forked from sdrangan/digitalcomm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprob_passband.tex
352 lines (308 loc) · 11.3 KB
/
prob_passband.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
\documentclass[11pt]{article}
\usepackage{fullpage}
\usepackage{amsmath, amssymb, bm, cite, epsfig, psfrag}
\usepackage{graphicx}
\usepackage{float}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{listings}
\usepackage{cite}
\usepackage{hyperref}
\usepackage{tikz}
\usepackage{enumerate}
\usetikzlibrary{shapes,arrows}
%\usetikzlibrary{dsp,chains}
%\restylefloat{figure}
%\theoremstyle{plain} \newtheorem{theorem}{Theorem}
%\theoremstyle{definition} \newtheorem{definition}{Definition}
\def\del{\partial}
\def\ds{\displaystyle}
\def\ts{\textstyle}
\def\beq{\begin{equation}}
\def\eeq{\end{equation}}
\def\beqa{\begin{eqnarray}}
\def\eeqa{\end{eqnarray}}
\def\beqan{\begin{eqnarray*}}
\def\eeqan{\end{eqnarray*}}
\def\nn{\nonumber}
\def\binomial{\mathop{\mathrm{binomial}}}
\def\half{{\ts\frac{1}{2}}}
\def\Half{{\frac{1}{2}}}
\def\N{{\mathbb{N}}}
\def\Z{{\mathbb{Z}}}
\def\Q{{\mathbb{Q}}}
\def\R{{\mathbb{R}}}
\def\C{{\mathbb{C}}}
\def\argmin{\mathop{\mathrm{arg\,min}}}
\def\argmax{\mathop{\mathrm{arg\,max}}}
%\def\span{\mathop{\mathrm{span}}}
\def\diag{\mathop{\mathrm{diag}}}
\def\x{\times}
\def\limn{\lim_{n \rightarrow \infty}}
\def\liminfn{\liminf_{n \rightarrow \infty}}
\def\limsupn{\limsup_{n \rightarrow \infty}}
\def\GV{Guo and Verd{\'u}}
\def\MID{\,|\,}
\def\MIDD{\,;\,}
\newtheorem{proposition}{Proposition}
\newtheorem{definition}{Definition}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{corollary}{Corollary}
\newtheorem{assumption}{Assumption}
\newtheorem{claim}{Claim}
\def\qed{\mbox{} \hfill $\Box$}
\setlength{\unitlength}{1mm}
\def\bhat{\widehat{b}}
\def\ehat{\widehat{e}}
\def\phat{\widehat{p}}
\def\qhat{\widehat{q}}
\def\rhat{\widehat{r}}
\def\shat{\widehat{s}}
\def\uhat{\widehat{u}}
\def\ubar{\overline{u}}
\def\vhat{\widehat{v}}
\def\xhat{\widehat{x}}
\def\xbar{\overline{x}}
\def\zhat{\widehat{z}}
\def\zbar{\overline{z}}
\def\la{\leftarrow}
\def\ra{\rightarrow}
\def\MSE{\mbox{\small \sffamily MSE}}
\def\SNR{\mbox{\small \sffamily SNR}}
\def\SINR{\mbox{\small \sffamily SINR}}
\def\arr{\rightarrow}
\def\Exp{\mathbb{E}}
\def\var{\mbox{var}}
\def\Tr{\mbox{Tr}}
\def\tm1{t\! - \! 1}
\def\tp1{t\! + \! 1}
\def\Xset{{\cal X}}
\newcommand{\one}{\mathbf{1}}
\newcommand{\abf}{\mathbf{a}}
\newcommand{\bbf}{\mathbf{b}}
\newcommand{\dbf}{\mathbf{d}}
\newcommand{\ebf}{\mathbf{e}}
\newcommand{\gbf}{\mathbf{g}}
\newcommand{\hbf}{\mathbf{h}}
\newcommand{\pbf}{\mathbf{p}}
\newcommand{\pbfhat}{\widehat{\mathbf{p}}}
\newcommand{\qbf}{\mathbf{q}}
\newcommand{\qbfhat}{\widehat{\mathbf{q}}}
\newcommand{\rbf}{\mathbf{r}}
\newcommand{\rbfhat}{\widehat{\mathbf{r}}}
\newcommand{\sbf}{\mathbf{s}}
\newcommand{\sbfhat}{\widehat{\mathbf{s}}}
\newcommand{\ubf}{\mathbf{u}}
\newcommand{\ubfhat}{\widehat{\mathbf{u}}}
\newcommand{\utildebf}{\tilde{\mathbf{u}}}
\newcommand{\vbf}{\mathbf{v}}
\newcommand{\vbfhat}{\widehat{\mathbf{v}}}
\newcommand{\wbf}{\mathbf{w}}
\newcommand{\wbfhat}{\widehat{\mathbf{w}}}
\newcommand{\xbf}{\mathbf{x}}
\newcommand{\xbfhat}{\widehat{\mathbf{x}}}
\newcommand{\xbfbar}{\overline{\mathbf{x}}}
\newcommand{\ybf}{\mathbf{y}}
\newcommand{\zbf}{\mathbf{z}}
\newcommand{\zbfbar}{\overline{\mathbf{z}}}
\newcommand{\zbfhat}{\widehat{\mathbf{z}}}
\newcommand{\Ahat}{\widehat{A}}
\newcommand{\Abf}{\mathbf{A}}
\newcommand{\Bbf}{\mathbf{B}}
\newcommand{\Cbf}{\mathbf{C}}
\newcommand{\Bbfhat}{\widehat{\mathbf{B}}}
\newcommand{\Dbf}{\mathbf{D}}
\newcommand{\Gbf}{\mathbf{G}}
\newcommand{\Hbf}{\mathbf{H}}
\newcommand{\Kbf}{\mathbf{K}}
\newcommand{\Pbf}{\mathbf{P}}
\newcommand{\Phat}{\widehat{P}}
\newcommand{\Qbf}{\mathbf{Q}}
\newcommand{\Rbf}{\mathbf{R}}
\newcommand{\Rhat}{\widehat{R}}
\newcommand{\Sbf}{\mathbf{S}}
\newcommand{\Ubf}{\mathbf{U}}
\newcommand{\Vbf}{\mathbf{V}}
\newcommand{\Wbf}{\mathbf{W}}
\newcommand{\Xhat}{\widehat{X}}
\newcommand{\Xbf}{\mathbf{X}}
\newcommand{\Ybf}{\mathbf{Y}}
\newcommand{\Zbf}{\mathbf{Z}}
\newcommand{\Zhat}{\widehat{Z}}
\newcommand{\Zbfhat}{\widehat{\mathbf{Z}}}
\def\alphabf{{\boldsymbol \alpha}}
\def\betabf{{\boldsymbol \beta}}
\def\mubf{{\boldsymbol \mu}}
\def\lambdabf{{\boldsymbol \lambda}}
\def\etabf{{\boldsymbol \eta}}
\def\xibf{{\boldsymbol \xi}}
\def\taubf{{\boldsymbol \tau}}
\def\sigmahat{{\widehat{\sigma}}}
\def\thetabf{{\bm{\theta}}}
\def\thetabfhat{{\widehat{\bm{\theta}}}}
\def\thetahat{{\widehat{\theta}}}
\def\mubar{\overline{\mu}}
\def\muavg{\mu}
\def\sigbf{\bm{\sigma}}
\def\etal{\emph{et al.}}
\def\Ggothic{\mathfrak{G}}
\def\Pset{{\mathcal P}}
\newcommand{\bigCond}[2]{\bigl({#1} \!\bigm\vert\! {#2} \bigr)}
\newcommand{\BigCond}[2]{\Bigl({#1} \!\Bigm\vert\! {#2} \Bigr)}
\def\Rect{\mathop{Rect}}
\def\sinc{\mathop{sinc}}
\def\Real{\mathrm{Re}}
\def\Imag{\mathrm{Im}}
\begin{document}
\title{Problems: Passband Modulation}
\author{Prof.\ Sundeep Rangan}
\date{}
\maketitle
\begin{enumerate}
\item \emph{Passband conversion in time-domain.} Suppose that the
complex baseband signal in time-domain is
\[
u(t) = (a+bj)e^{-\alpha t}, \quad t \geq 0,
\]
where $a$, $b$, $\alpha$ are real.
\begin{enumerate}[(a)]
\item What at the I and Q components?
\item What is the real passband signal after upconversion with a carrier frequency $f_c$?
\end{enumerate}
\item \emph{Passband conversion in frequency domain.}
Let $u(t)$ be a complex baseband signal with the real and imaginary parts of
the spectrum (Fourier Transform) shown in
Fig.~\ref{fig:Ubb}. The constants are $f_0 = $ 5 MHz, $f_1 = $ 10 MHz, $A=8$ and $B=10$.
\begin{figure}[h]
\center
\begin{tikzpicture}[xscale=2,yscale=1]
\pgfmathsetmacro{\fa}{-0.5}
\pgfmathsetmacro{\fb}{1}
\pgfmathsetmacro{\fm}{2}
\pgfmathsetmacro{\A}{1}
\pgfmathsetmacro{\tic}{0.2}
% Draw the axes
\draw [->] (-\fm,0) -- (\fm,0) node [right] {$f$ (MHz)};
\draw [->] (0,-\tic) -- (0,1.3) node [right] {$\Real(U(f))$};
\draw [-] (\fa,\tic) -- (\fa,-\tic) node [below] {$-f_0$};
\draw [-] (\fb,\tic) -- (\fb,-\tic) node [below right] {$f_1$};
\draw [-,dashed] (\fb-\tic,\A) -- (\fb+\tic,\A) node [right] {$A$};
% Draw Real U(f)
\draw [ultra thick,blue,-] (-\fm+0.2,0) -- (\fa,0) -- (\fa,\A) --
(\fb,\A) -- (\fb,0) -- (\fm-0.2,0);
\end{tikzpicture}
\begin{tikzpicture}[xscale=2,yscale=1]
\pgfmathsetmacro{\fa}{-0.5}
\pgfmathsetmacro{\fb}{1}
\pgfmathsetmacro{\fm}{2}
\pgfmathsetmacro{\A}{1.3}
\pgfmathsetmacro{\tic}{0.2}
% Draw the axes
\draw [->] (-\fm,0) -- (\fm,0) node [right] {$f$ (MHz)};
\draw [->] (0,-\tic) -- (0,1.7) node [right] {$\Imag(U(f))$};
\draw [-] (-\fb,\tic) -- (-\fb,-\tic) node [below] {$-f_1$};
\draw [-] (\fb,\tic) -- (\fb,-\tic) node [below right] {$f_1$};
\draw [-,dashed] (-\tic,\A) -- (\tic,\A) node [right] {$B$};
% Draw Imag U(f)
\draw [ultra thick,blue,-] (-\fm+0.2,0) -- (-\fb,0) -- (0,\A)
-- (\fb,0) -- (\fm-0.2,0);
\end{tikzpicture}
\caption{Real and imaginary parts of complex baseband signal $U(f)$} \label{fig:Ubb}
\end{figure}
\begin{enumerate}[(a)]
\item Suppose that we create a real passband signal $u_p(t) = \Real(u(t)e^{2\pi if_c t})$
for a carrier frequency $f_c = 800$ MHz. Draw the spectrum of $U_p(f)$. Show
both the real and imaginary parts and show both the positive and negative frequencies.
\item Is $u(t)$ an energy signal or power signal? What is its energy or power (in linear scale)?
Leave your answer in terms of $A$, $B$, $f_0$ and $f_1$. You do not need to
convert to dB scale.
\item A receiver attempts to downcovert the signal with a two step process:
\[
v(t)= 2u(t)e^{-2\pi i f_c t}, \quad \hat{u}(t) = h_{LPF}(t) * v(t),
\]
where $h_{LPF}(t)$ has a frequency response,
\[
H_{LPF}(f) = \begin{cases}
C & \mbox{if } |f| < f_{LPF} \\
0 & \mbox{if } |f| \geq f_{LPF}.
\end{cases}
\]
For what values of $C$ and $f_{LPF}$ is $\hat{u}=u(t)$?
\end{enumerate}
\item \emph{Baseband equivalent filter.}
Consider a communication system with three steps:
\begin{itemize}
\item A complex baseband signal $u(t)$ is upconverted $u_p(t)=\Real(u(t)e^{2\pi if_ct})$
for some $f_c$.
\item The real passband channel is passed through a linear filter,
\[
\frac{dy_p(t)}{dt} = b u_p(t)- ay_p(t),
\]
with constants $a$ and $b>0$.
\item The received signal is downconverted, $v(t)=2y_p(t)e^{-2\pi i f_ct}$ and
$y(t)=h_{\rm LPF}(t)*v(t)$ where $h_{\rm LPF}(t)$ is an ideal low-pass filter.
\end{itemize}
\begin{enumerate}[(a)]
\item What is the real passband frequency response, $H_p(f) = \frac{Y_p(f)}{U_p(f)}$?
\item What is the effective baseband frequency response $H(f) = \frac{Y(f)}{U(f)}$?
\item Find $a_1$ and $b_1$ such that
\[
\frac{dy(t)}{dt} = b_1 x(t)- a_1y(t).
\]
\item Suppose that $2\pi f_c \gg a$, what is the power gain of $H(0)$ in dB?
\end{enumerate}
\item \emph{PSD and RX filtering.}
Suppose that a real passband signal has two components:
\[
x(t)=x_0(t)+x_1(t),
\]
where $x_0(t)$ is a desired signal, and $x_1(t)$ is an interfering signal. They have PSD
$S_i(f)=A_i\Rect((f-f_i)/W_i)$, $i=0,1$ with parameters:
\begin{itemize}
\item Desired signal: $f_0 = 2.50$ GHz, $W_0 = $ 20~MHz, total receive power $P_0$ = -100~dBm.
\item Interfering signal: $f_1 = 2.53$ GHz, $W_1 = $ 10~MHz, total receive power $P_1$ = -80~dBm.
\end{itemize}
\begin{enumerate}[(a)]
\item Find $A_i$ from $P_i$ using reasonable approximations. State the units of $A_i$.
\item Draw $S_0(f)$ and $S_1(f)$.
\item A signal is downconverted with mixing $v(t)=2x(t)e^{2\pi i f_ct}$ and $u(t)=h(t)*v(t)$.
Find $f_c$ and a filter magnitude response $|H(f)|^2$ such that:
\begin{itemize}
\item The component from desired signal is centered at 0 and amplified to -60 dBm.
\item The component from interfering signal attenuated to below -110 dBm.
\end{itemize}
There is no single correct answer. Draw $|H(f)|^2$ and the PSD of $u(t)$.
\end{enumerate}
\begin{figure}
\centering
\includegraphics[width=10cm]{transceiver_60GHz}
\caption{Schematic diagram of a SiGe RF front-end from Floyd, \emph{et.~al}, 2005. }\label{fig:transceiver60}
\end{figure}
\item \emph{FFT bins.} A RX receives a complex baseband signal $x(t)$ and samples
$x(t)$ at a sampling rate $f_s=$\,\SI{20}{MHz}. It then takes an $N$-point FFT
$X[k]$, $k=0,1,\ldots,N-1$ with $N=1024$. For each of the following signals $x(t)$, indicate
which bin $k$ will $|X[k]|^2$ have the maximum value?
\begin{enumerate}[(a)]
\item $x(t)$ is a complex exponential with frequency $f_0=$\,\SI{4}{MHz}.
\item $x(t)$ is a complex exponential with frequency $f_0=$\,\SI{-4}{MHz}.
\item A real passband signal is $x_p(t) = A\cos(2\pi ft)$ with $f=$\,\SI{2.002}{GHz}.
Then $x(t)$ comes from downconverting $x_p(t)$ with carrier $f_c=$\,\SI{2}{GHz}.
\item $x(t)$ comes from downconverting $x_p(t)$ as in part (c). But, the
carrier frequency $f_c$ is nominally \SI{2}{GHz}, but with an error of \SI{+10}{ppm}
too high.
\end{enumerate}
\item \emph{Circuit implementations.} Fig.~\ref{fig:transceiver60} shows the circuit schematic
of the RF front-end a SiGe (silicon Germanium) bipolar transceiver presented in:
\begin{quote}
Floyd, Brian A., et al. "SiGe bipolar transceiver circuits operating at 60 GHz." \emph{IEEE journal of solid-state circuits} 40.1 (2005): 156-167.
\end{quote}
Feel free to look up terms in the paper or any other source to answer the following questions:
\begin{enumerate}
\item Which block is the local oscillator?
\item What is the carrier frequency? Why?
\item What is the role of the "Differential branch line directional coupler"?
\item How is the frequency tuned?
\end{enumerate}
\end{enumerate}
\end{document}