diff --git a/examples/imagenet/README.md b/examples/imagenet/README.md index 6726862..e30ca71 100644 --- a/examples/imagenet/README.md +++ b/examples/imagenet/README.md @@ -16,7 +16,6 @@ To compute pairwise influence scores on 1000 query data points using the `ekfac` ```bash python analyze.py --dataset_dir PATH_TO_IMAGENET \ --query_gradient_rank -1 \ - --factor_batch_size 512 \ --query_batch_size 100 \ --train_batch_size 256 \ --factor_strategy ekfac diff --git a/examples/imagenet/analyze.py b/examples/imagenet/analyze.py index aa2517c..255a65e 100644 --- a/examples/imagenet/analyze.py +++ b/examples/imagenet/analyze.py @@ -34,12 +34,6 @@ def parse_args(): default=-1, help="Rank for the low-rank query gradient approximation.", ) - parser.add_argument( - "--factor_batch_size", - type=int, - default=512, - help="Batch size for computing factors.", - ) parser.add_argument( "--query_batch_size", type=int, @@ -104,7 +98,7 @@ def main(): analyzer.fit_all_factors( factors_name=factors_name, dataset=train_dataset, - per_device_batch_size=args.factor_batch_size, + per_device_batch_size=None, factor_args=factor_args, overwrite_output_dir=False, )