-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathilm-7b_batch.py
35 lines (25 loc) · 1.03 KB
/
ilm-7b_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch, os
from transformers import AutoModel, AutoTokenizer
torch.set_grad_enabled(False)
#model_name='internlm/internlm-xcomposer2-vl-1_8b'
model_name='internlm/internlm-xcomposer2-4khd-7b'
model = AutoModel.from_pretrained(model_name, torch_dtype=torch.float16, trust_remote_code=True).cuda().eval()
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
query = '<ImageHere>Please describe this image in detail.'
##query = '<ImageHere>Please describe this image.'
while True:
try:
image_path = input()
except EOFError:
exit()
if image_path == '':
exit()
filename, _ = os.path.splitext(image_path)
txt_filename = f"{filename}.ilm7"
image = image_path
with torch.no_grad():
with torch.cuda.amp.autocast():
response, _ = model.chat(tokenizer, query=query, image=image, history=[], do_sample=False)
print(response)
with open(txt_filename, "w") as f:
f.write(response)