-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcog_vlm.py
113 lines (90 loc) · 3.79 KB
/
cog_vlm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#!/usr/bin/env python
# script to use CogVLM to describe a list of files,
# given one at a time, on stdin
# Even with quant 4, this takes "12776MB" of vram.
# I dont know if that fits in 12GB cards
# Code borrowed from
# https://github.com/THUDM/CogVLM/basic_demo/
import argparse
import torch
import os
from PIL import Image
from transformers import AutoModelForCausalLM, LlamaTokenizer
query = "describe the image"
# alternative queries:
# query = "describe the style and content of this picture"
# query = "Should this image be rated nsfw or sfw?"
parser = argparse.ArgumentParser()
parser.add_argument("--quant", choices=[4], type=int, default=4, help='quantization bits')
# Yes there are other tuned versions of cog, used for general chat
# You dont want that. you want the VLM one.
#parser.add_argument("--from_pretrained", type=str, default="THUDM/cogagent-chat-hf", help='pretrained ckpt')
parser.add_argument("--from_pretrained", type=str, default="THUDM/cogvlm-grounding-generalist-hf", help='pretrained ckpt')
parser.add_argument("--local_tokenizer", type=str, default="lmsys/vicuna-7b-v1.5", help='tokenizer path')
parser.add_argument("--fp16", action="store_true")
parser.add_argument("--bf16", action="store_true")
args = parser.parse_args()
MODEL_PATH = args.from_pretrained
TOKENIZER_PATH = args.local_tokenizer
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
tokenizer = LlamaTokenizer.from_pretrained(TOKENIZER_PATH)
if args.bf16:
torch_type = torch.bfloat16
else:
torch_type = torch.float16
print("========Use torch type as:{} with device:{}========\n\n".format(torch_type, DEVICE))
if args.quant:
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=torch_type,
low_cpu_mem_usage=True,
load_in_4bit=True,
trust_remote_code=True
).eval()
else:
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=torch_type,
low_cpu_mem_usage=True,
load_in_4bit=args.quant is not None,
trust_remote_code=True
).to(DEVICE).eval()
while True:
history = []
print("Reading filenames from stdin now. Be patient...")
while True:
try:
image_path = input()
except EOFError:
exit()
if image_path == '':
exit()
filename, _ = os.path.splitext(image_path)
txt_filename = f"{filename}.txt"
if os.path.exists(txt_filename):
print(txt_filename,"already exists")
continue
image = Image.open(image_path).convert('RGB')
if image is None:
exit()
input_by_model = model.build_conversation_input_ids(
tokenizer, query=query, history=history, images=[image])
inputs = {
'input_ids': input_by_model['input_ids'].unsqueeze(0).to(DEVICE),
'token_type_ids': input_by_model['token_type_ids'].unsqueeze(0).to(DEVICE),
'attention_mask': input_by_model['attention_mask'].unsqueeze(0).to(DEVICE),
'images': [[input_by_model['images'][0].to(DEVICE).to(torch_type)]] if image is not None else None,
}
if 'cross_images' in input_by_model and input_by_model['cross_images']:
inputs['cross_images'] = [[input_by_model['cross_images'][0].to(DEVICE).to(torch_type)]]
# add any transformers params here.
gen_kwargs = {"max_length": 2048,
"do_sample": False} # "temperature": 0.9
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
response = tokenizer.decode(outputs[0])
response = response.split("</s>")[0]
print(response)
with open(txt_filename, "w") as f:
f.write(response)