-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
420 lines (388 loc) · 15.4 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="description"
content="G3DR: Generative 3D Reconstruction in ImageNet. 3D generation in imagenet.">
<meta name="keywords" content="G3DR, Triplane, NeRF">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Generative 3D Reconstruction (G3DR) in ImageNet</title>
<!-- Global site tag (gtag.js) - Google Analytics -->
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<link rel="icon" href="./static/images/favicon.ico">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
</head>
<body>
<nav class="navbar" role="navigation" aria-label="main navigation">
<div class="navbar-brand">
<a role="button" class="navbar-burger" aria-label="menu" aria-expanded="false">
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
</a>
</div>
<div class="navbar-menu">
<div class="navbar-start" style="flex-grow: 1; justify-content: center;">
<a class="navbar-item" href="https://preddy5.github.io">
<span class="icon">
<i class="fas fa-home"></i>
</span>
</a>
<div class="navbar-item has-dropdown is-hoverable">
<a class="navbar-link">
More Research
</a>
<div class="navbar-dropdown">
<a class="navbar-item" href="https://geometry.cs.ucl.ac.uk/projects/2021/im2vec/">
Im2Vec
</a>
<a class="navbar-item" href="https://geometry.cs.ucl.ac.uk/group_website/projects/2020/diffcompositing/">
Differentiable Compositing
</a>
<!-- <a class="navbar-item" href="https://latentfusion.github.io">
LatentFusion
</a>
<a class="navbar-item" href="https://photoshape.github.io">
PhotoShape
</a> -->
</div>
</div>
</div>
</div>
</nav>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">G3DR: Generative 3D Reconstruction in ImageNet</h1>
<h3 class="title is-4 publication-title">CVPR 2024</h3>
<div class="is-size-5 publication-authors">
<span class="author-block">
<a href="https://preddy5.github.io">Pradyumna Reddy</a><sup>*</sup>,</span>
<span class="author-block">
<a href="https://scholar.google.com/citations?user=tpaCLrsAAAAJ&hl=en">Ismail Elezi</a><sup>*</sup>,</span>
<span class="author-block">
<a href="https://jiankangdeng.github.io/">Jiankang Deng</a>,
</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block">Huawei Noah’s Ark Lab UK</span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- PDF Link. -->
<span class="link-block">
<a href="https://arxiv.org/pdf/2403.00939.pdf"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
<span class="link-block">
<a href="https://arxiv.org/abs/2403.00939"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
<!-- Video Link. -->
<!-- <span class="link-block">
<a href="https://www.youtube.com/watch?v=MrKrnHhk8IA"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-youtube"></i>
</span>
<span>Video</span>
</a>
</span> -->
<!-- Code Link. -->
<span class="link-block">
<a href="https://github.com/preddy5/G3DR"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
<!-- Dataset Link. -->
<span class="link-block">
<a href="https://drive.google.com/drive/folders/1yAMr1Us9gD6F5P0lCd5qiouyZ9gT5P_n"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="far fa-images"></i>
</span>
<span>Data</span>
</a>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="section" style="padding-top: 0.5rem;"">
<!-- Paper video. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<!-- <h2 class="title is-3">Video</h2> -->
<div>
<img src="./static/images/teaser.png"
alt="Teaser image" style="max-width: 640px;"/>
</div>
</div>
</div>
<!--/ Paper video. -->
</div>
<div class="container is-max-desktop">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
We introduce a novel 3D generative method, Generative 3D Reconstruction (G3DR) in ImageNet, capable of generating diverse and high-quality 3D objects from single images, addressing the limitations of existing methods.
</p>
<p>
At the heart of our framework is a novel depth regularization technique that enables the generation of scenes with high-geometric fidelity. G3DR also leverages a pretrained language-vision model, such as CLIP, to enable reconstruction in novel views and improve the visual realism of generations. Additionally, G3DR designs a simple but effective sampling procedure to further improve the quality of generations. G3DR offers diverse and efficient 3D asset generation based on class or text conditioning. Despite its simplicity, G3DR is able to beat state-of-theart methods, improving over them by up to 22% in perceptual metrics and 90% in geometry scores, while needing only half of the training time.
</p>
<p>
Code is available at <a href="https://github.com/preddy5/G3DR">https://github.com/preddy5/G3DR</a>
</p>
</div>
</div>
</div>
<!--/ Abstract. -->
</section>
<section class="hero is-light is-small">
<div class="hero-body">
<div class="container has-text-centered">
<h2 class="title is-3">Results</h2>
<div id="results-carousel" class="carousel results-carousel">
<div class="item item-steve">
<video poster="" id="steve" autoplay controls muted loop playsinline height="100%">
<source src="./static/videos/0_10000k.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-chair-tp">
<video poster="" id="chair-tp" autoplay controls muted loop playsinline height="100%">
<source src="./static/videos/1_10000k.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-shiba">
<video poster="" id="shiba" autoplay controls muted loop playsinline height="100%">
<source src="./static/videos/2_10000k.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-fullbody">
<video poster="" id="fullbody" autoplay controls muted loop playsinline height="100%">
<source src="./static/videos/3_10000k.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-blueshirt">
<video poster="" id="blueshirt" autoplay controls muted loop playsinline height="100%">
<source src="./static/videos/d_10000k.mp4"
type="video/mp4">
</video>
</div>
</div>
</div>
</div>
</section>
<section class="hero is-small" style="padding-top: 1rem; padding-bottom: 0.5rem;"">
<div class="hero-body">
<div class="container is-centered has-text-centered">
<h2 class="title is-3">Methods</h2>
<div class="content has-text-justified">
<p>
a) Our framework is conditioned on some visual input, class cateogry or text, and generates an image. Then it feeds that image over a triplane generator, and it finally renders it, ensuring good image quality and geometry using a regularization depth.
</p>
<p>
b) An illustration of our kernel in 2D; the blue line on the Depth Map represents the selected cross section, in the Original Gradients we visualize high dimensional gradients using rgb channels and Scaled Gradients show how the kernel modifies the volume rendering function gradients.
</p>
<p>
c) The losses of our model. In the canonical view, our method uses a combination of reconstruction, perceptual and depth loss. In the novel view, it uses a combination of clip, perceptual and tv loss. The losses are scaled accordingly, while the loss gradients during backpropagation are scaled based on the kernel in (b).
</p>
</div>
</div>
</div>
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<!-- <h2 class="title is-3">Video</h2> -->
<div>
<img src="./static/images/arch_website.png"
alt="Teaser image" style="max-width: 900px;"/>
</div>
</div>
</div>
</section>
<!-- Concurrent Work. -->
<section class="hero is-light" style="padding: 1.5rem;">
<div class="container is-max-desktop">
<!-- Abstract. -->
<h2 class="title is-3 is-centered has-text-centered">Quantitative results</h2>
<div class="columns is-centered has-text-centered">
<!-- <div class="column is-four-fifths"> -->
<p></p>
<div class="content has-text-justified">
<div class="content has-text-justified">
<p>
Our method significantly outperforms the other 3D methods.
</p>
</div>
<table class="table is-bordered is-bordered" style="max-width: 640px;">
<thead>
<th>Method</th>
<th>Synthesis</th>
<th>FID </th>
<th>IS </th>
</thead>
<tr>
<td>BigGAN (ArXiV18)</td>
<td>2D</td>
<td>8.7</td>
<td>142.3</td>
</tr>
<tr>
<td>StyleGAN-XL (SIGGRAPH22)</td>
<td>2D</td>
<td>2.3</td>
<td>265.1</td>
</tr>
<tr>
<td>ADM (NeurIPS21)</td>
<td>2D</td>
<td>4.6</td>
<td>186.7</td>
</tr>
<tr height = 5px><td></td></tr>
<tr>
<td>IVID 128x (ICCV23)</td>
<td>2.5D</td>
<td>14.1</td>
<td>61.4</td>
</tr>
<tr>
<td><b>Ours</b> 128x</td>
<td>3D</td>
<td><b>13.0</b></td>
<td><b>136.4</b></td>
</tr>
<tr></tr>
<tr height = 5px><td></td></tr>
<tr>
<td>EG3D (CVPR22)</td>
<td>3D-a</td>
<td>25.6</td>
<td>57.3</td>
</tr>
<tr>
<td>StyleNeRF (ICML22)</td>
<td>3D-a</td>
<td>56.5</td>
<td>21.8</td>
</tr>
<tr>
<td>3DPhoto (CVPR20)</td>
<td>3D-a</td>
<td>116.6</td>
<td>9.5</td>
</tr>
<tr>
<td>EpiGRAF (NeurIPS22)</td>
<td>3D</td>
<td>58.2</td>
<td>20.4</td>
</tr>
<tr>
<td>3DGP (ICLR23)</td>
<td>3D</td>
<td>19.7</td>
<td>124.8</td>
</tr>
<tr>
<td>VQ3D (ICCV23)</td>
<td>3D</td>
<td>16.8</td>
<td>n/a</td>
</tr>
<tr>
<td><b>Ours</b></td>
<td>3D</td>
<td><b>13.1</b></td>
<td><b>151.7</b></td>
</tr>
</table>
</div>
</div>
</div>
<!--/ Concurrent Work. -->
</div>
</section>
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@misc{reddy2024g3dr,
title={G3DR: Generative 3D Reconstruction in ImageNet},
author={Pradyumna Reddy and Ismail Elezi and Jiankang Deng},
year={2024},
eprint={2403.00939},
archivePrefix={arXiv},
primaryClass={cs.CV}
}</code></pre>
</div>
</section>
<footer class="footer">
<div class="container">
<!-- <div class="content has-text-centered">
<a class="icon-link"
href="./static/videos/nerfies_paper.pdf">
<i class="fas fa-file-pdf"></i>
</a>
<a class="icon-link" href="https://github.com/keunhong" class="external-link" disabled>
<i class="fab fa-github"></i>
</a>
</div> -->
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This website is licensed under a <a rel="license"
href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
Commons Attribution-ShareAlike 4.0 International License</a>.
</p>
<p>
This means you are free to borrow the <a
href="https://github.com/nerfies/nerfies.github.io">source code</a> of this website,
we just ask that you link back to this page in the footer.
Please remember to remove the analytics code included in the header of the website which
you do not want on your website.
</p>
</div>
</div>
</div>
</div>
</footer>
</body>
</html>