-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathall_with_nmf_final.py
198 lines (144 loc) · 5.74 KB
/
all_with_nmf_final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Nov 22 21:46:12 2019
@author: chinshu
"""
import cv2
import glob
import numpy as np
import os.path as path
from scipy import misc
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Activation,Dense, Conv2D, MaxPooling2D,Input, Convolution2D, Flatten
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
import math
import os
from keras.optimizers import Adam
from sklearn.metrics import accuracy_score, confusion_matrix, precision_recall_fscore_support
from sklearn import metrics
import pandas as pd
import seaborn as sns
from skimage import color
from skimage import io
from sklearn.decomposition import NMF
from sklearn import metrics
# =============================================================================
# reading the images from the specified path
# =============================================================================
path_of_image = 'D:/Study/Masters/Thesis/dataset/NEU-DET/NEU-DET/IMAGES'
file_paths = glob.glob(path.join(path_of_image, '*.jpg'))
len(file_paths)
file_paths[:10]
# Loading the images and resizing it to 40,40
images = [cv2.imread(fpath) for fpath in file_paths]
images=[cv2.resize(image,(40,40)) for image in images ]
images = np.asarray(images)
# Getting image size
image_size = np.asarray([images.shape[1], images.shape[2], images.shape[3]])
print(image_size)
# =============================================================================
# scalling and applying gausian blur
# =============================================================================
#scalling
scaling = images / 255
#applying gaussian blur
import os
import matplotlib.pyplot as plt
write_path = 'D:/study/New'
os.chdir(write_path)
no_noise = []
for i in range(len(scaling)):
blur = cv2.GaussianBlur(scaling[i], (5, 5), 0) # change the kernal size to 3x3 for generating blur images
no_noise.append(blur)
# storing the images into a folder
img = no_noise[i]
plt.imshow(img)
plt.savefig("{}".format(os.path.split(file_paths[i])[-1]))
##################Reading the gaussian blur images#############################
path_of_image2 = 'D:/study/gaussianblur' # path of gaussian blur for separate 3x3 and 5x5 kernal size
file_paths2 = glob.glob(path.join(path_of_image2, '*.jpg'))
# loading the images
img = [color.rgb2gray(io.imread(file_path,0)) for file_path in file_paths2]
img1 = np.asarray(img)
len(img1)
# applying Non-negative matrix factorization
list_img = []
for i in range(img1.shape[0]):
model = NMF(n_components=20, init='random', random_state=0)
W = model.fit_transform(img1[i])
H = model.components_
matrix = np.dot(W,H)
list_img.append(matrix)
# reading labels
images_nmf = np.asarray(list_img)
images_nmf.shape
n_images = images_nmf.shape[0]
class_names =['crazing','inclusion','patches','pitted_surface','rolled-in_scale','scratches']
y = []
for i in range(n_images):
filename = os.path.basename(file_paths2[i])
for j in class_names:
if j in filename:
idx = class_names.index(j)
y.append(int(idx))
# will give six image classes
no_of_classes = np.unique(y).shape[0]
# encoding categorical data
Y = np_utils.to_categorical(y, no_of_classes)
#resizing image
images_nmf.resize(1800,200,200,1)
X = images_nmf
# normalizing data to bring in range of 0 to 1
s = images_nmf/np.max(images_nmf)
X = s
#dividing the data into training set and test set
x_train, x_test, y_train, y_test = train_test_split(X , Y, test_size = 0.20, random_state = 0)
###############################################################################
# Initilizaing Convolutional Neural Network
model_classifier = Sequential()
# convolution layer with pooling
model_classifier.add(Convolution2D(32,3,3, input_shape = (200,200,1), activation='relu'))
model_classifier.add(Convolution2D(32,3,3, activation='relu'))
model_classifier.add(MaxPooling2D(pool_size=(2,2)))
# convolution layer with pooling
model_classifier.add(Convolution2D(64,3,3, activation='relu'))
model_classifier.add(Convolution2D(64,3,3, activation='relu'))
model_classifier.add(MaxPooling2D(pool_size=(2,2)))
# convolution layer with pooling
model_classifier.add(Convolution2D(128,3,3, activation='relu'))
model_classifier.add(Convolution2D(128,3,3, activation='relu'))
model_classifier.add(MaxPooling2D(pool_size=(2,2)))
#step3 flattening
model_classifier.add(Flatten())
#step4 full connected layer
model_classifier.add(Dense(output_dim = 256, activation='relu'))
model_classifier.add(Dense(output_dim = 6, activation = 'softmax'))
model_classifier.compile(Adam(lr = 0.0001),loss = 'categorical_crossentropy',metrics = ['accuracy'])
# training the model using training set data
model_classifier.fit(x_train,y_train,
epochs=20,
validation_data=(x_test,y_test))
# evaluating the model based on testing data
score = model_classifier.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
#ploting confusion matrix
y_pred = model_classifier.predict(x_test)
Y_pred = np.argmax(y_pred, 1) # Decode Predicted labels
Y_test = np.argmax(y_test, 1) # Decode labels
confusion_matrix = confusion_matrix(Y_test,Y_pred)
confusion_matrix_df = pd.DataFrame(confusion_matrix,
index = class_names,
columns = class_names)
plt.figure(figsize=(6,4))
sns.heatmap(confusion_matrix_df, annot= True)
plt.title('CNN \nAccuracy:{0:.3f}\n'.format(accuracy_score(Y_test, Y_pred)))
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()
#will give the precision and recall for all the classes
print(metrics.classification_report(Y_test,Y_pred,digits=3))