-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathhippogriff.py
182 lines (147 loc) · 6.73 KB
/
hippogriff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
__version__ = '0.0.3'
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn.functional import softplus, gelu
from accelerated_scan.warp import scan
from flash_attn import flash_attn_func
from flash_attn.layers.rotary import RotaryEmbedding
@dataclass
class GriffinConfig:
vocab_size: int = 256
num_layers: int = 1
dim: int = 512
smqa_head_dim: int = 128
smqa_q_heads: int = 4
smqa_kv_heads: int = 1
smqa_window_size: int = 512
hawk_expansion_factor: float = 1.5
hawk_kernel_size: int = 4
gmlp_expansion_factor: float = 2
class RMSNorm(nn.Module):
def __init__(self, *, dim):
super().__init__()
self.scale = dim**-0.5
self.gamma = nn.Parameter(torch.ones(dim))
def forward(self, x):
x = x / x.norm(p=2, dim=-1, keepdim=True)
return self.gamma / self.scale * x
class Hawk(nn.Module):
def __init__(self, *, dim=1024, expansion_factor=1.5, kernel_size=4):
super().__init__()
hidden = int(dim * expansion_factor)
self.input = nn.Linear(dim, 2*hidden, bias=False)
self.conv = nn.Conv1d(in_channels=hidden, out_channels=hidden, bias=True,
kernel_size=kernel_size, groups=hidden, padding=kernel_size-1)
self.gates = nn.Linear(hidden, 2*hidden, bias=True)
self.forget_base = nn.Parameter(torch.linspace(-4.323, -9, hidden))
self.output = nn.Linear(hidden, dim, bias=False)
self.alpha_log_scale = nn.Parameter(torch.tensor([8]).log(), requires_grad=False)
with torch.no_grad():
self.input.weight.normal_(std=dim**-0.5)
self.gates.weight.normal_(std=hidden**-0.5)
self.output.weight.normal_(std=hidden**-0.5)
def forward(self, x):
_N, T, _C = x.shape
gate, x = self.input(x).chunk(2, dim=-1)
x = self.conv(x.mT)[..., :T].mT
# RG-LRU: linear recurrent unit with input-dependent gating
forget, input = self.gates(x).chunk(2, dim=-1)
alpha = (-self.alpha_log_scale.exp() * softplus(self.forget_base) * forget.sigmoid()).exp()
beta = (1 - alpha**2 + 1e-6).sqrt() # stabilizes variance
x = beta * input.sigmoid() * x
h = scan(alpha.mT.contiguous(), x.mT.contiguous()).mT
x = self.output(gelu(gate) * h)
return x
class GatedMLP(nn.Module):
def __init__(self, *, dim=1024, expansion_factor=2):
super().__init__()
hidden = int(dim * expansion_factor)
self.grow = nn.Linear(dim, 2 * hidden, bias=False)
self.shrink = nn.Linear(hidden, dim, bias=False)
with torch.no_grad():
self.grow.weight.normal_(std=dim**-0.5)
self.shrink.weight.normal_(std=hidden**-0.5)
def forward(self, x):
gate, x = self.grow(x).chunk(2, dim=-1)
x = gelu(gate) * x
return self.shrink(x)
class SlidingMQA(nn.Module):
def __init__(self, *, dim=1024, head_dim=128, q_heads=8, kv_heads=1, window_size=1024):
super().__init__()
self.head_dim = head_dim
self.window_size = window_size
self.rotary = RotaryEmbedding(dim=head_dim)
self.q = nn.Linear(dim, head_dim*q_heads, bias=False)
self.kv = nn.Linear(dim, 2*head_dim*kv_heads, bias=False)
self.output = nn.Linear(dim, dim, bias=False)
with torch.no_grad():
self.q.weight.normal_(std=dim**-0.5)
self.kv.weight.normal_(std=dim**-0.5)
self.output.weight.normal_(std=dim**-0.5)
def forward(self, x):
N, T, C = x.shape
q = self.q(x).view(N, T, -1, self.head_dim)
kv = self.kv(x).view(N, T, 2, -1, self.head_dim)
q, kv = self.rotary(q, kv)
x = flash_attn_func(q, kv[:, :, 0], kv[:, :, 1], causal=True, window_size=(-self.window_size, 0))
x = x.view(N, T, C)
return self.output(x)
class Block(nn.Module):
def __init__(self, config: GriffinConfig):
super().__init__()
self.attention = config.smqa_head_dim > 0
if self.attention:
self.smqa_norm = RMSNorm(dim=config.dim)
self.smqa = SlidingMQA(dim=config.dim, head_dim=config.smqa_head_dim, q_heads=config.smqa_q_heads,
kv_heads=config.smqa_kv_heads, window_size=config.smqa_window_size)
self.smqa_gmlp_norm = RMSNorm(dim=config.dim)
self.smqa_gmlp = GatedMLP(dim=config.dim, expansion_factor=config.gmlp_expansion_factor)
self.time_norm = RMSNorm(dim=config.dim)
self.time = Hawk(dim=config.dim, expansion_factor=config.hawk_expansion_factor, kernel_size=config.hawk_kernel_size)
self.gmlp_norm = RMSNorm(dim=config.dim)
self.gmlp = GatedMLP(dim=config.dim, expansion_factor=config.gmlp_expansion_factor)
def forward(self, x):
if self.attention:
x = x + self.smqa(self.smqa_norm(x))
x = x + self.smqa_gmlp(self.smqa_gmlp_norm(x))
x = x + self.time(self.time_norm(x))
x = x + self.gmlp(self.gmlp_norm(x))
return x
class GriffinLM(nn.Module):
def __init__(self, config: GriffinConfig):
super().__init__()
self.embedding = nn.Embedding(config.vocab_size, config.dim)
self.backbone = nn.ModuleList([Block(config) for _ in range(config.num_layers)])
self.output_norm = RMSNorm(dim=config.dim)
self.lm_head = nn.Linear(config.dim, config.vocab_size, bias=False)
with torch.no_grad():
self.embedding.weight.normal_(std=config.dim**-0.5)
self.lm_head.weight.normal_(std=config.dim**-0.5)
self.tie_weights_()
def tie_weights_(self):
self.lm_head.weight = self.embedding.weight
def parameter_groups(self, weight_decay=1e-2):
return [
{'params': self.embedding.parameters(), 'weight_decay': 0.0}, # lm_head is tied here
# do not decay biases and single-column parameters (forget_base, rmsnorm), those are usually scales
{'params': (p for p in self.backbone.parameters() if p.dim() < 2), 'weight_decay': 0.0},
{'params': (p for p in self.backbone.parameters() if p.dim() >= 2), 'weight_decay': weight_decay},
{'params': self.output_norm.parameters(), 'weight_decay': 0.0},
]
def forward(self, input_ids):
x = self.embedding(input_ids)
for block in self.backbone:
x = block(x)
x = self.lm_head(self.output_norm(x))
return x
if __name__ == '__main__':
device = 'cuda'
torch.manual_seed(3407)
config = GriffinConfig()
griffin = GriffinLM(config).to('cuda')
input_ids = torch.randint(0, config.vocab_size, (1, 1024), device='cuda')
with torch.amp.autocast(device_type='cuda'):
output = griffin(input_ids)
probs = output.softmax(dim=-1)
print(probs.shape)