-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathall_utils.py
341 lines (284 loc) · 11.3 KB
/
all_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import tensorboardX
import pdb
import sys
from collections import MutableMapping, Hashable
import csv
import os
import torch
import torch.nn.functional as F
import numpy as np
from progressbar import ProgressBar
import sys
# Additional information that might be necessary to get the model
DATASET_NUM_CLASS = {
'modelnet40': 40,
'modelnet40_rscnn': 40,
'modelnet40_pn2': 40,
'modelnet40_dgcnn': 40,
}
class TensorboardManager:
def __init__(self, path):
self.writer = tensorboardX.SummaryWriter(path)
def update(self, split, step, vals):
for k, v in vals.items():
self.writer.add_scalar('%s_%s' % (split, k), v, step)
def close(self):
self.writer.flush()
self.writer.close()
class TrackTrain:
def __init__(self, early_stop_patience):
self.early_stop_patience = early_stop_patience
self.counter = -1
self.best_epoch_val = -1
self.best_epoch_train = -1
self.best_epoch_test = -1
self.best_val = float("-inf")
self.best_test = float("-inf")
self.best_train = float("-inf")
self.test_best_val = float("-inf")
def record_epoch(self, epoch_id, train_metric, val_metric, test_metric):
assert epoch_id == (self.counter + 1)
self.counter += 1
if val_metric >= self.best_val:
self.best_val = val_metric
self.best_epoch_val = epoch_id
self.test_best_val = test_metric
if test_metric >= self.best_test:
self.best_test = test_metric
self.best_epoch_test = epoch_id
if train_metric >= self.best_train:
self.best_train = train_metric
self.best_epoch_train = epoch_id
def save_model(self, epoch_id, split):
"""
Whether to save the current model or not
:param epoch_id:
:param split:
:return:
"""
assert epoch_id == self.counter
if split == 'val':
if self.best_epoch_val == epoch_id:
_save_model = True
else:
_save_model = False
elif split == 'test':
if self.best_epoch_test == epoch_id:
_save_model = True
else:
_save_model = False
elif split == 'train':
if self.best_epoch_train == epoch_id:
_save_model = True
else:
_save_model = False
else:
assert False
return _save_model
def early_stop(self, epoch_id):
assert epoch_id == self.counter
if (epoch_id - self.best_epoch_val) > self.early_stop_patience:
return True
else:
return False
class PerfTrackVal:
"""
Records epoch wise performance for validation
"""
def __init__(self, task, extra_param=None):
self.task = task
if task in ['cls', 'cls_trans']:
assert extra_param is None
self.all = []
self.class_seen = None
self.class_corr = None
else:
assert False
def update(self, data_batch, out):
if self.task in ['cls', 'cls_trans']:
correct = self.get_correct_list(out['logit'], data_batch['label'])
self.all.extend(correct)
self.update_class_see_corr(out['logit'], data_batch['label'])
else:
assert False
def agg(self):
if self.task in ['cls', 'cls_trans']:
perf = {
'acc': self.get_avg_list(self.all),
'class_acc': np.mean(np.array(self.class_corr) / np.array(self.class_seen,dtype=np.float))
}
else:
assert False
return perf
def update_class_see_corr(self, logit, label):
if self.class_seen is None:
num_class = logit.shape[1]
self.class_seen = [0] * num_class
self.class_corr = [0] * num_class
pred_label = logit.argmax(axis=1).to('cpu').tolist()
for _pred_label, _label in zip(pred_label, label):
self.class_seen[_label] += 1
if _pred_label == _label:
self.class_corr[_pred_label] += 1
@staticmethod
def get_correct_list(logit, label):
label = label.to(logit.device)
pred_class = logit.argmax(axis=1)
return (label == pred_class).to('cpu').tolist()
@staticmethod
def get_avg_list(all_list):
for x in all_list:
assert isinstance(x, bool)
return sum(all_list) / len(all_list)
class PerfTrackTrain(PerfTrackVal):
"""
Records epoch wise performance during training
"""
def __init__(self, task, extra_param=None):
super().__init__(task, extra_param)
# add a list to track loss
self.all_loss = []
def update_loss(self, loss):
self.all_loss.append(loss.item())
def agg_loss(self):
# print(self.all_loss)
return sum(self.all_loss) / len(self.all_loss)
def update_all(self, data_batch, out, loss):
self.update(data_batch, out)
self.update_loss(loss)
# source: https://github.com/WangYueFt/dgcnn/blob/master/pytorch/util.py
def smooth_loss(pred, gold):
eps = 0.2
n_class = pred.size(1)
one_hot = torch.zeros_like(pred).scatter(1, gold.view(-1, 1), 1)
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
log_prb = F.log_softmax(pred, dim=1)
loss = -(one_hot * log_prb).sum(dim=1).mean()
return loss
def rscnn_voting_evaluate_cls(loader, model, data_batch_to_points_target,
points_to_inp, out_to_prob, log_file):
"""
:param loader:
:param model:
:param data_batch_to_points_target:
:param points_to_inp: transform the points to input for the particular model
that is evaluated
:param out_to_prob:
:return:
"""
import rs_cnn.data.data_utils as d_utils
import pointnet2.utils.pointnet2_utils as pointnet2_utils
import numpy as np
terminal = sys.stdout
log = open(log_file, "w")
NUM_REPEAT = 300
NUM_VOTE = 10
PointcloudScale = d_utils.PointcloudScale() # initialize random scaling
def data_aug(vote_id, pc):
# furthest point sampling
# (B, npoint)
fps_idx = pointnet2_utils.furthest_point_sample(points, 1200)
new_fps_idx = fps_idx[:, np.random.choice(1200, num_points, False)]
new_points = pointnet2_utils.gather_operation(points.transpose(1, 2).contiguous(), new_fps_idx).transpose(1, 2).contiguous()
if vote_id > 0:
pc_out = PointcloudScale(new_points)
else:
pc_out = pc
return pc_out
print(f"RSCNN EVALUATE, NUM_REPEAT {NUM_REPEAT}, NUM_VOTE {NUM_VOTE}")
num_points = loader.dataset.num_points
print(f"Number of points {num_points}")
# evaluate
sys.stdout.flush()
PointcloudScale = d_utils.PointcloudScale() # initialize random scaling
model.eval()
global_acc = 0
with torch.no_grad():
for i in range(NUM_REPEAT):
preds = []
labels = []
for j, data in enumerate(loader, 0):
points, target = data_batch_to_points_target(data)
points, target = points.cuda(), target.cuda()
pred = 0
for v in range(NUM_VOTE):
new_points = data_aug(v, points)
inp = points_to_inp(new_points)
out = model(**inp)
prob = out_to_prob(out)
pred += prob
# pred += F.softmax(model(**inp), dim = 1)
pred /= NUM_VOTE
target = target.view(-1)
_, pred_choice = torch.max(pred.data, -1)
preds.append(pred_choice)
labels.append(target.data)
preds = torch.cat(preds, 0)
labels = torch.cat(labels, 0)
acc = (preds == labels).sum().float() / labels.numel()
if acc > global_acc:
global_acc = acc
message1 = 'Repeat %3d \t Acc: %0.6f' % (i + 1, acc)
message2 = '\nBest voting till now, acc: %0.6f' % (global_acc)
message = f'{message1} \n {message2}'
terminal.write(message)
log.write(message)
message = '\nBest voting acc: %0.6f' % (global_acc)
terminal.write(message)
log.write(message)
return global_acc
# https://github.com/charlesq34/pointnet2/blob/master/evaluate.py
# https://github.com/charlesq34/pointnet2/issues/8
# we try to keep the variables names similar to the original implementation
def pn2_vote_evaluate_cls(dataloader, model, log_file, num_votes=[12]):
from pointnet2_tf.utils import provider
model.eval()
terminal = sys.stdout
log = open(log_file, "w")
if isinstance(num_votes, list):
pass
else:
num_votes = [num_votes]
for _num_votes in num_votes:
print(f"num_votes: {_num_votes}")
NUM_CLASSES = DATASET_NUM_CLASS[dataloader.dataset.dataset_name]
SHAPE_NAMES = [line.rstrip() for line in
open('./data/modelnet40_ply_hdf5_2048/shape_names.txt')]
total_correct = 0
total_seen = 0
total_seen_class = [0 for _ in range(NUM_CLASSES)]
total_correct_class = [0 for _ in range(NUM_CLASSES)]
with torch.no_grad():
for _batch_data in dataloader:
# based on https://github.com/charlesq34/pointnet2/blob/master/evaluate.py#L125-L150
batch_data, batch_label = np.array(_batch_data['pc'].cpu()), np.array(_batch_data['label'].cpu())
bsize = batch_data.shape[0]
BATCH_SIZE = batch_data.shape[0]
NUM_POINT = batch_data.shape[1]
batch_pred_sum = np.zeros((BATCH_SIZE, NUM_CLASSES)) # score for classes
for vote_idx in range(_num_votes):
# Shuffle point order to achieve different farthest samplings
shuffled_indices = np.arange(NUM_POINT)
np.random.shuffle(shuffled_indices)
rotated_data = provider.rotate_point_cloud_by_angle(
batch_data[:, shuffled_indices, :], vote_idx/float(_num_votes) * np.pi * 2)
inp = {'pc': torch.tensor(rotated_data)}
out = model(**inp)
pred_val = np.array(out['logit'].cpu())
batch_pred_sum += pred_val
pred_val = np.argmax(batch_pred_sum, 1)
correct = np.sum(pred_val[0:bsize] == batch_label[0:bsize])
total_correct += correct
total_seen += bsize
for i in range(bsize):
l = batch_label[i]
total_seen_class[l] += 1
total_correct_class[l] += (pred_val[i] == l)
class_accuracies = np.array(total_correct_class)/np.array(total_seen_class,dtype=np.float)
message = ""
for i, name in enumerate(SHAPE_NAMES):
message += f"\n {'%10s: %0.3f' % (name, class_accuracies[i])}"
message += f"\n {'eval accuracy: %f'% (total_correct / float(total_seen))}"
message += f"\n {'eval avg class acc: %f' % (np.mean(np.array(total_correct_class)/np.array(total_seen_class,dtype=np.float)))}"
terminal.write(message)
log.write(message)