diff --git a/classical/mathcomp_extra.v b/classical/mathcomp_extra.v index 102309aaf..0873e2ba2 100644 --- a/classical/mathcomp_extra.v +++ b/classical/mathcomp_extra.v @@ -585,12 +585,13 @@ Arguments dfwith {I T} f i x. Definition swap (T1 T2 : Type) (x : T1 * T2) := (x.2, x.1). +(* MathComp 2.2 addition *) Lemma ler_sqrt {R : rcfType} (a b : R) : (0 <= b -> (Num.sqrt a <= Num.sqrt b) = (a <= b))%R. Proof. have [b_gt0 _|//|<- _] := ltgtP; last first. by rewrite sqrtr0 -sqrtr_eq0 le_eqVlt ltNge sqrtr_ge0 orbF. -have [a_le0|a_gt0] := ler0P a; last by rewrite ler_psqrt. +have [a_le0|a_gt0] := ler0P a; last by rewrite ler_psqrt// ?qualifE/= ?ltW. by rewrite ler0_sqrtr // sqrtr_ge0 (le_trans a_le0) ?ltW. Qed.