312, 638, 787, 1049], "q2": [31, 254], "30": [31, 146, 158, 163, 186, 192, 193, 213, 231, 254, 276, 277, 278, 312, 318, 323, 329, 337, 343, 344, 345, 352, 356, 378, 497, 587, 603, 626, 638, 670, 688, 712, 734, 737, 785, 787, 794, 799, 817, 824, 825, 832, 1049, 1057], "15": [31, 118, 123, 133, 158, 159, 164, 254, 309, 312, 338, 345, 352, 466, 489, 583, 615, 626, 638, 670, 671, 734, 737, 784, 787, 825, 832, 1049], "60": [31, 146, 254, 346, 347, 489, 534, 638, 822, 826, 827, 1004], "q3": [31, 254], "40": [31, 146, 186, 254, 345, 352, 378, 537, 638, 688, 734, 805, 832, 1007], "80": [31, 254], "q4": [31, 254], "75": [31, 139, 254, 265, 463, 482, 483, 484, 485, 488, 489, 490, 638, 786, 856, 936, 1049, 1057], "account": [31, 97, 103, 254, 341, 360, 361, 362, 638, 821, 840, 841, 842, 1049], "flavour": [31, 254], "integer_dtyp": [31, 200, 254, 695, 734, 737], "0_": [31, 254], "just": [31, 112, 179, 254, 684, 734], "unifi": [31, 254, 737], "multi": [31, 101, 102, 254, 363, 515, 605, 609, 638, 985], "2_color_scal": [31, 254], "95b3d7": [31, 254], "ffffff": [31, 254], "standardis": [31, 254], "z": [31, 54, 74, 97, 122, 124, 144, 166, 168, 172, 179, 196, 197, 254, 261, 263, 265, 295, 378, 405, 438, 463, 468, 476, 516, 534, 536, 546, 564, 566, 585, 606, 610, 615, 623, 638, 675, 684, 700, 734, 737, 769, 848, 986, 1004, 1006, 1049, 1056], "score": [31, 254], "conjunct": [31, 105, 254], "a123": [31, 254], "b345": [31, 254], "c567": [31, 254], "d789": [31, 254], "e101": [31, 254], "45": [31, 159, 254, 318, 345, 352, 489, 510, 516, 570, 571, 603, 626, 638, 671, 734, 737, 794, 825, 832, 980, 986, 1057], "85": [31, 254, 1057], "font": [31, 254], "consola": [31, 254], "standard": [31, 118, 208, 217, 254, 329, 361, 488, 502, 507, 518, 620, 638, 702, 734, 805, 841, 972, 976, 988, 1049, 1057], "stdev": [31, 254], "ipccompress": [32, 254], "arrow": [32, 47, 76, 90, 103, 106, 114, 170, 196, 197, 212, 214, 254, 734, 1025, 1030, 1049], "ipc": [32, 106, 107, 114, 117, 254, 649], "binari": [32, 254, 286, 288, 289, 290, 760, 763, 764], "feather": [32, 106, 114, 254, 649], "lz4": [32, 35, 47, 48, 254, 734], "zstd": [32, 35, 47, 48, 254, 734], "pretti": [33, 254], "row_ori": [33, 254], "iobas": [33, 34, 108, 109, 254, 452, 691, 715, 734], "serial": [33, 34, 254], "represent": [33, 34, 216, 254, 295, 322, 326, 329, 330, 332, 334, 336, 339, 342, 343, 346, 353, 354, 356, 553, 638, 661, 678, 734, 769, 798, 802, 804, 805, 809, 811, 814, 816, 819, 822, 823, 826, 833, 834, 836, 1028, 1032, 1049], "orient": [33, 68, 70, 94, 96, 254, 734], "slower": [33, 94, 96, 133, 157, 185, 227, 236, 254, 268, 567, 638, 669, 718, 734, 744, 1049], "common": [33, 67, 73, 74, 254, 438, 587, 588, 638, 643, 656, 661, 663, 689, 699, 734], "write_ndjson": [33, 254], "newlin": [34, 109, 115, 254], "delimit": [34, 101, 102, 109, 112, 115, 187, 215, 254, 508, 978, 1026, 1049], "parquetcompress": [35, 254], "compression_level": [35, 48, 254, 734], "statist": [35, 48, 101, 102, 110, 116, 139, 254, 361, 362, 396, 482, 483, 484, 485, 486, 487, 488, 489, 490, 502, 638, 734, 786, 841, 842, 880, 952, 972, 1049], "row_group_s": [35, 48, 254, 734], "use_pyarrow": [35, 48, 101, 106, 110, 254, 734, 1029, 1030, 1049], "pyarrow_opt": [35, 104, 110, 113, 254], "parquet": [35, 48, 110, 111, 116, 254, 649, 734], "gzip": [35, 48, 254, 734], "lzo": [35, 48, 254, 734], "brotli": [35, 48, 254, 734], "choos": [35, 47, 48, 187, 254, 734], "good": [35, 47, 48, 170, 254, 734], "perform": [35, 47, 48, 67, 81, 91, 101, 102, 106, 110, 112, 114, 115, 116, 132, 133, 134, 157, 158, 159, 173, 190, 197, 221, 236, 254, 268, 464, 534, 535, 536, 638, 652, 670, 671, 676, 701, 706, 714, 734, 744, 1004, 1005, 1006, 1049], "fast": [35, 47, 48, 125, 127, 254, 366, 494, 638, 734, 846, 962, 1049, 1057], "decompress": [35, 47, 48, 254, 734], "backward": [35, 48, 148, 173, 254, 285, 338, 368, 638, 665, 676, 734, 818, 848, 1049], "guarante": [35, 48, 91, 101, 102, 223, 254, 663, 707, 734], "deal": [35, 48, 170, 254, 344, 352, 473, 534, 638, 734, 824, 832, 938, 1004, 1049], "older": [35, 48, 254, 734], "reader": [35, 48, 99, 101, 102, 106, 110, 254, 650, 734], "higher": [35, 48, 189, 246, 254, 471, 486, 613, 638, 690, 728, 734, 937, 951, 1049], "mean": [35, 48, 101, 102, 106, 110, 112, 139, 148, 157, 158, 159, 173, 187, 227, 234, 254, 341, 345, 352, 365, 368, 482, 483, 484, 485, 486, 488, 489, 490, 502, 515, 569, 574, 587, 638, 665, 669, 670, 671, 676, 680, 716, 734, 786, 821, 825, 832, 844, 848, 853, 948, 972, 985, 1049], "smaller": [35, 48, 144, 254, 663, 734, 839, 1049], "disk": [35, 47, 48, 106, 254, 699, 734], "11": [35, 48, 118, 124, 159, 254, 263, 314, 315, 329, 337, 338, 341, 345, 352, 382, 465, 473, 489, 503, 542, 562, 576, 622, 627, 638, 656, 671, 672, 679, 689, 704, 734, 737, 744, 821, 825, 832, 946, 1049], "22": [35, 48, 123, 254, 322, 342, 345, 352, 354, 355, 482, 483, 485, 488, 489, 490, 534, 576, 638, 734, 737, 825, 832, 835, 1004, 1057], "comput": [35, 48, 73, 74, 78, 144, 157, 173, 218, 223, 234, 246, 254, 260, 270, 271, 272, 273, 274, 275, 281, 282, 283, 296, 301, 302, 304, 305, 306, 307, 308, 313, 357, 364, 396, 409, 415, 419, 420, 421, 430, 432, 433, 434, 455, 464, 465, 469, 470, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 499, 500, 501, 502, 506, 551, 552, 563, 564, 565, 566, 570, 571, 572, 579, 581, 584, 591, 605, 609, 616, 617, 622, 638, 669, 673, 675, 676, 707, 713, 716, 728, 734, 739, 745, 746, 747, 748, 749, 750, 756, 757, 758, 770, 778, 779, 780, 781, 782, 783, 788, 838, 839, 843, 880, 892, 898, 902, 903, 904, 913, 915, 916, 917, 924, 932, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 969, 970, 971, 972, 975, 1022, 1023, 1031, 1049], "512": [35, 254, 467, 638, 932, 1049], "implement": [35, 91, 132, 133, 236, 254, 268, 395, 468, 546, 567, 638, 718, 744, 960, 961, 1049], "v": [35, 54, 55, 144, 254, 493, 638, 785, 958, 1049], "At": [35, 254], "moment": [35, 138, 254, 396, 502, 638, 880, 972, 1049], "pyarrow": [35, 90, 95, 101, 103, 104, 106, 110, 113, 117, 118, 171, 212, 217, 218, 254, 650, 1025, 1029, 1030, 1031, 1049], "write_t": [35, 254], "calendar": [37, 38, 158, 159, 173, 227, 254, 329, 341, 345, 352, 356, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 805, 821, 825, 832, 836], "time_unit": [38, 40, 97, 317, 318, 325, 350, 355, 534, 536, 587, 588, 596, 737, 793, 794, 801, 830, 835, 1004, 1006], "time_zon": [38, 97, 319, 344, 352, 536, 587, 588, 737, 792, 795, 800, 824, 832, 1006], "timezon": [38, 737], "m": [38, 40, 55, 172, 254, 316, 317, 318, 324, 325, 348, 350, 351, 355, 515, 534, 535, 536, 539, 587, 588, 596, 675, 734, 737, 792, 793, 794, 800, 801, 828, 830, 831, 835, 985, 1004, 1005, 1006, 1009], "zone": [38, 316, 319, 344, 534, 536, 587, 588, 737, 792, 795, 824, 1004, 1006], "zoneinfo": [38, 737], "run": [38, 47, 48, 73, 125, 127, 133, 157, 174, 187, 223, 236, 254, 268, 309, 410, 479, 480, 618, 638, 656, 661, 663, 669, 680, 684, 689, 699, 707, 734, 737, 744, 784, 893, 944, 945, 1049, 1056, 1057], "available_timezon": [38, 737], "check": [38, 101, 102, 112, 119, 120, 153, 158, 159, 167, 169, 172, 254, 264, 266, 286, 289, 290, 383, 387, 406, 509, 513, 532, 638, 670, 671, 675, 680, 734, 741, 742, 760, 763, 764, 861, 863, 866, 867, 869, 874, 875, 876, 878, 879, 889, 959, 979, 983, 1002, 1049], "128": [39, 69, 932, 1049], "bit": [39, 41, 42, 43, 44, 45, 46, 61, 62, 63, 64, 475, 509, 638, 940, 979, 1049], "neg": [39, 158, 159, 161, 175, 203, 204, 206, 210, 254, 423, 424, 466, 495, 496, 503, 528, 638, 670, 671, 697, 698, 700, 714, 734, 855, 882, 906, 907, 964, 965, 973, 998, 1019, 1049], "scale": [39, 144, 254, 466, 537, 638, 839, 1007, 1049], "experiment": [39, 117, 200, 225, 226, 231, 254, 309, 345, 482, 483, 484, 485, 486, 488, 489, 490, 638, 695, 709, 712, 734, 784, 825, 856, 936, 1049], "progress": 39, "expect": [39, 82, 84, 89, 268, 567, 603, 638, 678, 680, 734], "32": [41, 44, 62, 69, 159, 169, 254, 456, 497, 638, 671, 734, 788, 822, 932, 951, 1049], "sign": [43, 44, 45, 46, 341, 475, 542, 638, 821, 869, 940, 1012, 1049], "maintain_ord": [47, 48, 134, 157, 185, 187, 221, 223, 227, 235, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 254, 262, 268, 284, 431, 549, 556, 580, 638, 652, 656, 661, 663, 669, 689, 699, 701, 706, 707, 717, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729, 734, 759, 914, 1034, 1049], "type_coercion": [47, 48, 73, 656, 661, 663, 689, 699, 734], "predicate_pushdown": [47, 48, 73, 656, 661, 663, 680, 689, 699, 734], "projection_pushdown": [47, 48, 73, 656, 661, 663, 680, 689, 699, 734], "simplify_express": [47, 48, 73, 656, 661, 663, 689, 699, 734], "no_optim": [47, 48, 73, 656, 663, 680, 689, 734], "slice_pushdown": [47, 48, 73, 656, 661, 663, 680, 689, 699, 734], "persist": [47, 48, 57, 734], "larger": [47, 48, 579, 734], "ram": [47, 48, 734], "maintain": [47, 48, 134, 221, 254, 284, 431, 493, 556, 638, 652, 701, 706, 734, 759, 914, 958, 1034, 1049], "slightli": [47, 48, 734], "faster": [47, 48, 146, 217, 225, 254, 268, 481, 522, 557, 638, 734, 743, 744, 845, 946, 992, 1049], "coercion": [47, 48, 73, 476, 638, 656, 661, 663, 689, 699, 734], "optim": [47, 48, 73, 110, 112, 114, 115, 116, 170, 174, 186, 190, 196, 223, 254, 656, 661, 663, 680, 689, 699, 707, 714, 718, 734, 770, 1049], "predic": [47, 48, 73, 112, 114, 115, 116, 117, 149, 169, 195, 254, 369, 561, 594, 638, 656, 661, 663, 666, 680, 689, 692, 699, 714, 734, 849, 960, 961, 1049], "pushdown": [47, 48, 73, 656, 661, 663, 680, 689, 692, 699, 714, 734, 960, 961, 1049], "project": [47, 48, 73, 112, 114, 115, 116, 268, 504, 505, 638, 656, 661, 663, 680, 689, 692, 699, 715, 734], "turn": [47, 48, 73, 101, 102, 112, 540, 559, 638, 656, 661, 663, 680, 689, 734, 1010], "off": [47, 48, 73, 101, 102, 112, 559, 638, 656, 661, 663, 680, 689, 734], "certain": [47, 48, 80, 104, 113, 164, 227, 254, 576, 656, 689, 734, 1049], "slice": [47, 48, 68, 73, 144, 161, 171, 210, 254, 414, 427, 481, 482, 483, 484, 485, 486, 488, 489, 490, 638, 656, 661, 663, 680, 689, 699, 734, 839, 855, 897, 910, 946, 947, 948, 949, 950, 951, 953, 954, 955, 1019, 1049], "lf": [47, 48, 652, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 669, 670, 672, 673, 674, 675, 677, 678, 679, 680, 681, 682, 683, 684, 686, 687, 688, 689, 690, 692, 693, 694, 695, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 710, 711, 712, 713, 714, 715, 734, 1056, 1057], "scan_csv": [47, 48, 101, 102, 734], "my_larger_than_ram_fil": [47, 48, 734], "data_pagesize_limit": [48, 734], "reduc": [48, 101, 102, 110, 112, 114, 115, 116, 241, 242, 244, 247, 497, 594, 638, 723, 724, 726, 729, 734, 921, 935, 966, 1018, 1049], "pressur": [48, 110, 115, 116, 497, 638, 734, 966, 1049], "improv": [48, 106, 114, 734], "speed": [48, 268, 638, 734], "minimum": [48, 122, 123, 124, 126, 152, 181, 254, 360, 361, 362, 453, 459, 473, 609, 610, 638, 686, 734, 774, 813, 840, 841, 842, 929, 934, 938, 1049, 1057], "limit": [48, 103, 112, 148, 254, 285, 298, 299, 300, 368, 374, 638, 665, 672, 734, 774, 775, 776, 848, 1049], "page": [48, 106, 110, 114, 116, 254, 638, 649, 734, 1049], "arrai": [49, 90, 94, 101, 102, 110, 144, 212, 217, 218, 254, 281, 282, 283, 284, 298, 299, 300, 304, 305, 306, 307, 308, 405, 418, 419, 420, 421, 422, 425, 426, 433, 482, 483, 485, 489, 494, 591, 638, 734, 756, 757, 758, 759, 774, 775, 776, 780, 781, 782, 783, 788, 839, 888, 901, 902, 903, 904, 905, 908, 909, 916, 917, 947, 948, 950, 953, 954, 955, 962, 967, 1025, 1030, 1031, 1039, 1049], "integer_list": 49, "float_list": 49, "wrap": [51, 97, 383, 638], "arbitrari": [51, 124, 737], "python": [51, 101, 102, 118, 133, 170, 196, 197, 214, 236, 254, 268, 318, 437, 567, 587, 588, 626, 627, 629, 638, 643, 718, 744, 794, 806, 807, 808, 813, 1029, 1049], "queri": [52, 54, 73, 103, 106, 112, 114, 115, 116, 146, 174, 186, 254, 268, 437, 439, 518, 638, 656, 661, 663, 672, 679, 689, 699, 714, 718, 734, 743, 744, 845, 988, 1049, 1056], "eager": [52, 53, 54, 55, 56, 57, 158, 225, 254, 310, 317, 319, 322, 323, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 350, 352, 353, 354, 355, 356, 470, 482, 483, 485, 488, 489, 490, 569, 573, 587, 588, 596, 600, 601, 612, 615, 621, 626, 627, 630, 637, 638, 670, 734, 792, 793, 795, 798, 799, 800, 801, 802, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 830, 832, 833, 834, 835, 836, 1056], "pars": [52, 101, 102, 105, 109, 112, 114, 115, 134, 157, 200, 207, 221, 231, 234, 254, 383, 439, 464, 505, 517, 523, 534, 536, 537, 563, 564, 565, 566, 572, 575, 577, 578, 584, 585, 596, 605, 606, 609, 610, 618, 619, 621, 622, 623, 629, 638, 652, 669, 695, 701, 706, 712, 716, 734, 860, 987, 993, 1004, 1006, 1007, 1049], "against": [52, 410, 734, 893, 1056, 1057], "eagerli": [52, 429], "unset": [52, 123, 344, 429, 824], "init": [52, 130], "eager_execut": [52, 1056], "itself": [52, 122, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 616, 617, 638, 678, 734, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 1049, 1056], "alwai": [52, 101, 123, 133, 157, 236, 254, 447, 534, 587, 629, 680, 734, 743, 744, 1004, 1049, 1056, 1057], "impact": [52, 158, 254, 670, 734, 1056], "declar": [52, 90, 92, 93, 94, 96, 108, 109, 254, 734], "godfath": 52, "1972": 52, "6_000_000": 52, "134_821_952": 52, "dark": 52, "knight": 52, "2008": 52, "185_000_000": 52, "533_316_061": 52, "schindler": 52, "1993": 52, "22_000_000": 52, "96_067_179": 52, "pulp": 52, "fiction": 52, "1994": 52, "8_000_000": 52, "107_930_000": 52, "shawshank": 52, "redempt": 52, "25_000_000": 52, "28_341_469": 52, "release_year": 52, "budget": 52, "gross": 52, "imdb_scor": 52, "ctx": [52, 53, 54, 55, 56, 57], "film": 52, "1990": 52, "BY": [52, 54], "desc": [52, 54], "AS": [52, 619, 1056], "decad": 52, "total_gross": 52, "n_film": 52, "2000": [52, 328, 330, 337, 338, 341, 737, 804, 817, 818, 821], "533316061": 52, "232338648": 52, "1970": [52, 117], "134821952": 52, "register_glob": [53, 55, 57, 1056], "register_mani": [53, 54, 57], "unregist": [53, 54, 55, 1056], "frame_data": [53, 56], "execut": [53, 54, 56, 74, 174, 254, 410, 653, 680, 689, 734, 893, 1056], "collect": [53, 54, 57, 70, 73, 112, 113, 117, 124, 126, 140, 142, 174, 212, 254, 268, 387, 577, 596, 621, 638, 652, 658, 659, 662, 663, 664, 665, 666, 667, 669, 670, 671, 672, 674, 675, 676, 677, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 690, 692, 693, 695, 697, 698, 700, 701, 702, 703, 704, 705, 706, 707, 708, 710, 712, 713, 714, 716, 717, 718, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729, 734, 737, 867, 1049, 1056, 1057], "global": [54, 58, 75, 124, 129, 217, 254, 439, 638, 1056], "scope": [54, 57, 130, 648, 737, 1056], "automat": [54, 57, 90, 92, 93, 94, 96, 97, 101, 102, 103, 108, 109, 112, 124, 126, 128, 200, 231, 254, 292, 439, 521, 527, 533, 638, 695, 712, 734, 919, 991, 997, 1003, 1049, 1056], "map": [54, 55, 92, 93, 101, 102, 106, 107, 110, 111, 112, 114, 133, 143, 151, 170, 191, 195, 196, 197, 213, 254, 345, 352, 438, 439, 464, 480, 559, 567, 638, 660, 692, 734, 786, 825, 832, 919, 945, 1049, 1056], "recent": [54, 465, 638, 932, 1049, 1056], "df1": [54, 56, 57, 58, 67, 74, 75, 119, 146, 153, 180, 218, 229, 254, 685, 734], "x": [54, 55, 67, 74, 97, 101, 102, 103, 112, 122, 124, 144, 163, 166, 168, 172, 179, 187, 196, 197, 254, 261, 263, 264, 265, 266, 268, 310, 311, 358, 359, 373, 376, 377, 378, 398, 405, 416, 434, 436, 437, 438, 454, 456, 460, 461, 463, 467, 468, 470, 476, 480, 499, 502, 530, 545, 546, 553, 555, 562, 564, 566, 567, 570, 571, 582, 583, 585, 594, 603, 604, 606, 610, 614, 623, 638, 675, 680, 684, 700, 734, 737, 744, 848, 878, 969, 972, 1000, 1032, 1049, 1056], "df2": [54, 56, 57, 58, 67, 74, 75, 119, 146, 153, 218, 229, 254], "t": [54, 55, 74, 105, 112, 133, 158, 186, 223, 225, 254, 268, 292, 309, 316, 324, 344, 357, 360, 361, 362, 410, 464, 466, 470, 515, 521, 534, 536, 567, 629, 638, 670, 688, 707, 734, 737, 744, 784, 824, 838, 840, 841, 842, 893, 936, 959, 985, 991, 997, 1004, 1006, 1030, 1039, 1049], "join": [54, 58, 67, 73, 74, 75, 173, 226, 254, 382, 464, 638, 656, 661, 663, 676, 689, 699, 709, 713, 734], "named_fram": [55, 1056], "lf1": [55, 57], "o": [55, 106, 114, 291, 309, 514, 554, 638, 765, 784, 984, 1003, 1033, 1049], "lf2": [55, 57, 734], "p": [55, 69, 186, 254, 466, 621, 638, 688, 734], "q": [55, 197, 254, 310, 470, 621, 638, 936, 1049], "r": [55, 466, 510, 514, 515, 516, 524, 638, 737, 980, 984, 985, 986, 994], "lf3": [55, 734], "lf4": [55, 734], "either": [55, 124, 159, 169, 174, 177, 185, 195, 209, 217, 254, 470, 534, 563, 572, 621, 638, 671, 678, 734, 737, 936, 1004, 1049], "tbl1": [55, 57], "tbl2": [55, 57], "tbl3": 55, "tbl4": 55, "statement": [56, 629], "hello_world": 56, "baz": [56, 164, 165, 187, 224, 254, 529, 531, 674, 708, 734, 737, 1001], "hello_data": 56, "foo_bar": [56, 603], "registr": [57, 649], "lifetim": [57, 130, 648], "context": [57, 58, 128, 183, 237, 254, 262, 268, 303, 369, 410, 447, 504, 505, 559, 567, 580, 593, 596, 602, 615, 618, 637, 638, 648, 649, 713, 719, 734, 893, 1056], "manag": [57, 58, 648, 649, 1056], "often": [57, 130, 158, 159, 254, 407, 476, 638, 670, 671, 734, 890], "want": [57, 93, 133, 146, 183, 254, 268, 298, 299, 300, 352, 369, 437, 439, 480, 482, 483, 484, 485, 486, 488, 489, 490, 582, 594, 612, 615, 630, 638, 656, 672, 679, 734, 737, 743, 744, 774, 775, 776, 832, 845, 945, 1030, 1049], "df0": [57, 180, 254, 685, 734], "exit": [57, 58, 130, 1056], "construct": [57, 90, 92, 93, 94, 95, 96, 254, 375, 439, 612, 615, 630, 638, 668, 691, 734, 1049], "through": [57, 737, 1049], "tbl0": 57, "remain": [57, 101, 102, 112, 144, 254, 530, 531, 569, 680, 734, 839, 1000, 1001, 1049], "text": [57, 522, 524, 525, 619, 992, 1057], "misc": 57, "testing1234": 57, "test1": 57, "test2": 57, "test3": 57, "temporarili": [58, 128, 130, 158, 159, 254, 670, 671, 734], "cach": [58, 73, 75, 106, 112, 114, 116, 129, 439, 482, 483, 484, 485, 486, 488, 489, 490, 534, 535, 536, 539, 638, 648, 656, 661, 663, 689, 699, 734, 1004, 1005, 1006, 1009], "categori": [58, 75, 215, 254, 294, 295, 310, 470, 638, 768, 769, 785, 856, 936, 1049], "until": [58, 174, 254, 587], "finish": [58, 78, 146, 254, 743, 845, 1049], "invalid": [58, 101, 102, 112, 517, 518, 523, 555, 587, 588, 638, 987, 988, 993], "outermost": 58, "color": [58, 75, 236, 286, 288, 289, 290, 718], "red": [58, 75, 236, 718], "green": [58, 75, 236, 718], "blue": [58, 75, 286, 288, 289, 290], "orang": [58, 75, 137, 237, 238, 240, 241, 242, 244, 246, 247, 254, 719, 720, 722, 723, 724, 726, 728, 729], "uint8": [58, 75, 121, 123, 216, 217, 254, 307, 308, 439, 547, 562, 638, 737, 782, 783, 1018, 1049, 1057], "yellow": [58, 75, 286, 288, 289, 290], "black": [58, 75, 133, 254, 286, 288, 289, 290], "succe": [58, 101, 102, 112], "df_join": [58, 75], "cat": [58, 75, 216, 254, 310, 470, 509, 538, 541, 553, 578, 634, 638, 737, 785, 856, 936, 979, 1008, 1011, 1045, 1049], "u8": [58, 75, 215, 216, 254, 439, 562, 638, 737, 1026, 1049, 1057], "composit": [59, 123, 1057], "schemadict": [59, 90, 92, 93, 94, 95, 96, 112, 199, 254, 621, 680, 694, 718, 734], "struct_seri": [59, 718], "dai": [60, 158, 159, 171, 173, 227, 254, 325, 329, 336, 337, 338, 341, 342, 343, 345, 350, 352, 353, 354, 356, 482, 483, 484, 485, 486, 488, 489, 490, 586, 587, 589, 590, 638, 670, 671, 676, 734, 737, 817, 818, 821, 822, 825, 832, 834], "unsign": [61, 62, 63, 64, 475, 638, 869, 940, 1049], "could": [65, 78, 142, 158, 254, 293, 582, 594, 638, 659, 670, 734, 766, 1049], "static": [65, 718], "utf": 66, "frametyp": [67, 1056], "joinstrategi": [67, 172, 254, 675, 734], "outer": [67, 74, 172, 254, 675, 734], "descend": [67, 134, 201, 207, 221, 254, 278, 425, 473, 494, 504, 505, 572, 638, 652, 696, 701, 706, 734, 753, 875, 908, 938, 962, 974, 1049], "fill": [67, 74, 135, 147, 148, 204, 225, 254, 285, 305, 308, 367, 368, 374, 382, 482, 483, 485, 489, 496, 520, 526, 542, 595, 612, 615, 630, 638, 664, 665, 698, 713, 734, 847, 848, 859, 930, 947, 948, 950, 953, 954, 955, 965, 990, 996, 1012, 1049], "sort": [67, 68, 119, 123, 134, 158, 159, 173, 180, 186, 187, 201, 221, 227, 239, 248, 254, 278, 295, 369, 464, 494, 505, 559, 561, 572, 638, 652, 661, 670, 671, 676, 685, 688, 689, 696, 699, 706, 721, 730, 734, 737, 753, 769, 875, 962, 1034, 1037, 1049, 1057], "origin": [67, 101, 102, 223, 254, 344, 395, 439, 464, 475, 476, 477, 510, 515, 516, 518, 520, 526, 542, 570, 571, 638, 707, 734, 785, 824, 919, 936, 942, 980, 985, 986, 988, 990, 996, 1012, 1049], "In": [67, 104, 113, 116, 124, 126, 130, 133, 144, 146, 158, 159, 183, 217, 254, 268, 587, 638, 670, 671, 734, 743, 839, 845, 939, 1049], "duplic": [67, 79, 166, 172, 173, 223, 254, 263, 384, 395, 470, 638, 675, 676, 707, 734, 862, 936, 1049], "behaviour": [67, 74, 509, 515, 516, 524, 555, 638, 979, 985, 986, 994], "strategi": [67, 74, 101, 121, 122, 123, 124, 126, 148, 158, 172, 173, 182, 254, 268, 368, 429, 638, 665, 670, 675, 676, 734, 848, 912, 1049], "suitabl": [67, 74, 122, 133, 254, 268, 493, 638, 744, 958, 1049, 1057], "get": [67, 98, 107, 111, 128, 134, 137, 143, 151, 154, 155, 158, 159, 161, 162, 166, 168, 169, 175, 182, 195, 199, 202, 206, 210, 221, 230, 239, 248, 254, 262, 276, 277, 278, 280, 284, 294, 304, 305, 306, 307, 308, 325, 341, 370, 379, 384, 386, 394, 397, 400, 412, 417, 418, 431, 440, 441, 442, 447, 449, 453, 458, 459, 471, 479, 503, 507, 519, 522, 547, 548, 556, 560, 587, 593, 598, 602, 605, 606, 607, 608, 609, 610, 620, 624, 628, 638, 652, 657, 660, 667, 670, 671, 672, 677, 679, 694, 700, 704, 706, 711, 721, 730, 734, 751, 752, 753, 754, 755, 759, 768, 772, 780, 781, 782, 783, 801, 821, 852, 855, 860, 862, 865, 877, 882, 895, 900, 901, 914, 920, 922, 923, 925, 928, 929, 933, 934, 937, 944, 973, 976, 989, 992, 1019, 1025, 1026, 1034, 1038, 1039, 1049], "speedup": [67, 133, 170, 254, 268, 638, 744, 1049], "receiv": [67, 112, 133, 186, 254, 466, 638, 688, 734, 1057], "now": [67, 159, 254, 470, 534, 536, 638, 671, 734, 1004, 1006], "One": [67, 139, 183, 187, 254, 265, 463, 619, 638, 737, 786, 1049], "whose": [67, 173, 187, 254, 363, 592, 638, 676, 734], "uniqu": [67, 121, 122, 123, 126, 168, 172, 183, 197, 245, 254, 269, 280, 310, 386, 394, 457, 470, 534, 535, 536, 539, 557, 559, 568, 611, 638, 675, 727, 734, 755, 785, 786, 865, 877, 926, 936, 1004, 1005, 1006, 1009, 1035, 1037, 1049], "post": 67, "constrain": 67, "newli": 67, "boolean": [67, 134, 149, 152, 174, 207, 221, 254, 264, 265, 266, 286, 289, 290, 328, 369, 383, 385, 386, 387, 388, 389, 390, 391, 392, 393, 401, 402, 406, 463, 505, 517, 561, 562, 572, 573, 621, 629, 638, 652, 655, 666, 678, 701, 706, 734, 737, 741, 742, 754, 760, 762, 804, 849, 860, 861, 862, 864, 865, 867, 868, 870, 871, 872, 873, 877, 884, 885, 889, 933, 934, 960, 979, 1030, 1040, 1049], "know": [67, 429, 522, 992, 1030, 1039, 1049], "first": [67, 101, 102, 105, 112, 115, 123, 133, 156, 158, 161, 173, 175, 182, 186, 187, 210, 215, 216, 222, 223, 227, 239, 254, 278, 280, 309, 338, 341, 345, 379, 386, 400, 410, 413, 414, 429, 439, 466, 493, 505, 515, 517, 518, 524, 525, 575, 582, 587, 594, 598, 629, 638, 656, 670, 672, 676, 679, 688, 707, 713, 721, 734, 737, 753, 784, 786, 818, 821, 825, 855, 865, 882, 893, 896, 897, 912, 919, 958, 985, 987, 988, 994, 995, 1019, 1028, 1049, 1057], "2022": [67, 139, 156, 158, 159, 173, 227, 254, 318, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 534, 587, 588, 590, 596, 638, 670, 671, 676, 734, 737, 794, 805, 821, 825, 832, 1004], "y": [67, 74, 97, 122, 124, 144, 166, 168, 172, 179, 187, 196, 197, 254, 261, 263, 264, 265, 266, 348, 351, 358, 359, 376, 377, 398, 405, 416, 436, 438, 460, 461, 463, 468, 476, 480, 534, 535, 536, 546, 555, 562, 564, 566, 570, 571, 585, 603, 606, 610, 623, 638, 675, 684, 700, 734, 737, 828, 831, 1004, 1005, 1006], "df3": [67, 254], "set_tbl_format": 67, "09": [67, 124, 159, 254, 318, 329, 337, 338, 537, 627, 671, 734, 798, 1007], "01": [67, 124, 139, 156, 158, 159, 227, 254, 316, 317, 318, 319, 323, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 355, 356, 482, 483, 485, 488, 489, 490, 534, 535, 536, 539, 587, 588, 590, 638, 670, 671, 734, 737, 793, 794, 795, 796, 797, 798, 799, 801, 802, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 1004, 1005, 1006, 1009], "02": [67, 156, 158, 159, 173, 227, 254, 317, 318, 325, 326, 327, 334, 335, 336, 337, 338, 341, 344, 345, 346, 347, 350, 352, 353, 355, 482, 483, 484, 485, 486, 488, 489, 490, 491, 534, 535, 536, 539, 587, 588, 590, 638, 670, 671, 676, 734, 737, 793, 794, 796, 797, 801, 802, 803, 806, 807, 808, 809, 811, 813, 814, 815, 816, 817, 818, 819, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 835, 912, 1004, 1005, 1006, 1009], "03": [67, 97, 158, 159, 227, 254, 317, 318, 319, 323, 325, 327, 335, 336, 337, 338, 344, 345, 346, 347, 348, 350, 351, 352, 353, 355, 482, 483, 485, 488, 489, 490, 535, 539, 587, 588, 638, 670, 671, 734, 793, 794, 795, 798, 799, 801, 802, 803, 806, 807, 808, 809, 811, 813, 815, 816, 817, 818, 819, 822, 823, 824, 825, 826, 827, 828, 830, 831, 833, 834, 835, 1005, 1009], "af1": 67, "af2": 67, "af3": 67, "keep": [67, 101, 102, 112, 223, 226, 227, 254, 395, 439, 575, 638, 707, 709, 734, 919, 1049], "easili": [67, 200, 231, 234, 254, 576, 621, 695, 712, 716, 734], "dot": [67, 638, 699, 734, 1049], "product": [67, 138, 254, 307, 313, 567, 638, 782, 788, 1049], "fill_nul": [67, 147, 254, 638, 664, 713, 734, 1049], "sum_horizont": [67, 622], "167": 67, "47": 67, "callabl": [68, 69, 70, 71, 112, 133, 152, 186, 236, 254, 268, 429, 437, 438, 466, 481, 567, 582, 583, 594, 604, 614, 638, 680, 688, 718, 734, 744, 912, 946, 1049], "decor": [68, 69, 70, 71, 124, 126, 133, 254, 268, 638, 648, 649, 744, 1049], "under": [68, 69, 70, 71, 631, 632, 634, 639, 640, 644, 645, 646, 1041, 1043, 1045, 1050, 1053, 1054, 1055], "access": [68, 69, 70, 71, 170, 195, 196, 254, 439, 638, 713, 734, 1057], "by_first_letter_of_column_nam": 68, "f": [68, 102, 139, 156, 171, 212, 222, 225, 254, 261, 268, 429, 497, 514, 534, 536, 567, 577, 604, 638, 912, 984, 1004, 1006], "fromkei": [68, 70], "by_first_letter_of_column_valu": 68, "starts_with": [68, 286, 289, 509, 513, 737, 983], "to_seri": [68, 154, 254, 534, 573, 615, 1004], "xx": [68, 70, 123, 126, 737], "xy": [68, 70], "yy": [68, 70, 123, 126, 737], "yz": [68, 70], "b1": [68, 70], "b2": [68, 70], "pow_n": 69, "powersofn": 69, "next": [69, 158, 159, 173, 227, 254, 285, 341, 345, 352, 473, 482, 483, 484, 485, 486, 488, 489, 490, 587, 638, 670, 671, 676, 734, 821, 825, 832, 938, 1049], "ceil": [69, 638, 1049], "previou": [69, 130, 465, 468, 544, 546, 638, 743, 932, 1049], "floor": [69, 638, 1049], "nearest": [69, 173, 189, 246, 254, 297, 372, 382, 471, 486, 613, 638, 676, 690, 728, 734, 771, 851, 859, 937, 951, 1049], "24": [69, 118, 133, 144, 158, 159, 173, 227, 254, 307, 309, 322, 327, 341, 342, 345, 352, 354, 456, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 784, 803, 821, 825, 832, 879, 1049], "001": [69, 330, 331, 333, 340, 590, 810, 812, 820], "next_pow2": 69, "prev_pow2": 69, "nearest_pow2": 69, "split_by_column_dtyp": 70, "collect_al": 70, "31": [71, 124, 318, 322, 323, 336, 337, 341, 353, 534, 586, 587, 589, 596, 603, 737, 792, 794, 798, 799, 817, 821, 1004, 1057], "42": [71, 159, 160, 180, 254, 671, 685, 734, 854, 1049], "961": 71, "1764": 71, "4160": 71, "build": [72, 91, 737, 1057], "wa": 72, "compil": [72, 403, 404, 886, 887], "gate": 72, "info": [72, 104, 113, 118], "otherwis": [72, 123, 128, 133, 180, 197, 200, 236, 254, 268, 287, 298, 299, 300, 344, 352, 360, 361, 362, 429, 466, 475, 509, 511, 563, 565, 567, 584, 605, 609, 622, 629, 638, 685, 695, 718, 734, 744, 761, 774, 775, 776, 824, 832, 840, 841, 842, 912, 940, 960, 961, 979, 981, 1049], "depend": [72, 118, 268, 403, 404, 447, 470, 473, 567, 593, 596, 602, 638, 886, 887, 936, 938, 1049, 1057], "host": [72, 101, 106, 110, 114, 116], "git": 72, "lazy_fram": 73, "comm_subplan_elim": [73, 656, 661, 663, 689, 699, 734], "comm_subexpr_elim": [73, 292, 638, 656, 661, 663, 689, 699, 734], "graph": [73, 174, 254, 673, 713, 734], "parallel": [73, 74, 99, 103, 110, 116, 158, 173, 174, 186, 254, 309, 410, 638, 649, 670, 675, 676, 718, 734, 784, 893, 1049], "threadpool": [73, 128], "Will": [73, 656, 661, 663, 689, 699, 734, 1049], "try": [73, 85, 87, 101, 102, 105, 106, 110, 112, 114, 116, 656, 661, 663, 689, 699, 734], "branch": [73, 656, 661, 663, 689, 699, 734], "subplan": [73, 656, 661, 663, 689, 699, 734], "union": [73, 74, 656, 661, 663, 689, 699, 734, 737], "subexpress": [73, 656, 661, 663, 689, 699, 734], "reus": [73, 656, 661, 663, 689, 699, 734], "part": [73, 90, 124, 516, 530, 531, 656, 661, 663, 689, 699, 713, 734, 986, 1000, 1001], "fashion": [73, 172, 254, 656, 661, 663, 689, 699, 734], "item": [74, 102, 195, 198, 254, 365, 406, 413, 416, 492, 531, 638, 844, 889, 896, 899, 957, 1001, 1049], "iter": [74, 125, 127, 134, 157, 158, 159, 170, 171, 185, 195, 196, 197, 200, 201, 207, 221, 222, 231, 233, 234, 254, 309, 363, 464, 505, 563, 564, 565, 566, 572, 575, 576, 577, 578, 584, 585, 592, 605, 606, 609, 610, 618, 621, 622, 623, 638, 652, 669, 670, 671, 695, 696, 701, 706, 712, 716, 734, 784, 1049, 1057], "polarstyp": 74, "concatmethod": 74, "vertic": [74, 146, 225, 229, 254, 508, 978], "rechunk": [74, 90, 95, 101, 102, 106, 110, 112, 114, 115, 116, 146, 254, 638, 743, 772, 845, 925, 1049], "combin": [74, 85, 87, 158, 159, 160, 173, 227, 254, 265, 279, 341, 352, 463, 521, 527, 533, 587, 638, 670, 671, 676, 699, 734, 821, 825, 832, 991, 997, 1003], "concaten": [74, 152, 186, 254, 466, 577, 578, 638, 688, 734, 772, 925, 1049], "diagon": [74, 222, 254], "vstack": [74, 146, 254], "vertical_relax": 74, "coerc": [74, 476, 638], "equal": [74, 75, 101, 102, 112, 119, 120, 134, 153, 158, 173, 180, 221, 254, 292, 358, 359, 376, 398, 429, 461, 476, 481, 482, 483, 484, 485, 486, 488, 489, 490, 519, 520, 526, 542, 616, 617, 638, 652, 670, 676, 685, 701, 706, 734, 912, 946, 947, 948, 949, 950, 951, 953, 954, 955, 959, 989, 990, 996, 1012, 1049, 1057], "supertyp": [74, 148, 254, 267, 638, 665, 734], "find": [74, 150, 254, 493, 638, 958, 1049], "miss": [74, 101, 102, 112, 147, 254, 285, 360, 361, 362, 374, 389, 391, 638, 664, 734, 840, 841, 842, 1039, 1049], "stack": [74, 163, 229, 254], "don": [74, 133, 223, 225, 254, 268, 292, 309, 410, 464, 470, 567, 638, 707, 734, 737, 744, 784, 893, 936, 959, 1039, 1049], "auto": [74, 90, 92, 93, 94, 96, 108, 109, 110, 116, 222, 254, 734, 1057], "logic": [74, 133, 236, 254, 268, 553, 567, 638, 668, 675, 691, 715, 718, 734, 744, 1032, 1049], "align_fram": 74, "pattern": [74, 101, 102, 112, 114, 115, 116, 170, 254, 445, 509, 510, 515, 516, 524, 525, 718, 737, 960, 961, 979, 980, 985, 986, 994, 995, 1049], "collis": 74, "need": [74, 97, 101, 102, 103, 105, 119, 120, 158, 159, 197, 205, 217, 254, 429, 439, 497, 519, 537, 612, 615, 630, 638, 670, 671, 734, 966, 989, 1007, 1049], "sure": [74, 90, 95, 101, 102, 106, 110, 158, 159, 190, 254, 670, 671, 734], "contigu": [74, 90, 95, 101, 102, 106, 110, 112, 114, 115, 116, 190, 254], "relev": 74, "df_h1": 74, "l1": 74, "l2": 74, "df_h2": 74, "r1": 74, "r2": 74, "r3": 74, "df_d1": 74, "df_d2": 74, "df_a1": 74, "df_a2": 74, "df_a3": 74, "disabl": [75, 129, 170, 254], "encount": [76, 158, 254, 458, 459, 517, 518, 579, 582, 594, 638, 670, 734, 928, 929, 987, 988, 1049], "least": [82, 124, 465, 559, 638, 932, 1037, 1049], "unexpect": [83, 254, 268, 437, 638, 744, 1049], "caus": [83, 91, 101, 102, 112, 132, 146, 254, 743, 845, 1049], "panic": 83, "mismatch": [85, 109], "incompat": 87, "pa": [90, 117], "chunkedarrai": [90, 182, 254, 788, 1049], "recordbatch": [90, 171, 254], "schemadefinit": [90, 92, 93, 94, 96, 108, 109, 254, 734], "schema_overrid": [90, 92, 93, 94, 95, 96, 108, 109, 171, 217, 254, 284, 734, 737, 759], "copi": [90, 91, 132, 135, 136, 171, 212, 217, 218, 231, 254, 366, 542, 638, 654, 655, 712, 734, 773, 777, 790, 846, 1012, 1025, 1030, 1031, 1049], "closest": 90, "pair": [90, 92, 93, 94, 96, 108, 109, 123, 191, 254, 692, 734, 1057], "sever": [90, 92, 93, 94, 96, 108, 109, 254, 734, 1057], "wai": [90, 92, 93, 94, 96, 108, 109, 140, 157, 171, 186, 207, 234, 254, 464, 466, 505, 515, 576, 638, 658, 669, 688, 701, 716, 718, 734, 985], "form": [90, 92, 93, 94, 96, 108, 109, 170, 196, 225, 254, 465, 638, 734, 932, 1049], "them": [90, 92, 93, 94, 96, 108, 109, 112, 146, 158, 159, 173, 180, 227, 254, 383, 416, 458, 459, 464, 577, 638, 670, 671, 676, 685, 734, 737, 743, 845, 899, 928, 929, 1049], "dimens": [90, 92, 94, 96, 108, 109, 254, 477, 638, 734, 942, 1049], "allow_copi": [91, 132], "interchang": [91, 132], "__dataframe__": 91, "convers": [91, 132, 170, 171, 196, 197, 214, 218, 254, 534, 535, 536, 539, 587, 649, 1004, 1005, 1006, 1009, 1029, 1030, 1031, 1049], "detail": [91, 103, 119, 120, 132, 254, 734, 1057], "latest": [91, 104, 113, 132, 344, 352, 374, 448, 638, 824, 832], "runtimeerror": 91, "from_panda": [91, 105], "from_arrow": 91, "effici": [91, 171, 254], "clone": [92, 93, 94, 95, 96, 135, 217, 218, 254, 654, 734, 773, 1029, 1030, 1031, 1039, 1049], "dimension": [92, 94, 96, 217, 254, 734, 1049], "infer_schema_length": [93, 96, 101, 102, 105, 112, 115, 254, 517, 734, 987], "NOT": [93, 119, 120, 446, 1056], "typic": [93, 133, 254, 324, 737, 744, 800, 1049], "clearer": 93, "load": [93, 95, 104, 113, 125, 127, 254, 649, 672, 679, 734, 1057], "_partial_": [93, 254, 734], "omit": [93, 97, 122, 124, 126, 130, 183, 197, 254, 626, 627, 737], "mani": [93, 96, 103, 146, 254, 517, 743, 845, 987, 1049], "scan": [93, 96, 101, 102, 110, 112, 113, 114, 115, 116, 117, 158, 159, 254, 663, 670, 671, 672, 679, 734], "slow": [93, 96, 101, 102, 112, 268, 309, 638, 718, 784, 1049], "partial": 93, "present": [93, 119, 124, 387, 638, 1039, 1049], "np": [94, 149, 217, 254, 549, 638, 734, 864, 868, 870, 871, 946, 1020, 1049], "ndarrai": [94, 149, 217, 254, 549, 638, 734, 788, 958, 961, 1020, 1030, 1049], "numpi": [94, 118, 138, 170, 196, 197, 214, 217, 218, 254, 458, 459, 638, 734, 864, 868, 870, 871, 928, 929, 946, 1030, 1031, 1039, 1049], "columnar": [94, 96, 170, 196, 254], "interpret": [94, 96, 101, 102, 112, 254, 734], "yield": [94, 96, 101, 102, 112, 144, 146, 222, 254, 464, 638, 734, 743, 839, 845, 1049], "conclus": [94, 96, 254, 734], "nan_to_nul": [95, 254, 734, 1049], "include_index": 95, "pd": [95, 105, 553, 638, 1031, 1032, 1049], "panda": [95, 105, 118, 158, 218, 254, 337, 338, 553, 638, 670, 734, 817, 818, 1031, 1032, 1049], "instal": [95, 101, 102, 103, 106, 110, 118, 138, 217, 218, 254, 699, 734, 1031, 1049], "nan": [95, 119, 120, 124, 132, 147, 218, 254, 314, 315, 358, 359, 367, 376, 377, 382, 389, 391, 392, 393, 398, 436, 440, 453, 458, 459, 460, 461, 555, 579, 638, 664, 734, 746, 750, 789, 847, 870, 871, 928, 929, 946, 1030, 1031, 1049, 1057], "convert": [95, 104, 105, 113, 132, 213, 214, 215, 216, 217, 220, 254, 311, 319, 348, 351, 429, 438, 472, 523, 534, 535, 536, 537, 539, 638, 734, 795, 828, 831, 912, 993, 1004, 1005, 1006, 1007, 1009, 1017, 1028, 1029, 1030, 1031, 1039, 1049], "pd_df": 95, "pd_seri": 95, "tbl": [97, 99, 102], "reconstruct": 97, "repr": [97, 124, 126], "trim": 97, "whitespac": [97, 521, 527, 533, 991, 997, 1003], "prompt": 97, "extract": [97, 320, 322, 323, 326, 327, 329, 330, 331, 332, 333, 334, 335, 336, 339, 340, 342, 343, 346, 347, 349, 353, 354, 356, 466, 516, 517, 518, 638, 796, 797, 798, 799, 802, 803, 805, 809, 810, 811, 812, 814, 815, 816, 819, 820, 822, 823, 826, 827, 829, 833, 834, 836, 986, 987, 988], "to_init_repr": [97, 254, 1049], "truncat": [97, 158, 170, 196, 197, 214, 254, 341, 670, 689, 734, 821], "identifi": [97, 179, 185, 223, 254, 684, 707, 734], "compound": [97, 197, 254, 737], "struct": [97, 183, 200, 220, 224, 231, 254, 310, 429, 439, 470, 479, 480, 517, 530, 531, 559, 582, 583, 585, 604, 638, 695, 708, 712, 718, 734, 785, 912, 936, 944, 987, 998, 1000, 1001, 1049], "neither": [97, 105, 198, 254, 429, 912], "source_ac": 97, "source_cha": 97, "ident": [97, 135, 136, 254, 348, 479, 480, 638, 654, 655, 734, 773, 777, 828, 944, 945, 1049], "timestamp": [97, 344, 596, 824], "tor_id": 97, "nnel_id": 97, "\u03bc": [97, 124, 158, 159, 170, 173, 196, 197, 214, 227, 254, 316, 317, 318, 319, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 348, 350, 351, 352, 353, 354, 355, 356, 482, 483, 485, 488, 489, 490, 534, 536, 587, 590, 596, 638, 670, 671, 676, 734, 737, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 829, 830, 832, 833, 834, 835, 836, 1004, 1006], "asia": [97, 737, 796, 797, 829], "tokyo": [97, 737], "123456780": 97, "9876543210": 97, "56": [97, 551, 638], "59": [97, 123, 318, 334, 346, 589, 625, 626, 627, 737, 794, 814, 826], "663053": 97, "jst": [97, 737], "803065983": 97, "2055938745": 97, "38": [97, 124], "18": [97, 159, 180, 254, 308, 345, 352, 355, 382, 395, 534, 536, 569, 587, 626, 638, 671, 685, 689, 734, 737, 743, 835, 1004, 1006, 1049], "050545": 97, "source_actor_id": 97, "source_channel_id": 97, "sr": 97, "to_list": [97, 159, 254, 671, 734, 979, 1049], "datatypeclass": 98, "uint32": [98, 118, 144, 254, 278, 322, 326, 330, 332, 334, 336, 339, 342, 343, 346, 353, 354, 403, 404, 418, 476, 510, 519, 522, 549, 553, 638, 737, 754, 766, 798, 802, 809, 811, 814, 816, 819, 822, 823, 826, 833, 834, 839, 869, 886, 887, 901, 959, 980, 989, 992, 1032, 1049], "regular": [98, 170, 195, 196, 227, 254, 363, 509, 510, 515, 516, 524, 525, 576, 592, 605, 609, 622, 638, 737, 979, 980, 985, 986, 994, 995], "uint64": [98, 160, 254, 378, 403, 404, 475, 638, 854, 886, 887, 940, 1049], "bigidx": 98, "read": [99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 146, 254, 375, 437, 629, 638, 663, 668, 691, 734, 743, 845, 1049], "batch": [99, 102, 115, 680, 734], "over": [99, 101, 102, 104, 112, 124, 133, 146, 170, 171, 195, 196, 197, 222, 233, 236, 254, 268, 309, 368, 437, 438, 470, 473, 481, 482, 483, 484, 485, 486, 488, 489, 490, 567, 582, 583, 594, 604, 614, 638, 718, 737, 743, 744, 784, 845, 946, 947, 948, 950, 954, 1049], "fetch": [99, 112, 174, 254, 654, 656, 672, 679, 734], "ideal": 99, "read_csv_batch": [99, 650], "tpch": [99, 102], "tables_scale_100": [99, 102], "lineitem": [99, 102, 103], "try_parse_d": [99, 101, 102, 112], "n_row": [100, 101, 102, 106, 110, 112, 114, 115, 116, 171, 254, 663, 734], "accept": [100, 101, 102, 104, 106, 110, 134, 145, 157, 200, 207, 221, 231, 234, 254, 261, 363, 383, 439, 464, 505, 562, 563, 564, 565, 566, 572, 575, 576, 577, 578, 584, 585, 592, 605, 606, 609, 610, 618, 621, 622, 623, 629, 638, 652, 662, 669, 695, 701, 706, 712, 716, 734, 860, 1049], "stop": [100, 101, 102, 106, 110, 112, 114, 115, 116, 322, 325, 326, 328, 329, 334, 336, 342, 343, 345, 346, 350, 352, 353, 354, 356, 482, 483, 485, 488, 489, 490, 638, 793, 795, 798, 801, 802, 804, 809, 811, 814, 816, 819, 822, 823, 825, 826, 830, 832, 833, 834, 835, 836], "textio": 101, "new_column": [101, 102, 105, 112, 192, 254], "comment_char": [101, 102, 112], "quote_char": [101, 102, 112], "skip_row": [101, 102, 112], "missing_utf8_is_empty_str": [101, 102, 112], "ignore_error": [101, 102, 109, 112], "n_thread": [101, 102], "8192": 101, "csvencod": [101, 102, 112], "low_memori": [101, 102, 110, 112, 115, 116], "skip_rows_after_head": [101, 102, 112], "row_count_nam": [101, 102, 106, 110, 112, 114, 115, 116], "row_count_offset": [101, 102, 106, 110, 112, 114, 115, 116], "sample_s": [101, 102], "eol_char": [101, 102, 112], "we": [101, 102, 105, 112, 158, 159, 173, 227, 254, 268, 341, 345, 352, 410, 437, 482, 483, 484, 485, 486, 488, 489, 490, 523, 603, 629, 638, 670, 671, 676, 680, 734, 744, 821, 825, 832, 856, 893, 993, 1049], "handler": [101, 102, 105], "g": [101, 102, 104, 105, 106, 110, 113, 114, 116, 158, 159, 173, 217, 225, 227, 254, 261, 268, 310, 341, 345, 352, 363, 470, 482, 483, 484, 485, 486, 488, 489, 490, 497, 592, 638, 670, 671, 676, 692, 734, 821, 825, 832, 959, 1030, 1049], "builtin": [101, 102, 105], "stringio": [101, 102], "fsspec": [101, 102, 106, 110, 113, 114, 116, 118], "remot": [101, 102, 106, 110], "autogener": [101, 102, 112], "column_x": [101, 102, 112], "enumer": [101, 102, 112, 171, 254], "shorter": [101, 102], "comment": [101, 102, 112], "instanc": [101, 102, 112, 124, 126, 130, 146, 152, 254, 293, 448, 482, 483, 484, 485, 486, 488, 489, 490, 582, 594, 638, 680, 714, 734, 743, 766, 845, 1049], "escap": [101, 102, 112], "dure": [101, 102, 112, 130, 146, 254, 743, 845, 1049], "would": [101, 102, 112, 278, 413, 447, 473, 572, 587, 638, 737, 753, 896, 938, 1030, 1049], "prefer": [101, 102, 104, 112, 127, 133, 146, 170, 195, 196, 236, 254, 268, 481, 638, 734, 743, 744, 845, 946, 1049, 1057], "treat": [101, 102, 112, 509, 524, 525, 979, 994, 995], "10000": [101, 171, 254, 542], "might": [101, 102, 112, 128, 134, 217, 221, 254, 268, 557, 638, 652, 701, 706, 734, 1031, 1049], "issu": [101, 102, 105, 112, 307, 308, 547, 638, 782, 783, 1018, 1049], "iso8601": [101, 102, 112], "physic": [101, 102, 173, 254, 295, 553, 638, 653, 675, 676, 734, 769, 1032, 1049], "cpu": [101, 102], "system": [101, 102], "wrongli": 101, "done": [101, 102, 112, 117, 156, 173, 254, 267, 269, 293, 464, 520, 526, 568, 638, 676, 734, 766, 990, 996, 1049], "buffer": [101, 102, 144, 170, 254, 839, 1049], "modifi": [101, 102, 112, 128, 130, 146, 163, 170, 229, 254, 279, 344, 355, 509, 515, 516, 524, 638, 743, 824, 835, 845, 941, 979, 985, 986, 994, 1008, 1010, 1011, 1049], "upper": [101, 102, 144, 158, 254, 298, 299, 383, 429, 558, 569, 587, 588, 600, 601, 626, 627, 638, 670, 734, 775, 839, 860, 918, 1036, 1049], "bound": [101, 102, 144, 158, 254, 298, 299, 300, 383, 413, 428, 429, 435, 558, 569, 587, 588, 600, 601, 626, 627, 638, 670, 734, 775, 776, 839, 860, 896, 911, 918, 1036, 1049], "lossi": [101, 102, 112], "decod": [101, 102], "usag": [101, 102, 112, 124, 126, 205, 254, 737, 967, 1049], "expens": [101, 102, 110, 112, 115, 116, 125, 127, 133, 158, 159, 170, 195, 196, 197, 222, 223, 254, 268, 638, 670, 671, 707, 734, 743, 744, 845, 1049, 1057], "aggreg": [101, 102, 110, 152, 157, 158, 159, 176, 177, 178, 181, 183, 187, 188, 189, 208, 209, 225, 228, 234, 235, 238, 240, 254, 262, 369, 380, 437, 464, 481, 482, 483, 484, 485, 486, 488, 489, 490, 559, 563, 564, 565, 566, 582, 583, 584, 585, 594, 599, 605, 606, 609, 610, 614, 622, 623, 638, 670, 671, 680, 681, 682, 683, 686, 687, 690, 702, 703, 710, 716, 717, 720, 722, 734, 857, 946, 947, 948, 950, 953, 954, 955, 1049], "nativ": [101, 106, 110, 122, 133, 170, 196, 197, 214, 236, 254, 268, 567, 638, 643, 718, 744, 1049, 1057], "parser": 101, "even": [101, 466, 470, 638, 936, 1049], "regard": [101, 579], "sens": [101, 106, 110, 114, 116, 180, 227, 254, 464, 638, 685, 734], "particular": [101, 106, 110, 114, 116, 144, 254, 839, 1049], "usernam": [101, 103, 106, 110, 114, 116], "password": [101, 103, 106, 110, 114, 116], "skip": [101, 102, 105, 110, 112, 116, 225, 254, 744, 1049], "offset": [101, 102, 106, 110, 112, 114, 115, 116, 158, 159, 206, 227, 232, 254, 316, 324, 337, 338, 341, 345, 352, 424, 503, 528, 534, 536, 587, 588, 638, 670, 671, 700, 714, 734, 792, 800, 817, 818, 821, 825, 832, 907, 973, 998, 1004, 1006, 1049], "row_count": [101, 102, 106, 110, 112, 114, 115, 116], "sampl": [101, 102, 236, 254, 502, 638, 718, 972, 1049], "estim": [101, 102, 144, 254, 269, 361, 362, 396, 568, 638, 734, 839, 841, 842, 880, 1049], "alloc": [101, 102, 144, 190, 254, 839, 1049], "lazili": [101, 102, 112, 113, 114, 115, 116, 439, 638], "glob": [101, 102, 112, 114, 115, 116], "continu": [101, 110, 310, 470, 502, 638, 785, 936, 972, 1049], "benchmark": [101, 110], "50000": 102, "batchedcsvread": [102, 649], "upon": 102, "creation": 102, "gather": 102, "next_batch": 102, "big": 102, "interest": 102, "seen_group": 102, "big_fil": 102, "df_current_batch": 102, "concat": [102, 772, 925, 1049], "partition_df": 102, "partition_bi": [102, 171, 254], "as_dict": [102, 185, 254], "fh": 102, "write_csv": [102, 112, 254], "els": [102, 629], "partition_on": 103, "partition_rang": 103, "partition_num": 103, "dbreadengin": 103, "connectorx": [103, 118], "raw": 103, "driver": 103, "snowflak": 103, "warehous": 103, "role": 103, "partit": [103, 104, 110, 113, 117, 171, 185, 254], "transfer": 103, "document": [103, 105, 348, 351, 518, 534, 535, 536, 539, 828, 831, 988, 1004, 1005, 1006, 1009], "redshift": 103, "mysql": 103, "mariadb": 103, "clickhous": 103, "oracl": 103, "bigqueri": 103, "pleas": [103, 158, 254, 670, 734], "doc": [103, 138, 254], "github": 103, "sfu": 103, "connector": 103, "destin": 103, "small": [103, 123, 174, 254, 345, 663, 734, 1057], "still": 103, "develop": [103, 124, 126], "partition_col": 103, "explicitli": [103, 122, 124, 130, 439, 621, 638, 648], "test_tabl": 103, "compani": 103, "testdb": 103, "public": [103, 254, 638, 649, 734, 1049], "myrol": 103, "delta_table_opt": [104, 113], "root": [104, 113, 296, 395, 438, 449, 468, 506, 546, 637, 638, 770, 975, 1049], "absolut": [104, 113, 119, 120, 260, 360, 361, 362, 638, 739, 840, 841, 842, 1049], "sinc": [104, 113, 134, 221, 254, 292, 325, 534, 536, 569, 587, 596, 615, 626, 638, 652, 701, 706, 734, 743, 801, 1004, 1006, 1049], "avoid": [104, 196, 254, 263, 638], "year": [104, 113, 158, 159, 173, 227, 254, 328, 329, 341, 342, 345, 352, 353, 482, 483, 484, 485, 486, 488, 489, 490, 586, 587, 589, 638, 670, 671, 676, 734, 804, 805, 821, 822, 825, 832, 833], "2021": [104, 113, 139, 156, 158, 227, 254, 534, 603, 670, 734, 737, 796, 797, 805, 829, 876, 1004, 1049], "aw": [104, 113], "googl": [104, 113], "service_account": [104, 113], "service_account_json_absolute_path": [104, 113], "az": [104, 113], "adl": [104, 113], "abf": [104, 113], "azure_storage_account_nam": [104, 113], "azure_storage_account_kei": [104, 113], "without_fil": [104, 113], "track": [104, 113, 133, 254, 429, 1056], "sheet_id": 105, "sheet_nam": 105, "xlsx2csv_option": 105, "read_csv_opt": 105, "noreturn": 105, "xlsx2csv": [105, 118], "read_csv": [105, 112], "nor": [105, 198, 254], "skip_empty_lin": 105, "my": [105, 117, 540, 1010], "datasheet": 105, "correct": [105, 361, 362, 396, 487, 502, 638, 680, 734, 841, 842, 880, 952, 972, 1049], "look": [105, 286, 429, 760], "whole": [105, 504, 505, 515, 638, 718, 734, 985], "With": [105, 133, 169, 254, 268, 482, 483, 484, 485, 486, 488, 489, 490, 638, 744, 879, 1049], "1000": [105, 144, 216, 254, 330, 331, 542, 810, 1028, 1049, 1057], "spreadsheet": [105, 187, 254], "xl": 105, "xlsm": 105, "xlsb": 105, "odf": 105, "od": 105, "odt": 105, "memory_map": [106, 110, 114], "v2": [106, 114], "greatli": [106, 114], "repeat": [106, 114, 310, 470, 474, 476, 612, 630, 638], "give": [106, 110, 114, 115, 116, 179, 223, 254, 325, 396, 476, 555, 638, 649, 684, 707, 734, 801, 880, 1049], "That": [106, 680, 734], "filenam": 106, "my_fil": 106, "write_ipc": [106, 254], "read_ndjson": 108, "becaus": [109, 133, 144, 158, 174, 225, 236, 254, 410, 492, 498, 587, 638, 670, 718, 734, 744, 839, 893, 1049], "parallelstrategi": [110, 116], "use_statist": [110, 116], "awar": [110, 170, 196, 197, 214, 254, 534, 536, 1004, 1006], "stabl": [110, 134, 138, 198, 221, 254, 434, 638, 652, 684, 701, 706, 734], "row_group": [110, 116], "read_tabl": 110, "with_column_nam": 112, "push": [112, 114, 115, 116, 117], "down": [112, 114, 115, 116, 117, 372, 638, 851, 1049], "therebi": [112, 114, 115, 116], "potenti": [112, 114, 115, 116, 170, 195, 197, 254], "overhead": [112, 114, 115, 116], "realloc": [112, 114, 115, 146, 254, 743, 845, 1049], "headerless": 112, "unlik": [112, 158, 254, 670, 734], "fewer": [112, 470, 638, 936, 1049], "my_long_fil": 112, "doesn": [112, 158, 254, 292, 357, 638, 670, 734, 838, 1039, 1049], "thing": [112, 593, 602], "less": [112, 173, 254, 398, 436, 520, 526, 531, 542, 638, 676, 734, 990, 996, 1001, 1012, 1057], "breezah": 112, "languag": [112, 158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 821, 825, 832], "hard": [112, 680, 734], "mydf": 112, "lambda": [112, 133, 152, 186, 236, 254, 268, 360, 361, 362, 429, 437, 438, 481, 567, 582, 583, 594, 604, 614, 638, 680, 688, 718, 734, 744, 840, 841, 842, 912, 1049], "lower": [112, 158, 189, 246, 254, 298, 300, 383, 435, 438, 471, 475, 486, 569, 587, 588, 600, 601, 613, 626, 627, 638, 663, 670, 690, 728, 734, 776, 860, 918, 937, 940, 951, 1036, 1049], "simpli": [112, 464, 582, 594, 638], "idx": [112, 158, 171, 254, 429, 670, 734, 912, 961, 1049], "uint16": [112, 307, 308, 547, 638, 737, 782, 783, 1018, 1049], "u16": [112, 124, 1057], "eu": 113, "central": [113, 396, 502, 638, 880, 972, 1049], "allow_pyarrow_filt": 117, "comparison": 117, "dset": 117, "folder": 117, "05": [117, 119, 120, 124, 173, 227, 254, 318, 319, 323, 344, 346, 348, 351, 587, 676, 734, 737, 794, 795, 796, 797, 798, 799, 824, 825, 828, 829, 831, 832, 834], "04": [117, 158, 227, 254, 318, 319, 323, 327, 334, 335, 336, 337, 338, 344, 345, 346, 347, 348, 351, 353, 355, 534, 587, 590, 670, 734, 737, 795, 799, 803, 809, 811, 814, 815, 816, 817, 818, 819, 823, 824, 826, 827, 828, 831, 833, 834, 835, 1004], "stdout": [118, 130, 156, 254, 450], "17": [118, 124, 234, 491, 596, 615, 626, 638, 716, 778, 825, 1049, 1057], "platform": 118, "linux": 118, "90": [118, 537, 1007], "wsl2": 118, "x86_64": 118, "glibc2": 118, "main": 118, "apr": 118, "14": [118, 124, 133, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 254, 316, 329, 382, 473, 626, 638, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729, 737, 792, 825], "44": [118, 180, 254, 313, 638, 685, 734], "51": 118, "gcc": 118, "matplotlib": [118, 689, 699, 734], "check_dtyp": [119, 120], "check_exact": [119, 120], "rtol": [119, 120], "1e": [119, 120], "atol": [119, 120], "08": [119, 120, 124, 159, 254, 318, 345, 534, 587, 590, 671, 734, 737, 825, 832, 1004], "nans_compare_equ": [119, 120], "check_column_ord": 119, "check_row_ord": 119, "assertionerror": [119, 120], "compar": [119, 120, 153, 254, 358, 359, 376, 377, 398, 436, 460, 461, 638, 959, 1049], "exactli": [119, 120, 123, 124, 126, 530, 531, 967, 1000, 1001, 1049], "toler": [119, 120, 173, 254, 676, 734], "inexact": [119, 120], "assert": [119, 120, 122, 124, 126, 159, 254, 649, 671, 734, 737, 853, 1049], "irrespect": 119, "unsort": 119, "check_nam": 120, "s1": [120, 152, 254, 879, 912, 1031, 1040, 1049], "searchstrategi": [121, 123, 124, 126], "null_prob": [121, 124, 126], "percentag": [121, 124, 126, 465, 638, 932, 1049], "chanc": [121, 124, 126, 1057], "independ": [121, 122, 124, 126], "flag": [121, 254, 494, 509, 515, 516, 524, 638, 661, 680, 734, 962, 979, 985, 986, 994, 1049], "hypothesi": [121, 122, 123, 124, 125, 126, 1057], "sampled_from": [121, 1057], "unique_small_int": 121, "ccy": [121, 1057], "gbp": [121, 1057], "eur": [121, 139, 156, 254, 1057], "jpy": [121, 1057], "min_col": [122, 124], "max_col": [122, 124], "standalon": [122, 124], "mincol": 122, "assign": [122, 158, 254, 310, 429, 464, 470, 473, 530, 531, 638, 670, 734, 785, 912, 919, 936, 938, 1000, 1001, 1049], "exact": [122, 124, 126, 205, 254, 534, 535, 536, 555, 638, 1004, 1005, 1006], "especi": [122, 480, 638, 945, 1049], "test_unique_xyz": 122, "assert_someth": 122, "punctuat": 122, "test_special_char_colname_init": 122, "inner_dtyp": [123, 126], "select_from": [123, 126], "min_siz": [123, 124, 126, 1057], "max_siz": [123, 124, 126, 1057], "anoth": [123, 157, 254, 309, 317, 428, 443, 446, 638, 669, 713, 734, 784, 793, 845, 911, 959, 1049], "randomli": 123, "innermost": 123, "2x": 123, "lst": 123, "11330": 123, "24030": 123, "116": 123, "zz": [123, 126], "uint8_pair": [123, 1057], "uint": [123, 1057], "zip": [123, 1057], "131": 123, "176": 123, "149": [123, 1057], "max_data_s": [124, 126], "include_col": 124, "allow_infin": [124, 126], "allowed_dtyp": [124, 126, 1057], "excluded_dtyp": [124, 126], "describ": [124, 156, 254, 1049], "desir": [124, 429, 587, 588, 912], "n_chunk": [124, 126, 254, 743, 845, 1049], "randomis": 124, "onto": 124, "pct": 124, "preced": [124, 737], "disallow": [124, 126], "inf": [124, 126, 275, 310, 385, 388, 470, 555, 638, 750, 785, 856, 864, 868, 918, 932, 936, 1036, 1049], "exclud": [124, 126, 305, 308, 383, 576, 638, 860, 876, 1049], "deploi": [124, 126], "characterist": [124, 126], "concret": [124, 126], "test_repr": 124, "isinst": [124, 126, 254], "0x11f561580": 124, "known": [124, 429, 718, 912], "0565": 124, "34715": 124, "5844": 124, "33": [124, 180, 254, 491, 576, 638, 685, 734, 951, 1049], "076854": 124, "3382": 124, "48662": 124, "7540": 124, "29": [124, 158, 159, 173, 227, 254, 316, 337, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 792, 817, 821, 825, 832], "836271": 124, "4063": 124, "06": [124, 227, 254, 318, 329, 343, 344, 356, 737, 824, 825, 834], "39092": 124, "1889": 124, "13": [124, 135, 136, 147, 148, 155, 159, 164, 174, 182, 231, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 254, 263, 481, 537, 577, 582, 585, 594, 623, 628, 638, 654, 655, 664, 665, 671, 678, 712, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729, 734, 744, 825, 832, 833, 1007, 1049], "41": [124, 489, 638, 1057], "874455": 124, "15836": 124, "1755e": 124, "575050513": 124, "profil": [125, 127, 734], "balanc": [125, 127, 1057], "set_environ": 125, "polars_hypothesis_profil": [125, 127], "1500": 125, "constructor": 126, "normal": [126, 158, 254, 357, 396, 502, 638, 670, 734, 838, 880, 972, 1049], "test_repr_is_valid_str": 126, "experi": 126, "create_list_strategi": [126, 1057], "polars_max_thread": 128, "behind": 128, "lock": 128, "reason": 128, "pyspark": 128, "udf": [128, 133, 186, 236, 254, 268, 466, 567, 638, 688, 718, 734, 744, 1049], "similar": [128, 152, 173, 254, 348, 351, 464, 480, 629, 638, 676, 734, 828, 831, 945, 1049], "recommend": [128, 170, 186, 254, 587, 737], "initi": [130, 582, 594, 629], "whatev": 130, "were": 130, "enter": 130, "advantag": [130, 186, 254], "initialis": [130, 734, 1056], "set_": 130, "set_verbos": 130, "do_various_th": 130, "restor": 130, "cleaner": 130, "breviti": 130, "vein": 130, "durat": [130, 173, 227, 254, 316, 323, 324, 327, 331, 333, 335, 340, 347, 352, 355, 553, 587, 588, 626, 627, 638, 676, 734, 737, 792, 799, 800, 803, 810, 812, 815, 820, 827, 832, 835, 1032, 1049], "set_ascii_t": 130, "write_ascii_frame_to_stdout": 130, "sy": 130, "nan_as_nul": 132, "_pyarrowdatafram": 132, "nullabl": 132, "extens": [132, 218, 254, 1031, 1049], "propag": [132, 177, 209, 254, 359, 458, 459, 461, 638, 928, 929, 1049], "inference_s": [133, 254], "256": [133, 254, 932, 1049], "much": [133, 225, 236, 254, 268, 309, 428, 567, 638, 718, 744, 784, 911, 1049], "almost": [133, 236, 254, 534, 535, 536, 587, 744, 1004, 1005, 1006, 1049], "_significantly_": [133, 236, 254, 744, 1049], "intens": [133, 236, 254, 464, 638, 744, 1049], "forc": [133, 173, 236, 254, 675, 676, 718, 734, 744, 1049], "materi": [133, 236, 254, 689, 718, 734, 737, 744, 1049], "parallelis": [133, 236, 254, 744, 1049], "optimis": [133, 197, 236, 254, 734, 744, 960, 961, 1049], "achiev": [133, 236, 254, 268, 638, 744, 1049], "best": [133, 236, 254, 268, 638, 744, 1049], "tri": [133, 254], "arbitrarili": [133, 254], "rearrang": [133, 254], "transform": [133, 254, 437, 538, 540, 541, 638], "preserv": [133, 157, 217, 218, 254, 499, 638, 969, 1031, 1049], "lru_cach": [133, 254, 268, 638, 744, 1049], "magnitud": [133, 254, 268, 638, 744, 1049], "column_1": [133, 222, 254], "better": [133, 217, 236, 254, 268, 559, 638, 718, 960, 961, 1049], "scalar": [133, 169, 195, 254, 493, 567, 603, 638, 879, 958, 1049], "k": [134, 197, 221, 254, 291, 295, 396, 554, 638, 652, 706, 734, 765, 769, 880, 1033, 1049], "intoexpr": [134, 157, 158, 159, 200, 207, 221, 231, 234, 254, 267, 383, 407, 409, 415, 430, 464, 496, 505, 563, 564, 565, 566, 569, 572, 575, 577, 578, 582, 584, 585, 587, 588, 594, 600, 601, 605, 606, 609, 610, 615, 618, 621, 622, 623, 626, 627, 629, 638, 652, 666, 669, 670, 671, 695, 701, 706, 712, 716, 734, 860, 1049], "nulls_last": [134, 207, 221, 254, 278, 504, 638, 652, 701, 706, 734, 753, 1049], "smallest": [134, 221, 254, 291, 638, 652, 706, 734, 765, 1049], "largest": [134, 158, 159, 173, 221, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 554, 638, 652, 670, 671, 676, 706, 734, 821, 825, 832, 1033, 1049], "last": [134, 161, 173, 175, 187, 197, 207, 210, 221, 223, 248, 254, 278, 309, 322, 337, 342, 353, 395, 413, 427, 468, 504, 531, 546, 548, 587, 624, 638, 652, 676, 701, 704, 706, 707, 730, 734, 737, 753, 784, 798, 817, 822, 833, 855, 882, 896, 910, 1001, 1019, 1049], "wors": [134, 221, 254, 652, 701, 706, 734], "search": [134, 173, 221, 254, 652, 676, 701, 706, 734], "top_k": [134, 254, 291, 638, 652, 734, 765, 1049], "greater": [135, 173, 254, 376, 377, 502, 531, 638, 676, 734, 972, 1001, 1049], "cheap": [135, 136, 254, 654, 655, 734, 743, 773, 777, 1049], "deepcopi": [135, 136, 254, 654, 655, 734, 773, 777, 1049], "clear": [136, 254, 655, 734, 777, 1049], "properti": [137, 143, 151, 162, 199, 202, 230, 254, 657, 660, 694, 711, 734, 737, 1057], "appl": [137, 163, 172, 191, 193, 213, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 254, 478, 513, 532, 638, 675, 692, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729, 734, 983, 1002], "banana": [137, 213, 237, 238, 240, 241, 242, 243, 244, 245, 246, 247, 254, 478, 638, 719, 720, 722, 723, 724, 725, 726, 727, 728, 729], "pairwis": [138, 254], "pearson": [138, 254, 396, 502, 579, 638, 880, 972, 1049], "correl": [138, 254, 579, 616], "coeffici": [138, 254, 502, 638, 972, 1049], "corrcoef": [138, 254], "percentil": [139, 254, 786, 1049], "summari": [139, 254, 786, 1049], "glimps": [139, 161, 254], "usd": [139, 156, 254, 1057], "2020": [139, 156, 159, 254, 319, 323, 324, 327, 330, 331, 333, 335, 340, 344, 347, 348, 351, 352, 534, 535, 536, 671, 734, 737, 795, 799, 800, 803, 810, 812, 815, 820, 824, 827, 828, 831, 832, 1004, 1005, 1006], "null_count": [139, 142, 254, 309, 638, 734, 784, 786, 1049], "266667": [139, 254], "666667": [139, 177, 228, 242, 254, 360, 638, 710, 724, 734], "std": [139, 254, 481, 488, 638, 734, 786, 953, 1049], "101514": [139, 254], "707107": [139, 254, 361, 488, 638, 841, 1049], "57735": [139, 254], "median": [139, 187, 254, 368, 484, 638, 713, 734, 786, 949, 1049], "more_column": [140, 145, 201, 224, 254, 363, 592, 638, 658, 662, 696, 708, 734], "Or": [140, 157, 158, 159, 173, 207, 227, 234, 254, 464, 505, 576, 629, 638, 658, 669, 670, 671, 676, 701, 716, 734], "subset": [142, 183, 223, 254, 659, 707, 734], "snippet": [142, 254, 659, 734], "all_horizont": [142, 254, 563, 659, 734], "is_nul": [142, 254, 638, 659, 734, 1049], "sizeunit": [144, 254, 839, 1049], "heap": [144, 254, 839, 1049], "its": [144, 254, 318, 345, 352, 505, 638, 794, 825, 832, 839, 1049], "bitmap": [144, 254, 839, 1049], "therefor": [144, 254, 629, 839, 1049], "structarrai": [144, 254, 839, 1049], "constant": [144, 159, 254, 316, 366, 638, 671, 734, 792, 839, 846, 1049], "unchang": [144, 254, 553, 638, 680, 718, 734, 839, 1032, 1049], "capac": [144, 205, 254, 839, 967, 1049], "ffi": [144, 254, 839, 1049], "kb": [144, 254, 839, 1049], "mb": [144, 254, 839, 1049], "gb": [144, 254, 839, 1049], "tb": [144, 254, 839, 1049], "revers": [144, 254, 304, 305, 306, 307, 308, 438, 468, 546, 638, 734, 780, 781, 782, 783, 1049], "1_000_000": [144, 254, 839, 1049], "25888898": [144, 254], "689577102661133": [144, 254], "long": [145, 179, 225, 254, 662, 684, 734], "letter": [145, 239, 248, 254, 363, 516, 592, 638, 662, 721, 730, 734, 737, 986], "onlin": [146, 254, 743, 845, 1049], "rerun": [146, 254, 743, 845, 1049], "conveni": [146, 254, 743, 845, 1049], "evalu": [147, 149, 173, 254, 265, 279, 309, 381, 401, 402, 429, 439, 463, 563, 565, 569, 573, 587, 588, 591, 600, 601, 612, 615, 621, 626, 627, 629, 630, 638, 666, 673, 675, 676, 734, 754, 784, 884, 885, 1040, 1049], "Not": [147, 254, 389, 391, 439, 638, 664, 734], "To": [147, 254, 314, 315, 341, 368, 509, 515, 516, 524, 540, 622, 638, 664, 734, 821, 979, 985, 986, 994, 1010, 1030, 1049], "fillnullstrategi": [148, 254, 368, 638, 665, 734, 848, 1049], "matches_supertyp": [148, 254, 665, 734], "forward": [148, 173, 254, 337, 368, 374, 638, 665, 676, 734, 817, 848, 1049], "consecut": [148, 254, 285, 368, 374, 508, 638, 665, 734, 848, 978, 1049], "fill_nan": [148, 254, 638, 734, 1049], "OR": [149, 254, 565, 566, 666, 734, 737], "reduct": [152, 254], "supercast": [152, 254], "parent": [152, 254], "rule": [152, 254], "arithmet": [152, 254], "zip_with": [152, 254, 1049], "foo11": [152, 254], "bar22": [152, 254], "null_equ": [153, 254, 959, 1049], "retriev": [154, 254, 403, 404, 543, 886, 887, 1013], "return_as_str": [156, 254, 450], "preview": [156, 254], "wide": [156, 179, 225, 254, 684, 734], "nice": [156, 254], "few": [156, 254], "rather": [156, 173, 254, 450, 480, 542, 638, 676, 734, 945, 1012, 1049], "head": [156, 175, 210, 254, 267, 400, 638, 679, 734, 882, 1019, 1049], "tail": [156, 161, 254, 267, 502, 638, 734, 855, 972, 1049], "more_bi": [157, 185, 207, 254, 505, 638, 669, 701, 734], "consist": [157, 185, 254, 534, 669, 734, 743, 845, 1004, 1049], "regardless": [157, 254, 518, 988], "agg": [157, 158, 159, 254, 262, 268, 369, 371, 504, 505, 549, 561, 580, 638, 656, 661, 663, 669, 670, 671, 689, 699, 734, 737], "index_column": [158, 159, 254, 670, 671, 734], "timedelta": [158, 159, 227, 254, 322, 325, 326, 329, 334, 336, 341, 342, 343, 345, 346, 350, 352, 353, 354, 356, 482, 483, 484, 485, 486, 488, 489, 490, 587, 588, 626, 627, 638, 670, 671, 734, 737, 806, 808, 813, 821, 825, 832, 928, 929, 1049], "period": [158, 159, 203, 204, 254, 345, 352, 360, 361, 362, 423, 465, 495, 496, 587, 588, 626, 627, 638, 670, 671, 697, 698, 734, 825, 832, 840, 841, 842, 906, 932, 964, 965, 1049], "include_boundari": [158, 254, 670, 734], "closedinterv": [158, 159, 254, 383, 482, 483, 484, 485, 486, 488, 489, 490, 587, 588, 626, 627, 638, 670, 671, 734, 860, 1049], "start_bi": [158, 254, 670, 734], "startbi": [158, 254, 670, 734], "window": [158, 159, 254, 309, 345, 352, 360, 361, 362, 464, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 577, 616, 617, 638, 670, 671, 734, 784, 825, 832, 840, 841, 842, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 1049], "check_sort": [158, 159, 254, 670, 671, 734], "dynamicgroupbi": [158, 254], "groupbi": [158, 159, 183, 254, 262, 268, 309, 369, 371, 410, 464, 504, 505, 549, 561, 567, 580, 638, 656, 661, 663, 670, 671, 689, 699, 734, 737, 784, 893, 1049], "member": [158, 254, 670, 734, 867, 1049], "seen": [158, 254, 285, 374, 638, 670, 734], "roll": [158, 159, 254, 337, 338, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 577, 616, 617, 638, 670, 671, 734, 817, 818, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 1049], "slot": [158, 254, 309, 312, 408, 638, 670, 734, 784, 787, 891, 1049], "interv": [158, 159, 227, 254, 310, 328, 345, 346, 352, 383, 470, 482, 483, 484, 485, 486, 488, 489, 490, 587, 588, 626, 627, 638, 670, 671, 734, 785, 798, 801, 802, 804, 809, 811, 814, 816, 819, 822, 823, 825, 826, 830, 832, 833, 834, 836, 860, 936, 1049], "1n": [158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 821, 825, 832], "nanosecond": [158, 159, 173, 227, 254, 341, 345, 346, 352, 482, 483, 484, 485, 486, 488, 489, 490, 590, 638, 670, 671, 676, 734, 821, 825, 826, 832], "1u": [158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 821, 825, 832], "microsecond": [158, 159, 170, 173, 196, 197, 214, 227, 254, 341, 345, 346, 352, 482, 483, 484, 485, 486, 488, 489, 490, 589, 590, 625, 638, 670, 671, 676, 689, 734, 737, 821, 825, 832], "1m": [158, 159, 173, 227, 254, 330, 331, 333, 340, 341, 345, 347, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 810, 812, 820, 821, 825, 827, 832], "millisecond": [158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 590, 638, 670, 671, 676, 734, 737, 821, 825, 832], "minut": [158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 589, 590, 625, 626, 638, 670, 671, 676, 734, 737, 821, 825, 832], "1h": [158, 159, 173, 227, 254, 324, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 626, 627, 638, 670, 671, 676, 734, 800, 802, 821, 825, 832], "hour": [158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 587, 589, 590, 625, 626, 638, 670, 671, 676, 734, 737, 821, 825, 832], "1d": [158, 159, 173, 227, 254, 317, 327, 335, 341, 345, 352, 355, 482, 483, 484, 485, 486, 488, 489, 490, 587, 588, 603, 638, 670, 671, 676, 734, 737, 793, 801, 803, 806, 807, 808, 813, 815, 821, 825, 830, 832, 834, 835], "1w": [158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 821, 825, 832], "week": [158, 159, 173, 227, 254, 341, 345, 352, 354, 482, 483, 484, 485, 486, 488, 489, 490, 590, 638, 670, 671, 676, 734, 737, 821, 825, 832, 834], "1mo": [158, 159, 173, 227, 254, 319, 323, 337, 338, 341, 344, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 587, 588, 638, 670, 671, 676, 734, 795, 799, 816, 817, 818, 821, 822, 823, 824, 825, 832, 833], "month": [158, 159, 173, 227, 254, 322, 337, 338, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 586, 587, 588, 589, 638, 670, 671, 676, 734, 798, 817, 818, 821, 825, 832], "1q": [158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 821, 825, 832], "quarter": [158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 821, 825, 832], "1y": [158, 159, 173, 227, 254, 328, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 587, 638, 670, 671, 676, 734, 804, 821, 825, 832, 836], "1i": [158, 159, 173, 227, 254, 341, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 821], "3d12h4m25": [158, 159, 173, 227, 254, 345, 352, 670, 671, 676, 734, 825, 832], "suffix": [158, 159, 172, 173, 200, 227, 231, 234, 254, 263, 289, 341, 345, 352, 389, 391, 392, 393, 438, 464, 468, 478, 482, 483, 484, 485, 486, 488, 489, 490, 513, 638, 670, 671, 675, 676, 695, 712, 713, 716, 734, 737, 763, 821, 825, 832, 983], "_satur": [158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 587, 588, 638, 670, 671, 676, 734, 821, 825, 832], "satur": [158, 159, 173, 227, 254, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 821, 825, 832], "28": [158, 159, 173, 213, 227, 254, 261, 341, 344, 345, 352, 355, 482, 483, 484, 485, 486, 488, 489, 490, 587, 638, 670, 671, 676, 734, 821, 824, 825, 832, 835, 1057], "correspond": [158, 159, 173, 217, 227, 254, 329, 341, 345, 352, 473, 480, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 805, 821, 825, 832, 938, 945, 1049], "due": [158, 159, 173, 197, 227, 254, 263, 293, 324, 341, 345, 352, 395, 468, 482, 483, 484, 485, 486, 488, 489, 490, 492, 498, 546, 638, 670, 671, 676, 734, 766, 800, 821, 825, 832, 1049], "daylight": [158, 159, 173, 227, 254, 316, 324, 341, 345, 352, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 671, 676, 734, 800, 821, 825, 832], "10i": [158, 159, 254, 670, 671, 734], "ascend": [158, 159, 254, 670, 671, 734], "dynam": [158, 254, 429, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 734, 912], "matter": [158, 159, 170, 196, 197, 214, 254, 670, 671, 734], "_lower_bound": [158, 254, 670, 734], "_upper_bound": [158, 254, 670, 734], "harder": [158, 254, 670, 734], "tempor": [158, 159, 170, 196, 197, 214, 254, 383, 482, 483, 484, 485, 486, 488, 489, 490, 638, 649, 670, 671, 734, 737, 860, 876, 1049], "inclus": [158, 159, 254, 383, 482, 483, 484, 485, 486, 488, 489, 490, 529, 530, 569, 587, 588, 600, 601, 626, 627, 638, 670, 671, 734, 860, 999, 1000, 1049], "datapoint": [158, 254, 670, 734], "mondai": [158, 254, 352, 354, 670, 734, 832, 834], "tuesdai": [158, 254, 670, 734], "wednesdai": [158, 254, 670, 734], "thursdai": [158, 254, 670, 734], "fridai": [158, 254, 670, 734], "saturdai": [158, 254, 670, 734], "sundai": [158, 254, 354, 670, 734, 834], "weekli": [158, 254, 352, 670, 734, 832], "sorted": [158, 159, 254, 670, 671, 734], "metadata": [158, 159, 254, 670, 671, 734], "verifi": [158, 159, 254, 670, 671, 734], "incorrectli": [158, 159, 254, 429, 670, 671, 734], "incorrect": [158, 159, 254, 355, 494, 638, 670, 671, 718, 734, 835, 962, 1049], "re": [158, 217, 254, 337, 338, 670, 734, 817, 818, 1056], "come": [158, 254, 337, 338, 396, 638, 650, 670, 733, 734, 817, 818, 880, 1049], "set_index": [158, 254, 670, 734], "resampl": [158, 254, 670, 734], "reset_index": [158, 254, 670, 734], "though": [158, 254, 670, 734], "evenli": [158, 254, 470, 638, 670, 734, 936, 1049], "upsampl": [158, 254, 670, 734], "date_rang": [158, 227, 254, 317, 319, 322, 323, 325, 326, 327, 328, 329, 330, 331, 333, 334, 335, 336, 337, 338, 340, 341, 342, 343, 344, 345, 346, 347, 350, 352, 353, 354, 355, 356, 482, 483, 485, 488, 489, 490, 638, 670, 734, 792, 793, 795, 798, 799, 800, 801, 802, 803, 804, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 830, 832, 833, 834, 835, 836], "30m": [158, 254, 345, 352, 670, 734, 825, 832], "time_min": [158, 254, 670, 734], "time_max": [158, 254, 670, 734], "23": [158, 159, 254, 318, 322, 326, 342, 345, 354, 482, 483, 485, 488, 489, 490, 589, 625, 626, 627, 638, 670, 671, 734, 737, 794, 802, 1057], "boundari": [158, 254, 298, 299, 300, 352, 638, 670, 734, 774, 775, 776, 832, 856, 1049], "time_count": [158, 254, 670, 734], "_lower_boundari": [158, 254, 670, 734], "_upper_boundari": [158, 254, 670, 734], "lower_bound": [158, 254, 298, 300, 383, 638, 670, 734, 774, 776, 860, 1036, 1049], "upper_bound": [158, 254, 298, 299, 383, 429, 638, 670, 734, 774, 775, 860, 918, 1049], "time_agg_list": [158, 254, 670, 734], "int_rang": [158, 225, 236, 254, 569, 670, 718, 734], "2i": [158, 254, 670, 734], "3i": [158, 254, 670, 734], "a_agg_list": [158, 254, 670, 734], "rollinggroupbi": [159, 254], "dynamic_groupbi": [159, 254, 671, 734], "groupby_dynam": [159, 254, 671, 734], "t_0": [159, 254, 482, 483, 484, 485, 486, 488, 489, 490, 638, 671, 734], "t_1": [159, 254, 482, 483, 484, 485, 486, 488, 489, 490, 638, 671, 734], "t_n": [159, 254, 482, 483, 484, 485, 486, 488, 489, 490, 638, 671, 734], "19": [159, 173, 254, 345, 483, 485, 537, 638, 671, 676, 734, 825, 832, 1007], "43": [159, 254, 308, 489, 638, 671, 734], "strptime": [159, 254, 344, 671, 734, 824], "set_sort": [159, 173, 227, 254, 638, 671, 676, 734, 1049], "2d": [159, 217, 254, 603, 671, 734, 792, 798], "sum_a": [159, 254, 671, 734], "min_a": [159, 254, 671, 734], "max_a": [159, 254, 671, 734], "seed": [160, 198, 254, 378, 473, 492, 498, 638, 854, 938, 957, 968, 1049], "seed_1": [160, 254, 378, 638, 854, 1049], "seed_2": [160, 254, 378, 638, 854, 1049], "seed_3": [160, 254, 378, 638, 854, 1049], "hash": [160, 254, 638, 1049], "u64": [160, 254, 378, 475, 638, 689, 734, 854, 1049], "10783150408545073287": [160, 254], "1438741209321515184": [160, 254], "10047419486152048166": [160, 254], "2047317070637311557": [160, 254], "ab": [161, 175, 210, 231, 254, 543, 544, 638, 712, 734, 855, 882, 1019, 1049], "grown": [163, 254], "intermedi": [165, 254, 674, 734, 1057], "linear": [165, 189, 246, 254, 382, 405, 442, 471, 486, 577, 578, 613, 638, 674, 690, 728, 734, 859, 888, 937, 951, 1049], "mask": [166, 168, 254, 287, 384, 386, 394, 509, 511, 638, 761, 849, 860, 862, 865, 877, 933, 934, 960, 979, 981, 1040, 1049], "visual": [166, 168, 254], "buffer_s": [170, 254], "intern": [170, 254], "veri": [170, 222, 254, 268, 638, 655, 718, 734, 777, 1049], "fit": [170, 205, 225, 254, 497, 615, 638, 966, 967, 1049], "signific": [170, 254, 268, 638], "4x": [170, 254], "materialis": [170, 171, 195, 196, 197, 254], "rows_by_kei": [170, 196, 254], "iter_row": [171, 195, 196, 197, 254], "17_500": [171, 254], "klmnoopqrstuvwxyz": [171, 254], "__name__": [171, 254], "7500": [171, 254], "15_000": [171, 254], "record_batch": [171, 254], "to_arrow": [171, 254, 1049], "to_batch": [171, 254], "date32": [171, 254], "large_str": [171, 212, 218, 254], "15000": [171, 254], "2500": [171, 254], "left_on": [172, 173, 254, 675, 676, 734], "right_on": [172, 173, 254, 675, 676, 734], "_right": [172, 173, 254, 675, 676, 734], "joinvalid": [172, 254, 675, 734], "semi": [172, 254, 675, 734], "anti": [172, 254, 675, 718, 734, 960, 961, 1049], "cross": [172, 254, 352, 675, 734, 832], "many_to_mani": [172, 254, 675, 734], "one_to_on": [172, 254, 675, 734], "one_to_mani": [172, 254, 675, 734], "many_to_on": [172, 254, 675, 734], "join_asof": [172, 254, 675, 734], "stringcach": [172, 254, 649], "other_df": [172, 254], "by_left": [173, 254, 676, 734], "by_right": [173, 254, 676, 734], "asofjoinstrategi": [173, 254, 676, 734], "allow_parallel": [173, 254, 675, 676, 734], "force_parallel": [173, 254, 675, 676, 734], "asof": [173, 254, 676, 734], "asof_join": [173, 254], "distanc": [173, 254, 676, 734, 856, 1049], "plan": [173, 174, 254, 653, 661, 668, 675, 676, 691, 699, 715, 734], "gdp": [173, 254, 676, 734], "2016": [173, 254, 676, 734], "2017": [173, 254, 676, 734], "2018": [173, 254, 344, 676, 734, 824], "2019": [173, 254, 676, 734], "record": [173, 217, 254, 676, 734], "jan": [173, 254, 676, 734], "1st": [173, 254, 587, 676, 734], "4164": [173, 254, 676, 734], "4411": [173, 254, 676, 734], "4566": [173, 254, 676, 734], "4696": [173, 254, 676, 734], "popul": [173, 254, 676, 734], "12th": [173, 254, 676, 734], "82": [173, 254, 676, 734], "66": [173, 254, 489, 562, 638, 676, 734, 951, 1049], "83": [173, 254, 676, 734], "52": [173, 231, 254, 491, 638, 676, 712, 734], "request": [174, 254], "describe_plan": [174, 254], "unoptim": [174, 254], "describe_optimized_plan": [174, 254], "show_graph": [174, 254, 734], "un": [174, 254], "graphviz": [174, 254, 699, 734], "axi": [176, 177, 179, 181, 209, 254, 570, 571, 684, 734], "null_strategi": [177, 209, 254], "nullstrategi": [177, 209, 254], "spam": [177, 254, 516, 986], "id_var": [179, 254, 684, 734], "value_var": [179, 254, 684, 734], "variable_nam": [179, 254, 684, 734], "value_nam": [179, 254, 684, 734], "unpivot": [179, 254, 684, 734], "leav": [179, 254, 429, 684, 734], "massag": [179, 254, 684, 734], "measur": [179, 254, 684, 734], "merg": [180, 254, 685, 734], "caller": [180, 254, 429, 680, 685, 718, 734], "respons": [180, 254, 685, 734], "steve": [180, 254, 685, 734], "elis": [180, 254, 685, 734], "bob": [180, 254, 685, 734], "ag": [180, 254, 685, 734], "anna": [180, 254, 685, 734], "megan": [180, 254, 685, 734], "thoma": [180, 254, 685, 734], "21": [180, 209, 254, 482, 483, 485, 488, 489, 490, 596, 638, 685, 734, 737], "what": [183, 254, 1030, 1039, 1049], "pack": [183, 254], "expr_unique_subset": [183, 254], "df_nuniqu": [183, 254], "df_agg_nuniqu": [183, 254], "include_kei": [185, 197, 254], "offer": [186, 254, 466, 638, 688, 734], "fulli": [186, 198, 254], "cast_str_to_int": [186, 254, 688, 734], "col_nam": [186, 254, 688, 734], "tdf": [186, 254, 688, 734], "aggregate_funct": [187, 254], "pivotagg": [187, 254], "nodefault": [187, 254], "_nodefault": [187, 254], "no_default": [187, 254], "sort_column": [187, 254], "predefin": [187, 254], "predict": [187, 190, 227, 254, 492, 498, 638], "transpos": [187, 254], "discoveri": [187, 254], "col1": [187, 222, 225, 254, 734, 1057], "col2": [187, 222, 225, 254, 734, 1057], "col3": [187, 254, 1057], "tanh": [187, 254, 638, 1049], "998347": [187, 254], "964028": [187, 254], "999954": [187, 254], "interpol": [189, 246, 254, 368, 442, 471, 486, 613, 638, 690, 728, 734, 937, 951, 1049], "rollinginterpolationmethod": [189, 246, 254, 471, 486, 613, 638, 690, 728, 734, 937, 951, 1049], "midpoint": [189, 246, 254, 471, 486, 613, 638, 690, 728, 734, 937, 951, 1049], "by_pred": [195, 254], "accord": [195, 254, 439, 587, 638, 805], "never": [195, 254, 587], "mutual": [195, 254], "exclus": [195, 254, 562, 569, 600, 601, 638], "addition": [195, 254], "clariti": [195, 254], "toomanyrowsreturnederror": [195, 254, 649], "norowsreturnederror": [195, 254, 649], "inherit": [195, 254], "rowserror": [195, 254, 649], "selectortyp": [197, 254, 737], "high": [197, 254], "cost": [197, 254], "reoconstruct": [197, 254], "defaultdict": [197, 254], "assum": [197, 254, 680, 718, 734], "with_replac": [198, 254, 492, 638, 957, 1049], "shuffl": [198, 236, 254, 492, 638, 718, 957, 1049], "modul": [198, 254, 492, 498, 637, 638, 737, 957, 968, 1049], "named_expr": [200, 231, 254, 618, 621, 695, 712, 734], "threshold": [200, 254, 695, 734], "set_auto_structifi": [200, 231, 254, 695, 712, 734], "auto_structifi": [200, 231, 254, 695, 712, 734], "is_odd": [200, 254, 695, 734], "_is_odd": [200, 254, 695, 734], "shift_and_fil": [203, 254, 638, 734, 1049], "fill_valu": [204, 225, 254, 496, 638, 698, 734, 965, 1049], "shift": [204, 254, 312, 408, 465, 496, 577, 638, 698, 734, 787, 891, 932, 965, 1049], "shrink": [205, 254, 497, 638, 966, 967, 1049], "hold": [205, 254], "ddof": [208, 228, 254, 488, 490, 507, 560, 579, 616, 617, 620, 628, 638, 702, 710, 734, 953, 955, 976, 1038, 1049], "deviat": [208, 254, 361, 488, 507, 620, 638, 702, 734, 841, 976, 1049], "degre": [208, 228, 254, 472, 488, 490, 507, 560, 571, 579, 616, 617, 620, 628, 638, 702, 710, 734, 953, 955, 976, 1038, 1049], "freedom": [208, 228, 254, 488, 490, 507, 560, 579, 616, 617, 620, 628, 638, 702, 710, 734, 953, 955, 976, 1038, 1049], "divisor": [208, 228, 254, 488, 490, 507, 560, 579, 616, 617, 620, 628, 638, 702, 710, 734, 953, 955, 976, 1038, 1049], "816497": [208, 254], "16a": [209, 254], "27b": [209, 254], "38c": [209, 254], "nth": [211, 254, 531, 550, 638, 705, 734, 1001, 1021, 1049], "mostli": [212, 254, 369, 638], "categoricaltyp": [212, 254], "as_seri": [213, 254], "fruit": [213, 254, 478, 513, 532, 638, 983, 1002], "car": [213, 254, 478, 638], "beetl": [213, 254, 478, 638], "audi": [213, 254, 478, 638], "300": [213, 254, 947, 948, 950, 1049], "drop_first": [215, 254], "dummi": [215, 254, 1026, 1049], "foo_1": [215, 254], "foo_2": [215, 254], "bar_3": [215, 254], "bar_4": [215, 254], "ham_a": [215, 254], "ham_b": [215, 254], "instantiat": [216, 254, 1028, 1049], "from_repr": [216, 254, 1028, 1049], "df_from_str_repr": [216, 254], "eval": [216, 254, 591, 1028, 1049], "indexord": [217, 254], "fortran": [217, 254], "downstream": [217, 254, 494, 638, 962, 1049], "applic": [217, 254, 482, 483, 484, 485, 486, 488, 489, 490, 638], "prevent": [217, 254, 263, 307, 308, 395, 547, 638, 734, 782, 783, 1018, 1049], "reshap": [217, 254, 411, 638, 894, 1049], "ll": [217, 254], "u1": [217, 254], "f4": [217, 254], "view": [217, 254, 1030, 1049], "recarrai": [217, 254], "rec": [217, 254], "use_pyarrow_extension_arrai": [218, 254, 1031, 1049], "trigger": [218, 254, 1031, 1049], "sent": [218, 254, 1030, 1031, 1049], "pandas_df1": [218, 254], "pandas_df2": [218, 254], "pandas_df2_pa": [218, 254], "na": [218, 254, 1031, 1049], "get_column": [219, 254], "four": [220, 254], "five": [220, 254, 1057], "bottom_k": [221, 254, 554, 638, 706, 734, 1033, 1049], "include_head": [222, 254], "header_nam": [222, 254], "column_nam": [222, 254], "perhap": [222, 254], "column_2": [222, 254], "name_gener": [222, 254], "base_nam": [222, 254], "my_column_": [222, 254], "my_column_0": [222, 254], "my_column_1": [222, 254], "my_column_2": [222, 254], "new_id": [222, 254], "uniquekeepstrategi": [223, 254, 707, 734], "kept": [223, 254, 707, 734], "decompos": [224, 254, 708, 734], "t_a": [224, 254, 708, 734], "t_b": [224, 254, 708, 734], "t_c": [224, 254, 708, 734], "t_d": [224, 254, 708, 734], "womp": [224, 254, 708, 734], "t_": [224, 254, 708, 734], "t_struct": [224, 254, 708, 734], "step": [225, 254, 569, 600, 601], "unstackdirect": [225, 254], "pivot": [225, 254], "phase": [225, 254], "subject": [225, 254], "ascii_uppercas": [225, 254], "h": [225, 254, 261, 348, 351, 497, 534, 536, 539, 638, 1004, 1006, 1009], "col1_0": [225, 254], "col1_1": [225, 254], "col1_2": [225, 254], "col2_0": [225, 254], "col2_1": [225, 254], "col2_2": [225, 254], "syntact": [226, 254, 592, 593, 597, 602, 612, 613, 618, 630, 709, 734, 975, 1049], "sugar": [226, 254, 592, 593, 597, 602, 612, 613, 618, 630, 709, 734, 975, 1049], "coalesc": [226, 254, 534, 709, 734, 1004], "400": [226, 254, 709, 734, 947, 948, 950, 1049], "600": [226, 254, 709, 734, 737], "700": [226, 254, 709, 734], "new_df": [226, 254, 709, 734], "time_column": [227, 254], "frequenc": [227, 254], "forward_fil": [227, 254, 305, 308, 638], "varianc": [228, 254, 362, 396, 490, 560, 628, 638, 710, 734, 842, 880, 955, 1038, 1049], "grow": [229, 254], "is_not": [231, 254, 638, 712, 734], "not_c": [231, 254, 712, 734], "diff": [231, 254, 323, 327, 331, 333, 335, 340, 347, 409, 638, 712, 734, 799, 803, 810, 812, 815, 820, 827, 892, 1049], "_diff": [231, 254, 712, 734], "row_nr": [232, 254, 439, 482, 483, 485, 488, 489, 490, 638, 714, 734, 961, 1049], "named_agg": [234, 716], "_sum": [234, 716], "_mean_squar": [234, 716], "b_sum": [234, 716], "c_mean_squar": [234, 716], "sub": [236, 281, 282, 283, 638, 756, 757, 758], "triangl": [236, 718], "group_df": [236, 718], "deem": [237, 303, 580, 638, 719], "nr": [239, 248, 721, 730], "maxim": [241, 276, 638, 723, 751, 1049], "833333": [242, 724], "minim": [244, 277, 404, 497, 505, 638, 726, 752, 887, 923, 966, 1049], "overview": [254, 638, 649, 734, 1049, 1057], "frameinittyp": [254, 734], "variou": [254, 638, 734, 737, 1049], "entri": [254, 734, 1056], "behavior": [254, 268, 428, 567, 638, 743, 911, 1049], "mydatafram": 254, "notic": [254, 734, 1049], "df4": 254, "df5": 254, "df6": 254, "corr": 254, "drop_in_plac": 254, "drop_nul": [254, 264, 266, 314, 638, 734, 741, 742, 1049], "estimated_s": [254, 1049], "explod": [254, 371, 464, 477, 638, 734, 942, 1049], "find_idx_by_nam": 254, "fold": [254, 448, 575, 582, 583, 614], "frame_equ": [254, 345, 352], "groupby_rol": [254, 482, 483, 484, 485, 486, 488, 489, 490, 638, 670, 734], "hash_row": 254, "hstack": 254, "insert_at_idx": 254, "is_dupl": [254, 638, 1049], "is_empti": [254, 1049], "is_uniqu": [254, 638, 1049], "iter_slic": 254, "melt": [254, 734], "merge_sort": [254, 734], "n_uniqu": [254, 638, 1049], "pipe": [254, 638, 734], "quantil": [254, 470, 486, 638, 734, 936, 951, 1049], "replace_at_idx": 254, "shrink_to_fit": [254, 1049], "take_everi": [254, 638, 734, 1049], "to_dict": 254, "to_dummi": [254, 1049], "to_numpi": [254, 437, 638, 1049], "to_panda": [254, 1049], "to_struct": [254, 516], "unnest": [254, 479, 516, 530, 531, 544, 638, 734, 912, 944, 1000, 1001, 1049], "unstack": 254, "write_avro": 254, "write_databas": 254, "write_delta": 254, "write_excel": 254, "write_json": [254, 691, 734], "write_parquet": 254, "cumprod": [261, 638, 1049], "ghi": [261, 516, 638, 737, 986], "94": [262, 638], "map_alia": [263, 638], "to_uppercas": [263, 638], "confus": [264, 389, 391, 638], "tt": [264, 638], "tf": [264, 266, 638], "ff": [264, 266, 638], "bitwis": [265, 463, 562, 563, 564, 565, 566, 638], "upcast": [267, 638], "skip_nul": [268, 638, 744, 1049], "pass_nam": [268, 638], "applystrategi": [268, 638], "thread_loc": [268, 638], "unknown": [268, 439, 515, 603, 638, 985], "stage": [268, 638], "code": [268, 286, 288, 289, 290, 494, 638, 678, 734, 962, 1049], "amount": [268, 638], "releas": [268, 638, 1057], "gil": [268, 638], "bug": [268, 437, 638, 680, 718, 734, 744, 1049], "discourag": [268, 638], "loop": [268, 638], "a_times_2": [268, 638], "approx": [269, 568, 638, 734], "hyperloglog": [269, 568, 638, 734], "algorithm": [269, 568, 638, 734], "cardin": [269, 568, 638, 734], "invers": [270, 271, 272, 273, 274, 275, 638, 745, 746, 747, 748, 749, 750, 1049], "cosin": [270, 271, 301, 302, 437, 638, 745, 746, 778, 779, 1049], "570796": [270, 272, 638, 745, 747, 1049], "hyperbol": [271, 273, 275, 302, 501, 552, 638, 746, 748, 750, 779, 971, 1023, 1049], "sine": [272, 273, 437, 500, 501, 638, 747, 748, 970, 971, 1049], "881374": [273, 638, 748, 1049], "tangent": [274, 275, 551, 552, 638, 749, 750, 1022, 1023, 1049], "785398": [274, 570, 571, 638, 749, 1049], "arg_wher": [279, 638], "substr": [286, 289, 290, 509, 513, 524, 525, 529, 530, 531, 532, 737, 760, 763, 764, 979, 983, 994, 995, 999, 1000, 1001, 1002], "ends_with": [286, 290, 509, 532, 737, 1002], "x00": [286, 288, 289, 290], "xff": [286, 288, 289, 290], "hex": [286, 287, 288, 289, 290, 511, 512, 523, 761, 762, 981, 982, 993], "code_encoded_hex": [286, 288, 289, 290], "contains_ff": [286, 289, 290], "starts_with_ff": [286, 289, 290], "ends_with_ff": [286, 289, 290], "000000": [286, 288, 289, 290], "ffff00": [286, 288, 289, 290], "0000ff": [286, 288, 289, 290], "transferencod": [287, 288, 511, 512, 761, 762, 981, 982], "strict": [287, 293, 509, 511, 523, 534, 535, 536, 539, 638, 761, 766, 959, 979, 981, 993, 1004, 1005, 1006, 1009, 1049], "base64": [287, 288, 511, 512, 761, 762, 981, 982], "anywher": [289, 290, 534, 535, 536, 1004, 1005, 1006], "complex": [291, 309, 554, 638, 765, 784, 1033, 1049], "frac": [291, 360, 361, 362, 502, 554, 638, 765, 840, 841, 842, 972, 1033, 1049], "deprec": [292, 534, 536, 563, 565, 569, 584, 587, 605, 609, 615, 622, 626, 638, 743, 1004, 1006, 1049], "overflow": [293, 307, 308, 523, 547, 638, 766, 782, 783, 993, 1018, 1049], "to_fram": [294, 345, 352, 534, 960, 961, 1000, 1001, 1004, 1049], "categoricalord": [295, 769], "lexic": [295, 737, 769], "259921": [296, 638, 770, 1049], "587401": [296, 638], "foo_clip": [298, 299, 300, 638], "clip": [299, 300, 638, 775, 776, 1049], "543081": [302, 638, 779, 1049], "cumul": [304, 305, 306, 307, 308, 582, 583, 584, 585, 638, 780, 781, 782, 783, 1049], "a_revers": [304, 305, 306, 307, 308, 438, 478, 546, 638], "value_cummax": [305, 638], "value_cummax_all_fil": [305, 638], "value_cumsum": [308, 638], "value_cumsum_all_fil": [308, 638], "min_period": [309, 360, 361, 362, 481, 482, 483, 484, 485, 486, 488, 489, 490, 616, 617, 638, 784, 840, 841, 842, 946, 947, 948, 949, 950, 951, 953, 954, 955, 1049], "slide": [309, 638, 784, 1049], "realli": [309, 638, 784, 1049], "visit": [309, 638, 784, 1049], "label": [310, 470, 481, 482, 483, 484, 485, 486, 488, 489, 490, 638, 689, 734, 785, 936, 946, 947, 948, 949, 950, 951, 953, 954, 955, 1049], "left_clos": [310, 470, 638, 785, 936, 1049], "include_break": [310, 470, 638, 785, 936, 1049], "bin": [310, 470, 523, 562, 632, 638, 785, 856, 936, 993, 1043, 1049], "discret": [310, 312, 357, 408, 409, 470, 638, 785, 787, 838, 856, 891, 892, 936, 1049], "endpoint": [310, 470, 482, 483, 484, 485, 486, 488, 489, 490, 638, 785, 936, 1049], "observ": [310, 360, 361, 362, 470, 638, 785, 840, 841, 842, 936, 1049], "fall": [310, 470, 480, 638, 785, 860, 936, 945, 1049], "radian": [311, 570, 638], "pi": [311, 638, 778, 970, 1022, 1049], "720": [311, 472, 638], "540": [311, 472, 638], "360": [311, 472, 638], "180": [311, 329, 343, 356, 472, 638], "null_behavior": [312, 408, 638, 787, 891, 1049], "nullbehavior": [312, 408, 638, 787, 891, 1049], "th": [312, 408, 409, 502, 638, 787, 891, 892, 972, 1049], "drop_nan": [315, 638, 1049], "utc": [316, 319, 324, 344, 534, 536, 737, 792, 795, 800, 824, 1004, 1006], "usual": [316, 792], "vari": [316, 587, 792, 1057], "rare": [316, 792], "countri": [316, 792], "switch": [316, 792], "samoa": [316, 792], "apia": [316, 792], "did": [316, 516, 792, 986], "2011": [316, 792], "dst_offset": [316, 352, 792, 832], "2012": [316, 792], "replace_time_zon": [316, 324, 796, 797, 829], "pacif": [316, 792], "11h": [316, 792], "13h": [316, 792], "lose": [317, 569, 793], "2001": [317, 322, 325, 326, 328, 329, 334, 336, 341, 342, 343, 345, 346, 350, 352, 353, 354, 355, 356, 482, 483, 485, 488, 489, 490, 534, 638, 793, 798, 801, 802, 804, 806, 807, 808, 809, 811, 813, 814, 816, 819, 821, 822, 823, 825, 826, 830, 832, 833, 834, 835, 836, 1004], "time_unit_m": [317, 793], "time_unit_n": [317, 793], "naiv": [318, 534, 536, 794, 1004, 1006], "compon": [318, 346, 534, 536, 590, 794, 826, 1004, 1006], "resolv": 318, "tm": [318, 737], "456000": [318, 794], "101000": 318, "456": [318, 737, 794, 1027, 1049], "07": [318, 344, 345, 352, 534, 587, 596, 737, 794, 798, 824, 834, 1004], "101": [318, 523, 993, 1057], "d1": 318, "d2": 318, "d3": 318, "europ": [319, 324, 344, 352, 795, 800, 824, 832], "london": [319, 324, 344, 352, 795, 800, 824, 832], "gmt": [319, 324, 344, 352, 795, 800, 824, 832], "bst": [319, 324, 344, 352, 795, 800, 824, 832], "weekdai": [322, 342], "ordinal_dai": [322, 354], "day_of_month": [322, 342, 354], "day_of_year": [322, 342, 354], "356": [322, 342, 354], "357": [322, 342, 354], "358": [322, 342, 354], "359": [322, 342, 354], "days_diff": 323, "base_utc_offset": [324, 800], "26": [324, 800], "0m": [324, 800], "epochtimeunit": [325, 596, 801], "unix": [325, 596, 801], "epoch_n": [325, 801], "epoch_": [325, 801], "978307200000000": [325, 350, 801, 830], "978307200": [325, 801], "978393600000000": [325, 350, 801, 830], "978393600": [325, 801], "978480000000000": [325, 350, 801, 830], "978480000": [325, 801], "hours_diff": 327, "leap": [328, 341, 587, 804, 821], "2002": [328, 329, 341, 343, 356, 804, 821, 836], "iso": [329, 353, 354, 805, 833, 834], "2006": [329, 341, 821], "2004": [329, 341, 821], "2005": [329, 341, 821], "1_001": [330, 331, 333, 340], "002": [330, 331, 333, 340, 590, 810, 812, 820], "003": [330, 331, 333, 340], "3000": 330, "997": [330, 331, 333, 340], "997000": 330, "998": [330, 331, 333, 340], "998000": 330, "999": [330, 331, 333, 340, 737, 1057], "999000": [330, 737], "microseconds_diff": 331, "milliseconds_diff": 333, "minutes_diff": 335, "1440": [335, 815], "think": [337, 338, 817, 818], "vectoris": [337, 338, 817, 818], "tseri": [337, 338, 817, 818], "monthend": [337, 817], "rollforward": [337, 817], "monthbegin": [338, 818], "rollback": [338, 818], "nanoseconds_diff": 340, "1000000": [340, 542, 820], "minu": [341, 821], "dictat": [341, 821], "date_plus_1i": [341, 821], "1y2mo": [341, 821], "date_min": 341, "1998": [341, 821], "1999": [341, 737, 821], "2003": [341, 596, 821], "ordin": [342, 473, 638, 822, 938, 1049], "366": [342, 822], "use_earliest": [344, 352, 824, 832], "convert_time_zon": [344, 824], "ambigu": [344, 352, 824, 832], "earliest": [344, 352, 824, 832], "london_timezon": [344, 824], "amsterdam": [344, 824], "london_to_amsterdam": [344, 824], "cet": [344, 824], "cest": [344, 824], "dst": [344, 824], "ts_local": [344, 824], "brussel": [344, 824], "half": [345, 360, 361, 362, 638, 825, 840, 841, 842, 1049], "225": [345, 352], "10m": [345, 352, 825, 832], "milli": [346, 826], "micro": [346, 826], "456789": [346, 737], "654321": 346, "111110": 346, "765431": 346, "sec": [346, 1057], "11111": 346, "seconds_diff": 347, "to_str": [348, 828], "datetime_str": [348, 351], "timestamp_n": [350, 830], "timestamp_m": 350, "978307200000": 350, "978393600000": 350, "978480000000": 350, "strftime": [351, 831], "offset_bi": [352, 832], "15m": [352, 832], "53": [353, 833], "time_unit_u": [355, 835], "32971": [355, 835], "32974": [355, 835], "32976": [355, 835], "718281828459045": [357, 432, 638, 838, 915, 1049], "pk": [357, 638, 838, 1049], "probabl": [357, 470, 638, 838, 936, 1049], "459148": [357, 638], "754888": [357, 638], "eq": [359, 638, 1049], "span": [360, 361, 362, 638, 840, 841, 842, 1049], "half_lif": [360, 361, 362, 638, 840, 841, 842, 1049], "adjust": [360, 361, 362, 502, 638, 840, 841, 842, 972, 1049], "ignore_nul": [360, 361, 362, 638, 840, 841, 842, 1039, 1049], "exponenti": [360, 361, 362, 364, 467, 638, 840, 841, 842, 843, 1049], "weight": [360, 361, 362, 481, 482, 483, 484, 485, 486, 488, 489, 490, 502, 638, 840, 841, 842, 946, 947, 948, 949, 950, 951, 953, 954, 955, 972, 1049], "decai": [360, 361, 362, 638, 840, 841, 842, 1049], "term": [360, 361, 362, 519, 522, 638, 840, 841, 842, 989, 992, 1049], "mass": [360, 361, 362, 638, 840, 841, 842, 1049], "gamma": [360, 361, 362, 638, 840, 841, 842, 1049], "foral": [360, 361, 362, 638, 840, 841, 842, 1049], "geq": [360, 361, 362, 638, 840, 841, 842, 1049], "theta": [360, 361, 362, 638, 840, 841, 842, 1049], "life": [360, 361, 362, 638, 840, 841, 842, 1049], "exp": [360, 361, 362, 638, 840, 841, 842, 1049], "ln": [360, 361, 362, 638, 840, 841, 842, 1049], "smooth": [360, 361, 362, 638, 840, 841, 842, 1049], "factor": [360, 361, 362, 553, 638, 840, 841, 842, 1032, 1049], "leq": [360, 361, 362, 638, 840, 841, 842, 1049], "imbal": [360, 361, 362, 638, 840, 841, 842, 1049], "ew": [360, 361, 362, 638, 840, 841, 842, 1049], "w_i": [360, 361, 362, 638, 840, 841, 842, 1049], "recurs": [360, 361, 362, 638, 840, 841, 842, 1049], "y_0": [360, 361, 362, 638, 840, 841, 842, 1049], "x_0": [360, 361, 362, 638, 840, 841, 842, 1049], "y_t": [360, 361, 362, 638, 840, 841, 842, 1049], "y_": [360, 361, 362, 638, 840, 841, 842, 1049], "x_t": [360, 361, 362, 638, 840, 841, 842, 1049], "x_2": [360, 361, 362, 638, 840, 841, 842, 1049], "428571": [360, 638], "bia": [361, 362, 396, 487, 502, 638, 841, 842, 880, 952, 972, 1049], "unbias": [361, 362, 638, 841, 842, 1049], "963624": [361, 638, 841, 1049], "928571": [362, 638, 842, 1049], "wildcard": [363, 576, 582, 583, 594, 614, 638], "regex": [363, 445, 509, 510, 513, 515, 516, 524, 525, 532, 592, 622, 638, 737, 979, 980, 983, 985, 986, 994, 995, 1002], "aa": [363, 509, 592, 638, 979], "ba": [363, 592, 638, 737], "cc": [363, 592, 638], "718282": [364, 638], "389056": [364, 638], "54": [364, 638, 1057], "59815": [364, 638], "expand": [365, 444, 445, 476, 638, 844, 1049], "pythonliter": [366, 605, 609, 638, 846, 920, 923, 1049], "extrem": [366, 638, 846, 1049], "group_col": [369, 561, 638], "g1": [369, 561, 638], "g2": [369, 561, 638], "lt": [369, 561, 638, 1049], "gte": [369, 561, 638], "exprlistnamespac": [371, 638], "divis": [373, 555, 638], "truediv": [373, 638], "9774092659964970114": [378, 638], "13614470193936745724": [378, 638], "1101441246220388612": [378, 638], "11638928888656214026": [378, 638], "13382926553367784577": [378, 638], "cumsum": [381, 545, 585, 638, 673, 734, 879, 1049], "interpolationmethod": [382, 638, 859, 1049], "regrid": [382, 638], "grid": [382, 638], "df_original_grid": [382, 638], "grid_point": [382, 638], "df_new_grid": [382, 638], "conflat": [383, 638], "finit": [385, 555, 579, 638, 864, 1049], "primit": [387, 638, 1030, 1049], "optional_memb": [387, 638, 867, 1049], "infinit": [388, 555, 638, 868, 1049], "_isnan": [389, 638], "b_isnan": [389, 638], "negat": [390, 638], "_is_not_nan": [391, 638], "b_is_not_nan": [391, 638], "_not_nul": [392, 638], "a_not_nul": [392, 638], "b_not_nul": [392, 638], "_isnul": [393, 638], "a_isnul": [393, 638], "b_isnul": [393, 638], "constraint": [395, 468, 546, 638], "chain": [395, 468, 546, 629, 638], "undo": [395, 451, 468, 546, 638], "333333": [395, 638, 932, 955, 1049], "fisher": [396, 502, 638, 880, 972, 1049], "fourth": [396, 638, 880, 1049], "subtract": [396, 545, 638, 880, 1049], "distribut": [396, 502, 638, 880, 972, 1049], "elimin": [396, 638, 880, 1049], "bias": [396, 502, 638, 880, 972, 1049], "scipi": [396, 502, 638, 880, 972, 1049], "stat": [396, 502, 638, 880, 972, 1049], "153061": [396, 638], "sublist": [403, 404, 406, 408, 409, 412, 413, 414, 416, 417, 424, 427, 428, 429, 867, 886, 887, 889, 891, 892, 895, 896, 897, 899, 900, 907, 910, 911, 912, 1049], "membership": [406, 889], "listcol": 407, "number_of_two": 407, "blindli": [410, 893], "worth": [410, 893], "enough": [410, 502, 638, 893, 972, 1049], "concat_list": [410, 591, 893], "rank": [410, 579, 591, 638, 893, 1049], "exprnamespac": 411, "flat": [411, 477, 638, 894, 942, 1049], "taken": [424, 528, 907, 998], "null_on_oob": [428, 911], "cheaper": [428, 911], "n_field_strategi": [429, 912], "tostructstrategi": [429, 912], "first_non_nul": [429, 912], "max_width": [429, 912], "field_0": [429, 912], "field_1": [429, 912], "field_n": [429, 912], "pre": [429, 612, 615, 630], "n0": 429, "n1": 429, "logarithm": [432, 433, 434, 638, 915, 916, 917, 1049], "584963": [432, 638], "30103": [433, 638], "60206": [433, 638], "natur": [434, 638, 917, 1049], "plu": [434, 638, 917, 1049], "693147": [434, 638], "098612": [434, 638], "386294": [434, 638], "lowest": [435, 638], "9223372036854775808": [435, 638], "agg_list": [437, 638], "elementwis": [437, 481, 482, 483, 485, 489, 638, 946, 947, 948, 949, 950, 951, 953, 954, 955, 1049], "third": [437, 638], "parti": [437, 638], "book": [437, 638], "map_dict": [437, 638, 1049], "argmax": [437, 638], "b_revers": [438, 478, 546, 638], "rstrip": [438, 638], "_revers": [438, 478, 546, 638], "remap": [439, 638, 919, 1049], "lookup": [439, 638, 919, 1049], "country_code_dict": [439, 638], "ca": [439, 638], "canada": [439, 638], "de": [439, 638], "germani": [439, 638], "fr": [439, 638], "franc": [439, 638], "country_cod": [439, 638], "rest": [439, 638], "exprmetanamespac": [443, 446], "computeerror": [447, 523, 649, 993], "tree": 450, "keep_nam": [451, 638], "modulu": [454, 638], "xlog2": [456, 467, 638], "poison": [458, 459, 638, 928, 929, 1049], "nanmax": [458, 459, 638, 928, 929, 1049], "wherea": [458, 459, 587, 638, 672, 679, 734, 928, 929, 1049], "inequ": [460, 638], "ne": [461, 638, 1049], "more_expr": [464, 563, 565, 572, 575, 577, 578, 584, 605, 609, 622, 638], "mapping_strategi": [464, 638], "windowmappingstrategi": [464, 638], "group_to_row": [464, 638], "outcom": [464, 638], "group_dtyp": [464, 638], "warn": [464, 638], "flatten": [464, 638], "_max": [464, 638], "c_max": [464, 638], "_min": [464, 638], "c_min": [464, 638], "percent": [465, 638, 932, 1049], "090909": [465, 638], "extract_numb": [466, 638], "digit": [466, 491, 516, 542, 638, 956, 980, 986, 1012, 1049, 1057], "scale_negative_even": [466, 638], "expon": [467, 638, 1049], "reverse_": [468, 638], "reverse_a": [468, 638], "reverse_b": [468, 638], "allow_dupl": [470, 638, 936, 1049], "prob": [470, 638, 936, 1049], "lo": [470, 638], "566371": [472, 638], "424778": [472, 638], "283185": [472, 638], "141593": [472, 638, 745, 1049], "rankmethod": [473, 638, 938, 1049], "ti": [473, 638, 938, 1049], "competit": [473, 638, 938, 1049], "highest": [473, 558, 579, 638, 734, 938, 1049], "immedi": [473, 569, 573, 587, 588, 600, 601, 612, 615, 621, 626, 627, 630, 638, 938, 1049], "64bit": [475, 638, 940, 1049], "safe": [475, 534, 536, 638, 940, 1004, 1006, 1030, 1049], "fruits_revers": [478, 638], "cars_revers": [478, 638], "rle": [480, 638, 945, 1049], "themselv": [480, 638, 945, 1049], "a_r": [480, 638], "ab_r": [480, 638], "window_s": [481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 616, 617, 638, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 1049], "rolling_min": [481, 638, 946, 1049], "rolling_max": [481, 638, 946, 1049], "rolling_mean": [481, 638, 946, 1049], "rolling_sum": [481, 638, 946, 1049], "multipli": [481, 482, 483, 485, 488, 489, 490, 638, 946, 947, 948, 949, 950, 951, 953, 954, 955, 1049], "358899": [481, 638], "041452": [481, 638], "567764": [481, 638], "travers": [482, 483, 485, 489, 638, 947, 948, 950, 953, 954, 955, 1049], "vector": [482, 483, 485, 489, 638, 947, 948, 950, 953, 954, 955, 1049], "5h": [482, 483, 484, 485, 486, 488, 489, 490, 638], "df_tempor": [482, 483, 485, 488, 489, 490, 638], "closur": [482, 483, 488, 489, 490, 638], "rolling_row_max": [482, 638], "2h": [482, 483, 485, 488, 489, 490, 638], "rolling_row_mean": [483, 638], "contribut": [484, 486, 488, 490, 638], "rolling_row_min": [485, 638], "625": [486, 638], "skew": [487, 638, 952, 1049], "381802": [487, 638, 952, 1049], "47033": [487, 638, 952, 1049], "38180177416060584": [487, 638, 952, 1049], "47033046033698594": [487, 638, 952, 1049], "433013": [488, 638, 702, 734], "rolling_row_std": [488, 638], "rolling_row_sum": [489, 638], "39": [489, 596, 638], "63": [489, 638], "69": [489, 638], "1875": [490, 638, 710, 734], "rolling_row_var": [490, 638], "fixed_se": [492, 498, 638], "increment": [492, 498, 638], "schedul": [492, 498, 638], "searchsortedsid": [493, 638, 958, 1049], "leftmost": [493, 638, 958, 1049], "rightmost": [493, 638, 958, 1049], "six": [493, 638], "extrema": [497, 638, 966, 1049], "112": [497, 638, 1057], "129": [497, 638], "i8": [497, 612, 615, 630, 638, 787, 943, 1036, 1049], "8589934592": [497, 638], "1073741824": [497, 638], "content": [498, 559, 638, 968, 1049], "175201": [501, 638, 971, 1049], "about": [502, 509, 515, 516, 524, 638, 972, 979, 985, 986, 994, 1049, 1057], "unimod": [502, 638, 972, 1049], "skewtest": [502, 638, 972, 1049], "speak": [502, 638, 972, 1049], "g_1": [502, 638, 972, 1049], "m_3": [502, 638, 972, 1049], "m_2": [502, 638, 972, 1049], "m_i": [502, 638, 972, 1049], "sum_": [502, 638, 972, 1049], "texttt": [502, 638, 972, 1049], "k_3": [502, 638, 972, 1049], "k_2": [502, 638, 972, 1049], "sqrt": [502, 570, 571, 638, 972, 1049], "343622": [502, 638], "value1": [505, 638], "value2": [505, 638], "attain": [505, 638], "414214": [506, 638, 975, 1049], "sensit": [509, 516, 524, 979, 986, 994], "ilmsuxu": [509, 515, 516, 524, 979, 985, 986, 994], "default_match": 509, "insensitive_match": 509, "section": [509, 515, 516, 524, 979, 985, 986, 994], "crab": [509, 979], "dog": [509, 538, 541, 578, 979, 1008, 1011], "rab": [509, 979], "success": [510, 516, 980, 986], "overlap": [510, 516, 980, 986], "captur": [510, 515, 516, 980, 985, 986], "123": [510, 516, 525, 737, 980, 986, 995, 1027, 1049], "bla": [510, 516, 980, 986], "asd": [510, 516, 980, 986], "678": [510, 516, 980, 986], "910t": [510, 516, 980, 986], "count_digit": 510, "666f6f": [512, 982], "626172": [512, 982], "mango": [513, 532, 983, 1002], "go": [513, 983], "has_suffix": 513, "group_index": [515, 985], "nthose": [515, 985], "nodd": [515, 985], "nthe": [515, 985], "url": [515, 985], "vote": [515, 985], "ballon_dor": [515, 985], "404": [515, 985], "ref": [515, 985], "candid": [515, 985], "messi": [515, 985], "ronaldo": [515, 985], "email": [516, 986], "real": [516, 986], "some_account": [516, 986], "somewher": [516, 986], "net": [516, 986], "jkl": [516, 986], "uvw": [516, 986], "co": [516, 638, 986, 1049], "uk": [516, 986], "address": 516, "xi": [516, 986], "insensit": [516, 524, 737, 979, 986, 994], "quantifi": [516, 986], "email_part": [516, 986], "extracted_nr": 516, "910": [516, 986], "json_path_match": [517, 987], "jsonpath": [517, 518, 987, 988], "json_path": [518, 988], "json_val": [518, 988], "n_char": [519, 989], "caf\u00e9": [519, 522, 989, 992], "345": [519, 522, 989, 992], "\u6771\u4eac": [519, 522, 989, 992], "nchar": [519, 522], "fill_char": [520, 526, 990, 996], "justifi": [520, 526, 990, 996], "pad": [520, 526, 542, 990, 996, 1012], "cow": [520, 526, 990, 996], "monkei": [520, 526, 990, 996], "hippopotamu": [520, 526, 990, 996], "strip": [521, 527, 991, 997], "tworld": [521, 991, 1003], "wod": [521, 991], "rld": [521, 533, 991], "radix": [523, 993], "parseerror": [523, 993], "becom": [523, 993], "silent": [523, 993], "110": [523, 993], "010": [523, 993], "fa1e": [523, 993], "ff00": [523, 993], "cafe": [523, 993], "64030": [523, 993], "65280": [523, 993], "51966": [523, 993], "replace_al": [524, 994], "citi": 524, "philadelphia": 524, "season": 524, "spring": 524, "summer": 524, "autumn": 524, "winter": 524, "weather": [524, 994], "raini": [524, 994], "sunni": [524, 994], "cloudi": 524, "snowi": 524, "foggi": [524, 994], "123abc": [524, 994], "abc456": [524, 994], "abcabc": [525, 995], "123a123": [525, 995], "bc": [525, 622, 995], "trail": [527, 533, 997, 1003], "oldw": 527, "he": 527, "subslic": [528, 998], "pear": [528, 998], "papaya": [528, 998], "dragonfruit": [528, 998], "s_slice": 528, "ear": [528, 998], "aya": [528, 998], "uit": [528, 998], "ya": [528, 998], "onf": [528, 998], "a_1": [530, 1000, 1026, 1049], "d_4": [530, 1000], "rename_field": [530, 531, 1000, 1001], "first_part": [530, 531, 1000, 1001], "second_part": [530, 531, 1000, 1001], "remaind": [531, 1001], "app": [532, 1002], "has_prefix": 532, "nworld": 533, "ow": 533, "hell": [533, 1003], "polarstemporaltyp": [534, 1004], "introduc": [534, 535, 536, 1004, 1005, 1006], "penalti": [534, 535, 536, 1004, 1005, 1006], "clean": [534, 535, 536, 1004, 1005, 1006], "beforehand": [534, 535, 536, 1004, 1005, 1006], "certainli": [534, 535, 536, 1004, 1005, 1006], "3f": [534, 536, 1004, 1006], "00z": [534, 536, 1004, 1006], "sun": [534, 1004], "jul": [534, 1004], "34": [534, 1004], "inference_length": [537, 1007], "3420": [537, 1007], "120134": [537, 1007], "3212": [537, 1007], "143": [537, 1007, 1057], "lowercas": [538, 1008], "variant": [538, 540, 541], "titlecas": [540, 1010], "sing": [540, 1010], "welcom": [540, 1010], "THERE": [540, 1010], "NO": [540, 737, 1010], "There": [540, 1010], "uppercas": [541, 1011], "100000": 542, "0010": 542, "0001": 542, "00000": 542, "00001": 542, "cd": [543, 544], "struct_col": [543, 544], "www": 544, "xxx": 544, "yyi": 544, "zzz": 544, "obvious": 544, "structfieldnotfounderror": [544, 649], "761594": [552, 638, 1023, 1049], "replic": [553, 638, 1032, 1049], "vals_phys": [553, 638], "floordiv": [555, 638], "ieee": [555, 638], "754": [555, 638], "mathemat": [555, 591, 638], "undefin": [555, 638], "On": [555, 638], "operand": [555, 638], "infin": [555, 638], "value_count": [557, 638, 1049], "9223372036854775807": [558, 638], "multithread": [559, 638], "binary_str": [562, 638], "zfill": [562, 638], "250": [562, 638, 948, 1049, 1057], "bin_x": [562, 638], "bin_i": [562, 638], "xor_xi": [562, 638], "bin_xor_xi": [562, 638], "00001010": [562, 638], "00000001": [562, 638], "00001011": [562, 638], "00001000": [562, 638], "00000010": [562, 638], "11111010": [562, 638], "00000011": [562, 638], "249": [562, 638], "11111001": [562, 638], "01000010": [562, 638], "00000100": [562, 638], "70": [562, 638], "01000110": [562, 638], "AND": [563, 564, 737, 1030, 1049], "any_horizont": 565, "returns_scalar": 567, "product_a": 567, "49": 567, "arctan": [570, 571, 638, 1049], "angl": [570, 571], "plane": [570, 571], "rai": [570, 571], "tworoottwo": [570, 571], "arctan2d": 570, "atan2d": [570, 571], "atan2": [570, 571], "135": [570, 571], "356194": [570, 571], "arctan2": 571, "arg_tru": [573, 638, 1049], "more_nam": 576, "hamburg": 576, "lag": 577, "mimic": 577, "a_lag_": 577, "a_rol": 577, "swim": 578, "walk": 578, "full_sent": 578, "correlationmethod": 579, "propagate_nan": 579, "spearman": 579, "544705": 579, "covari": [581, 617], "acc": [582, 583, 594, 614], "include_init": 582, "accumul": [582, 583, 594, 614], "fn": [582, 583, 594, 614], "new_valu": [582, 583, 594, 614], "cumreduc": 582, "cumsum_horizont": 584, "1h30m25": [587, 588, 626, 627], "further": [587, 588, 1031, 1049], "granular": 587, "finer": 587, "permut": 587, "februari": 587, "febrari": 587, "28th": 587, "march": 587, "31st": 587, "approach": 587, "prior": 587, "began": 587, "januari": 587, "1mo_satur": 587, "month_end": 587, "routin": 587, "1985": 587, "america": 587, "new_york": 587, "est": 587, "999999": [589, 625, 626, 627, 737], "tbl_width_char": 590, "120": 590, "add_week": 590, "add_dai": 590, "add_second": 590, "add_milli": 590, "add_hour": 590, "a_b_doubl": 591, "f_string": 595, "placehold": 595, "hello_": 595, "_world": 595, "foo_": 595, "_bar_": 595, "foo_a_bar_1": 595, "foo_b_bar_2": 595, "foo_c_bar_3": 595, "epoch": 596, "timestep": 596, "1666683077": 596, "1666683099": 596, "12345": [596, 771, 851, 956, 1049], "12346": 596, "agg_group": [597, 638], "polarsintegertyp": [600, 601], "allow_object": 603, "valueexcept": 603, "test_func": 604, "max_horizont": 605, "min_horizont": [609, 618], "power": [619, 1049], "a_a": 619, "a_txt": 619, "605551": 620, "605551275463989": 620, "my_struct": 621, "isn": 629, "thens": 629, "elif": 629, "pick": 629, "arr": [631, 1030, 1041, 1049], "sometim": 637, "and_": 638, "approx_uniqu": [638, 734], "arcco": [638, 1049], "arccosh": [638, 1049], "arcsin": [638, 1049], "arcsinh": [638, 1049], "arctanh": [638, 1049], "arg_max": [638, 1049], "arg_min": [638, 1049], "arg_sort": [638, 1049], "arg_uniqu": [638, 1049], "backward_fil": 638, "cbrt": [638, 1049], "clip_max": [638, 1049], "clip_min": [638, 1049], "cosh": [638, 1049], "cumcount": 638, "cummax": [638, 1049], "cummin": [638, 1049], "cumulative_ev": [638, 1049], "cut": [638, 1049], "entropi": [638, 1049], "eq_miss": [638, 1049], "ewm_mean": [638, 1049], "ewm_std": [638, 1049], "ewm_var": [638, 1049], "extend_const": [638, 1049], "from_json": [638, 691, 734], "ge": [638, 1049], "gt": [638, 1049], "implod": [638, 1049], "inspect": [638, 734], "is_between": [638, 1049], "is_finit": [638, 1049], "is_first": [638, 1049], "is_in": [638, 1049], "is_infinit": [638, 1049], "is_nan": [638, 1049], "is_not_nan": [638, 1049], "is_not_nul": [638, 1049], "kurtosi": [638, 1049], "le": [638, 1049], "log10": [638, 1049], "log1p": [638, 1049], "mod": 638, "mul": 638, "nan_max": [638, 1049], "nan_min": [638, 1049], "ne_miss": [638, 1049], "or_": 638, "pct_chang": [638, 1049], "pow": [638, 1049], "qcut": [638, 1049], "reinterpret": [638, 1049], "repeat_bi": 638, "rle_id": [638, 1049], "rolling_appli": [638, 1049], "rolling_median": [638, 1049], "rolling_quantil": [638, 1049], "rolling_skew": [638, 1049], "rolling_std": [638, 1049], "rolling_var": [638, 1049], "search_sort": [638, 1049], "shrink_dtyp": [638, 1049], "sin": [638, 1049], "sinh": [638, 1049], "sort_bi": 638, "tan": [638, 1049], "to_phys": [638, 1049], "unique_count": [638, 1049], "xor": 638, "expos": 649, "miscellan": 649, "arrowerror": 649, "columnnotfounderror": 649, "duplicateerror": 649, "invalidoperationerror": 649, "nodataerror": 649, "polarspanicerror": 649, "schemaerror": 649, "schemafieldnotfounderror": 649, "shapeerror": 649, "parametr": 649, "build_info": 649, "get_index_typ": 649, "show_vers": 649, "threadpool_s": 649, "sqlcontext": [649, 1056], "hit": [653, 734], "node": [653, 673, 680, 684, 689, 692, 734], "huge": [656, 734], "saver": [656, 734], "purpos": [663, 734], "influenc": [663, 680, 734], "read_json": [668, 715, 734], "lazygroupbi": [669, 670, 671, 734], "other_lf": [675, 734], "validate_output_schema": [680, 734], "streamabl": [680, 684, 734], "past": [680, 734], "paramount": [680, 734], "elig": [680, 734], "invari": [680, 734], "upheld": [680, 734], "prune": [680, 734], "show_plot": [689, 734], "truncate_nod": [689, 734], "figsiz": [689, 699, 734], "gantt": [689, 734], "plot": [689, 699, 734], "groupby_partit": [689, 734], "470": [689, 734], "475": [689, 734], "1964": [689, 734], "swap": [692, 734], "output_path": [699, 734], "raw_output": [699, 734], "figur": [699, 734], "290994": [702, 734], "118034": [702, 734], "extern": [713, 734], "lf_other": [713, 734], "afoo": [713, 734], "cfoo": [713, 734], "train_lf": [713, 734], "feature_0": [713, 734], "feature_1": [713, 734], "test_lf": [713, 734], "_train": [713, 734], "feature_0_train": [713, 734], "dataframescan": [715, 734], "output_schema": [715, 734], "opaqu": 718, "idiomat": 718, "my_column": 718, "lf5": 734, "lf6": 734, "explain": 734, "sink_ipc": 734, "sink_parquet": 734, "with_context": 734, "intuit": 737, "relat": 737, "broadcast": 737, "emploi": 737, "complement": 737, "plenti": 737, "cde": 737, "fgg": 737, "jjk": 737, "lmn": 737, "opp": 737, "qqr": 737, "by_dtyp": 737, "as_expr": 737, "dispatch": 737, "2024": 737, "1_234_500": 737, "5_000_555": 737, "1234500": 737, "5000555": 737, "2010": 737, "4_500_000": 737, "4500000": 737, "3265500": 737, "by_nam": 737, "zap": 737, "tstamp_tokyo": 737, "987654": 737, "123465": 737, "tstamp_utc": 737, "2025": 737, "666000": 737, "tstamp": 737, "600000": 737, "123000": 737, "666": 737, "td1": 737, "123456": 737, "987000": 737, "td2": 737, "td3": 737, "2m": [737, 814], "456m": 737, "7d": 737, "456789\u00b5": 737, "18d": 737, "999999\u00b5": 737, "23h": 737, "987m": 737, "14d": 737, "16h": 737, "39m": 737, "21d": 737, "456001\u00b5": 737, "is_selector": 737, "obj": 737, "selector_column_nam": 737, "colz": [737, 1057], "include_categor": 737, "set_ord": 737, "2345": 737, "3456": 737, "append_chunk": [743, 1049], "behav": [743, 1049], "super": [743, 1049], "292432": [746, 1049], "549306": [750, 1049], "catnamespac": 767, "56789": [771, 851, 956, 1049], "901234": [771, 851, 956, 1049], "1232e": [778, 1049], "break_point_label": [785, 936, 1049], "break_point": [785, 856, 936, 1049], "category_label": [785, 936, 1049], "breakpoint": [785, 936, 1049], "quick": [786, 1049, 1057], "series_num": [786, 1049], "581139": [786, 1049], "series_str": [786, 1049], "datetimeindex": [788, 1049], "datetimenamespac": 791, "ser": [792, 796, 797, 800, 829, 832], "kathmandu": [796, 797, 829], "0545": [796, 797, 829], "500m": [809, 811, 819, 826], "500000": 809, "500000000": 819, "date_minus_1y_2mon": 821, "165": [825, 832], "series_equ": [825, 832, 1049], "timestamp_u": 830, "978307200000000000": 830, "978393600000000000": 830, "978480000000000000": 830, "005": [838, 1049], "06293300616044681": [838, 1049], "65": [838, 1049], "8568409950394724": [838, 1049], "4000000": [839, 1049], "814697265625": [839, 1049], "bitmask": [853, 1049], "swiftli": [853, 1049], "10734580197236529959": [854, 1049], "3022416320763508302": [854, 1049], "13756996518000038261": [854, 1049], "bin_count": [856, 1049], "occurr": [856, 1049], "a_count": [856, 1049], "listnamespac": 883, "field_2": 912, "n00": 912, "n01": 912, "n02": 912, "2147483648": [918, 1049], "iso3166": [919, 1049], "tur": [919, 1010, 1049], "jpn": [919, 1049], "nld": [919, 1049], "country_lookup": [919, 1049], "japan": [919, 1049], "t\u00fcrkiy": [919, 1049], "netherland": [919, 1049], "unrecognis": [919, 1049], "unspecifi": [919, 1049], "country_nam": [919, 1049], "166667": [932, 1049], "142857": [932, 1049], "peak": [933, 934, 1049], "nanstd": [946, 1049], "858612": [946, 1049], "200": [947, 948, 950, 1049], "150": [948, 1049], "350": [948, 1049], "450": [948, 1049], "dev": [953, 1049], "527525": [953, 1049], "57": [956, 1049, 1057], "frequent": [960, 961, 1049], "mutat": [961, 1049], "2246e": [970, 1022, 1049], "stringnamespac": 977, "orld": 997, "6331e16": [1022, 1049], "lib": [1025, 1049], "int64arrai": [1025, 1049], "a_2": [1026, 1049], "a_3": [1026, 1049], "s_from_str_repr": [1028, 1049], "zero_copy_onli": [1030, 1049], "writabl": [1030, 1049], "complet": [1030, 1049], "presenc": [1030, 1049], "immut": [1030, 1049], "127": [1036, 1049], "seriesview": [1039, 1049], "arraylik": 1049, "dtype_if_empti": 1049, "position": 1049, "scenario": 1049, "chunk_length": 1049, "get_chunk": 1049, "has_valid": 1049, "hist": 1049, "is_boolean": 1049, "is_float": 1049, "is_integ": 1049, "is_numer": [1049, 1057], "is_sort": 1049, "is_tempor": 1049, "is_utf8": 1049, "new_from_index": 1049, "peak_max": 1049, "peak_min": 1049, "set_at_idx": 1049, "two_a": 1056, "__enter__": 1056, "__exit__": 1056, "exc_typ": 1056, "baseexcept": 1056, "exc_val": 1056, "exc_tb": 1056, "tracebacktyp": 1056, "guid": 1057, "easi": 1057, "approxim": 1057, "own": 1057, "machin": 1057, "xdist": 1057, "significantli": 1057, "hardwar": 1057, "setup": 1057, "numeric_dtyp": 1057, "null_probabililti": 1057, "test_numer": 1057, "col0": 1057, "col4": 1057, "29096": 1057, "485": 1057, "2147483647": 1057, "8257e14": 1057, "7508": 1057, "37338": 1057, "7264": 1057, "321": 1057, "16996": 1057, "121": 1057, "361": 1057, "63204": 1057, "1443e235": 1057, "conform": 1057, "ascii_lett": 1057, "id_char": 1057, "alphabet": 1057, "price": 1057, "min_valu": 1057, "max_valu": 1057, "test_price_calcul": 1057, "a101": 1057, "8nin": 1057, "qhoo": 1057, "714": 1057, "544": 1057, "i0e0": 1057, "0000": 1057, "test_miscellan": 1057, "235": 1057, "87": 1057, "186": 1057, "174": 1057, "179": 1057, "213": 1057, "221": 1057, "86": 1057, "255": 1057}, "objects": {"polars": [[2, 0, 1, "", "Array"], [3, 0, 1, "", "Binary"], [4, 0, 1, "", "Boolean"], [5, 0, 1, "", "Categorical"], [36, 0, 1, "", "DataType"], [37, 0, 1, "", "Date"], [38, 0, 1, "", "Datetime"], [39, 0, 1, "", "Decimal"], [40, 0, 1, "", "Duration"], [41, 0, 1, "", "Float32"], [42, 0, 1, "", "Float64"], [43, 0, 1, "", "Int16"], [44, 0, 1, "", "Int32"], [45, 0, 1, "", "Int64"], [46, 0, 1, "", "Int8"], [49, 0, 1, "", "List"], [50, 0, 1, "", "Null"], [51, 0, 1, "", "Object"], [1056, 0, 1, "", "SQLContext"], [58, 0, 1, "", "StringCache"], [59, 0, 1, "", "Struct"], [60, 0, 1, "", "Time"], [61, 0, 1, "", "UInt16"], [62, 0, 1, "", "UInt32"], [63, 0, 1, "", "UInt64"], [64, 0, 1, "", "UInt8"], [65, 0, 1, "", "Unknown"], [66, 0, 1, "", "Utf8"], [67, 4, 1, "", "align_frames"], [563, 4, 1, "", "all"], [564, 4, 1, "", "all_horizontal"], [565, 4, 1, "", "any"], [566, 4, 1, "", "any_horizontal"], [567, 4, 1, "", "apply"], [568, 4, 1, "", "approx_unique"], [569, 4, 1, "", "arange"], [570, 4, 1, "", "arctan2"], [571, 4, 1, "", "arctan2d"], [572, 4, 1, "", "arg_sort_by"], [573, 4, 1, "", "arg_where"], [574, 4, 1, "", "avg"], [72, 4, 1, "", "build_info"], [575, 4, 1, "", "coalesce"], [576, 4, 1, "", "col"], [73, 4, 1, "", "collect_all"], [74, 4, 1, "", "concat"], [577, 4, 1, "", "concat_list"], [578, 4, 1, "", "concat_str"], [579, 4, 1, "", "corr"], [580, 4, 1, "", "count"], [581, 4, 1, "", "cov"], [582, 4, 1, "", "cumfold"], [583, 4, 1, "", "cumreduce"], [584, 4, 1, "", "cumsum"], [585, 4, 1, "", "cumsum_horizontal"], [586, 4, 1, "", "date"], [587, 4, 1, "", "date_range"], [588, 4, 1, "", "date_ranges"], [589, 4, 1, "", "datetime"], [590, 4, 1, "", "duration"], [591, 4, 1, "", "element"], [75, 4, 1, "", "enable_string_cache"], [592, 4, 1, "", "exclude"], [593, 4, 1, "", "first"], [594, 4, 1, "", "fold"], [595, 4, 1, "", "format"], [90, 4, 1, "", "from_arrow"], [91, 4, 1, "", "from_dataframe"], [92, 4, 1, "", "from_dict"], [93, 4, 1, "", "from_dicts"], [596, 4, 1, "", "from_epoch"], [94, 4, 1, "", "from_numpy"], [95, 4, 1, "", "from_pandas"], [96, 4, 1, "", "from_records"], [97, 4, 1, "", "from_repr"], [98, 4, 1, "", "get_index_type"], [597, 4, 1, "", "groups"], [598, 4, 1, "", "head"], [599, 4, 1, "", "implode"], [600, 4, 1, "", "int_range"], [601, 4, 1, "", "int_ranges"], [602, 4, 1, "", "last"], [603, 4, 1, "", "lit"], [604, 4, 1, "", "map"], [605, 4, 1, "", "max"], [606, 4, 1, "", "max_horizontal"], [607, 4, 1, "", "mean"], [608, 4, 1, "", "median"], [609, 4, 1, "", "min"], [610, 4, 1, "", "min_horizontal"], [611, 4, 1, "", "n_unique"], [612, 4, 1, "", "ones"], [613, 4, 1, "", "quantile"], [100, 4, 1, "", "read_avro"], [101, 4, 1, "", "read_csv"], [102, 4, 1, "", "read_csv_batched"], [103, 4, 1, "", "read_database"], [104, 4, 1, "", "read_delta"], [105, 4, 1, "", "read_excel"], [106, 4, 1, "", "read_ipc"], [107, 4, 1, "", "read_ipc_schema"], [108, 4, 1, "", "read_json"], [109, 4, 1, "", "read_ndjson"], [110, 4, 1, "", "read_parquet"], [111, 4, 1, "", "read_parquet_schema"], [614, 4, 1, "", "reduce"], [615, 4, 1, "", "repeat"], [616, 4, 1, "", "rolling_corr"], [617, 4, 1, "", "rolling_cov"], [112, 4, 1, "", "scan_csv"], [113, 4, 1, "", "scan_delta"], [114, 4, 1, "", "scan_ipc"], [115, 4, 1, "", "scan_ndjson"], [116, 4, 1, "", "scan_parquet"], [117, 4, 1, "", "scan_pyarrow_dataset"], [618, 4, 1, "", "select"], [737, 6, 0, "-", "selectors"], [118, 4, 1, "", "show_versions"], [619, 4, 1, "", "sql_expr"], [620, 4, 1, "", "std"], [621, 4, 1, "", "struct"], [622, 4, 1, "", "sum"], [623, 4, 1, "", "sum_horizontal"], [624, 4, 1, "", "tail"], [128, 4, 1, "", "threadpool_size"], [625, 4, 1, "", "time"], [626, 4, 1, "", "time_range"], [627, 4, 1, "", "time_ranges"], [129, 4, 1, "", "using_string_cache"], [628, 4, 1, "", "var"], [629, 4, 1, "", "when"], [630, 4, 1, "", "zeros"]], "polars.Array": [[2, 1, 1, "", "__init__"]], "polars.Binary": [[3, 1, 1, "", "__init__"]], "polars.Boolean": [[4, 1, 1, "", "__init__"]], "polars.Categorical": [[5, 1, 1, "", "__init__"]], "polars.Config": [[6, 1, 1, "", "activate_decimals"], [7, 1, 1, "", "load"], [8, 1, 1, "", "restore_defaults"], [9, 1, 1, "", "save"], [10, 1, 1, "", "set_ascii_tables"], [11, 1, 1, "", "set_fmt_float"], [12, 1, 1, "", "set_fmt_str_lengths"], [13, 1, 1, "", "set_streaming_chunk_size"], [14, 1, 1, "", "set_tbl_cell_alignment"], [15, 1, 1, "", "set_tbl_cols"], [16, 1, 1, "", "set_tbl_column_data_type_inline"], [17, 1, 1, "", "set_tbl_dataframe_shape_below"], [18, 1, 1, "", "set_tbl_formatting"], [19, 1, 1, "", "set_tbl_hide_column_data_types"], [20, 1, 1, "", "set_tbl_hide_column_names"], [21, 1, 1, "", "set_tbl_hide_dataframe_shape"], [22, 1, 1, "", "set_tbl_hide_dtype_separator"], [23, 1, 1, "", "set_tbl_rows"], [24, 1, 1, "", "set_tbl_width_chars"], [25, 1, 1, "", "set_verbose"], [26, 1, 1, "", "state"]], "polars.DataFrame": [[132, 1, 1, "", "__dataframe__"], [133, 1, 1, "", "apply"], [134, 1, 1, "", "bottom_k"], [135, 1, 1, "", "clear"], [136, 1, 1, "", "clone"], [137, 2, 1, "", "columns"], [138, 1, 1, "", "corr"], [139, 1, 1, "", "describe"], [140, 1, 1, "", "drop"], [141, 1, 1, "", "drop_in_place"], [142, 1, 1, "", "drop_nulls"], [143, 2, 1, "", "dtypes"], [144, 1, 1, "", "estimated_size"], [145, 1, 1, "", "explode"], [146, 1, 1, "", "extend"], [147, 1, 1, "", "fill_nan"], [148, 1, 1, "", "fill_null"], [149, 1, 1, "", "filter"], [150, 1, 1, "", "find_idx_by_name"], [151, 2, 1, "", "flags"], [152, 1, 1, "", "fold"], [153, 1, 1, "", "frame_equal"], [154, 1, 1, "", "get_column"], [155, 1, 1, "", "get_columns"], [156, 1, 1, "", "glimpse"], [157, 1, 1, "", "groupby"], [158, 1, 1, "", "groupby_dynamic"], [159, 1, 1, "", "groupby_rolling"], [160, 1, 1, "", "hash_rows"], [161, 1, 1, "", "head"], [162, 2, 1, "", "height"], [163, 1, 1, "", "hstack"], [164, 1, 1, "", "insert_at_idx"], [165, 1, 1, "", "interpolate"], [166, 1, 1, "", "is_duplicated"], [167, 1, 1, "", "is_empty"], [168, 1, 1, "", "is_unique"], [169, 1, 1, "", "item"], [170, 1, 1, "", "iter_rows"], [171, 1, 1, "", "iter_slices"], [172, 1, 1, "", "join"], [173, 1, 1, "", "join_asof"], [174, 1, 1, "", "lazy"], [175, 1, 1, "", "limit"], [176, 1, 1, "", "max"], [177, 1, 1, "", "mean"], [178, 1, 1, "", "median"], [179, 1, 1, "", "melt"], [180, 1, 1, "", "merge_sorted"], [181, 1, 1, "", "min"], [182, 1, 1, "", "n_chunks"], [183, 1, 1, "", "n_unique"], [184, 1, 1, "", "null_count"], [185, 1, 1, "", "partition_by"], [186, 1, 1, "", "pipe"], [187, 1, 1, "", "pivot"], [188, 1, 1, "", "product"], [189, 1, 1, "", "quantile"], [190, 1, 1, "", "rechunk"], [191, 1, 1, "", "rename"], [192, 1, 1, "", "replace"], [193, 1, 1, "", "replace_at_idx"], [194, 1, 1, "", "reverse"], [195, 1, 1, "", "row"], [196, 1, 1, "", "rows"], [197, 1, 1, "", "rows_by_key"], [198, 1, 1, "", "sample"], [199, 2, 1, "", "schema"], [200, 1, 1, "", "select"], [201, 1, 1, "", "set_sorted"], [202, 2, 1, "", "shape"], [203, 1, 1, "", "shift"], [204, 1, 1, "", "shift_and_fill"], [205, 1, 1, "", "shrink_to_fit"], [206, 1, 1, "", "slice"], [207, 1, 1, "", "sort"], [208, 1, 1, "", "std"], [209, 1, 1, "", "sum"], [210, 1, 1, "", "tail"], [211, 1, 1, "", "take_every"], [212, 1, 1, "", "to_arrow"], [213, 1, 1, "", "to_dict"], [214, 1, 1, "", "to_dicts"], [215, 1, 1, "", "to_dummies"], [216, 1, 1, "", "to_init_repr"], [217, 1, 1, "", "to_numpy"], [218, 1, 1, "", "to_pandas"], [219, 1, 1, "", "to_series"], [220, 1, 1, "", "to_struct"], [221, 1, 1, "", "top_k"], [222, 1, 1, "", "transpose"], [223, 1, 1, "", "unique"], [224, 1, 1, "", "unnest"], [225, 1, 1, "", "unstack"], [226, 1, 1, "", "update"], [227, 1, 1, "", "upsample"], [228, 1, 1, "", "var"], [229, 1, 1, "", "vstack"], [230, 2, 1, "", "width"], [231, 1, 1, "", "with_columns"], [232, 1, 1, "", "with_row_count"], [27, 1, 1, "", "write_avro"], [28, 1, 1, "", "write_csv"], [29, 1, 1, "", "write_database"], [30, 1, 1, "", "write_delta"], [31, 1, 1, "", "write_excel"], [32, 1, 1, "", "write_ipc"], [33, 1, 1, "", "write_json"], [34, 1, 1, "", "write_ndjson"], [35, 1, 1, "", "write_parquet"]], "polars.DataType": [[36, 1, 1, "", "__init__"]], "polars.Date": [[37, 1, 1, "", "__init__"]], "polars.Datetime": [[38, 1, 1, "", "__init__"]], "polars.Decimal": [[39, 1, 1, "", "__init__"]], "polars.Duration": [[40, 1, 1, "", "__init__"]], "polars.Expr": [[260, 1, 1, "", "abs"], [261, 1, 1, "", "add"], [262, 1, 1, "", "agg_groups"], [263, 1, 1, "", "alias"], [264, 1, 1, "", "all"], [265, 1, 1, "", "and_"], [266, 1, 1, "", "any"], [267, 1, 1, "", "append"], [268, 1, 1, "", "apply"], [269, 1, 1, "", "approx_unique"], [270, 1, 1, "", "arccos"], [271, 1, 1, "", "arccosh"], [272, 1, 1, "", "arcsin"], [273, 1, 1, "", "arcsinh"], [274, 1, 1, "", "arctan"], [275, 1, 1, "", "arctanh"], [276, 1, 1, "", "arg_max"], [277, 1, 1, "", "arg_min"], [278, 1, 1, "", "arg_sort"], [279, 1, 1, "", "arg_true"], [280, 1, 1, "", "arg_unique"], [285, 1, 1, "", "backward_fill"], [291, 1, 1, "", "bottom_k"], [292, 1, 1, "", "cache"], [293, 1, 1, "", "cast"], [296, 1, 1, "", "cbrt"], [297, 1, 1, "", "ceil"], [298, 1, 1, "", "clip"], [299, 1, 1, "", "clip_max"], [300, 1, 1, "", "clip_min"], [301, 1, 1, "", "cos"], [302, 1, 1, "", "cosh"], [303, 1, 1, "", "count"], [304, 1, 1, "", "cumcount"], [305, 1, 1, "", "cummax"], [306, 1, 1, "", "cummin"], [307, 1, 1, "", "cumprod"], [308, 1, 1, "", "cumsum"], [309, 1, 1, "", "cumulative_eval"], [310, 1, 1, "", "cut"], [311, 1, 1, "", "degrees"], [312, 1, 1, "", "diff"], [313, 1, 1, "", "dot"], [314, 1, 1, "", "drop_nans"], [315, 1, 1, "", "drop_nulls"], [357, 1, 1, "", "entropy"], [358, 1, 1, "", "eq"], [359, 1, 1, "", "eq_missing"], [360, 1, 1, "", "ewm_mean"], [361, 1, 1, "", "ewm_std"], [362, 1, 1, "", "ewm_var"], [363, 1, 1, "", "exclude"], [364, 1, 1, "", "exp"], [365, 1, 1, "", "explode"], [366, 1, 1, "", "extend_constant"], [367, 1, 1, "", "fill_nan"], [368, 1, 1, "", "fill_null"], [369, 1, 1, "", "filter"], [370, 1, 1, "", "first"], [371, 1, 1, "", "flatten"], [372, 1, 1, "", "floor"], [373, 1, 1, "", "floordiv"], [374, 1, 1, "", "forward_fill"], [375, 1, 1, "", "from_json"], [376, 1, 1, "", "ge"], [377, 1, 1, "", "gt"], [378, 1, 1, "", "hash"], [379, 1, 1, "", "head"], [380, 1, 1, "", "implode"], [381, 1, 1, "", "inspect"], [382, 1, 1, "", "interpolate"], [383, 1, 1, "", "is_between"], [384, 1, 1, "", "is_duplicated"], [385, 1, 1, "", "is_finite"], [386, 1, 1, "", "is_first"], [387, 1, 1, "", "is_in"], [388, 1, 1, "", "is_infinite"], [389, 1, 1, "", "is_nan"], [390, 1, 1, "", "is_not"], [391, 1, 1, "", "is_not_nan"], [392, 1, 1, "", "is_not_null"], [393, 1, 1, "", "is_null"], [394, 1, 1, "", "is_unique"], [395, 1, 1, "", "keep_name"], [396, 1, 1, "", "kurtosis"], [397, 1, 1, "", "last"], [398, 1, 1, "", "le"], [399, 1, 1, "", "len"], [400, 1, 1, "", "limit"], [432, 1, 1, "", "log"], [433, 1, 1, "", "log10"], [434, 1, 1, "", "log1p"], [435, 1, 1, "", "lower_bound"], [436, 1, 1, "", "lt"], [437, 1, 1, "", "map"], [438, 1, 1, "", "map_alias"], [439, 1, 1, "", "map_dict"], [440, 1, 1, "", "max"], [441, 1, 1, "", "mean"], [442, 1, 1, "", "median"], [453, 1, 1, "", "min"], [454, 1, 1, "", "mod"], [455, 1, 1, "", "mode"], [456, 1, 1, "", "mul"], [457, 1, 1, "", "n_unique"], [458, 1, 1, "", "nan_max"], [459, 1, 1, "", "nan_min"], [460, 1, 1, "", "ne"], [461, 1, 1, "", "ne_missing"], [462, 1, 1, "", "null_count"], [463, 1, 1, "", "or_"], [464, 1, 1, "", "over"], [465, 1, 1, "", "pct_change"], [466, 1, 1, "", "pipe"], [467, 1, 1, "", "pow"], [468, 1, 1, "", "prefix"], [469, 1, 1, "", "product"], [470, 1, 1, "", "qcut"], [471, 1, 1, "", "quantile"], [472, 1, 1, "", "radians"], [473, 1, 1, "", "rank"], [474, 1, 1, "", "rechunk"], [475, 1, 1, "", "reinterpret"], [476, 1, 1, "", "repeat_by"], [477, 1, 1, "", "reshape"], [478, 1, 1, "", "reverse"], [479, 1, 1, "", "rle"], [480, 1, 1, "", "rle_id"], [481, 1, 1, "", "rolling_apply"], [482, 1, 1, "", "rolling_max"], [483, 1, 1, "", "rolling_mean"], [484, 1, 1, "", "rolling_median"], [485, 1, 1, "", "rolling_min"], [486, 1, 1, "", "rolling_quantile"], [487, 1, 1, "", "rolling_skew"], [488, 1, 1, "", "rolling_std"], [489, 1, 1, "", "rolling_sum"], [490, 1, 1, "", "rolling_var"], [491, 1, 1, "", "round"], [492, 1, 1, "", "sample"], [493, 1, 1, "", "search_sorted"], [494, 1, 1, "", "set_sorted"], [495, 1, 1, "", "shift"], [496, 1, 1, "", "shift_and_fill"], [497, 1, 1, "", "shrink_dtype"], [498, 1, 1, "", "shuffle"], [499, 1, 1, "", "sign"], [500, 1, 1, "", "sin"], [501, 1, 1, "", "sinh"], [502, 1, 1, "", "skew"], [503, 1, 1, "", "slice"], [504, 1, 1, "", "sort"], [505, 1, 1, "", "sort_by"], [506, 1, 1, "", "sqrt"], [507, 1, 1, "", "std"], [545, 1, 1, "", "sub"], [546, 1, 1, "", "suffix"], [547, 1, 1, "", "sum"], [548, 1, 1, "", "tail"], [549, 1, 1, "", "take"], [550, 1, 1, "", "take_every"], [551, 1, 1, "", "tan"], [552, 1, 1, "", "tanh"], [553, 1, 1, "", "to_physical"], [554, 1, 1, "", "top_k"], [555, 1, 1, "", "truediv"], [556, 1, 1, "", "unique"], [557, 1, 1, "", "unique_counts"], [558, 1, 1, "", "upper_bound"], [559, 1, 1, "", "value_counts"], [560, 1, 1, "", "var"], [561, 1, 1, "", "where"], [562, 1, 1, "", "xor"]], "polars.Expr.arr": [[281, 1, 1, "", "max"], [282, 1, 1, "", "min"], [283, 1, 1, "", "sum"], [284, 1, 1, "", "unique"]], "polars.Expr.bin": [[286, 1, 1, "", "contains"], [287, 1, 1, "", "decode"], [288, 1, 1, "", "encode"], [289, 1, 1, "", "ends_with"], [290, 1, 1, "", "starts_with"]], "polars.Expr.cat": [[294, 1, 1, "", "get_categories"], [295, 1, 1, "", "set_ordering"]], "polars.Expr.dt": [[316, 1, 1, "", "base_utc_offset"], [317, 1, 1, "", "cast_time_unit"], [318, 1, 1, "", "combine"], [319, 1, 1, "", "convert_time_zone"], [320, 1, 1, "", "date"], [321, 1, 1, "", "datetime"], [322, 1, 1, "", "day"], [323, 1, 1, "", "days"], [324, 1, 1, "", "dst_offset"], [325, 1, 1, "", "epoch"], [326, 1, 1, "", "hour"], [327, 1, 1, "", "hours"], [328, 1, 1, "", "is_leap_year"], [329, 1, 1, "", "iso_year"], [330, 1, 1, "", "microsecond"], [331, 1, 1, "", "microseconds"], [332, 1, 1, "", "millisecond"], [333, 1, 1, "", "milliseconds"], [334, 1, 1, "", "minute"], [335, 1, 1, "", "minutes"], [336, 1, 1, "", "month"], [337, 1, 1, "", "month_end"], [338, 1, 1, "", "month_start"], [339, 1, 1, "", "nanosecond"], [340, 1, 1, "", "nanoseconds"], [341, 1, 1, "", "offset_by"], [342, 1, 1, "", "ordinal_day"], [343, 1, 1, "", "quarter"], [344, 1, 1, "", "replace_time_zone"], [345, 1, 1, "", "round"], [346, 1, 1, "", "second"], [347, 1, 1, "", "seconds"], [348, 1, 1, "", "strftime"], [349, 1, 1, "", "time"], [350, 1, 1, "", "timestamp"], [351, 1, 1, "", "to_string"], [352, 1, 1, "", "truncate"], [353, 1, 1, "", "week"], [354, 1, 1, "", "weekday"], [355, 1, 1, "", "with_time_unit"], [356, 1, 1, "", "year"]], "polars.Expr.list": [[401, 1, 1, "", "all"], [402, 1, 1, "", "any"], [403, 1, 1, "", "arg_max"], [404, 1, 1, "", "arg_min"], [405, 1, 1, "", "concat"], [406, 1, 1, "", "contains"], [407, 1, 1, "", "count_match"], [408, 1, 1, "", "diff"], [409, 1, 1, "", "difference"], [410, 1, 1, "", "eval"], [411, 1, 1, "", "explode"], [412, 1, 1, "", "first"], [413, 1, 1, "", "get"], [414, 1, 1, "", "head"], [415, 1, 1, "", "intersection"], [416, 1, 1, "", "join"], [417, 1, 1, "", "last"], [418, 1, 1, "", "lengths"], [419, 1, 1, "", "max"], [420, 1, 1, "", "mean"], [421, 1, 1, "", "min"], [422, 1, 1, "", "reverse"], [423, 1, 1, "", "shift"], [424, 1, 1, "", "slice"], [425, 1, 1, "", "sort"], [426, 1, 1, "", "sum"], [427, 1, 1, "", "tail"], [428, 1, 1, "", "take"], [429, 1, 1, "", "to_struct"], [430, 1, 1, "", "union"], [431, 1, 1, "", "unique"]], "polars.Expr.meta": [[443, 1, 1, "", "eq"], [444, 1, 1, "", "has_multiple_outputs"], [445, 1, 1, "", "is_regex_projection"], [446, 1, 1, "", "ne"], [447, 1, 1, "", "output_name"], [448, 1, 1, "", "pop"], [449, 1, 1, "", "root_names"], [450, 1, 1, "", "tree_format"], [451, 1, 1, "", "undo_aliases"], [452, 1, 1, "", "write_json"]], "polars.Expr.str": [[508, 1, 1, "", "concat"], [509, 1, 1, "", "contains"], [510, 1, 1, "", "count_match"], [511, 1, 1, "", "decode"], [512, 1, 1, "", "encode"], [513, 1, 1, "", "ends_with"], [514, 1, 1, "", "explode"], [515, 1, 1, "", "extract"], [516, 1, 1, "", "extract_all"], [517, 1, 1, "", "json_extract"], [518, 1, 1, "", "json_path_match"], [519, 1, 1, "", "lengths"], [520, 1, 1, "", "ljust"], [521, 1, 1, "", "lstrip"], [522, 1, 1, "", "n_chars"], [523, 1, 1, "", "parse_int"], [524, 1, 1, "", "replace"], [525, 1, 1, "", "replace_all"], [526, 1, 1, "", "rjust"], [527, 1, 1, "", "rstrip"], [528, 1, 1, "", "slice"], [529, 1, 1, "", "split"], [530, 1, 1, "", "split_exact"], [531, 1, 1, "", "splitn"], [532, 1, 1, "", "starts_with"], [533, 1, 1, "", "strip"], [534, 1, 1, "", "strptime"], [535, 1, 1, "", "to_date"], [536, 1, 1, "", "to_datetime"], [537, 1, 1, "", "to_decimal"], [538, 1, 1, "", "to_lowercase"], [539, 1, 1, "", "to_time"], [540, 1, 1, "", "to_titlecase"], [541, 1, 1, "", "to_uppercase"], [542, 1, 1, "", "zfill"]], "polars.Expr.struct": [[543, 1, 1, "", "field"], [544, 1, 1, "", "rename_fields"]], "polars.Float32": [[41, 1, 1, "", "__init__"]], "polars.Float64": [[42, 1, 1, "", "__init__"]], "polars.Int16": [[43, 1, 1, "", "__init__"]], "polars.Int32": [[44, 1, 1, "", "__init__"]], "polars.Int64": [[45, 1, 1, "", "__init__"]], "polars.Int8": [[46, 1, 1, "", "__init__"]], "polars.LazyFrame": [[652, 1, 1, "", "bottom_k"], [653, 1, 1, "", "cache"], [654, 1, 1, "", "clear"], [655, 1, 1, "", "clone"], [656, 1, 1, "", "collect"], [657, 2, 1, "", "columns"], [658, 1, 1, "", "drop"], [659, 1, 1, "", "drop_nulls"], [660, 2, 1, "", "dtypes"], [661, 1, 1, "", "explain"], [662, 1, 1, "", "explode"], [663, 1, 1, "", "fetch"], [664, 1, 1, "", "fill_nan"], [665, 1, 1, "", "fill_null"], [666, 1, 1, "", "filter"], [667, 1, 1, "", "first"], [668, 1, 1, "", "from_json"], [669, 1, 1, "", "groupby"], [670, 1, 1, "", "groupby_dynamic"], [671, 1, 1, "", "groupby_rolling"], [672, 1, 1, "", "head"], [673, 1, 1, "", "inspect"], [674, 1, 1, "", "interpolate"], [675, 1, 1, "", "join"], [676, 1, 1, "", "join_asof"], [677, 1, 1, "", "last"], [678, 1, 1, "", "lazy"], [679, 1, 1, "", "limit"], [680, 1, 1, "", "map"], [681, 1, 1, "", "max"], [682, 1, 1, "", "mean"], [683, 1, 1, "", "median"], [684, 1, 1, "", "melt"], [685, 1, 1, "", "merge_sorted"], [686, 1, 1, "", "min"], [687, 1, 1, "", "null_count"], [688, 1, 1, "", "pipe"], [689, 1, 1, "", "profile"], [690, 1, 1, "", "quantile"], [691, 1, 1, "", "read_json"], [692, 1, 1, "", "rename"], [693, 1, 1, "", "reverse"], [694, 2, 1, "", "schema"], [695, 1, 1, "", "select"], [696, 1, 1, "", "set_sorted"], [697, 1, 1, "", "shift"], [698, 1, 1, "", "shift_and_fill"], [699, 1, 1, "", "show_graph"], [47, 1, 1, "", "sink_ipc"], [48, 1, 1, "", "sink_parquet"], [700, 1, 1, "", "slice"], [701, 1, 1, "", "sort"], [702, 1, 1, "", "std"], [703, 1, 1, "", "sum"], [704, 1, 1, "", "tail"], [705, 1, 1, "", "take_every"], [706, 1, 1, "", "top_k"], [707, 1, 1, "", "unique"], [708, 1, 1, "", "unnest"], [709, 1, 1, "", "update"], [710, 1, 1, "", "var"], [711, 2, 1, "", "width"], [712, 1, 1, "", "with_columns"], [713, 1, 1, "", "with_context"], [714, 1, 1, "", "with_row_count"], [715, 1, 1, "", "write_json"]], "polars.List": [[49, 1, 1, "", "__init__"]], "polars.Null": [[50, 1, 1, "", "__init__"]], "polars.Object": [[51, 1, 1, "", "__init__"]], "polars.SQLContext": [[1056, 1, 1, "", "__enter__"], [1056, 1, 1, "", "__exit__"], [1056, 1, 1, "", "__init__"], [52, 1, 1, "", "execute"], [53, 1, 1, "", "register"], [54, 1, 1, "", "register_globals"], [55, 1, 1, "", "register_many"], [56, 1, 1, "", "tables"], [57, 1, 1, "", "unregister"]], "polars.Series": [[739, 1, 1, "", "abs"], [740, 1, 1, "", "alias"], [741, 1, 1, "", "all"], [742, 1, 1, "", "any"], [743, 1, 1, "", "append"], [744, 1, 1, "", "apply"], [745, 1, 1, "", "arccos"], [746, 1, 1, "", "arccosh"], [747, 1, 1, "", "arcsin"], [748, 1, 1, "", "arcsinh"], [749, 1, 1, "", "arctan"], [750, 1, 1, "", "arctanh"], [751, 1, 1, "", "arg_max"], [752, 1, 1, "", "arg_min"], [753, 1, 1, "", "arg_sort"], [754, 1, 1, "", "arg_true"], [755, 1, 1, "", "arg_unique"], [765, 1, 1, "", "bottom_k"], [766, 1, 1, "", "cast"], [767, 3, 1, "", "cat"], [770, 1, 1, "", "cbrt"], [771, 1, 1, "", "ceil"], [772, 1, 1, "", "chunk_lengths"], [773, 1, 1, "", "clear"], [774, 1, 1, "", "clip"], [775, 1, 1, "", "clip_max"], [776, 1, 1, "", "clip_min"], [777, 1, 1, "", "clone"], [778, 1, 1, "", "cos"], [779, 1, 1, "", "cosh"], [780, 1, 1, "", "cummax"], [781, 1, 1, "", "cummin"], [782, 1, 1, "", "cumprod"], [783, 1, 1, "", "cumsum"], [784, 1, 1, "", "cumulative_eval"], [785, 1, 1, "", "cut"], [786, 1, 1, "", "describe"], [787, 1, 1, "", "diff"], [788, 1, 1, "", "dot"], [789, 1, 1, "", "drop_nans"], [790, 1, 1, "", "drop_nulls"], [791, 3, 1, "", "dt"], [837, 3, 1, "", "dtype"], [838, 1, 1, "", "entropy"], [839, 1, 1, "", "estimated_size"], [840, 1, 1, "", "ewm_mean"], [841, 1, 1, "", "ewm_std"], [842, 1, 1, "", "ewm_var"], [843, 1, 1, "", "exp"], [844, 1, 1, "", "explode"], [845, 1, 1, "", "extend"], [846, 1, 1, "", "extend_constant"], [847, 1, 1, "", "fill_nan"], [848, 1, 1, "", "fill_null"], [849, 1, 1, "", "filter"], [850, 3, 1, "", "flags"], [851, 1, 1, "", "floor"], [852, 1, 1, "", "get_chunks"], [853, 1, 1, "", "has_validity"], [854, 1, 1, "", "hash"], [855, 1, 1, "", "head"], [856, 1, 1, "", "hist"], [857, 1, 1, "", "implode"], [858, 3, 1, "", "inner_dtype"], [859, 1, 1, "", "interpolate"], [860, 1, 1, "", "is_between"], [861, 1, 1, "", "is_boolean"], [862, 1, 1, "", "is_duplicated"], [863, 1, 1, "", "is_empty"], [864, 1, 1, "", "is_finite"], [865, 1, 1, "", "is_first"], [866, 1, 1, "", "is_float"], [867, 1, 1, "", "is_in"], [868, 1, 1, "", "is_infinite"], [869, 1, 1, "", "is_integer"], [870, 1, 1, "", "is_nan"], [871, 1, 1, "", "is_not_nan"], [872, 1, 1, "", "is_not_null"], [873, 1, 1, "", "is_null"], [874, 1, 1, "", "is_numeric"], [875, 1, 1, "", "is_sorted"], [876, 1, 1, "", "is_temporal"], [877, 1, 1, "", "is_unique"], [878, 1, 1, "", "is_utf8"], [879, 1, 1, "", "item"], [880, 1, 1, "", "kurtosis"], [881, 1, 1, "", "len"], [882, 1, 1, "", "limit"], [883, 3, 1, "", "list"], [915, 1, 1, "", "log"], [916, 1, 1, "", "log10"], [917, 1, 1, "", "log1p"], [918, 1, 1, "", "lower_bound"], [919, 1, 1, "", "map_dict"], [920, 1, 1, "", "max"], [921, 1, 1, "", "mean"], [922, 1, 1, "", "median"], [923, 1, 1, "", "min"], [924, 1, 1, "", "mode"], [925, 1, 1, "", "n_chunks"], [926, 1, 1, "", "n_unique"], [927, 3, 1, "", "name"], [928, 1, 1, "", "nan_max"], [929, 1, 1, "", "nan_min"], [930, 1, 1, "", "new_from_index"], [931, 1, 1, "", "null_count"], [932, 1, 1, "", "pct_change"], [933, 1, 1, "", "peak_max"], [934, 1, 1, "", "peak_min"], [935, 1, 1, "", "product"], [936, 1, 1, "", "qcut"], [937, 1, 1, "", "quantile"], [938, 1, 1, "", "rank"], [939, 1, 1, "", "rechunk"], [940, 1, 1, "", "reinterpret"], [941, 1, 1, "", "rename"], [942, 1, 1, "", "reshape"], [943, 1, 1, "", "reverse"], [944, 1, 1, "", "rle"], [945, 1, 1, "", "rle_id"], [946, 1, 1, "", "rolling_apply"], [947, 1, 1, "", "rolling_max"], [948, 1, 1, "", "rolling_mean"], [949, 1, 1, "", "rolling_median"], [950, 1, 1, "", "rolling_min"], [951, 1, 1, "", "rolling_quantile"], [952, 1, 1, "", "rolling_skew"], [953, 1, 1, "", "rolling_std"], [954, 1, 1, "", "rolling_sum"], [955, 1, 1, "", "rolling_var"], [956, 1, 1, "", "round"], [957, 1, 1, "", "sample"], [958, 1, 1, "", "search_sorted"], [959, 1, 1, "", "series_equal"], [960, 1, 1, "", "set"], [961, 1, 1, "", "set_at_idx"], [962, 1, 1, "", "set_sorted"], [963, 3, 1, "", "shape"], [964, 1, 1, "", "shift"], [965, 1, 1, "", "shift_and_fill"], [966, 1, 1, "", "shrink_dtype"], [967, 1, 1, "", "shrink_to_fit"], [968, 1, 1, "", "shuffle"], [969, 1, 1, "", "sign"], [970, 1, 1, "", "sin"], [971, 1, 1, "", "sinh"], [972, 1, 1, "", "skew"], [973, 1, 1, "", "slice"], [974, 1, 1, "", "sort"], [975, 1, 1, "", "sqrt"], [976, 1, 1, "", "std"], [977, 3, 1, "", "str"], [1018, 1, 1, "", "sum"], [1019, 1, 1, "", "tail"], [1020, 1, 1, "", "take"], [1021, 1, 1, "", "take_every"], [1022, 1, 1, "", "tan"], [1023, 1, 1, "", "tanh"], [1024, 3, 1, "", "time_unit"], [1025, 1, 1, "", "to_arrow"], [1026, 1, 1, "", "to_dummies"], [1027, 1, 1, "", "to_frame"], [1028, 1, 1, "", "to_init_repr"], [1029, 1, 1, "", "to_list"], [1030, 1, 1, "", "to_numpy"], [1031, 1, 1, "", "to_pandas"], [1032, 1, 1, "", "to_physical"], [1033, 1, 1, "", "top_k"], [1034, 1, 1, "", "unique"], [1035, 1, 1, "", "unique_counts"], [1036, 1, 1, "", "upper_bound"], [1037, 1, 1, "", "value_counts"], [1038, 1, 1, "", "var"], [1039, 1, 1, "", "view"], [1040, 1, 1, "", "zip_with"]], "polars.Series.arr": [[756, 1, 1, "", "max"], [757, 1, 1, "", "min"], [758, 1, 1, "", "sum"], [759, 1, 1, "", "unique"]], "polars.Series.bin": [[760, 1, 1, "", "contains"], [761, 1, 1, "", "decode"], [762, 1, 1, "", "encode"], [763, 1, 1, "", "ends_with"], [764, 1, 1, "", "starts_with"]], "polars.Series.cat": [[768, 1, 1, "", "get_categories"], [769, 1, 1, "", "set_ordering"]], "polars.Series.dt": [[792, 1, 1, "", "base_utc_offset"], [793, 1, 1, "", "cast_time_unit"], [794, 1, 1, "", "combine"], [795, 1, 1, "", "convert_time_zone"], [796, 1, 1, "", "date"], [797, 1, 1, "", "datetime"], [798, 1, 1, "", "day"], [799, 1, 1, "", "days"], [800, 1, 1, "", "dst_offset"], [801, 1, 1, "", "epoch"], [802, 1, 1, "", "hour"], [803, 1, 1, "", "hours"], [804, 1, 1, "", "is_leap_year"], [805, 1, 1, "", "iso_year"], [806, 1, 1, "", "max"], [807, 1, 1, "", "mean"], [808, 1, 1, "", "median"], [809, 1, 1, "", "microsecond"], [810, 1, 1, "", "microseconds"], [811, 1, 1, "", "millisecond"], [812, 1, 1, "", "milliseconds"], [813, 1, 1, "", "min"], [814, 1, 1, "", "minute"], [815, 1, 1, "", "minutes"], [816, 1, 1, "", "month"], [817, 1, 1, "", "month_end"], [818, 1, 1, "", "month_start"], [819, 1, 1, "", "nanosecond"], [820, 1, 1, "", "nanoseconds"], [821, 1, 1, "", "offset_by"], [822, 1, 1, "", "ordinal_day"], [823, 1, 1, "", "quarter"], [824, 1, 1, "", "replace_time_zone"], [825, 1, 1, "", "round"], [826, 1, 1, "", "second"], [827, 1, 1, "", "seconds"], [828, 1, 1, "", "strftime"], [829, 1, 1, "", "time"], [830, 1, 1, "", "timestamp"], [831, 1, 1, "", "to_string"], [832, 1, 1, "", "truncate"], [833, 1, 1, "", "week"], [834, 1, 1, "", "weekday"], [835, 1, 1, "", "with_time_unit"], [836, 1, 1, "", "year"]], "polars.Series.list": [[884, 1, 1, "", "all"], [885, 1, 1, "", "any"], [886, 1, 1, "", "arg_max"], [887, 1, 1, "", "arg_min"], [888, 1, 1, "", "concat"], [889, 1, 1, "", "contains"], [890, 1, 1, "", "count_match"], [891, 1, 1, "", "diff"], [892, 1, 1, "", "difference"], [893, 1, 1, "", "eval"], [894, 1, 1, "", "explode"], [895, 1, 1, "", "first"], [896, 1, 1, "", "get"], [897, 1, 1, "", "head"], [898, 1, 1, "", "intersection"], [899, 1, 1, "", "join"], [900, 1, 1, "", "last"], [901, 1, 1, "", "lengths"], [902, 1, 1, "", "max"], [903, 1, 1, "", "mean"], [904, 1, 1, "", "min"], [905, 1, 1, "", "reverse"], [906, 1, 1, "", "shift"], [907, 1, 1, "", "slice"], [908, 1, 1, "", "sort"], [909, 1, 1, "", "sum"], [910, 1, 1, "", "tail"], [911, 1, 1, "", "take"], [912, 1, 1, "", "to_struct"], [913, 1, 1, "", "union"], [914, 1, 1, "", "unique"]], "polars.Series.str": [[978, 1, 1, "", "concat"], [979, 1, 1, "", "contains"], [980, 1, 1, "", "count_match"], [981, 1, 1, "", "decode"], [982, 1, 1, "", "encode"], [983, 1, 1, "", "ends_with"], [984, 1, 1, "", "explode"], [985, 1, 1, "", "extract"], [986, 1, 1, "", "extract_all"], [987, 1, 1, "", "json_extract"], [988, 1, 1, "", "json_path_match"], [989, 1, 1, "", "lengths"], [990, 1, 1, "", "ljust"], [991, 1, 1, "", "lstrip"], [992, 1, 1, "", "n_chars"], [993, 1, 1, "", "parse_int"], [994, 1, 1, "", "replace"], [995, 1, 1, "", "replace_all"], [996, 1, 1, "", "rjust"], [997, 1, 1, "", "rstrip"], [998, 1, 1, "", "slice"], [999, 1, 1, "", "split"], [1000, 1, 1, "", "split_exact"], [1001, 1, 1, "", "splitn"], [1002, 1, 1, "", "starts_with"], [1003, 1, 1, "", "strip"], [1004, 1, 1, "", "strptime"], [1005, 1, 1, "", "to_date"], [1006, 1, 1, "", "to_datetime"], [1007, 1, 1, "", "to_decimal"], [1008, 1, 1, "", "to_lowercase"], [1009, 1, 1, "", "to_time"], [1010, 1, 1, "", "to_titlecase"], [1011, 1, 1, "", "to_uppercase"], [1012, 1, 1, "", "zfill"]], "polars.Series.struct": [[1013, 1, 1, "", "field"], [1014, 3, 1, "", "fields"], [1015, 1, 1, "", "rename_fields"], [1016, 3, 1, "", "schema"], [1017, 1, 1, "", "unnest"]], "polars.StringCache": [[58, 1, 1, "", "__init__"]], "polars.Struct": [[59, 1, 1, "", "__init__"]], "polars.Time": [[60, 1, 1, "", "__init__"]], "polars.UInt16": [[61, 1, 1, "", "__init__"]], "polars.UInt32": [[62, 1, 1, "", "__init__"]], "polars.UInt64": [[63, 1, 1, "", "__init__"]], "polars.UInt8": [[64, 1, 1, "", "__init__"]], "polars.Unknown": [[65, 1, 1, "", "__init__"]], "polars.Utf8": [[66, 1, 1, "", "__init__"]], "polars.api": [[68, 4, 1, "", "register_dataframe_namespace"], [69, 4, 1, "", "register_expr_namespace"], [70, 4, 1, "", "register_lazyframe_namespace"], [71, 4, 1, "", "register_series_namespace"]], "polars.dataframe.groupby.GroupBy": [[233, 1, 1, "", "__iter__"], [234, 1, 1, "", "agg"], [235, 1, 1, "", "all"], [236, 1, 1, "", "apply"], [237, 1, 1, "", "count"], [238, 1, 1, "", "first"], [239, 1, 1, "", "head"], [240, 1, 1, "", "last"], [241, 1, 1, "", "max"], [242, 1, 1, "", "mean"], [243, 1, 1, "", "median"], [244, 1, 1, "", "min"], [245, 1, 1, "", "n_unique"], [246, 1, 1, "", "quantile"], [247, 1, 1, "", "sum"], [248, 1, 1, "", "tail"]], "polars.exceptions": [[76, 5, 1, "", "ArrowError"], [77, 5, 1, "", "ColumnNotFoundError"], [78, 5, 1, "", "ComputeError"], [79, 5, 1, "", "DuplicateError"], [80, 5, 1, "", "InvalidOperationError"], [81, 5, 1, "", "NoDataError"], [82, 5, 1, "", "NoRowsReturnedError"], [83, 5, 1, "", "PolarsPanicError"], [84, 5, 1, "", "RowsError"], [85, 5, 1, "", "SchemaError"], [86, 5, 1, "", "SchemaFieldNotFoundError"], [87, 5, 1, "", "ShapeError"], [88, 5, 1, "", "StructFieldNotFoundError"], [89, 5, 1, "", "TooManyRowsReturnedError"]], "polars.io.csv.batched_reader.BatchedCsvReader": [[99, 1, 1, "", "next_batches"]], "polars.lazyframe.groupby.LazyGroupBy": [[716, 1, 1, "", "agg"], [717, 1, 1, "", "all"], [718, 1, 1, "", "apply"], [719, 1, 1, "", "count"], [720, 1, 1, "", "first"], [721, 1, 1, "", "head"], [722, 1, 1, "", "last"], [723, 1, 1, "", "max"], [724, 1, 1, "", "mean"], [725, 1, 1, "", "median"], [726, 1, 1, "", "min"], [727, 1, 1, "", "n_unique"], [728, 1, 1, "", "quantile"], [729, 1, 1, "", "sum"], [730, 1, 1, "", "tail"]], "polars.selectors": [[737, 4, 1, "", "all"], [737, 4, 1, "", "by_dtype"], [737, 4, 1, "", "by_name"], [737, 4, 1, "", "contains"], [737, 4, 1, "", "datetime"], [737, 4, 1, "", "duration"], [737, 4, 1, "", "ends_with"], [737, 4, 1, "", "first"], [737, 4, 1, "", "float"], [737, 4, 1, "", "integer"], [737, 4, 1, "", "is_selector"], [737, 4, 1, "", "last"], [737, 4, 1, "", "matches"], [737, 4, 1, "", "numeric"], [737, 4, 1, "", "selector_column_names"], [737, 4, 1, "", "starts_with"], [737, 4, 1, "", "string"], [737, 4, 1, "", "temporal"]], "polars.testing": [[119, 4, 1, "", "assert_frame_equal"], [120, 4, 1, "", "assert_series_equal"]], "polars.testing.parametric": [[121, 0, 1, "", "column"], [122, 4, 1, "", "columns"], [123, 4, 1, "", "create_list_strategy"], [124, 4, 1, "", "dataframes"], [125, 4, 1, "", "load_profile"], [126, 4, 1, "", "series"], [127, 4, 1, "", "set_profile"]], "polars.testing.parametric.column": [[121, 1, 1, "", "__init__"]]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:property", "3": "py:attribute", "4": "py:function", "5": "py:exception", "6": "py:module"}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "property", "Python property"], "3": ["py", "attribute", "Python attribute"], "4": ["py", "function", "Python function"], "5": ["py", "exception", "Python exception"], "6": ["py", "module", "Python module"]}, "titleterms": {"extend": [1, 146, 845], "api": [1, 68, 69, 70, 71, 649], "provid": 1, "new": 1, "function": [1, 130, 637, 648, 737], "avail": 1, "registr": 1, "exampl": [1, 737, 1057], "polar": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1057], "arrai": [2, 631, 1041], "binari": [3, 632, 643, 1043], "boolean": [4, 633, 1044], "categor": 5, "config": [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 130], "activate_decim": 6, "load": [7, 130], "restore_default": 8, "save": [9, 130], "set_ascii_t": 10, "set_fmt_float": 11, "set_fmt_str_length": 12, "set_streaming_chunk_s": 13, "set_tbl_cell_align": 14, "set_tbl_col": 15, "set_tbl_column_data_type_inlin": 16, "set_tbl_dataframe_shape_below": 17, "set_tbl_format": 18, "set_tbl_hide_column_data_typ": 19, "set_tbl_hide_column_nam": 20, "set_tbl_hide_dataframe_shap": 21, "set_tbl_hide_dtype_separ": 22, "set_tbl_row": 23, "set_tbl_width_char": 24, "set_verbos": 25, "state": [26, 130], "datafram": [27, 28, 29, 30, 31, 32, 33, 34, 35, 124, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 254], "write_avro": 27, "write_csv": 28, "write_databas": 29, "write_delta": 30, "write_excel": 31, "write_ipc": 32, "write_json": [33, 452, 715], "write_ndjson": 34, "write_parquet": 35, "datatyp": 36, "date": [37, 320, 586, 796], "datetim": [38, 321, 589, 797], "decim": 39, "durat": [40, 590], "float32": 41, "float64": 42, "int16": 43, "int32": 44, "int64": 45, "int8": 46, "lazyfram": [47, 48, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 734], "sink_ipc": 47, "sink_parquet": 48, "list": [49, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 639, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 1050], "null": 50, "object": 51, "sqlcontext": [52, 53, 54, 55, 56, 57], "execut": 52, "regist": 53, "register_glob": 54, "register_mani": 55, "tabl": 56, "unregist": 57, "stringcach": [58, 648], "struct": [59, 543, 544, 621, 645, 1013, 1014, 1015, 1016, 1017, 1054], "time": [60, 349, 625, 829], "uint16": 61, "uint32": 62, "uint64": 63, "uint8": 64, "unknown": 65, "utf8": 66, "align_fram": 67, "register_dataframe_namespac": 68, "register_expr_namespac": 69, "register_lazyframe_namespac": 70, "register_series_namespac": 71, "build_info": 72, "collect_al": 73, "concat": [74, 405, 508, 888, 978], "enable_string_cach": 75, "except": [76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 258], "arrowerror": 76, "columnnotfounderror": 77, "computeerror": 78, "duplicateerror": 79, "invalidoperationerror": 80, "nodataerror": 81, "norowsreturnederror": 82, "polarspanicerror": 83, "rowserror": 84, "schemaerror": 85, "schemafieldnotfounderror": 86, "shapeerror": 87, "structfieldnotfounderror": 88, "toomanyrowsreturnederror": 89, "from_arrow": 90, "from_datafram": 91, "from_dict": [92, 93], "from_numpi": 94, "from_panda": 95, "from_record": 96, "from_repr": 97, "get_index_typ": 98, "io": 99, "csv": [99, 650], "batched_read": 99, "batchedcsvread": [99, 650], "next_batch": 99, "read_avro": 100, "read_csv": 101, "read_csv_batch": 102, "read_databas": 103, "read_delta": 104, "read_excel": 105, "read_ipc": 106, "read_ipc_schema": 107, "read_json": [108, 691], "read_ndjson": 109, "read_parquet": 110, "read_parquet_schema": 111, "scan_csv": 112, "scan_delta": 113, "scan_ipc": 114, "scan_ndjson": 115, "scan_parquet": 116, "scan_pyarrow_dataset": 117, "show_vers": 118, "test": [119, 120, 121, 122, 123, 124, 125, 126, 127, 1057], "assert_frame_equ": 119, "assert_series_equ": 120, "parametr": [121, 122, 123, 124, 125, 126, 127, 1057], "column": [121, 122, 137, 635, 657], "create_list_strategi": 123, "load_profil": 125, "seri": [126, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1049], "set_profil": 127, "threadpool_s": 128, "using_string_cach": 129, "option": 130, "current": 130, "us": 130, "context": 130, "manag": 130, "decor": 130, "aggreg": [131, 259, 651, 738], "__dataframe__": 132, "appli": [133, 236, 268, 567, 718, 744], "bottom_k": [134, 291, 652, 765], "clear": [135, 654, 773], "clone": [136, 655, 777], "corr": [138, 579], "describ": [139, 786], "drop": [140, 658], "drop_in_plac": 141, "drop_nul": [142, 315, 659, 790], "dtype": [143, 660, 837], "estimated_s": [144, 839], "explod": [145, 365, 411, 514, 662, 844, 894, 984], "fill_nan": [147, 367, 664, 847], "fill_nul": [148, 368, 665, 848], "filter": [149, 369, 666, 849], "find_idx_by_nam": 150, "flag": [151, 850], "fold": [152, 594], "frame_equ": 153, "get_column": [154, 155], "glimps": 156, "groupbi": [157, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 253, 669, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 733], "groupby_dynam": [158, 670], "groupby_rol": [159, 671], "hash_row": 160, "head": [161, 239, 379, 414, 598, 672, 721, 855, 897], "height": 162, "hstack": 163, "insert_at_idx": 164, "interpol": [165, 382, 674, 859], "is_dupl": [166, 384, 862], "is_empti": [167, 863], "is_uniqu": [168, 394, 877], "item": [169, 879], "iter_row": 170, "iter_slic": 171, "join": [172, 416, 675, 899], "join_asof": [173, 676], "lazi": [174, 678], "limit": [175, 400, 679, 882], "max": [176, 241, 281, 419, 440, 605, 681, 723, 756, 806, 902, 920], "mean": [177, 242, 420, 441, 607, 682, 724, 807, 903, 921], "median": [178, 243, 442, 608, 683, 725, 808, 922], "melt": [179, 684], "merge_sort": [180, 685], "min": [181, 244, 282, 421, 453, 609, 686, 726, 757, 813, 904, 923], "n_chunk": [182, 925], "n_uniqu": [183, 245, 457, 611, 727, 926], "null_count": [184, 462, 687, 931], "partition_bi": 185, "pipe": [186, 466, 688], "pivot": 187, "product": [188, 469, 935], "quantil": [189, 246, 471, 613, 690, 728, 937], "rechunk": [190, 474, 939], "renam": [191, 692, 941], "replac": [192, 524, 994], "replace_at_idx": 193, "revers": [194, 422, 478, 693, 905, 943], "row": [195, 196], "rows_by_kei": 197, "sampl": [198, 492, 957], "schema": [199, 694, 1016], "select": [200, 256, 618, 642, 695, 736, 1052], "set_sort": [201, 494, 696, 962], "shape": [202, 963], "shift": [203, 423, 495, 697, 906, 964], "shift_and_fil": [204, 496, 698, 965], "shrink_to_fit": [205, 967], "slice": [206, 424, 503, 528, 700, 907, 973, 998], "sort": [207, 425, 504, 701, 908, 974], "std": [208, 507, 620, 702, 976], "sum": [209, 247, 283, 426, 547, 622, 703, 729, 758, 909, 1018], "tail": [210, 248, 427, 548, 624, 704, 730, 910, 1019], "take_everi": [211, 550, 705, 1021], "to_arrow": [212, 1025], "to_dict": [213, 214], "to_dummi": [215, 1026], "to_init_repr": [216, 1028], "to_numpi": [217, 1030], "to_panda": [218, 1031], "to_seri": 219, "to_struct": [220, 429, 912], "top_k": [221, 554, 706, 1033], "transpos": 222, "uniqu": [223, 284, 431, 556, 707, 759, 914, 1034], "unnest": [224, 708, 1017], "unstack": 225, "updat": [226, 709], "upsampl": 227, "var": [228, 560, 628, 710, 1038], "vstack": 229, "width": [230, 711], "with_column": [231, 712], "with_row_count": [232, 714], "__iter__": 233, "agg": [234, 716], "all": [235, 264, 401, 563, 717, 741, 884], "count": [237, 303, 580, 719], "first": [238, 370, 412, 593, 667, 720, 895], "last": [240, 397, 417, 602, 677, 722, 900], "attribut": [249, 731, 1042], "comput": [250, 636, 1046], "descript": [251, 732, 1047], "export": [252, 1048], "miscellan": [255, 641, 648, 735, 1051], "manipul": [256, 642, 736, 1052], "data": 257, "type": 257, "numer": [257, 643], "tempor": [257, 646, 1055], "nest": 257, "other": 257, "expr": [260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562], "ab": [260, 739], "add": 261, "agg_group": 262, "alia": [263, 740], "and_": 265, "ani": [266, 402, 565, 742, 885], "append": [267, 743], "approx_uniqu": [269, 568], "arcco": [270, 745], "arccosh": [271, 746], "arcsin": [272, 747], "arcsinh": [273, 748], "arctan": [274, 749], "arctanh": [275, 750], "arg_max": [276, 403, 751, 886], "arg_min": [277, 404, 752, 887], "arg_sort": [278, 753], "arg_tru": [279, 754], "arg_uniqu": [280, 755], "arr": [281, 282, 283, 284, 756, 757, 758, 759], "backward_fil": 285, "bin": [286, 287, 288, 289, 290, 760, 761, 762, 763, 764], "contain": [286, 406, 509, 760, 889, 979], "decod": [287, 511, 761, 981], "encod": [288, 512, 762, 982], "ends_with": [289, 513, 763, 983], "starts_with": [290, 532, 764, 1002], "cach": [292, 653], "cast": [293, 766], "cat": [294, 295, 767, 768, 769], "get_categori": [294, 768], "set_ord": [295, 769], "cbrt": [296, 770], "ceil": [297, 771], "clip": [298, 774], "clip_max": [299, 775], "clip_min": [300, 776], "co": [301, 778], "cosh": [302, 779], "cumcount": 304, "cummax": [305, 780], "cummin": [306, 781], "cumprod": [307, 782], "cumsum": [308, 584, 783], "cumulative_ev": [309, 784], "cut": [310, 785], "degre": 311, "diff": [312, 408, 787, 891], "dot": [313, 788], "drop_nan": [314, 789], "dt": [316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836], "base_utc_offset": [316, 792], "cast_time_unit": [317, 793], "combin": [318, 794], "convert_time_zon": [319, 795], "dai": [322, 323, 798, 799], "dst_offset": [324, 800], "epoch": [325, 801], "hour": [326, 327, 802, 803], "is_leap_year": [328, 804], "iso_year": [329, 805], "microsecond": [330, 331, 809, 810], "millisecond": [332, 333, 811, 812], "minut": [334, 335, 814, 815], "month": [336, 816], "month_end": [337, 817], "month_start": [338, 818], "nanosecond": [339, 340, 819, 820], "offset_bi": [341, 821], "ordinal_dai": [342, 822], "quarter": [343, 823], "replace_time_zon": [344, 824], "round": [345, 491, 825, 956], "second": [346, 347, 826, 827], "strftime": [348, 828], "timestamp": [350, 830], "to_str": [351, 831], "truncat": [352, 832], "week": [353, 833], "weekdai": [354, 834], "with_time_unit": [355, 835], "year": [356, 836], "entropi": [357, 838], "eq": [358, 443], "eq_miss": 359, "ewm_mean": [360, 840], "ewm_std": [361, 841], "ewm_var": [362, 842], "exclud": [363, 592], "exp": [364, 843], "extend_const": [366, 846], "flatten": 371, "floor": [372, 851], "floordiv": 373, "forward_fil": 374, "from_json": [375, 668], "ge": 376, "gt": 377, "hash": [378, 854], "implod": [380, 599, 857], "inspect": [381, 673], "is_between": [383, 860], "is_finit": [385, 864], "is_first": [386, 865], "is_in": [387, 867], "is_infinit": [388, 868], "is_nan": [389, 870], "is_not": 390, "is_not_nan": [391, 871], "is_not_nul": [392, 872], "is_nul": [393, 873], "keep_nam": 395, "kurtosi": [396, 880], "le": 398, "len": [399, 881], "count_match": [407, 510, 890, 980], "differ": [409, 892], "eval": [410, 893], "get": [413, 896], "intersect": [415, 898], "length": [418, 519, 901, 989], "take": [428, 549, 911, 1020], "union": [430, 913], "log": [432, 915], "log10": [433, 916], "log1p": [434, 917], "lower_bound": [435, 918], "lt": 436, "map": [437, 604, 680], "map_alia": 438, "map_dict": [439, 919], "meta": [443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 640], "has_multiple_output": 444, "is_regex_project": 445, "ne": [446, 460], "output_nam": 447, "pop": 448, "root_nam": 449, "tree_format": 450, "undo_alias": 451, "mod": 454, "mode": [455, 924], "mul": 456, "nan_max": [458, 928], "nan_min": [459, 929], "ne_miss": 461, "or_": 463, "over": 464, "pct_chang": [465, 932], "pow": 467, "prefix": 468, "qcut": [470, 936], "radian": 472, "rank": [473, 938], "reinterpret": [475, 940], "repeat_bi": 476, "reshap": [477, 942], "rle": [479, 944], "rle_id": [480, 945], "rolling_appli": [481, 946], "rolling_max": [482, 947], "rolling_mean": [483, 948], "rolling_median": [484, 949], "rolling_min": [485, 950], "rolling_quantil": [486, 951], "rolling_skew": [487, 952], "rolling_std": [488, 953], "rolling_sum": [489, 954], "rolling_var": [490, 955], "search_sort": [493, 958], "shrink_dtyp": [497, 966], "shuffl": [498, 968], "sign": [499, 969], "sin": [500, 970], "sinh": [501, 971], "skew": [502, 972], "sort_bi": 505, "sqrt": [506, 975], "str": [508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012], "extract": [515, 985], "extract_al": [516, 986], "json_extract": [517, 987], "json_path_match": [518, 988], "ljust": [520, 990], "lstrip": [521, 991], "n_char": [522, 992], "parse_int": [523, 993], "replace_al": [525, 995], "rjust": [526, 996], "rstrip": [527, 997], "split": [529, 999], "split_exact": [530, 1000], "splitn": [531, 1001], "strip": [533, 1003], "strptime": [534, 1004], "to_dat": [535, 1005], "to_datetim": [536, 1006], "to_decim": [537, 1007], "to_lowercas": [538, 1008], "to_tim": [539, 1009], "to_titlecas": [540, 1010], "to_uppercas": [541, 1011], "zfill": [542, 1012], "field": [543, 1013, 1014], "rename_field": [544, 1015], "sub": 545, "suffix": 546, "tan": [551, 1022], "tanh": [552, 1023], "to_phys": [553, 1032], "truediv": 555, "unique_count": [557, 1035], "upper_bound": [558, 1036], "value_count": [559, 1037], "where": 561, "xor": 562, "all_horizont": 564, "any_horizont": 566, "arang": 569, "arctan2": 570, "arctan2d": 571, "arg_sort_bi": 572, "arg_wher": 573, "avg": 574, "coalesc": 575, "col": 576, "concat_list": 577, "concat_str": 578, "cov": 581, "cumfold": 582, "cumreduc": 583, "cumsum_horizont": 585, "date_rang": [587, 588], "element": 591, "format": 595, "from_epoch": 596, "group": 597, "int_rang": [600, 601], "lit": 603, "max_horizont": 606, "min_horizont": 610, "ones": 612, "reduc": 614, "repeat": 615, "rolling_corr": 616, "rolling_cov": 617, "sql_expr": 619, "sum_horizont": 623, "time_rang": [626, 627], "when": 629, "zero": 630, "categori": [634, 1045], "name": [635, 927], "express": 638, "oper": [643, 737], "conjunct": 643, "comparison": 643, "string": [644, 1053], "window": 647, "convers": 648, "parallel": 648, "refer": 649, "input": 650, "output": 650, "feather": 650, "ipc": 650, "parquet": 650, "databas": 650, "json": 650, "avro": 650, "excel": 650, "delta": 650, "lake": 650, "dataset": 650, "collect": 656, "explain": 661, "fetch": 663, "profil": [689, 1057], "show_graph": 699, "with_context": 713, "lazygroupbi": [716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730], "read": 735, "write": 735, "logic": 735, "plan": 735, "selector": 737, "import": 737, "set": [737, 960], "chunk_length": 772, "get_chunk": 852, "has_valid": 853, "hist": 856, "inner_dtyp": 858, "is_boolean": 861, "is_float": 866, "is_integ": 869, "is_numer": 874, "is_sort": 875, "is_tempor": 876, "is_utf8": 878, "new_from_index": 930, "peak_max": 933, "peak_min": 934, "series_equ": 959, "set_at_idx": 961, "time_unit": 1024, "to_fram": 1027, "to_list": 1029, "view": 1039, "zip_with": 1040, "sql": 1056, "method": 1056, "assert": 1057, "primit": 1057, "strategi": 1057, "helper": 1057, "util": 1058}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.todo": 2, "sphinx": 57}, "alltitles": {"polars.exceptions.SchemaFieldNotFoundError": [[86, "polars-exceptions-schemafieldnotfounderror"]], "polars.concat": [[74, "polars-concat"]], "polars.read_ipc_schema": [[107, "polars-read-ipc-schema"]], "polars.DataFrame.drop_nulls": [[142, "polars-dataframe-drop-nulls"]], "polars.testing.assert_frame_equal": [[119, "polars-testing-assert-frame-equal"]], "polars.read_database": [[103, "polars-read-database"]], "polars.scan_ipc": [[114, "polars-scan-ipc"]], "polars.scan_parquet": [[116, "polars-scan-parquet"]], "polars.testing.parametric.load_profile": [[125, "polars-testing-parametric-load-profile"]], "polars.DataFrame.dtypes": [[143, "polars-dataframe-dtypes"]], "Aggregation": [[131, "aggregation"], [738, "aggregation"], [651, "aggregation"], [259, "aggregation"]], "polars.read_avro": [[100, "polars-read-avro"]], "polars.scan_delta": [[113, "polars-scan-delta"]], "polars.DataFrame.clear": [[135, "polars-dataframe-clear"]], "polars.read_parquet_schema": [[111, "polars-read-parquet-schema"]], "polars.show_versions": [[118, "polars-show-versions"]], "polars.testing.assert_series_equal": [[120, "polars-testing-assert-series-equal"]], "polars.exceptions.PolarsPanicError": [[83, "polars-exceptions-polarspanicerror"]], "polars.from_numpy": [[94, "polars-from-numpy"]], "polars.get_index_type": [[98, "polars-get-index-type"]], "polars.testing.parametric.column": [[121, "polars-testing-parametric-column"]], "polars.DataFrame.columns": [[137, "polars-dataframe-columns"]], "polars.DataFrame.apply": [[133, "polars-dataframe-apply"]], "polars.DataFrame.describe": [[139, "polars-dataframe-describe"]], "polars.read_parquet": [[110, "polars-read-parquet"]], "polars.DataFrame.clone": [[136, "polars-dataframe-clone"]], "polars.DataFrame.drop": [[140, "polars-dataframe-drop"]], "polars.exceptions.TooManyRowsReturnedError": [[89, "polars-exceptions-toomanyrowsreturnederror"]], "polars.exceptions.StructFieldNotFoundError": [[88, "polars-exceptions-structfieldnotfounderror"]], "polars.from_pandas": [[95, "polars-from-pandas"]], "polars.exceptions.ArrowError": [[76, "polars-exceptions-arrowerror"]], "polars.exceptions.ShapeError": [[87, "polars-exceptions-shapeerror"]], "polars.read_csv": [[101, "polars-read-csv"]], "polars.using_string_cache": [[129, "polars-using-string-cache"]], "polars.exceptions.InvalidOperationError": [[80, "polars-exceptions-invalidoperationerror"]], "polars.DataFrame.corr": [[138, "polars-dataframe-corr"]], "Config": [[130, "config"]], "Config options": [[130, "config-options"]], "Config load, save, and current state": [[130, "config-load-save-and-current-state"]], "Use as a context manager": [[130, "use-as-a-context-manager"]], "Use as a function decorator": [[130, "use-as-a-function-decorator"]], "polars.from_dict": [[92, "polars-from-dict"]], "polars.exceptions.SchemaError": [[85, "polars-exceptions-schemaerror"]], "polars.scan_csv": [[112, "polars-scan-csv"]], "polars.DataFrame.bottom_k": [[134, "polars-dataframe-bottom-k"]], "polars.DataFrame.drop_in_place": [[141, "polars-dataframe-drop-in-place"]], "polars.exceptions.NoRowsReturnedError": [[82, "polars-exceptions-norowsreturnederror"]], "polars.enable_string_cache": [[75, "polars-enable-string-cache"]], "polars.from_dicts": [[93, "polars-from-dicts"]], "polars.scan_pyarrow_dataset": [[117, "polars-scan-pyarrow-dataset"]], "polars.from_dataframe": [[91, "polars-from-dataframe"]], "polars.testing.parametric.series": [[126, "polars-testing-parametric-series"]], "polars.read_json": [[108, "polars-read-json"]], "polars.exceptions.ColumnNotFoundError": [[77, "polars-exceptions-columnnotfounderror"]], "polars.exceptions.NoDataError": [[81, "polars-exceptions-nodataerror"]], "polars.build_info": [[72, "polars-build-info"]], "polars.read_excel": [[105, "polars-read-excel"]], "polars.scan_ndjson": [[115, "polars-scan-ndjson"]], "polars.read_delta": [[104, "polars-read-delta"]], "polars.read_csv_batched": [[102, "polars-read-csv-batched"]], "polars.testing.parametric.columns": [[122, "polars-testing-parametric-columns"]], "polars.threadpool_size": [[128, "polars-threadpool-size"]], "polars.from_arrow": [[90, "polars-from-arrow"]], "polars.testing.parametric.create_list_strategy": [[123, "polars-testing-parametric-create-list-strategy"]], "polars.testing.parametric.set_profile": [[127, "polars-testing-parametric-set-profile"]], "polars.DataFrame.__dataframe__": [[132, "polars-dataframe-dataframe"]], "polars.testing.parametric.dataframes": [[124, "polars-testing-parametric-dataframes"]], "polars.from_repr": [[97, "polars-from-repr"]], "polars.from_records": [[96, "polars-from-records"]], "polars.exceptions.DuplicateError": [[79, "polars-exceptions-duplicateerror"]], "polars.exceptions.ComputeError": [[78, "polars-exceptions-computeerror"]], "polars.read_ipc": [[106, "polars-read-ipc"]], "polars.io.csv.batched_reader.BatchedCsvReader.next_batches": [[99, "polars-io-csv-batched-reader-batchedcsvreader-next-batches"]], "polars.collect_all": [[73, "polars-collect-all"]], "polars.exceptions.RowsError": [[84, "polars-exceptions-rowserror"]], "polars.read_ndjson": [[109, "polars-read-ndjson"]], "polars.SQLContext.execute": [[52, "polars-sqlcontext-execute"]], "polars.DataFrame.write_json": [[33, "polars-dataframe-write-json"]], "polars.Float64": [[42, "polars-float64"]], "polars.Config.set_streaming_chunk_size": [[13, "polars-config-set-streaming-chunk-size"]], "polars.SQLContext.unregister": [[57, "polars-sqlcontext-unregister"]], "polars.UInt64": [[63, "polars-uint64"]], "polars.LazyFrame.sink_parquet": [[48, "polars-lazyframe-sink-parquet"]], "polars.UInt32": [[62, "polars-uint32"]], "polars.api.register_series_namespace": [[71, "polars-api-register-series-namespace"]], "polars.Binary": [[3, "polars-binary"]], "polars.DataFrame.write_parquet": [[35, "polars-dataframe-write-parquet"]], "polars.Config.set_tbl_cell_alignment": [[14, "polars-config-set-tbl-cell-alignment"]], "polars.DataFrame.write_delta": [[30, "polars-dataframe-write-delta"]], "polars.Date": [[37, "polars-date"]], "polars.SQLContext.register": [[53, "polars-sqlcontext-register"]], "polars.Config.set_tbl_rows": [[23, "polars-config-set-tbl-rows"]], "polars.Config.set_tbl_width_chars": [[24, "polars-config-set-tbl-width-chars"]], "polars.Config.set_tbl_hide_column_names": [[20, "polars-config-set-tbl-hide-column-names"]], "polars.Decimal": [[39, "polars-decimal"]], "polars.List": [[49, "polars-list"]], "polars.api.register_lazyframe_namespace": [[70, "polars-api-register-lazyframe-namespace"]], "polars.Config.set_tbl_cols": [[15, "polars-config-set-tbl-cols"]], "polars.SQLContext.register_many": [[55, "polars-sqlcontext-register-many"]], "polars.Duration": [[40, "polars-duration"]], "polars.DataFrame.write_ipc": [[32, "polars-dataframe-write-ipc"]], "polars.Float32": [[41, "polars-float32"]], "polars.Config.state": [[26, "polars-config-state"]], "polars.api.register_dataframe_namespace": [[68, "polars-api-register-dataframe-namespace"]], "polars.Config.activate_decimals": [[6, "polars-config-activate-decimals"]], "polars.Config.set_tbl_hide_dtype_separator": [[22, "polars-config-set-tbl-hide-dtype-separator"]], "polars.Object": [[51, "polars-object"]], "polars.Config.set_tbl_dataframe_shape_below": [[17, "polars-config-set-tbl-dataframe-shape-below"]], "polars.Config.set_tbl_formatting": [[18, "polars-config-set-tbl-formatting"]], "polars.DataFrame.write_avro": [[27, "polars-dataframe-write-avro"]], "polars.DataFrame.write_excel": [[31, "polars-dataframe-write-excel"]], "polars.Config.set_tbl_column_data_type_inline": [[16, "polars-config-set-tbl-column-data-type-inline"]], "polars.Categorical": [[5, "polars-categorical"]], "polars.Datetime": [[38, "polars-datetime"]], "polars.Time": [[60, "polars-time"]], "polars.UInt8": [[64, "polars-uint8"]], "polars.align_frames": [[67, "polars-align-frames"]], "polars.Int8": [[46, "polars-int8"]], "polars.Config.set_ascii_tables": [[10, "polars-config-set-ascii-tables"]], "polars.Config.set_fmt_str_lengths": [[12, "polars-config-set-fmt-str-lengths"]], "polars.DataFrame.write_ndjson": [[34, "polars-dataframe-write-ndjson"]], "polars.SQLContext.register_globals": [[54, "polars-sqlcontext-register-globals"]], "polars.Int16": [[43, "polars-int16"]], "polars.Int32": [[44, "polars-int32"]], "polars.SQLContext.tables": [[56, "polars-sqlcontext-tables"]], "polars.Config.set_fmt_float": [[11, "polars-config-set-fmt-float"]], "polars.DataFrame.write_database": [[29, "polars-dataframe-write-database"]], "polars.Utf8": [[66, "polars-utf8"]], "polars.Int64": [[45, "polars-int64"]], "polars.Array": [[2, "polars-array"]], "polars.Boolean": [[4, "polars-boolean"]], "polars.Struct": [[59, "polars-struct"]], "polars.Config.restore_defaults": [[8, "polars-config-restore-defaults"]], "polars.Config.save": [[9, "polars-config-save"]], "polars.Config.set_tbl_hide_dataframe_shape": [[21, "polars-config-set-tbl-hide-dataframe-shape"]], "polars.StringCache": [[58, "polars-stringcache"]], "polars.api.register_expr_namespace": [[69, "polars-api-register-expr-namespace"]], "polars.UInt16": [[61, "polars-uint16"]], "polars.Config.set_verbose": [[25, "polars-config-set-verbose"]], "polars.DataFrame.write_csv": [[28, "polars-dataframe-write-csv"]], "polars.Config.load": [[7, "polars-config-load"]], "polars.DataType": [[36, "polars-datatype"]], "polars.LazyFrame.sink_ipc": [[47, "polars-lazyframe-sink-ipc"]], "polars.Unknown": [[65, "polars-unknown"]], "polars.Null": [[50, "polars-null"]], "Extending the API": [[1, "extending-the-api"]], "Providing new functionality": [[1, "providing-new-functionality"]], "Available registrations": [[1, "available-registrations"]], "Examples": [[1, "examples"], [1057, "examples"], [737, "examples"]], "polars.Config.set_tbl_hide_column_data_types": [[19, "polars-config-set-tbl-hide-column-data-types"]], "polars.Series.reshape": [[942, "polars-series-reshape"]], "polars.Series.str.extract_all": [[986, "polars-series-str-extract-all"]], "polars.Series.str.lstrip": [[991, "polars-series-str-lstrip"]], "polars.Series.str.split_exact": [[1000, "polars-series-str-split-exact"]], "polars.Series.reinterpret": [[940, "polars-series-reinterpret"]], "polars.Series.rolling_sum": [[954, "polars-series-rolling-sum"]], "polars.Series.str.replace_all": [[995, "polars-series-str-replace-all"]], "polars.Series.slice": [[973, "polars-series-slice"]], "polars.Series.str.parse_int": [[993, "polars-series-str-parse-int"]], "polars.Series.shift": [[964, "polars-series-shift"]], "polars.Series.shape": [[963, "polars-series-shape"]], "polars.Series.str.split": [[999, "polars-series-str-split"]], "polars.Series.quantile": [[937, "polars-series-quantile"]], "polars.Series.rolling_max": [[947, "polars-series-rolling-max"]], "polars.Series.reverse": [[943, "polars-series-reverse"]], "polars.Series.round": [[956, "polars-series-round"]], "polars.Series.str.starts_with": [[1002, "polars-series-str-starts-with"]], "polars.Series.set_at_idx": [[961, "polars-series-set-at-idx"]], "polars.Series.str.n_chars": [[992, "polars-series-str-n-chars"]], "polars.Series.rolling_median": [[949, "polars-series-rolling-median"]], "polars.Series.rle": [[944, "polars-series-rle"]], "polars.Series.sinh": [[971, "polars-series-sinh"]], "polars.Series.str.strip": [[1003, "polars-series-str-strip"]], "polars.Series.str.lengths": [[989, "polars-series-str-lengths"]], "polars.Series.str.json_extract": [[987, "polars-series-str-json-extract"]], "polars.Series.rolling_quantile": [[951, "polars-series-rolling-quantile"]], "polars.Series.str.splitn": [[1001, "polars-series-str-splitn"]], "polars.Series.str.replace": [[994, "polars-series-str-replace"]], "polars.Series.rename": [[941, "polars-series-rename"]], "polars.Series.rolling_mean": [[948, "polars-series-rolling-mean"]], "polars.Series.str.extract": [[985, "polars-series-str-extract"]], "polars.Series.str": [[977, "polars-series-str"]], "polars.Series.set": [[960, "polars-series-set"]], "polars.Series.shift_and_fill": [[965, "polars-series-shift-and-fill"]], "polars.Series.rolling_apply": [[946, "polars-series-rolling-apply"]], "polars.Series.rolling_var": [[955, "polars-series-rolling-var"]], "polars.Series.str.slice": [[998, "polars-series-str-slice"]], "polars.Series.sin": [[970, "polars-series-sin"]], "polars.Series.set_sorted": [[962, "polars-series-set-sorted"]], "polars.Series.str.json_path_match": [[988, "polars-series-str-json-path-match"]], "polars.Series.str.ljust": [[990, "polars-series-str-ljust"]], "polars.Series.search_sorted": [[958, "polars-series-search-sorted"]], "polars.Series.str.to_date": [[1005, "polars-series-str-to-date"]], "polars.Series.qcut": [[936, "polars-series-qcut"]], "polars.Series.rolling_std": [[953, "polars-series-rolling-std"]], "polars.Series.str.to_datetime": [[1006, "polars-series-str-to-datetime"]], "polars.Series.rle_id": [[945, "polars-series-rle-id"]], "polars.Series.str.encode": [[982, "polars-series-str-encode"]], "polars.Series.str.strptime": [[1004, "polars-series-str-strptime"]], "polars.Series.sqrt": [[975, "polars-series-sqrt"]], "polars.Series.sort": [[974, "polars-series-sort"]], "polars.Series.str.explode": [[984, "polars-series-str-explode"]], "polars.Series.shrink_dtype": [[966, "polars-series-shrink-dtype"]], "polars.Series.shrink_to_fit": [[967, "polars-series-shrink-to-fit"]], "polars.Series.str.count_match": [[980, "polars-series-str-count-match"]], "polars.Series.rank": [[938, "polars-series-rank"]], "polars.Series.str.ends_with": [[983, "polars-series-str-ends-with"]], "polars.Series.rechunk": [[939, "polars-series-rechunk"]], "polars.Series.str.rjust": [[996, "polars-series-str-rjust"]], "polars.Series.sign": [[969, "polars-series-sign"]], "polars.Series.str.rstrip": [[997, "polars-series-str-rstrip"]], "polars.Series.str.to_decimal": [[1007, "polars-series-str-to-decimal"]], "polars.Series.skew": [[972, "polars-series-skew"]], "polars.Series.str.concat": [[978, "polars-series-str-concat"]], "polars.Series.str.contains": [[979, "polars-series-str-contains"]], "polars.Series.shuffle": [[968, "polars-series-shuffle"]], "polars.Series.rolling_skew": [[952, "polars-series-rolling-skew"]], "polars.Series.std": [[976, "polars-series-std"]], "polars.Series.rolling_min": [[950, "polars-series-rolling-min"]], "polars.Series.series_equal": [[959, "polars-series-series-equal"]], "polars.Series.str.decode": [[981, "polars-series-str-decode"]], "polars.Series.sample": [[957, "polars-series-sample"]], "polars.Series.list.difference": [[892, "polars-series-list-difference"]], "polars.Series.n_chunks": [[925, "polars-series-n-chunks"]], "polars.Series.is_first": [[865, "polars-series-is-first"]], "polars.Series.is_not_null": [[872, "polars-series-is-not-null"]], "polars.Series.list.concat": [[888, "polars-series-list-concat"]], "polars.Series.list.count_match": [[890, "polars-series-list-count-match"]], "polars.Series.list.eval": [[893, "polars-series-list-eval"]], "polars.Series.is_integer": [[869, "polars-series-is-integer"]], "polars.Series.is_finite": [[864, "polars-series-is-finite"]], "polars.Series.list.diff": [[891, "polars-series-list-diff"]], "polars.Series.list.get": [[896, "polars-series-list-get"]], "polars.Series.list.last": [[900, "polars-series-list-last"]], "polars.Series.list.max": [[902, "polars-series-list-max"]], "polars.Series.list.first": [[895, "polars-series-list-first"]], "polars.Series.list.union": [[913, "polars-series-list-union"]], "polars.Series.is_sorted": [[875, "polars-series-is-sorted"]], "polars.Series.list": [[883, "polars-series-list"]], "polars.Series.is_not_nan": [[871, "polars-series-is-not-nan"]], "polars.Series.list.lengths": [[901, "polars-series-list-lengths"]], "polars.Series.list.arg_min": [[887, "polars-series-list-arg-min"]], "polars.Series.list.contains": [[889, "polars-series-list-contains"]], "polars.Series.list.slice": [[907, "polars-series-list-slice"]], "polars.Series.list.sort": [[908, "polars-series-list-sort"]], "polars.Series.nan_min": [[929, "polars-series-nan-min"]], "polars.Series.len": [[881, "polars-series-len"]], "polars.Series.is_null": [[873, "polars-series-is-null"]], "polars.Series.log": [[915, "polars-series-log"]], "polars.Series.null_count": [[931, "polars-series-null-count"]], "polars.Series.min": [[923, "polars-series-min"]], "polars.Series.pct_change": [[932, "polars-series-pct-change"]], "polars.Series.list.explode": [[894, "polars-series-list-explode"]], "polars.Series.list.to_struct": [[912, "polars-series-list-to-struct"]], "polars.Series.list.shift": [[906, "polars-series-list-shift"]], "polars.Series.max": [[920, "polars-series-max"]], "polars.Series.nan_max": [[928, "polars-series-nan-max"]], "polars.Series.list.unique": [[914, "polars-series-list-unique"]], "polars.Series.is_in": [[867, "polars-series-is-in"]], "polars.Series.mean": [[921, "polars-series-mean"]], "polars.Series.list.head": [[897, "polars-series-list-head"]], "polars.Series.peak_max": [[933, "polars-series-peak-max"]], "polars.Series.is_float": [[866, "polars-series-is-float"]], "polars.Series.list.mean": [[903, "polars-series-list-mean"]], "polars.Series.kurtosis": [[880, "polars-series-kurtosis"]], "polars.Series.lower_bound": [[918, "polars-series-lower-bound"]], "polars.Series.item": [[879, "polars-series-item"]], "polars.Series.list.any": [[885, "polars-series-list-any"]], "polars.Series.n_unique": [[926, "polars-series-n-unique"]], "polars.Series.list.all": [[884, "polars-series-list-all"]], "polars.Series.list.arg_max": [[886, "polars-series-list-arg-max"]], "polars.Series.log10": [[916, "polars-series-log10"]], "polars.Series.limit": [[882, "polars-series-limit"]], "polars.Series.list.tail": [[910, "polars-series-list-tail"]], "polars.Series.list.take": [[911, "polars-series-list-take"]], "polars.Series.new_from_index": [[930, "polars-series-new-from-index"]], "polars.Series.list.intersection": [[898, "polars-series-list-intersection"]], "polars.Series.product": [[935, "polars-series-product"]], "polars.Series.is_temporal": [[876, "polars-series-is-temporal"]], "polars.Series.map_dict": [[919, "polars-series-map-dict"]], "polars.Series.is_infinite": [[868, "polars-series-is-infinite"]], "polars.Series.is_utf8": [[878, "polars-series-is-utf8"]], "polars.Series.list.min": [[904, "polars-series-list-min"]], "polars.Series.name": [[927, "polars-series-name"]], "polars.Series.list.sum": [[909, "polars-series-list-sum"]], "polars.Series.peak_min": [[934, "polars-series-peak-min"]], "polars.Series.mode": [[924, "polars-series-mode"]], "polars.Series.is_unique": [[877, "polars-series-is-unique"]], "polars.Series.is_numeric": [[874, "polars-series-is-numeric"]], "polars.Series.is_nan": [[870, "polars-series-is-nan"]], "polars.Series.list.reverse": [[905, "polars-series-list-reverse"]], "polars.Series.log1p": [[917, "polars-series-log1p"]], "polars.Series.list.join": [[899, "polars-series-list-join"]], "polars.Series.median": [[922, "polars-series-median"]], "polars.Series.dt.ordinal_day": [[822, "polars-series-dt-ordinal-day"]], "polars.Series.flags": [[850, "polars-series-flags"]], "polars.Series.dt.days": [[799, "polars-series-dt-days"]], "polars.Series.ewm_std": [[841, "polars-series-ewm-std"]], "polars.Series.dt.minutes": [[815, "polars-series-dt-minutes"]], "polars.Series.floor": [[851, "polars-series-floor"]], "polars.Series.dt.time": [[829, "polars-series-dt-time"]], "polars.Series.dt.timestamp": [[830, "polars-series-dt-timestamp"]], "polars.Series.dt.max": [[806, "polars-series-dt-max"]], "polars.Series.dt.base_utc_offset": [[792, "polars-series-dt-base-utc-offset"]], "polars.Series.dt.microseconds": [[810, "polars-series-dt-microseconds"]], "polars.Series.dt.nanosecond": [[819, "polars-series-dt-nanosecond"]], "polars.Series.dt.datetime": [[797, "polars-series-dt-datetime"]], "polars.Series.fill_null": [[848, "polars-series-fill-null"]], "polars.Series.dt.day": [[798, "polars-series-dt-day"]], "polars.Series.dt.date": [[796, "polars-series-dt-date"]], "polars.Series.dt.nanoseconds": [[820, "polars-series-dt-nanoseconds"]], "polars.Series.dt.seconds": [[827, "polars-series-dt-seconds"]], "polars.Series.dt.strftime": [[828, "polars-series-dt-strftime"]], "polars.Series.dt.second": [[826, "polars-series-dt-second"]], "polars.Series.dtype": [[837, "polars-series-dtype"]], "polars.Series.exp": [[843, "polars-series-exp"]], "polars.Series.dt.is_leap_year": [[804, "polars-series-dt-is-leap-year"]], "polars.Series.is_between": [[860, "polars-series-is-between"]], "polars.Series.dt.to_string": [[831, "polars-series-dt-to-string"]], "polars.Series.is_duplicated": [[862, "polars-series-is-duplicated"]], "polars.Series.dt.hours": [[803, "polars-series-dt-hours"]], "polars.Series.dt.epoch": [[801, "polars-series-dt-epoch"]], "polars.Series.has_validity": [[853, "polars-series-has-validity"]], "polars.Series.extend": [[845, "polars-series-extend"]], "polars.Series.dt.minute": [[814, "polars-series-dt-minute"]], "polars.Series.dt.median": [[808, "polars-series-dt-median"]], "polars.Series.dt.truncate": [[832, "polars-series-dt-truncate"]], "polars.Series.dt.replace_time_zone": [[824, "polars-series-dt-replace-time-zone"]], "polars.Series.dt.hour": [[802, "polars-series-dt-hour"]], "polars.Series.dt.quarter": [[823, "polars-series-dt-quarter"]], "polars.Series.filter": [[849, "polars-series-filter"]], "polars.Series.head": [[855, "polars-series-head"]], "polars.Series.interpolate": [[859, "polars-series-interpolate"]], "polars.Series.dt.dst_offset": [[800, "polars-series-dt-dst-offset"]], "polars.Series.is_boolean": [[861, "polars-series-is-boolean"]], "polars.Series.dt.mean": [[807, "polars-series-dt-mean"]], "polars.Series.dt.millisecond": [[811, "polars-series-dt-millisecond"]], "polars.Series.dt.cast_time_unit": [[793, "polars-series-dt-cast-time-unit"]], "polars.Series.dt.milliseconds": [[812, "polars-series-dt-milliseconds"]], "polars.Series.hash": [[854, "polars-series-hash"]], "polars.Series.dt.microsecond": [[809, "polars-series-dt-microsecond"]], "polars.Series.fill_nan": [[847, "polars-series-fill-nan"]], "polars.Series.dt.iso_year": [[805, "polars-series-dt-iso-year"]], "polars.Series.ewm_mean": [[840, "polars-series-ewm-mean"]], "polars.Series.dt.month_start": [[818, "polars-series-dt-month-start"]], "polars.Series.dt.year": [[836, "polars-series-dt-year"]], "polars.Series.dt.week": [[833, "polars-series-dt-week"]], "polars.Series.implode": [[857, "polars-series-implode"]], "polars.Series.dt.min": [[813, "polars-series-dt-min"]], "polars.Series.ewm_var": [[842, "polars-series-ewm-var"]], "polars.Series.dt.month_end": [[817, "polars-series-dt-month-end"]], "polars.Series.dt.offset_by": [[821, "polars-series-dt-offset-by"]], "polars.Series.estimated_size": [[839, "polars-series-estimated-size"]], "polars.Series.is_empty": [[863, "polars-series-is-empty"]], "polars.Series.extend_constant": [[846, "polars-series-extend-constant"]], "polars.Series.explode": [[844, "polars-series-explode"]], "polars.Series.dt.combine": [[794, "polars-series-dt-combine"]], "polars.Series.dt.round": [[825, "polars-series-dt-round"]], "polars.Series.dt.with_time_unit": [[835, "polars-series-dt-with-time-unit"]], "polars.Series.dt.weekday": [[834, "polars-series-dt-weekday"]], "polars.Series.hist": [[856, "polars-series-hist"]], "polars.Series.dt.month": [[816, "polars-series-dt-month"]], "polars.Series.entropy": [[838, "polars-series-entropy"]], "polars.Series.get_chunks": [[852, "polars-series-get-chunks"]], "polars.Series.dt.convert_time_zone": [[795, "polars-series-dt-convert-time-zone"]], "polars.Series.inner_dtype": [[858, "polars-series-inner-dtype"]], "polars.Series.str.to_lowercase": [[1008, "polars-series-str-to-lowercase"]], "polars.Series.to_init_repr": [[1028, "polars-series-to-init-repr"]], "Array": [[1041, "array"], [631, "array"]], "polars.Series.view": [[1039, "polars-series-view"]], "polars.Series.str.to_titlecase": [[1010, "polars-series-str-to-titlecase"]], "Descriptive": [[1047, "descriptive"], [732, "descriptive"], [251, "descriptive"]], "Struct": [[1054, "struct"], [645, "struct"]], "polars.Series.unique_counts": [[1035, "polars-series-unique-counts"]], "polars.Series.take_every": [[1021, "polars-series-take-every"]], "Binary": [[1043, "binary"], [643, "binary"], [632, "binary"]], "polars.Series.top_k": [[1033, "polars-series-top-k"]], "polars.Series.var": [[1038, "polars-series-var"]], "polars.Series.take": [[1020, "polars-series-take"]], "polars.Series.to_dummies": [[1026, "polars-series-to-dummies"]], "polars.Series.str.to_time": [[1009, "polars-series-str-to-time"]], "polars.Series.to_arrow": [[1025, "polars-series-to-arrow"]], "polars.Series.struct.schema": [[1016, "polars-series-struct-schema"]], "Computation": [[1046, "computation"], [636, "computation"], [250, "computation"]], "Categories": [[1045, "categories"], [634, "categories"]], "Boolean": [[1044, "boolean"], [633, "boolean"]], "polars.Series.tan": [[1022, "polars-series-tan"]], "polars.Series.to_physical": [[1032, "polars-series-to-physical"]], "Export": [[1048, "export"], [252, "export"]], "Manipulation/selection": [[1052, "manipulation-selection"], [736, "manipulation-selection"], [642, "manipulation-selection"], [256, "manipulation-selection"]], "List": [[1050, "list"], [639, "list"]], "polars.Series.time_unit": [[1024, "polars-series-time-unit"]], "polars.Series.to_list": [[1029, "polars-series-to-list"]], "polars.Series.unique": [[1034, "polars-series-unique"]], "polars.Series.sum": [[1018, "polars-series-sum"]], "polars.Series.struct.rename_fields": [[1015, "polars-series-struct-rename-fields"]], "polars.Series.struct.field": [[1013, "polars-series-struct-field"]], "polars.Series.str.to_uppercase": [[1011, "polars-series-str-to-uppercase"]], "polars.Series.struct.fields": [[1014, "polars-series-struct-fields"]], "polars.Series.zip_with": [[1040, "polars-series-zip-with"]], "polars.Series.to_frame": [[1027, "polars-series-to-frame"]], "Utils": [[1058, "utils"]], "polars.Series.to_numpy": [[1030, "polars-series-to-numpy"]], "Miscellaneous": [[1051, "miscellaneous"], [735, "miscellaneous"], [648, "miscellaneous"], [641, "miscellaneous"], [255, "miscellaneous"]], "polars.Series.value_counts": [[1037, "polars-series-value-counts"]], "polars.Series.tanh": [[1023, "polars-series-tanh"]], "Series": [[1049, "series"]], "SQL": [[1056, "sql"]], "Methods": [[1056, "methods"]], "Temporal": [[1055, "temporal"], [646, "temporal"], [257, "temporal"]], "polars.Series.to_pandas": [[1031, "polars-series-to-pandas"]], "Attributes": [[1042, "attributes"], [731, "attributes"], [249, "attributes"]], "polars.Series.tail": [[1019, "polars-series-tail"]], "polars.Series.struct.unnest": [[1017, "polars-series-struct-unnest"]], "String": [[1053, "string"], [644, "string"]], "Testing": [[1057, "testing"]], "Asserts": [[1057, "asserts"]], "Parametric testing": [[1057, "parametric-testing"]], "Polars primitives": [[1057, "polars-primitives"]], "Strategy helpers": [[1057, "strategy-helpers"]], "Profiles": [[1057, "profiles"]], "polars.Series.upper_bound": [[1036, "polars-series-upper-bound"]], "polars.Series.str.zfill": [[1012, "polars-series-str-zfill"]], "polars.Series.bin.ends_with": [[763, "polars-series-bin-ends-with"]], "polars.Series.alias": [[740, "polars-series-alias"]], "Read/write logical plan": [[735, "read-write-logical-plan"]], "Selectors": [[737, "selectors"]], "Importing": [[737, "importing"]], "Set operations": [[737, "set-operations"]], "Functions": [[737, "functions"], [648, "functions"], [637, "functions"]], "polars.Series.arcsin": [[747, "polars-series-arcsin"]], "polars.Series.arcsinh": [[748, "polars-series-arcsinh"]], "polars.Series.arctanh": [[750, "polars-series-arctanh"]], "polars.Series.bin.starts_with": [[764, "polars-series-bin-starts-with"]], "polars.Series.clone": [[777, "polars-series-clone"]], "polars.Series.arg_max": [[751, "polars-series-arg-max"]], "polars.Series.arg_true": [[754, "polars-series-arg-true"]], "polars.Series.arg_unique": [[755, "polars-series-arg-unique"]], "polars.Series.dt": [[791, "polars-series-dt"]], "polars.lazyframe.groupby.LazyGroupBy.median": [[725, "polars-lazyframe-groupby-lazygroupby-median"]], "polars.Series.any": [[742, "polars-series-any"]], "polars.Series.arccos": [[745, "polars-series-arccos"]], "polars.Series.drop_nulls": [[790, "polars-series-drop-nulls"]], "polars.Series.clip": [[774, "polars-series-clip"]], "polars.Series.all": [[741, "polars-series-all"]], "polars.lazyframe.groupby.LazyGroupBy.min": [[726, "polars-lazyframe-groupby-lazygroupby-min"]], "polars.Series.arr.unique": [[759, "polars-series-arr-unique"]], "polars.Series.arr.max": [[756, "polars-series-arr-max"]], "polars.Series.clip_max": [[775, "polars-series-clip-max"]], "polars.Series.arr.min": [[757, "polars-series-arr-min"]], "polars.Series.cumulative_eval": [[784, "polars-series-cumulative-eval"]], "polars.Series.arctan": [[749, "polars-series-arctan"]], "polars.Series.arg_min": [[752, "polars-series-arg-min"]], "GroupBy": [[733, "groupby"], [253, "groupby"]], "polars.Series.bin.encode": [[762, "polars-series-bin-encode"]], "polars.Series.cat": [[767, "polars-series-cat"]], "polars.Series.append": [[743, "polars-series-append"]], "polars.Series.arccosh": [[746, "polars-series-arccosh"]], "polars.Series.cat.get_categories": [[768, "polars-series-cat-get-categories"]], "polars.Series.cat.set_ordering": [[769, "polars-series-cat-set-ordering"]], "polars.Series.clear": [[773, "polars-series-clear"]], "polars.Series.clip_min": [[776, "polars-series-clip-min"]], "polars.Series.cumsum": [[783, "polars-series-cumsum"]], "polars.Series.cut": [[785, "polars-series-cut"]], "polars.Series.diff": [[787, "polars-series-diff"]], "polars.lazyframe.groupby.LazyGroupBy.sum": [[729, "polars-lazyframe-groupby-lazygroupby-sum"]], "polars.Series.bin.contains": [[760, "polars-series-bin-contains"]], "polars.Series.arg_sort": [[753, "polars-series-arg-sort"]], "polars.Series.dot": [[788, "polars-series-dot"]], "polars.Series.chunk_lengths": [[772, "polars-series-chunk-lengths"]], "polars.Series.ceil": [[771, "polars-series-ceil"]], "polars.Series.cummax": [[780, "polars-series-cummax"]], "polars.Series.describe": [[786, "polars-series-describe"]], "polars.Series.drop_nans": [[789, "polars-series-drop-nans"]], "polars.lazyframe.groupby.LazyGroupBy.mean": [[724, "polars-lazyframe-groupby-lazygroupby-mean"]], "polars.lazyframe.groupby.LazyGroupBy.max": [[723, "polars-lazyframe-groupby-lazygroupby-max"]], "polars.Series.abs": [[739, "polars-series-abs"]], "polars.Series.bin.decode": [[761, "polars-series-bin-decode"]], "polars.Series.cummin": [[781, "polars-series-cummin"]], "polars.Series.apply": [[744, "polars-series-apply"]], "LazyFrame": [[734, "lazyframe"]], "polars.lazyframe.groupby.LazyGroupBy.tail": [[730, "polars-lazyframe-groupby-lazygroupby-tail"]], "polars.lazyframe.groupby.LazyGroupBy.first": [[720, "polars-lazyframe-groupby-lazygroupby-first"]], "polars.Series.bottom_k": [[765, "polars-series-bottom-k"]], "polars.lazyframe.groupby.LazyGroupBy.n_unique": [[727, "polars-lazyframe-groupby-lazygroupby-n-unique"]], "polars.lazyframe.groupby.LazyGroupBy.last": [[722, "polars-lazyframe-groupby-lazygroupby-last"]], "polars.lazyframe.groupby.LazyGroupBy.quantile": [[728, "polars-lazyframe-groupby-lazygroupby-quantile"]], "polars.Series.cos": [[778, "polars-series-cos"]], "polars.Series.cumprod": [[782, "polars-series-cumprod"]], "polars.Series.cast": [[766, "polars-series-cast"]], "polars.Series.cbrt": [[770, "polars-series-cbrt"]], "polars.Series.arr.sum": [[758, "polars-series-arr-sum"]], "polars.lazyframe.groupby.LazyGroupBy.head": [[721, "polars-lazyframe-groupby-lazygroupby-head"]], "polars.Series.cosh": [[779, "polars-series-cosh"]], "polars.LazyFrame.groupby_dynamic": [[670, "polars-lazyframe-groupby-dynamic"]], "polars.LazyFrame.rename": [[692, "polars-lazyframe-rename"]], "polars.LazyFrame.null_count": [[687, "polars-lazyframe-null-count"]], "polars.LazyFrame.fetch": [[663, "polars-lazyframe-fetch"]], "polars.LazyFrame.mean": [[682, "polars-lazyframe-mean"]], "polars.LazyFrame.reverse": [[693, "polars-lazyframe-reverse"]], "polars.LazyFrame.show_graph": [[699, "polars-lazyframe-show-graph"]], "polars.LazyFrame.slice": [[700, "polars-lazyframe-slice"]], "polars.LazyFrame.min": [[686, "polars-lazyframe-min"]], "polars.LazyFrame.map": [[680, "polars-lazyframe-map"]], "polars.LazyFrame.top_k": [[706, "polars-lazyframe-top-k"]], "polars.LazyFrame.read_json": [[691, "polars-lazyframe-read-json"]], "polars.lazyframe.groupby.LazyGroupBy.count": [[719, "polars-lazyframe-groupby-lazygroupby-count"]], "Conversion": [[648, "conversion"]], "Parallelization": [[648, "parallelization"]], "StringCache": [[648, "stringcache"]], "polars.LazyFrame.median": [[683, "polars-lazyframe-median"]], "polars.LazyFrame.set_sorted": [[696, "polars-lazyframe-set-sorted"]], "polars.LazyFrame.unnest": [[708, "polars-lazyframe-unnest"]], "polars.LazyFrame.merge_sorted": [[685, "polars-lazyframe-merge-sorted"]], "polars.LazyFrame.groupby_rolling": [[671, "polars-lazyframe-groupby-rolling"]], "polars.LazyFrame.shift": [[697, "polars-lazyframe-shift"]], "polars.LazyFrame.select": [[695, "polars-lazyframe-select"]], "polars.LazyFrame.width": [[711, "polars-lazyframe-width"]], "polars.LazyFrame.with_context": [[713, "polars-lazyframe-with-context"]], "Input/output": [[650, "input-output"]], "CSV": [[650, "csv"]], "Feather/ IPC": [[650, "feather-ipc"]], "Parquet": [[650, "parquet"]], "Database": [[650, "database"]], "JSON": [[650, "json"]], "AVRO": [[650, "avro"]], "Excel": [[650, "excel"]], "Delta Lake": [[650, "delta-lake"]], "Datasets": [[650, "datasets"]], "BatchedCsvReader": [[650, "batchedcsvreader"]], "polars.LazyFrame.join": [[675, "polars-lazyframe-join"]], "polars.LazyFrame.filter": [[666, "polars-lazyframe-filter"]], "polars.LazyFrame.last": [[677, "polars-lazyframe-last"]], "polars.LazyFrame.pipe": [[688, "polars-lazyframe-pipe"]], "polars.LazyFrame.var": [[710, "polars-lazyframe-var"]], "polars.LazyFrame.update": [[709, "polars-lazyframe-update"]], "polars.LazyFrame.bottom_k": [[652, "polars-lazyframe-bottom-k"]], "polars.LazyFrame.interpolate": [[674, "polars-lazyframe-interpolate"]], "polars.LazyFrame.collect": [[656, "polars-lazyframe-collect"]], "polars.LazyFrame.take_every": [[705, "polars-lazyframe-take-every"]], "polars.LazyFrame.fill_null": [[665, "polars-lazyframe-fill-null"]], "polars.LazyFrame.first": [[667, "polars-lazyframe-first"]], "polars.LazyFrame.groupby": [[669, "polars-lazyframe-groupby"]], "polars.LazyFrame.lazy": [[678, "polars-lazyframe-lazy"]], "polars.lazyframe.groupby.LazyGroupBy.apply": [[718, "polars-lazyframe-groupby-lazygroupby-apply"]], "polars.LazyFrame.clone": [[655, "polars-lazyframe-clone"]], "polars.LazyFrame.write_json": [[715, "polars-lazyframe-write-json"]], "polars.LazyFrame.profile": [[689, "polars-lazyframe-profile"]], "polars.LazyFrame.with_columns": [[712, "polars-lazyframe-with-columns"]], "polars.LazyFrame.drop": [[658, "polars-lazyframe-drop"]], "polars.LazyFrame.std": [[702, "polars-lazyframe-std"]], "polars.LazyFrame.tail": [[704, "polars-lazyframe-tail"]], "polars.LazyFrame.limit": [[679, "polars-lazyframe-limit"]], "API reference": [[649, "api-reference"]], "polars.LazyFrame.fill_nan": [[664, "polars-lazyframe-fill-nan"]], "polars.LazyFrame.dtypes": [[660, "polars-lazyframe-dtypes"]], "polars.LazyFrame.inspect": [[673, "polars-lazyframe-inspect"]], "polars.lazyframe.groupby.LazyGroupBy.agg": [[716, "polars-lazyframe-groupby-lazygroupby-agg"]], "polars.LazyFrame.quantile": [[690, "polars-lazyframe-quantile"]], "polars.LazyFrame.sum": [[703, "polars-lazyframe-sum"]], "polars.LazyFrame.from_json": [[668, "polars-lazyframe-from-json"]], "polars.LazyFrame.with_row_count": [[714, "polars-lazyframe-with-row-count"]], "polars.LazyFrame.schema": [[694, "polars-lazyframe-schema"]], "polars.lazyframe.groupby.LazyGroupBy.all": [[717, "polars-lazyframe-groupby-lazygroupby-all"]], "polars.LazyFrame.sort": [[701, "polars-lazyframe-sort"]], "polars.LazyFrame.columns": [[657, "polars-lazyframe-columns"]], "polars.LazyFrame.head": [[672, "polars-lazyframe-head"]], "polars.LazyFrame.melt": [[684, "polars-lazyframe-melt"]], "polars.LazyFrame.max": [[681, "polars-lazyframe-max"]], "polars.LazyFrame.shift_and_fill": [[698, "polars-lazyframe-shift-and-fill"]], "polars.LazyFrame.explain": [[661, "polars-lazyframe-explain"]], "polars.LazyFrame.join_asof": [[676, "polars-lazyframe-join-asof"]], "polars.LazyFrame.unique": [[707, "polars-lazyframe-unique"]], "polars.LazyFrame.explode": [[662, "polars-lazyframe-explode"]], "polars.LazyFrame.cache": [[653, "polars-lazyframe-cache"]], "polars.LazyFrame.clear": [[654, "polars-lazyframe-clear"]], "polars.LazyFrame.drop_nulls": [[659, "polars-lazyframe-drop-nulls"]], "polars.Expr.str.strip": [[533, "polars-expr-str-strip"]], "polars.Expr.str.decode": [[511, "polars-expr-str-decode"]], "polars.Expr.str.n_chars": [[522, "polars-expr-str-n-chars"]], "polars.Expr.str.zfill": [[542, "polars-expr-str-zfill"]], "polars.Expr.top_k": [[554, "polars-expr-top-k"]], "polars.Expr.sort_by": [[505, "polars-expr-sort-by"]], "polars.avg": [[574, "polars-avg"]], "polars.apply": [[567, "polars-apply"]], "polars.Expr.sub": [[545, "polars-expr-sub"]], "polars.coalesce": [[575, "polars-coalesce"]], "polars.arctan2d": [[571, "polars-arctan2d"]], "polars.approx_unique": [[568, "polars-approx-unique"]], "polars.Expr.sqrt": [[506, "polars-expr-sqrt"]], "polars.Expr.sum": [[547, "polars-expr-sum"]], "polars.Expr.take": [[549, "polars-expr-take"]], "polars.any_horizontal": [[566, "polars-any-horizontal"]], "polars.Expr.str.extract_all": [[516, "polars-expr-str-extract-all"]], "polars.all_horizontal": [[564, "polars-all-horizontal"]], "polars.Expr.struct.rename_fields": [[544, "polars-expr-struct-rename-fields"]], "polars.Expr.str.replace_all": [[525, "polars-expr-str-replace-all"]], "polars.Expr.std": [[507, "polars-expr-std"]], "polars.Expr.str.starts_with": [[532, "polars-expr-str-starts-with"]], "polars.Expr.str.to_decimal": [[537, "polars-expr-str-to-decimal"]], "polars.Expr.unique_counts": [[557, "polars-expr-unique-counts"]], "polars.Expr.str.strptime": [[534, "polars-expr-str-strptime"]], "polars.Expr.suffix": [[546, "polars-expr-suffix"]], "polars.arange": [[569, "polars-arange"]], "polars.Expr.where": [[561, "polars-expr-where"]], "polars.Expr.truediv": [[555, "polars-expr-truediv"]], "polars.all": [[563, "polars-all"]], "polars.Expr.xor": [[562, "polars-expr-xor"]], "polars.Expr.tanh": [[552, "polars-expr-tanh"]], "polars.arg_where": [[573, "polars-arg-where"]], "polars.Expr.str.rjust": [[526, "polars-expr-str-rjust"]], "polars.Expr.str.to_date": [[535, "polars-expr-str-to-date"]], "polars.Expr.upper_bound": [[558, "polars-expr-upper-bound"]], "polars.Expr.str.json_extract": [[517, "polars-expr-str-json-extract"]], "polars.Expr.str.extract": [[515, "polars-expr-str-extract"]], "polars.Expr.str.splitn": [[531, "polars-expr-str-splitn"]], "polars.Expr.take_every": [[550, "polars-expr-take-every"]], "polars.arctan2": [[570, "polars-arctan2"]], "polars.Expr.struct.field": [[543, "polars-expr-struct-field"]], "polars.Expr.str.split_exact": [[530, "polars-expr-str-split-exact"]], "polars.Expr.str.to_time": [[539, "polars-expr-str-to-time"]], "polars.Expr.str.concat": [[508, "polars-expr-str-concat"]], "polars.Expr.str.explode": [[514, "polars-expr-str-explode"]], "polars.Expr.str.encode": [[512, "polars-expr-str-encode"]], "polars.Expr.str.lengths": [[519, "polars-expr-str-lengths"]], "polars.Expr.str.ljust": [[520, "polars-expr-str-ljust"]], "polars.Expr.str.replace": [[524, "polars-expr-str-replace"]], "polars.Expr.str.slice": [[528, "polars-expr-str-slice"]], "polars.Expr.sort": [[504, "polars-expr-sort"]], "polars.Expr.str.count_match": [[510, "polars-expr-str-count-match"]], "polars.Expr.str.split": [[529, "polars-expr-str-split"]], "polars.Expr.str.to_titlecase": [[540, "polars-expr-str-to-titlecase"]], "polars.Expr.var": [[560, "polars-expr-var"]], "polars.Expr.str.contains": [[509, "polars-expr-str-contains"]], "polars.Expr.str.lstrip": [[521, "polars-expr-str-lstrip"]], "polars.Expr.tail": [[548, "polars-expr-tail"]], "polars.Expr.to_physical": [[553, "polars-expr-to-physical"]], "polars.any": [[565, "polars-any"]], "polars.arg_sort_by": [[572, "polars-arg-sort-by"]], "polars.Expr.str.to_datetime": [[536, "polars-expr-str-to-datetime"]], "polars.Expr.str.to_lowercase": [[538, "polars-expr-str-to-lowercase"]], "polars.Expr.str.json_path_match": [[518, "polars-expr-str-json-path-match"]], "polars.Expr.str.ends_with": [[513, "polars-expr-str-ends-with"]], "polars.Expr.unique": [[556, "polars-expr-unique"]], "polars.Expr.value_counts": [[559, "polars-expr-value-counts"]], "polars.Expr.tan": [[551, "polars-expr-tan"]], "polars.Expr.str.rstrip": [[527, "polars-expr-str-rstrip"]], "polars.Expr.str.to_uppercase": [[541, "polars-expr-str-to-uppercase"]], "polars.Expr.str.parse_int": [[523, "polars-expr-str-parse-int"]], "polars.Expr.mean": [[441, "polars-expr-mean"]], "polars.Expr.meta.undo_aliases": [[451, "polars-expr-meta-undo-aliases"]], "polars.Expr.ne": [[460, "polars-expr-ne"]], "polars.Expr.shift_and_fill": [[496, "polars-expr-shift-and-fill"]], "polars.Expr.reshape": [[477, "polars-expr-reshape"]], "polars.Expr.min": [[453, "polars-expr-min"]], "polars.Expr.rank": [[473, "polars-expr-rank"]], "polars.Expr.rolling_quantile": [[486, "polars-expr-rolling-quantile"]], "polars.Expr.nan_min": [[459, "polars-expr-nan-min"]], "polars.Expr.mul": [[456, "polars-expr-mul"]], "polars.Expr.sin": [[500, "polars-expr-sin"]], "polars.Expr.meta.root_names": [[449, "polars-expr-meta-root-names"]], "polars.Expr.rle": [[479, "polars-expr-rle"]], "polars.Expr.prefix": [[468, "polars-expr-prefix"]], "polars.Expr.or_": [[463, "polars-expr-or"]], "polars.Expr.rolling_median": [[484, "polars-expr-rolling-median"]], "polars.Expr.rolling_sum": [[489, "polars-expr-rolling-sum"]], "polars.Expr.median": [[442, "polars-expr-median"]], "polars.Expr.lower_bound": [[435, "polars-expr-lower-bound"]], "polars.Expr.search_sorted": [[493, "polars-expr-search-sorted"]], "polars.Expr.map_dict": [[439, "polars-expr-map-dict"]], "polars.Expr.max": [[440, "polars-expr-max"]], "polars.Expr.reinterpret": [[475, "polars-expr-reinterpret"]], "polars.Expr.meta.is_regex_projection": [[445, "polars-expr-meta-is-regex-projection"]], "polars.Expr.sample": [[492, "polars-expr-sample"]], "polars.Expr.product": [[469, "polars-expr-product"]], "polars.Expr.map_alias": [[438, "polars-expr-map-alias"]], "polars.Expr.rolling_var": [[490, "polars-expr-rolling-var"]], "polars.Expr.set_sorted": [[494, "polars-expr-set-sorted"]], "polars.Expr.log1p": [[434, "polars-expr-log1p"]], "polars.Expr.round": [[491, "polars-expr-round"]], "polars.Expr.n_unique": [[457, "polars-expr-n-unique"]], "polars.Expr.rechunk": [[474, "polars-expr-rechunk"]], "polars.Expr.meta.ne": [[446, "polars-expr-meta-ne"]], "polars.Expr.meta.output_name": [[447, "polars-expr-meta-output-name"]], "polars.Expr.null_count": [[462, "polars-expr-null-count"]], "polars.Expr.shift": [[495, "polars-expr-shift"]], "polars.Expr.sinh": [[501, "polars-expr-sinh"]], "polars.Expr.log10": [[433, "polars-expr-log10"]], "polars.Expr.map": [[437, "polars-expr-map"]], "polars.Expr.rolling_apply": [[481, "polars-expr-rolling-apply"]], "polars.Expr.repeat_by": [[476, "polars-expr-repeat-by"]], "polars.Expr.ne_missing": [[461, "polars-expr-ne-missing"]], "polars.Expr.pipe": [[466, "polars-expr-pipe"]], "polars.Expr.slice": [[503, "polars-expr-slice"]], "polars.Expr.nan_max": [[458, "polars-expr-nan-max"]], "polars.Expr.over": [[464, "polars-expr-over"]], "polars.Expr.qcut": [[470, "polars-expr-qcut"]], "polars.Expr.radians": [[472, "polars-expr-radians"]], "polars.Expr.meta.has_multiple_outputs": [[444, "polars-expr-meta-has-multiple-outputs"]], "polars.Expr.meta.tree_format": [[450, "polars-expr-meta-tree-format"]], "polars.Expr.shrink_dtype": [[497, "polars-expr-shrink-dtype"]], "polars.Expr.rolling_max": [[482, "polars-expr-rolling-max"]], "polars.Expr.pct_change": [[465, "polars-expr-pct-change"]], "polars.Expr.rolling_mean": [[483, "polars-expr-rolling-mean"]], "polars.Expr.rolling_std": [[488, "polars-expr-rolling-std"]], "polars.Expr.rolling_skew": [[487, "polars-expr-rolling-skew"]], "polars.Expr.mode": [[455, "polars-expr-mode"]], "polars.Expr.meta.pop": [[448, "polars-expr-meta-pop"]], "polars.Expr.lt": [[436, "polars-expr-lt"]], "polars.Expr.meta.eq": [[443, "polars-expr-meta-eq"]], "polars.Expr.shuffle": [[498, "polars-expr-shuffle"]], "polars.Expr.log": [[432, "polars-expr-log"]], "polars.Expr.mod": [[454, "polars-expr-mod"]], "polars.Expr.rolling_min": [[485, "polars-expr-rolling-min"]], "polars.Expr.skew": [[502, "polars-expr-skew"]], "polars.Expr.reverse": [[478, "polars-expr-reverse"]], "polars.Expr.quantile": [[471, "polars-expr-quantile"]], "polars.Expr.sign": [[499, "polars-expr-sign"]], "polars.Expr.meta.write_json": [[452, "polars-expr-meta-write-json"]], "polars.Expr.pow": [[467, "polars-expr-pow"]], "polars.Expr.rle_id": [[480, "polars-expr-rle-id"]], "polars.Expr.is_not": [[390, "polars-expr-is-not"]], "polars.Expr.list.union": [[430, "polars-expr-list-union"]], "polars.Expr.list.explode": [[411, "polars-expr-list-explode"]], "polars.Expr.list.any": [[402, "polars-expr-list-any"]], "polars.Expr.list.head": [[414, "polars-expr-list-head"]], "polars.Expr.list.slice": [[424, "polars-expr-list-slice"]], "polars.Expr.extend_constant": [[366, "polars-expr-extend-constant"]], "polars.Expr.is_finite": [[385, "polars-expr-is-finite"]], "polars.Expr.list.eval": [[410, "polars-expr-list-eval"]], "polars.Expr.is_not_nan": [[391, "polars-expr-is-not-nan"]], "polars.Expr.is_nan": [[389, "polars-expr-is-nan"]], "polars.Expr.list.contains": [[406, "polars-expr-list-contains"]], "polars.Expr.list.sort": [[425, "polars-expr-list-sort"]], "polars.Expr.list.intersection": [[415, "polars-expr-list-intersection"]], "polars.Expr.list.diff": [[408, "polars-expr-list-diff"]], "polars.Expr.hash": [[378, "polars-expr-hash"]], "polars.Expr.exclude": [[363, "polars-expr-exclude"]], "polars.Expr.list.difference": [[409, "polars-expr-list-difference"]], "polars.Expr.list.join": [[416, "polars-expr-list-join"]], "polars.Expr.kurtosis": [[396, "polars-expr-kurtosis"]], "polars.Expr.head": [[379, "polars-expr-head"]], "polars.Expr.ewm_var": [[362, "polars-expr-ewm-var"]], "polars.Expr.ge": [[376, "polars-expr-ge"]], "polars.Expr.is_first": [[386, "polars-expr-is-first"]], "polars.Expr.ewm_mean": [[360, "polars-expr-ewm-mean"]], "polars.Expr.first": [[370, "polars-expr-first"]], "polars.Expr.inspect": [[381, "polars-expr-inspect"]], "polars.Expr.list.all": [[401, "polars-expr-list-all"]], "polars.Expr.list.first": [[412, "polars-expr-list-first"]], "polars.Expr.list.get": [[413, "polars-expr-list-get"]], "polars.Expr.list.lengths": [[418, "polars-expr-list-lengths"]], "polars.Expr.ewm_std": [[361, "polars-expr-ewm-std"]], "polars.Expr.interpolate": [[382, "polars-expr-interpolate"]], "polars.Expr.list.tail": [[427, "polars-expr-list-tail"]], "polars.Expr.filter": [[369, "polars-expr-filter"]], "polars.Expr.implode": [[380, "polars-expr-implode"]], "polars.Expr.is_not_null": [[392, "polars-expr-is-not-null"]], "polars.Expr.list.last": [[417, "polars-expr-list-last"]], "polars.Expr.last": [[397, "polars-expr-last"]], "polars.Expr.flatten": [[371, "polars-expr-flatten"]], "polars.Expr.is_infinite": [[388, "polars-expr-is-infinite"]], "polars.Expr.le": [[398, "polars-expr-le"]], "polars.Expr.list.mean": [[420, "polars-expr-list-mean"]], "polars.Expr.list.min": [[421, "polars-expr-list-min"]], "polars.Expr.list.sum": [[426, "polars-expr-list-sum"]], "polars.Expr.list.unique": [[431, "polars-expr-list-unique"]], "polars.Expr.len": [[399, "polars-expr-len"]], "polars.Expr.list.arg_min": [[404, "polars-expr-list-arg-min"]], "polars.Expr.list.count_match": [[407, "polars-expr-list-count-match"]], "polars.Expr.list.concat": [[405, "polars-expr-list-concat"]], "polars.Expr.forward_fill": [[374, "polars-expr-forward-fill"]], "polars.Expr.fill_null": [[368, "polars-expr-fill-null"]], "polars.Expr.list.max": [[419, "polars-expr-list-max"]], "polars.Expr.from_json": [[375, "polars-expr-from-json"]], "polars.Expr.list.reverse": [[422, "polars-expr-list-reverse"]], "polars.Expr.is_duplicated": [[384, "polars-expr-is-duplicated"]], "polars.Expr.floor": [[372, "polars-expr-floor"]], "polars.Expr.gt": [[377, "polars-expr-gt"]], "polars.Expr.is_unique": [[394, "polars-expr-is-unique"]], "polars.Expr.is_null": [[393, "polars-expr-is-null"]], "polars.Expr.explode": [[365, "polars-expr-explode"]], "polars.Expr.list.arg_max": [[403, "polars-expr-list-arg-max"]], "polars.Expr.fill_nan": [[367, "polars-expr-fill-nan"]], "polars.Expr.limit": [[400, "polars-expr-limit"]], "polars.Expr.list.take": [[428, "polars-expr-list-take"]], "polars.Expr.is_in": [[387, "polars-expr-is-in"]], "polars.Expr.list.to_struct": [[429, "polars-expr-list-to-struct"]], "polars.Expr.keep_name": [[395, "polars-expr-keep-name"]], "polars.Expr.exp": [[364, "polars-expr-exp"]], "polars.Expr.is_between": [[383, "polars-expr-is-between"]], "polars.Expr.floordiv": [[373, "polars-expr-floordiv"]], "polars.Expr.list.shift": [[423, "polars-expr-list-shift"]], "polars.Expr.dt.second": [[346, "polars-expr-dt-second"]], "polars.Expr.eq_missing": [[359, "polars-expr-eq-missing"]], "polars.Expr.dt.with_time_unit": [[355, "polars-expr-dt-with-time-unit"]], "polars.Expr.dt.day": [[322, "polars-expr-dt-day"]], "polars.Expr.cummin": [[306, "polars-expr-cummin"]], "polars.Expr.clip": [[298, "polars-expr-clip"]], "polars.Expr.drop_nans": [[314, "polars-expr-drop-nans"]], "polars.Expr.dt.year": [[356, "polars-expr-dt-year"]], "polars.Expr.dt.offset_by": [[341, "polars-expr-dt-offset-by"]], "polars.Expr.cos": [[301, "polars-expr-cos"]], "polars.Expr.cat.set_ordering": [[295, "polars-expr-cat-set-ordering"]], "polars.Expr.dt.hour": [[326, "polars-expr-dt-hour"]], "polars.Expr.dt.microseconds": [[331, "polars-expr-dt-microseconds"]], "polars.Expr.eq": [[358, "polars-expr-eq"]], "polars.Expr.dt.iso_year": [[329, "polars-expr-dt-iso-year"]], "polars.Expr.bin.encode": [[288, "polars-expr-bin-encode"]], "polars.Expr.cummax": [[305, "polars-expr-cummax"]], "polars.Expr.dt.truncate": [[352, "polars-expr-dt-truncate"]], "polars.Expr.dt.hours": [[327, "polars-expr-dt-hours"]], "polars.Expr.dt.milliseconds": [[333, "polars-expr-dt-milliseconds"]], "polars.Expr.bottom_k": [[291, "polars-expr-bottom-k"]], "polars.Expr.ceil": [[297, "polars-expr-ceil"]], "polars.Expr.cumsum": [[308, "polars-expr-cumsum"]], "polars.Expr.cumulative_eval": [[309, "polars-expr-cumulative-eval"]], "polars.Expr.cache": [[292, "polars-expr-cache"]], "polars.Expr.dt.base_utc_offset": [[316, "polars-expr-dt-base-utc-offset"]], "polars.Expr.clip_min": [[300, "polars-expr-clip-min"]], "polars.Expr.dt.dst_offset": [[324, "polars-expr-dt-dst-offset"]], "polars.Expr.count": [[303, "polars-expr-count"]], "polars.Expr.dt.quarter": [[343, "polars-expr-dt-quarter"]], "polars.Expr.dt.strftime": [[348, "polars-expr-dt-strftime"]], "polars.Expr.cumprod": [[307, "polars-expr-cumprod"]], "polars.Expr.cut": [[310, "polars-expr-cut"]], "polars.Expr.degrees": [[311, "polars-expr-degrees"]], "polars.Expr.bin.starts_with": [[290, "polars-expr-bin-starts-with"]], "polars.Expr.dt.convert_time_zone": [[319, "polars-expr-dt-convert-time-zone"]], "polars.Expr.dt.date": [[320, "polars-expr-dt-date"]], "polars.Expr.dt.month_start": [[338, "polars-expr-dt-month-start"]], "polars.Expr.dt.combine": [[318, "polars-expr-dt-combine"]], "polars.Expr.dt.datetime": [[321, "polars-expr-dt-datetime"]], "polars.Expr.cat.get_categories": [[294, "polars-expr-cat-get-categories"]], "polars.Expr.dt.nanoseconds": [[340, "polars-expr-dt-nanoseconds"]], "polars.Expr.entropy": [[357, "polars-expr-entropy"]], "polars.Expr.dt.time": [[349, "polars-expr-dt-time"]], "polars.Expr.dot": [[313, "polars-expr-dot"]], "polars.Expr.bin.ends_with": [[289, "polars-expr-bin-ends-with"]], "polars.Expr.dt.minutes": [[335, "polars-expr-dt-minutes"]], "polars.Expr.dt.days": [[323, "polars-expr-dt-days"]], "polars.Expr.drop_nulls": [[315, "polars-expr-drop-nulls"]], "polars.Expr.diff": [[312, "polars-expr-diff"]], "polars.Expr.dt.millisecond": [[332, "polars-expr-dt-millisecond"]], "polars.Expr.dt.seconds": [[347, "polars-expr-dt-seconds"]], "polars.Expr.dt.month_end": [[337, "polars-expr-dt-month-end"]], "polars.Expr.clip_max": [[299, "polars-expr-clip-max"]], "polars.Expr.dt.minute": [[334, "polars-expr-dt-minute"]], "polars.Expr.cosh": [[302, "polars-expr-cosh"]], "polars.Expr.dt.ordinal_day": [[342, "polars-expr-dt-ordinal-day"]], "polars.Expr.dt.replace_time_zone": [[344, "polars-expr-dt-replace-time-zone"]], "polars.Expr.dt.round": [[345, "polars-expr-dt-round"]], "polars.Expr.dt.nanosecond": [[339, "polars-expr-dt-nanosecond"]], "polars.Expr.dt.timestamp": [[350, "polars-expr-dt-timestamp"]], "polars.Expr.dt.microsecond": [[330, "polars-expr-dt-microsecond"]], "polars.Expr.cbrt": [[296, "polars-expr-cbrt"]], "polars.Expr.dt.cast_time_unit": [[317, "polars-expr-dt-cast-time-unit"]], "polars.Expr.dt.month": [[336, "polars-expr-dt-month"]], "polars.Expr.dt.epoch": [[325, "polars-expr-dt-epoch"]], "polars.Expr.cumcount": [[304, "polars-expr-cumcount"]], "polars.Expr.dt.to_string": [[351, "polars-expr-dt-to-string"]], "polars.Expr.dt.week": [[353, "polars-expr-dt-week"]], "polars.Expr.cast": [[293, "polars-expr-cast"]], "polars.Expr.dt.is_leap_year": [[328, "polars-expr-dt-is-leap-year"]], "polars.Expr.dt.weekday": [[354, "polars-expr-dt-weekday"]], "polars.cov": [[581, "polars-cov"]], "polars.median": [[608, "polars-median"]], "polars.date": [[586, "polars-date"]], "polars.max_horizontal": [[606, "polars-max-horizontal"]], "polars.rolling_corr": [[616, "polars-rolling-corr"]], "polars.zeros": [[630, "polars-zeros"]], "polars.from_epoch": [[596, "polars-from-epoch"]], "polars.tail": [[624, "polars-tail"]], "polars.map": [[604, "polars-map"]], "polars.struct": [[621, "polars-struct"]], "Operators": [[643, "operators"]], "Conjunction": [[643, "conjunction"]], "Comparison": [[643, "comparison"]], "Numeric": [[643, "numeric"], [257, "numeric"]], "polars.cumfold": [[582, "polars-cumfold"]], "Columns / names": [[635, "columns-names"]], "polars.min": [[609, "polars-min"]], "polars.date_ranges": [[588, "polars-date-ranges"]], "polars.corr": [[579, "polars-corr"]], "polars.reduce": [[614, "polars-reduce"]], "Expressions": [[638, "expressions"]], "polars.implode": [[599, "polars-implode"]], "Meta": [[640, "meta"]], "polars.cumsum_horizontal": [[585, "polars-cumsum-horizontal"]], "polars.sql_expr": [[619, "polars-sql-expr"]], "polars.sum": [[622, "polars-sum"]], "polars.when": [[629, "polars-when"]], "polars.first": [[593, "polars-first"]], "polars.repeat": [[615, "polars-repeat"]], "polars.rolling_cov": [[617, "polars-rolling-cov"]], "polars.duration": [[590, "polars-duration"]], "polars.concat_list": [[577, "polars-concat-list"]], "polars.col": [[576, "polars-col"]], "polars.max": [[605, "polars-max"]], "polars.min_horizontal": [[610, "polars-min-horizontal"]], "polars.time_range": [[626, "polars-time-range"]], "polars.concat_str": [[578, "polars-concat-str"]], "polars.cumsum": [[584, "polars-cumsum"]], "polars.date_range": [[587, "polars-date-range"]], "polars.mean": [[607, "polars-mean"]], "polars.element": [[591, "polars-element"]], "polars.ones": [[612, "polars-ones"]], "polars.std": [[620, "polars-std"]], "polars.time_ranges": [[627, "polars-time-ranges"]], "polars.var": [[628, "polars-var"]], "polars.quantile": [[613, "polars-quantile"]], "polars.format": [[595, "polars-format"]], "polars.int_range": [[600, "polars-int-range"]], "polars.lit": [[603, "polars-lit"]], "polars.datetime": [[589, "polars-datetime"]], "polars.cumreduce": [[583, "polars-cumreduce"]], "polars.select": [[618, "polars-select"]], "polars.sum_horizontal": [[623, "polars-sum-horizontal"]], "polars.exclude": [[592, "polars-exclude"]], "polars.time": [[625, "polars-time"]], "polars.n_unique": [[611, "polars-n-unique"]], "polars.int_ranges": [[601, "polars-int-ranges"]], "polars.fold": [[594, "polars-fold"]], "polars.groups": [[597, "polars-groups"]], "polars.head": [[598, "polars-head"]], "polars.last": [[602, "polars-last"]], "Window": [[647, "window"]], "polars.count": [[580, "polars-count"]], "polars.DataFrame.height": [[162, "polars-dataframe-height"]], "polars.DataFrame.flags": [[151, "polars-dataframe-flags"]], "polars.DataFrame.groupby": [[157, "polars-dataframe-groupby"]], "polars.DataFrame.take_every": [[211, "polars-dataframe-take-every"]], "polars.DataFrame.row": [[195, "polars-dataframe-row"]], "polars.DataFrame.set_sorted": [[201, "polars-dataframe-set-sorted"]], "polars.DataFrame.to_dicts": [[214, "polars-dataframe-to-dicts"]], "polars.DataFrame.get_column": [[154, "polars-dataframe-get-column"]], "polars.DataFrame.replace": [[192, "polars-dataframe-replace"]], "polars.DataFrame.groupby_dynamic": [[158, "polars-dataframe-groupby-dynamic"]], "polars.DataFrame.is_duplicated": [[166, "polars-dataframe-is-duplicated"]], "polars.DataFrame.replace_at_idx": [[193, "polars-dataframe-replace-at-idx"]], "polars.DataFrame.sort": [[207, "polars-dataframe-sort"]], "polars.DataFrame.join": [[172, "polars-dataframe-join"]], "polars.DataFrame.insert_at_idx": [[164, "polars-dataframe-insert-at-idx"]], "polars.DataFrame.max": [[176, "polars-dataframe-max"]], "polars.DataFrame.n_unique": [[183, "polars-dataframe-n-unique"]], "polars.DataFrame.limit": [[175, "polars-dataframe-limit"]], "polars.DataFrame.item": [[169, "polars-dataframe-item"]], "polars.DataFrame.filter": [[149, "polars-dataframe-filter"]], "polars.DataFrame.estimated_size": [[144, "polars-dataframe-estimated-size"]], "polars.DataFrame.is_unique": [[168, "polars-dataframe-is-unique"]], "polars.DataFrame.median": [[178, "polars-dataframe-median"]], "polars.DataFrame.min": [[181, "polars-dataframe-min"]], "polars.DataFrame.n_chunks": [[182, "polars-dataframe-n-chunks"]], "polars.DataFrame.frame_equal": [[153, "polars-dataframe-frame-equal"]], "polars.DataFrame.extend": [[146, "polars-dataframe-extend"]], "polars.DataFrame.get_columns": [[155, "polars-dataframe-get-columns"]], "polars.DataFrame.shift": [[203, "polars-dataframe-shift"]], "polars.DataFrame.find_idx_by_name": [[150, "polars-dataframe-find-idx-by-name"]], "polars.DataFrame.sum": [[209, "polars-dataframe-sum"]], "polars.DataFrame.schema": [[199, "polars-dataframe-schema"]], "polars.DataFrame.to_dict": [[213, "polars-dataframe-to-dict"]], "polars.DataFrame.join_asof": [[173, "polars-dataframe-join-asof"]], "polars.DataFrame.shift_and_fill": [[204, "polars-dataframe-shift-and-fill"]], "polars.DataFrame.fill_nan": [[147, "polars-dataframe-fill-nan"]], "polars.DataFrame.partition_by": [[185, "polars-dataframe-partition-by"]], "polars.DataFrame.null_count": [[184, "polars-dataframe-null-count"]], "polars.DataFrame.pivot": [[187, "polars-dataframe-pivot"]], "polars.DataFrame.hash_rows": [[160, "polars-dataframe-hash-rows"]], "polars.DataFrame.explode": [[145, "polars-dataframe-explode"]], "polars.DataFrame.interpolate": [[165, "polars-dataframe-interpolate"]], "polars.DataFrame.shrink_to_fit": [[205, "polars-dataframe-shrink-to-fit"]], "polars.DataFrame.to_arrow": [[212, "polars-dataframe-to-arrow"]], "polars.DataFrame.rows": [[196, "polars-dataframe-rows"]], "polars.DataFrame.head": [[161, "polars-dataframe-head"]], "polars.DataFrame.lazy": [[174, "polars-dataframe-lazy"]], "polars.DataFrame.merge_sorted": [[180, "polars-dataframe-merge-sorted"]], "polars.DataFrame.mean": [[177, "polars-dataframe-mean"]], "polars.DataFrame.rows_by_key": [[197, "polars-dataframe-rows-by-key"]], "polars.DataFrame.pipe": [[186, "polars-dataframe-pipe"]], "polars.DataFrame.select": [[200, "polars-dataframe-select"]], "polars.DataFrame.tail": [[210, "polars-dataframe-tail"]], "polars.DataFrame.product": [[188, "polars-dataframe-product"]], "polars.DataFrame.to_dummies": [[215, "polars-dataframe-to-dummies"]], "polars.DataFrame.groupby_rolling": [[159, "polars-dataframe-groupby-rolling"]], "polars.DataFrame.fold": [[152, "polars-dataframe-fold"]], "polars.DataFrame.is_empty": [[167, "polars-dataframe-is-empty"]], "polars.DataFrame.iter_rows": [[170, "polars-dataframe-iter-rows"]], "polars.DataFrame.iter_slices": [[171, "polars-dataframe-iter-slices"]], "polars.DataFrame.sample": [[198, "polars-dataframe-sample"]], "polars.DataFrame.slice": [[206, "polars-dataframe-slice"]], "polars.DataFrame.fill_null": [[148, "polars-dataframe-fill-null"]], "polars.DataFrame.hstack": [[163, "polars-dataframe-hstack"]], "polars.DataFrame.melt": [[179, "polars-dataframe-melt"]], "polars.DataFrame.rename": [[191, "polars-dataframe-rename"]], "polars.DataFrame.reverse": [[194, "polars-dataframe-reverse"]], "polars.DataFrame.quantile": [[189, "polars-dataframe-quantile"]], "polars.DataFrame.rechunk": [[190, "polars-dataframe-rechunk"]], "polars.DataFrame.shape": [[202, "polars-dataframe-shape"]], "polars.DataFrame.glimpse": [[156, "polars-dataframe-glimpse"]], "polars.DataFrame.std": [[208, "polars-dataframe-std"]], "polars.Expr.arctan": [[274, "polars-expr-arctan"]], "polars.dataframe.groupby.GroupBy.agg": [[234, "polars-dataframe-groupby-groupby-agg"]], "polars.DataFrame.to_numpy": [[217, "polars-dataframe-to-numpy"]], "polars.dataframe.groupby.GroupBy.max": [[241, "polars-dataframe-groupby-groupby-max"]], "DataFrame": [[254, "dataframe"]], "polars.Expr.all": [[264, "polars-expr-all"]], "Data types": [[257, "data-types"]], "Nested": [[257, "nested"]], "Other": [[257, "other"]], "polars.Expr.bin.contains": [[286, "polars-expr-bin-contains"]], "polars.Expr.abs": [[260, "polars-expr-abs"]], "polars.dataframe.groupby.GroupBy.apply": [[236, "polars-dataframe-groupby-groupby-apply"]], "polars.dataframe.groupby.GroupBy.count": [[237, "polars-dataframe-groupby-groupby-count"]], "polars.dataframe.groupby.GroupBy.mean": [[242, "polars-dataframe-groupby-groupby-mean"]], "polars.Expr.arg_min": [[277, "polars-expr-arg-min"]], "polars.Expr.arg_sort": [[278, "polars-expr-arg-sort"]], "polars.Expr.agg_groups": [[262, "polars-expr-agg-groups"]], "polars.dataframe.groupby.GroupBy.n_unique": [[245, "polars-dataframe-groupby-groupby-n-unique"]], "polars.Expr.arr.max": [[281, "polars-expr-arr-max"]], "polars.Expr.arr.unique": [[284, "polars-expr-arr-unique"]], "polars.dataframe.groupby.GroupBy.all": [[235, "polars-dataframe-groupby-groupby-all"]], "polars.Expr.backward_fill": [[285, "polars-expr-backward-fill"]], "polars.dataframe.groupby.GroupBy.min": [[244, "polars-dataframe-groupby-groupby-min"]], "polars.DataFrame.width": [[230, "polars-dataframe-width"]], "polars.DataFrame.transpose": [[222, "polars-dataframe-transpose"]], "polars.dataframe.groupby.GroupBy.tail": [[248, "polars-dataframe-groupby-groupby-tail"]], "Exceptions": [[258, "exceptions"]], "polars.Expr.arr.sum": [[283, "polars-expr-arr-sum"]], "polars.dataframe.groupby.GroupBy.sum": [[247, "polars-dataframe-groupby-groupby-sum"]], "polars.Expr.and_": [[265, "polars-expr-and"]], "polars.DataFrame.to_init_repr": [[216, "polars-dataframe-to-init-repr"]], "polars.Expr.add": [[261, "polars-expr-add"]], "polars.DataFrame.update": [[226, "polars-dataframe-update"]], "polars.dataframe.groupby.GroupBy.first": [[238, "polars-dataframe-groupby-groupby-first"]], "polars.Expr.arcsinh": [[273, "polars-expr-arcsinh"]], "polars.Expr.arg_unique": [[280, "polars-expr-arg-unique"]], "polars.Expr.any": [[266, "polars-expr-any"]], "polars.dataframe.groupby.GroupBy.median": [[243, "polars-dataframe-groupby-groupby-median"]], "polars.DataFrame.with_columns": [[231, "polars-dataframe-with-columns"]], "polars.dataframe.groupby.GroupBy.quantile": [[246, "polars-dataframe-groupby-groupby-quantile"]], "polars.Expr.arr.min": [[282, "polars-expr-arr-min"]], "polars.Expr.bin.decode": [[287, "polars-expr-bin-decode"]], "polars.Expr.arctanh": [[275, "polars-expr-arctanh"]], "polars.DataFrame.vstack": [[229, "polars-dataframe-vstack"]], "polars.DataFrame.unnest": [[224, "polars-dataframe-unnest"]], "polars.Expr.arccos": [[270, "polars-expr-arccos"]], "polars.DataFrame.to_series": [[219, "polars-dataframe-to-series"]], "polars.DataFrame.var": [[228, "polars-dataframe-var"]], "polars.DataFrame.to_struct": [[220, "polars-dataframe-to-struct"]], "polars.DataFrame.with_row_count": [[232, "polars-dataframe-with-row-count"]], "polars.dataframe.groupby.GroupBy.__iter__": [[233, "polars-dataframe-groupby-groupby-iter"]], "polars.DataFrame.unstack": [[225, "polars-dataframe-unstack"]], "polars.Expr.arg_true": [[279, "polars-expr-arg-true"]], "polars.DataFrame.to_pandas": [[218, "polars-dataframe-to-pandas"]], "polars.dataframe.groupby.GroupBy.head": [[239, "polars-dataframe-groupby-groupby-head"]], "polars.Expr.arcsin": [[272, "polars-expr-arcsin"]], "polars.dataframe.groupby.GroupBy.last": [[240, "polars-dataframe-groupby-groupby-last"]], "polars.DataFrame.unique": [[223, "polars-dataframe-unique"]], "polars.Expr.alias": [[263, "polars-expr-alias"]], "polars.Expr.arg_max": [[276, "polars-expr-arg-max"]], "polars.Expr.approx_unique": [[269, "polars-expr-approx-unique"]], "polars.DataFrame.top_k": [[221, "polars-dataframe-top-k"]], "polars.DataFrame.upsample": [[227, "polars-dataframe-upsample"]], "polars.Expr.arccosh": [[271, "polars-expr-arccosh"]], "polars.Expr.apply": [[268, "polars-expr-apply"]], "polars.Expr.append": [[267, "polars-expr-append"]]}, "indexentries": {"array (class in polars)": [[2, "polars.Array"]], "__init__() (polars.array method)": [[2, "polars.Array.__init__"]], "binary (class in polars)": [[3, "polars.Binary"]], "__init__() (polars.binary method)": [[3, "polars.Binary.__init__"]], "boolean (class in polars)": [[4, "polars.Boolean"]], "__init__() (polars.boolean method)": [[4, "polars.Boolean.__init__"]], "categorical (class in polars)": [[5, "polars.Categorical"]], "__init__() (polars.categorical method)": [[5, "polars.Categorical.__init__"]], "activate_decimals() (polars.config class method)": [[6, "polars.Config.activate_decimals"]], "load() (polars.config class method)": [[7, "polars.Config.load"]], "restore_defaults() (polars.config class method)": [[8, "polars.Config.restore_defaults"]], "save() (polars.config class method)": [[9, "polars.Config.save"]], "set_ascii_tables() (polars.config class method)": [[10, "polars.Config.set_ascii_tables"]], "set_fmt_float() (polars.config class method)": [[11, "polars.Config.set_fmt_float"]], "set_fmt_str_lengths() (polars.config class method)": [[12, "polars.Config.set_fmt_str_lengths"]], "set_streaming_chunk_size() (polars.config class method)": [[13, "polars.Config.set_streaming_chunk_size"]], "set_tbl_cell_alignment() (polars.config class method)": [[14, "polars.Config.set_tbl_cell_alignment"]], "set_tbl_cols() (polars.config class method)": [[15, "polars.Config.set_tbl_cols"]], "set_tbl_column_data_type_inline() (polars.config class method)": [[16, "polars.Config.set_tbl_column_data_type_inline"]], "set_tbl_dataframe_shape_below() (polars.config class method)": [[17, "polars.Config.set_tbl_dataframe_shape_below"]], "set_tbl_formatting() (polars.config class method)": [[18, "polars.Config.set_tbl_formatting"]], "set_tbl_hide_column_data_types() (polars.config class method)": [[19, "polars.Config.set_tbl_hide_column_data_types"]], "set_tbl_hide_column_names() (polars.config class method)": [[20, "polars.Config.set_tbl_hide_column_names"]], "set_tbl_hide_dataframe_shape() (polars.config class method)": [[21, "polars.Config.set_tbl_hide_dataframe_shape"]], "set_tbl_hide_dtype_separator() (polars.config class method)": [[22, "polars.Config.set_tbl_hide_dtype_separator"]], "set_tbl_rows() (polars.config class method)": [[23, "polars.Config.set_tbl_rows"]], "set_tbl_width_chars() (polars.config class method)": [[24, "polars.Config.set_tbl_width_chars"]], "set_verbose() (polars.config class method)": [[25, "polars.Config.set_verbose"]], "state() (polars.config class method)": [[26, "polars.Config.state"]], "write_avro() (polars.dataframe method)": [[27, "polars.DataFrame.write_avro"]], "write_csv() (polars.dataframe method)": [[28, "polars.DataFrame.write_csv"]], "write_database() (polars.dataframe method)": [[29, "polars.DataFrame.write_database"]], "write_delta() (polars.dataframe method)": [[30, "polars.DataFrame.write_delta"]], "write_excel() (polars.dataframe method)": [[31, "polars.DataFrame.write_excel"]], "write_ipc() (polars.dataframe method)": [[32, "polars.DataFrame.write_ipc"]], "write_json() (polars.dataframe method)": [[33, "polars.DataFrame.write_json"]], "write_ndjson() (polars.dataframe method)": [[34, "polars.DataFrame.write_ndjson"]], "write_parquet() (polars.dataframe method)": [[35, "polars.DataFrame.write_parquet"]], "datatype (class in polars)": [[36, "polars.DataType"]], "__init__() (polars.datatype method)": [[36, "polars.DataType.__init__"]], "date (class in polars)": [[37, "polars.Date"]], "__init__() (polars.date method)": [[37, "polars.Date.__init__"]], "datetime (class in polars)": [[38, "polars.Datetime"]], "__init__() (polars.datetime method)": [[38, "polars.Datetime.__init__"]], "decimal (class in polars)": [[39, "polars.Decimal"]], "__init__() (polars.decimal method)": [[39, "polars.Decimal.__init__"]], "duration (class in polars)": [[40, "polars.Duration"]], "__init__() (polars.duration method)": [[40, "polars.Duration.__init__"]], "float32 (class in polars)": [[41, "polars.Float32"]], "__init__() (polars.float32 method)": [[41, "polars.Float32.__init__"]], "float64 (class in polars)": [[42, "polars.Float64"]], "__init__() (polars.float64 method)": [[42, "polars.Float64.__init__"]], "int16 (class in polars)": [[43, "polars.Int16"]], "__init__() (polars.int16 method)": [[43, "polars.Int16.__init__"]], "int32 (class in polars)": [[44, "polars.Int32"]], "__init__() (polars.int32 method)": [[44, "polars.Int32.__init__"]], "int64 (class in polars)": [[45, "polars.Int64"]], "__init__() (polars.int64 method)": [[45, "polars.Int64.__init__"]], "int8 (class in polars)": [[46, "polars.Int8"]], "__init__() (polars.int8 method)": [[46, "polars.Int8.__init__"]], "sink_ipc() (polars.lazyframe method)": [[47, "polars.LazyFrame.sink_ipc"]], "sink_parquet() (polars.lazyframe method)": [[48, "polars.LazyFrame.sink_parquet"]], "list (class in polars)": [[49, "polars.List"]], "__init__() (polars.list method)": [[49, "polars.List.__init__"]], "null (class in polars)": [[50, "polars.Null"]], "__init__() (polars.null method)": [[50, "polars.Null.__init__"]], "object (class in polars)": [[51, "polars.Object"]], "__init__() (polars.object method)": [[51, "polars.Object.__init__"]], "execute() (polars.sqlcontext method)": [[52, "polars.SQLContext.execute"]], "register() (polars.sqlcontext method)": [[53, "polars.SQLContext.register"]], "register_globals() (polars.sqlcontext method)": [[54, "polars.SQLContext.register_globals"]], "register_many() (polars.sqlcontext method)": [[55, "polars.SQLContext.register_many"]], "tables() (polars.sqlcontext method)": [[56, "polars.SQLContext.tables"]], "unregister() (polars.sqlcontext method)": [[57, "polars.SQLContext.unregister"]], "stringcache (class in polars)": [[58, "polars.StringCache"]], "__init__() (polars.stringcache method)": [[58, "polars.StringCache.__init__"]], "struct (class in polars)": [[59, "polars.Struct"]], "__init__() (polars.struct method)": [[59, "polars.Struct.__init__"]], "time (class in polars)": [[60, "polars.Time"]], "__init__() (polars.time method)": [[60, "polars.Time.__init__"]], "uint16 (class in polars)": [[61, "polars.UInt16"]], "__init__() (polars.uint16 method)": [[61, "polars.UInt16.__init__"]], "uint32 (class in polars)": [[62, "polars.UInt32"]], "__init__() (polars.uint32 method)": [[62, "polars.UInt32.__init__"]], "uint64 (class in polars)": [[63, "polars.UInt64"]], "__init__() (polars.uint64 method)": [[63, "polars.UInt64.__init__"]], "uint8 (class in polars)": [[64, "polars.UInt8"]], "__init__() (polars.uint8 method)": [[64, "polars.UInt8.__init__"]], "unknown (class in polars)": [[65, "polars.Unknown"]], "__init__() (polars.unknown method)": [[65, "polars.Unknown.__init__"]], "utf8 (class in polars)": [[66, "polars.Utf8"]], "__init__() (polars.utf8 method)": [[66, "polars.Utf8.__init__"]], "align_frames() (in module polars)": [[67, "polars.align_frames"]], "register_dataframe_namespace() (in module polars.api)": [[68, "polars.api.register_dataframe_namespace"]], "register_expr_namespace() (in module polars.api)": [[69, "polars.api.register_expr_namespace"]], "register_lazyframe_namespace() (in module polars.api)": [[70, "polars.api.register_lazyframe_namespace"]], "register_series_namespace() (in module polars.api)": [[71, "polars.api.register_series_namespace"]], "build_info() (in module polars)": [[72, "polars.build_info"]], "collect_all() (in module polars)": [[73, "polars.collect_all"]], "concat() (in module polars)": [[74, "polars.concat"]], "enable_string_cache() (in module polars)": [[75, "polars.enable_string_cache"]], "arrowerror": [[76, "polars.exceptions.ArrowError"]], "columnnotfounderror": [[77, "polars.exceptions.ColumnNotFoundError"]], "computeerror": [[78, "polars.exceptions.ComputeError"]], "duplicateerror": [[79, "polars.exceptions.DuplicateError"]], "invalidoperationerror": [[80, "polars.exceptions.InvalidOperationError"]], "nodataerror": [[81, "polars.exceptions.NoDataError"]], "norowsreturnederror": [[82, "polars.exceptions.NoRowsReturnedError"]], "polarspanicerror": [[83, "polars.exceptions.PolarsPanicError"]], "rowserror": [[84, "polars.exceptions.RowsError"]], "schemaerror": [[85, "polars.exceptions.SchemaError"]], "schemafieldnotfounderror": [[86, "polars.exceptions.SchemaFieldNotFoundError"]], "shapeerror": [[87, "polars.exceptions.ShapeError"]], "structfieldnotfounderror": [[88, "polars.exceptions.StructFieldNotFoundError"]], "toomanyrowsreturnederror": [[89, "polars.exceptions.TooManyRowsReturnedError"]], "from_arrow() (in module polars)": [[90, "polars.from_arrow"]], "from_dataframe() (in module polars)": [[91, "polars.from_dataframe"]], "from_dict() (in module polars)": [[92, "polars.from_dict"]], "from_dicts() (in module polars)": [[93, "polars.from_dicts"]], "from_numpy() (in module polars)": [[94, "polars.from_numpy"]], "from_pandas() (in module polars)": [[95, "polars.from_pandas"]], "from_records() (in module polars)": [[96, "polars.from_records"]], "from_repr() (in module polars)": [[97, "polars.from_repr"]], "get_index_type() (in module polars)": [[98, "polars.get_index_type"]], "next_batches() (polars.io.csv.batched_reader.batchedcsvreader method)": [[99, "polars.io.csv.batched_reader.BatchedCsvReader.next_batches"]], "read_avro() (in module polars)": [[100, "polars.read_avro"]], "read_csv() (in module polars)": [[101, "polars.read_csv"]], "read_csv_batched() (in module polars)": [[102, "polars.read_csv_batched"]], "read_database() (in module polars)": [[103, "polars.read_database"]], "read_delta() (in module polars)": [[104, "polars.read_delta"]], "read_excel() (in module polars)": [[105, "polars.read_excel"]], "read_ipc() (in module polars)": [[106, "polars.read_ipc"]], "read_ipc_schema() (in module polars)": [[107, "polars.read_ipc_schema"]], "read_json() (in module polars)": [[108, "polars.read_json"]], "read_ndjson() (in module polars)": [[109, "polars.read_ndjson"]], "read_parquet() (in module polars)": [[110, "polars.read_parquet"]], "read_parquet_schema() (in module polars)": [[111, "polars.read_parquet_schema"]], "scan_csv() (in module polars)": [[112, "polars.scan_csv"]], "scan_delta() (in module polars)": [[113, "polars.scan_delta"]], "scan_ipc() (in module polars)": [[114, "polars.scan_ipc"]], "scan_ndjson() (in module polars)": [[115, "polars.scan_ndjson"]], "scan_parquet() (in module polars)": [[116, "polars.scan_parquet"]], "scan_pyarrow_dataset() (in module polars)": [[117, "polars.scan_pyarrow_dataset"]], "show_versions() (in module polars)": [[118, "polars.show_versions"]], "assert_frame_equal() (in module polars.testing)": [[119, "polars.testing.assert_frame_equal"]], "assert_series_equal() (in module polars.testing)": [[120, "polars.testing.assert_series_equal"]], "__init__() (polars.testing.parametric.column method)": [[121, "polars.testing.parametric.column.__init__"]], "column (class in polars.testing.parametric)": [[121, "polars.testing.parametric.column"]], "columns() (in module polars.testing.parametric)": [[122, "polars.testing.parametric.columns"]], "create_list_strategy() (in module polars.testing.parametric)": [[123, "polars.testing.parametric.create_list_strategy"]], "dataframes() (in module polars.testing.parametric)": [[124, "polars.testing.parametric.dataframes"]], "load_profile() (in module polars.testing.parametric)": [[125, "polars.testing.parametric.load_profile"]], "series() (in module polars.testing.parametric)": [[126, "polars.testing.parametric.series"]], "set_profile() (in module polars.testing.parametric)": [[127, "polars.testing.parametric.set_profile"]], "threadpool_size() (in module polars)": [[128, "polars.threadpool_size"]], "using_string_cache() (in module polars)": [[129, "polars.using_string_cache"]], "__dataframe__() (polars.dataframe method)": [[132, "polars.DataFrame.__dataframe__"]], "apply() (polars.dataframe method)": [[133, "polars.DataFrame.apply"]], "bottom_k() (polars.dataframe method)": [[134, "polars.DataFrame.bottom_k"]], "clear() (polars.dataframe method)": [[135, "polars.DataFrame.clear"]], "clone() (polars.dataframe method)": [[136, "polars.DataFrame.clone"]], "columns (polars.dataframe property)": [[137, "polars.DataFrame.columns"]], "corr() (polars.dataframe method)": [[138, "polars.DataFrame.corr"]], "describe() (polars.dataframe method)": [[139, "polars.DataFrame.describe"]], "drop() (polars.dataframe method)": [[140, "polars.DataFrame.drop"]], "drop_in_place() (polars.dataframe method)": [[141, "polars.DataFrame.drop_in_place"]], "drop_nulls() (polars.dataframe method)": [[142, "polars.DataFrame.drop_nulls"]], "dtypes (polars.dataframe property)": [[143, "polars.DataFrame.dtypes"]], "estimated_size() (polars.dataframe method)": [[144, "polars.DataFrame.estimated_size"]], "explode() (polars.dataframe method)": [[145, "polars.DataFrame.explode"]], "extend() (polars.dataframe method)": [[146, "polars.DataFrame.extend"]], "fill_nan() (polars.dataframe method)": [[147, "polars.DataFrame.fill_nan"]], "fill_null() (polars.dataframe method)": [[148, "polars.DataFrame.fill_null"]], "filter() (polars.dataframe method)": [[149, "polars.DataFrame.filter"]], "find_idx_by_name() (polars.dataframe method)": [[150, "polars.DataFrame.find_idx_by_name"]], "flags (polars.dataframe property)": [[151, "polars.DataFrame.flags"]], "fold() (polars.dataframe method)": [[152, "polars.DataFrame.fold"]], "frame_equal() (polars.dataframe method)": [[153, "polars.DataFrame.frame_equal"]], "get_column() (polars.dataframe method)": [[154, "polars.DataFrame.get_column"]], "get_columns() (polars.dataframe method)": [[155, "polars.DataFrame.get_columns"]], "glimpse() (polars.dataframe method)": [[156, "polars.DataFrame.glimpse"]], "groupby() (polars.dataframe method)": [[157, "polars.DataFrame.groupby"]], "groupby_dynamic() (polars.dataframe method)": [[158, "polars.DataFrame.groupby_dynamic"]], "groupby_rolling() (polars.dataframe method)": [[159, "polars.DataFrame.groupby_rolling"]], "hash_rows() (polars.dataframe method)": [[160, "polars.DataFrame.hash_rows"]], "head() (polars.dataframe method)": [[161, "polars.DataFrame.head"]], "height (polars.dataframe property)": [[162, "polars.DataFrame.height"]], "hstack() (polars.dataframe method)": [[163, "polars.DataFrame.hstack"]], "insert_at_idx() (polars.dataframe method)": [[164, "polars.DataFrame.insert_at_idx"]], "interpolate() (polars.dataframe method)": [[165, "polars.DataFrame.interpolate"]], "is_duplicated() (polars.dataframe method)": [[166, "polars.DataFrame.is_duplicated"]], "is_empty() (polars.dataframe method)": [[167, "polars.DataFrame.is_empty"]], "is_unique() (polars.dataframe method)": [[168, "polars.DataFrame.is_unique"]], "item() (polars.dataframe method)": [[169, "polars.DataFrame.item"]], "iter_rows() (polars.dataframe method)": [[170, "polars.DataFrame.iter_rows"]], "iter_slices() (polars.dataframe method)": [[171, "polars.DataFrame.iter_slices"]], "join() (polars.dataframe method)": [[172, "polars.DataFrame.join"]], "join_asof() (polars.dataframe method)": [[173, "polars.DataFrame.join_asof"]], "lazy() (polars.dataframe method)": [[174, "polars.DataFrame.lazy"]], "limit() (polars.dataframe method)": [[175, "polars.DataFrame.limit"]], "max() (polars.dataframe method)": [[176, "polars.DataFrame.max"]], "mean() (polars.dataframe method)": [[177, "polars.DataFrame.mean"]], "median() (polars.dataframe method)": [[178, "polars.DataFrame.median"]], "melt() (polars.dataframe method)": [[179, "polars.DataFrame.melt"]], "merge_sorted() (polars.dataframe method)": [[180, "polars.DataFrame.merge_sorted"]], "min() (polars.dataframe method)": [[181, "polars.DataFrame.min"]], "n_chunks() (polars.dataframe method)": [[182, "polars.DataFrame.n_chunks"]], "n_unique() (polars.dataframe method)": [[183, "polars.DataFrame.n_unique"]], "null_count() (polars.dataframe method)": [[184, "polars.DataFrame.null_count"]], "partition_by() (polars.dataframe method)": [[185, "polars.DataFrame.partition_by"]], "pipe() (polars.dataframe method)": [[186, "polars.DataFrame.pipe"]], "pivot() (polars.dataframe method)": [[187, "polars.DataFrame.pivot"]], "product() (polars.dataframe method)": [[188, "polars.DataFrame.product"]], "quantile() (polars.dataframe method)": [[189, "polars.DataFrame.quantile"]], "rechunk() (polars.dataframe method)": [[190, "polars.DataFrame.rechunk"]], "rename() (polars.dataframe method)": [[191, "polars.DataFrame.rename"]], "replace() (polars.dataframe method)": [[192, "polars.DataFrame.replace"]], "replace_at_idx() (polars.dataframe method)": [[193, "polars.DataFrame.replace_at_idx"]], "reverse() (polars.dataframe method)": [[194, "polars.DataFrame.reverse"]], "row() (polars.dataframe method)": [[195, "polars.DataFrame.row"]], "rows() (polars.dataframe method)": [[196, "polars.DataFrame.rows"]], "rows_by_key() (polars.dataframe method)": [[197, "polars.DataFrame.rows_by_key"]], "sample() (polars.dataframe method)": [[198, "polars.DataFrame.sample"]], "schema (polars.dataframe property)": [[199, "polars.DataFrame.schema"]], "select() (polars.dataframe method)": [[200, "polars.DataFrame.select"]], "set_sorted() (polars.dataframe method)": [[201, "polars.DataFrame.set_sorted"]], "shape (polars.dataframe property)": [[202, "polars.DataFrame.shape"]], "shift() (polars.dataframe method)": [[203, "polars.DataFrame.shift"]], "shift_and_fill() (polars.dataframe method)": [[204, "polars.DataFrame.shift_and_fill"]], "shrink_to_fit() (polars.dataframe method)": [[205, "polars.DataFrame.shrink_to_fit"]], "slice() (polars.dataframe method)": [[206, "polars.DataFrame.slice"]], "sort() (polars.dataframe method)": [[207, "polars.DataFrame.sort"]], "std() (polars.dataframe method)": [[208, "polars.DataFrame.std"]], "sum() (polars.dataframe method)": [[209, "polars.DataFrame.sum"]], "tail() (polars.dataframe method)": [[210, "polars.DataFrame.tail"]], "take_every() (polars.dataframe method)": [[211, "polars.DataFrame.take_every"]], "to_arrow() (polars.dataframe method)": [[212, "polars.DataFrame.to_arrow"]], "to_dict() (polars.dataframe method)": [[213, "polars.DataFrame.to_dict"]], "to_dicts() (polars.dataframe method)": [[214, "polars.DataFrame.to_dicts"]], "to_dummies() (polars.dataframe method)": [[215, "polars.DataFrame.to_dummies"]], "to_init_repr() (polars.dataframe method)": [[216, "polars.DataFrame.to_init_repr"]], "to_numpy() (polars.dataframe method)": [[217, "polars.DataFrame.to_numpy"]], "to_pandas() (polars.dataframe method)": [[218, "polars.DataFrame.to_pandas"]], "to_series() (polars.dataframe method)": [[219, "polars.DataFrame.to_series"]], "to_struct() (polars.dataframe method)": [[220, "polars.DataFrame.to_struct"]], "top_k() (polars.dataframe method)": [[221, "polars.DataFrame.top_k"]], "transpose() (polars.dataframe method)": [[222, "polars.DataFrame.transpose"]], "unique() (polars.dataframe method)": [[223, "polars.DataFrame.unique"]], "unnest() (polars.dataframe method)": [[224, "polars.DataFrame.unnest"]], "unstack() (polars.dataframe method)": [[225, "polars.DataFrame.unstack"]], "update() (polars.dataframe method)": [[226, "polars.DataFrame.update"]], "upsample() (polars.dataframe method)": [[227, "polars.DataFrame.upsample"]], "var() (polars.dataframe method)": [[228, "polars.DataFrame.var"]], "vstack() (polars.dataframe method)": [[229, "polars.DataFrame.vstack"]], "width (polars.dataframe property)": [[230, "polars.DataFrame.width"]], "with_columns() (polars.dataframe method)": [[231, "polars.DataFrame.with_columns"]], "with_row_count() (polars.dataframe method)": [[232, "polars.DataFrame.with_row_count"]], "__iter__() (polars.dataframe.groupby.groupby method)": [[233, "polars.dataframe.groupby.GroupBy.__iter__"]], "agg() (polars.dataframe.groupby.groupby method)": [[234, "polars.dataframe.groupby.GroupBy.agg"]], "all() (polars.dataframe.groupby.groupby method)": [[235, "polars.dataframe.groupby.GroupBy.all"]], "apply() (polars.dataframe.groupby.groupby method)": [[236, "polars.dataframe.groupby.GroupBy.apply"]], "count() (polars.dataframe.groupby.groupby method)": [[237, "polars.dataframe.groupby.GroupBy.count"]], "first() (polars.dataframe.groupby.groupby method)": [[238, "polars.dataframe.groupby.GroupBy.first"]], "head() (polars.dataframe.groupby.groupby method)": [[239, "polars.dataframe.groupby.GroupBy.head"]], "last() (polars.dataframe.groupby.groupby method)": [[240, "polars.dataframe.groupby.GroupBy.last"]], "max() (polars.dataframe.groupby.groupby method)": [[241, "polars.dataframe.groupby.GroupBy.max"]], "mean() (polars.dataframe.groupby.groupby method)": [[242, "polars.dataframe.groupby.GroupBy.mean"]], "median() (polars.dataframe.groupby.groupby method)": [[243, "polars.dataframe.groupby.GroupBy.median"]], "min() (polars.dataframe.groupby.groupby method)": [[244, "polars.dataframe.groupby.GroupBy.min"]], "n_unique() (polars.dataframe.groupby.groupby method)": [[245, "polars.dataframe.groupby.GroupBy.n_unique"]], "quantile() (polars.dataframe.groupby.groupby method)": [[246, "polars.dataframe.groupby.GroupBy.quantile"]], "sum() (polars.dataframe.groupby.groupby method)": [[247, "polars.dataframe.groupby.GroupBy.sum"]], "tail() (polars.dataframe.groupby.groupby method)": [[248, "polars.dataframe.groupby.GroupBy.tail"]], "abs() (polars.expr method)": [[260, "polars.Expr.abs"]], "add() (polars.expr method)": [[261, "polars.Expr.add"]], "agg_groups() (polars.expr method)": [[262, "polars.Expr.agg_groups"]], "alias() (polars.expr method)": [[263, "polars.Expr.alias"]], "all() (polars.expr method)": [[264, "polars.Expr.all"]], "and_() (polars.expr method)": [[265, "polars.Expr.and_"]], "any() (polars.expr method)": [[266, "polars.Expr.any"]], "append() (polars.expr method)": [[267, "polars.Expr.append"]], "apply() (polars.expr method)": [[268, "polars.Expr.apply"]], "approx_unique() (polars.expr method)": [[269, "polars.Expr.approx_unique"]], "arccos() (polars.expr method)": [[270, "polars.Expr.arccos"]], "arccosh() (polars.expr method)": [[271, "polars.Expr.arccosh"]], "arcsin() (polars.expr method)": [[272, "polars.Expr.arcsin"]], "arcsinh() (polars.expr method)": [[273, "polars.Expr.arcsinh"]], "arctan() (polars.expr method)": [[274, "polars.Expr.arctan"]], "arctanh() (polars.expr method)": [[275, "polars.Expr.arctanh"]], "arg_max() (polars.expr method)": [[276, "polars.Expr.arg_max"]], "arg_min() (polars.expr method)": [[277, "polars.Expr.arg_min"]], "arg_sort() (polars.expr method)": [[278, "polars.Expr.arg_sort"]], "arg_true() (polars.expr method)": [[279, "polars.Expr.arg_true"]], "arg_unique() (polars.expr method)": [[280, "polars.Expr.arg_unique"]], "max() (polars.expr.arr method)": [[281, "polars.Expr.arr.max"]], "min() (polars.expr.arr method)": [[282, "polars.Expr.arr.min"]], "sum() (polars.expr.arr method)": [[283, "polars.Expr.arr.sum"]], "unique() (polars.expr.arr method)": [[284, "polars.Expr.arr.unique"]], "backward_fill() (polars.expr method)": [[285, "polars.Expr.backward_fill"]], "contains() (polars.expr.bin method)": [[286, "polars.Expr.bin.contains"]], "decode() (polars.expr.bin method)": [[287, "polars.Expr.bin.decode"]], "encode() (polars.expr.bin method)": [[288, "polars.Expr.bin.encode"]], "ends_with() (polars.expr.bin method)": [[289, "polars.Expr.bin.ends_with"]], "starts_with() (polars.expr.bin method)": [[290, "polars.Expr.bin.starts_with"]], "bottom_k() (polars.expr method)": [[291, "polars.Expr.bottom_k"]], "cache() (polars.expr method)": [[292, "polars.Expr.cache"]], "cast() (polars.expr method)": [[293, "polars.Expr.cast"]], "get_categories() (polars.expr.cat method)": [[294, "polars.Expr.cat.get_categories"]], "set_ordering() (polars.expr.cat method)": [[295, "polars.Expr.cat.set_ordering"]], "cbrt() (polars.expr method)": [[296, "polars.Expr.cbrt"]], "ceil() (polars.expr method)": [[297, "polars.Expr.ceil"]], "clip() (polars.expr method)": [[298, "polars.Expr.clip"]], "clip_max() (polars.expr method)": [[299, "polars.Expr.clip_max"]], "clip_min() (polars.expr method)": [[300, "polars.Expr.clip_min"]], "cos() (polars.expr method)": [[301, "polars.Expr.cos"]], "cosh() (polars.expr method)": [[302, "polars.Expr.cosh"]], "count() (polars.expr method)": [[303, "polars.Expr.count"]], "cumcount() (polars.expr method)": [[304, "polars.Expr.cumcount"]], "cummax() (polars.expr method)": [[305, "polars.Expr.cummax"]], "cummin() (polars.expr method)": [[306, "polars.Expr.cummin"]], "cumprod() (polars.expr method)": [[307, "polars.Expr.cumprod"]], "cumsum() (polars.expr method)": [[308, "polars.Expr.cumsum"]], "cumulative_eval() (polars.expr method)": [[309, "polars.Expr.cumulative_eval"]], "cut() (polars.expr method)": [[310, "polars.Expr.cut"]], "degrees() (polars.expr method)": [[311, "polars.Expr.degrees"]], "diff() (polars.expr method)": [[312, "polars.Expr.diff"]], "dot() (polars.expr method)": [[313, "polars.Expr.dot"]], "drop_nans() (polars.expr method)": [[314, "polars.Expr.drop_nans"]], "drop_nulls() (polars.expr method)": [[315, "polars.Expr.drop_nulls"]], "base_utc_offset() (polars.expr.dt method)": [[316, "polars.Expr.dt.base_utc_offset"]], "cast_time_unit() (polars.expr.dt method)": [[317, "polars.Expr.dt.cast_time_unit"]], "combine() (polars.expr.dt method)": [[318, "polars.Expr.dt.combine"]], "convert_time_zone() (polars.expr.dt method)": [[319, "polars.Expr.dt.convert_time_zone"]], "date() (polars.expr.dt method)": [[320, "polars.Expr.dt.date"]], "datetime() (polars.expr.dt method)": [[321, "polars.Expr.dt.datetime"]], "day() (polars.expr.dt method)": [[322, "polars.Expr.dt.day"]], "days() (polars.expr.dt method)": [[323, "polars.Expr.dt.days"]], "dst_offset() (polars.expr.dt method)": [[324, "polars.Expr.dt.dst_offset"]], "epoch() (polars.expr.dt method)": [[325, "polars.Expr.dt.epoch"]], "hour() (polars.expr.dt method)": [[326, "polars.Expr.dt.hour"]], "hours() (polars.expr.dt method)": [[327, "polars.Expr.dt.hours"]], "is_leap_year() (polars.expr.dt method)": [[328, "polars.Expr.dt.is_leap_year"]], "iso_year() (polars.expr.dt method)": [[329, "polars.Expr.dt.iso_year"]], "microsecond() (polars.expr.dt method)": [[330, "polars.Expr.dt.microsecond"]], "microseconds() (polars.expr.dt method)": [[331, "polars.Expr.dt.microseconds"]], "millisecond() (polars.expr.dt method)": [[332, "polars.Expr.dt.millisecond"]], "milliseconds() (polars.expr.dt method)": [[333, "polars.Expr.dt.milliseconds"]], "minute() (polars.expr.dt method)": [[334, "polars.Expr.dt.minute"]], "minutes() (polars.expr.dt method)": [[335, "polars.Expr.dt.minutes"]], "month() (polars.expr.dt method)": [[336, "polars.Expr.dt.month"]], "month_end() (polars.expr.dt method)": [[337, "polars.Expr.dt.month_end"]], "month_start() (polars.expr.dt method)": [[338, "polars.Expr.dt.month_start"]], "nanosecond() (polars.expr.dt method)": [[339, "polars.Expr.dt.nanosecond"]], "nanoseconds() (polars.expr.dt method)": [[340, "polars.Expr.dt.nanoseconds"]], "offset_by() (polars.expr.dt method)": [[341, "polars.Expr.dt.offset_by"]], "ordinal_day() (polars.expr.dt method)": [[342, "polars.Expr.dt.ordinal_day"]], "quarter() (polars.expr.dt method)": [[343, "polars.Expr.dt.quarter"]], "replace_time_zone() (polars.expr.dt method)": [[344, "polars.Expr.dt.replace_time_zone"]], "round() (polars.expr.dt method)": [[345, "polars.Expr.dt.round"]], "second() (polars.expr.dt method)": [[346, "polars.Expr.dt.second"]], "seconds() (polars.expr.dt method)": [[347, "polars.Expr.dt.seconds"]], "strftime() (polars.expr.dt method)": [[348, "polars.Expr.dt.strftime"]], "time() (polars.expr.dt method)": [[349, "polars.Expr.dt.time"]], "timestamp() (polars.expr.dt method)": [[350, "polars.Expr.dt.timestamp"]], "to_string() (polars.expr.dt method)": [[351, "polars.Expr.dt.to_string"]], "truncate() (polars.expr.dt method)": [[352, "polars.Expr.dt.truncate"]], "week() (polars.expr.dt method)": [[353, "polars.Expr.dt.week"]], "weekday() (polars.expr.dt method)": [[354, "polars.Expr.dt.weekday"]], "with_time_unit() (polars.expr.dt method)": [[355, "polars.Expr.dt.with_time_unit"]], "year() (polars.expr.dt method)": [[356, "polars.Expr.dt.year"]], "entropy() (polars.expr method)": [[357, "polars.Expr.entropy"]], "eq() (polars.expr method)": [[358, "polars.Expr.eq"]], "eq_missing() (polars.expr method)": [[359, "polars.Expr.eq_missing"]], "ewm_mean() (polars.expr method)": [[360, "polars.Expr.ewm_mean"]], "ewm_std() (polars.expr method)": [[361, "polars.Expr.ewm_std"]], "ewm_var() (polars.expr method)": [[362, "polars.Expr.ewm_var"]], "exclude() (polars.expr method)": [[363, "polars.Expr.exclude"]], "exp() (polars.expr method)": [[364, "polars.Expr.exp"]], "explode() (polars.expr method)": [[365, "polars.Expr.explode"]], "extend_constant() (polars.expr method)": [[366, "polars.Expr.extend_constant"]], "fill_nan() (polars.expr method)": [[367, "polars.Expr.fill_nan"]], "fill_null() (polars.expr method)": [[368, "polars.Expr.fill_null"]], "filter() (polars.expr method)": [[369, "polars.Expr.filter"]], "first() (polars.expr method)": [[370, "polars.Expr.first"]], "flatten() (polars.expr method)": [[371, "polars.Expr.flatten"]], "floor() (polars.expr method)": [[372, "polars.Expr.floor"]], "floordiv() (polars.expr method)": [[373, "polars.Expr.floordiv"]], "forward_fill() (polars.expr method)": [[374, "polars.Expr.forward_fill"]], "from_json() (polars.expr class method)": [[375, "polars.Expr.from_json"]], "ge() (polars.expr method)": [[376, "polars.Expr.ge"]], "gt() (polars.expr method)": [[377, "polars.Expr.gt"]], "hash() (polars.expr method)": [[378, "polars.Expr.hash"]], "head() (polars.expr method)": [[379, "polars.Expr.head"]], "implode() (polars.expr method)": [[380, "polars.Expr.implode"]], "inspect() (polars.expr method)": [[381, "polars.Expr.inspect"]], "interpolate() (polars.expr method)": [[382, "polars.Expr.interpolate"]], "is_between() (polars.expr method)": [[383, "polars.Expr.is_between"]], "is_duplicated() (polars.expr method)": [[384, "polars.Expr.is_duplicated"]], "is_finite() (polars.expr method)": [[385, "polars.Expr.is_finite"]], "is_first() (polars.expr method)": [[386, "polars.Expr.is_first"]], "is_in() (polars.expr method)": [[387, "polars.Expr.is_in"]], "is_infinite() (polars.expr method)": [[388, "polars.Expr.is_infinite"]], "is_nan() (polars.expr method)": [[389, "polars.Expr.is_nan"]], "is_not() (polars.expr method)": [[390, "polars.Expr.is_not"]], "is_not_nan() (polars.expr method)": [[391, "polars.Expr.is_not_nan"]], "is_not_null() (polars.expr method)": [[392, "polars.Expr.is_not_null"]], "is_null() (polars.expr method)": [[393, "polars.Expr.is_null"]], "is_unique() (polars.expr method)": [[394, "polars.Expr.is_unique"]], "keep_name() (polars.expr method)": [[395, "polars.Expr.keep_name"]], "kurtosis() (polars.expr method)": [[396, "polars.Expr.kurtosis"]], "last() (polars.expr method)": [[397, "polars.Expr.last"]], "le() (polars.expr method)": [[398, "polars.Expr.le"]], "len() (polars.expr method)": [[399, "polars.Expr.len"]], "limit() (polars.expr method)": [[400, "polars.Expr.limit"]], "all() (polars.expr.list method)": [[401, "polars.Expr.list.all"]], "any() (polars.expr.list method)": [[402, "polars.Expr.list.any"]], "arg_max() (polars.expr.list method)": [[403, "polars.Expr.list.arg_max"]], "arg_min() (polars.expr.list method)": [[404, "polars.Expr.list.arg_min"]], "concat() (polars.expr.list method)": [[405, "polars.Expr.list.concat"]], "contains() (polars.expr.list method)": [[406, "polars.Expr.list.contains"]], "count_match() (polars.expr.list method)": [[407, "polars.Expr.list.count_match"]], "diff() (polars.expr.list method)": [[408, "polars.Expr.list.diff"]], "difference() (polars.expr.list method)": [[409, "polars.Expr.list.difference"]], "eval() (polars.expr.list method)": [[410, "polars.Expr.list.eval"]], "explode() (polars.expr.list method)": [[411, "polars.Expr.list.explode"]], "first() (polars.expr.list method)": [[412, "polars.Expr.list.first"]], "get() (polars.expr.list method)": [[413, "polars.Expr.list.get"]], "head() (polars.expr.list method)": [[414, "polars.Expr.list.head"]], "intersection() (polars.expr.list method)": [[415, "polars.Expr.list.intersection"]], "join() (polars.expr.list method)": [[416, "polars.Expr.list.join"]], "last() (polars.expr.list method)": [[417, "polars.Expr.list.last"]], "lengths() (polars.expr.list method)": [[418, "polars.Expr.list.lengths"]], "max() (polars.expr.list method)": [[419, "polars.Expr.list.max"]], "mean() (polars.expr.list method)": [[420, "polars.Expr.list.mean"]], "min() (polars.expr.list method)": [[421, "polars.Expr.list.min"]], "reverse() (polars.expr.list method)": [[422, "polars.Expr.list.reverse"]], "shift() (polars.expr.list method)": [[423, "polars.Expr.list.shift"]], "slice() (polars.expr.list method)": [[424, "polars.Expr.list.slice"]], "sort() (polars.expr.list method)": [[425, "polars.Expr.list.sort"]], "sum() (polars.expr.list method)": [[426, "polars.Expr.list.sum"]], "tail() (polars.expr.list method)": [[427, "polars.Expr.list.tail"]], "take() (polars.expr.list method)": [[428, "polars.Expr.list.take"]], "to_struct() (polars.expr.list method)": [[429, "polars.Expr.list.to_struct"]], "union() (polars.expr.list method)": [[430, "polars.Expr.list.union"]], "unique() (polars.expr.list method)": [[431, "polars.Expr.list.unique"]], "log() (polars.expr method)": [[432, "polars.Expr.log"]], "log10() (polars.expr method)": [[433, "polars.Expr.log10"]], "log1p() (polars.expr method)": [[434, "polars.Expr.log1p"]], "lower_bound() (polars.expr method)": [[435, "polars.Expr.lower_bound"]], "lt() (polars.expr method)": [[436, "polars.Expr.lt"]], "map() (polars.expr method)": [[437, "polars.Expr.map"]], "map_alias() (polars.expr method)": [[438, "polars.Expr.map_alias"]], "map_dict() (polars.expr method)": [[439, "polars.Expr.map_dict"]], "max() (polars.expr method)": [[440, "polars.Expr.max"]], "mean() (polars.expr method)": [[441, "polars.Expr.mean"]], "median() (polars.expr method)": [[442, "polars.Expr.median"]], "eq() (polars.expr.meta method)": [[443, "polars.Expr.meta.eq"]], "has_multiple_outputs() (polars.expr.meta method)": [[444, "polars.Expr.meta.has_multiple_outputs"]], "is_regex_projection() (polars.expr.meta method)": [[445, "polars.Expr.meta.is_regex_projection"]], "ne() (polars.expr.meta method)": [[446, "polars.Expr.meta.ne"]], "output_name() (polars.expr.meta method)": [[447, "polars.Expr.meta.output_name"]], "pop() (polars.expr.meta method)": [[448, "polars.Expr.meta.pop"]], "root_names() (polars.expr.meta method)": [[449, "polars.Expr.meta.root_names"]], "tree_format() (polars.expr.meta method)": [[450, "polars.Expr.meta.tree_format"]], "undo_aliases() (polars.expr.meta method)": [[451, "polars.Expr.meta.undo_aliases"]], "write_json() (polars.expr.meta method)": [[452, "polars.Expr.meta.write_json"]], "min() (polars.expr method)": [[453, "polars.Expr.min"]], "mod() (polars.expr method)": [[454, "polars.Expr.mod"]], "mode() (polars.expr method)": [[455, "polars.Expr.mode"]], "mul() (polars.expr method)": [[456, "polars.Expr.mul"]], "n_unique() (polars.expr method)": [[457, "polars.Expr.n_unique"]], "nan_max() (polars.expr method)": [[458, "polars.Expr.nan_max"]], "nan_min() (polars.expr method)": [[459, "polars.Expr.nan_min"]], "ne() (polars.expr method)": [[460, "polars.Expr.ne"]], "ne_missing() (polars.expr method)": [[461, "polars.Expr.ne_missing"]], "null_count() (polars.expr method)": [[462, "polars.Expr.null_count"]], "or_() (polars.expr method)": [[463, "polars.Expr.or_"]], "over() (polars.expr method)": [[464, "polars.Expr.over"]], "pct_change() (polars.expr method)": [[465, "polars.Expr.pct_change"]], "pipe() (polars.expr method)": [[466, "polars.Expr.pipe"]], "pow() (polars.expr method)": [[467, "polars.Expr.pow"]], "prefix() (polars.expr method)": [[468, "polars.Expr.prefix"]], "product() (polars.expr method)": [[469, "polars.Expr.product"]], "qcut() (polars.expr method)": [[470, "polars.Expr.qcut"]], "quantile() (polars.expr method)": [[471, "polars.Expr.quantile"]], "radians() (polars.expr method)": [[472, "polars.Expr.radians"]], "rank() (polars.expr method)": [[473, "polars.Expr.rank"]], "rechunk() (polars.expr method)": [[474, "polars.Expr.rechunk"]], "reinterpret() (polars.expr method)": [[475, "polars.Expr.reinterpret"]], "repeat_by() (polars.expr method)": [[476, "polars.Expr.repeat_by"]], "reshape() (polars.expr method)": [[477, "polars.Expr.reshape"]], "reverse() (polars.expr method)": [[478, "polars.Expr.reverse"]], "rle() (polars.expr method)": [[479, "polars.Expr.rle"]], "rle_id() (polars.expr method)": [[480, "polars.Expr.rle_id"]], "rolling_apply() (polars.expr method)": [[481, "polars.Expr.rolling_apply"]], "rolling_max() (polars.expr method)": [[482, "polars.Expr.rolling_max"]], "rolling_mean() (polars.expr method)": [[483, "polars.Expr.rolling_mean"]], "rolling_median() (polars.expr method)": [[484, "polars.Expr.rolling_median"]], "rolling_min() (polars.expr method)": [[485, "polars.Expr.rolling_min"]], "rolling_quantile() (polars.expr method)": [[486, "polars.Expr.rolling_quantile"]], "rolling_skew() (polars.expr method)": [[487, "polars.Expr.rolling_skew"]], "rolling_std() (polars.expr method)": [[488, "polars.Expr.rolling_std"]], "rolling_sum() (polars.expr method)": [[489, "polars.Expr.rolling_sum"]], "rolling_var() (polars.expr method)": [[490, "polars.Expr.rolling_var"]], "round() (polars.expr method)": [[491, "polars.Expr.round"]], "sample() (polars.expr method)": [[492, "polars.Expr.sample"]], "search_sorted() (polars.expr method)": [[493, "polars.Expr.search_sorted"]], "set_sorted() (polars.expr method)": [[494, "polars.Expr.set_sorted"]], "shift() (polars.expr method)": [[495, "polars.Expr.shift"]], "shift_and_fill() (polars.expr method)": [[496, "polars.Expr.shift_and_fill"]], "shrink_dtype() (polars.expr method)": [[497, "polars.Expr.shrink_dtype"]], "shuffle() (polars.expr method)": [[498, "polars.Expr.shuffle"]], "sign() (polars.expr method)": [[499, "polars.Expr.sign"]], "sin() (polars.expr method)": [[500, "polars.Expr.sin"]], "sinh() (polars.expr method)": [[501, "polars.Expr.sinh"]], "skew() (polars.expr method)": [[502, "polars.Expr.skew"]], "slice() (polars.expr method)": [[503, "polars.Expr.slice"]], "sort() (polars.expr method)": [[504, "polars.Expr.sort"]], "sort_by() (polars.expr method)": [[505, "polars.Expr.sort_by"]], "sqrt() (polars.expr method)": [[506, "polars.Expr.sqrt"]], "std() (polars.expr method)": [[507, "polars.Expr.std"]], "concat() (polars.expr.str method)": [[508, "polars.Expr.str.concat"]], "contains() (polars.expr.str method)": [[509, "polars.Expr.str.contains"]], "count_match() (polars.expr.str method)": [[510, "polars.Expr.str.count_match"]], "decode() (polars.expr.str method)": [[511, "polars.Expr.str.decode"]], "encode() (polars.expr.str method)": [[512, "polars.Expr.str.encode"]], "ends_with() (polars.expr.str method)": [[513, "polars.Expr.str.ends_with"]], "explode() (polars.expr.str method)": [[514, "polars.Expr.str.explode"]], "extract() (polars.expr.str method)": [[515, "polars.Expr.str.extract"]], "extract_all() (polars.expr.str method)": [[516, "polars.Expr.str.extract_all"]], "json_extract() (polars.expr.str method)": [[517, "polars.Expr.str.json_extract"]], "json_path_match() (polars.expr.str method)": [[518, "polars.Expr.str.json_path_match"]], "lengths() (polars.expr.str method)": [[519, "polars.Expr.str.lengths"]], "ljust() (polars.expr.str method)": [[520, "polars.Expr.str.ljust"]], "lstrip() (polars.expr.str method)": [[521, "polars.Expr.str.lstrip"]], "n_chars() (polars.expr.str method)": [[522, "polars.Expr.str.n_chars"]], "parse_int() (polars.expr.str method)": [[523, "polars.Expr.str.parse_int"]], "replace() (polars.expr.str method)": [[524, "polars.Expr.str.replace"]], "replace_all() (polars.expr.str method)": [[525, "polars.Expr.str.replace_all"]], "rjust() (polars.expr.str method)": [[526, "polars.Expr.str.rjust"]], "rstrip() (polars.expr.str method)": [[527, "polars.Expr.str.rstrip"]], "slice() (polars.expr.str method)": [[528, "polars.Expr.str.slice"]], "split() (polars.expr.str method)": [[529, "polars.Expr.str.split"]], "split_exact() (polars.expr.str method)": [[530, "polars.Expr.str.split_exact"]], "splitn() (polars.expr.str method)": [[531, "polars.Expr.str.splitn"]], "starts_with() (polars.expr.str method)": [[532, "polars.Expr.str.starts_with"]], "strip() (polars.expr.str method)": [[533, "polars.Expr.str.strip"]], "strptime() (polars.expr.str method)": [[534, "polars.Expr.str.strptime"]], "to_date() (polars.expr.str method)": [[535, "polars.Expr.str.to_date"]], "to_datetime() (polars.expr.str method)": [[536, "polars.Expr.str.to_datetime"]], "to_decimal() (polars.expr.str method)": [[537, "polars.Expr.str.to_decimal"]], "to_lowercase() (polars.expr.str method)": [[538, "polars.Expr.str.to_lowercase"]], "to_time() (polars.expr.str method)": [[539, "polars.Expr.str.to_time"]], "to_titlecase() (polars.expr.str method)": [[540, "polars.Expr.str.to_titlecase"]], "to_uppercase() (polars.expr.str method)": [[541, "polars.Expr.str.to_uppercase"]], "zfill() (polars.expr.str method)": [[542, "polars.Expr.str.zfill"]], "field() (polars.expr.struct method)": [[543, "polars.Expr.struct.field"]], "rename_fields() (polars.expr.struct method)": [[544, "polars.Expr.struct.rename_fields"]], "sub() (polars.expr method)": [[545, "polars.Expr.sub"]], "suffix() (polars.expr method)": [[546, "polars.Expr.suffix"]], "sum() (polars.expr method)": [[547, "polars.Expr.sum"]], "tail() (polars.expr method)": [[548, "polars.Expr.tail"]], "take() (polars.expr method)": [[549, "polars.Expr.take"]], "take_every() (polars.expr method)": [[550, "polars.Expr.take_every"]], "tan() (polars.expr method)": [[551, "polars.Expr.tan"]], "tanh() (polars.expr method)": [[552, "polars.Expr.tanh"]], "to_physical() (polars.expr method)": [[553, "polars.Expr.to_physical"]], "top_k() (polars.expr method)": [[554, "polars.Expr.top_k"]], "truediv() (polars.expr method)": [[555, "polars.Expr.truediv"]], "unique() (polars.expr method)": [[556, "polars.Expr.unique"]], "unique_counts() (polars.expr method)": [[557, "polars.Expr.unique_counts"]], "upper_bound() (polars.expr method)": [[558, "polars.Expr.upper_bound"]], "value_counts() (polars.expr method)": [[559, "polars.Expr.value_counts"]], "var() (polars.expr method)": [[560, "polars.Expr.var"]], "where() (polars.expr method)": [[561, "polars.Expr.where"]], "xor() (polars.expr method)": [[562, "polars.Expr.xor"]], "all() (in module polars)": [[563, "polars.all"]], "all_horizontal() (in module polars)": [[564, "polars.all_horizontal"]], "any() (in module polars)": [[565, "polars.any"]], "any_horizontal() (in module polars)": [[566, "polars.any_horizontal"]], "apply() (in module polars)": [[567, "polars.apply"]], "approx_unique() (in module polars)": [[568, "polars.approx_unique"]], "arange() (in module polars)": [[569, "polars.arange"]], "arctan2() (in module polars)": [[570, "polars.arctan2"]], "arctan2d() (in module polars)": [[571, "polars.arctan2d"]], "arg_sort_by() (in module polars)": [[572, "polars.arg_sort_by"]], "arg_where() (in module polars)": [[573, "polars.arg_where"]], "avg() (in module polars)": [[574, "polars.avg"]], "coalesce() (in module polars)": [[575, "polars.coalesce"]], "col() (in module polars)": [[576, "polars.col"]], "concat_list() (in module polars)": [[577, "polars.concat_list"]], "concat_str() (in module polars)": [[578, "polars.concat_str"]], "corr() (in module polars)": [[579, "polars.corr"]], "count() (in module polars)": [[580, "polars.count"]], "cov() (in module polars)": [[581, "polars.cov"]], "cumfold() (in module polars)": [[582, "polars.cumfold"]], "cumreduce() (in module polars)": [[583, "polars.cumreduce"]], "cumsum() (in module polars)": [[584, "polars.cumsum"]], "cumsum_horizontal() (in module polars)": [[585, "polars.cumsum_horizontal"]], "date() (in module polars)": [[586, "polars.date"]], "date_range() (in module polars)": [[587, "polars.date_range"]], "date_ranges() (in module polars)": [[588, "polars.date_ranges"]], "datetime() (in module polars)": [[589, "polars.datetime"]], "duration() (in module polars)": [[590, "polars.duration"]], "element() (in module polars)": [[591, "polars.element"]], "exclude() (in module polars)": [[592, "polars.exclude"]], "first() (in module polars)": [[593, "polars.first"]], "fold() (in module polars)": [[594, "polars.fold"]], "format() (in module polars)": [[595, "polars.format"]], "from_epoch() (in module polars)": [[596, "polars.from_epoch"]], "groups() (in module polars)": [[597, "polars.groups"]], "head() (in module polars)": [[598, "polars.head"]], "implode() (in module polars)": [[599, "polars.implode"]], "int_range() (in module polars)": [[600, "polars.int_range"]], "int_ranges() (in module polars)": [[601, "polars.int_ranges"]], "last() (in module polars)": [[602, "polars.last"]], "lit() (in module polars)": [[603, "polars.lit"]], "map() (in module polars)": [[604, "polars.map"]], "max() (in module polars)": [[605, "polars.max"]], "max_horizontal() (in module polars)": [[606, "polars.max_horizontal"]], "mean() (in module polars)": [[607, "polars.mean"]], "median() (in module polars)": [[608, "polars.median"]], "min() (in module polars)": [[609, "polars.min"]], "min_horizontal() (in module polars)": [[610, "polars.min_horizontal"]], "n_unique() (in module polars)": [[611, "polars.n_unique"]], "ones() (in module polars)": [[612, "polars.ones"]], "quantile() (in module polars)": [[613, "polars.quantile"]], "reduce() (in module polars)": [[614, "polars.reduce"]], "repeat() (in module polars)": [[615, "polars.repeat"]], "rolling_corr() (in module polars)": [[616, "polars.rolling_corr"]], "rolling_cov() (in module polars)": [[617, "polars.rolling_cov"]], "select() (in module polars)": [[618, "polars.select"]], "sql_expr() (in module polars)": [[619, "polars.sql_expr"]], "std() (in module polars)": [[620, "polars.std"]], "struct() (in module polars)": [[621, "polars.struct"]], "sum() (in module polars)": [[622, "polars.sum"]], "sum_horizontal() (in module polars)": [[623, "polars.sum_horizontal"]], "tail() (in module polars)": [[624, "polars.tail"]], "time() (in module polars)": [[625, "polars.time"]], "time_range() (in module polars)": [[626, "polars.time_range"]], "time_ranges() (in module polars)": [[627, "polars.time_ranges"]], "var() (in module polars)": [[628, "polars.var"]], "when() (in module polars)": [[629, "polars.when"]], "zeros() (in module polars)": [[630, "polars.zeros"]], "bottom_k() (polars.lazyframe method)": [[652, "polars.LazyFrame.bottom_k"]], "cache() (polars.lazyframe method)": [[653, "polars.LazyFrame.cache"]], "clear() (polars.lazyframe method)": [[654, "polars.LazyFrame.clear"]], "clone() (polars.lazyframe method)": [[655, "polars.LazyFrame.clone"]], "collect() (polars.lazyframe method)": [[656, "polars.LazyFrame.collect"]], "columns (polars.lazyframe property)": [[657, "polars.LazyFrame.columns"]], "drop() (polars.lazyframe method)": [[658, "polars.LazyFrame.drop"]], "drop_nulls() (polars.lazyframe method)": [[659, "polars.LazyFrame.drop_nulls"]], "dtypes (polars.lazyframe property)": [[660, "polars.LazyFrame.dtypes"]], "explain() (polars.lazyframe method)": [[661, "polars.LazyFrame.explain"]], "explode() (polars.lazyframe method)": [[662, "polars.LazyFrame.explode"]], "fetch() (polars.lazyframe method)": [[663, "polars.LazyFrame.fetch"]], "fill_nan() (polars.lazyframe method)": [[664, "polars.LazyFrame.fill_nan"]], "fill_null() (polars.lazyframe method)": [[665, "polars.LazyFrame.fill_null"]], "filter() (polars.lazyframe method)": [[666, "polars.LazyFrame.filter"]], "first() (polars.lazyframe method)": [[667, "polars.LazyFrame.first"]], "from_json() (polars.lazyframe class method)": [[668, "polars.LazyFrame.from_json"]], "groupby() (polars.lazyframe method)": [[669, "polars.LazyFrame.groupby"]], "groupby_dynamic() (polars.lazyframe method)": [[670, "polars.LazyFrame.groupby_dynamic"]], "groupby_rolling() (polars.lazyframe method)": [[671, "polars.LazyFrame.groupby_rolling"]], "head() (polars.lazyframe method)": [[672, "polars.LazyFrame.head"]], "inspect() (polars.lazyframe method)": [[673, "polars.LazyFrame.inspect"]], "interpolate() (polars.lazyframe method)": [[674, "polars.LazyFrame.interpolate"]], "join() (polars.lazyframe method)": [[675, "polars.LazyFrame.join"]], "join_asof() (polars.lazyframe method)": [[676, "polars.LazyFrame.join_asof"]], "last() (polars.lazyframe method)": [[677, "polars.LazyFrame.last"]], "lazy() (polars.lazyframe method)": [[678, "polars.LazyFrame.lazy"]], "limit() (polars.lazyframe method)": [[679, "polars.LazyFrame.limit"]], "map() (polars.lazyframe method)": [[680, "polars.LazyFrame.map"]], "max() (polars.lazyframe method)": [[681, "polars.LazyFrame.max"]], "mean() (polars.lazyframe method)": [[682, "polars.LazyFrame.mean"]], "median() (polars.lazyframe method)": [[683, "polars.LazyFrame.median"]], "melt() (polars.lazyframe method)": [[684, "polars.LazyFrame.melt"]], "merge_sorted() (polars.lazyframe method)": [[685, "polars.LazyFrame.merge_sorted"]], "min() (polars.lazyframe method)": [[686, "polars.LazyFrame.min"]], "null_count() (polars.lazyframe method)": [[687, "polars.LazyFrame.null_count"]], "pipe() (polars.lazyframe method)": [[688, "polars.LazyFrame.pipe"]], "profile() (polars.lazyframe method)": [[689, "polars.LazyFrame.profile"]], "quantile() (polars.lazyframe method)": [[690, "polars.LazyFrame.quantile"]], "read_json() (polars.lazyframe class method)": [[691, "polars.LazyFrame.read_json"]], "rename() (polars.lazyframe method)": [[692, "polars.LazyFrame.rename"]], "reverse() (polars.lazyframe method)": [[693, "polars.LazyFrame.reverse"]], "schema (polars.lazyframe property)": [[694, "polars.LazyFrame.schema"]], "select() (polars.lazyframe method)": [[695, "polars.LazyFrame.select"]], "set_sorted() (polars.lazyframe method)": [[696, "polars.LazyFrame.set_sorted"]], "shift() (polars.lazyframe method)": [[697, "polars.LazyFrame.shift"]], "shift_and_fill() (polars.lazyframe method)": [[698, "polars.LazyFrame.shift_and_fill"]], "show_graph() (polars.lazyframe method)": [[699, "polars.LazyFrame.show_graph"]], "slice() (polars.lazyframe method)": [[700, "polars.LazyFrame.slice"]], "sort() (polars.lazyframe method)": [[701, "polars.LazyFrame.sort"]], "std() (polars.lazyframe method)": [[702, "polars.LazyFrame.std"]], "sum() (polars.lazyframe method)": [[703, "polars.LazyFrame.sum"]], "tail() (polars.lazyframe method)": [[704, "polars.LazyFrame.tail"]], "take_every() (polars.lazyframe method)": [[705, "polars.LazyFrame.take_every"]], "top_k() (polars.lazyframe method)": [[706, "polars.LazyFrame.top_k"]], "unique() (polars.lazyframe method)": [[707, "polars.LazyFrame.unique"]], "unnest() (polars.lazyframe method)": [[708, "polars.LazyFrame.unnest"]], "update() (polars.lazyframe method)": [[709, "polars.LazyFrame.update"]], "var() (polars.lazyframe method)": [[710, "polars.LazyFrame.var"]], "width (polars.lazyframe property)": [[711, "polars.LazyFrame.width"]], "with_columns() (polars.lazyframe method)": [[712, "polars.LazyFrame.with_columns"]], "with_context() (polars.lazyframe method)": [[713, "polars.LazyFrame.with_context"]], "with_row_count() (polars.lazyframe method)": [[714, "polars.LazyFrame.with_row_count"]], "write_json() (polars.lazyframe method)": [[715, "polars.LazyFrame.write_json"]], "agg() (polars.lazyframe.groupby.lazygroupby method)": [[716, "polars.lazyframe.groupby.LazyGroupBy.agg"]], "all() (polars.lazyframe.groupby.lazygroupby method)": [[717, "polars.lazyframe.groupby.LazyGroupBy.all"]], "apply() (polars.lazyframe.groupby.lazygroupby method)": [[718, "polars.lazyframe.groupby.LazyGroupBy.apply"]], "count() (polars.lazyframe.groupby.lazygroupby method)": [[719, "polars.lazyframe.groupby.LazyGroupBy.count"]], "first() (polars.lazyframe.groupby.lazygroupby method)": [[720, "polars.lazyframe.groupby.LazyGroupBy.first"]], "head() (polars.lazyframe.groupby.lazygroupby method)": [[721, "polars.lazyframe.groupby.LazyGroupBy.head"]], "last() (polars.lazyframe.groupby.lazygroupby method)": [[722, "polars.lazyframe.groupby.LazyGroupBy.last"]], "max() (polars.lazyframe.groupby.lazygroupby method)": [[723, "polars.lazyframe.groupby.LazyGroupBy.max"]], "mean() (polars.lazyframe.groupby.lazygroupby method)": [[724, "polars.lazyframe.groupby.LazyGroupBy.mean"]], "median() (polars.lazyframe.groupby.lazygroupby method)": [[725, "polars.lazyframe.groupby.LazyGroupBy.median"]], "min() (polars.lazyframe.groupby.lazygroupby method)": [[726, "polars.lazyframe.groupby.LazyGroupBy.min"]], "n_unique() (polars.lazyframe.groupby.lazygroupby method)": [[727, "polars.lazyframe.groupby.LazyGroupBy.n_unique"]], "quantile() (polars.lazyframe.groupby.lazygroupby method)": [[728, "polars.lazyframe.groupby.LazyGroupBy.quantile"]], "sum() (polars.lazyframe.groupby.lazygroupby method)": [[729, "polars.lazyframe.groupby.LazyGroupBy.sum"]], "tail() (polars.lazyframe.groupby.lazygroupby method)": [[730, "polars.lazyframe.groupby.LazyGroupBy.tail"]], "all() (in module polars.selectors)": [[737, "polars.selectors.all"]], "by_dtype() (in module polars.selectors)": [[737, "polars.selectors.by_dtype"]], "by_name() (in module polars.selectors)": [[737, "polars.selectors.by_name"]], "contains() (in module polars.selectors)": [[737, "polars.selectors.contains"]], "datetime() (in module polars.selectors)": [[737, "polars.selectors.datetime"]], "duration() (in module polars.selectors)": [[737, "polars.selectors.duration"]], "ends_with() (in module polars.selectors)": [[737, "polars.selectors.ends_with"]], "first() (in module polars.selectors)": [[737, "polars.selectors.first"]], "float() (in module polars.selectors)": [[737, "polars.selectors.float"]], "integer() (in module polars.selectors)": [[737, "polars.selectors.integer"]], "is_selector() (in module polars.selectors)": [[737, "polars.selectors.is_selector"]], "last() (in module polars.selectors)": [[737, "polars.selectors.last"]], "matches() (in module polars.selectors)": [[737, "polars.selectors.matches"]], "module": [[737, "module-polars.selectors"]], "numeric() (in module polars.selectors)": [[737, "polars.selectors.numeric"]], "polars.selectors": [[737, "module-polars.selectors"]], "selector_column_names() (in module polars.selectors)": [[737, "polars.selectors.selector_column_names"]], "starts_with() (in module polars.selectors)": [[737, "polars.selectors.starts_with"]], "string() (in module polars.selectors)": [[737, "polars.selectors.string"]], "temporal() (in module polars.selectors)": [[737, "polars.selectors.temporal"]], "abs() (polars.series method)": [[739, "polars.Series.abs"]], "alias() (polars.series method)": [[740, "polars.Series.alias"]], "all() (polars.series method)": [[741, "polars.Series.all"]], "any() (polars.series method)": [[742, "polars.Series.any"]], "append() (polars.series method)": [[743, "polars.Series.append"]], "apply() (polars.series method)": [[744, "polars.Series.apply"]], "arccos() (polars.series method)": [[745, "polars.Series.arccos"]], "arccosh() (polars.series method)": [[746, "polars.Series.arccosh"]], "arcsin() (polars.series method)": [[747, "polars.Series.arcsin"]], "arcsinh() (polars.series method)": [[748, "polars.Series.arcsinh"]], "arctan() (polars.series method)": [[749, "polars.Series.arctan"]], "arctanh() (polars.series method)": [[750, "polars.Series.arctanh"]], "arg_max() (polars.series method)": [[751, "polars.Series.arg_max"]], "arg_min() (polars.series method)": [[752, "polars.Series.arg_min"]], "arg_sort() (polars.series method)": [[753, "polars.Series.arg_sort"]], "arg_true() (polars.series method)": [[754, "polars.Series.arg_true"]], "arg_unique() (polars.series method)": [[755, "polars.Series.arg_unique"]], "max() (polars.series.arr method)": [[756, "polars.Series.arr.max"]], "min() (polars.series.arr method)": [[757, "polars.Series.arr.min"]], "sum() (polars.series.arr method)": [[758, "polars.Series.arr.sum"]], "unique() (polars.series.arr method)": [[759, "polars.Series.arr.unique"]], "contains() (polars.series.bin method)": [[760, "polars.Series.bin.contains"]], "decode() (polars.series.bin method)": [[761, "polars.Series.bin.decode"]], "encode() (polars.series.bin method)": [[762, "polars.Series.bin.encode"]], "ends_with() (polars.series.bin method)": [[763, "polars.Series.bin.ends_with"]], "starts_with() (polars.series.bin method)": [[764, "polars.Series.bin.starts_with"]], "bottom_k() (polars.series method)": [[765, "polars.Series.bottom_k"]], "cast() (polars.series method)": [[766, "polars.Series.cast"]], "cat (polars.series attribute)": [[767, "polars.Series.cat"]], "get_categories() (polars.series.cat method)": [[768, "polars.Series.cat.get_categories"]], "set_ordering() (polars.series.cat method)": [[769, "polars.Series.cat.set_ordering"]], "cbrt() (polars.series method)": [[770, "polars.Series.cbrt"]], "ceil() (polars.series method)": [[771, "polars.Series.ceil"]], "chunk_lengths() (polars.series method)": [[772, "polars.Series.chunk_lengths"]], "clear() (polars.series method)": [[773, "polars.Series.clear"]], "clip() (polars.series method)": [[774, "polars.Series.clip"]], "clip_max() (polars.series method)": [[775, "polars.Series.clip_max"]], "clip_min() (polars.series method)": [[776, "polars.Series.clip_min"]], "clone() (polars.series method)": [[777, "polars.Series.clone"]], "cos() (polars.series method)": [[778, "polars.Series.cos"]], "cosh() (polars.series method)": [[779, "polars.Series.cosh"]], "cummax() (polars.series method)": [[780, "polars.Series.cummax"]], "cummin() (polars.series method)": [[781, "polars.Series.cummin"]], "cumprod() (polars.series method)": [[782, "polars.Series.cumprod"]], "cumsum() (polars.series method)": [[783, "polars.Series.cumsum"]], "cumulative_eval() (polars.series method)": [[784, "polars.Series.cumulative_eval"]], "cut() (polars.series method)": [[785, "polars.Series.cut"]], "describe() (polars.series method)": [[786, "polars.Series.describe"]], "diff() (polars.series method)": [[787, "polars.Series.diff"]], "dot() (polars.series method)": [[788, "polars.Series.dot"]], "drop_nans() (polars.series method)": [[789, "polars.Series.drop_nans"]], "drop_nulls() (polars.series method)": [[790, "polars.Series.drop_nulls"]], "dt (polars.series attribute)": [[791, "polars.Series.dt"]], "base_utc_offset() (polars.series.dt method)": [[792, "polars.Series.dt.base_utc_offset"]], "cast_time_unit() (polars.series.dt method)": [[793, "polars.Series.dt.cast_time_unit"]], "combine() (polars.series.dt method)": [[794, "polars.Series.dt.combine"]], "convert_time_zone() (polars.series.dt method)": [[795, "polars.Series.dt.convert_time_zone"]], "date() (polars.series.dt method)": [[796, "polars.Series.dt.date"]], "datetime() (polars.series.dt method)": [[797, "polars.Series.dt.datetime"]], "day() (polars.series.dt method)": [[798, "polars.Series.dt.day"]], "days() (polars.series.dt method)": [[799, "polars.Series.dt.days"]], "dst_offset() (polars.series.dt method)": [[800, "polars.Series.dt.dst_offset"]], "epoch() (polars.series.dt method)": [[801, "polars.Series.dt.epoch"]], "hour() (polars.series.dt method)": [[802, "polars.Series.dt.hour"]], "hours() (polars.series.dt method)": [[803, "polars.Series.dt.hours"]], "is_leap_year() (polars.series.dt method)": [[804, "polars.Series.dt.is_leap_year"]], "iso_year() (polars.series.dt method)": [[805, "polars.Series.dt.iso_year"]], "max() (polars.series.dt method)": [[806, "polars.Series.dt.max"]], "mean() (polars.series.dt method)": [[807, "polars.Series.dt.mean"]], "median() (polars.series.dt method)": [[808, "polars.Series.dt.median"]], "microsecond() (polars.series.dt method)": [[809, "polars.Series.dt.microsecond"]], "microseconds() (polars.series.dt method)": [[810, "polars.Series.dt.microseconds"]], "millisecond() (polars.series.dt method)": [[811, "polars.Series.dt.millisecond"]], "milliseconds() (polars.series.dt method)": [[812, "polars.Series.dt.milliseconds"]], "min() (polars.series.dt method)": [[813, "polars.Series.dt.min"]], "minute() (polars.series.dt method)": [[814, "polars.Series.dt.minute"]], "minutes() (polars.series.dt method)": [[815, "polars.Series.dt.minutes"]], "month() (polars.series.dt method)": [[816, "polars.Series.dt.month"]], "month_end() (polars.series.dt method)": [[817, "polars.Series.dt.month_end"]], "month_start() (polars.series.dt method)": [[818, "polars.Series.dt.month_start"]], "nanosecond() (polars.series.dt method)": [[819, "polars.Series.dt.nanosecond"]], "nanoseconds() (polars.series.dt method)": [[820, "polars.Series.dt.nanoseconds"]], "offset_by() (polars.series.dt method)": [[821, "polars.Series.dt.offset_by"]], "ordinal_day() (polars.series.dt method)": [[822, "polars.Series.dt.ordinal_day"]], "quarter() (polars.series.dt method)": [[823, "polars.Series.dt.quarter"]], "replace_time_zone() (polars.series.dt method)": [[824, "polars.Series.dt.replace_time_zone"]], "round() (polars.series.dt method)": [[825, "polars.Series.dt.round"]], "second() (polars.series.dt method)": [[826, "polars.Series.dt.second"]], "seconds() (polars.series.dt method)": [[827, "polars.Series.dt.seconds"]], "strftime() (polars.series.dt method)": [[828, "polars.Series.dt.strftime"]], "time() (polars.series.dt method)": [[829, "polars.Series.dt.time"]], "timestamp() (polars.series.dt method)": [[830, "polars.Series.dt.timestamp"]], "to_string() (polars.series.dt method)": [[831, "polars.Series.dt.to_string"]], "truncate() (polars.series.dt method)": [[832, "polars.Series.dt.truncate"]], "week() (polars.series.dt method)": [[833, "polars.Series.dt.week"]], "weekday() (polars.series.dt method)": [[834, "polars.Series.dt.weekday"]], "with_time_unit() (polars.series.dt method)": [[835, "polars.Series.dt.with_time_unit"]], "year() (polars.series.dt method)": [[836, "polars.Series.dt.year"]], "dtype (polars.series attribute)": [[837, "polars.Series.dtype"]], "entropy() (polars.series method)": [[838, "polars.Series.entropy"]], "estimated_size() (polars.series method)": [[839, "polars.Series.estimated_size"]], "ewm_mean() (polars.series method)": [[840, "polars.Series.ewm_mean"]], "ewm_std() (polars.series method)": [[841, "polars.Series.ewm_std"]], "ewm_var() (polars.series method)": [[842, "polars.Series.ewm_var"]], "exp() (polars.series method)": [[843, "polars.Series.exp"]], "explode() (polars.series method)": [[844, "polars.Series.explode"]], "extend() (polars.series method)": [[845, "polars.Series.extend"]], "extend_constant() (polars.series method)": [[846, "polars.Series.extend_constant"]], "fill_nan() (polars.series method)": [[847, "polars.Series.fill_nan"]], "fill_null() (polars.series method)": [[848, "polars.Series.fill_null"]], "filter() (polars.series method)": [[849, "polars.Series.filter"]], "flags (polars.series attribute)": [[850, "polars.Series.flags"]], "floor() (polars.series method)": [[851, "polars.Series.floor"]], "get_chunks() (polars.series method)": [[852, "polars.Series.get_chunks"]], "has_validity() (polars.series method)": [[853, "polars.Series.has_validity"]], "hash() (polars.series method)": [[854, "polars.Series.hash"]], "head() (polars.series method)": [[855, "polars.Series.head"]], "hist() (polars.series method)": [[856, "polars.Series.hist"]], "implode() (polars.series method)": [[857, "polars.Series.implode"]], "inner_dtype (polars.series attribute)": [[858, "polars.Series.inner_dtype"]], "interpolate() (polars.series method)": [[859, "polars.Series.interpolate"]], "is_between() (polars.series method)": [[860, "polars.Series.is_between"]], "is_boolean() (polars.series method)": [[861, "polars.Series.is_boolean"]], "is_duplicated() (polars.series method)": [[862, "polars.Series.is_duplicated"]], "is_empty() (polars.series method)": [[863, "polars.Series.is_empty"]], "is_finite() (polars.series method)": [[864, "polars.Series.is_finite"]], "is_first() (polars.series method)": [[865, "polars.Series.is_first"]], "is_float() (polars.series method)": [[866, "polars.Series.is_float"]], "is_in() (polars.series method)": [[867, "polars.Series.is_in"]], "is_infinite() (polars.series method)": [[868, "polars.Series.is_infinite"]], "is_integer() (polars.series method)": [[869, "polars.Series.is_integer"]], "is_nan() (polars.series method)": [[870, "polars.Series.is_nan"]], "is_not_nan() (polars.series method)": [[871, "polars.Series.is_not_nan"]], "is_not_null() (polars.series method)": [[872, "polars.Series.is_not_null"]], "is_null() (polars.series method)": [[873, "polars.Series.is_null"]], "is_numeric() (polars.series method)": [[874, "polars.Series.is_numeric"]], "is_sorted() (polars.series method)": [[875, "polars.Series.is_sorted"]], "is_temporal() (polars.series method)": [[876, "polars.Series.is_temporal"]], "is_unique() (polars.series method)": [[877, "polars.Series.is_unique"]], "is_utf8() (polars.series method)": [[878, "polars.Series.is_utf8"]], "item() (polars.series method)": [[879, "polars.Series.item"]], "kurtosis() (polars.series method)": [[880, "polars.Series.kurtosis"]], "len() (polars.series method)": [[881, "polars.Series.len"]], "limit() (polars.series method)": [[882, "polars.Series.limit"]], "list (polars.series attribute)": [[883, "polars.Series.list"]], "all() (polars.series.list method)": [[884, "polars.Series.list.all"]], "any() (polars.series.list method)": [[885, "polars.Series.list.any"]], "arg_max() (polars.series.list method)": [[886, "polars.Series.list.arg_max"]], "arg_min() (polars.series.list method)": [[887, "polars.Series.list.arg_min"]], "concat() (polars.series.list method)": [[888, "polars.Series.list.concat"]], "contains() (polars.series.list method)": [[889, "polars.Series.list.contains"]], "count_match() (polars.series.list method)": [[890, "polars.Series.list.count_match"]], "diff() (polars.series.list method)": [[891, "polars.Series.list.diff"]], "difference() (polars.series.list method)": [[892, "polars.Series.list.difference"]], "eval() (polars.series.list method)": [[893, "polars.Series.list.eval"]], "explode() (polars.series.list method)": [[894, "polars.Series.list.explode"]], "first() (polars.series.list method)": [[895, "polars.Series.list.first"]], "get() (polars.series.list method)": [[896, "polars.Series.list.get"]], "head() (polars.series.list method)": [[897, "polars.Series.list.head"]], "intersection() (polars.series.list method)": [[898, "polars.Series.list.intersection"]], "join() (polars.series.list method)": [[899, "polars.Series.list.join"]], "last() (polars.series.list method)": [[900, "polars.Series.list.last"]], "lengths() (polars.series.list method)": [[901, "polars.Series.list.lengths"]], "max() (polars.series.list method)": [[902, "polars.Series.list.max"]], "mean() (polars.series.list method)": [[903, "polars.Series.list.mean"]], "min() (polars.series.list method)": [[904, "polars.Series.list.min"]], "reverse() (polars.series.list method)": [[905, "polars.Series.list.reverse"]], "shift() (polars.series.list method)": [[906, "polars.Series.list.shift"]], "slice() (polars.series.list method)": [[907, "polars.Series.list.slice"]], "sort() (polars.series.list method)": [[908, "polars.Series.list.sort"]], "sum() (polars.series.list method)": [[909, "polars.Series.list.sum"]], "tail() (polars.series.list method)": [[910, "polars.Series.list.tail"]], "take() (polars.series.list method)": [[911, "polars.Series.list.take"]], "to_struct() (polars.series.list method)": [[912, "polars.Series.list.to_struct"]], "union() (polars.series.list method)": [[913, "polars.Series.list.union"]], "unique() (polars.series.list method)": [[914, "polars.Series.list.unique"]], "log() (polars.series method)": [[915, "polars.Series.log"]], "log10() (polars.series method)": [[916, "polars.Series.log10"]], "log1p() (polars.series method)": [[917, "polars.Series.log1p"]], "lower_bound() (polars.series method)": [[918, "polars.Series.lower_bound"]], "map_dict() (polars.series method)": [[919, "polars.Series.map_dict"]], "max() (polars.series method)": [[920, "polars.Series.max"]], "mean() (polars.series method)": [[921, "polars.Series.mean"]], "median() (polars.series method)": [[922, "polars.Series.median"]], "min() (polars.series method)": [[923, "polars.Series.min"]], "mode() (polars.series method)": [[924, "polars.Series.mode"]], "n_chunks() (polars.series method)": [[925, "polars.Series.n_chunks"]], "n_unique() (polars.series method)": [[926, "polars.Series.n_unique"]], "name (polars.series attribute)": [[927, "polars.Series.name"]], "nan_max() (polars.series method)": [[928, "polars.Series.nan_max"]], "nan_min() (polars.series method)": [[929, "polars.Series.nan_min"]], "new_from_index() (polars.series method)": [[930, "polars.Series.new_from_index"]], "null_count() (polars.series method)": [[931, "polars.Series.null_count"]], "pct_change() (polars.series method)": [[932, "polars.Series.pct_change"]], "peak_max() (polars.series method)": [[933, "polars.Series.peak_max"]], "peak_min() (polars.series method)": [[934, "polars.Series.peak_min"]], "product() (polars.series method)": [[935, "polars.Series.product"]], "qcut() (polars.series method)": [[936, "polars.Series.qcut"]], "quantile() (polars.series method)": [[937, "polars.Series.quantile"]], "rank() (polars.series method)": [[938, "polars.Series.rank"]], "rechunk() (polars.series method)": [[939, "polars.Series.rechunk"]], "reinterpret() (polars.series method)": [[940, "polars.Series.reinterpret"]], "rename() (polars.series method)": [[941, "polars.Series.rename"]], "reshape() (polars.series method)": [[942, "polars.Series.reshape"]], "reverse() (polars.series method)": [[943, "polars.Series.reverse"]], "rle() (polars.series method)": [[944, "polars.Series.rle"]], "rle_id() (polars.series method)": [[945, "polars.Series.rle_id"]], "rolling_apply() (polars.series method)": [[946, "polars.Series.rolling_apply"]], "rolling_max() (polars.series method)": [[947, "polars.Series.rolling_max"]], "rolling_mean() (polars.series method)": [[948, "polars.Series.rolling_mean"]], "rolling_median() (polars.series method)": [[949, "polars.Series.rolling_median"]], "rolling_min() (polars.series method)": [[950, "polars.Series.rolling_min"]], "rolling_quantile() (polars.series method)": [[951, "polars.Series.rolling_quantile"]], "rolling_skew() (polars.series method)": [[952, "polars.Series.rolling_skew"]], "rolling_std() (polars.series method)": [[953, "polars.Series.rolling_std"]], "rolling_sum() (polars.series method)": [[954, "polars.Series.rolling_sum"]], "rolling_var() (polars.series method)": [[955, "polars.Series.rolling_var"]], "round() (polars.series method)": [[956, "polars.Series.round"]], "sample() (polars.series method)": [[957, "polars.Series.sample"]], "search_sorted() (polars.series method)": [[958, "polars.Series.search_sorted"]], "series_equal() (polars.series method)": [[959, "polars.Series.series_equal"]], "set() (polars.series method)": [[960, "polars.Series.set"]], "set_at_idx() (polars.series method)": [[961, "polars.Series.set_at_idx"]], "set_sorted() (polars.series method)": [[962, "polars.Series.set_sorted"]], "shape (polars.series attribute)": [[963, "polars.Series.shape"]], "shift() (polars.series method)": [[964, "polars.Series.shift"]], "shift_and_fill() (polars.series method)": [[965, "polars.Series.shift_and_fill"]], "shrink_dtype() (polars.series method)": [[966, "polars.Series.shrink_dtype"]], "shrink_to_fit() (polars.series method)": [[967, "polars.Series.shrink_to_fit"]], "shuffle() (polars.series method)": [[968, "polars.Series.shuffle"]], "sign() (polars.series method)": [[969, "polars.Series.sign"]], "sin() (polars.series method)": [[970, "polars.Series.sin"]], "sinh() (polars.series method)": [[971, "polars.Series.sinh"]], "skew() (polars.series method)": [[972, "polars.Series.skew"]], "slice() (polars.series method)": [[973, "polars.Series.slice"]], "sort() (polars.series method)": [[974, "polars.Series.sort"]], "sqrt() (polars.series method)": [[975, "polars.Series.sqrt"]], "std() (polars.series method)": [[976, "polars.Series.std"]], "str (polars.series attribute)": [[977, "polars.Series.str"]], "concat() (polars.series.str method)": [[978, "polars.Series.str.concat"]], "contains() (polars.series.str method)": [[979, "polars.Series.str.contains"]], "count_match() (polars.series.str method)": [[980, "polars.Series.str.count_match"]], "decode() (polars.series.str method)": [[981, "polars.Series.str.decode"]], "encode() (polars.series.str method)": [[982, "polars.Series.str.encode"]], "ends_with() (polars.series.str method)": [[983, "polars.Series.str.ends_with"]], "explode() (polars.series.str method)": [[984, "polars.Series.str.explode"]], "extract() (polars.series.str method)": [[985, "polars.Series.str.extract"]], "extract_all() (polars.series.str method)": [[986, "polars.Series.str.extract_all"]], "json_extract() (polars.series.str method)": [[987, "polars.Series.str.json_extract"]], "json_path_match() (polars.series.str method)": [[988, "polars.Series.str.json_path_match"]], "lengths() (polars.series.str method)": [[989, "polars.Series.str.lengths"]], "ljust() (polars.series.str method)": [[990, "polars.Series.str.ljust"]], "lstrip() (polars.series.str method)": [[991, "polars.Series.str.lstrip"]], "n_chars() (polars.series.str method)": [[992, "polars.Series.str.n_chars"]], "parse_int() (polars.series.str method)": [[993, "polars.Series.str.parse_int"]], "replace() (polars.series.str method)": [[994, "polars.Series.str.replace"]], "replace_all() (polars.series.str method)": [[995, "polars.Series.str.replace_all"]], "rjust() (polars.series.str method)": [[996, "polars.Series.str.rjust"]], "rstrip() (polars.series.str method)": [[997, "polars.Series.str.rstrip"]], "slice() (polars.series.str method)": [[998, "polars.Series.str.slice"]], "split() (polars.series.str method)": [[999, "polars.Series.str.split"]], "split_exact() (polars.series.str method)": [[1000, "polars.Series.str.split_exact"]], "splitn() (polars.series.str method)": [[1001, "polars.Series.str.splitn"]], "starts_with() (polars.series.str method)": [[1002, "polars.Series.str.starts_with"]], "strip() (polars.series.str method)": [[1003, "polars.Series.str.strip"]], "strptime() (polars.series.str method)": [[1004, "polars.Series.str.strptime"]], "to_date() (polars.series.str method)": [[1005, "polars.Series.str.to_date"]], "to_datetime() (polars.series.str method)": [[1006, "polars.Series.str.to_datetime"]], "to_decimal() (polars.series.str method)": [[1007, "polars.Series.str.to_decimal"]], "to_lowercase() (polars.series.str method)": [[1008, "polars.Series.str.to_lowercase"]], "to_time() (polars.series.str method)": [[1009, "polars.Series.str.to_time"]], "to_titlecase() (polars.series.str method)": [[1010, "polars.Series.str.to_titlecase"]], "to_uppercase() (polars.series.str method)": [[1011, "polars.Series.str.to_uppercase"]], "zfill() (polars.series.str method)": [[1012, "polars.Series.str.zfill"]], "field() (polars.series.struct method)": [[1013, "polars.Series.struct.field"]], "fields (polars.series.struct attribute)": [[1014, "polars.Series.struct.fields"]], "rename_fields() (polars.series.struct method)": [[1015, "polars.Series.struct.rename_fields"]], "schema (polars.series.struct attribute)": [[1016, "polars.Series.struct.schema"]], "unnest() (polars.series.struct method)": [[1017, "polars.Series.struct.unnest"]], "sum() (polars.series method)": [[1018, "polars.Series.sum"]], "tail() (polars.series method)": [[1019, "polars.Series.tail"]], "take() (polars.series method)": [[1020, "polars.Series.take"]], "take_every() (polars.series method)": [[1021, "polars.Series.take_every"]], "tan() (polars.series method)": [[1022, "polars.Series.tan"]], "tanh() (polars.series method)": [[1023, "polars.Series.tanh"]], "time_unit (polars.series attribute)": [[1024, "polars.Series.time_unit"]], "to_arrow() (polars.series method)": [[1025, "polars.Series.to_arrow"]], "to_dummies() (polars.series method)": [[1026, "polars.Series.to_dummies"]], "to_frame() (polars.series method)": [[1027, "polars.Series.to_frame"]], "to_init_repr() (polars.series method)": [[1028, "polars.Series.to_init_repr"]], "to_list() (polars.series method)": [[1029, "polars.Series.to_list"]], "to_numpy() (polars.series method)": [[1030, "polars.Series.to_numpy"]], "to_pandas() (polars.series method)": [[1031, "polars.Series.to_pandas"]], "to_physical() (polars.series method)": [[1032, "polars.Series.to_physical"]], "top_k() (polars.series method)": [[1033, "polars.Series.top_k"]], "unique() (polars.series method)": [[1034, "polars.Series.unique"]], "unique_counts() (polars.series method)": [[1035, "polars.Series.unique_counts"]], "upper_bound() (polars.series method)": [[1036, "polars.Series.upper_bound"]], "value_counts() (polars.series method)": [[1037, "polars.Series.value_counts"]], "var() (polars.series method)": [[1038, "polars.Series.var"]], "view() (polars.series method)": [[1039, "polars.Series.view"]], "zip_with() (polars.series method)": [[1040, "polars.Series.zip_with"]], "sqlcontext (class in polars)": [[1056, "polars.SQLContext"]], "__enter__() (polars.sqlcontext method)": [[1056, "polars.SQLContext.__enter__"]], "__exit__() (polars.sqlcontext method)": [[1056, "polars.SQLContext.__exit__"]], "__init__() (polars.sqlcontext method)": [[1056, "polars.SQLContext.__init__"]]}}) \ No newline at end of file