-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpkmeans.cu
290 lines (229 loc) · 7.61 KB
/
pkmeans.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#include <stdlib.h>
#include <assert.h>
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <time.h>
#define THREAD_DIM 256
#define CHECK(call) { \
const cudaError_t error = call; \
if (error != cudaSuccess) { \
printf("Error: %s:%d, ", __FILE__, __LINE__); \
printf("code:%d, reason: %s\n", error, cudaGetErrorString(error)); \
exit(1); \
} \
}
void plot(double *data_points, int n, int m, int *labels, int k);
void countClusters(int *count, int k, int *labels, int n);
void init_centroids(double *data, int d, int k, double *centroids);
// O(n)+O(k) = O(n)
void countClusters(int *count, int k, int *labels, int n){
int i;
for(i = 0; i < k; i++){
count[i]=0;
}
for(int j = 0; j < n; j++){
count[labels[j]]+=1;
}
};
__device__ double euclidean_distance(int d, double *point1, double *point2){
double distance = 0;
int j;
for(j = 0; j < d; j++){
distance += sqrt(powf(point1[j] - point2[j], 2));
}
return distance;
}
__device__ double atomicAddD(double* address, double val)
{
unsigned long long int* address_as_ull =
(unsigned long long int*)address;
unsigned long long int old = *address_as_ull, assumed;
do {
assumed = old;
old = atomicCAS(address_as_ull, assumed,
__double_as_longlong(val +
__longlong_as_double(assumed)));
} while (assumed != old);
return __longlong_as_double(old);
}
// Complessità: O(kd)
__global__ void finding_closest(double *data, int n, int d, double *centroids, int k, int *labels, double *min_distances, double *tmp_centroids, int *counts ){
int dim = d;
int thread_index = blockIdx.x * blockDim.x + threadIdx.x;
int j = 0;
double min_distance = DBL_MAX;
double newDistance = 0;
double *idata;
int best_cluster = 0;
double *c;
if( thread_index < n ){
idata = &data[thread_index * dim];
for(j = 0; j < k; j++){
//calcolo distanza tra data e clusters
newDistance = euclidean_distance(dim, idata, ¢roids[j * dim]);
if(newDistance < min_distance){
min_distance = newDistance;
best_cluster = j;
}
}
min_distances[thread_index] = min_distance;
labels[thread_index] = best_cluster;
c = &tmp_centroids[best_cluster * dim];
for(int i=0;i<dim;i++){
atomicAddD(&c[i], idata[i]);
}
atomicAdd(&counts[best_cluster], 1);
}
}
void init_centroids(double *data, int d, int k, double *centroids){
double *ci;
double *di;
int i,j,h;
for(i = 0, h= 5; i < k; i++, h += 5*i){
ci = ¢roids[i * d];
di = &data[i * d];
for (j = 0; j < d; j++){
ci[j] = di[j];
}
}
}
int main(int argc, char *argv[]) {
#define NUM_POINTS 5000
#define THRESHOLD 1e-40
#define DATASET_NAME "data/dataset.txt"
#define DIM 2
int i = 0, j = 0, k;
double a = 0, b = 0;
FILE *file;
double *host_tmp_centroids;
double *dev_tmp_centroids;
double *host_min_distances;
double *host_centroids;
double *host_data_points;
int *host_labels;
int *host_counts;
double *dev_min_distances;
double *dev_data_points;
double *dev_centroids;
int *dev_labels;
int *dev_counts;
// Contiene il numero di punti appartenenti al i-esimo cluster
//int *count;
if( argc == 2 ) {
printf("Numero di cluster %s\n", argv[1]);
printf("Numero di punti %d\n", NUM_POINTS);
}else{
return -1;
}
k = atoi(argv[1]);
if( k > NUM_POINTS){
printf("ERRORE: il numero di cluster è superiore al numero di punti\n");
return -1;
}
//Allocazione della memoria HOST
//count = (int*)calloc( k, sizeof(int) );
host_labels = (int*)calloc(NUM_POINTS, sizeof(int));
host_data_points = (double*)malloc(NUM_POINTS*DIM*sizeof(double));
host_centroids = (double*)malloc(k*DIM*sizeof(double));
host_min_distances = (double*)calloc(NUM_POINTS, sizeof(double));
host_tmp_centroids = (double*)malloc(k*DIM*sizeof(double));
host_counts = (int*)malloc(k*sizeof(int));
// Allocazione della memoria DEVICE
cudaMalloc( (void**)&dev_min_distances, NUM_POINTS*sizeof(double) );
cudaMalloc( (void**)&dev_data_points, NUM_POINTS*DIM*sizeof(double) );
cudaMalloc( (void**)&dev_centroids, k*DIM*sizeof(double) );
cudaMalloc( (int**)&dev_labels, NUM_POINTS*sizeof(int) );
cudaMalloc( (int**)&dev_tmp_centroids, k*DIM*sizeof(double) );
cudaMalloc( (int**)&dev_counts, k*sizeof(int) );
// Apre il dataset salvato nel file specificato e lo carica in memoria
file = fopen(DATASET_NAME,"r");
i=0;
while (fscanf(file, "%lf %lf", &a, &b) != EOF && i < NUM_POINTS*DIM) {
host_data_points[i] = a;
host_data_points[i+1] = b;
i += DIM;
}
// Inizializzazione dei centroidi
init_centroids(host_data_points, DIM, k, host_centroids);
// Copia dei dati dalla memoria HOST alla memoria DEVICE
CHECK(cudaMemcpy(dev_data_points, host_data_points, NUM_POINTS*DIM*sizeof(double), cudaMemcpyHostToDevice));
CHECK(cudaMemcpy(dev_labels, host_labels, NUM_POINTS * sizeof(int), cudaMemcpyHostToDevice));
CHECK(cudaMemcpy(dev_min_distances, host_min_distances, NUM_POINTS * sizeof(double), cudaMemcpyHostToDevice));
//Calcola la distanza tra i dati ed i cluster
double old_error;
double error = DBL_MAX;
int cycle_counter = 0;
clock_t begin = clock();
do {
cycle_counter++;
old_error = error;
error = 0;
CHECK(cudaMemcpy(dev_centroids, host_centroids, k*DIM*sizeof(double), cudaMemcpyHostToDevice));
CHECK(cudaMemset(dev_tmp_centroids, 0, k*DIM*sizeof(double)));
CHECK(cudaMemset(dev_counts, 0, k*sizeof(int)));
//O(kd)
finding_closest<<<20,256>>>(dev_data_points, NUM_POINTS, DIM, dev_centroids, k, dev_labels, dev_min_distances, dev_tmp_centroids, dev_counts);
CHECK(cudaDeviceSynchronize());
CHECK(cudaMemcpy(host_min_distances, dev_min_distances, NUM_POINTS * sizeof(double), cudaMemcpyDeviceToHost));
CHECK(cudaMemcpy(host_labels, dev_labels, NUM_POINTS * sizeof(int), cudaMemcpyDeviceToHost));
CHECK(cudaMemcpy(host_tmp_centroids, dev_tmp_centroids, k * DIM * sizeof(double), cudaMemcpyDeviceToHost));
CHECK(cudaMemcpy(host_counts, dev_counts, k * sizeof(int), cudaMemcpyDeviceToHost));
CHECK(cudaDeviceSynchronize());
for(i=0;i<NUM_POINTS;i++){
error += host_min_distances[i];
}
//O(n)
// Calcolo dei nuovi centroidi
double *tc;
double *centroid;
for(i=0; i<k; i++){
centroid = &host_centroids[i * DIM];
tc = &host_tmp_centroids[i * DIM];
for(j=0; j<DIM; j++){
if(host_counts[i]>0){
centroid[j] = tc[j] / host_counts[i];
}
}
}
//O(kd)
} while(fabs(error-old_error) > THRESHOLD);
clock_t end = clock();
double time_spent = (double)(end - begin) / CLK_TCK;
printf("%lf\n",time_spent );
// Disegna il grafico con gnuplot
plot(host_data_points, NUM_POINTS, DIM, host_labels, k);
// liberazione memoria host
free(host_labels);
free(host_data_points);
free(host_centroids);
free(host_min_distances);
free(host_tmp_centroids);
free(host_counts);
// Liberazione memoria device
cudaFree(dev_min_distances);
cudaFree(dev_data_points);
cudaFree(dev_centroids);
cudaFree(dev_labels);
cudaFree(dev_tmp_centroids);
cudaFree(dev_counts);
return 0;
}
void plot(double *data_points, int n, int m, int *labels, int k){
int i = 0;
int j = 0;
#define NUM_COMMANDS 2
char * commandsForGnuplot[] = {"set title \"Parallel k-means\"", "plot 'data.temp' u 1:2:3:3 with labels tc palette"};
FILE * temp = fopen("data/plot/data.temp", "w");
FILE * gnuplotPipe = _popen ("gnuplot -persistent", "w");
for(i=0; i < n;i++){
double *tmp = &data_points[i*m];
for(j=0;j<m;j++){
fprintf(temp, "%lf ", tmp[j]);
}
fprintf(temp, "%d\n",labels[i]);
}
for (i=0; i < NUM_COMMANDS; i++){
fprintf(gnuplotPipe, "%s \n", commandsForGnuplot[i]);
}
}