-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmodel.py
418 lines (334 loc) · 18.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import os
import torch
import random
import datetime
import torch.nn.functional as F
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
import progressbar
import numpy as np
from network.rsu_decoder import RSUDecoder
from network.depth_decoder import DepthDecoder
from network.encoder import resnet_encoder
from dataset.kitti_dataset import KittiDataset
import tools
class Model:
def __init__(self, args):
self.args = args
if args.vis:
return
self.model = {}
self.device = torch.device("cpu" if self.args.no_cuda or not torch.cuda.is_available() else "cuda")
self.model["encoder"] = resnet_encoder(num_layers=self.args.num_layers, num_inputs=1,
pretrained=self.args.pretrained).to(self.device)
if self.args.use_full_scale:
self.model["depth_decoder"] = RSUDecoder(num_output_channels=1, use_encoder_disp=True,
encoder_layer_channels=self.model["encoder"].layer_channels).to(self.device)
else:
self.model["depth_decoder"] = DepthDecoder(num_output_channels=1,
encoder_layer_channels=self.model["encoder"].layer_channels).to(self.device)
val_dataset = KittiDataset(data_path=self.args.data_path, img_height=self.args.img_height, img_width=self.args.img_width,
train=False, split=self.args.split, test=self.args.val)
self.val_loader = DataLoader(dataset=val_dataset, batch_size=self.args.batch_size, shuffle=False,
num_workers=self.args.num_workers, pin_memory=True)
if self.args.val:
return
train_dataset = KittiDataset(data_path=self.args.data_path, img_height=self.args.img_height, img_width=self.args.img_width,
train=True, split=self.args.split, use_depth_hint=self.args.use_depth_hint)
self.train_loader = DataLoader(dataset=train_dataset, batch_size=self.args.batch_size, shuffle=True,
num_workers=self.args.num_workers, pin_memory=True)
parameters_to_train = list(self.model["encoder"].parameters()) + list(self.model["depth_decoder"].parameters())
self.optimizer = torch.optim.Adam(parameters_to_train, self.args.learning_rate)
self.lr_scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, self.args.scheduler_step_size, 0.1)
self.ssim = tools.SSIM()
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
log_dir = os.path.join(self.args.logs_dir, current_time)
self.writer = SummaryWriter(log_dir=log_dir, comment="Record network info")
self.save_dir = os.path.join(self.args.models_dir, current_time)
os.makedirs(self.save_dir, exist_ok=True)
def main(self):
if self.args.vis:
self.visualization()
return
if self.args.resume:
checkpoint = torch.load(self.args.resume, map_location=self.device)
if not self.args.val:
self.args.start_epoch = checkpoint["epoch"] + 1
self.optimizer.load_state_dict(checkpoint["optimizer"])
self.lr_scheduler.load_state_dict((checkpoint["lr_scheduler"]))
for m_name, _ in self.model.items():
if m_name in checkpoint:
self.model[m_name].load_state_dict(checkpoint[m_name])
else:
print("There is no weight in checkpoint for model {}".format(m_name))
if self.args.val:
with torch.no_grad():
self.validate()
return
for epoch in range(self.args.start_epoch, self.args.epochs):
train_loss = self.train_epoch(epoch)
self.writer.add_scalar("Train Losses", train_loss, epoch)
with torch.no_grad():
val_errors = self.validate()
self.writer.add_scalar("abs_rel", val_errors[0], epoch)
self.writer.add_scalar("sq_rel", val_errors[1], epoch)
self.writer.add_scalar("rmse", val_errors[2], epoch)
self.writer.add_scalar("rmse_log", val_errors[3], epoch)
self.writer.add_scalar("a1", val_errors[4], epoch)
self.writer.add_scalar("a2", val_errors[5], epoch)
self.writer.add_scalar("a3", val_errors[6], epoch)
save_filename = os.path.join(self.save_dir, "checkpoint_epoch{}.pth.tar".format(epoch))
model_state = {
"epoch": epoch,
"abs_rel": val_errors[0],
"sq_rel": val_errors[1],
"rmse": val_errors[2],
"rmse_log": val_errors[3],
"a1": val_errors[4],
"a2": val_errors[5],
"a3": val_errors[6],
"optimizer": self.optimizer.state_dict(),
"lr_scheduler": self.lr_scheduler.state_dict()
}
for m_name, m in self.model.items():
model_state[m_name] = m.state_dict()
torch.save(model_state, save_filename)
self.lr_scheduler.step()
torch.cuda.empty_cache()
def validate(self):
for m in self.model.values():
m.eval()
pwidgets = [progressbar.Percentage(), " ", progressbar.Counter(format='%(value)02d/%(max_value)d'), " ", progressbar.Bar(), " ",
progressbar.Timer(), ",", progressbar.Variable('abs_rel', width=1), ",", progressbar.Variable('sq_rel', width=1), ",",
progressbar.Variable('rmse', width=1, precision=4), ",", progressbar.Variable('rmse_log', width=1), ",",
progressbar.Variable('a1', width=1), ",", progressbar.Variable('a2', width=1), ",", progressbar.Variable('a3', width=1)]
pbar = progressbar.ProgressBar(widgets=pwidgets, max_value=len(self.val_loader), prefix="Val:").start()
all_disps = []
depth_errors_meter = tools.AverageMeter()
for batch, data in enumerate(self.val_loader):
for key, ipt in data.items():
data[key] = ipt.to(self.device, non_blocking=True)
ipt = data["curr"]
if self.args.post_process:
# Post-processed results require each image to have two forward passes
ipt = torch.cat((ipt, torch.flip(ipt, [3])), 0)
pred_disps = self.model["depth_decoder"](self.model["encoder"](ipt))
if self.args.output_scale != -1:
pred_disps, _ = tools.disp_to_depth(pred_disps[self.args.output_scale], self.args.min_depth, self.args.max_depth)
pred_disps = pred_disps.data.cpu()[:, 0].numpy()
else:
mean_disps = 0
for i in range(3):
tmp, _ = tools.disp_to_depth(pred_disps[i], self.args.min_depth, self.args.max_depth)
tmp = F.interpolate(tmp, [self.args.img_height, self.args.img_width], mode="bilinear", align_corners=False)
tmp = tmp.data.cpu()[:, 0].numpy()
mean_disps = mean_disps + tmp
mean_disps = mean_disps / 3
pred_disps = mean_disps
if self.args.post_process:
N = pred_disps.shape[0] // 2
pred_disps = tools.post_process_disparity(pred_disps[:N], pred_disps[N:, :, ::-1])
all_disps.append(pred_disps)
depth_gts = data["depth_gt"].data.cpu().numpy()
depth_errors = tools.compute_depth_errors(depth_gts, pred_disps, self.args.val_split, False)
depth_errors_meter.update(depth_errors, data["curr"].size(0))
pbar.update(batch, abs_rel=depth_errors_meter.avg[0],
sq_rel=depth_errors_meter.avg[1],
rmse=depth_errors_meter.avg[2],
rmse_log=depth_errors_meter.avg[3],
a1=depth_errors_meter.avg[4],
a2=depth_errors_meter.avg[5],
a3=depth_errors_meter.avg[6])
pbar.finish()
all_disps = np.concatenate(all_disps)
if self.args.val:
np.save(os.path.join(self.args.disps_path, "disparities"), all_disps)
return depth_errors_meter.avg
def train_epoch(self, epoch):
for m in self.model.values():
m.train()
pwidgets = [progressbar.Percentage(), " ", progressbar.Counter(format='%(value)02d/%(max_value)d'), " ", progressbar.Bar(), " ",
progressbar.Timer(), ",", progressbar.ETA(), ",", progressbar.Variable('LR', width=1), ",",
progressbar.Variable('Loss')]
pbar = progressbar.ProgressBar(widgets=pwidgets, max_value=len(self.train_loader),
prefix="Epoch {}/{}: ".format(epoch, self.args.epochs)).start()
losses = tools.AverageMeter()
for batch, data in enumerate(self.train_loader):
for key, ipt in data.items():
data[key] = ipt.to(self.device, non_blocking=True)
if self.args.use_data_graft:
data = self.data_graft(data)
loss, predicts = self.train_step(data)
if self.args.use_spp_distillate:
spp_loss = self.spp_distillate(data, predicts)
loss += self.args.spp_loss * spp_loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
losses.update(val=loss.data, n=data["curr"].size(0))
pbar.update(batch, LR=self.optimizer.state_dict()['param_groups'][0]['lr'],
Loss="{losses.val:.3f}|{losses.avg:.3f}".format(losses=losses))
pbar.finish()
return losses.avg
def spp_distillate(self, data, predicts):
with torch.no_grad():
disp_best = None
decoder_disp_best = None
reproj_loss_min = None
for scale, disp in enumerate(predicts["disparity"]):
reproj_loss = self.compute_reprojection_loss(predicts["warp_from_other_side"][scale], data["curr"])
if scale == 0:
disp_best = disp
reproj_loss_min = reproj_loss
elif scale == 5:
decoder_disp_best = disp_best.clone()
disp_best = disp
reproj_loss_min = reproj_loss
else:
disp_best = torch.where(reproj_loss < reproj_loss_min, disp, disp_best)
reproj_loss_min, _ = torch.cat([reproj_loss, reproj_loss_min], dim=1).min(dim=1, keepdim=True)
if decoder_disp_best is not None:
decoder_disp_best = decoder_disp_best.detach()
encoder_disp_best = disp_best.detach()
else:
decoder_disp_best = disp_best.detach()
pp_loss = []
for scale, disp in enumerate(predicts["disparity"]):
disp_best = decoder_disp_best if scale < 5 else encoder_disp_best
pp_loss.append(torch.log(torch.abs(disp_best - disp) + 1).mean())
return torch.stack(pp_loss).mean()
def train_step(self, data):
predicts = {}
features = self.model["encoder"](data["curr_color_aug"])
predicts["disparity"] = self.model["depth_decoder"](features)
predicts["depth"] = []
for i in range(len(predicts["disparity"])):
predicts["disparity"][i] = F.interpolate(predicts["disparity"][i], [self.args.img_height, self.args.img_width], mode="bilinear",
align_corners=False)
_, depth = tools.disp_to_depth(predicts["disparity"][i], self.args.min_depth, self.args.max_depth)
predicts["depth"].append(depth)
warp_img = self.get_warp_img(data, predicts)
predicts.update(warp_img)
loss = self.compute_loss(data, predicts)
return loss, predicts
def data_graft(self, data):
rand_w = random.randint(0, 4) / 5
b, c, h, w = data["curr"].shape
if int(rand_w * h) == 0:
return data
l_num = data["side"][data["side"] == 2].shape[0]
r_num = data["side"][data["side"] == 3].shape[0]
l_graft_idx = torch.randperm(l_num).to(self.device)
r_graft_idx = torch.randperm(r_num).to(self.device)
graft_h = int(rand_w * h)
flip = random.random()
for name in data:
if "curr" in name or "other_side" in name or name == "depth_hint":
data[name][data["side"] == 2, :, graft_h:] = data[name][data["side"] == 2].clone()[l_graft_idx, :, graft_h:]
data[name][data["side"] == 3, :, graft_h:] = data[name][data["side"] == 3].clone()[r_graft_idx, :, graft_h:]
if flip < 0.5:
d = data[name].clone()
data[name][:, :, :-graft_h] = d[:, :, graft_h:]
data[name][:, :, -graft_h:] = d[:, :, :graft_h]
return data
def get_warp_img(self, data, predicts):
warp_img = {}
K = data["K"]
T = data["stereo_T"]
if self.args.use_depth_hint:
D = data["depth_hint"]
warp_img["warp_from_hint"] = tools.generate_warp_image(data["other_side"], K, T, D)
warp_img["warp_from_other_side"] = []
for D in predicts["depth"]:
warp_img["warp_from_other_side"].append(tools.generate_warp_image(data["other_side"], K, T, D))
return warp_img
def compute_loss(self, data, predicts):
target = data["curr"]
losses = []
proxy_supervised = None
proxy_supervised_loss = None
if self.args.use_depth_hint:
depth_hint_reproj_loss = self.compute_reprojection_loss(predicts["warp_from_hint"], target)
depth_hint_reproj_loss += 1000 * (data["depth_hint"] <= 0).float()
if proxy_supervised_loss is None:
proxy_supervised_loss = depth_hint_reproj_loss
proxy_supervised = data["depth_hint"]
for scale in range(len(predicts["disparity"])):
scale_losses = []
reprojection_loss = self.compute_reprojection_loss(predicts["warp_from_other_side"][scale], target)
all_reprojection_loss = reprojection_loss
if not self.args.disable_automasking:
identity_reprojection_loss = self.compute_reprojection_loss(data["other_side"], target)
identity_reprojection_loss += torch.randn(identity_reprojection_loss.shape).to(self.device) * 0.00001
all_reprojection_loss = torch.cat((all_reprojection_loss, identity_reprojection_loss), dim=1)
loss1 = self.compute_loss_with_proxy_supervised(all_reprojection_loss, proxy_supervised_loss, proxy_supervised,
predicts, scale, data)
scale_losses.append(loss1)
if self.args.disparity_smoothness != 0:
mean_disp = predicts["disparity"][scale].mean(2, True).mean(3, True)
norm_disp = predicts["disparity"][scale] / (mean_disp + 1e-7)
smooth_loss = self.args.disparity_smoothness * self.compute_smooth_loss(norm_disp, target) / (2 ** scale)
scale_losses.append(smooth_loss)
losses.append(torch.sum(torch.stack(scale_losses)))
return torch.mean(torch.stack(losses))
def compute_loss_with_proxy_supervised(self, all_reprojection_loss, proxy_supervised_loss, proxy_supervised, predicts, scale, data):
if proxy_supervised_loss is not None:
all_reprojection_loss = torch.cat((all_reprojection_loss, proxy_supervised_loss), dim=1)
idxs = torch.argmin(all_reprojection_loss, dim=1, keepdim=True)
if self.args.disable_automasking:
reproj_loss_mask = torch.ones_like(all_reprojection_loss[:, [0]])
proxy_supervised_mask = (idxs == 1).float() # will be zero if proxy_supervised_loss is None
else:
reproj_loss_mask = (idxs != 1).float()
proxy_supervised_mask = (idxs == 2).float()
reproj_loss = all_reprojection_loss[:, [0]] * reproj_loss_mask
reproj_loss = reproj_loss.sum() / (reproj_loss_mask.sum() + 1e-7)
reproj_loss_with_proxy_supervised = reproj_loss
if proxy_supervised_loss is not None:
proxy_supervised_loss = self.compute_proxy_supervised_loss(predicts["depth"][scale], proxy_supervised, proxy_supervised_mask)
reproj_loss_with_proxy_supervised += proxy_supervised_loss
return reproj_loss_with_proxy_supervised
@staticmethod
def compute_proxy_supervised_loss(pred, target, loss_mask):
loss = torch.log(torch.abs(target - pred) + 1)
loss = loss * loss_mask
loss = loss.sum() / (loss_mask.sum() + 1e-7)
return loss
@staticmethod
def compute_smooth_loss(disp, img):
"""Computes the smoothness loss for a disparity image
The color image is used for edge-aware smoothness
"""
img = F.interpolate(img, disp.shape[2:], mode="bilinear", align_corners=False)
grad_disp_x = torch.abs(disp[:, :, :, :-1] - disp[:, :, :, 1:])
grad_disp_y = torch.abs(disp[:, :, :-1, :] - disp[:, :, 1:, :])
grad_img_x = torch.mean(torch.abs(img[:, :, :, :-1] - img[:, :, :, 1:]), 1, keepdim=True)
grad_img_y = torch.mean(torch.abs(img[:, :, :-1, :] - img[:, :, 1:, :]), 1, keepdim=True)
grad_disp_x *= torch.exp(-grad_img_x)
grad_disp_y *= torch.exp(-grad_img_y)
smooth_loss = grad_disp_x.mean() + grad_disp_y.mean()
return smooth_loss
def compute_reprojection_loss(self, pred, target):
"""Computes reprojection loss between a batch of predicted and target images
"""
abs_diff = torch.abs(target - pred)
l1_loss = abs_diff.mean(1, True)
ssim_loss = self.ssim(pred, target).mean(1, True)
reprojection_loss = 0.85 * ssim_loss + 0.15 * l1_loss
return reprojection_loss
def visualization(self):
import matplotlib as mpl
import matplotlib.cm as cm
from PIL import Image
assert self.args.disps_path is not None, "Your disparity save path is None!"
save_dir = os.path.join(os.path.dirname(self.args.disps_path), "disps_vis")
os.makedirs(save_dir, exist_ok=True)
disps = np.load(self.args.disps_path)
for idx, pred_disp in enumerate(disps):
vmax = np.percentile(pred_disp, 95)
normalizer = mpl.colors.Normalize(vmin=pred_disp.min(), vmax=vmax)
mapper = cm.ScalarMappable(norm=normalizer, cmap='magma')
colormapped_im = (mapper.to_rgba(pred_disp)[:, :, :3] * 255).astype(np.uint8)
im = Image.fromarray(colormapped_im)
im.save(os.path.join(save_dir, "disp{}.png".format(idx)))
print("Successfully visualize {} disparity maps to {}".format(disps.shape[0], save_dir))