-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathprecompute_depth_hints.py
280 lines (210 loc) · 9.91 KB
/
precompute_depth_hints.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# copy from DepthHints (https://arxiv.org/pdf/1909.09051.pdf), please follow their license.
""" Script to precompute depth hints using the 'fused SGM' method """
from __future__ import absolute_import, division, print_function
import os
import random
import numpy as np
import copy
from PIL import Image # using pillow-simd for increased speed
import argparse
import time
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
import torch.nn.functional as F
import tools
import cv2
cv2.setNumThreads(0)
def pil_loader(path):
# open path as file to avoid ResourceWarning
# (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
with Image.open(f) as img:
return img.convert('RGB')
def readlines(filename):
"""Read all the lines in a text file and return as a list
"""
with open(filename, 'r') as f:
lines = f.read().splitlines()
return lines
def generate_stereo_matchers():
""" Instantiate stereo matchers with different hyperparameters to build fused depth hints"""
numDisparities = [64, 96, 128, 160]
stereo_matchers = []
for blockSize in [1, 2, 3]:
for numDisparity in numDisparities:
sad_window_size = 3
stereo_params = dict(
preFilterCap=63,
P1=sad_window_size * sad_window_size * 4,
P2=sad_window_size * sad_window_size * 32,
minDisparity=0,
numDisparities=numDisparity,
uniquenessRatio=10,
speckleWindowSize=100,
speckleRange=16,
blockSize=blockSize)
stereo_matcher = cv2.StereoSGBM_create(**stereo_params)
stereo_matchers.append(stereo_matcher)
return stereo_matchers
def compute_reprojection_loss(pred, target):
"""Computes reprojection loss between a batch of predicted and target images
"""
ssim = tools.SSIM()
abs_diff = torch.abs(target - pred)
l1_loss = abs_diff.mean(1, True)
ssim_loss = ssim(pred, target).mean(1, True)
reprojection_loss = 0.85 * ssim_loss + 0.15 * l1_loss
return reprojection_loss
class DepthHintDataset:
"""
Class to load data to precompute depth hints.
Set up as a pytorch dataset to make use of pytorch DataLoader multithreading.
"""
def __init__(self,
data_path,
filenames,
height, width,
save_path,
overwrite):
self.data_path = data_path
self.filenames = filenames
self.save_path = save_path
self.overwrite = overwrite
self.height, self.width = height, width
self.interp = Image.ANTIALIAS
self.resizer = transforms.Resize((self.height, self.width), interpolation=self.interp)
self.stereo_matchers = generate_stereo_matchers()
self.data_size = len(self.stereo_matchers)
# setup intrinsics and extrinsics for reprojection
self.K = np.array([[0.58, 0, 0.5, 0],
[0, 1.92, 0.5, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]], dtype=np.float32)
self.K[0] *= self.width
self.K[1] *= self.height
self.invK = np.linalg.pinv(self.K)
# convert everything to tensors and reshape into a batch
self.K = \
torch.from_numpy(self.K).unsqueeze(0).expand(self.data_size, -1, -1).float()
self.invK = \
torch.from_numpy(self.invK).unsqueeze(0).expand(self.data_size, -1, -1).float()
self.baseline = 0.1 # the same baseline in datasets/mono_dataset.py
self.T = torch.eye(4).unsqueeze(0).float()
self.T[0, 0, 3] = self.baseline
def __len__(self):
return len(self.filenames)
def compute_depths(self, base_image, lookup_image, reverse=False):
""" For a given stereo pair, compute multiple depth maps using stereo matching
(OpenCV Semi-Global Block Matching). Raw pixel disparities are converted to depth using
focal length and baseline.
Set reverse flag to be True if base image is on the right and lookup image is on the left
(OpenCV SGBM computes disparity for the left image)"""
if reverse:
base_image = base_image[:, ::-1]
lookup_image = lookup_image[:, ::-1]
disps = []
for matcher in self.stereo_matchers:
disp = matcher.compute(base_image, lookup_image) / 16 # convert to pixel disparity
if reverse:
disp = disp[:, ::-1]
disps.append(disp)
disps = np.stack(disps)
disps = torch.from_numpy(disps).float()
# convert disp to depth ignoring missing pixels
depths = self.K[0, 0, 0] * self.baseline / (disps + 1e-7) * (disps > 0).float()
return depths
def __getitem__(self, index):
""" For a given image, get multiple depth maps, intrinsics, extrinsics and images. """
inputs = {}
sequence, frame, side = self.filenames[index].split()
if side == 'l':
side, otherside = 'image_02', 'image_03'
baseline_sign = -1
else:
side, otherside = 'image_03', 'image_02'
baseline_sign = 1
if not self.overwrite:
# if depth exists, then skip this image
if os.path.isfile(os.path.join(self.save_path, sequence, side,
'{}.npy'.format(str(frame).zfill(10)))):
return inputs
# flip extrinsics if necessary
T = self.T
T[0, 0, 3] = baseline_sign * self.baseline
base_image = pil_loader(os.path.join(self.data_path, sequence, side,
'data/{}.jpg'.format(str(frame).zfill(10))))
lookup_image = pil_loader(os.path.join(self.data_path, sequence, otherside,
'data/{}.jpg'.format(str(frame).zfill(10))))
base_image = np.array(self.resizer(base_image))
lookup_image = np.array(self.resizer(lookup_image))
depths = self.compute_depths(base_image, lookup_image, reverse=side == 'image_03')
# convert to tensors and reshape into batch
base_image = torch.from_numpy(base_image).permute(2, 0, 1).float().unsqueeze(0) \
.expand(self.data_size, -1, -1, -1) / 255
lookup_image = torch.from_numpy(lookup_image).permute(2, 0, 1).float().unsqueeze(0) \
.expand(self.data_size, -1, -1, -1) / 255
inputs['base_image'] = base_image
inputs['lookup_image'] = lookup_image
inputs['K'] = self.K
inputs['invK'] = self.invK
inputs['depths'] = depths
inputs['T'] = T
return inputs
def run(opt):
""" Computes depth hints for all files in opt.filenames.
Makes use of pytorch DataLoader multithreading.
"""
print('Computing depth hints...')
if opt.save_path is None:
opt.save_path = os.path.join(opt.data_path, 'depth_hints')
print('Saving depth hints to {}'.format(opt.save_path))
# setup dataloader
# batch size hardcoded to 1 as each item will contain multiple depth maps for a single image
filenames = readlines(opt.filenames)
dataset = DepthHintDataset(opt.data_path, filenames, opt.height, opt.width, opt.save_path,
opt.overwrite_saved_depths)
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, drop_last=False, num_workers=0)
time_before = time.time()
for i, data in enumerate(dataloader):
# log timings
if i % 50 == 0:
print('image {} of {}'.format(i, len(dataloader)))
if i != 0:
time_taken = time.time() - time_before
print('time for 50 imgs: {}s'.format(time_taken))
print('imgs/s: {}'.format(50 / time_taken))
time_before = time.time()
# check dataloader actually returned something, if not we have skipped an image
if data:
for key in data:
if torch.cuda.is_available():
data[key] = data[key].cuda()
data[key] = data[key][0] # dataloader returns batch of size 1
# for each pixel, find 'best' depth which gives the lowest reprojection loss
sample = tools.generate_warp_image(data['lookup_image'], data['K'], data['T'], data['depths'])
losses = compute_reprojection_loss(sample, data['base_image'])
best_index = torch.argmin(losses, dim=0)
best_depth = torch.gather(data['depths'], dim=0, index=best_index).cpu().numpy()
sequence, frame, side = filenames[i].split(' ')
if side == 'l':
side = 'image_02'
else:
side = 'image_03'
savepath = os.path.join(opt.save_path, sequence, side)
os.makedirs(savepath, exist_ok=True)
np.save(os.path.join(savepath, '{}.npy'.format(str(frame).zfill(10))), best_depth)
def get_opts():
""" parse command line options """
file_dir = os.path.dirname(__file__)
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', help='path to images', type=str, default="./kitti_data")
parser.add_argument('--filenames', help='path to textfile containing list of images', type=str, default=os.path.join(file_dir, 'dataset/filenames/eigen_full/all_files.txt'))
parser.add_argument('--save_path', help='If not set will save to <data_path>/depth_hints', type=str)
parser.add_argument('--height', help='height of computed depth hints', default=320, type=int)
parser.add_argument('--width', help='width of computed depth hints', default=1024, type=int)
parser.add_argument('--overwrite_saved_depths', help='if set, will overwrite any existing depth hints rather than skipping', action='store_true')
return parser.parse_args()
if __name__ == '__main__':
opts = get_opts()
run(opts)