-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbikeshare.py
201 lines (148 loc) · 6.81 KB
/
bikeshare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import time
import pandas as pd
import numpy as np
from statistics import mode
CITY_DATA = { 'chicago': 'chicago.csv',
'new york city': 'new_york_city.csv',
'washington': 'washington.csv' }
def get_filters():
"""
Asks user to specify a city, month, and day to analyze.
Returns:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
"""
print('Hello! Let\'s explore some US bikeshare data!')
# TO DO: get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs
city = input("\nEnter the name of city from chicago, new york city, washington to explore bike share data: ").lower()
while city.lower() not in ['chicago', 'new york city', 'washington']:
city = input( "entered invalid city name, please enter a valid city name: ").lower()
# TO DO: get user input for month (all, january, february, ... , june)
month = input("enter the name of month from January, February, March, April, May, June :").lower()
while month.lower() not in ['january','february','march','april','may','june']:
month = input('entered month is invalid, please enter a valid month').lower()
# TO DO: get user input for day of week (all, monday, tuesday, ... sunday)
day = input("enter the day from Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday :").lower()
while day.lower() not in ['monday','tuesday','wednesday','thursday','friday','saturday','sunday']:
day = input('entered day is invalid, please enter a valid day').lower()
print('-'*40)
return city, month, day
def load_data(city, month, day):
"""
Loads data for the specified city and filters by month and day if applicable.
Args:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
Returns:
df - Pandas DataFrame containing city data filtered by month and day
"""
df = pd.read_csv(CITY_DATA[city])
# convert the start time column to datetime
df['Start Time'] = pd.to_datetime(df['Start Time'])
# extract month and day of week from start time to create new columns
df['month'] = df['Start Time'].dt.month
df['day_of_week'] = df['Start Time'].dt.weekday_name
#fillter by month
if month != 'all':
months = ['january', 'february', 'march', 'april', 'may', 'june']
month = months.index(month) + 1
df = df[df['month'] == month]
#filter by day of week
if day != 'all':
df = df[df['day_of_week'] == day.title()]
return df
def time_stats(df):
"""Displays statistics on the most frequent times of travel."""
print('\nCalculating The Most Frequent Times of Travel...\n')
start_time = time.time()
# TO DO: display the most common month
df['Start Time'] = pd.to_datetime(df['Start Time'])
df['month'] = df['Start Time'].dt.month
popular_month = df['month'].mode()[0]-1
print('Most common month: {}'.format(popular_month))
# TO DO: display the most common day of week
df['day_of_week'] = df['Start Time'].dt.weekday_name
popular_day = df['day_of_week'].mode()[0]
print('Most common day: ', popular_day)
# TO DO: display the most common start hour
df['hour'] = df['Start Time'].dt.hour
popular_hour = mode(df['hour'])
print('Most common Start hour: ', popular_hour)
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def station_stats(df):
"""Displays statistics on the most popular stations and trip."""
print('\nCalculating The Most Popular Stations and Trip...\n')
start_time = time.time()
# TO DO: display most commonly used start station
print('Most popular start station: {}'.format(df['Start Station'].mode()[0]))
# TO DO: display most commonly used end station
print('Most popular end station: {}'.format(df['End Station'].mode()[0]))
# TO DO: display most frequent combination of start station and end station trip
df['trip_combination'] = df['Start Station'] + ' to ' + df['End Station']
print('\nThe most common start and end station is : {}\n'.format(df['trip_combination'].mode()[0]))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def trip_duration_stats(df):
"""Displays statistics on the total and average trip duration."""
print('\nCalculating Trip Duration...\n')
start_time = time.time()
# TO DO: display total travel time
total = df['Trip Duration'].sum()
print('\nTotal Travel time : {}'.format(total))
# TO DO: display mean travel time
mean = df['Trip Duration'].mean()
print('\nAverage travel time : {}'.format(mean))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def user_stats(df):
"""Displays statistics on bikeshare users."""
print('\nCalculating User Stats...\n')
start_time = time.time()
# TO DO: Display counts of user types
user_types_total = df['User Type'].value_counts()
print('\nCount of user by types: \n{} '.format(user_types_total))
# TO DO: Display counts of gender
if 'Gender' in df.columns:
gender_counts = df['Gender'].value_counts()
print('\n count of gender by categories: \n{} '.format(gender_counts))
# TO DO: Display earliest, most recent, and most common year of birth
if 'Birth Year' in df.columns:
Earliest_Year = df['Birth Year'].min()
print('\nEarliest Year:', Earliest_Year)
recent_Year = df['Birth Year'].max()
print('\nRecent Year:', recent_Year)
Most_Common_Year = df['Birth Year'].value_counts().idxmax()
print('\nMost Common Year:', Most_Common_Year)
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def raw_data(df):
<<<<<<< .merge_file_a16596
#asking user if they want to view the raw data
||||||| .merge_file_a12856
=======
#asking user if he wants to see the raw data
>>>>>>> .merge_file_a20568
raw_data_view = input('To view the raw data enter Yes or no:')
raw_data_view.lower()
if raw_data_view == 'yes':
print(df.head(5))
raw_data(df)
else:
print("Thanks for viewing the Raw data")
def main():
while True:
city, month, day = get_filters()
df = load_data(city, month, day)
time_stats(df)
station_stats(df)
trip_duration_stats(df)
user_stats(df)
raw_data(df)
restart = input('\nWould you like to restart? Enter yes or no.\n')
if restart.lower() != 'yes':
break
if __name__ == "__main__":
main()