diff --git a/docs/_cpp_api/classtorch__tensorrt_1_1DataType.html b/docs/_cpp_api/classtorch__tensorrt_1_1DataType.html index 064595c48b..259f65f0a8 100644 --- a/docs/_cpp_api/classtorch__tensorrt_1_1DataType.html +++ b/docs/_cpp_api/classtorch__tensorrt_1_1DataType.html @@ -10,7 +10,7 @@ - Class DataType — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Class DataType — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType.html b/docs/_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType.html index a3dfc2e938..406b236490 100644 --- a/docs/_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType.html +++ b/docs/_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType.html @@ -10,7 +10,7 @@ - Class Device::DeviceType — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Class Device::DeviceType — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/classtorch__tensorrt_1_1TensorFormat.html b/docs/_cpp_api/classtorch__tensorrt_1_1TensorFormat.html index 458f9481e9..afb268d079 100644 --- a/docs/_cpp_api/classtorch__tensorrt_1_1TensorFormat.html +++ b/docs/_cpp_api/classtorch__tensorrt_1_1TensorFormat.html @@ -10,7 +10,7 @@ - Class TensorFormat — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Class TensorFormat — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator.html b/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator.html index d595e921eb..1fe6367b4a 100644 --- a/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator.html +++ b/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator.html @@ -10,7 +10,7 @@ - Template Class Int8CacheCalibrator — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Template Class Int8CacheCalibrator — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator.html b/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator.html index d695dca953..4670c31916 100644 --- a/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator.html +++ b/docs/_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator.html @@ -10,7 +10,7 @@ - Template Class Int8Calibrator — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Template Class Int8Calibrator — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.html b/docs/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.html index 6d494cf91b..e273d96d98 100644 --- a/docs/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.html +++ b/docs/_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.html @@ -10,7 +10,7 @@ - Define STR — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Define STR — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268.html b/docs/_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268.html index 0f7683b0d7..213cc1ba7f 100644 --- a/docs/_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268.html +++ b/docs/_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268.html @@ -10,7 +10,7 @@ - Define TORCH_TENSORRT_PATCH_VERSION — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Define TORCH_TENSORRT_PATCH_VERSION — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e.html b/docs/_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e.html index 6c740dd034..29562922ee 100644 --- a/docs/_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e.html +++ b/docs/_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e.html @@ -10,7 +10,7 @@ - Define TORCH_TENSORRT_MAJOR_VERSION — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Define TORCH_TENSORRT_MAJOR_VERSION — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827.html b/docs/_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827.html index f93dcc108d..ac422239e0 100644 --- a/docs/_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827.html +++ b/docs/_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827.html @@ -10,7 +10,7 @@ - Define TORCH_TENSORRT_MINOR_VERSION — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Define TORCH_TENSORRT_MINOR_VERSION — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b.html b/docs/_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b.html index d48943455f..5da9f5c580 100644 --- a/docs/_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b.html +++ b/docs/_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b.html @@ -10,7 +10,7 @@ - Define TORCHTRT_API — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Define TORCHTRT_API — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.html b/docs/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.html index 4259de0f90..002e62ede4 100644 --- a/docs/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.html +++ b/docs/_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.html @@ -10,7 +10,7 @@ - Define XSTR — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Define XSTR — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59.html b/docs/_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59.html index f33d674a26..2724042e46 100644 --- a/docs/_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59.html +++ b/docs/_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59.html @@ -10,7 +10,7 @@ - Define TORCHTRT_HIDDEN — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Define TORCHTRT_HIDDEN — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883.html b/docs/_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883.html index ea9d5f16a7..173fdcd273 100644 --- a/docs/_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883.html +++ b/docs/_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883.html @@ -10,7 +10,7 @@ - Define TORCH_TENSORRT_VERSION — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Define TORCH_TENSORRT_VERSION — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/dir_cpp.html b/docs/_cpp_api/dir_cpp.html index df349638c7..040552dd8e 100644 --- a/docs/_cpp_api/dir_cpp.html +++ b/docs/_cpp_api/dir_cpp.html @@ -10,7 +10,7 @@ - Directory cpp — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Directory cpp — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/dir_cpp_include.html b/docs/_cpp_api/dir_cpp_include.html index defcc03b59..1613cdb57f 100644 --- a/docs/_cpp_api/dir_cpp_include.html +++ b/docs/_cpp_api/dir_cpp_include.html @@ -10,7 +10,7 @@ - Directory include — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Directory include — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/dir_cpp_include_torch_tensorrt.html b/docs/_cpp_api/dir_cpp_include_torch_tensorrt.html index 1c946c085f..4f1b4dfe92 100644 --- a/docs/_cpp_api/dir_cpp_include_torch_tensorrt.html +++ b/docs/_cpp_api/dir_cpp_include_torch_tensorrt.html @@ -10,7 +10,7 @@ - Directory torch_tensorrt — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Directory torch_tensorrt — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558.html b/docs/_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558.html index e17139621d..d35ed8bf04 100644 --- a/docs/_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558.html +++ b/docs/_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558.html @@ -10,7 +10,7 @@ - Enum Level — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Enum Level — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb.html b/docs/_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb.html index 9e20e4f153..7aca08321a 100644 --- a/docs/_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb.html +++ b/docs/_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb.html @@ -10,7 +10,7 @@ - Enum EngineCapability — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Enum EngineCapability — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/file_cpp_include_torch_tensorrt_logging.h.html b/docs/_cpp_api/file_cpp_include_torch_tensorrt_logging.h.html index a6e9eb1e57..0a844cf27e 100644 --- a/docs/_cpp_api/file_cpp_include_torch_tensorrt_logging.h.html +++ b/docs/_cpp_api/file_cpp_include_torch_tensorrt_logging.h.html @@ -10,7 +10,7 @@ - File logging.h — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + File logging.h — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/file_cpp_include_torch_tensorrt_macros.h.html b/docs/_cpp_api/file_cpp_include_torch_tensorrt_macros.h.html index 1805777601..ad5bf232c7 100644 --- a/docs/_cpp_api/file_cpp_include_torch_tensorrt_macros.h.html +++ b/docs/_cpp_api/file_cpp_include_torch_tensorrt_macros.h.html @@ -10,7 +10,7 @@ - File macros.h — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + File macros.h — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/file_cpp_include_torch_tensorrt_ptq.h.html b/docs/_cpp_api/file_cpp_include_torch_tensorrt_ptq.h.html index 460bfd7d1c..cc3ae14e39 100644 --- a/docs/_cpp_api/file_cpp_include_torch_tensorrt_ptq.h.html +++ b/docs/_cpp_api/file_cpp_include_torch_tensorrt_ptq.h.html @@ -10,7 +10,7 @@ - File ptq.h — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + File ptq.h — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h.html b/docs/_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h.html index f2a786464e..de7b0c4c6b 100644 --- a/docs/_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h.html +++ b/docs/_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h.html @@ -10,7 +10,7 @@ - File torch_tensorrt.h — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + File torch_tensorrt.h — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3.html b/docs/_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3.html index 8e1ccf14c8..ff905c471d 100644 --- a/docs/_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3.html +++ b/docs/_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3.html @@ -10,7 +10,7 @@ - Function torch_tensorrt::logging::get_logging_prefix — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Function torch_tensorrt::logging::get_logging_prefix — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650.html b/docs/_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650.html index e2c4e1df6b..b469269ab0 100644 --- a/docs/_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650.html +++ b/docs/_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650.html @@ -10,7 +10,7 @@ - Function torch_tensorrt::logging::get_reportable_log_level — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Function torch_tensorrt::logging::get_reportable_log_level — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a.html b/docs/_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a.html index f992613710..d4c0d872a8 100644 --- a/docs/_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a.html +++ b/docs/_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a.html @@ -10,7 +10,7 @@ - Function torch_tensorrt::logging::get_is_colored_output_on — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Function torch_tensorrt::logging::get_is_colored_output_on — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2.html b/docs/_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2.html index 25a9764446..cf5047135c 100644 --- a/docs/_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2.html +++ b/docs/_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2.html @@ -10,7 +10,7 @@ - Function torch_tensorrt::logging::set_reportable_log_level — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Function torch_tensorrt::logging::set_reportable_log_level — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8.html b/docs/_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8.html index 6083173be1..8bb8807821 100644 --- a/docs/_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8.html +++ b/docs/_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8.html @@ -10,7 +10,7 @@ - Function torch_tensorrt::logging::log — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Function torch_tensorrt::logging::log — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5.html b/docs/_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5.html index 76f5e1fee4..ac8cdf11e5 100644 --- a/docs/_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5.html +++ b/docs/_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5.html @@ -10,7 +10,7 @@ - Function torch_tensorrt::logging::set_is_colored_output_on — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Function torch_tensorrt::logging::set_is_colored_output_on — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc.html b/docs/_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc.html index b9f5507a32..191f6d8e16 100644 --- a/docs/_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc.html +++ b/docs/_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc.html @@ -10,7 +10,7 @@ - Function torch_tensorrt::logging::set_logging_prefix — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Function torch_tensorrt::logging::set_logging_prefix — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/function_ptq_8h_1a226e3c83379d1012cde8578c1c86b16c.html b/docs/_cpp_api/function_ptq_8h_1a226e3c83379d1012cde8578c1c86b16c.html index 8339f14466..568b740751 100644 --- a/docs/_cpp_api/function_ptq_8h_1a226e3c83379d1012cde8578c1c86b16c.html +++ b/docs/_cpp_api/function_ptq_8h_1a226e3c83379d1012cde8578c1c86b16c.html @@ -10,7 +10,7 @@ - Template Function torch_tensorrt::ptq::make_int8_cache_calibrator — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Template Function torch_tensorrt::ptq::make_int8_cache_calibrator — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/function_ptq_8h_1a6186e305f47c1d94b6130ef6c7f7e178.html b/docs/_cpp_api/function_ptq_8h_1a6186e305f47c1d94b6130ef6c7f7e178.html index b42bfae76d..8e985c7db2 100644 --- a/docs/_cpp_api/function_ptq_8h_1a6186e305f47c1d94b6130ef6c7f7e178.html +++ b/docs/_cpp_api/function_ptq_8h_1a6186e305f47c1d94b6130ef6c7f7e178.html @@ -10,7 +10,7 @@ - Template Function torch_tensorrt::ptq::make_int8_calibrator — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Template Function torch_tensorrt::ptq::make_int8_calibrator — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797.html b/docs/_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797.html index a51e475828..2cbaaa41e0 100644 --- a/docs/_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797.html +++ b/docs/_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797.html @@ -10,7 +10,7 @@ - Function torch_tensorrt::torchscript::check_method_operator_support — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Function torch_tensorrt::torchscript::check_method_operator_support — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9.html b/docs/_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9.html index 584aef62da..dad10b714e 100644 --- a/docs/_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9.html +++ b/docs/_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9.html @@ -10,7 +10,7 @@ - Function torch_tensorrt::torchscript::compile — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Function torch_tensorrt::torchscript::compile — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/function_torch__tensorrt_8h_1a81f9783517335dda877d8cfcf38987c9.html b/docs/_cpp_api/function_torch__tensorrt_8h_1a81f9783517335dda877d8cfcf38987c9.html index 03dffafa60..233b91053c 100644 --- a/docs/_cpp_api/function_torch__tensorrt_8h_1a81f9783517335dda877d8cfcf38987c9.html +++ b/docs/_cpp_api/function_torch__tensorrt_8h_1a81f9783517335dda877d8cfcf38987c9.html @@ -10,7 +10,7 @@ - Function torch_tensorrt::torchscript::embed_engine_in_new_module — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Function torch_tensorrt::torchscript::embed_engine_in_new_module — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528.html b/docs/_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528.html index 4705b09dfc..cdc728ad67 100644 --- a/docs/_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528.html +++ b/docs/_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528.html @@ -10,7 +10,7 @@ - Function torch_tensorrt::get_build_info — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Function torch_tensorrt::get_build_info — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384.html b/docs/_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384.html index 426fe79b3a..1fbe4ad514 100644 --- a/docs/_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384.html +++ b/docs/_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384.html @@ -10,7 +10,7 @@ - Function torch_tensorrt::set_device — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Function torch_tensorrt::set_device — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1.html b/docs/_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1.html index 1b255c9338..7ae779b3a2 100644 --- a/docs/_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1.html +++ b/docs/_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1.html @@ -10,7 +10,7 @@ - Function torch_tensorrt::dump_build_info — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Function torch_tensorrt::dump_build_info — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2.html b/docs/_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2.html index 505f005f47..9cce9a6a5d 100644 --- a/docs/_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2.html +++ b/docs/_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2.html @@ -10,7 +10,7 @@ - Function torch_tensorrt::torchscript::convert_method_to_trt_engine — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Function torch_tensorrt::torchscript::convert_method_to_trt_engine — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/namespace_torch_tensorrt.html b/docs/_cpp_api/namespace_torch_tensorrt.html index a69980ccc1..7f07fecf36 100644 --- a/docs/_cpp_api/namespace_torch_tensorrt.html +++ b/docs/_cpp_api/namespace_torch_tensorrt.html @@ -10,7 +10,7 @@ - Namespace torch_tensorrt — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Namespace torch_tensorrt — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/namespace_torch_tensorrt__logging.html b/docs/_cpp_api/namespace_torch_tensorrt__logging.html index 02d9b17dc7..3e0cd42f33 100644 --- a/docs/_cpp_api/namespace_torch_tensorrt__logging.html +++ b/docs/_cpp_api/namespace_torch_tensorrt__logging.html @@ -10,7 +10,7 @@ - Namespace torch_tensorrt::logging — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Namespace torch_tensorrt::logging — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/namespace_torch_tensorrt__ptq.html b/docs/_cpp_api/namespace_torch_tensorrt__ptq.html index f4eadfcab8..7034655899 100644 --- a/docs/_cpp_api/namespace_torch_tensorrt__ptq.html +++ b/docs/_cpp_api/namespace_torch_tensorrt__ptq.html @@ -10,7 +10,7 @@ - Namespace torch_tensorrt::ptq — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Namespace torch_tensorrt::ptq — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/namespace_torch_tensorrt__torchscript.html b/docs/_cpp_api/namespace_torch_tensorrt__torchscript.html index 820b1dbb59..444a58a981 100644 --- a/docs/_cpp_api/namespace_torch_tensorrt__torchscript.html +++ b/docs/_cpp_api/namespace_torch_tensorrt__torchscript.html @@ -10,7 +10,7 @@ - Namespace torch_tensorrt::torchscript — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Namespace torch_tensorrt::torchscript — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h.html b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h.html index 55a4cac5ec..1d8c4e6493 100644 --- a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h.html +++ b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h.html @@ -10,7 +10,7 @@ - Program Listing for File logging.h — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Program Listing for File logging.h — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h.html b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h.html index 7a64283586..974a722522 100644 --- a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h.html +++ b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h.html @@ -10,7 +10,7 @@ - Program Listing for File macros.h — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Program Listing for File macros.h — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h.html b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h.html index 7118d62220..e1f03dc51d 100644 --- a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h.html +++ b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h.html @@ -10,7 +10,7 @@ - Program Listing for File ptq.h — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Program Listing for File ptq.h — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h.html b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h.html index abdfb1d99c..98f869e548 100644 --- a/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h.html +++ b/docs/_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h.html @@ -10,7 +10,7 @@ - Program Listing for File torch_tensorrt.h — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Program Listing for File torch_tensorrt.h — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/structtorch__tensorrt_1_1Device.html b/docs/_cpp_api/structtorch__tensorrt_1_1Device.html index cfa550c58d..9b0f0b8fdd 100644 --- a/docs/_cpp_api/structtorch__tensorrt_1_1Device.html +++ b/docs/_cpp_api/structtorch__tensorrt_1_1Device.html @@ -10,7 +10,7 @@ - Struct Device — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Struct Device — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/structtorch__tensorrt_1_1GraphInputs.html b/docs/_cpp_api/structtorch__tensorrt_1_1GraphInputs.html index 52a475aefd..606bee78aa 100644 --- a/docs/_cpp_api/structtorch__tensorrt_1_1GraphInputs.html +++ b/docs/_cpp_api/structtorch__tensorrt_1_1GraphInputs.html @@ -10,7 +10,7 @@ - Struct GraphInputs — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Struct GraphInputs — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/structtorch__tensorrt_1_1Input.html b/docs/_cpp_api/structtorch__tensorrt_1_1Input.html index 9ec549464c..58ca0d70ef 100644 --- a/docs/_cpp_api/structtorch__tensorrt_1_1Input.html +++ b/docs/_cpp_api/structtorch__tensorrt_1_1Input.html @@ -10,7 +10,7 @@ - Struct Input — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Struct Input — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec.html b/docs/_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec.html index c03b624569..939ef24e8b 100644 --- a/docs/_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec.html +++ b/docs/_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec.html @@ -10,7 +10,7 @@ - Struct CompileSpec — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Struct CompileSpec — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/torch_tensort_cpp.html b/docs/_cpp_api/torch_tensort_cpp.html index c3a85df26e..9e6b95b190 100644 --- a/docs/_cpp_api/torch_tensort_cpp.html +++ b/docs/_cpp_api/torch_tensort_cpp.html @@ -10,7 +10,7 @@ - Torch-TensorRT C++ API — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Torch-TensorRT C++ API — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_cpp_api/unabridged_orphan.html b/docs/_cpp_api/unabridged_orphan.html index e87f4fa3da..e6b420b61c 100644 --- a/docs/_cpp_api/unabridged_orphan.html +++ b/docs/_cpp_api/unabridged_orphan.html @@ -10,7 +10,7 @@ - Full API — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Full API — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_downloads/6a6052d9668b2cb8332d349d328e21c1/_rendered_examples_jupyter.zip b/docs/_downloads/6a6052d9668b2cb8332d349d328e21c1/_rendered_examples_jupyter.zip index a8e6c29df7..c006759f90 100644 Binary files a/docs/_downloads/6a6052d9668b2cb8332d349d328e21c1/_rendered_examples_jupyter.zip and b/docs/_downloads/6a6052d9668b2cb8332d349d328e21c1/_rendered_examples_jupyter.zip differ diff --git a/docs/_downloads/798cda8f83bd9f5e2cc93f329a04332c/_rendered_examples_python.zip b/docs/_downloads/798cda8f83bd9f5e2cc93f329a04332c/_rendered_examples_python.zip index bbc2b1b6e5..125f29398a 100644 Binary files a/docs/_downloads/798cda8f83bd9f5e2cc93f329a04332c/_rendered_examples_python.zip and b/docs/_downloads/798cda8f83bd9f5e2cc93f329a04332c/_rendered_examples_python.zip differ diff --git a/docs/_modules/index.html b/docs/_modules/index.html index 1b81d0cfcb..c9e3f35a2e 100644 --- a/docs/_modules/index.html +++ b/docs/_modules/index.html @@ -9,7 +9,7 @@ - Overview: module code — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Overview: module code — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -272,7 +272,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/_modules/torch_tensorrt/_Device.html b/docs/_modules/torch_tensorrt/_Device.html index 454155ea38..600e850e2f 100644 --- a/docs/_modules/torch_tensorrt/_Device.html +++ b/docs/_modules/torch_tensorrt/_Device.html @@ -9,7 +9,7 @@ - torch_tensorrt._Device — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + torch_tensorrt._Device — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -272,7 +272,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -467,25 +467,25 @@

Source code for torch_tensorrt._Device

-from __future__ import annotations
+from __future__ import annotations
 
-import logging
-import sys
-from typing import Any, Optional, Tuple
+import logging
+import sys
+from typing import Any, Optional, Tuple
 
 if sys.version_info >= (3, 11):
-    from typing import Self
+    from typing import Self
 else:
-    from typing_extensions import Self
+    from typing_extensions import Self
 
-import torch
-from torch_tensorrt._enums import DeviceType
-from torch_tensorrt._features import needs_torch_tensorrt_runtime
+import torch
+from torch_tensorrt._enums import DeviceType
+from torch_tensorrt._features import needs_torch_tensorrt_runtime
 
-import tensorrt as trt
+import tensorrt as trt
 
 
-
[docs]class Device(object): +
[docs]class Device(object): """ Defines a device that can be used to specify target devices for engines @@ -505,7 +505,7 @@

Source code for torch_tensorrt._Device

         False  #: Whether falling back to GPU if DLA cannot support an op should be allowed
     )
 
-
[docs] def __init__(self, *args: Any, **kwargs: Any): +
[docs] def __init__(self, *args: Any, **kwargs: Any): """__init__ Method for torch_tensorrt.Device Device accepts one of a few construction patterns @@ -577,7 +577,7 @@

Source code for torch_tensorrt._Device

             if isinstance(kwargs["device_type"], trt.DeviceType):
                 self.device_type = DeviceType._from(kwargs["device_type"])
- def __str__(self) -> str: + def __str__(self) -> str: suffix = ( ")" if self.device_type == DeviceType.GPU @@ -586,11 +586,11 @@

Source code for torch_tensorrt._Device

         dev_str: str = f"Device(type={self.device_type}, gpu_id={self.gpu_id}{suffix}"
         return dev_str
 
-    def __repr__(self) -> str:
+    def __repr__(self) -> str:
         return self.__str__()
 
     @classmethod
-    def _from(cls, d: Optional[Self | torch.device | str]) -> Device:
+    def _from(cls, d: Optional[Self | torch.device | str]) -> Device:
         """Cast a device-type to torch_tensorrt.Device
 
         Returns the corresponding torch_tensorrt.Device
@@ -610,16 +610,16 @@ 

Source code for torch_tensorrt._Device

             return cls(d)
 
     @classmethod
-    def _from_torch_device(cls, torch_dev: torch.device) -> Device:
+    def _from_torch_device(cls, torch_dev: torch.device) -> Device:
         return cls._from(torch_dev)
 
     @classmethod
-    def _current_device(cls) -> Device:
+    def _current_device(cls) -> Device:
         dev_id = torch.cuda.current_device()
         return cls(gpu_id=dev_id)
 
     @staticmethod
-    def _parse_device_str(s: str) -> Tuple[trt.DeviceType, int]:
+    def _parse_device_str(s: str) -> Tuple[trt.DeviceType, int]:
         s = s.lower()
         spec = s.split(":")
         if spec[0] == "gpu" or spec[0] == "cuda":
@@ -629,7 +629,7 @@ 

Source code for torch_tensorrt._Device

         else:
             raise ValueError(f"Unknown device type {spec[0]}")
 
-    def to(self, t: type) -> torch.device:
+    def to(self, t: type) -> torch.device:
         if t == torch.device:
             if self.gpu_id != -1:
                 return torch.device(self.gpu_id)
@@ -639,7 +639,7 @@ 

Source code for torch_tensorrt._Device

             raise TypeError("Unsupported target type for device conversion")
 
     @needs_torch_tensorrt_runtime
-    def _to_serialized_rt_device(self) -> str:
+    def _to_serialized_rt_device(self) -> str:
         delim = torch.ops.tensorrt.SERIALIZED_RT_DEVICE_DELIM()[0]
         dev_info = torch.cuda.get_device_properties(self.gpu_id)
         rt_info = [
diff --git a/docs/_modules/torch_tensorrt/_Input.html b/docs/_modules/torch_tensorrt/_Input.html
index 55ee388d6e..1280bf4851 100644
--- a/docs/_modules/torch_tensorrt/_Input.html
+++ b/docs/_modules/torch_tensorrt/_Input.html
@@ -9,7 +9,7 @@
   
   
   
-  torch_tensorrt._Input — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
+  torch_tensorrt._Input — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
   
 
   
@@ -272,7 +272,7 @@
               
               
                 
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -467,16 +467,16 @@

Source code for torch_tensorrt._Input

-from __future__ import annotations
+from __future__ import annotations
 
-from enum import Enum
-from typing import Any, Dict, List, Optional, Sequence, Tuple
+from enum import Enum
+from typing import Any, Dict, List, Optional, Sequence, Tuple
 
-import torch
-from torch_tensorrt._enums import dtype, memory_format
+import torch
+from torch_tensorrt._enums import dtype, memory_format
 
 
-
[docs]class Input(object): +
[docs]class Input(object): """ Defines an input to a module in terms of expected shape, data type and tensor format. @@ -493,7 +493,7 @@

Source code for torch_tensorrt._Input

         format (torch_tensorrt.TensorFormat): The expected format of the input tensor (default: torch_tensorrt.TensorFormat.NCHW)
     """
 
-    class _ShapeMode(Enum):
+    class _ShapeMode(Enum):
         STATIC = 0
         DYNAMIC = 1
 
@@ -518,7 +518,7 @@ 

Source code for torch_tensorrt._Input

     name: str = ""
     is_shape_tensor: bool = False
 
-
[docs] def __init__(self, *args: Any, **kwargs: Any) -> None: +
[docs] def __init__(self, *args: Any, **kwargs: Any) -> None: """__init__ Method for torch_tensorrt.Input Input accepts one of a few construction patterns @@ -659,7 +659,7 @@

Source code for torch_tensorrt._Input

         if "name" in kwargs:
             self.name = kwargs["name"]
- def __str__(self) -> str: + def __str__(self) -> str: if self.shape_mode == Input._ShapeMode.STATIC: return "Input(shape={}, dtype={}, format={}, domain=[{}, {}))".format( self.shape, @@ -686,11 +686,11 @@

Source code for torch_tensorrt._Input

         else:
             raise RuntimeError("Unknown input shape mode")
 
-    def __repr__(self) -> str:
+    def __repr__(self) -> str:
         return self.__str__()
 
     @staticmethod
-    def equivalent_spec(a: Input, b: Input) -> bool:
+    def equivalent_spec(a: Input, b: Input) -> bool:
         if a.shape_mode != b.shape_mode:
             return False
 
@@ -718,7 +718,7 @@ 

Source code for torch_tensorrt._Input

             return all(checks)
 
     @staticmethod
-    def _supported_input_size_type(input_size: Any) -> bool:
+    def _supported_input_size_type(input_size: Any) -> bool:
         if isinstance(input_size, torch.Size):
             return True
         elif isinstance(input_size, tuple):
@@ -729,7 +729,7 @@ 

Source code for torch_tensorrt._Input

             return False
 
     @staticmethod
-    def _parse_tensor_domain(
+    def _parse_tensor_domain(
         domain: Optional[Tuple[float, float]]
     ) -> Tuple[float, float]:
         """
@@ -777,7 +777,7 @@ 

Source code for torch_tensorrt._Input

         return result_domain
 
 
[docs] @classmethod - def from_tensor( + def from_tensor( cls, t: torch.Tensor, disable_memory_format_check: bool = False ) -> "Input": """ @@ -809,7 +809,7 @@

Source code for torch_tensorrt._Input

         return cls(shape=t.shape, dtype=t.dtype, format=frmt, torch_tensor=t)
[docs] @classmethod - def from_tensors( + def from_tensors( cls, ts: Sequence[torch.Tensor], disable_memory_format_check: bool = False ) -> List["Input"]: """ @@ -830,7 +830,7 @@

Source code for torch_tensorrt._Input

             for t in ts
         ]
-
[docs] def example_tensor( +
[docs] def example_tensor( self, optimization_profile_field: Optional[str] = None ) -> torch.Tensor: """ diff --git a/docs/_modules/torch_tensorrt/_compile.html b/docs/_modules/torch_tensorrt/_compile.html index 410711569a..492132c1ef 100644 --- a/docs/_modules/torch_tensorrt/_compile.html +++ b/docs/_modules/torch_tensorrt/_compile.html @@ -9,7 +9,7 @@ - torch_tensorrt._compile — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + torch_tensorrt._compile — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -272,7 +272,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -467,51 +467,51 @@

Source code for torch_tensorrt._compile

-from __future__ import annotations
-
-import collections.abc
-import logging
-import platform
-from enum import Enum
-from typing import Any, Callable, List, Optional, Sequence, Set
-
-import torch
-import torch.fx
-from torch_tensorrt._enums import dtype
-from torch_tensorrt._features import ENABLED_FEATURES
-from torch_tensorrt._Input import Input
-from torch_tensorrt.dynamo import _defaults
-from torch_tensorrt.dynamo.runtime._CudaGraphsTorchTensorRTModule import (
+from __future__ import annotations
+
+import collections.abc
+import logging
+import platform
+from enum import Enum
+from typing import Any, Callable, List, Optional, Sequence, Set
+
+import torch
+import torch.fx
+from torch_tensorrt._enums import dtype
+from torch_tensorrt._features import ENABLED_FEATURES
+from torch_tensorrt._Input import Input
+from torch_tensorrt.dynamo import _defaults
+from torch_tensorrt.dynamo.runtime._CudaGraphsTorchTensorRTModule import (
     CudaGraphsTorchTensorRTModule,
 )
-from torch_tensorrt.fx import InputTensorSpec
-from torch_tensorrt.fx.lower import compile as fx_compile
-from torch_tensorrt.fx.utils import LowerPrecision
-from typing_extensions import TypeGuard
+from torch_tensorrt.fx import InputTensorSpec
+from torch_tensorrt.fx.lower import compile as fx_compile
+from torch_tensorrt.fx.utils import LowerPrecision
+from typing_extensions import TypeGuard
 
 if ENABLED_FEATURES.torchscript_frontend:
-    import torch_tensorrt.ts
-    from torch_tensorrt.ts._compiler import compile as torchscript_compile
-    from torch_tensorrt.ts._compiler import (
+    import torch_tensorrt.ts
+    from torch_tensorrt.ts._compiler import compile as torchscript_compile
+    from torch_tensorrt.ts._compiler import (
         convert_method_to_trt_engine as ts_convert_method_to_trt_engine,
     )
 
 if ENABLED_FEATURES.dynamo_frontend:
-    from torch.export import ExportedProgram
-    from torch_tensorrt.dynamo._compiler import compile as dynamo_compile
-    from torch_tensorrt.dynamo._compiler import (
+    from torch.export import ExportedProgram
+    from torch_tensorrt.dynamo._compiler import compile as dynamo_compile
+    from torch_tensorrt.dynamo._compiler import (
         convert_exported_program_to_serialized_trt_engine as dynamo_convert_exported_program_to_serialized_trt_engine,
     )
-    from torch_tensorrt.dynamo._compiler import (
+    from torch_tensorrt.dynamo._compiler import (
         cross_compile_for_windows as dynamo_cross_compile_for_windows,
     )
-    from torch_tensorrt.dynamo._compiler import (
+    from torch_tensorrt.dynamo._compiler import (
         load_cross_compiled_exported_program as dynamo_load_cross_compiled_exported_program,
     )
-    from torch_tensorrt.dynamo._compiler import (
+    from torch_tensorrt.dynamo._compiler import (
         save_cross_compiled_exported_program as dynamo_save_cross_compiled_exported_program,
     )
-    from torch_tensorrt.dynamo._tracer import trace as dynamo_trace
+    from torch_tensorrt.dynamo._tracer import trace as dynamo_trace
 
 logger = logging.getLogger(__name__)
 
@@ -525,19 +525,19 @@ 

Source code for torch_tensorrt._compile

 ]
 
 
-def _non_fx_input_interface(
+def _non_fx_input_interface(
     inputs: Sequence[Input | torch.Tensor | InputTensorSpec],
 ) -> TypeGuard[List[Input | torch.Tensor]]:
     return all(isinstance(i, (torch.Tensor, Input)) for i in inputs)
 
 
-def _fx_input_interface(
+def _fx_input_interface(
     inputs: Sequence[Input | torch.Tensor | InputTensorSpec],
 ) -> TypeGuard[List[InputTensorSpec | torch.Tensor]]:
     return all(isinstance(i, (torch.Tensor, InputTensorSpec)) for i in inputs)
 
 
-class _IRType(Enum):
+class _IRType(Enum):
     """Enum to determine the type of IR selected for model compilation"""
 
     ts = 0
@@ -547,7 +547,7 @@ 

Source code for torch_tensorrt._compile

     exported_program = 4
 
 
-class _ModuleType(Enum):
+class _ModuleType(Enum):
     """Enum to determine the type of model provided as input"""
 
     nn = 0
@@ -556,7 +556,7 @@ 

Source code for torch_tensorrt._compile

     ep = 3
 
 
-def _parse_module_type(module: Any) -> _ModuleType:
+def _parse_module_type(module: Any) -> _ModuleType:
     if any(
         isinstance(module, t)
         for t in [torch.jit.ScriptModule, torch.jit.ScriptFunction]
@@ -572,7 +572,7 @@ 

Source code for torch_tensorrt._compile

         raise RuntimeError("Module is an unknown format")
 
 
-def _get_target_fe(module_type: _ModuleType, ir: str) -> _IRType:
+def _get_target_fe(module_type: _ModuleType, ir: str) -> _IRType:
     module_is_tsable = any(module_type == t for t in [_ModuleType.nn, _ModuleType.ts])
     module_is_fxable = any(module_type == t for t in [_ModuleType.nn, _ModuleType.fx])
     module_is_exportable = module_type == _ModuleType.ep
@@ -633,7 +633,7 @@ 

Source code for torch_tensorrt._compile

             raise ValueError("Unknown ir was requested")
 
 
-
[docs]def compile( +
[docs]def compile( module: Any, ir: str = "default", inputs: Optional[Sequence[Input | torch.Tensor | InputTensorSpec]] = None, @@ -743,7 +743,7 @@

Source code for torch_tensorrt._compile

         if kwarg_inputs is None:
             kwarg_inputs = {}
 
-        from torch_tensorrt.dynamo.utils import prepare_inputs
+        from torch_tensorrt.dynamo.utils import prepare_inputs
 
         if not isinstance(arg_inputs, collections.abc.Sequence):
             arg_inputs = [arg_inputs]  # type: ignore
@@ -770,7 +770,7 @@ 

Source code for torch_tensorrt._compile

         raise RuntimeError("Module is an unknown format or the ir requested is unknown")
-def cross_compile_for_windows( +def cross_compile_for_windows( module: torch.nn.Module, file_path: str, inputs: Optional[Sequence[Input | torch.Tensor]] = None, @@ -843,7 +843,7 @@

Source code for torch_tensorrt._compile

     if kwarg_inputs is None:
         kwarg_inputs = {}
 
-    from torch_tensorrt.dynamo.utils import prepare_inputs
+    from torch_tensorrt.dynamo.utils import prepare_inputs
 
     if not isinstance(arg_inputs, collections.abc.Sequence):
         arg_inputs = [arg_inputs]  # type: ignore
@@ -869,13 +869,13 @@ 

Source code for torch_tensorrt._compile

     logger.debug("successfully compiled and saved the module for windows")
 
 
-def torch_compile(module: torch.nn.Module, **kwargs: Any) -> Any:
+def torch_compile(module: torch.nn.Module, **kwargs: Any) -> Any:
     """
     Returns a boxed model which is the output of torch.compile.
     This does not compile the model to TRT. Execute this model on
     sample inputs to compile the model to TRT.
     """
-    from torch_tensorrt.dynamo.backend import torch_tensorrt_backend
+    from torch_tensorrt.dynamo.backend import torch_tensorrt_backend
 
     # TODO: Remove dynamic=False when SymInt Dynamic shape support is ready
     boxed_fn = torch.compile(
@@ -885,7 +885,7 @@ 

Source code for torch_tensorrt._compile

     return boxed_fn
 
 
-
[docs]def convert_method_to_trt_engine( +
[docs]def convert_method_to_trt_engine( module: Any, method_name: str = "forward", inputs: Optional[Sequence[Input | torch.Tensor | InputTensorSpec]] = None, @@ -966,7 +966,7 @@

Source code for torch_tensorrt._compile

         if kwarg_inputs is None:
             kwarg_inputs = {}
 
-        from torch_tensorrt.dynamo.utils import prepare_inputs
+        from torch_tensorrt.dynamo.utils import prepare_inputs
 
         if not isinstance(arg_inputs, collections.abc.Sequence):
             arg_inputs = [arg_inputs]  # type: ignore
@@ -994,7 +994,7 @@ 

Source code for torch_tensorrt._compile

         raise RuntimeError("Module is an unknown format or the ir requested is unknown")
-def load_cross_compiled_exported_program(file_path: str = "") -> Any: +def load_cross_compiled_exported_program(file_path: str = "") -> Any: """ Load an ExportedProgram file in Windows which was previously cross compiled in Linux @@ -1007,7 +1007,7 @@

Source code for torch_tensorrt._compile

     return dynamo_load_cross_compiled_exported_program(file_path)
 
 
-
[docs]def load(file_path: str = "") -> Any: +
[docs]def load(file_path: str = "") -> Any: """ Load either a Torchscript model or ExportedProgram. @@ -1044,7 +1044,7 @@

Source code for torch_tensorrt._compile

         )
-
[docs]def save( +
[docs]def save( module: Any, file_path: str = "", *, @@ -1131,7 +1131,7 @@

Source code for torch_tensorrt._compile

             torch.jit.save(module_ts, file_path)
         else:
             if not retrace:
-                from torch_tensorrt.dynamo._exporter import export
+                from torch_tensorrt.dynamo._exporter import export
 
                 if arg_inputs is not None:
                     logger.warning(
diff --git a/docs/_modules/torch_tensorrt/_enums.html b/docs/_modules/torch_tensorrt/_enums.html
index aa5c83ac26..fa5fceffeb 100644
--- a/docs/_modules/torch_tensorrt/_enums.html
+++ b/docs/_modules/torch_tensorrt/_enums.html
@@ -9,7 +9,7 @@
   
   
   
-  torch_tensorrt._enums — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
+  torch_tensorrt._enums — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
   
 
   
@@ -272,7 +272,7 @@
               
               
                 
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -467,19 +467,19 @@

Source code for torch_tensorrt._enums

-from __future__ import annotations
+from __future__ import annotations
 
-import logging
-from enum import Enum, auto
-from typing import Any, Optional, Type, Union
+import logging
+from enum import Enum, auto
+from typing import Any, Optional, Type, Union
 
-import numpy as np
-import tensorrt as trt
-import torch
-from torch_tensorrt._features import ENABLED_FEATURES, needs_torch_tensorrt_runtime
+import numpy as np
+import tensorrt as trt
+import torch
+from torch_tensorrt._features import ENABLED_FEATURES, needs_torch_tensorrt_runtime
 
 
-
[docs]class dtype(Enum): +
[docs]class dtype(Enum): """Enum to describe data types to Torch-TensorRT, has compatibility with torch, tensorrt and numpy dtypes""" # Supported types in Torch-TensorRT @@ -575,7 +575,7 @@

Source code for torch_tensorrt._enums

     bfloat16 = bf16
 
     @staticmethod
-    def _is_np_obj(t: Any) -> bool:
+    def _is_np_obj(t: Any) -> bool:
         if isinstance(t, np.dtype):
             return True
         elif isinstance(t, type):
@@ -584,7 +584,7 @@ 

Source code for torch_tensorrt._enums

         return False
 
     @classmethod
-    def _from(
+    def _from(
         cls,
         t: Union[torch.dtype, trt.DataType, np.dtype, dtype, type],
         use_default: bool = False,
@@ -710,7 +710,7 @@ 

Source code for torch_tensorrt._enums

             return t
 
         elif ENABLED_FEATURES.torchscript_frontend:
-            from torch_tensorrt import _C
+            from torch_tensorrt import _C
 
             if isinstance(t, _C.dtype):
                 if t == _C.dtype.long:
@@ -739,7 +739,7 @@ 

Source code for torch_tensorrt._enums

         )
 
 
[docs] @classmethod - def try_from( + def try_from( cls, t: Union[torch.dtype, trt.DataType, np.dtype, dtype], use_default: bool = False, @@ -779,7 +779,7 @@

Source code for torch_tensorrt._enums

             )
             return None
-
[docs] def to( +
[docs] def to( self, t: Union[Type[torch.dtype], Type[trt.DataType], Type[np.dtype], Type[dtype]], use_default: bool = False, @@ -898,7 +898,7 @@

Source code for torch_tensorrt._enums

             return self
 
         elif ENABLED_FEATURES.torchscript_frontend:
-            from torch_tensorrt import _C
+            from torch_tensorrt import _C
 
             if t == _C.dtype:
                 if self == dtype.i64:
@@ -926,7 +926,7 @@ 

Source code for torch_tensorrt._enums

             f"Provided unsupported destination type for dtype conversion {t}"
         )
-
[docs] def try_to( +
[docs] def try_to( self, t: Union[Type[torch.dtype], Type[trt.DataType], Type[np.dtype], Type[dtype]], use_default: bool, @@ -965,11 +965,11 @@

Source code for torch_tensorrt._enums

             )
             return None
- def __eq__(self, other: Union[torch.dtype, trt.DataType, np.dtype, dtype]) -> bool: + def __eq__(self, other: Union[torch.dtype, trt.DataType, np.dtype, dtype]) -> bool: other_ = dtype._from(other) return bool(self.value == other_.value) - def __hash__(self) -> int: + def __hash__(self) -> int: return hash(self.value) # Putting aliases here that mess with mypy @@ -977,7 +977,7 @@

Source code for torch_tensorrt._enums

     int = i32
-
[docs]class memory_format(Enum): +
[docs]class memory_format(Enum): """""" # TensorRT supported memory layouts @@ -1109,7 +1109,7 @@

Source code for torch_tensorrt._enums

     channels_last_3d = dhwc
 
     @classmethod
-    def _from(
+    def _from(
         cls, f: Union[torch.memory_format, trt.TensorFormat, memory_format]
     ) -> memory_format:
         """Create a Torch-TensorRT memory format enum from another library memory format enum.
@@ -1185,7 +1185,7 @@ 

Source code for torch_tensorrt._enums

             return f
 
         elif ENABLED_FEATURES.torchscript_frontend:
-            from torch_tensorrt import _C
+            from torch_tensorrt import _C
 
             if isinstance(f, _C.TensorFormat):
                 if f == _C.TensorFormat.contiguous:
@@ -1200,7 +1200,7 @@ 

Source code for torch_tensorrt._enums

         raise TypeError("Provided unsupported source type for memory_format conversion")
 
 
[docs] @classmethod - def try_from( + def try_from( cls, f: Union[torch.memory_format, trt.TensorFormat, memory_format] ) -> Optional[memory_format]: """Create a Torch-TensorRT memory format enum from another library memory format enum. @@ -1233,7 +1233,7 @@

Source code for torch_tensorrt._enums

             )
             return None
-
[docs] def to( +
[docs] def to( self, t: Union[ Type[torch.memory_format], Type[trt.TensorFormat], Type[memory_format] @@ -1308,7 +1308,7 @@

Source code for torch_tensorrt._enums

             return self
 
         elif ENABLED_FEATURES.torchscript_frontend:
-            from torch_tensorrt import _C
+            from torch_tensorrt import _C
 
             if t == _C.TensorFormat:
                 if self == memory_format.contiguous:
@@ -1324,7 +1324,7 @@ 

Source code for torch_tensorrt._enums

             "Provided unsupported destination type for memory format conversion"
         )
-
[docs] def try_to( +
[docs] def try_to( self, t: Union[ Type[torch.memory_format], Type[trt.TensorFormat], Type[memory_format] @@ -1359,17 +1359,17 @@

Source code for torch_tensorrt._enums

             )
             return None
- def __eq__( + def __eq__( self, other: Union[torch.memory_format, trt.TensorFormat, memory_format] ) -> bool: other_ = memory_format._from(other) return self.value == other_.value - def __hash__(self) -> int: + def __hash__(self) -> int: return hash(self.value)
-
[docs]class DeviceType(Enum): +
[docs]class DeviceType(Enum): """Type of device TensorRT will target""" UNKNOWN = auto() @@ -1394,7 +1394,7 @@

Source code for torch_tensorrt._enums

     """
 
     @classmethod
-    def _from(cls, d: Union[trt.DeviceType, DeviceType]) -> DeviceType:
+    def _from(cls, d: Union[trt.DeviceType, DeviceType]) -> DeviceType:
         """Create a Torch-TensorRT device type enum from a TensorRT device type enum.
 
         Takes a device type enum from tensorrt and create a ``torch_tensorrt.DeviceType``.
@@ -1433,7 +1433,7 @@ 

Source code for torch_tensorrt._enums

             return d
 
         elif ENABLED_FEATURES.torchscript_frontend:
-            from torch_tensorrt import _C
+            from torch_tensorrt import _C
 
             if isinstance(d, _C.DeviceType):
                 if d == _C.DeviceType.GPU:
@@ -1448,7 +1448,7 @@ 

Source code for torch_tensorrt._enums

         raise TypeError("Provided unsupported source type for DeviceType conversion")
 
 
[docs] @classmethod - def try_from(cls, d: Union[trt.DeviceType, DeviceType]) -> Optional[DeviceType]: + def try_from(cls, d: Union[trt.DeviceType, DeviceType]) -> Optional[DeviceType]: """Create a Torch-TensorRT device type enum from a TensorRT device type enum. Takes a device type enum from tensorrt and create a ``torch_tensorrt.DeviceType``. @@ -1480,7 +1480,7 @@

Source code for torch_tensorrt._enums

             )
             return None
-
[docs] def to( +
[docs] def to( self, t: Union[Type[trt.DeviceType], Type[DeviceType]], use_default: bool = False, @@ -1526,7 +1526,7 @@

Source code for torch_tensorrt._enums

             return self
 
         elif ENABLED_FEATURES.torchscript_frontend:
-            from torch_tensorrt import _C
+            from torch_tensorrt import _C
 
             if t == _C.DeviceType:
                 if self == DeviceType.GPU:
@@ -1542,7 +1542,7 @@ 

Source code for torch_tensorrt._enums

             "Provided unsupported destination type for device type conversion"
         )
-
[docs] def try_to( +
[docs] def try_to( self, t: Union[Type[trt.DeviceType], Type[DeviceType]], use_default: bool = False, @@ -1575,15 +1575,15 @@

Source code for torch_tensorrt._enums

             )
             return None
- def __eq__(self, other: Union[trt.DeviceType, DeviceType]) -> bool: + def __eq__(self, other: Union[trt.DeviceType, DeviceType]) -> bool: other_ = DeviceType._from(other) return bool(self.value == other_.value) - def __hash__(self) -> int: + def __hash__(self) -> int: return hash(self.value)
-
[docs]class EngineCapability(Enum): +
[docs]class EngineCapability(Enum): """ EngineCapability determines the restrictions of a network during build time and what runtime it targets. """ @@ -1610,7 +1610,7 @@

Source code for torch_tensorrt._enums

     """
 
     @classmethod
-    def _from(
+    def _from(
         cls, c: Union[trt.EngineCapability, EngineCapability]
     ) -> EngineCapability:
         """Create a Torch-TensorRT Engine capability enum from a TensorRT Engine capability enum.
@@ -1651,7 +1651,7 @@ 

Source code for torch_tensorrt._enums

             return c
 
         elif ENABLED_FEATURES.torchscript_frontend:
-            from torch_tensorrt import _C
+            from torch_tensorrt import _C
 
             if isinstance(c, _C.EngineCapability):
                 if c == _C.EngineCapability.STANDARD:
@@ -1668,7 +1668,7 @@ 

Source code for torch_tensorrt._enums

         )
 
 
[docs] @classmethod - def try_from( + def try_from( c: Union[trt.EngineCapability, EngineCapability] ) -> Optional[EngineCapability]: """Create a Torch-TensorRT engine capability enum from a TensorRT engine capability enum. @@ -1702,7 +1702,7 @@

Source code for torch_tensorrt._enums

             )
             return None
-
[docs] def to( +
[docs] def to( self, t: Union[Type[trt.EngineCapability], Type[EngineCapability]] ) -> Union[trt.EngineCapability, EngineCapability]: """Convert ``EngineCapability`` into the equivalent type in tensorrt @@ -1743,7 +1743,7 @@

Source code for torch_tensorrt._enums

             return self
 
         elif ENABLED_FEATURES.torchscript_frontend:
-            from torch_tensorrt import _C
+            from torch_tensorrt import _C
 
             if t == _C.EngineCapability:
                 if self == EngineCapability.STANDARD:
@@ -1759,7 +1759,7 @@ 

Source code for torch_tensorrt._enums

             "Provided unsupported destination type for engine capability type conversion"
         )
-
[docs] def try_to( +
[docs] def try_to( self, t: Union[Type[trt.EngineCapability], Type[EngineCapability]] ) -> Optional[Union[trt.EngineCapability, EngineCapability]]: """Convert ``EngineCapability`` into the equivalent type in tensorrt @@ -1790,15 +1790,15 @@

Source code for torch_tensorrt._enums

             )
             return None
- def __eq__(self, other: Union[trt.EngineCapability, EngineCapability]) -> bool: + def __eq__(self, other: Union[trt.EngineCapability, EngineCapability]) -> bool: other_ = EngineCapability._from(other) return bool(self.value == other_.value) - def __hash__(self) -> int: + def __hash__(self) -> int: return hash(self.value)
-class Platform(Enum): +class Platform(Enum): """ Specifies a target OS and CPU architecture that a Torch-TensorRT program targets """ @@ -1827,14 +1827,14 @@

Source code for torch_tensorrt._enums

     UNKNOWN = auto()
 
     @classmethod
-    def current_platform(cls) -> Platform:
+    def current_platform(cls) -> Platform:
         """
         Returns an enum for the current platform Torch-TensorRT is running on
 
         Returns:
             Platform: Current platform
         """
-        import platform
+        import platform
 
         if platform.system().lower().startswith("linux"):
             # linux
@@ -1850,11 +1850,11 @@ 

Source code for torch_tensorrt._enums

 
         return Platform.UNKNOWN
 
-    def __str__(self) -> str:
+    def __str__(self) -> str:
         return str(self.name)
 
     @needs_torch_tensorrt_runtime  # type: ignore
-    def _to_serialized_rt_platform(self) -> str:
+    def _to_serialized_rt_platform(self) -> str:
         val: str = torch.ops.tensorrt._platform_unknown()
 
         if self == Platform.LINUX_X86_64:
diff --git a/docs/_modules/torch_tensorrt/dynamo/_compiler.html b/docs/_modules/torch_tensorrt/dynamo/_compiler.html
index f8686f6ce4..396e717d3a 100644
--- a/docs/_modules/torch_tensorrt/dynamo/_compiler.html
+++ b/docs/_modules/torch_tensorrt/dynamo/_compiler.html
@@ -9,7 +9,7 @@
   
   
   
-  torch_tensorrt.dynamo._compiler — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
+  torch_tensorrt.dynamo._compiler — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
   
 
   
@@ -272,7 +272,7 @@
               
               
                 
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -467,45 +467,45 @@

Source code for torch_tensorrt.dynamo._compiler

-from __future__ import annotations
-
-import collections.abc
-import logging
-import platform
-import warnings
-from typing import Any, Collection, List, Optional, Sequence, Set, Tuple, Union
-
-import torch
-from torch.export import ExportedProgram
-from torch.fx.node import Target
-from torch_tensorrt._Device import Device
-from torch_tensorrt._enums import EngineCapability, dtype
-from torch_tensorrt._Input import Input
-from torch_tensorrt.dynamo import _defaults, partitioning
-from torch_tensorrt.dynamo._DryRunTracker import (
+from __future__ import annotations
+
+import collections.abc
+import logging
+import platform
+import warnings
+from typing import Any, Collection, List, Optional, Sequence, Set, Tuple, Union
+
+import torch
+from torch.export import ExportedProgram
+from torch.fx.node import Target
+from torch_tensorrt._Device import Device
+from torch_tensorrt._enums import EngineCapability, dtype
+from torch_tensorrt._Input import Input
+from torch_tensorrt.dynamo import _defaults, partitioning
+from torch_tensorrt.dynamo._DryRunTracker import (
     DryRunTracker,
     PerSubgraphData,
     dryrun_stats_display,
     parse_non_trt_nodes,
 )
-from torch_tensorrt.dynamo._engine_cache import BaseEngineCache, DiskEngineCache
-from torch_tensorrt.dynamo._exporter import replace_execute_engine_no_op_node
-from torch_tensorrt.dynamo.conversion import (
+from torch_tensorrt.dynamo._engine_cache import BaseEngineCache, DiskEngineCache
+from torch_tensorrt.dynamo._exporter import replace_execute_engine_no_op_node
+from torch_tensorrt.dynamo.conversion import (
     CompilationSettings,
     UnsupportedOperatorException,
     convert_module,
     interpret_module_to_result,
     repair_double_inputs,
 )
-from torch_tensorrt.dynamo.conversion._ConverterRegistry import (
+from torch_tensorrt.dynamo.conversion._ConverterRegistry import (
     DYNAMO_CONVERTERS as CONVERTERS,
 )
-from torch_tensorrt.dynamo.lowering import (
+from torch_tensorrt.dynamo.lowering import (
     get_decompositions,
     post_lowering,
     pre_export_lowering,
 )
-from torch_tensorrt.dynamo.utils import (
+from torch_tensorrt.dynamo.utils import (
     get_flat_args_with_check,
     get_output_metadata,
     parse_graph_io,
@@ -518,7 +518,7 @@ 

Source code for torch_tensorrt.dynamo._compiler

< logger = logging.getLogger(__name__) -def cross_compile_for_windows( +def cross_compile_for_windows( exported_program: ExportedProgram, inputs: Optional[Sequence[Sequence[Any]]] = None, *, @@ -835,7 +835,7 @@

Source code for torch_tensorrt.dynamo._compiler

< return trt_gm -
[docs]def compile( +
[docs]def compile( exported_program: ExportedProgram, inputs: Optional[Sequence[Sequence[Any]]] = None, *, @@ -1153,7 +1153,7 @@

Source code for torch_tensorrt.dynamo._compiler

< return trt_gm
-def compile_module( +def compile_module( gm: torch.fx.GraphModule, sample_arg_inputs: Sequence[Input], sample_kwarg_inputs: Optional[dict[Any, Any]] = None, @@ -1210,7 +1210,7 @@

Source code for torch_tensorrt.dynamo._compiler

< f"Detected support for {num_supported_ops} operators out of {total_ops} in subgraph." ) - def contains_metadata(gm: torch.fx.GraphModule) -> bool: + def contains_metadata(gm: torch.fx.GraphModule) -> bool: for node in gm.graph.nodes: if node.op != "output" and (not node.meta) and "val" not in node.meta: logger.warning( @@ -1379,7 +1379,7 @@

Source code for torch_tensorrt.dynamo._compiler

< return partitioned_module -def convert_exported_program_to_serialized_trt_engine( +def convert_exported_program_to_serialized_trt_engine( exported_program: ExportedProgram, inputs: Optional[Sequence[Sequence[Any]]] = None, *, @@ -1641,7 +1641,7 @@

Source code for torch_tensorrt.dynamo._compiler

< return serialized_engine -def save_cross_compiled_exported_program( +def save_cross_compiled_exported_program( gm: torch.fx.GraphModule, file_path: str, ) -> None: @@ -1655,14 +1655,14 @@

Source code for torch_tensorrt.dynamo._compiler

< if not file_path: raise ValueError("File path cannot be empty. Please provide a valid file path") - from torch_tensorrt.dynamo._exporter import export + from torch_tensorrt.dynamo._exporter import export exp_program = export(gm, cross_compile_flag=True) torch.export.save(exp_program, file_path) logger.debug(f"successfully saved the module for windows at {file_path}") -def load_cross_compiled_exported_program(file_path: str = "") -> Any: +def load_cross_compiled_exported_program(file_path: str = "") -> Any: """ Load an ExportedProgram file in Windows which was previously cross compiled in Linux diff --git a/docs/_modules/torch_tensorrt/dynamo/_exporter.html b/docs/_modules/torch_tensorrt/dynamo/_exporter.html index 2a1eb9dfa9..d3540b7fe2 100644 --- a/docs/_modules/torch_tensorrt/dynamo/_exporter.html +++ b/docs/_modules/torch_tensorrt/dynamo/_exporter.html @@ -9,7 +9,7 @@ - torch_tensorrt.dynamo._exporter — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + torch_tensorrt.dynamo._exporter — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -272,7 +272,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -467,16 +467,16 @@

Source code for torch_tensorrt.dynamo._exporter

-import base64
-import copy
-import operator
-from typing import Any, Dict, Optional, Sequence, Tuple, cast
-
-import torch
-from torch._guards import detect_fake_mode
-from torch._subclasses.fake_tensor import FakeTensor
-from torch.export import ExportedProgram, ExportGraphSignature
-from torch.export.exported_program import (
+import base64
+import copy
+import operator
+from typing import Any, Dict, Optional, Sequence, Tuple, cast
+
+import torch
+from torch._guards import detect_fake_mode
+from torch._subclasses.fake_tensor import FakeTensor
+from torch.export import ExportedProgram, ExportGraphSignature
+from torch.export.exported_program import (
     CustomObjArgument,
     InputKind,
     InputSpec,
@@ -486,10 +486,10 @@ 

Source code for torch_tensorrt.dynamo._exporter

< OutputSpec, TensorArgument, ) -from torch_tensorrt.dynamo.runtime._TorchTensorRTModule import ENGINE_IDX, NAME_IDX +from torch_tensorrt.dynamo.runtime._TorchTensorRTModule import ENGINE_IDX, NAME_IDX -
[docs]def export( +
[docs]def export( gm: torch.fx.GraphModule, cross_compile_flag: Optional[bool] = False, ) -> ExportedProgram: @@ -505,7 +505,7 @@

Source code for torch_tensorrt.dynamo._exporter

< return exp_program
-def transform( +def transform( gm: torch.fx.GraphModule, cross_compile_flag: Optional[bool] = False, ) -> torch.fx.GraphModule: @@ -539,7 +539,7 @@

Source code for torch_tensorrt.dynamo._exporter

< return gm -def lift( +def lift( gm: torch.fx.GraphModule, graph_signature: Any ) -> Tuple[torch.fx.GraphModule, ExportGraphSignature, Dict[str, Any], Dict[str, Any]]: """ @@ -661,7 +661,7 @@

Source code for torch_tensorrt.dynamo._exporter

< return gm, graph_signature, state_dict, constants -def get_duplicate_nodes( +def get_duplicate_nodes( gm: torch.fx.GraphModule, submodule: torch.fx.GraphModule ) -> Tuple[Sequence[Any], Sequence[Any]]: """ @@ -684,7 +684,7 @@

Source code for torch_tensorrt.dynamo._exporter

< return submodule_duplicate_inputs, gm_duplicate_inputs -def inline_torch_modules(gm: torch.fx.GraphModule) -> torch.fx.GraphModule: +def inline_torch_modules(gm: torch.fx.GraphModule) -> torch.fx.GraphModule: """ Inline a submodule within the parent graph (gm). All `call_module` nodes should be replaced by their nodes in the submodule. @@ -751,7 +751,7 @@

Source code for torch_tensorrt.dynamo._exporter

< return gm -def copy_submodule_attributes( +def copy_submodule_attributes( gm: torch.fx.GraphModule, submodule: torch.fx.GraphModule, submodule_name: str ) -> None: """ @@ -762,7 +762,7 @@

Source code for torch_tensorrt.dynamo._exporter

< _assign_attr does exactly that. It creates a module for eg: conv, adds an attribute weight to it and adds this conv module as an attribute to parent gm. """ - from torch.export.unflatten import _assign_attr, _AttrKind + from torch.export.unflatten import _assign_attr, _AttrKind for key, value in submodule.named_parameters(): _assign_attr(value, gm, key, _AttrKind.PARAMETER) @@ -771,7 +771,7 @@

Source code for torch_tensorrt.dynamo._exporter

< _assign_attr(value, gm, key, _AttrKind.BUFFER) -def create_trt_exp_program( +def create_trt_exp_program( gm: torch.fx.GraphModule, ) -> ExportedProgram: """Creates a new Exported Program. This function takes an torch.fx.GraphModule which has TRT engines @@ -825,7 +825,7 @@

Source code for torch_tensorrt.dynamo._exporter

< return trt_exp_program -def inline_trt_modules( +def inline_trt_modules( gm: torch.fx.GraphModule, cross_compile_flag: Optional[bool] = False ) -> torch.fx.GraphModule: """ @@ -901,7 +901,7 @@

Source code for torch_tensorrt.dynamo._exporter

< return gm -def replace_execute_engine_no_op_node( +def replace_execute_engine_no_op_node( exp_program: ExportedProgram, ) -> ExportedProgram: gm = exp_program.graph_module diff --git a/docs/_modules/torch_tensorrt/dynamo/_refit.html b/docs/_modules/torch_tensorrt/dynamo/_refit.html index baf31324f9..30b33c225a 100644 --- a/docs/_modules/torch_tensorrt/dynamo/_refit.html +++ b/docs/_modules/torch_tensorrt/dynamo/_refit.html @@ -9,7 +9,7 @@ - torch_tensorrt.dynamo._refit — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + torch_tensorrt.dynamo._refit — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -272,7 +272,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -467,42 +467,42 @@

Source code for torch_tensorrt.dynamo._refit

-from __future__ import annotations
-
-import collections.abc
-import copy
-import logging
-from typing import Any, List, Optional, Sequence, Tuple
-
-import numpy as np
-import tensorrt as trt
-import torch
-from torch.export import ExportedProgram
-from torch_tensorrt._enums import dtype
-from torch_tensorrt._Input import Input
-from torch_tensorrt.dynamo import partitioning
-from torch_tensorrt.dynamo._exporter import inline_torch_modules
-from torch_tensorrt.dynamo._settings import CompilationSettings
-from torch_tensorrt.dynamo.conversion._conversion import infer_module_output_dtypes
-from torch_tensorrt.dynamo.conversion._ConverterRegistry import (
+from __future__ import annotations
+
+import collections.abc
+import copy
+import logging
+from typing import Any, List, Optional, Sequence, Tuple
+
+import numpy as np
+import tensorrt as trt
+import torch
+from torch.export import ExportedProgram
+from torch_tensorrt._enums import dtype
+from torch_tensorrt._Input import Input
+from torch_tensorrt.dynamo import partitioning
+from torch_tensorrt.dynamo._exporter import inline_torch_modules
+from torch_tensorrt.dynamo._settings import CompilationSettings
+from torch_tensorrt.dynamo.conversion._conversion import infer_module_output_dtypes
+from torch_tensorrt.dynamo.conversion._ConverterRegistry import (
     DYNAMO_CONVERTERS as CONVERTERS,
 )
-from torch_tensorrt.dynamo.conversion._TRTInterpreter import TRTInterpreter
-from torch_tensorrt.dynamo.conversion.truncate_double import repair_double_inputs
-from torch_tensorrt.dynamo.lowering import (
+from torch_tensorrt.dynamo.conversion._TRTInterpreter import TRTInterpreter
+from torch_tensorrt.dynamo.conversion.truncate_double import repair_double_inputs
+from torch_tensorrt.dynamo.lowering import (
     get_decompositions,
     post_lowering,
     pre_export_lowering,
 )
-from torch_tensorrt.dynamo.runtime._PythonTorchTensorRTModule import (
+from torch_tensorrt.dynamo.runtime._PythonTorchTensorRTModule import (
     PythonTorchTensorRTModule,
 )
-from torch_tensorrt.dynamo.runtime._TorchTensorRTModule import (
+from torch_tensorrt.dynamo.runtime._TorchTensorRTModule import (
     ENGINE_IDX,
     SERIALIZED_METADATA_IDX,
     TorchTensorRTModule,
 )
-from torch_tensorrt.dynamo.utils import (
+from torch_tensorrt.dynamo.utils import (
     check_module_output,
     get_model_device,
     get_torch_inputs,
@@ -510,12 +510,12 @@ 

Source code for torch_tensorrt.dynamo._refit

to_torch_device,
     to_torch_tensorrt_device,
 )
-from torch_tensorrt.logging import TRT_LOGGER
+from torch_tensorrt.logging import TRT_LOGGER
 
 logger = logging.getLogger(__name__)
 
 
-def construct_refit_mapping(
+def construct_refit_mapping(
     module: torch.fx.GraphModule,
     inputs: Sequence[Input],
     settings: CompilationSettings = CompilationSettings(),
@@ -576,7 +576,7 @@ 

Source code for torch_tensorrt.dynamo._refit

return weight_map
 
 
-def construct_refit_mapping_from_weight_name_map(
+def construct_refit_mapping_from_weight_name_map(
     weight_name_map: dict[Any, Any], state_dict: dict[Any, Any]
 ) -> dict[Any, Any]:
     engine_weight_map = {}
@@ -602,7 +602,7 @@ 

Source code for torch_tensorrt.dynamo._refit

return engine_weight_map
 
 
-def _refit_single_trt_engine_with_gm(
+def _refit_single_trt_engine_with_gm(
     new_gm: torch.fx.GraphModule,
     old_engine: trt.ICudaEngine,
     input_list: Sequence[Any],
@@ -680,7 +680,7 @@ 

Source code for torch_tensorrt.dynamo._refit

raise AssertionError("Refitting failed.")
 
 
-
[docs]def refit_module_weights( +
[docs]def refit_module_weights( compiled_module: torch.fx.GraphModule | ExportedProgram, new_weight_module: ExportedProgram, arg_inputs: Optional[Tuple[Any, ...]] = None, @@ -979,10 +979,10 @@

Source code for torch_tensorrt.dynamo._refit

# Util functions -----------
-import base64
+import base64
 
 
-def get_engine_from_encoded_engine(
+def get_engine_from_encoded_engine(
     encoded_engine: str, runtime: trt.Runtime
 ) -> trt.ICudaEngine:
     serialized_engine = base64.b64decode(encoded_engine)
diff --git a/docs/_modules/torch_tensorrt/dynamo/_settings.html b/docs/_modules/torch_tensorrt/dynamo/_settings.html
index 6e06960379..ec40196697 100644
--- a/docs/_modules/torch_tensorrt/dynamo/_settings.html
+++ b/docs/_modules/torch_tensorrt/dynamo/_settings.html
@@ -9,7 +9,7 @@
   
   
   
-  torch_tensorrt.dynamo._settings — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
+  torch_tensorrt.dynamo._settings — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
   
 
   
@@ -272,7 +272,7 @@
               
               
                 
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -467,13 +467,13 @@

Source code for torch_tensorrt.dynamo._settings

-from dataclasses import dataclass, field
-from typing import Collection, Optional, Set, Tuple, Union
+from dataclasses import dataclass, field
+from typing import Collection, Optional, Set, Tuple, Union
 
-from torch.fx.node import Target
-from torch_tensorrt._Device import Device
-from torch_tensorrt._enums import EngineCapability, dtype
-from torch_tensorrt.dynamo._defaults import (
+from torch.fx.node import Target
+from torch_tensorrt._Device import Device
+from torch_tensorrt._enums import EngineCapability, dtype
+from torch_tensorrt.dynamo._defaults import (
     ASSUME_DYNAMIC_SHAPE_SUPPORT,
     CACHE_BUILT_ENGINES,
     DEBUG,
@@ -502,6 +502,7 @@ 

Source code for torch_tensorrt.dynamo._settings

< STRIP_ENGINE_WEIGHTS, TIMING_CACHE_PATH, TRUNCATE_DOUBLE, + USE_AOT_JOINT_EXPORT, USE_EXPLICIT_TYPING, USE_FAST_PARTITIONER, USE_FP32_ACC, @@ -513,7 +514,7 @@

Source code for torch_tensorrt.dynamo._settings

<
[docs]@dataclass -class CompilationSettings: +class CompilationSettings: """Compilation settings for Torch-TensorRT Dynamo Paths Args: @@ -560,6 +561,7 @@

Source code for torch_tensorrt.dynamo._settings

< enable_weight_streaming (bool): Enable weight streaming. enable_cross_compile_for_windows (bool): By default this is False means TensorRT engines can only be executed on the same platform where they were built. True will enable cross-platform compatibility which allows the engine to be built on Linux and run on Windows + use_aot_joint_export (bool): Use aot_export_joint_simple, else wrap backend with AOT_autograd, required for distributed tensors """ enabled_precisions: Set[dtype] = field(default_factory=lambda: ENABLED_PRECISIONS) @@ -599,7 +601,8 @@

Source code for torch_tensorrt.dynamo._settings

< strip_engine_weights: bool = STRIP_ENGINE_WEIGHTS immutable_weights: bool = IMMUTABLE_WEIGHTS enable_weight_streaming: bool = ENABLE_WEIGHT_STREAMING - enable_cross_compile_for_windows: bool = ENABLE_CROSS_COMPILE_FOR_WINDOWS
+ enable_cross_compile_for_windows: bool = ENABLE_CROSS_COMPILE_FOR_WINDOWS + use_aot_joint_export: bool = USE_AOT_JOINT_EXPORT
_SETTINGS_TO_BE_ENGINE_INVARIANT = ( @@ -618,7 +621,7 @@

Source code for torch_tensorrt.dynamo._settings

< ) -def settings_are_compatible( +def settings_are_compatible( set_a: CompilationSettings, set_b: CompilationSettings ) -> Tuple[bool, Set[str]]: incompatible_settings: Set[str] = set() diff --git a/docs/_modules/torch_tensorrt/dynamo/_tracer.html b/docs/_modules/torch_tensorrt/dynamo/_tracer.html index a95673ad79..001d5fd78a 100644 --- a/docs/_modules/torch_tensorrt/dynamo/_tracer.html +++ b/docs/_modules/torch_tensorrt/dynamo/_tracer.html @@ -9,7 +9,7 @@ - torch_tensorrt.dynamo._tracer — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + torch_tensorrt.dynamo._tracer — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -272,7 +272,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -467,22 +467,22 @@

Source code for torch_tensorrt.dynamo._tracer

-from __future__ import annotations
+from __future__ import annotations
 
-import logging
-from inspect import signature
-from typing import Any, Optional, Tuple, Union
+import logging
+from inspect import signature
+from typing import Any, Optional, Tuple, Union
 
-import torch
-from torch.export import Dim, export
-from torch_tensorrt._Input import Input
-from torch_tensorrt.dynamo._defaults import DEBUG, default_device
-from torch_tensorrt.dynamo.utils import get_torch_inputs, set_log_level, to_torch_device
+import torch
+from torch.export import Dim, export
+from torch_tensorrt._Input import Input
+from torch_tensorrt.dynamo._defaults import DEBUG, default_device
+from torch_tensorrt.dynamo.utils import get_torch_inputs, set_log_level, to_torch_device
 
 logger = logging.getLogger(__name__)
 
 
-
[docs]def trace( +
[docs]def trace( mod: torch.nn.Module | torch.fx.GraphModule, inputs: Optional[Tuple[Any, ...]] = None, *, @@ -559,7 +559,7 @@

Source code for torch_tensorrt.dynamo._tracer

return exp_program
-def get_dynamic_shapes_kwargs(inputs: Any) -> Union[dict[str, Any], list[Any]]: +def get_dynamic_shapes_kwargs(inputs: Any) -> Union[dict[str, Any], list[Any]]: if isinstance(inputs, dict): dynamic_shapes_kwarg = {} for k, v in inputs.items(): @@ -578,7 +578,7 @@

Source code for torch_tensorrt.dynamo._tracer

raise TypeError(f"Unknown type {type(inputs)}.") -def get_dynamic_shapes_args(mod: torch.nn.Module, inputs: Any) -> dict[str, Any]: +def get_dynamic_shapes_args(mod: torch.nn.Module, inputs: Any) -> dict[str, Any]: # dynamic_shape is a dict and cannot work without keys. Here we use position argument name # in forward function as the name args = list(signature(mod.forward).parameters.keys()) @@ -588,7 +588,7 @@

Source code for torch_tensorrt.dynamo._tracer

return dynamic_shapes -def get_dynamic_shapes(input: Input) -> dict[Any, Any]: +def get_dynamic_shapes(input: Input) -> dict[Any, Any]: if not isinstance(input, Input): # If the input is torch.Tensor, no dynamic is needed. Return empty dict return {} diff --git a/docs/_modules/torch_tensorrt/dynamo/runtime/_MutableTorchTensorRTModule.html b/docs/_modules/torch_tensorrt/dynamo/runtime/_MutableTorchTensorRTModule.html index 0dc38fbcc2..9e23e3bbc9 100644 --- a/docs/_modules/torch_tensorrt/dynamo/runtime/_MutableTorchTensorRTModule.html +++ b/docs/_modules/torch_tensorrt/dynamo/runtime/_MutableTorchTensorRTModule.html @@ -9,7 +9,7 @@ - torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModule — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModule — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -272,7 +272,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -467,21 +467,21 @@

Source code for torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModule

-import logging
-from copy import deepcopy
-from enum import Enum, auto
-from typing import Any, Collection, Dict, Iterator, List, Optional, Set, Union
-
-import numpy as np
-import torch
-from torch.fx.node import Target
-from torch_tensorrt._Device import Device
-from torch_tensorrt._enums import EngineCapability, dtype
-from torch_tensorrt.dynamo import _defaults
-from torch_tensorrt.dynamo._compiler import compile as dynamo_compile
-from torch_tensorrt.dynamo._refit import refit_module_weights
-from torch_tensorrt.dynamo._settings import CompilationSettings
-from torch_tensorrt.dynamo.utils import (
+import logging
+from copy import deepcopy
+from enum import Enum, auto
+from typing import Any, Collection, Dict, Iterator, List, Optional, Set, Union
+
+import numpy as np
+import torch
+from torch.fx.node import Target
+from torch_tensorrt._Device import Device
+from torch_tensorrt._enums import EngineCapability, dtype
+from torch_tensorrt.dynamo import _defaults
+from torch_tensorrt.dynamo._compiler import compile as dynamo_compile
+from torch_tensorrt.dynamo._refit import refit_module_weights
+from torch_tensorrt.dynamo._settings import CompilationSettings
+from torch_tensorrt.dynamo.utils import (
     check_output_equal,
     to_torch_device,
     to_torch_tensorrt_device,
@@ -490,27 +490,27 @@ 

Source code for torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModulelogger = logging.getLogger(__name__) -class RefitFlag(Enum): +class RefitFlag(Enum): UNKNOWN = auto() NEEDS_REFIT = auto() NEEDS_RECOMPILE = auto() LIVE = auto() -class RefitState: +class RefitState: _state: RefitFlag = RefitFlag.NEEDS_RECOMPILE - def set_state(self, state: RefitFlag) -> None: + def set_state(self, state: RefitFlag) -> None: if isinstance(state, RefitFlag): self._state = state else: raise ValueError(f"Invalid state: {state}") - def get_state(self) -> RefitFlag: + def get_state(self) -> RefitFlag: return self._state -
[docs]class MutableTorchTensorRTModule(object): +
[docs]class MutableTorchTensorRTModule(object): """ Initialize a MutableTorchTensorRTModule to seamlessly manipulate it like a regular PyTorch module. All TensorRT compilation and refitting processes are handled automatically as you work with the module. @@ -522,7 +522,7 @@

Source code for torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModule Any modifications made to the MutableTorchTensorRTModule will be reflected in both the TensorRT graph module and the original PyTorch module. """ -
[docs] def __init__( +
[docs] def __init__( self, pytorch_model: torch.nn.Module, *, @@ -672,22 +672,22 @@

Source code for torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModule) self.init_finished = True

- def store_state_dict_metadata(self) -> None: + def store_state_dict_metadata(self) -> None: for k, v in self.original_model.state_dict().items(): self.state_dict_metadata[k] = v.shape - def load_state_dict( + def load_state_dict( self, state_dict: Dict[str, Any], strict: bool = True, assign: bool = False ) -> None: self.refit_state.set_state(RefitFlag.NEEDS_REFIT) self.original_model.load_state_dict(state_dict, strict=strict, assign=assign) @staticmethod - def _transform_state_dict(sd: Dict[str, Any]) -> Dict[str, torch.nn.Parameter]: + def _transform_state_dict(sd: Dict[str, Any]) -> Dict[str, torch.nn.Parameter]: return {k: torch.nn.Parameter(v, requires_grad=False) for k, v in sd.items()} - def update_refit_condition(self) -> None: + def update_refit_condition(self) -> None: # 2-stage check to determine whether the module should be intact, refitted, or recompiled. # Default refit @@ -721,7 +721,7 @@

Source code for torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModulereturn -
[docs] def refit_gm(self) -> None: +
[docs] def refit_gm(self) -> None: """ Refit the TRT graph module with any updates. This function should be called whenever the weight values get changed but the weight structure remains @@ -752,7 +752,7 @@

Source code for torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModuleself.original_model.cpu() torch.cuda.empty_cache()

-
[docs] def compile(self) -> None: +
[docs] def compile(self) -> None: """ (Re)compile the TRT graph module using the PyTorch module. This function should be called whenever the weight structure get changed (shape, more layers...) @@ -775,7 +775,7 @@

Source code for torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModuleself.original_model.cpu() torch.cuda.empty_cache()

- def _validate_inputs(self, *args: Any, **kwargs: Any) -> None: + def _validate_inputs(self, *args: Any, **kwargs: Any) -> None: if ( not self.arg_inputs or not MutableTorchTensorRTModule.check_inputs_equal(self.arg_inputs, args) @@ -787,12 +787,12 @@

Source code for torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModuleself.refit_state.set_state(RefitFlag.NEEDS_RECOMPILE) self.store_inputs(args, kwargs) - def store_inputs(self, arg_inputs: Any, kwarg_inputs: Any) -> None: + def store_inputs(self, arg_inputs: Any, kwarg_inputs: Any) -> None: self.arg_inputs = arg_inputs self.kwarg_inputs = kwarg_inputs @staticmethod - def process_kwarg_inputs(inputs: Any) -> Any: + def process_kwarg_inputs(inputs: Any) -> Any: # Process kwarg inputs to be acceptable for Torch-TensorRT if isinstance(inputs, dict): # None should be excluded. AOT compile also does not allow dynamic control flow, bool is also excluded. @@ -816,7 +816,7 @@

Source code for torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModule+ "Allowed input types: {torch_tensorrt.Input, torch.Tensor, list, tuple, dict}" ) - def forward(self, *args: Any, **kwargs: Any) -> Any: + def forward(self, *args: Any, **kwargs: Any) -> Any: # Step 1: Check whether the input shape has changed kwargs = MutableTorchTensorRTModule.process_kwarg_inputs(kwargs) self._validate_inputs(*args, **kwargs) @@ -849,11 +849,11 @@

Source code for torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModuleself.run_info = (args, kwargs, result) return result - def to(self, device: str) -> None: + def to(self, device: str) -> None: logger.warning("Original PyTorch model is moved. CPU offload may failed.") self.orignial_model.to(device) - def __deepcopy__(self, memo: Any) -> Any: + def __deepcopy__(self, memo: Any) -> Any: cls = self.__class__ result = cls.__new__(cls) memo[id(self)] = result @@ -865,10 +865,10 @@

Source code for torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModule) return result - def __call__(self, *args: Any, **kwargs: Any) -> Any: + def __call__(self, *args: Any, **kwargs: Any) -> Any: return self.forward(*args, **kwargs) - def __getattr__(self, name: str) -> Any: + def __getattr__(self, name: str) -> Any: if name in self.__dict__: # this object has it @@ -881,7 +881,7 @@

Source code for torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModulereturn getattr(self.pytorch_model, name) - def __delattr__(self, name: str) -> Any: + def __delattr__(self, name: str) -> Any: if name in self.__dict__: # this object has it @@ -889,7 +889,7 @@

Source code for torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModulereturn self.pytorch_model.__delattr__(name) - def __setattr__(self, name: str, value: Any) -> None: + def __setattr__(self, name: str, value: Any) -> None: # When the module finished initialization, any modification to attributes that does not exist # in __dict__ will be handled in pytorch module. if self.init_finished: @@ -905,7 +905,7 @@

Source code for torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModuleobject.__setattr__(self, name, value) @staticmethod - def check_inputs_equal( + def check_inputs_equal( input1: Any, input2: Any, ) -> bool: @@ -938,7 +938,7 @@

Source code for torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModulereturn True @staticmethod - def save(module: Any, path: str) -> None: + def save(module: Any, path: str) -> None: # Cast the object back to MutableTorchTensorRTModule to save assert ( not module.settings.use_python_runtime @@ -964,7 +964,7 @@

Source code for torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModulemodule.init_finished = True @staticmethod - def load(path: str) -> Any: + def load(path: str) -> Any: # When the model get saved, init_finished is set to False. # Class is restored to MutableTorchTensorRTModule, and some attribute is deleted module = torch.load(path, weights_only=False) @@ -986,7 +986,7 @@

Source code for torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModulereturn module

-def recursively_remove_trigger(obj: Any) -> Any: +def recursively_remove_trigger(obj: Any) -> Any: # Not safe: If the object has a circular reference (such as a doubly linkded list), this will cause infinite recursion if obj.__class__.__name__ == "ChangeTriggerWrapper": obj = obj.instance @@ -1008,18 +1008,18 @@

Source code for torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModulereturn obj -def _make_refit_change_trigger(obj: object, refit_state: RefitState) -> Any: +def _make_refit_change_trigger(obj: object, refit_state: RefitState) -> Any: subclass: type = obj.__class__ - class ChangeTriggerWrapper(subclass): # type: ignore + class ChangeTriggerWrapper(subclass): # type: ignore # The reason why we want to inherent to the subclass is that we want the ChangeTriggerWrapper shares all functions # that an ordinary object has. In this way attributes accessed inside a function will be from the __getattr__function # of ChangeTriggerWrapper, instead of the object itself, thus be recursively wrapped by ChangeTriggerWrapper. - def __init__(self, obj: Any): + def __init__(self, obj: Any): object.__setattr__(self, "instance", obj) - def __getattr__( + def __getattr__( self, name: str ) -> Any: # Called when the attribute does not exist obj = getattr(self.instance, name) @@ -1034,7 +1034,7 @@

Source code for torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModulereturn _make_refit_change_trigger(obj, refit_state) return obj - def __setattr__(self, name: str, value: Any) -> None: + def __setattr__(self, name: str, value: Any) -> None: # If we need to set __dict__ or instance, we directly set it to the trigger wrapper. # Enable setting __dict__ is because PyTorch proxy uses __new__ to initialize a shallow copy # of a module and explicit set the __dict__. If we don't set __dict__ it will get infinite recursion. @@ -1046,44 +1046,44 @@

Source code for torch_tensorrt.dynamo.runtime._MutableTorchTensorRTModulevalue = recursively_remove_trigger(value) setattr(self.instance, name, value) - def __delattr__(self, name: str) -> None: + def __delattr__(self, name: str) -> None: self._on_change() delattr( self.instance, name, ) - def _on_change(self) -> None: + def _on_change(self) -> None: refit_state.set_state(RefitFlag.UNKNOWN) logger.info( "Attribute modification detected. The module will be refitted later." ) - def __call__(self, *args: Any, **kwargs: Any) -> Any: + def __call__(self, *args: Any, **kwargs: Any) -> Any: return self.instance(*args, **kwargs) - def _call_impl(self, *args: Any, **kwargs: Any) -> Any: + def _call_impl(self, *args: Any, **kwargs: Any) -> Any: return self.instance._call_impl(*args, **kwargs) - def forward(self, *args: Any, **kwargs: Any) -> Any: + def forward(self, *args: Any, **kwargs: Any) -> Any: return self.instance.forward(*args, **kwargs) - def __setitem__(self, item: str, value: Any) -> None: + def __setitem__(self, item: str, value: Any) -> None: self._on_change() # We want to make sure the original PyTorch model does not have a trigger wrapper value = recursively_remove_trigger(value) self.instance.__setitem__(item, value) - def __getitem__(self, items: str) -> Any: + def __getitem__(self, items: str) -> Any: obj = self.instance.__getitem__(items) if isinstance(obj, ChangeTriggerWrapper): return obj return _make_refit_change_trigger(obj, refit_state) - def __len__(self) -> int: + def __len__(self) -> int: return len(self.instance) - def __iter__(self) -> Iterator[Any]: + def __iter__(self) -> Iterator[Any]: return iter(self.instance) return ChangeTriggerWrapper(obj) diff --git a/docs/_modules/torch_tensorrt/dynamo/runtime/_PythonTorchTensorRTModule.html b/docs/_modules/torch_tensorrt/dynamo/runtime/_PythonTorchTensorRTModule.html index 2ebac528ca..14c1e4d907 100644 --- a/docs/_modules/torch_tensorrt/dynamo/runtime/_PythonTorchTensorRTModule.html +++ b/docs/_modules/torch_tensorrt/dynamo/runtime/_PythonTorchTensorRTModule.html @@ -9,7 +9,7 @@ - torch_tensorrt.dynamo.runtime._PythonTorchTensorRTModule — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + torch_tensorrt.dynamo.runtime._PythonTorchTensorRTModule — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -272,7 +272,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -467,23 +467,23 @@

Source code for torch_tensorrt.dynamo.runtime._PythonTorchTensorRTModule

-from __future__ import annotations
-
-import logging
-from contextlib import nullcontext
-from tempfile import tempdir
-from typing import Any, Dict, List, Optional, Sequence, Tuple
-
-import tensorrt as trt
-import torch
-import torch_tensorrt
-from torch.nn import Module
-from torch_tensorrt._Device import Device
-from torch_tensorrt._enums import Platform, dtype
-from torch_tensorrt.dynamo._settings import CompilationSettings
-from torch_tensorrt.dynamo.utils import DYNAMIC_DIM
-from torch_tensorrt.logging import TRT_LOGGER
-from torch_tensorrt.runtime._utils import (
+from __future__ import annotations
+
+import logging
+from contextlib import nullcontext
+from tempfile import tempdir
+from typing import Any, Dict, List, Optional, Sequence, Tuple
+
+import tensorrt as trt
+import torch
+import torch_tensorrt
+from torch.nn import Module
+from torch_tensorrt._Device import Device
+from torch_tensorrt._enums import Platform, dtype
+from torch_tensorrt.dynamo._settings import CompilationSettings
+from torch_tensorrt.dynamo.utils import DYNAMIC_DIM
+from torch_tensorrt.logging import TRT_LOGGER
+from torch_tensorrt.runtime._utils import (
     _is_switch_required,
     _select_rt_device,
     multi_gpu_device_check,
@@ -492,8 +492,8 @@ 

Source code for torch_tensorrt.dynamo.runtime._PythonTorchTensorRTModule

logger = logging.getLogger(__name__) -class TorchTRTRuntimeStates: - def __init__(self, new_cudagraphs: bool): +class TorchTRTRuntimeStates: + def __init__(self, new_cudagraphs: bool): # Indicates whether CUDAGraphs were enabled in the previous execute_engine self.old_cudagraphs = new_cudagraphs # Indicates whether pre-allocated output was enabled in the previous execute_engine @@ -501,7 +501,7 @@

Source code for torch_tensorrt.dynamo.runtime._PythonTorchTensorRTModule

# Indicates whether context has changed self.context_changed = False - def set_runtime_states( + def set_runtime_states( self, new_cudagraphs: bool, new_pre_allocated_output: bool, @@ -545,14 +545,14 @@

Source code for torch_tensorrt.dynamo.runtime._PythonTorchTensorRTModule

) -
[docs]class PythonTorchTensorRTModule(Module): # type: ignore[misc] +
[docs]class PythonTorchTensorRTModule(Module): # type: ignore[misc] """PythonTorchTensorRTModule is a PyTorch module which encompasses an arbitrary TensorRT Engine. This module is backed by the Torch-TensorRT runtime and is only compatible with FX / Dynamo / Python deployments. This module cannot be serialized to torchscript via torch.jit.trace for C++ deployment. """ -
[docs] def __init__( +
[docs] def __init__( self, serialized_engine: Optional[bytes] = None, input_binding_names: Optional[List[str]] = None, @@ -639,16 +639,16 @@

Source code for torch_tensorrt.dynamo.runtime._PythonTorchTensorRTModule

if self.serialized_engine is not None and not self.settings.lazy_engine_init: self.setup_engine()
- def get_streamable_device_memory_budget(self) -> Any: + def get_streamable_device_memory_budget(self) -> Any: return self.engine.streamable_weights_size - def get_automatic_device_memory_budget(self) -> Any: + def get_automatic_device_memory_budget(self) -> Any: return self.engine.get_weight_streaming_automatic_budget() - def get_device_memory_budget(self) -> Any: + def get_device_memory_budget(self) -> Any: return self.engine.weight_streaming_budget_v2 - def set_device_memory_budget(self, budget_bytes: int) -> int: + def set_device_memory_budget(self, budget_bytes: int) -> int: # Recreating the context because weight streaming budget cannot be modified while there are active context. if self.context is not None: del self.context @@ -657,7 +657,7 @@

Source code for torch_tensorrt.dynamo.runtime._PythonTorchTensorRTModule

self.runtime_states.context_changed = True return budget_bytes - def _set_device_memory_budget(self, budget_bytes: int) -> int: + def _set_device_memory_budget(self, budget_bytes: int) -> int: # Disable weight streaming for invalid budget size if budget_bytes < 0: budget_bytes = self.get_streamable_device_memory_budget() @@ -670,13 +670,13 @@

Source code for torch_tensorrt.dynamo.runtime._PythonTorchTensorRTModule

return budget_bytes - def set_default_device_memory_budget(self) -> int: + def set_default_device_memory_budget(self) -> int: budget_bytes = self.get_automatic_device_memory_budget() # Set automatic weight streaming budget as default when context is created logger.debug(f"Weight streaming budget set to {budget_bytes}B") return self._set_device_memory_budget(budget_bytes) - def setup_engine(self) -> None: + def setup_engine(self) -> None: assert ( self.target_platform == Platform.current_platform() ), f"TensorRT engine was not built to target current platform (target: {self.target_platform}, current: {Platform.current_platform()})" @@ -710,17 +710,17 @@

Source code for torch_tensorrt.dynamo.runtime._PythonTorchTensorRTModule

if torch_tensorrt.runtime.get_cudagraphs_mode(): self.cudagraph = torch.cuda.CUDAGraph() - def _check_initialized(self) -> None: + def _check_initialized(self) -> None: if not self.initialized: raise RuntimeError("PythonTorchTensorRTModule is not initialized.") - def _on_state_dict(self, state_dict: Dict[str, Any], prefix: str, _: Any) -> None: + def _on_state_dict(self, state_dict: Dict[str, Any], prefix: str, _: Any) -> None: state_dict[prefix + "engine"] = self.serialized_engine state_dict[prefix + "input_names"] = self.input_names state_dict[prefix + "output_names"] = self.output_names state_dict[prefix + "platform"] = self.target_platform - def _load_from_state_dict( + def _load_from_state_dict( self, state_dict: Dict[str, Any], prefix: str, @@ -739,28 +739,28 @@

Source code for torch_tensorrt.dynamo.runtime._PythonTorchTensorRTModule

multi_gpu_device_check() self.setup_engine() - def __getstate__(self) -> Dict[str, Any]: + def __getstate__(self) -> Dict[str, Any]: state = self.__dict__.copy() state.pop("engine", None) state.pop("context", None) return state - def __setstate__(self, state: Dict[str, Any]) -> None: + def __setstate__(self, state: Dict[str, Any]) -> None: self.__dict__.update(state) self.setup_engine() - def __deepcopy__(self, memo: Any) -> PythonTorchTensorRTModule: + def __deepcopy__(self, memo: Any) -> PythonTorchTensorRTModule: cls = self.__class__ result = cls.__new__(cls) memo[id(self)] = result result.__setstate__(self.__getstate__()) return result - def __del__(self) -> None: + def __del__(self) -> None: if self.cudagraph: self.cudagraph.reset() - def setup_input_tensors( + def setup_input_tensors( self, contiguous_inputs: List[torch.Tensor], cudagraphs_enabled: bool, @@ -811,7 +811,7 @@

Source code for torch_tensorrt.dynamo.runtime._PythonTorchTensorRTModule

input_name, contiguous_inputs[i].data_ptr() ) - def create_output_tensors(self) -> List[torch.Tensor]: + def create_output_tensors(self) -> List[torch.Tensor]: # create output tensors outputs: List[torch.Tensor] = [] @@ -824,10 +824,10 @@

Source code for torch_tensorrt.dynamo.runtime._PythonTorchTensorRTModule

outputs.append(output) return outputs - def set_pre_allocated_outputs(self, enable: bool) -> None: + def set_pre_allocated_outputs(self, enable: bool) -> None: self.use_pre_allocated_outputs = enable -
[docs] def forward(self, *inputs: torch.Tensor) -> torch.Tensor | Tuple[torch.Tensor, ...]: +
[docs] def forward(self, *inputs: torch.Tensor) -> torch.Tensor | Tuple[torch.Tensor, ...]: # Ensure inputs are available in all scopes and cast symbolic integers to Tensors contiguous_inputs: List[torch.Tensor] = [ (i.contiguous() if isinstance(i, torch.Tensor) else torch.tensor(i).cuda()) @@ -981,7 +981,7 @@

Source code for torch_tensorrt.dynamo.runtime._PythonTorchTensorRTModule

) if self.profiling_enabled: - import tempfile + import tempfile with tempfile.TemporaryDirectory() as tmpdir: self.cudagraph.debug_dump( @@ -1007,7 +1007,7 @@

Source code for torch_tensorrt.dynamo.runtime._PythonTorchTensorRTModule

return outputs
-
[docs] def enable_profiling(self, profiler: "trt.IProfiler" = None) -> None: +
[docs] def enable_profiling(self, profiler: "trt.IProfiler" = None) -> None: """ Enable TensorRT profiling. After calling this function, TensorRT will report time spent on each layer in stdout for each forward run. @@ -1019,7 +1019,7 @@

Source code for torch_tensorrt.dynamo.runtime._PythonTorchTensorRTModule

self.profiling_enabled = True
-
[docs] def disable_profiling(self) -> None: +
[docs] def disable_profiling(self) -> None: """ Disable TensorRT profiling. """ @@ -1029,7 +1029,7 @@

Source code for torch_tensorrt.dynamo.runtime._PythonTorchTensorRTModule

self.context = self.engine.create_execution_context() self.profiling_enabled = False
-
[docs] def get_layer_info(self) -> str: +
[docs] def get_layer_info(self) -> str: """ Get layer info of the engine. Only support for TRT > 8.2. """ @@ -1039,7 +1039,7 @@

Source code for torch_tensorrt.dynamo.runtime._PythonTorchTensorRTModule

) return engine_json
-
[docs] def validate_input_shapes(self, inputs: Sequence[torch.Tensor]) -> bool: +
[docs] def validate_input_shapes(self, inputs: Sequence[torch.Tensor]) -> bool: """ Validates the input shapes of the forward function has changed """ diff --git a/docs/_modules/torch_tensorrt/dynamo/runtime/_TorchTensorRTModule.html b/docs/_modules/torch_tensorrt/dynamo/runtime/_TorchTensorRTModule.html index d4539bebff..0840471562 100644 --- a/docs/_modules/torch_tensorrt/dynamo/runtime/_TorchTensorRTModule.html +++ b/docs/_modules/torch_tensorrt/dynamo/runtime/_TorchTensorRTModule.html @@ -9,7 +9,7 @@ - torch_tensorrt.dynamo.runtime._TorchTensorRTModule — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + torch_tensorrt.dynamo.runtime._TorchTensorRTModule — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -272,7 +272,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -467,23 +467,23 @@

Source code for torch_tensorrt.dynamo.runtime._TorchTensorRTModule

-from __future__ import annotations
-
-import base64
-import copy
-import logging
-import pickle
-from typing import Any, List, Optional, Tuple, Union
-
-import torch
-from torch_tensorrt._Device import Device
-from torch_tensorrt._enums import Platform
-from torch_tensorrt._features import (
+from __future__ import annotations
+
+import base64
+import copy
+import logging
+import pickle
+from typing import Any, List, Optional, Tuple, Union
+
+import torch
+from torch_tensorrt._Device import Device
+from torch_tensorrt._enums import Platform
+from torch_tensorrt._features import (
     ENABLED_FEATURES,
     for_all_methods,
     needs_torch_tensorrt_runtime,
 )
-from torch_tensorrt.dynamo._settings import CompilationSettings
+from torch_tensorrt.dynamo._settings import CompilationSettings
 
 logger = logging.getLogger(__name__)
 
@@ -519,7 +519,7 @@ 

Source code for torch_tensorrt.dynamo.runtime._TorchTensorRTModule

[docs]@for_all_methods(needs_torch_tensorrt_runtime) -class TorchTensorRTModule(torch.nn.Module): # type: ignore[misc] +class TorchTensorRTModule(torch.nn.Module): # type: ignore[misc] """TorchTensorRTModule is a PyTorch module which encompasses an arbitrary TensorRT Engine. This module is backed by the Torch-TensorRT runtime and is fully compatible with both @@ -539,7 +539,7 @@

Source code for torch_tensorrt.dynamo.runtime._TorchTensorRTModule

output_binding_names (List[str]): List of output TensorRT engine binding names in the order they should be returned """ - def __init__( + def __init__( self, serialized_engine: Optional[bytes] = None, input_binding_names: Optional[List[str]] = None, @@ -609,7 +609,7 @@

Source code for torch_tensorrt.dynamo.runtime._TorchTensorRTModule

): self.setup_engine() - def _pack_engine_info(self) -> List[str | bytes]: + def _pack_engine_info(self) -> List[str | bytes]: target_device = ( self.settings.device if self.settings.device is not None @@ -643,16 +643,16 @@

Source code for torch_tensorrt.dynamo.runtime._TorchTensorRTModule

return engine_info - def get_streamable_device_memory_budget(self) -> Any: + def get_streamable_device_memory_budget(self) -> Any: return self.engine.streamable_device_memory_budget - def get_automatic_device_memory_budget(self) -> Any: + def get_automatic_device_memory_budget(self) -> Any: return self.engine.automatic_device_memory_budget - def get_device_memory_budget(self) -> Any: + def get_device_memory_budget(self) -> Any: return self.engine.device_memory_budget - def set_device_memory_budget(self, budget_bytes: int) -> int: + def set_device_memory_budget(self, budget_bytes: int) -> int: # Disable weight streaming for invalid budget size if budget_bytes < 0: budget_bytes = self.get_streamable_device_memory_budget() @@ -665,7 +665,7 @@

Source code for torch_tensorrt.dynamo.runtime._TorchTensorRTModule

return budget_bytes - def setup_engine(self) -> None: + def setup_engine(self) -> None: """ Setup engine for a module which has deferred engine setup. @@ -678,19 +678,19 @@

Source code for torch_tensorrt.dynamo.runtime._TorchTensorRTModule

return self.engine = torch.classes.tensorrt.Engine(self._pack_engine_info()) - def encode_metadata(self, metadata: Any) -> str: + def encode_metadata(self, metadata: Any) -> str: metadata = copy.deepcopy(metadata) dumped_metadata = pickle.dumps(metadata) encoded_metadata = base64.b64encode(dumped_metadata).decode("utf-8") return encoded_metadata @staticmethod - def decode_metadata(encoded_metadata: bytes) -> Any: + def decode_metadata(encoded_metadata: bytes) -> Any: dumped_metadata = base64.b64decode(encoded_metadata.encode("utf-8")) metadata = pickle.loads(dumped_metadata) return metadata - def get_extra_state(self) -> SerializedTorchTensorRTModuleFmt: + def get_extra_state(self) -> SerializedTorchTensorRTModuleFmt: if self.engine: return ( self.name, @@ -716,7 +716,7 @@

Source code for torch_tensorrt.dynamo.runtime._TorchTensorRTModule

self.output_binding_names, ) - def set_extra_state(self, state: SerializedTorchTensorRTModuleFmt) -> None: + def set_extra_state(self, state: SerializedTorchTensorRTModuleFmt) -> None: self.name = state[0] if state[1] is not None: @@ -741,10 +741,10 @@

Source code for torch_tensorrt.dynamo.runtime._TorchTensorRTModule

self.input_binding_names = state[2] self.output_binding_names = state[3] - def set_pre_allocated_outputs(self, enable: bool) -> None: + def set_pre_allocated_outputs(self, enable: bool) -> None: self.engine.use_pre_allocated_outputs = enable - def forward(self, *inputs: Any) -> torch.Tensor | Tuple[torch.Tensor, ...]: + def forward(self, *inputs: Any) -> torch.Tensor | Tuple[torch.Tensor, ...]: """Implementation of the forward pass for a TensorRT engine Args: @@ -779,7 +779,7 @@

Source code for torch_tensorrt.dynamo.runtime._TorchTensorRTModule

return tuple(outputs) - def enable_profiling(self, profiling_results_dir: Optional[str] = None) -> None: + def enable_profiling(self, profiling_results_dir: Optional[str] = None) -> None: """Enable the profiler to collect latency information about the execution of the engine Traces can be visualized using https://ui.perfetto.dev/ or compatible alternatives @@ -794,14 +794,14 @@

Source code for torch_tensorrt.dynamo.runtime._TorchTensorRTModule

self.engine.profile_path_prefix = profiling_results_dir self.engine.enable_profiling() - def disable_profiling(self) -> None: + def disable_profiling(self) -> None: """Disable the profiler""" if self.engine is None: raise RuntimeError("Engine has not been initialized yet.") self.engine.disable_profiling() - def get_layer_info(self) -> str: + def get_layer_info(self) -> str: """Get a JSON string containing the layer information encoded by the TensorRT engine in this module Returns: @@ -814,7 +814,7 @@

Source code for torch_tensorrt.dynamo.runtime._TorchTensorRTModule

layer_info: str = self.engine.get_engine_layer_info() return layer_info - def dump_layer_info(self) -> None: + def dump_layer_info(self) -> None: """Dump layer information encoded by the TensorRT engine in this module to STDOUT""" if self.engine is None: raise RuntimeError("Engine has not been initialized yet.") @@ -822,7 +822,7 @@

Source code for torch_tensorrt.dynamo.runtime._TorchTensorRTModule

self.engine.dump_engine_layer_info() @staticmethod - def _pack_binding_names(binding_names: List[str]) -> str: + def _pack_binding_names(binding_names: List[str]) -> str: delim = torch.ops.tensorrt.SERIALIZED_ENGINE_BINDING_DELIM()[0] packed_bindings: str = delim.join(binding_names) return packed_bindings
diff --git a/docs/_modules/torch_tensorrt/fx/fx2trt.html b/docs/_modules/torch_tensorrt/fx/fx2trt.html index e657aedecf..fae3065cfc 100644 --- a/docs/_modules/torch_tensorrt/fx/fx2trt.html +++ b/docs/_modules/torch_tensorrt/fx/fx2trt.html @@ -9,7 +9,7 @@ - torch_tensorrt.fx.fx2trt — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + torch_tensorrt.fx.fx2trt — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -272,7 +272,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -467,26 +467,26 @@

Source code for torch_tensorrt.fx.fx2trt

-import logging
-import os
-import warnings
-from datetime import datetime
-from typing import Any, Callable, Dict, List, NamedTuple, Optional, Sequence
+import logging
+import os
+import warnings
+from datetime import datetime
+from typing import Any, Callable, Dict, List, NamedTuple, Optional, Sequence
 
-import numpy
+import numpy
 
 # @manual=//deeplearning/trt/python:py_tensorrt
-import tensorrt as trt
-import torch
-import torch.fx
-from torch._ops import OpOverload
-from torch.fx.node import _get_qualified_name
-from torch.fx.passes.shape_prop import TensorMetadata
-
-from .converter_registry import CONVERTERS
-from .input_tensor_spec import InputTensorSpec
-from .observer import Observer
-from .utils import Frameworks, LowerPrecision, get_dynamic_dims, unified_dtype_converter
+import tensorrt as trt
+import torch
+import torch.fx
+from torch._ops import OpOverload
+from torch.fx.node import _get_qualified_name
+from torch.fx.passes.shape_prop import TensorMetadata
+
+from .converter_registry import CONVERTERS
+from .input_tensor_spec import InputTensorSpec
+from .observer import Observer
+from .utils import Frameworks, LowerPrecision, get_dynamic_dims, unified_dtype_converter
 
 _LOGGER: logging.Logger = logging.getLogger(__name__)
 
@@ -495,15 +495,15 @@ 

Source code for torch_tensorrt.fx.fx2trt

 )
 
 
-
[docs]class TRTInterpreterResult(NamedTuple): +
[docs]class TRTInterpreterResult(NamedTuple): engine: Any input_names: Sequence[str] output_names: Sequence[str] serialized_cache: bytearray
-
[docs]class TRTInterpreter(torch.fx.Interpreter): - def __init__( +
[docs]class TRTInterpreter(torch.fx.Interpreter): + def __init__( self, module: torch.fx.GraphModule, input_specs: List[InputTensorSpec], @@ -548,7 +548,7 @@

Source code for torch_tensorrt.fx.fx2trt

             dict()
         )
 
-    def validate_input_specs(self):
+    def validate_input_specs(self):
         for shape, _, _, shape_ranges, has_batch_dim in self.input_specs:
             if not self.network.has_implicit_batch_dimension:
                 assert (
@@ -605,7 +605,7 @@ 

Source code for torch_tensorrt.fx.fx2trt

                     len(shape_ranges) == 0
                 ), "shape_ranges are provided for input that doesn't have dynamic dim."
 
-    def validate_conversion(self):
+    def validate_conversion(self):
         missing_converter = set()
 
         for node in self.module.graph.nodes:
@@ -621,7 +621,7 @@ 

Source code for torch_tensorrt.fx.fx2trt

 
         return missing_converter
 
-    def run(
+    def run(
         self,
         max_batch_size=64,
         max_workspace_size=1 << 25,
@@ -739,7 +739,7 @@ 

Source code for torch_tensorrt.fx.fx2trt

             engine, self._input_names, self._output_names, serialized_cache
         )
 
-    def run_node(self, n):
+    def run_node(self, n):
         self._cur_node_name = str(n)
         # add "_itensor_to_tensor_meta"
         kwargs = dict(n.kwargs)
@@ -759,7 +759,7 @@ 

Source code for torch_tensorrt.fx.fx2trt

 
         return trt_node
 
-    def placeholder(self, target, args, kwargs):
+    def placeholder(self, target, args, kwargs):
         self._input_names.append(target)
         shape, dtype, _, shape_ranges, has_batch_dim = self.input_specs[
             self.input_specs_iter
@@ -780,7 +780,7 @@ 

Source code for torch_tensorrt.fx.fx2trt

             dtype=unified_dtype_converter(dtype, Frameworks.TRT),
         )
 
-    def call_module(self, target, args, kwargs):
+    def call_module(self, target, args, kwargs):
         assert isinstance(target, str)
         submod = self.fetch_attr(target)
         submod_type = getattr(submod, "_base_class_origin", type(submod))
@@ -794,7 +794,7 @@ 

Source code for torch_tensorrt.fx.fx2trt

         assert self._cur_node_name is not None
         return converter(self.network, submod, args, kwargs, self._cur_node_name)
 
-    def call_function(self, target, args, kwargs):
+    def call_function(self, target, args, kwargs):
         converter = CONVERTERS.get(target)
         if not converter:
             raise RuntimeError(
@@ -804,7 +804,7 @@ 

Source code for torch_tensorrt.fx.fx2trt

         assert self._cur_node_name is not None
         return converter(self.network, target, args, kwargs, self._cur_node_name)
 
-    def call_method(self, target, args, kwargs):
+    def call_method(self, target, args, kwargs):
         assert isinstance(target, str)
         converter = CONVERTERS.get(target)
 
@@ -816,7 +816,7 @@ 

Source code for torch_tensorrt.fx.fx2trt

         assert self._cur_node_name is not None
         return converter(self.network, target, args, kwargs, self._cur_node_name)
 
-    def output(self, target, args, kwargs):
+    def output(self, target, args, kwargs):
         assert len(args) == 1
         if isinstance(args[0], tuple):
             outputs = args[0]
diff --git a/docs/_modules/torch_tensorrt/fx/input_tensor_spec.html b/docs/_modules/torch_tensorrt/fx/input_tensor_spec.html
index 956e7e55cf..617022ffe2 100644
--- a/docs/_modules/torch_tensorrt/fx/input_tensor_spec.html
+++ b/docs/_modules/torch_tensorrt/fx/input_tensor_spec.html
@@ -9,7 +9,7 @@
   
   
   
-  torch_tensorrt.fx.input_tensor_spec — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
+  torch_tensorrt.fx.input_tensor_spec — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
   
 
   
@@ -272,7 +272,7 @@
               
               
                 
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -467,15 +467,15 @@

Source code for torch_tensorrt.fx.input_tensor_spec

-from typing import Any, Iterable, List, NamedTuple, Optional, Sequence, Tuple
+from typing import Any, Iterable, List, NamedTuple, Optional, Sequence, Tuple
 
-import torch
+import torch
 
-from .types import Shape, ShapeRange
-from .utils import get_dynamic_dims
+from .types import Shape, ShapeRange
+from .utils import get_dynamic_dims
 
 
-def generate_input_specs(inputs, lower_setting, additional_inputs=None):
+def generate_input_specs(inputs, lower_setting, additional_inputs=None):
     # dynamic_batch is TRT only flag.
     if (
         not lower_setting.explicit_batch_dimension
@@ -534,7 +534,7 @@ 

Source code for torch_tensorrt.fx.input_tensor_spec

) -
[docs]class InputTensorSpec(NamedTuple): +
[docs]class InputTensorSpec(NamedTuple): """ This class contains the information of a input tensor. @@ -564,7 +564,7 @@

Source code for torch_tensorrt.fx.input_tensor_spec

has_batch_dim: bool = True @classmethod - def from_tensor(cls, tensor: torch.Tensor) -> "InputTensorSpec": + def from_tensor(cls, tensor: torch.Tensor) -> "InputTensorSpec": """ Produce an InputTenosrSpec named tuple which contains the information of the given PyTorch tensor. @@ -578,7 +578,7 @@

Source code for torch_tensorrt.fx.input_tensor_spec

return cls(tensor.shape, tensor.dtype, tensor.device) @classmethod - def from_tensors(cls, tensors: Sequence[torch.Tensor]) -> List["InputTensorSpec"]: + def from_tensors(cls, tensors: Sequence[torch.Tensor]) -> List["InputTensorSpec"]: """ Produce a list of InputTenosrSpec named tuples which contain the information of all the given PyTorch tensors. @@ -593,7 +593,7 @@

Source code for torch_tensorrt.fx.input_tensor_spec

return [cls.from_tensor(t) for t in tensors] @classmethod - def from_tensors_with_dynamic_batch_size( + def from_tensors_with_dynamic_batch_size( cls, tensors: Sequence[torch.Tensor], batch_size_range: Tuple[int, int, int], @@ -647,7 +647,7 @@

Source code for torch_tensorrt.fx.input_tensor_spec

@classmethod # pyre-ignore [2]: Parameter `sample_input` must have a type other than `Any` - def find_batch_size_dim(cls, inputs: Any) -> []: + def find_batch_size_dim(cls, inputs: Any) -> []: if isinstance(inputs, torch.Tensor) or len(inputs) <= 1: return [0] shapes = [i.shape for i in inputs] @@ -686,7 +686,7 @@

Source code for torch_tensorrt.fx.input_tensor_spec

return bs_dim - def to_random_tensor(self, id=1): + def to_random_tensor(self, id=1): shape = tuple(self.shape) if len(get_dynamic_dims(shape)): # id=0 -> min shape @@ -699,7 +699,7 @@

Source code for torch_tensorrt.fx.input_tensor_spec

return torch.randn(shape).to(dtype=self.dtype, device=self.device) @staticmethod - def create_inputs_from_specs(input_specs: Iterable["InputTensorSpec"]): + def create_inputs_from_specs(input_specs: Iterable["InputTensorSpec"]): inputs = [] for spec in input_specs: inputs.append(spec.to_random_tensor()) @@ -707,7 +707,7 @@

Source code for torch_tensorrt.fx.input_tensor_spec

return inputs @staticmethod - def create_inputs_from_max_specs(input_specs: Iterable["InputTensorSpec"]): + def create_inputs_from_max_specs(input_specs: Iterable["InputTensorSpec"]): inputs = [] for spec in input_specs: inputs.append(spec.to_random_tensor(2)) diff --git a/docs/_modules/torch_tensorrt/fx/lower.html b/docs/_modules/torch_tensorrt/fx/lower.html index 88d1603b21..f937399e85 100644 --- a/docs/_modules/torch_tensorrt/fx/lower.html +++ b/docs/_modules/torch_tensorrt/fx/lower.html @@ -9,7 +9,7 @@ - torch_tensorrt.fx.lower — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + torch_tensorrt.fx.lower — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -272,7 +272,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -467,34 +467,34 @@

Source code for torch_tensorrt.fx.lower

-import dataclasses as dc
-import logging
-from typing import Any, Callable, Optional, Sequence
+import dataclasses as dc
+import logging
+from typing import Any, Callable, Optional, Sequence
 
 # @manual=//deeplearning/trt/python:py_tensorrt
-import tensorrt as trt
-import torch
-import torch.fx as fx
-import torch.nn as nn
-import torch_tensorrt.fx.tracer.dispatch_tracer.aten_tracer as aten_tracer
-from torch.fx.passes.splitter_base import SplitResult
-
-from .fx2trt import TRTInterpreter, TRTInterpreterResult
-from .lower_setting import LowerSetting
-from .passes.lower_pass_manager_builder import LowerPassManagerBuilder
-from .passes.pass_utils import PassFunc, validate_inference
-from .tools.timing_cache_utils import TimingCacheManager
-from .tools.trt_splitter import TRTSplitter, TRTSplitterSetting
-from .tracer.acc_tracer import acc_tracer
-from .trt_module import TRTModule
-from .utils import LowerPrecision
+import tensorrt as trt
+import torch
+import torch.fx as fx
+import torch.nn as nn
+import torch_tensorrt.fx.tracer.dispatch_tracer.aten_tracer as aten_tracer
+from torch.fx.passes.splitter_base import SplitResult
+
+from .fx2trt import TRTInterpreter, TRTInterpreterResult
+from .lower_setting import LowerSetting
+from .passes.lower_pass_manager_builder import LowerPassManagerBuilder
+from .passes.pass_utils import PassFunc, validate_inference
+from .tools.timing_cache_utils import TimingCacheManager
+from .tools.trt_splitter import TRTSplitter, TRTSplitterSetting
+from .tracer.acc_tracer import acc_tracer
+from .trt_module import TRTModule
+from .utils import LowerPrecision
 
 logger = logging.getLogger(__name__)
 
 Input = Sequence[Any]
 
 
-
[docs]def compile( +
[docs]def compile( module: nn.Module, input, min_acc_module_size: int = 10, @@ -559,18 +559,18 @@

Source code for torch_tensorrt.fx.lower

 
 
 @dc.dataclass
-class LowerTrtInterpreter:
+class LowerTrtInterpreter:
     lower_setting: LowerSetting
     timing_cache_manager: TimingCacheManager
 
     @classmethod
-    def create(cls, lower_setting):
+    def create(cls, lower_setting):
         timing_cache_manager = TimingCacheManager(
             lower_setting.timing_cache_prefix, lower_setting.save_timing_cache
         )
         return LowerTrtInterpreter(lower_setting, timing_cache_manager)
 
-    def __call__(self, mod, input, split_name) -> TRTInterpreterResult:
+    def __call__(self, mod, input, split_name) -> TRTInterpreterResult:
         assert self.lower_setting.input_specs, "Can't find input specs for lowering!"
         logger.info(
             f"split_name={split_name}, input_specs={self.lower_setting.input_specs}"
@@ -624,7 +624,7 @@ 

Source code for torch_tensorrt.fx.lower

         return interp_result
 
 
-def default_split_function(
+def default_split_function(
     model: fx.GraphModule, inputs: Input, lower_setting: LowerSetting
 ) -> SplitResult:
     splitter_setting = TRTSplitterSetting()
@@ -636,14 +636,14 @@ 

Source code for torch_tensorrt.fx.lower

     return splitter.generate_split_results()
 
 
-def create_lower_trt_interpreter(lower_setting: LowerSetting) -> LowerTrtInterpreter:
+def create_lower_trt_interpreter(lower_setting: LowerSetting) -> LowerTrtInterpreter:
     return LowerTrtInterpreter.create(lower_setting)
 
 
-def default_lower_pass(
+def default_lower_pass(
     create_trt_interpreter: Callable[[LowerSetting], LowerTrtInterpreter],
 ) -> PassFunc:
-    def lower_pass(
+    def lower_pass(
         mod: nn.Module, input: Input, lower_setting: LowerSetting, module_name: str
     ) -> nn.Module:
         """
@@ -653,10 +653,10 @@ 

Source code for torch_tensorrt.fx.lower

         interpreter = create_trt_interpreter(lower_setting)
         interp_res: TRTInterpreterResult = interpreter(mod, input, module_name)
         if lower_setting.use_experimental_rt:
-            import io
+            import io
 
-            from torch_tensorrt._Device import Device
-            from torch_tensorrt.dynamo._TorchTensorRTModule import TorchTensorRTModule
+            from torch_tensorrt._Device import Device
+            from torch_tensorrt.dynamo._TorchTensorRTModule import TorchTensorRTModule
 
             with io.BytesIO() as engine_bytes:
                 engine_bytes.write(interp_res.engine.serialize())
@@ -685,7 +685,7 @@ 

Source code for torch_tensorrt.fx.lower

 
 
 @dc.dataclass(frozen=True)
-class Lowerer:
+class Lowerer:
     """Lowers a module using fx2trt.
 
     This is a composable class to facilitate fx2trt. A normal fx2trt process
@@ -709,7 +709,7 @@ 

Source code for torch_tensorrt.fx.lower

     lower_pass_manager_builder: LowerPassManagerBuilder
 
     @classmethod
-    def create(
+    def create(
         cls,
         lower_setting: LowerSetting,
         interpreter_builder: Callable = create_lower_trt_interpreter,
@@ -743,7 +743,7 @@ 

Source code for torch_tensorrt.fx.lower

                 )
             )
 
-    def __call__(
+    def __call__(
         self,
         module: nn.Module,
         inputs: Input,
@@ -758,7 +758,7 @@ 

Source code for torch_tensorrt.fx.lower

             atol=atol,
             rtol=rtol,
         )
-        def do_lower(module: nn.Module, inputs: Input) -> nn.Module:
+        def do_lower(module: nn.Module, inputs: Input) -> nn.Module:
             module.eval()
             if (
                 self.lower_pass_manager_builder.lower_setting.lower_precision
diff --git a/docs/_modules/torch_tensorrt/fx/trt_module.html b/docs/_modules/torch_tensorrt/fx/trt_module.html
index fdc8836dde..80ca36b1eb 100644
--- a/docs/_modules/torch_tensorrt/fx/trt_module.html
+++ b/docs/_modules/torch_tensorrt/fx/trt_module.html
@@ -9,7 +9,7 @@
   
   
   
-  torch_tensorrt.fx.trt_module — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
+  torch_tensorrt.fx.trt_module — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
   
 
   
@@ -272,7 +272,7 @@
               
               
                 
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -467,17 +467,17 @@

Source code for torch_tensorrt.fx.trt_module

-from typing import Any, List, Sequence
+from typing import Any, List, Sequence
 
 # @manual=//deeplearning/trt/python:py_tensorrt
-import tensorrt as trt
-import torch
+import tensorrt as trt
+import torch
 
-from .utils import Frameworks, unified_dtype_converter
+from .utils import Frameworks, unified_dtype_converter
 
 
-
[docs]class TRTModule(torch.nn.Module): - def __init__( +
[docs]class TRTModule(torch.nn.Module): + def __init__( self, engine=None, input_names=None, output_names=None, cuda_graph_batch_size=-1 ): super(TRTModule, self).__init__() @@ -491,7 +491,7 @@

Source code for torch_tensorrt.fx.trt_module

if engine:
             self._initialize()
 
-    def _initialize(self):
+    def _initialize(self):
         self.initialized = True
         self.context = self.engine.create_execution_context()
 
@@ -560,18 +560,18 @@ 

Source code for torch_tensorrt.fx.trt_module

for idx in self.hidden_output_binding_indices_in_order
         ]
 
-    def _check_initialized(self):
+    def _check_initialized(self):
         if not self.initialized:
             raise RuntimeError("TRTModule is not initialized.")
 
-    def _on_state_dict(self, state_dict, prefix, local_metadata):
+    def _on_state_dict(self, state_dict, prefix, local_metadata):
         self._check_initialized()
         state_dict[prefix + "engine"] = bytearray(self.engine.serialize())
         state_dict[prefix + "input_names"] = self.input_names
         state_dict[prefix + "output_names"] = self.output_names
         state_dict[prefix + "cuda_graph_batch_size"] = self.cuda_graph_batch_size
 
-    def _load_from_state_dict(
+    def _load_from_state_dict(
         self,
         state_dict,
         prefix,
@@ -591,13 +591,13 @@ 

Source code for torch_tensorrt.fx.trt_module

self.output_names = state_dict[prefix + "output_names"]
         self._initialize()
 
-    def __getstate__(self):
+    def __getstate__(self):
         state = self.__dict__.copy()
         state["engine"] = bytearray(self.engine.serialize())
         state.pop("context", None)
         return state
 
-    def __setstate__(self, state):
+    def __setstate__(self, state):
         logger = trt.Logger()
         runtime = trt.Runtime(logger)
         state["engine"] = runtime.deserialize_cuda_engine(state["engine"])
@@ -605,7 +605,7 @@ 

Source code for torch_tensorrt.fx.trt_module

if self.engine:
             self.context = self.engine.create_execution_context()
 
-    def forward(self, *inputs):
+    def forward(self, *inputs):
         with torch.autograd.profiler.record_function("TRTModule:Forward"):
             self._check_initialized()
 
@@ -690,7 +690,7 @@ 

Source code for torch_tensorrt.fx.trt_module

return tuple(outputs)
 
-    def enable_profiling(self, profiler: "trt.IProfiler" = None):
+    def enable_profiling(self, profiler: "trt.IProfiler" = None):
         """
         Enable TensorRT profiling. After calling this function, TensorRT will report
         time spent on each layer in stdout for each forward run.
@@ -700,7 +700,7 @@ 

Source code for torch_tensorrt.fx.trt_module

if not self.context.profiler:
             self.context.profiler = trt.Profiler() if profiler is None else profiler
 
-    def disable_profiling(self):
+    def disable_profiling(self):
         """
         Disable TensorRT profiling.
         """
@@ -710,7 +710,7 @@ 

Source code for torch_tensorrt.fx.trt_module

del self.context
         self.context = self.engine.create_execution_context()
 
-    def get_layer_info(self) -> str:
+    def get_layer_info(self) -> str:
         """
         Get layer info of the engine. Only support for TRT > 8.2.
         """
diff --git a/docs/_modules/torch_tensorrt/logging.html b/docs/_modules/torch_tensorrt/logging.html
index 7e47ce714d..c91b01bb7e 100644
--- a/docs/_modules/torch_tensorrt/logging.html
+++ b/docs/_modules/torch_tensorrt/logging.html
@@ -9,7 +9,7 @@
   
   
   
-  torch_tensorrt.logging — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
+  torch_tensorrt.logging — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
   
 
   
@@ -272,7 +272,7 @@
               
               
                 
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -467,24 +467,24 @@

Source code for torch_tensorrt.logging

-import logging
-from typing import Any
+import logging
+from typing import Any
 
-import torch
-from torch_tensorrt._features import ENABLED_FEATURES
+import torch
+from torch_tensorrt._features import ENABLED_FEATURES
 
-import tensorrt as trt
+import tensorrt as trt
 
 logging.captureWarnings(True)
 _LOGGER = logging.getLogger("torch_tensorrt [TensorRT Conversion Context]")
 
 
-class _TRTLogger(trt.ILogger):  # type: ignore[misc]
+class _TRTLogger(trt.ILogger):  # type: ignore[misc]
 
-    def __init__(self) -> None:
+    def __init__(self) -> None:
         trt.ILogger.__init__(self)
 
-    def log(self, severity: trt.ILogger.Severity, msg: str) -> None:
+    def log(self, severity: trt.ILogger.Severity, msg: str) -> None:
         # TODO: Move to match once py39 reaches EoL
         if severity == trt.ILogger.Severity.INTERNAL_ERROR:
             _LOGGER.critical(msg)
@@ -502,7 +502,7 @@ 

Source code for torch_tensorrt.logging

 TRT_LOGGER = _TRTLogger()
 
 
-
[docs]class internal_errors: +
[docs]class internal_errors: """Context-manager to limit displayed log messages to just internal errors Example: @@ -513,12 +513,12 @@

Source code for torch_tensorrt.logging

                 outputs = model_torchtrt(inputs)
     """
 
-    def __enter__(self) -> None:
+    def __enter__(self) -> None:
         self.external_lvl = _LOGGER.getEffectiveLevel()
         _LOGGER.setLevel(logging.CRITICAL)
 
         if ENABLED_FEATURES.torchscript_frontend:
-            from torch_tensorrt.ts import logging as ts_logging
+            from torch_tensorrt.ts import logging as ts_logging
 
             self.ts_level = ts_logging.get_reportable_log_level()
             ts_logging.set_reportable_log_level(ts_logging.Level.InternalError)
@@ -529,11 +529,11 @@ 

Source code for torch_tensorrt.logging

                 int(trt.ILogger.Severity.INTERNAL_ERROR)
             )
 
-    def __exit__(self, exc_type: Any, exc_value: Any, exc_tb: Any) -> None:
+    def __exit__(self, exc_type: Any, exc_value: Any, exc_tb: Any) -> None:
         _LOGGER.setLevel(self.external_lvl)
 
         if ENABLED_FEATURES.torchscript_frontend:
-            from torch_tensorrt.ts import logging as ts_logging
+            from torch_tensorrt.ts import logging as ts_logging
 
             ts_logging.set_reportable_log_level(self.ts_level)
 
@@ -541,7 +541,7 @@ 

Source code for torch_tensorrt.logging

             torch.ops.tensorrt.set_logging_level(self.rt_level)
-
[docs]class errors: +
[docs]class errors: """Context-manager to limit displayed log messages to just errors and above Example: @@ -552,12 +552,12 @@

Source code for torch_tensorrt.logging

                 outputs = model_torchtrt(inputs)
     """
 
-    def __enter__(self) -> None:
+    def __enter__(self) -> None:
         self.external_lvl = _LOGGER.getEffectiveLevel()
         _LOGGER.setLevel(logging.ERROR)
 
         if ENABLED_FEATURES.torchscript_frontend:
-            from torch_tensorrt.ts import logging as ts_logging
+            from torch_tensorrt.ts import logging as ts_logging
 
             self.ts_level = ts_logging.get_reportable_log_level()
             ts_logging.set_reportable_log_level(ts_logging.Level.Error)
@@ -566,11 +566,11 @@ 

Source code for torch_tensorrt.logging

             self.rt_level = torch.ops.tensorrt.get_logging_level()
             torch.ops.tensorrt.set_logging_level(int(trt.ILogger.Severity.ERROR))
 
-    def __exit__(self, exc_type: Any, exc_value: Any, exc_tb: Any) -> None:
+    def __exit__(self, exc_type: Any, exc_value: Any, exc_tb: Any) -> None:
         _LOGGER.setLevel(self.external_lvl)
 
         if ENABLED_FEATURES.torchscript_frontend:
-            from torch_tensorrt.ts import logging as ts_logging
+            from torch_tensorrt.ts import logging as ts_logging
 
             ts_logging.set_reportable_log_level(self.ts_level)
 
@@ -578,7 +578,7 @@ 

Source code for torch_tensorrt.logging

             torch.ops.tensorrt.set_logging_level(self.rt_level)
-
[docs]class warnings: +
[docs]class warnings: """Context-manager to limit displayed log messages to just warnings and above Example: @@ -589,12 +589,12 @@

Source code for torch_tensorrt.logging

                 model_trt = torch_tensorrt.compile(model, **spec)
     """
 
-    def __enter__(self) -> None:
+    def __enter__(self) -> None:
         self.external_lvl = _LOGGER.getEffectiveLevel()
         _LOGGER.setLevel(logging.WARNING)
 
         if ENABLED_FEATURES.torchscript_frontend:
-            from torch_tensorrt.ts import logging as ts_logging
+            from torch_tensorrt.ts import logging as ts_logging
 
             self.ts_level = ts_logging.get_reportable_log_level()
             ts_logging.set_reportable_log_level(ts_logging.Level.Warning)
@@ -603,11 +603,11 @@ 

Source code for torch_tensorrt.logging

             self.rt_level = torch.ops.tensorrt.get_logging_level()
             torch.ops.tensorrt.set_logging_level(int(trt.ILogger.Severity.WARNING))
 
-    def __exit__(self, exc_type: Any, exc_value: Any, exc_tb: Any) -> None:
+    def __exit__(self, exc_type: Any, exc_value: Any, exc_tb: Any) -> None:
         _LOGGER.setLevel(self.external_lvl)
 
         if ENABLED_FEATURES.torchscript_frontend:
-            from torch_tensorrt.ts import logging as ts_logging
+            from torch_tensorrt.ts import logging as ts_logging
 
             ts_logging.set_reportable_log_level(self.ts_level)
 
@@ -615,7 +615,7 @@ 

Source code for torch_tensorrt.logging

             torch.ops.tensorrt.set_logging_level(self.rt_level)
-
[docs]class info: +
[docs]class info: """Context-manager to display all info and greater severity messages Example: @@ -626,12 +626,12 @@

Source code for torch_tensorrt.logging

                 model_trt = torch_tensorrt.compile(model, **spec)
     """
 
-    def __enter__(self) -> None:
+    def __enter__(self) -> None:
         self.external_lvl = _LOGGER.getEffectiveLevel()
         _LOGGER.setLevel(logging.INFO)
 
         if ENABLED_FEATURES.torchscript_frontend:
-            from torch_tensorrt.ts import logging as ts_logging
+            from torch_tensorrt.ts import logging as ts_logging
 
             self.ts_level = ts_logging.get_reportable_log_level()
             ts_logging.set_reportable_log_level(ts_logging.Level.Info)
@@ -640,11 +640,11 @@ 

Source code for torch_tensorrt.logging

             self.rt_level = torch.ops.tensorrt.get_logging_level()
             torch.ops.tensorrt.set_logging_level(int(trt.ILogger.Severity.INFO))
 
-    def __exit__(self, exc_type: Any, exc_value: Any, exc_tb: Any) -> None:
+    def __exit__(self, exc_type: Any, exc_value: Any, exc_tb: Any) -> None:
         _LOGGER.setLevel(self.external_lvl)
 
         if ENABLED_FEATURES.torchscript_frontend:
-            from torch_tensorrt.ts import logging as ts_logging
+            from torch_tensorrt.ts import logging as ts_logging
 
             ts_logging.set_reportable_log_level(self.ts_level)
 
@@ -652,7 +652,7 @@ 

Source code for torch_tensorrt.logging

             torch.ops.tensorrt.set_logging_level(self.rt_level)
-
[docs]class debug: +
[docs]class debug: """Context-manager to display full debug information through the logger Example: @@ -663,12 +663,12 @@

Source code for torch_tensorrt.logging

                 model_trt = torch_tensorrt.compile(model, **spec)
     """
 
-    def __enter__(self) -> None:
+    def __enter__(self) -> None:
         self.external_lvl = _LOGGER.getEffectiveLevel()
         _LOGGER.setLevel(logging.DEBUG)
 
         if ENABLED_FEATURES.torchscript_frontend:
-            from torch_tensorrt.ts import logging as ts_logging
+            from torch_tensorrt.ts import logging as ts_logging
 
             self.ts_level = ts_logging.get_reportable_log_level()
             ts_logging.set_reportable_log_level(ts_logging.Level.Debug)
@@ -677,11 +677,11 @@ 

Source code for torch_tensorrt.logging

             self.rt_level = torch.ops.tensorrt.get_logging_level()
             torch.ops.tensorrt.set_logging_level(int(trt.ILogger.Severity.VERBOSE))
 
-    def __exit__(self, exc_type: Any, exc_value: Any, exc_tb: Any) -> None:
+    def __exit__(self, exc_type: Any, exc_value: Any, exc_tb: Any) -> None:
         _LOGGER.setLevel(self.external_lvl)
 
         if ENABLED_FEATURES.torchscript_frontend:
-            from torch_tensorrt.ts import logging as ts_logging
+            from torch_tensorrt.ts import logging as ts_logging
 
             ts_logging.set_reportable_log_level(self.ts_level)
 
@@ -689,7 +689,7 @@ 

Source code for torch_tensorrt.logging

             torch.ops.tensorrt.set_logging_level(self.rt_level)
-
[docs]class graphs: +
[docs]class graphs: """Context-manager to display the results of intermediate lowering passes as well as full debug information through the logger @@ -701,12 +701,12 @@

Source code for torch_tensorrt.logging

                 model_trt = torch_tensorrt.compile(model, **spec)
     """
 
-    def __enter__(self) -> None:
+    def __enter__(self) -> None:
         self.external_lvl = _LOGGER.getEffectiveLevel()
         _LOGGER.setLevel(logging.NOTSET)
 
         if ENABLED_FEATURES.torchscript_frontend:
-            from torch_tensorrt.ts import logging as ts_logging
+            from torch_tensorrt.ts import logging as ts_logging
 
             self.ts_level = ts_logging.get_reportable_log_level()
             ts_logging.set_reportable_log_level(ts_logging.Level.Graph)
@@ -715,11 +715,11 @@ 

Source code for torch_tensorrt.logging

             self.rt_level = torch.ops.tensorrt.get_logging_level()
             torch.ops.tensorrt.set_logging_level(int(trt.ILogger.Severity.VERBOSE) + 1)
 
-    def __exit__(self, exc_type: Any, exc_value: Any, exc_tb: Any) -> None:
+    def __exit__(self, exc_type: Any, exc_value: Any, exc_tb: Any) -> None:
         _LOGGER.setLevel(self.external_lvl)
 
         if ENABLED_FEATURES.torchscript_frontend:
-            from torch_tensorrt.ts import logging as ts_logging
+            from torch_tensorrt.ts import logging as ts_logging
 
             ts_logging.set_reportable_log_level(self.ts_level)
 
diff --git a/docs/_modules/torch_tensorrt/runtime/_multi_device_safe_mode.html b/docs/_modules/torch_tensorrt/runtime/_multi_device_safe_mode.html
index a38fce529f..9e4150d85a 100644
--- a/docs/_modules/torch_tensorrt/runtime/_multi_device_safe_mode.html
+++ b/docs/_modules/torch_tensorrt/runtime/_multi_device_safe_mode.html
@@ -9,7 +9,7 @@
   
   
   
-  torch_tensorrt.runtime._multi_device_safe_mode — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
+  torch_tensorrt.runtime._multi_device_safe_mode — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
   
 
   
@@ -272,7 +272,7 @@
               
               
                 
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -467,11 +467,11 @@

Source code for torch_tensorrt.runtime._multi_device_safe_mode

-import logging
-from typing import Any
+import logging
+from typing import Any
 
-import torch
-import torch_tensorrt
+import torch
+import torch_tensorrt
 
 if torch_tensorrt.ENABLED_FEATURES.torch_tensorrt_runtime:
     _PY_RT_MULTI_DEVICE_SAFE_MODE = torch.ops.tensorrt.get_multi_device_safe_mode()
@@ -482,19 +482,19 @@ 

Source code for torch_tensorrt.runtime._multi_device_safe_mode

logger = logging.getLogger(__name__) -class _MultiDeviceSafeModeContextManager(object): +class _MultiDeviceSafeModeContextManager(object): """Helper class used in conjunction with `set_multi_device_safe_mode` Used to enable `set_multi_device_safe_mode` as a dual-purpose context manager """ - def __init__(self, old_mode: bool) -> None: + def __init__(self, old_mode: bool) -> None: self.old_mode = old_mode - def __enter__(self) -> "_MultiDeviceSafeModeContextManager": + def __enter__(self) -> "_MultiDeviceSafeModeContextManager": return self - def __exit__(self, *args: Any) -> None: + def __exit__(self, *args: Any) -> None: # Set multi-device safe mode back to old mode in Python global _PY_RT_MULTI_DEVICE_SAFE_MODE _PY_RT_MULTI_DEVICE_SAFE_MODE = self.old_mode @@ -504,7 +504,7 @@

Source code for torch_tensorrt.runtime._multi_device_safe_mode

torch.ops.tensorrt.set_multi_device_safe_mode(self.old_mode) -
[docs]def set_multi_device_safe_mode(mode: bool) -> _MultiDeviceSafeModeContextManager: +
[docs]def set_multi_device_safe_mode(mode: bool) -> _MultiDeviceSafeModeContextManager: """Sets the runtime (Python-only and default) into multi-device safe mode In the case that multiple devices are available on the system, in order for the diff --git a/docs/_modules/torch_tensorrt/ts/_compile_spec.html b/docs/_modules/torch_tensorrt/ts/_compile_spec.html index 2a7a057034..ae5758450f 100644 --- a/docs/_modules/torch_tensorrt/ts/_compile_spec.html +++ b/docs/_modules/torch_tensorrt/ts/_compile_spec.html @@ -9,7 +9,7 @@ - torch_tensorrt.ts._compile_spec — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + torch_tensorrt.ts._compile_spec — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -272,7 +272,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -467,25 +467,25 @@

Source code for torch_tensorrt.ts._compile_spec

-from __future__ import annotations
+from __future__ import annotations
 
-from copy import deepcopy
-from typing import Any, Dict, List, Optional, Set
+from copy import deepcopy
+from typing import Any, Dict, List, Optional, Set
 
-import torch
-import torch_tensorrt._C.ts as _ts_C
-from torch_tensorrt import _C
-from torch_tensorrt._Device import Device
-from torch_tensorrt._enums import DeviceType, EngineCapability, dtype
-from torch_tensorrt._Input import Input
-from torch_tensorrt.ts._Device import TorchScriptDevice
-from torch_tensorrt.ts._Input import TorchScriptInput
-from torch_tensorrt.ts.logging import Level, log
+import torch
+import torch_tensorrt._C.ts as _ts_C
+from torch_tensorrt import _C
+from torch_tensorrt._Device import Device
+from torch_tensorrt._enums import DeviceType, EngineCapability, dtype
+from torch_tensorrt._Input import Input
+from torch_tensorrt.ts._Device import TorchScriptDevice
+from torch_tensorrt.ts._Input import TorchScriptInput
+from torch_tensorrt.ts.logging import Level, log
 
-import tensorrt as trt
+import tensorrt as trt
 
 
-def _internal_input_to_torch_class_input(i: _C.Input) -> torch.classes.tensorrt._Input:
+def _internal_input_to_torch_class_input(i: _C.Input) -> torch.classes.tensorrt._Input:
     clone = torch.classes.tensorrt._Input()
     clone._set_min(i.min)
     clone._set_opt(i.opt)
@@ -498,7 +498,7 @@ 

Source code for torch_tensorrt.ts._compile_spec

< return clone -def _supported_input_size_type(input_size: Any) -> bool: +def _supported_input_size_type(input_size: Any) -> bool: if isinstance(input_size, torch.Size): return True elif isinstance(input_size, tuple): @@ -512,11 +512,11 @@

Source code for torch_tensorrt.ts._compile_spec

< ) -def _parse_op_precision(precision: Any) -> _C.dtype: +def _parse_op_precision(precision: Any) -> _C.dtype: return dtype._from(precision).to(_C.dtype) -def _parse_enabled_precisions(precisions: Any) -> Set[_C.dtype]: +def _parse_enabled_precisions(precisions: Any) -> Set[_C.dtype]: parsed_precisions = set() if any(isinstance(precisions, type) for type in [list, tuple, set]): for p in precisions: @@ -526,11 +526,11 @@

Source code for torch_tensorrt.ts._compile_spec

< return parsed_precisions -def _parse_device_type(device: Any) -> _C.DeviceType: +def _parse_device_type(device: Any) -> _C.DeviceType: return DeviceType._from(device).to(_C.DeviceType) -def _parse_device(device_info: Any) -> _C.Device: +def _parse_device(device_info: Any) -> _C.Device: if isinstance(device_info, dict): info = _C.Device() if "device_type" not in device_info: @@ -563,7 +563,7 @@

Source code for torch_tensorrt.ts._compile_spec

< ) -def _parse_torch_fallback(fallback_info: Dict[str, Any]) -> _ts_C.TorchFallback: +def _parse_torch_fallback(fallback_info: Dict[str, Any]) -> _ts_C.TorchFallback: info = _ts_C.TorchFallback() if "enabled" not in fallback_info: raise KeyError("Enabled is required parameter") @@ -585,7 +585,7 @@

Source code for torch_tensorrt.ts._compile_spec

< return info -def _parse_input_signature(input_signature: Any, depth: int = 0) -> Any: +def _parse_input_signature(input_signature: Any, depth: int = 0) -> Any: if depth > 2: raise AssertionError( "Input nesting depth exceeds max supported depth, use 1 level: [A, B], or 2 level: [A, (B, C)]" @@ -650,7 +650,7 @@

Source code for torch_tensorrt.ts._compile_spec

< ) -def _parse_compile_spec(compile_spec_: Dict[str, Any]) -> _ts_C.CompileSpec: +def _parse_compile_spec(compile_spec_: Dict[str, Any]) -> _ts_C.CompileSpec: # TODO: Use deepcopy to support partial compilation of collections compile_spec = deepcopy(compile_spec_) info = _ts_C.CompileSpec() @@ -773,7 +773,7 @@

Source code for torch_tensorrt.ts._compile_spec

< return info -
[docs]def TensorRTCompileSpec( +
[docs]def TensorRTCompileSpec( inputs: Optional[List[torch.Tensor | Input]] = None, input_signature: Optional[Any] = None, device: Optional[torch.device | Device] = None, diff --git a/docs/_modules/torch_tensorrt/ts/_compiler.html b/docs/_modules/torch_tensorrt/ts/_compiler.html index beb1870c18..d6ada0328b 100644 --- a/docs/_modules/torch_tensorrt/ts/_compiler.html +++ b/docs/_modules/torch_tensorrt/ts/_compiler.html @@ -9,7 +9,7 @@ - torch_tensorrt.ts._compiler — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + torch_tensorrt.ts._compiler — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -272,7 +272,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -467,19 +467,19 @@

Source code for torch_tensorrt.ts._compiler

-from __future__ import annotations
+from __future__ import annotations
 
-from typing import Any, List, Optional, Sequence, Set, Tuple
+from typing import Any, List, Optional, Sequence, Set, Tuple
 
-import torch
-import torch_tensorrt._C.ts as _C
-from torch_tensorrt._Device import Device
-from torch_tensorrt._enums import EngineCapability, dtype
-from torch_tensorrt._Input import Input
-from torch_tensorrt.ts._compile_spec import _parse_compile_spec, _parse_device
+import torch
+import torch_tensorrt._C.ts as _C
+from torch_tensorrt._Device import Device
+from torch_tensorrt._enums import EngineCapability, dtype
+from torch_tensorrt._Input import Input
+from torch_tensorrt.ts._compile_spec import _parse_compile_spec, _parse_device
 
 
-
[docs]def compile( +
[docs]def compile( module: torch.jit.ScriptModule, inputs: Optional[Sequence[Input | torch.Tensor]] = None, input_signature: Optional[Tuple[Input | torch.Tensor | Sequence[Any]]] = None, @@ -627,7 +627,7 @@

Source code for torch_tensorrt.ts._compiler

     return compiled_module
-
[docs]def convert_method_to_trt_engine( +
[docs]def convert_method_to_trt_engine( module: torch.jit.ScriptModule, method_name: str = "forward", inputs: Optional[Sequence[Input | torch.Tensor]] = None, @@ -739,7 +739,7 @@

Source code for torch_tensorrt.ts._compiler

         module._c, method_name, _parse_compile_spec(compile_spec)
     )
 
-    import io
+    import io
 
     with io.BytesIO() as engine_bytes:
         engine_bytes.write(engine_str)
@@ -748,7 +748,7 @@ 

Source code for torch_tensorrt.ts._compiler

     return engine_bytearray
-
[docs]def embed_engine_in_new_module( +
[docs]def embed_engine_in_new_module( serialized_engine: bytes, input_binding_names: Optional[List[str]] = None, output_binding_names: Optional[List[str]] = None, @@ -794,7 +794,7 @@

Source code for torch_tensorrt.ts._compiler

     return wrapped_mod
-
[docs]def check_method_op_support( +
[docs]def check_method_op_support( module: torch.jit.ScriptModule, method_name: str = "forward" ) -> bool: """Checks to see if a method is fully supported by torch_tensorrt diff --git a/docs/_modules/torch_tensorrt/ts/ptq.html b/docs/_modules/torch_tensorrt/ts/ptq.html index 6092c96773..6f415edbad 100644 --- a/docs/_modules/torch_tensorrt/ts/ptq.html +++ b/docs/_modules/torch_tensorrt/ts/ptq.html @@ -9,7 +9,7 @@ - torch_tensorrt.ts.ptq — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + torch_tensorrt.ts.ptq — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -272,7 +272,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -467,38 +467,38 @@

Source code for torch_tensorrt.ts.ptq

-import sys
-from typing import Any, List, Optional
+import sys
+from typing import Any, List, Optional
 
 if sys.version_info >= (3, 11):
-    from typing import Self
+    from typing import Self
 else:
-    from typing_extensions import Self
+    from typing_extensions import Self
 
-import os
-from enum import Enum
+import os
+from enum import Enum
 
-import torch
-from torch_tensorrt import _C
-from torch_tensorrt.ts.logging import Level, log
+import torch
+from torch_tensorrt import _C
+from torch_tensorrt.ts.logging import Level, log
 
 
-
[docs]class CalibrationAlgo(Enum): +
[docs]class CalibrationAlgo(Enum): ENTROPY_CALIBRATION = _C.CalibrationAlgo.ENTROPY_CALIBRATION ENTROPY_CALIBRATION_2 = _C.CalibrationAlgo.ENTROPY_CALIBRATION_2 LEGACY_CALIBRATION = _C.CalibrationAlgo.LEGACY_CALIBRATION MINMAX_CALIBRATION = _C.CalibrationAlgo.MINMAX_CALIBRATION
-def get_cache_mode_batch(self: object) -> None: +def get_cache_mode_batch(self: object) -> None: return None -def get_batch_size(self: object) -> int: +def get_batch_size(self: object) -> int: return 1 -def get_batch(self: object, _: Any) -> Optional[List[int]]: +def get_batch(self: object, _: Any) -> Optional[List[int]]: if self.current_batch_idx + self.batch_size > len(self.data_loader.dataset): return None @@ -513,7 +513,7 @@

Source code for torch_tensorrt.ts.ptq

     return inputs_gpu
 
 
-def read_calibration_cache(self: object) -> bytes:
+def read_calibration_cache(self: object) -> bytes:
     if self.cache_file and self.use_cache:
         if os.path.exists(self.cache_file):
             with open(self.cache_file, "rb") as f:
@@ -525,7 +525,7 @@ 

Source code for torch_tensorrt.ts.ptq

         return b""
 
 
-def write_calibration_cache(self: object, cache: bytes) -> None:
+def write_calibration_cache(self: object, cache: bytes) -> None:
     if self.cache_file:
         with open(self.cache_file, "wb") as f:
             f.write(cache)
@@ -536,11 +536,11 @@ 

Source code for torch_tensorrt.ts.ptq

 # deepcopy (which involves pickling) is performed on the compile_spec internally during compilation.
 # We register this __reduce__ function for pickler to identity the calibrator object returned by DataLoaderCalibrator during deepcopy.
 # This should be the object's local name relative to the module https://docs.python.org/3/library/pickle.html#object.__reduce__
-def __reduce__(self: object) -> str:
+def __reduce__(self: object) -> str:
     return self.__class__.__name__
 
 
-
[docs]class DataLoaderCalibrator(object): +
[docs]class DataLoaderCalibrator(object): """ Constructs a calibrator class in TensorRT and uses pytorch dataloader to load/preprocess data which is passed during calibration. @@ -553,10 +553,10 @@

Source code for torch_tensorrt.ts.ptq

         device (Device): device on which calibration data is copied to.
     """
 
-    def __init__(self, **kwargs: Any):
+    def __init__(self, **kwargs: Any):
         pass
 
-    def __new__(cls, *args: Any, **kwargs: Any) -> Self:
+    def __new__(cls, *args: Any, **kwargs: Any) -> Self:
         dataloader = args[0]
         algo_type = kwargs.get("algo_type", CalibrationAlgo.ENTROPY_CALIBRATION_2)
         cache_file = kwargs.get("cache_file", None)
@@ -631,7 +631,7 @@ 

Source code for torch_tensorrt.ts.ptq

             )
-
[docs]class CacheCalibrator(object): +
[docs]class CacheCalibrator(object): """ Constructs a calibrator class in TensorRT which directly uses pre-existing cache file for calibration. @@ -640,10 +640,10 @@

Source code for torch_tensorrt.ts.ptq

         algo_type (CalibrationAlgo): choice of calibration algorithm.
     """
 
-    def __init__(self, **kwargs: Any):
+    def __init__(self, **kwargs: Any):
         pass
 
-    def __new__(cls, *args: Any, **kwargs: Any) -> Self:
+    def __new__(cls, *args: Any, **kwargs: Any) -> Self:
         cache_file = args[0]
         algo_type = kwargs.get("algo_type", CalibrationAlgo.ENTROPY_CALIBRATION_2)
 
diff --git a/docs/_static/documentation_options.js b/docs/_static/documentation_options.js
index d0f19a7389..88fe133530 100644
--- a/docs/_static/documentation_options.js
+++ b/docs/_static/documentation_options.js
@@ -1,6 +1,6 @@
 var DOCUMENTATION_OPTIONS = {
     URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'),
-    VERSION: 'v2.6.0.dev0+50f29cb',
+    VERSION: 'v2.6.0.dev0+69c83d4',
     LANGUAGE: 'en',
     COLLAPSE_INDEX: false,
     BUILDER: 'html',
diff --git a/docs/_static/pygments.css b/docs/_static/pygments.css
index 0d49244eda..5f2b0a250a 100644
--- a/docs/_static/pygments.css
+++ b/docs/_static/pygments.css
@@ -6,26 +6,26 @@ span.linenos.special { color: #000000; background-color: #ffffc0; padding-left:
 .highlight .hll { background-color: #ffffcc }
 .highlight { background: #eeffcc; }
 .highlight .c { color: #408090; font-style: italic } /* Comment */
-.highlight .err { border: 1px solid #FF0000 } /* Error */
+.highlight .err { border: 1px solid #F00 } /* Error */
 .highlight .k { color: #007020; font-weight: bold } /* Keyword */
-.highlight .o { color: #666666 } /* Operator */
+.highlight .o { color: #666 } /* Operator */
 .highlight .ch { color: #408090; font-style: italic } /* Comment.Hashbang */
 .highlight .cm { color: #408090; font-style: italic } /* Comment.Multiline */
 .highlight .cp { color: #007020 } /* Comment.Preproc */
 .highlight .cpf { color: #408090; font-style: italic } /* Comment.PreprocFile */
 .highlight .c1 { color: #408090; font-style: italic } /* Comment.Single */
-.highlight .cs { color: #408090; background-color: #fff0f0 } /* Comment.Special */
+.highlight .cs { color: #408090; background-color: #FFF0F0 } /* Comment.Special */
 .highlight .gd { color: #A00000 } /* Generic.Deleted */
 .highlight .ge { font-style: italic } /* Generic.Emph */
 .highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */
-.highlight .gr { color: #FF0000 } /* Generic.Error */
+.highlight .gr { color: #F00 } /* Generic.Error */
 .highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
 .highlight .gi { color: #00A000 } /* Generic.Inserted */
-.highlight .go { color: #333333 } /* Generic.Output */
-.highlight .gp { color: #c65d09; font-weight: bold } /* Generic.Prompt */
+.highlight .go { color: #333 } /* Generic.Output */
+.highlight .gp { color: #C65D09; font-weight: bold } /* Generic.Prompt */
 .highlight .gs { font-weight: bold } /* Generic.Strong */
 .highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
-.highlight .gt { color: #0044DD } /* Generic.Traceback */
+.highlight .gt { color: #04D } /* Generic.Traceback */
 .highlight .kc { color: #007020; font-weight: bold } /* Keyword.Constant */
 .highlight .kd { color: #007020; font-weight: bold } /* Keyword.Declaration */
 .highlight .kn { color: #007020; font-weight: bold } /* Keyword.Namespace */
@@ -33,43 +33,43 @@ span.linenos.special { color: #000000; background-color: #ffffc0; padding-left:
 .highlight .kr { color: #007020; font-weight: bold } /* Keyword.Reserved */
 .highlight .kt { color: #902000 } /* Keyword.Type */
 .highlight .m { color: #208050 } /* Literal.Number */
-.highlight .s { color: #4070a0 } /* Literal.String */
-.highlight .na { color: #4070a0 } /* Name.Attribute */
+.highlight .s { color: #4070A0 } /* Literal.String */
+.highlight .na { color: #4070A0 } /* Name.Attribute */
 .highlight .nb { color: #007020 } /* Name.Builtin */
-.highlight .nc { color: #0e84b5; font-weight: bold } /* Name.Class */
-.highlight .no { color: #60add5 } /* Name.Constant */
-.highlight .nd { color: #555555; font-weight: bold } /* Name.Decorator */
-.highlight .ni { color: #d55537; font-weight: bold } /* Name.Entity */
+.highlight .nc { color: #0E84B5; font-weight: bold } /* Name.Class */
+.highlight .no { color: #60ADD5 } /* Name.Constant */
+.highlight .nd { color: #555; font-weight: bold } /* Name.Decorator */
+.highlight .ni { color: #D55537; font-weight: bold } /* Name.Entity */
 .highlight .ne { color: #007020 } /* Name.Exception */
-.highlight .nf { color: #06287e } /* Name.Function */
+.highlight .nf { color: #06287E } /* Name.Function */
 .highlight .nl { color: #002070; font-weight: bold } /* Name.Label */
-.highlight .nn { color: #0e84b5; font-weight: bold } /* Name.Namespace */
+.highlight .nn { color: #0E84B5; font-weight: bold } /* Name.Namespace */
 .highlight .nt { color: #062873; font-weight: bold } /* Name.Tag */
-.highlight .nv { color: #bb60d5 } /* Name.Variable */
+.highlight .nv { color: #BB60D5 } /* Name.Variable */
 .highlight .ow { color: #007020; font-weight: bold } /* Operator.Word */
-.highlight .w { color: #bbbbbb } /* Text.Whitespace */
+.highlight .w { color: #BBB } /* Text.Whitespace */
 .highlight .mb { color: #208050 } /* Literal.Number.Bin */
 .highlight .mf { color: #208050 } /* Literal.Number.Float */
 .highlight .mh { color: #208050 } /* Literal.Number.Hex */
 .highlight .mi { color: #208050 } /* Literal.Number.Integer */
 .highlight .mo { color: #208050 } /* Literal.Number.Oct */
-.highlight .sa { color: #4070a0 } /* Literal.String.Affix */
-.highlight .sb { color: #4070a0 } /* Literal.String.Backtick */
-.highlight .sc { color: #4070a0 } /* Literal.String.Char */
-.highlight .dl { color: #4070a0 } /* Literal.String.Delimiter */
-.highlight .sd { color: #4070a0; font-style: italic } /* Literal.String.Doc */
-.highlight .s2 { color: #4070a0 } /* Literal.String.Double */
-.highlight .se { color: #4070a0; font-weight: bold } /* Literal.String.Escape */
-.highlight .sh { color: #4070a0 } /* Literal.String.Heredoc */
-.highlight .si { color: #70a0d0; font-style: italic } /* Literal.String.Interpol */
-.highlight .sx { color: #c65d09 } /* Literal.String.Other */
+.highlight .sa { color: #4070A0 } /* Literal.String.Affix */
+.highlight .sb { color: #4070A0 } /* Literal.String.Backtick */
+.highlight .sc { color: #4070A0 } /* Literal.String.Char */
+.highlight .dl { color: #4070A0 } /* Literal.String.Delimiter */
+.highlight .sd { color: #4070A0; font-style: italic } /* Literal.String.Doc */
+.highlight .s2 { color: #4070A0 } /* Literal.String.Double */
+.highlight .se { color: #4070A0; font-weight: bold } /* Literal.String.Escape */
+.highlight .sh { color: #4070A0 } /* Literal.String.Heredoc */
+.highlight .si { color: #70A0D0; font-style: italic } /* Literal.String.Interpol */
+.highlight .sx { color: #C65D09 } /* Literal.String.Other */
 .highlight .sr { color: #235388 } /* Literal.String.Regex */
-.highlight .s1 { color: #4070a0 } /* Literal.String.Single */
+.highlight .s1 { color: #4070A0 } /* Literal.String.Single */
 .highlight .ss { color: #517918 } /* Literal.String.Symbol */
 .highlight .bp { color: #007020 } /* Name.Builtin.Pseudo */
-.highlight .fm { color: #06287e } /* Name.Function.Magic */
-.highlight .vc { color: #bb60d5 } /* Name.Variable.Class */
-.highlight .vg { color: #bb60d5 } /* Name.Variable.Global */
-.highlight .vi { color: #bb60d5 } /* Name.Variable.Instance */
-.highlight .vm { color: #bb60d5 } /* Name.Variable.Magic */
+.highlight .fm { color: #06287E } /* Name.Function.Magic */
+.highlight .vc { color: #BB60D5 } /* Name.Variable.Class */
+.highlight .vg { color: #BB60D5 } /* Name.Variable.Global */
+.highlight .vi { color: #BB60D5 } /* Name.Variable.Instance */
+.highlight .vm { color: #BB60D5 } /* Name.Variable.Magic */
 .highlight .il { color: #208050 } /* Literal.Number.Integer.Long */
\ No newline at end of file
diff --git a/docs/cli/torchtrtc.html b/docs/cli/torchtrtc.html
index 4fb9a393c4..da67a7f1d5 100644
--- a/docs/cli/torchtrtc.html
+++ b/docs/cli/torchtrtc.html
@@ -10,7 +10,7 @@
 
   
   
-  torchtrtc — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
+  torchtrtc — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
   
 
   
@@ -275,7 +275,7 @@
               
               
                 
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/contributors/conversion.html b/docs/contributors/conversion.html index 8b7fe213ea..52997badb9 100644 --- a/docs/contributors/conversion.html +++ b/docs/contributors/conversion.html @@ -10,7 +10,7 @@ - Conversion Phase — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Conversion Phase — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/contributors/dynamo_converters.html b/docs/contributors/dynamo_converters.html index 42f0d30973..4a06d48086 100644 --- a/docs/contributors/dynamo_converters.html +++ b/docs/contributors/dynamo_converters.html @@ -10,7 +10,7 @@ - Writing Dynamo Converters — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Writing Dynamo Converters — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -480,7 +480,7 @@

Converter implementation

A converter is a function decrorated with torch_tensorrt.dynamo.dynamo_tensorrt_converter that follows the function signature:

@torch_tensorrt.dynamo.conversion.dynamo_tensorrt_converter(torch.ops.aten.leaky_relu.default)
-def leaky_relu_converter(
+def leaky_relu_converter(
     ctx: torch_tensorrt.dynamo.conversion.ConversionCtx,
     target: Target,
     args: Tuple[Argument, ...],
@@ -541,7 +541,7 @@ 

Example: Convol 2: (np.ndarray, torch.Tensor, TRTTensor), } ) # type: ignore[misc] -def aten_ops_convolution( +def aten_ops_convolution( ctx: ConversionContext, target: Target, args: Tuple[Argument, ...], @@ -570,7 +570,7 @@

Example: addmm<

The decompositions are registered via register_torch_trt_decomposition decorator We define addmm_replacement and replace it with the torch ops, which will have their corresponding converters called.

@torch_tensorrt.dynamo.lowering.register_torch_trt_decomposition(torch.ops.aten.addmm)
-def addmm_replacement(
+def addmm_replacement(
     input_: torch.Tensor, mat1: torch.Tensor, mat2: torch.Tensor, *, beta=1, alpha=1
 ) -> torch.Tensor:
     return torch.add(
diff --git a/docs/contributors/lowering.html b/docs/contributors/lowering.html
index 5e5a3d6149..3a23cdeba1 100644
--- a/docs/contributors/lowering.html
+++ b/docs/contributors/lowering.html
@@ -10,7 +10,7 @@
 
   
   
-  Lowering Phase — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
+  Lowering Phase — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
   
 
   
@@ -275,7 +275,7 @@
               
               
                 
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/contributors/partitioning.html b/docs/contributors/partitioning.html index 3b19d69778..de75176209 100644 --- a/docs/contributors/partitioning.html +++ b/docs/contributors/partitioning.html @@ -10,7 +10,7 @@ - Partitioning Phase — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Partitioning Phase — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/contributors/phases.html b/docs/contributors/phases.html index d318c47364..6f3d17a6a7 100644 --- a/docs/contributors/phases.html +++ b/docs/contributors/phases.html @@ -10,7 +10,7 @@ - Compiler Phases — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Compiler Phases — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/contributors/runtime.html b/docs/contributors/runtime.html index d4f8e34edd..fb4498c62c 100644 --- a/docs/contributors/runtime.html +++ b/docs/contributors/runtime.html @@ -10,7 +10,7 @@ - Runtime Phase — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Runtime Phase — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/contributors/system_overview.html b/docs/contributors/system_overview.html index 1163ea6835..8ea712fbd8 100644 --- a/docs/contributors/system_overview.html +++ b/docs/contributors/system_overview.html @@ -10,7 +10,7 @@ - System Overview — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + System Overview — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/contributors/ts_converters.html b/docs/contributors/ts_converters.html index 51d0650cc5..914c21e512 100644 --- a/docs/contributors/ts_converters.html +++ b/docs/contributors/ts_converters.html @@ -10,7 +10,7 @@ - Writing TorchScript Converters — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Writing TorchScript Converters — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/contributors/useful_links.html b/docs/contributors/useful_links.html index ece849c9e3..41ec445643 100644 --- a/docs/contributors/useful_links.html +++ b/docs/contributors/useful_links.html @@ -10,7 +10,7 @@ - Useful Links for Torch-TensorRT Development — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Useful Links for Torch-TensorRT Development — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
diff --git a/docs/contributors/writing_dynamo_aten_lowering_passes.html b/docs/contributors/writing_dynamo_aten_lowering_passes.html index e192418998..14f345e844 100644 --- a/docs/contributors/writing_dynamo_aten_lowering_passes.html +++ b/docs/contributors/writing_dynamo_aten_lowering_passes.html @@ -10,7 +10,7 @@ - Writing Dynamo ATen Lowering Passes — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Writing Dynamo ATen Lowering Passes — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -486,7 +486,7 @@

Lowering Pass Requirements

Example Lowering Pass

-
def repair_input_as_output(gm: torch.fx.GraphModule, sample_inputs: Sequence[torch.Tensor]) -> torch.fx.GraphModule:
+
def repair_input_as_output(gm: torch.fx.GraphModule, sample_inputs: Sequence[torch.Tensor]) -> torch.fx.GraphModule:
     """Repair scenarios where inputs are also outputs of the graph
 
     TRT does not allow such cases, so we insert a clone (identity) layer
@@ -542,13 +542,13 @@ 

Registering Lowering Passes
@_aten_lowering_pass
-def my_custom_pass(gm: torch.fx.GraphModule, sample_inputs: Sequence[torch.Tensor]) -> torch.fx.GraphModule:
+def my_custom_pass(gm: torch.fx.GraphModule, sample_inputs: Sequence[torch.Tensor]) -> torch.fx.GraphModule:
     ...
 

Alternatively, to insert the pass at a custom index (such as the front of the list) in the passlist, the following code can be used:

@_aten_lowering_pass(index=0)
-def my_custom_pass(gm: torch.fx.GraphModule, sample_inputs: Sequence[torch.Tensor]) -> torch.fx.GraphModule:
+def my_custom_pass(gm: torch.fx.GraphModule, sample_inputs: Sequence[torch.Tensor]) -> torch.fx.GraphModule:
     ...
 
diff --git a/docs/dynamo/dynamo_export.html b/docs/dynamo/dynamo_export.html index d8dd620e6c..87d8dbc751 100644 --- a/docs/dynamo/dynamo_export.html +++ b/docs/dynamo/dynamo_export.html @@ -10,7 +10,7 @@ - Compiling Exported Programs with Torch-TensorRT — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Compiling Exported Programs with Torch-TensorRT — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -477,8 +477,8 @@ can export graphs from Pytorch programs into ExportedProgram objects. Torch-TensorRT dynamo frontend compiles these ExportedProgram objects and optimizes them using TensorRT. Here’s a simple usage of the dynamo frontend

-
import torch
-import torch_tensorrt
+
import torch
+import torch_tensorrt
 
 model = MyModel().eval().cuda()
 inputs = [torch.randn((1, 3, 224, 224), dtype=torch.float32).cuda()]
@@ -525,8 +525,8 @@ 

TracingExportedProgram can then be used with torch_tensorrt.dynamo.compile API. If you have dynamic input shapes in your model, you can use this torch_tensorrt.dynamo.trace to export the model with dynamic shapes. Alternatively, you can use torch.export with constraints directly as well.

-
import torch
-import torch_tensorrt
+
import torch
+import torch_tensorrt
 
 inputs = [torch_tensorrt.Input(min_shape=(1, 3, 224, 224),
                               opt_shape=(4, 3, 224, 224),
diff --git a/docs/dynamo/torch_compile.html b/docs/dynamo/torch_compile.html
index 8f5ef9917a..4e7a2bf0ae 100644
--- a/docs/dynamo/torch_compile.html
+++ b/docs/dynamo/torch_compile.html
@@ -10,7 +10,7 @@
 
   
   
-  TensorRT Backend for torch.compile — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
+  TensorRT Backend for torch.compile — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
   
 
   
@@ -275,7 +275,7 @@
               
               
                 
- v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
@@ -477,7 +477,7 @@

Key Features

The primary goal of the Torch-TensorRT torch.compile backend is to enable Just-In-Time compilation workflows by combining the simplicity of torch.compile API with the performance of TensorRT. Invoking the torch.compile backend is as simple as importing the torch_tensorrt package and specifying the backend:

-
import torch_tensorrt
+
import torch_tensorrt
 ...
 optimized_model = torch.compile(model, backend="torch_tensorrt", dynamic=False)
 
@@ -492,7 +492,7 @@

Key Features

-class torch_tensorrt.dynamo.CompilationSettings(enabled_precisions: ~typing.Set[~torch_tensorrt._enums.dtype] = <factory>, debug: bool = False, workspace_size: int = 0, min_block_size: int = 5, torch_executed_ops: ~typing.Collection[~typing.Union[~typing.Callable[[...], ~typing.Any], str]] = <factory>, pass_through_build_failures: bool = False, max_aux_streams: ~typing.Optional[int] = None, version_compatible: bool = False, optimization_level: ~typing.Optional[int] = None, use_python_runtime: ~typing.Optional[bool] = False, truncate_double: bool = False, use_fast_partitioner: bool = True, enable_experimental_decompositions: bool = False, device: ~torch_tensorrt._Device.Device = <factory>, require_full_compilation: bool = False, disable_tf32: bool = False, assume_dynamic_shape_support: bool = False, sparse_weights: bool = False, engine_capability: ~torch_tensorrt._enums.EngineCapability = <factory>, num_avg_timing_iters: int = 1, dla_sram_size: int = 1048576, dla_local_dram_size: int = 1073741824, dla_global_dram_size: int = 536870912, dryrun: ~typing.Union[bool, str] = False, hardware_compatible: bool = False, timing_cache_path: str = '/tmp/torch_tensorrt_engine_cache/timing_cache.bin', lazy_engine_init: bool = False, cache_built_engines: bool = False, reuse_cached_engines: bool = False, use_explicit_typing: bool = False, use_fp32_acc: bool = False, refit_identical_engine_weights: bool = False, strip_engine_weights: bool = False, immutable_weights: bool = True, enable_weight_streaming: bool = False, enable_cross_compile_for_windows: bool = False)[source]
+class torch_tensorrt.dynamo.CompilationSettings(enabled_precisions: ~typing.Set[~torch_tensorrt._enums.dtype] = <factory>, debug: bool = False, workspace_size: int = 0, min_block_size: int = 5, torch_executed_ops: ~typing.Collection[~typing.Union[~typing.Callable[[...], ~typing.Any], str]] = <factory>, pass_through_build_failures: bool = False, max_aux_streams: ~typing.Optional[int] = None, version_compatible: bool = False, optimization_level: ~typing.Optional[int] = None, use_python_runtime: ~typing.Optional[bool] = False, truncate_double: bool = False, use_fast_partitioner: bool = True, enable_experimental_decompositions: bool = False, device: ~torch_tensorrt._Device.Device = <factory>, require_full_compilation: bool = False, disable_tf32: bool = False, assume_dynamic_shape_support: bool = False, sparse_weights: bool = False, engine_capability: ~torch_tensorrt._enums.EngineCapability = <factory>, num_avg_timing_iters: int = 1, dla_sram_size: int = 1048576, dla_local_dram_size: int = 1073741824, dla_global_dram_size: int = 536870912, dryrun: ~typing.Union[bool, str] = False, hardware_compatible: bool = False, timing_cache_path: str = '/tmp/torch_tensorrt_engine_cache/timing_cache.bin', lazy_engine_init: bool = False, cache_built_engines: bool = False, reuse_cached_engines: bool = False, use_explicit_typing: bool = False, use_fp32_acc: bool = False, refit_identical_engine_weights: bool = False, strip_engine_weights: bool = False, immutable_weights: bool = True, enable_weight_streaming: bool = False, enable_cross_compile_for_windows: bool = False, use_aot_joint_export: bool = True)[source]

Compilation settings for Torch-TensorRT Dynamo Paths

Parameters
@@ -540,6 +540,7 @@

Customizable Settings

enable_weight_streaming (bool) – Enable weight streaming.

  • enable_cross_compile_for_windows (bool) – By default this is False means TensorRT engines can only be executed on the same platform where they were built. True will enable cross-platform compatibility which allows the engine to be built on Linux and run on Windows

  • +
  • use_aot_joint_export (bool) – Use aot_export_joint_simple, else wrap backend with AOT_autograd, required for distributed tensors

  • @@ -547,7 +548,7 @@

    Customizable Settings

    Custom Setting Usage

    -
    import torch_tensorrt
    +
    import torch_tensorrt
     ...
     optimized_model = torch.compile(model, backend="torch_tensorrt", dynamic=False,
                                     options={"truncate_long_and_double": True,
    @@ -568,7 +569,7 @@ 

    Custom Setting Usage

    Compilation

    Compilation is triggered by passing inputs to the model, as so:

    -
    import torch_tensorrt
    +
    import torch_tensorrt
     ...
     # Causes model compilation to occur
     first_outputs = optimized_model(*inputs)
    @@ -589,7 +590,7 @@ 

    Model Performance

    Operator Coverage

    Compilation is also a useful tool in determining operator coverage for a particular model. For instance, the following compilation command will display the operator coverage for each graph, but will not compile the model - effectively providing a “dryrun” mechanism:

    -
    import torch_tensorrt
    +
    import torch_tensorrt
     ...
     optimized_model = torch.compile(model, backend="torch_tensorrt", dynamic=False,
                                     options={"debug": True,
    @@ -601,8 +602,8 @@ 

    Operator Coverage

    Feasibility of Serialization

    Compilation can also be helpful in demonstrating graph breaks and the feasibility of serialization of a particular model. For instance, if a model has no graph breaks and compiles successfully with the Torch-TensorRT backend, then that model should be compilable and serializeable via the torch_tensorrt Dynamo IR, as discussed in Dynamic shapes with Torch-TensorRT. To determine the number of graph breaks in a model, the torch._dynamo.explain function is very useful:

    -
    import torch
    -import torch_tensorrt
    +
    import torch
    +import torch_tensorrt
     ...
     explanation = torch._dynamo.explain(model)(*inputs)
     print(f"Graph breaks: {explanation.graph_break_count}")
    diff --git a/docs/fx/getting_started_with_fx_path.html b/docs/fx/getting_started_with_fx_path.html
    index 7e5307b8eb..3b1065f723 100644
    --- a/docs/fx/getting_started_with_fx_path.html
    +++ b/docs/fx/getting_started_with_fx_path.html
    @@ -10,7 +10,7 @@
     
       
       
    -  Torch-TensorRT (FX Frontend) User Guide — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
    +  Torch-TensorRT (FX Frontend) User Guide — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
       
     
       
    @@ -275,7 +275,7 @@
                   
                   
                     
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/genindex.html b/docs/genindex.html index 870ed722b7..638858684b 100644 --- a/docs/genindex.html +++ b/docs/genindex.html @@ -9,7 +9,7 @@ - Index — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Index — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -272,7 +272,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/getting_started/installation.html b/docs/getting_started/installation.html index 9c964cc066..2b37e26eb8 100644 --- a/docs/getting_started/installation.html +++ b/docs/getting_started/installation.html @@ -10,7 +10,7 @@ - Installation — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Installation — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/getting_started/jetpack.html b/docs/getting_started/jetpack.html index 363de0a92f..75c7fe711f 100644 --- a/docs/getting_started/jetpack.html +++ b/docs/getting_started/jetpack.html @@ -10,7 +10,7 @@ - Overview — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Overview — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/getting_started/quick_start.html b/docs/getting_started/quick_start.html index 104a7bdff6..3253eae150 100644 --- a/docs/getting_started/quick_start.html +++ b/docs/getting_started/quick_start.html @@ -10,7 +10,7 @@ - Quick Start — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Quick Start — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -476,8 +476,8 @@

    Option 1: torch.compile

    You can use Torch-TensorRT anywhere you use torch.compile:

    -
    import torch
    -import torch_tensorrt
    +
    import torch
    +import torch_tensorrt
     
     model = MyModel().eval().cuda() # define your model here
     x = torch.randn((1, 3, 224, 224)).cuda() # define what the inputs to the model will look like
    @@ -494,8 +494,8 @@ 

    Option 2: Export

    Step 1: Optimize + serialize

    -
    import torch
    -import torch_tensorrt
    +
    import torch
    +import torch_tensorrt
     
     model = MyModel().eval().cuda() # define your model here
     inputs = [torch.randn((1, 3, 224, 224)).cuda()] # define a list of representative inputs here
    @@ -510,8 +510,8 @@ 

    Step 1: Optimize + serialize

    Deployment in Python:

    -
    import torch
    -import torch_tensorrt
    +
    import torch
    +import torch_tensorrt
     
     inputs = [torch.randn((1, 3, 224, 224)).cuda()] # your inputs go here
     
    diff --git a/docs/index.html b/docs/index.html
    index f46e7a0cdc..4dcbc38b65 100644
    --- a/docs/index.html
    +++ b/docs/index.html
    @@ -10,7 +10,7 @@
     
       
       
    -  Torch-TensorRT — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
    +  Torch-TensorRT — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
       
     
       
    @@ -274,7 +274,7 @@
                   
                   
                     
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/indices/supported_ops.html b/docs/indices/supported_ops.html index f863491729..a1701dbb7d 100644 --- a/docs/indices/supported_ops.html +++ b/docs/indices/supported_ops.html @@ -10,7 +10,7 @@ - Operators Supported — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Operators Supported — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -274,7 +274,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/objects.inv b/docs/objects.inv index a08f91b520..6cd81b6689 100644 Binary files a/docs/objects.inv and b/docs/objects.inv differ diff --git a/docs/py-modindex.html b/docs/py-modindex.html index abe79a3648..b2ae3def52 100644 --- a/docs/py-modindex.html +++ b/docs/py-modindex.html @@ -9,7 +9,7 @@ - Python Module Index — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Python Module Index — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/py_api/dynamo.html b/docs/py_api/dynamo.html index d4623e80d3..c305808a75 100644 --- a/docs/py_api/dynamo.html +++ b/docs/py_api/dynamo.html @@ -10,7 +10,7 @@ - torch_tensorrt.dynamo — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + torch_tensorrt.dynamo — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -663,7 +663,7 @@

    Functions

    -class torch_tensorrt.dynamo.CompilationSettings(enabled_precisions: ~typing.Set[~torch_tensorrt._enums.dtype] = <factory>, debug: bool = False, workspace_size: int = 0, min_block_size: int = 5, torch_executed_ops: ~typing.Collection[~typing.Union[~typing.Callable[[...], ~typing.Any], str]] = <factory>, pass_through_build_failures: bool = False, max_aux_streams: ~typing.Optional[int] = None, version_compatible: bool = False, optimization_level: ~typing.Optional[int] = None, use_python_runtime: ~typing.Optional[bool] = False, truncate_double: bool = False, use_fast_partitioner: bool = True, enable_experimental_decompositions: bool = False, device: ~torch_tensorrt._Device.Device = <factory>, require_full_compilation: bool = False, disable_tf32: bool = False, assume_dynamic_shape_support: bool = False, sparse_weights: bool = False, engine_capability: ~torch_tensorrt._enums.EngineCapability = <factory>, num_avg_timing_iters: int = 1, dla_sram_size: int = 1048576, dla_local_dram_size: int = 1073741824, dla_global_dram_size: int = 536870912, dryrun: ~typing.Union[bool, str] = False, hardware_compatible: bool = False, timing_cache_path: str = '/tmp/torch_tensorrt_engine_cache/timing_cache.bin', lazy_engine_init: bool = False, cache_built_engines: bool = False, reuse_cached_engines: bool = False, use_explicit_typing: bool = False, use_fp32_acc: bool = False, refit_identical_engine_weights: bool = False, strip_engine_weights: bool = False, immutable_weights: bool = True, enable_weight_streaming: bool = False, enable_cross_compile_for_windows: bool = False)[source]
    +class torch_tensorrt.dynamo.CompilationSettings(enabled_precisions: ~typing.Set[~torch_tensorrt._enums.dtype] = <factory>, debug: bool = False, workspace_size: int = 0, min_block_size: int = 5, torch_executed_ops: ~typing.Collection[~typing.Union[~typing.Callable[[...], ~typing.Any], str]] = <factory>, pass_through_build_failures: bool = False, max_aux_streams: ~typing.Optional[int] = None, version_compatible: bool = False, optimization_level: ~typing.Optional[int] = None, use_python_runtime: ~typing.Optional[bool] = False, truncate_double: bool = False, use_fast_partitioner: bool = True, enable_experimental_decompositions: bool = False, device: ~torch_tensorrt._Device.Device = <factory>, require_full_compilation: bool = False, disable_tf32: bool = False, assume_dynamic_shape_support: bool = False, sparse_weights: bool = False, engine_capability: ~torch_tensorrt._enums.EngineCapability = <factory>, num_avg_timing_iters: int = 1, dla_sram_size: int = 1048576, dla_local_dram_size: int = 1073741824, dla_global_dram_size: int = 536870912, dryrun: ~typing.Union[bool, str] = False, hardware_compatible: bool = False, timing_cache_path: str = '/tmp/torch_tensorrt_engine_cache/timing_cache.bin', lazy_engine_init: bool = False, cache_built_engines: bool = False, reuse_cached_engines: bool = False, use_explicit_typing: bool = False, use_fp32_acc: bool = False, refit_identical_engine_weights: bool = False, strip_engine_weights: bool = False, immutable_weights: bool = True, enable_weight_streaming: bool = False, enable_cross_compile_for_windows: bool = False, use_aot_joint_export: bool = True)[source]

    Compilation settings for Torch-TensorRT Dynamo Paths

    Parameters
    @@ -711,6 +711,7 @@

    Classes - torch_tensorrt.fx — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + torch_tensorrt.fx — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/py_api/logging.html b/docs/py_api/logging.html index a7411727d9..87d13b4199 100644 --- a/docs/py_api/logging.html +++ b/docs/py_api/logging.html @@ -10,7 +10,7 @@ - torch_tensorrt.logging — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + torch_tensorrt.logging — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/py_api/ptq.html b/docs/py_api/ptq.html index 7a96a3556a..909b32bdb3 100644 --- a/docs/py_api/ptq.html +++ b/docs/py_api/ptq.html @@ -10,7 +10,7 @@ - torch_tensorrt.ts.ptq — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + torch_tensorrt.ts.ptq — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/py_api/runtime.html b/docs/py_api/runtime.html index 3b7ae83ef8..289ae7c2aa 100644 --- a/docs/py_api/runtime.html +++ b/docs/py_api/runtime.html @@ -10,7 +10,7 @@ - torch_tensorrt.runtime — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + torch_tensorrt.runtime — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -581,13 +581,13 @@

    Classes
    -class torch_tensorrt.runtime.PythonTorchTensorRTModule(serialized_engine: ~typing.Optional[bytes] = None, input_binding_names: ~typing.Optional[~typing.List[str]] = None, output_binding_names: ~typing.Optional[~typing.List[str]] = None, *, name: str = '', settings: ~torch_tensorrt.dynamo._settings.CompilationSettings = CompilationSettings(enabled_precisions={<dtype.f32: 7>}, debug=False, workspace_size=0, min_block_size=5, torch_executed_ops=set(), pass_through_build_failures=False, max_aux_streams=None, version_compatible=False, optimization_level=None, use_python_runtime=False, truncate_double=False, use_fast_partitioner=True, enable_experimental_decompositions=False, device=Device(type=DeviceType.GPU, gpu_id=0), require_full_compilation=False, disable_tf32=False, assume_dynamic_shape_support=False, sparse_weights=False, engine_capability=<EngineCapability.STANDARD: 1>, num_avg_timing_iters=1, dla_sram_size=1048576, dla_local_dram_size=1073741824, dla_global_dram_size=536870912, dryrun=False, hardware_compatible=False, timing_cache_path='/tmp/torch_tensorrt_engine_cache/timing_cache.bin', lazy_engine_init=False, cache_built_engines=False, reuse_cached_engines=False, use_explicit_typing=False, use_fp32_acc=False, refit_identical_engine_weights=False, strip_engine_weights=False, immutable_weights=True, enable_weight_streaming=False, enable_cross_compile_for_windows=False), weight_name_map: ~typing.Optional[dict[typing.Any, typing.Any]] = None)[source]
    +class torch_tensorrt.runtime.PythonTorchTensorRTModule(serialized_engine: ~typing.Optional[bytes] = None, input_binding_names: ~typing.Optional[~typing.List[str]] = None, output_binding_names: ~typing.Optional[~typing.List[str]] = None, *, name: str = '', settings: ~torch_tensorrt.dynamo._settings.CompilationSettings = CompilationSettings(enabled_precisions={<dtype.f32: 7>}, debug=False, workspace_size=0, min_block_size=5, torch_executed_ops=set(), pass_through_build_failures=False, max_aux_streams=None, version_compatible=False, optimization_level=None, use_python_runtime=False, truncate_double=False, use_fast_partitioner=True, enable_experimental_decompositions=False, device=Device(type=DeviceType.GPU, gpu_id=0), require_full_compilation=False, disable_tf32=False, assume_dynamic_shape_support=False, sparse_weights=False, engine_capability=<EngineCapability.STANDARD: 1>, num_avg_timing_iters=1, dla_sram_size=1048576, dla_local_dram_size=1073741824, dla_global_dram_size=536870912, dryrun=False, hardware_compatible=False, timing_cache_path='/tmp/torch_tensorrt_engine_cache/timing_cache.bin', lazy_engine_init=False, cache_built_engines=False, reuse_cached_engines=False, use_explicit_typing=False, use_fp32_acc=False, refit_identical_engine_weights=False, strip_engine_weights=False, immutable_weights=True, enable_weight_streaming=False, enable_cross_compile_for_windows=False, use_aot_joint_export=True), weight_name_map: ~typing.Optional[dict[typing.Any, typing.Any]] = None)[source]

    PythonTorchTensorRTModule is a PyTorch module which encompasses an arbitrary TensorRT Engine.

    This module is backed by the Torch-TensorRT runtime and is only compatible with FX / Dynamo / Python deployments. This module cannot be serialized to torchscript via torch.jit.trace for C++ deployment.

    -__init__(serialized_engine: ~typing.Optional[bytes] = None, input_binding_names: ~typing.Optional[~typing.List[str]] = None, output_binding_names: ~typing.Optional[~typing.List[str]] = None, *, name: str = '', settings: ~torch_tensorrt.dynamo._settings.CompilationSettings = CompilationSettings(enabled_precisions={<dtype.f32: 7>}, debug=False, workspace_size=0, min_block_size=5, torch_executed_ops=set(), pass_through_build_failures=False, max_aux_streams=None, version_compatible=False, optimization_level=None, use_python_runtime=False, truncate_double=False, use_fast_partitioner=True, enable_experimental_decompositions=False, device=Device(type=DeviceType.GPU, gpu_id=0), require_full_compilation=False, disable_tf32=False, assume_dynamic_shape_support=False, sparse_weights=False, engine_capability=<EngineCapability.STANDARD: 1>, num_avg_timing_iters=1, dla_sram_size=1048576, dla_local_dram_size=1073741824, dla_global_dram_size=536870912, dryrun=False, hardware_compatible=False, timing_cache_path='/tmp/torch_tensorrt_engine_cache/timing_cache.bin', lazy_engine_init=False, cache_built_engines=False, reuse_cached_engines=False, use_explicit_typing=False, use_fp32_acc=False, refit_identical_engine_weights=False, strip_engine_weights=False, immutable_weights=True, enable_weight_streaming=False, enable_cross_compile_for_windows=False), weight_name_map: ~typing.Optional[dict[typing.Any, typing.Any]] = None)[source]
    +__init__(serialized_engine: ~typing.Optional[bytes] = None, input_binding_names: ~typing.Optional[~typing.List[str]] = None, output_binding_names: ~typing.Optional[~typing.List[str]] = None, *, name: str = '', settings: ~torch_tensorrt.dynamo._settings.CompilationSettings = CompilationSettings(enabled_precisions={<dtype.f32: 7>}, debug=False, workspace_size=0, min_block_size=5, torch_executed_ops=set(), pass_through_build_failures=False, max_aux_streams=None, version_compatible=False, optimization_level=None, use_python_runtime=False, truncate_double=False, use_fast_partitioner=True, enable_experimental_decompositions=False, device=Device(type=DeviceType.GPU, gpu_id=0), require_full_compilation=False, disable_tf32=False, assume_dynamic_shape_support=False, sparse_weights=False, engine_capability=<EngineCapability.STANDARD: 1>, num_avg_timing_iters=1, dla_sram_size=1048576, dla_local_dram_size=1073741824, dla_global_dram_size=536870912, dryrun=False, hardware_compatible=False, timing_cache_path='/tmp/torch_tensorrt_engine_cache/timing_cache.bin', lazy_engine_init=False, cache_built_engines=False, reuse_cached_engines=False, use_explicit_typing=False, use_fp32_acc=False, refit_identical_engine_weights=False, strip_engine_weights=False, immutable_weights=True, enable_weight_streaming=False, enable_cross_compile_for_windows=False, use_aot_joint_export=True), weight_name_map: ~typing.Optional[dict[typing.Any, typing.Any]] = None)[source]

    Takes a name, target device, serialized TensorRT engine, and binding names / order and constructs a PyTorch torch.nn.Module around it. Uses TensorRT Python APIs to run the engine

    diff --git a/docs/py_api/torch_tensorrt.html b/docs/py_api/torch_tensorrt.html index 34c4ff2524..b1e95db3e5 100644 --- a/docs/py_api/torch_tensorrt.html +++ b/docs/py_api/torch_tensorrt.html @@ -10,7 +10,7 @@ - torch_tensorrt — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + torch_tensorrt — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/py_api/ts.html b/docs/py_api/ts.html index c53cb57813..c587c5d0bd 100644 --- a/docs/py_api/ts.html +++ b/docs/py_api/ts.html @@ -10,7 +10,7 @@ - torch_tensorrt.ts — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + torch_tensorrt.ts — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -695,7 +695,7 @@

    Functions
    -torch_tensorrt.ts.TensorRTCompileSpec(inputs: Optional[List[torch.Tensor | Input]] = None, input_signature: Optional[Any] = None, device: Optional[Union[device, Device]] = None, disable_tf32: bool = False, sparse_weights: bool = False, enabled_precisions: Optional[Set[Union[dtype, dtype]]] = None, refit: bool = False, debug: bool = False, capability: EngineCapability = EngineCapability.STANDARD, num_avg_timing_iters: int = 1, workspace_size: int = 0, dla_sram_size: int = 1048576, dla_local_dram_size: int = 1073741824, dla_global_dram_size: int = 536870912, truncate_long_and_double: bool = False, calibrator: object = None, allow_shape_tensors: bool = False) <torch.ScriptClass object at 0x7fa3dde966b0>[source]
    +torch_tensorrt.ts.TensorRTCompileSpec(inputs: Optional[List[torch.Tensor | Input]] = None, input_signature: Optional[Any] = None, device: Optional[Union[device, Device]] = None, disable_tf32: bool = False, sparse_weights: bool = False, enabled_precisions: Optional[Set[Union[dtype, dtype]]] = None, refit: bool = False, debug: bool = False, capability: EngineCapability = EngineCapability.STANDARD, num_avg_timing_iters: int = 1, workspace_size: int = 0, dla_sram_size: int = 1048576, dla_local_dram_size: int = 1073741824, dla_global_dram_size: int = 536870912, truncate_long_and_double: bool = False, calibrator: object = None, allow_shape_tensors: bool = False) <torch.ScriptClass object at 0x7f2630ede1f0>[source]

    Utility to create a formatted spec dictionary for using the PyTorch TensorRT backend

    Keyword Arguments
    diff --git a/docs/search.html b/docs/search.html index 118d5e24d6..0403716980 100644 --- a/docs/search.html +++ b/docs/search.html @@ -9,7 +9,7 @@ - Search — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Search — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -272,7 +272,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/searchindex.js b/docs/searchindex.js index 220a7c8fe7..5c7e0835fc 100644 --- a/docs/searchindex.js +++ b/docs/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["_cpp_api/classtorch__tensorrt_1_1DataType", "_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType", "_cpp_api/classtorch__tensorrt_1_1TensorFormat", "_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator", "_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator", "_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502", "_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268", "_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e", "_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827", "_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b", "_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da", "_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59", "_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883", "_cpp_api/dir_cpp", "_cpp_api/dir_cpp_include", "_cpp_api/dir_cpp_include_torch_tensorrt", "_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558", "_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb", "_cpp_api/file_cpp_include_torch_tensorrt_logging.h", "_cpp_api/file_cpp_include_torch_tensorrt_macros.h", "_cpp_api/file_cpp_include_torch_tensorrt_ptq.h", "_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h", "_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3", "_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650", "_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a", "_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2", "_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8", "_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5", "_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc", "_cpp_api/function_ptq_8h_1a226e3c83379d1012cde8578c1c86b16c", "_cpp_api/function_ptq_8h_1a6186e305f47c1d94b6130ef6c7f7e178", "_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797", "_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9", "_cpp_api/function_torch__tensorrt_8h_1a81f9783517335dda877d8cfcf38987c9", "_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528", "_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384", "_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1", "_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2", "_cpp_api/namespace_torch_tensorrt", "_cpp_api/namespace_torch_tensorrt__logging", "_cpp_api/namespace_torch_tensorrt__ptq", "_cpp_api/namespace_torch_tensorrt__torchscript", "_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h", "_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h", "_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h", "_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h", "_cpp_api/structtorch__tensorrt_1_1Device", "_cpp_api/structtorch__tensorrt_1_1GraphInputs", "_cpp_api/structtorch__tensorrt_1_1Input", "_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec", "_cpp_api/torch_tensort_cpp", "_cpp_api/unabridged_orphan", "cli/torchtrtc", "contributors/conversion", "contributors/dynamo_converters", "contributors/lowering", "contributors/partitioning", "contributors/phases", "contributors/runtime", "contributors/system_overview", "contributors/ts_converters", "contributors/useful_links", "contributors/writing_dynamo_aten_lowering_passes", "dynamo/dynamo_export", "dynamo/torch_compile", "fx/getting_started_with_fx_path", "getting_started/installation", "getting_started/jetpack", "getting_started/quick_start", "index", "indices/supported_ops", "py_api/dynamo", "py_api/fx", "py_api/logging", "py_api/ptq", "py_api/runtime", "py_api/torch_tensorrt", "py_api/ts", "sg_execution_times", "src/pytorch-sphinx-theme/docs/changelog", "src/pytorch-sphinx-theme/docs/configuring", "src/pytorch-sphinx-theme/docs/demo/api", "src/pytorch-sphinx-theme/docs/demo/demo", "src/pytorch-sphinx-theme/docs/demo/lists_tables", "src/pytorch-sphinx-theme/docs/demo/long", "src/pytorch-sphinx-theme/docs/demo/structure", "src/pytorch-sphinx-theme/docs/index", "src/pytorch-sphinx-theme/docs/installing", "ts/creating_torchscript_module_in_python", "ts/getting_started_with_cpp_api", "ts/getting_started_with_python_api", "ts/ptq", "ts/torchscript_frontend_from_pytorch", "tutorials/_rendered_examples/dynamo/auto_generate_converters", "tutorials/_rendered_examples/dynamo/converter_overloading", "tutorials/_rendered_examples/dynamo/cross_runtime_compilation_for_windows", "tutorials/_rendered_examples/dynamo/custom_kernel_plugins", "tutorials/_rendered_examples/dynamo/engine_caching_bert_example", "tutorials/_rendered_examples/dynamo/engine_caching_example", "tutorials/_rendered_examples/dynamo/index", "tutorials/_rendered_examples/dynamo/mutable_torchtrt_module_example", "tutorials/_rendered_examples/dynamo/pre_allocated_output_example", "tutorials/_rendered_examples/dynamo/refit_engine_example", "tutorials/_rendered_examples/dynamo/torch_compile_advanced_usage", "tutorials/_rendered_examples/dynamo/torch_compile_gpt2", "tutorials/_rendered_examples/dynamo/torch_compile_resnet_example", "tutorials/_rendered_examples/dynamo/torch_compile_stable_diffusion", "tutorials/_rendered_examples/dynamo/torch_compile_transformers_example", "tutorials/_rendered_examples/dynamo/torch_export_cudagraphs", "tutorials/_rendered_examples/dynamo/torch_export_gpt2", "tutorials/_rendered_examples/dynamo/torch_export_llama2", "tutorials/_rendered_examples/dynamo/torch_export_sam2", "tutorials/_rendered_examples/dynamo/vgg16_ptq", "tutorials/_rendered_examples/dynamo/weight_streaming_example", "tutorials/_rendered_examples/index", "tutorials/_rendered_examples/triton/index", "tutorials/notebooks", "tutorials/serving_torch_tensorrt_with_triton", "user_guide/dynamic_shapes", "user_guide/mixed_precision", "user_guide/runtime", "user_guide/saving_models", "user_guide/torch_tensorrt_explained", "user_guide/using_dla"], "filenames": ["_cpp_api/classtorch__tensorrt_1_1DataType.rst", "_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType.rst", "_cpp_api/classtorch__tensorrt_1_1TensorFormat.rst", "_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator.rst", "_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator.rst", "_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.rst", "_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268.rst", "_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e.rst", "_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827.rst", "_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b.rst", "_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.rst", "_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59.rst", "_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883.rst", "_cpp_api/dir_cpp.rst", "_cpp_api/dir_cpp_include.rst", "_cpp_api/dir_cpp_include_torch_tensorrt.rst", "_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558.rst", "_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb.rst", "_cpp_api/file_cpp_include_torch_tensorrt_logging.h.rst", "_cpp_api/file_cpp_include_torch_tensorrt_macros.h.rst", "_cpp_api/file_cpp_include_torch_tensorrt_ptq.h.rst", "_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h.rst", "_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3.rst", "_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650.rst", "_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a.rst", "_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2.rst", "_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8.rst", "_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5.rst", "_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc.rst", "_cpp_api/function_ptq_8h_1a226e3c83379d1012cde8578c1c86b16c.rst", "_cpp_api/function_ptq_8h_1a6186e305f47c1d94b6130ef6c7f7e178.rst", "_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797.rst", "_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9.rst", "_cpp_api/function_torch__tensorrt_8h_1a81f9783517335dda877d8cfcf38987c9.rst", "_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528.rst", "_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384.rst", "_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1.rst", "_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2.rst", "_cpp_api/namespace_torch_tensorrt.rst", "_cpp_api/namespace_torch_tensorrt__logging.rst", "_cpp_api/namespace_torch_tensorrt__ptq.rst", "_cpp_api/namespace_torch_tensorrt__torchscript.rst", "_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h.rst", "_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h.rst", "_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h.rst", "_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h.rst", "_cpp_api/structtorch__tensorrt_1_1Device.rst", "_cpp_api/structtorch__tensorrt_1_1GraphInputs.rst", "_cpp_api/structtorch__tensorrt_1_1Input.rst", "_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec.rst", "_cpp_api/torch_tensort_cpp.rst", "_cpp_api/unabridged_orphan.rst", "cli/torchtrtc.rst", "contributors/conversion.rst", "contributors/dynamo_converters.rst", "contributors/lowering.rst", "contributors/partitioning.rst", "contributors/phases.rst", "contributors/runtime.rst", "contributors/system_overview.rst", "contributors/ts_converters.rst", "contributors/useful_links.rst", "contributors/writing_dynamo_aten_lowering_passes.rst", "dynamo/dynamo_export.rst", "dynamo/torch_compile.rst", "fx/getting_started_with_fx_path.rst", "getting_started/installation.rst", "getting_started/jetpack.rst", "getting_started/quick_start.rst", "index.rst", "indices/supported_ops.rst", "py_api/dynamo.rst", "py_api/fx.rst", "py_api/logging.rst", "py_api/ptq.rst", "py_api/runtime.rst", "py_api/torch_tensorrt.rst", "py_api/ts.rst", "sg_execution_times.rst", "src/pytorch-sphinx-theme/docs/changelog.rst", "src/pytorch-sphinx-theme/docs/configuring.rst", "src/pytorch-sphinx-theme/docs/demo/api.rst", "src/pytorch-sphinx-theme/docs/demo/demo.rst", "src/pytorch-sphinx-theme/docs/demo/lists_tables.rst", "src/pytorch-sphinx-theme/docs/demo/long.rst", "src/pytorch-sphinx-theme/docs/demo/structure.rst", "src/pytorch-sphinx-theme/docs/index.rst", "src/pytorch-sphinx-theme/docs/installing.rst", "ts/creating_torchscript_module_in_python.rst", "ts/getting_started_with_cpp_api.rst", "ts/getting_started_with_python_api.rst", "ts/ptq.rst", "ts/torchscript_frontend_from_pytorch.rst", "tutorials/_rendered_examples/dynamo/auto_generate_converters.rst", "tutorials/_rendered_examples/dynamo/converter_overloading.rst", "tutorials/_rendered_examples/dynamo/cross_runtime_compilation_for_windows.rst", "tutorials/_rendered_examples/dynamo/custom_kernel_plugins.rst", "tutorials/_rendered_examples/dynamo/engine_caching_bert_example.rst", "tutorials/_rendered_examples/dynamo/engine_caching_example.rst", "tutorials/_rendered_examples/dynamo/index.rst", "tutorials/_rendered_examples/dynamo/mutable_torchtrt_module_example.rst", "tutorials/_rendered_examples/dynamo/pre_allocated_output_example.rst", "tutorials/_rendered_examples/dynamo/refit_engine_example.rst", "tutorials/_rendered_examples/dynamo/torch_compile_advanced_usage.rst", "tutorials/_rendered_examples/dynamo/torch_compile_gpt2.rst", "tutorials/_rendered_examples/dynamo/torch_compile_resnet_example.rst", "tutorials/_rendered_examples/dynamo/torch_compile_stable_diffusion.rst", "tutorials/_rendered_examples/dynamo/torch_compile_transformers_example.rst", "tutorials/_rendered_examples/dynamo/torch_export_cudagraphs.rst", "tutorials/_rendered_examples/dynamo/torch_export_gpt2.rst", "tutorials/_rendered_examples/dynamo/torch_export_llama2.rst", "tutorials/_rendered_examples/dynamo/torch_export_sam2.rst", "tutorials/_rendered_examples/dynamo/vgg16_ptq.rst", "tutorials/_rendered_examples/dynamo/weight_streaming_example.rst", "tutorials/_rendered_examples/index.rst", "tutorials/_rendered_examples/triton/index.rst", "tutorials/notebooks.rst", "tutorials/serving_torch_tensorrt_with_triton.rst", "user_guide/dynamic_shapes.rst", "user_guide/mixed_precision.rst", "user_guide/runtime.rst", "user_guide/saving_models.rst", "user_guide/torch_tensorrt_explained.rst", "user_guide/using_dla.rst"], "titles": ["Class DataType", "Class Device::DeviceType", "Class TensorFormat", "Template Class Int8CacheCalibrator", "Template Class Int8Calibrator", "Define STR", "Define TORCH_TENSORRT_PATCH_VERSION", "Define TORCH_TENSORRT_MAJOR_VERSION", "Define TORCH_TENSORRT_MINOR_VERSION", "Define TORCHTRT_API", "Define XSTR", "Define TORCHTRT_HIDDEN", "Define TORCH_TENSORRT_VERSION", "Directory cpp", "Directory include", "Directory torch_tensorrt", "Enum Level", "Enum EngineCapability", "File logging.h", "File macros.h", "File ptq.h", "File torch_tensorrt.h", "Function torch_tensorrt::logging::get_logging_prefix", "Function torch_tensorrt::logging::get_reportable_log_level", "Function torch_tensorrt::logging::get_is_colored_output_on", "Function torch_tensorrt::logging::set_reportable_log_level", "Function torch_tensorrt::logging::log", "Function torch_tensorrt::logging::set_is_colored_output_on", "Function torch_tensorrt::logging::set_logging_prefix", "Template Function torch_tensorrt::ptq::make_int8_cache_calibrator", "Template Function torch_tensorrt::ptq::make_int8_calibrator", "Function torch_tensorrt::torchscript::check_method_operator_support", "Function torch_tensorrt::torchscript::compile", "Function torch_tensorrt::torchscript::embed_engine_in_new_module", "Function torch_tensorrt::get_build_info", "Function torch_tensorrt::set_device", "Function torch_tensorrt::dump_build_info", "Function torch_tensorrt::torchscript::convert_method_to_trt_engine", "Namespace torch_tensorrt", "Namespace torch_tensorrt::logging", "Namespace torch_tensorrt::ptq", "Namespace torch_tensorrt::torchscript", "Program Listing for File logging.h", "Program Listing for File macros.h", "Program Listing for File ptq.h", "Program Listing for File torch_tensorrt.h", "Struct Device", "Struct GraphInputs", "Struct Input", "Struct CompileSpec", "Torch-TensorRT C++ API", "Full API", "torchtrtc", "Conversion Phase", "Writing Dynamo Converters", "Lowering Phase", "Partitioning Phase", "Compiler Phases", "Runtime Phase", "System Overview", "Writing TorchScript Converters", "Useful Links for Torch-TensorRT Development", "Writing Dynamo ATen Lowering Passes", "Compiling Exported Programs with Torch-TensorRT", "TensorRT Backend for torch.compile", "Torch-TensorRT (FX Frontend) User Guide", "Installation", "Overview", "Quick Start", "Torch-TensorRT", "Operators Supported", "torch_tensorrt.dynamo", "torch_tensorrt.fx", "torch_tensorrt.logging", "torch_tensorrt.ts.ptq", "torch_tensorrt.runtime", "torch_tensorrt", "torch_tensorrt.ts", "Computation times", "Changelog", "Configuration", "5. :mod:`test_py_module`", "3. Paragraph Level Markup", "4. Lists & Tables", "1. Long Sticky Nav", "1. Structural Elements", "<no title>", "Installation", "Creating a TorchScript Module", "Using Torch-TensorRT in C++", "Using Torch-TensorRT in Python", "Post Training Quantization (PTQ)", "Using Torch-TensorRT TorchScript Frontend Directly From PyTorch", "Automatically Generate a Converter for a Custom Kernel", "Overloading Torch-TensorRT Converters with Custom Converters", "Cross runtime compilation for windows example", "Using Custom Kernels within TensorRT Engines with Torch-TensorRT", "Engine Caching (BERT)", "Engine Caching", "Dependencies", "Mutable Torch TensorRT Module", "Pre-allocated output buffer", "Refitting Torch-TensorRT Programs with New Weights", "Torch Compile Advanced Usage", "Compiling GPT2 using the Torch-TensorRT torch.compile frontend", "Compiling ResNet with dynamic shapes using the torch.compile backend", "Compiling Stable Diffusion model using the torch.compile backend", "Compiling BERT using the torch.compile backend", "Torch Export with Cudagraphs", "Compiling GPT2 using the dynamo backend", "Compiling Llama2 using the dynamo backend", "Compiling SAM2 using the dynamo backend", "Deploy Quantized Models using Torch-TensorRT", "Weight Streaming", "Torch-TensorRT Tutorials", "Serving a Torch-TensorRT model with Triton", "Legacy notebooks", "Serving a Torch-TensorRT model with Triton", "Dynamic shapes with Torch-TensorRT", "Compile Mixed Precision models with Torch-TensorRT", "Deploying Torch-TensorRT Programs", "Saving models compiled with Torch-TensorRT", "Torch-TensorRT Explained", "DLA"], "terms": {"defin": [0, 1, 2, 3, 4, 16, 17, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 43, 46, 47, 48, 49, 51, 52, 54, 65, 68, 75, 76, 80, 88, 89, 90, 91, 93, 94, 96, 98, 103, 107, 108, 109, 110, 116], "file": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 17, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 46, 47, 48, 49, 52, 54, 56, 58, 59, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 78, 80, 81, 83, 87, 89, 91, 95, 114, 115, 117, 118, 121], "torch_tensorrt": [0, 1, 2, 14, 16, 17, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 54, 56, 62, 63, 64, 65, 68, 69, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 106, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 123], "h": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 46, 47, 48, 49, 50, 51, 52, 55, 68, 76, 89, 91, 111], "support": [0, 1, 2, 27, 31, 46, 48, 49, 52, 54, 56, 61, 63, 65, 67, 68, 69, 72, 75, 76, 77, 80, 81, 88, 89, 90, 93, 94, 96, 101, 102, 104, 105, 107, 109, 110, 112, 113, 114, 115, 117, 119, 122, 123], "data": [0, 2, 3, 4, 29, 30, 44, 46, 48, 49, 52, 53, 56, 57, 59, 60, 64, 65, 70, 71, 72, 74, 76, 77, 82, 86, 90, 91, 93, 96, 98, 104, 111, 112, 113, 116], "type": [0, 1, 2, 30, 49, 50, 52, 53, 56, 58, 60, 62, 63, 64, 65, 71, 72, 74, 75, 76, 77, 82, 89, 90, 91, 93, 94, 95, 96, 98, 111, 112, 113, 116, 119, 121], "can": [0, 1, 4, 29, 30, 37, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 71, 74, 75, 76, 77, 80, 82, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 100, 101, 102, 103, 104, 107, 108, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122], "us": [0, 1, 2, 3, 4, 29, 30, 32, 35, 37, 43, 44, 45, 46, 48, 49, 52, 53, 54, 56, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83, 88, 91, 95, 98, 99, 100, 102, 113, 114, 115, 117, 119, 120, 121, 122, 123], "tensorrt": [0, 1, 3, 4, 29, 30, 31, 32, 33, 36, 37, 44, 45, 46, 48, 49, 52, 53, 54, 55, 56, 57, 59, 60, 62, 67, 68, 71, 72, 74, 75, 76, 77, 88, 91, 95, 98, 99, 101, 103, 105, 106, 107, 108, 113], "engin": [0, 1, 17, 32, 33, 37, 45, 46, 48, 49, 52, 53, 56, 57, 59, 62, 63, 64, 69, 71, 72, 75, 76, 77, 80, 89, 90, 91, 92, 93, 94, 99, 101, 102, 104, 105, 107, 113, 114, 118, 120, 122, 123], "thi": [0, 1, 2, 29, 30, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 71, 72, 75, 76, 77, 80, 81, 82, 84, 85, 88, 89, 91, 92, 93, 94, 96, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122], "compat": [0, 1, 46, 55, 58, 64, 65, 71, 75, 76, 77, 111, 122], "c10": [0, 1, 45, 46, 48, 49, 89, 91], "check": [0, 1, 31, 46, 52, 55, 60, 65, 67, 71, 75, 77, 89, 96, 100, 102, 114, 115, 117, 120], "trt": [0, 1, 3, 4, 46, 48, 53, 55, 58, 60, 62, 64, 65, 67, 68, 70, 71, 75, 76, 89, 94, 96, 101, 104, 107, 109, 110, 111, 113, 118, 120, 121], "so": [0, 44, 52, 53, 54, 55, 58, 59, 60, 62, 64, 65, 66, 67, 72, 75, 76, 81, 82, 83, 89, 91, 93, 94, 96, 98, 103, 104, 105, 107, 109, 110, 118], "should": [0, 3, 4, 29, 45, 49, 52, 53, 54, 55, 56, 57, 59, 60, 63, 64, 65, 67, 71, 75, 76, 77, 80, 82, 85, 91, 94, 96, 97, 98, 101, 102, 104, 108, 111, 114, 115, 117], "reason": [0, 65, 88, 94, 96, 98, 122], "you": [0, 1, 2, 29, 30, 46, 48, 49, 52, 53, 54, 55, 56, 58, 59, 60, 63, 65, 66, 67, 68, 71, 75, 76, 77, 80, 82, 83, 84, 88, 89, 90, 91, 92, 93, 94, 96, 98, 99, 100, 102, 108, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122], "need": [0, 1, 2, 25, 29, 43, 46, 53, 54, 55, 60, 65, 66, 67, 71, 72, 75, 76, 82, 89, 90, 91, 93, 94, 96, 97, 98, 100, 102, 114, 115, 116, 117, 118, 120], "explictli": 0, "public": [0, 1, 2, 3, 4, 44, 45, 46, 47, 48, 49, 83, 91], "enum": [0, 1, 2, 42, 45, 46, 51, 71, 77, 91, 94], "valu": [0, 1, 2, 16, 17, 45, 46, 48, 53, 56, 58, 60, 63, 70, 71, 74, 76, 80, 89, 100, 103, 104, 105, 107, 113, 116], "underli": [0, 1, 2, 46, 60], "In": [0, 1, 2, 46, 53, 54, 56, 57, 58, 59, 60, 64, 65, 66, 75, 76, 82, 83, 85, 90, 91, 93, 94, 96, 100, 104, 111, 114, 115, 116, 117, 118, 119, 120, 121], "case": [0, 1, 2, 46, 49, 53, 54, 56, 58, 60, 62, 64, 65, 66, 67, 75, 76, 91, 93, 94, 96, 100, 101, 102, 118, 119, 120], "itself": [0, 1, 2, 46, 52, 55, 92, 94, 114, 115, 117], "interfac": [0, 1, 2, 46, 58, 59, 60, 64, 69, 91], "vs": [0, 1, 2, 46, 55, 66, 71, 76, 77, 92], "normal": [0, 1, 2, 46, 65, 82, 88, 89, 91, 94, 100, 101, 102, 108, 111, 112, 114, 115, 117, 123], "instatin": [0, 1, 2, 46], "ex": [0, 1, 2, 33, 46, 67, 77, 83, 85], "kfloat": [0, 45, 49], "enumer": [0, 1, 2, 16, 17, 46, 111], "klong": [0, 45], "int64": [0, 76, 77, 113], "kdoubl": [0, 45], "fp64": [0, 76], "fp32": [0, 48, 49, 52, 64, 65, 71, 76, 77, 91, 109, 110, 111, 114, 115, 116, 117, 119], "khalf": [0, 45, 89], "fp16": [0, 48, 49, 52, 64, 65, 71, 72, 76, 89, 90, 100, 106, 109, 110, 111, 113, 119, 123], "kchar": [0, 45], "int8": [0, 44, 48, 49, 52, 64, 71, 76, 77, 91, 112, 123], "kint": [0, 45], "int": [0, 3, 4, 35, 44, 45, 49, 52, 54, 56, 63, 64, 70, 71, 72, 76, 77, 80, 89, 93, 96, 111, 112, 113], "kbool": [0, 45], "bool": [0, 1, 2, 3, 4, 24, 27, 30, 31, 42, 44, 45, 46, 49, 55, 60, 64, 70, 71, 72, 74, 75, 76, 77, 80, 89, 91, 95, 96], "kunknown": [0, 2, 45], "sentinel": [0, 2, 76], "function": [0, 1, 2, 3, 4, 46, 48, 49, 51, 54, 55, 56, 58, 60, 62, 64, 65, 66, 88, 89, 91, 92, 93, 94, 96, 102, 103, 107, 108, 109, 110, 111, 114, 115, 116, 117, 118, 120, 122, 123], "default": [0, 1, 2, 3, 4, 16, 29, 30, 33, 43, 45, 46, 48, 49, 52, 54, 56, 62, 64, 65, 66, 71, 72, 75, 76, 77, 80, 81, 82, 89, 90, 91, 92, 93, 94, 95, 96, 98, 112, 118, 120, 121, 122], "construct": [0, 1, 2, 3, 4, 46, 48, 49, 53, 54, 55, 57, 59, 60, 65, 74, 75, 76, 82, 83, 89, 91, 94, 96, 98, 118], "new": [0, 1, 2, 3, 4, 32, 33, 46, 48, 49, 56, 58, 59, 60, 62, 64, 65, 68, 69, 71, 77, 82, 89, 93, 98, 99, 100, 101, 104, 105, 107, 108, 114, 115, 117, 120], "object": [0, 1, 2, 3, 4, 46, 48, 49, 52, 58, 60, 62, 63, 64, 71, 75, 76, 77, 91, 92, 94, 101, 118, 121], "inlin": [0, 1, 2, 3, 4, 29, 30, 44, 46, 48, 55, 83, 86, 89], "constexpr": [0, 1, 2, 45, 46, 93, 96], "t": [0, 1, 2, 45, 46, 55, 60, 65, 66, 70, 76, 80, 82, 83, 88, 89, 91, 93, 94, 96, 112, 114, 115, 117, 118], "constructor": [0, 2, 46, 48, 49, 58, 88], "from": [0, 1, 2, 3, 4, 29, 30, 44, 46, 48, 49, 52, 53, 55, 56, 57, 58, 59, 60, 63, 64, 65, 67, 69, 71, 72, 75, 76, 77, 78, 80, 81, 82, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 120, 121, 122], "torchtrt_api": [0, 2, 19, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 42, 43, 44, 45, 48, 49, 50], "scalartyp": [0, 45, 70], "torch": [0, 1, 2, 4, 20, 21, 29, 30, 31, 32, 33, 36, 37, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 67, 71, 72, 74, 75, 76, 77, 78, 88, 91, 93, 95, 97, 98, 99, 101, 113, 123], "paramet": [0, 1, 2, 3, 4, 25, 26, 27, 29, 30, 31, 32, 33, 35, 37, 46, 48, 49, 53, 54, 55, 60, 64, 65, 71, 72, 74, 75, 76, 77, 86, 88, 89, 102, 109, 110], "oper": [0, 1, 2, 3, 4, 31, 44, 45, 46, 49, 52, 53, 55, 56, 57, 58, 59, 60, 62, 63, 65, 69, 71, 76, 77, 90, 91, 94, 101, 102, 105, 107, 108, 111, 122, 123], "const": [0, 1, 2, 3, 4, 29, 30, 31, 32, 33, 35, 37, 44, 45, 46, 55, 60, 70, 89, 91], "get": [0, 1, 2, 3, 4, 23, 34, 44, 46, 55, 56, 60, 62, 63, 65, 67, 75, 76, 89, 91, 93, 94, 98, 104, 109, 110, 113, 114, 115, 116, 117], "return": [0, 1, 2, 3, 4, 23, 24, 29, 30, 31, 32, 33, 34, 37, 42, 43, 44, 45, 46, 54, 55, 56, 57, 58, 59, 60, 62, 64, 65, 71, 72, 75, 76, 77, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 108, 111, 112, 113, 114, 115, 117, 118, 119], "explicit": [0, 1, 2, 3, 4, 45, 46, 55, 65, 72, 75, 82, 91, 122], "delet": [0, 1, 2, 45, 46, 55], "other": [0, 1, 2, 45, 46, 52, 53, 55, 58, 62, 64, 65, 66, 70, 71, 75, 76, 81, 82, 89, 90, 94, 120], "comparis": [0, 2], "true": [0, 1, 2, 4, 46, 49, 55, 56, 60, 62, 64, 65, 70, 71, 72, 75, 76, 77, 80, 83, 89, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117, 119, 120, 123], "fals": [0, 1, 2, 3, 4, 44, 45, 46, 49, 54, 62, 64, 65, 70, 71, 72, 75, 76, 77, 80, 81, 82, 83, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 106, 107, 108, 109, 110, 111, 112, 113, 120], "struct": [1, 21, 38, 41, 45, 54, 91], "onli": [1, 3, 4, 16, 29, 44, 46, 48, 52, 54, 55, 56, 59, 60, 64, 65, 67, 68, 71, 72, 75, 76, 82, 91, 93, 94, 95, 96, 100, 102, 110, 113, 119, 120, 123], "applic": [1, 29, 46, 52, 55, 59, 64, 71, 75, 76, 89, 90, 92, 120, 123], "kcuda": [1, 46, 56, 89], "which": [1, 2, 29, 32, 37, 46, 49, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 71, 72, 74, 75, 76, 77, 80, 82, 83, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 103, 104, 105, 108, 109, 110, 111, 114, 115, 116, 117, 118, 119, 120, 121, 122], "map": [1, 46, 53, 54, 55, 57, 59, 60, 65, 75, 76, 89, 91, 92, 98, 103, 114, 115, 116, 117], "kgpu": [1, 45, 46], "To": [1, 46, 52, 54, 56, 64, 66, 71, 80, 88, 89, 90, 92, 96, 102, 109, 110, 111, 114, 115, 117], "datatyp": [1, 21, 38, 45, 46, 48, 49, 50, 71, 76, 77, 90, 96, 114, 115, 117, 119], "target": [1, 33, 45, 46, 48, 49, 52, 54, 56, 58, 59, 64, 65, 66, 69, 71, 75, 76, 77, 90, 91, 92, 94, 96, 102, 122, 123], "gpu": [1, 32, 35, 37, 45, 46, 52, 64, 65, 71, 75, 76, 77, 89, 91, 92, 93, 96, 101, 104, 109, 110, 113, 114, 115, 117, 120, 122, 123], "run": [1, 37, 46, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 64, 65, 66, 67, 68, 71, 72, 75, 76, 77, 82, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123], "kdla": [1, 45, 46, 123], "dla": [1, 45, 46, 49, 52, 64, 69, 71, 76, 77], "intern": [1, 16, 46, 60, 63, 73, 75, 82, 89], "note": [1, 46, 48, 54, 60, 62, 65, 66, 67, 75, 76, 80, 82, 89, 96, 102, 108, 114, 115, 117, 118, 123], "The": [1, 46, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 71, 75, 76, 77, 80, 83, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 108, 109, 111, 113, 114, 115, 116, 117, 118, 121, 122], "valid": [1, 46, 56, 60, 62, 71, 75, 76, 94], "kcpu": [1, 46], "comparison": [1, 46], "an": [2, 3, 4, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 64, 65, 66, 68, 71, 72, 74, 75, 76, 77, 80, 82, 83, 88, 89, 90, 91, 93, 94, 96, 98, 102, 103, 104, 108, 109, 110, 113, 114, 115, 116, 117, 118, 120, 121, 122], "memeori": 2, "layout": [2, 48, 70, 71, 76, 77], "store": [2, 4, 49, 52, 53, 58, 60, 64, 65, 71, 75, 76, 77, 88, 89, 93, 96, 98, 102, 111], "tensor": [2, 33, 44, 45, 48, 49, 52, 53, 54, 55, 56, 58, 60, 62, 63, 64, 65, 70, 71, 72, 75, 76, 77, 88, 89, 90, 91, 93, 94, 96, 101, 103, 108, 111, 113, 116], "kcontigu": [2, 45, 48], "contigu": [2, 48, 49, 52, 71, 76, 77], "nchw": [2, 71, 76, 77], "linear": [2, 56, 70, 76, 88, 96, 112, 119], "kchannelslast": [2, 45], "channel": [2, 76, 81], "last": [2, 55, 65, 76, 112], "nhwc": [2, 52], "memoryformat": [2, 45], "ptq": [3, 4, 15, 18, 19, 38, 50, 51, 52, 69, 71, 76, 77], "privat": [3, 4, 44, 45, 91], "algorithm": [3, 4, 29, 30, 44, 65, 74, 91, 110], "typenam": [3, 4, 29, 30, 44], "gener": [3, 4, 29, 52, 55, 58, 59, 60, 62, 64, 65, 66, 71, 72, 80, 82, 83, 86, 88, 89, 91, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 111, 112, 113, 114, 120], "int8calibr": [3, 20, 30, 40, 44, 50], "implement": [3, 4, 55, 56, 58, 63, 65, 75, 81, 89, 91, 93, 96, 98, 111, 120], "specifi": [3, 4, 33, 52, 54, 60, 64, 65, 66, 71, 76, 77, 80, 82, 90, 92, 113, 114, 115, 117, 118, 119, 121, 122], "calibr": [3, 4, 29, 30, 44, 49, 52, 71, 74, 76, 77, 89, 91], "read": [3, 4, 29, 30, 44, 80, 82, 91, 111], "nvinfer1": [3, 4, 29, 30, 44, 45, 49, 60, 91], "iint8calibr": [3, 4, 29, 30, 44, 45, 49, 71, 76, 77, 91], "iint8entropycalibrator2": [3, 4, 29, 30, 44, 91], "std": [3, 4, 22, 26, 28, 29, 30, 31, 33, 34, 37, 42, 44, 45, 47, 48, 49, 56, 89, 91, 114, 115, 117, 123], "string": [3, 4, 18, 20, 21, 22, 26, 28, 29, 30, 31, 33, 34, 37, 42, 44, 45, 49, 54, 56, 58, 60, 64, 71, 76, 80, 89, 91], "cache_file_path": [3, 4, 29, 30, 44], "8": [3, 52, 55, 63, 64, 66, 75, 76, 82, 83, 86, 89, 95, 96, 105, 108, 114, 115, 117, 118], "cach": [3, 4, 29, 30, 44, 52, 64, 65, 69, 71, 72, 74, 76, 89, 91, 99, 101, 114, 120], "getbatchs": [3, 4, 44], "noexcept": [3, 4, 44, 91], "overrid": [3, 4, 29, 30, 44, 54, 65, 91], "batch": [3, 4, 44, 64, 65, 72, 75, 91, 98, 105, 107, 112, 113, 114, 115, 117, 118, 123], "size": [3, 4, 44, 48, 49, 52, 55, 56, 64, 65, 70, 71, 72, 76, 77, 80, 89, 91, 93, 96, 98, 105, 107, 111, 112, 116, 118], "next": [3, 4, 53, 54, 58, 63, 72, 76, 80, 82, 83, 91, 94, 101, 103, 108, 112, 114, 115, 117], "alwai": [3, 4, 27, 52, 76, 82, 102, 113], "1": [3, 4, 33, 44, 45, 48, 49, 52, 54, 55, 56, 58, 60, 62, 63, 64, 65, 66, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 107, 108, 109, 110, 111, 112, 113, 116, 118, 119, 121, 123], "due": [3, 4, 66, 81, 82, 104, 112], "issu": [3, 4, 64, 71, 76, 89, 103, 104, 107], "getbatch": [3, 4, 44], "void": [3, 4, 25, 26, 27, 28, 35, 36, 42, 44, 45], "bind": [3, 4, 33, 44, 75, 77, 82], "char": [3, 4, 44, 52, 89], "name": [3, 4, 31, 33, 37, 44, 54, 56, 58, 60, 65, 66, 67, 72, 74, 75, 76, 77, 82, 83, 88, 89, 92, 93, 94, 96, 102, 108, 112, 114, 115, 117, 119], "nbbind": [3, 4, 44], "Not": 3, "arrai": [3, 4, 33, 53, 54, 76, 77, 94, 96, 101, 111, 113], "pointer": [3, 4, 91], "fed": [3, 4, 48], "buffer": [3, 4, 65, 69, 96, 99, 114], "each": [3, 4, 49, 53, 55, 56, 58, 60, 64, 65, 66, 71, 72, 75, 80, 82, 89, 93, 94, 102, 108, 110, 120], "input": [3, 4, 21, 29, 33, 38, 44, 45, 47, 49, 50, 52, 53, 54, 55, 56, 58, 60, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 77, 83, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123], "number": [3, 4, 49, 52, 54, 55, 56, 60, 63, 64, 65, 71, 72, 76, 77, 80, 89, 90, 96, 102, 104, 105, 107, 113, 116, 122], "readcalibrationcach": [3, 4, 44], "size_t": [3, 4, 44, 91], "length": [3, 4, 44, 65, 70, 83, 104, 113], "how": [3, 4, 66, 67, 82, 84, 86, 88, 92, 93, 94, 96, 98, 100, 103, 112, 113, 114, 115, 116, 117, 118, 120], "enabl": [3, 4, 24, 49, 52, 54, 56, 57, 59, 64, 65, 66, 71, 72, 74, 75, 76, 77, 80, 98, 100, 102, 105, 107, 108, 109, 110, 111, 113, 119, 120], "use_cach": [3, 4, 30, 44, 74, 91, 104, 109, 110, 113], "set": [3, 4, 16, 21, 25, 27, 29, 32, 35, 37, 45, 46, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 65, 66, 71, 72, 75, 76, 77, 80, 84, 87, 88, 89, 90, 91, 93, 94, 96, 101, 102, 109, 112, 113, 116, 118, 119, 120, 122, 123], "writecalibrationcach": [3, 4, 44], "write": [3, 4, 29, 30, 44, 65, 69, 82, 89, 91, 114, 115, 117], "provid": [3, 4, 49, 52, 54, 56, 58, 60, 62, 64, 65, 66, 68, 71, 72, 75, 76, 77, 82, 89, 90, 91, 92, 93, 94, 98, 99, 102, 103, 104, 108, 111, 113, 114, 115, 117, 118, 120, 121, 122], "cast": [3, 4, 55, 64, 71, 109, 110, 111, 119], "convienc": [3, 4, 49], "convert": [3, 4, 31, 32, 37, 52, 55, 56, 57, 59, 63, 64, 69, 71, 76, 77, 90, 92, 96, 99, 104, 105, 107, 111, 113, 114, 116, 120], "easili": [3, 4, 100], "assign": [3, 4, 81], "ptq_calibr": [3, 4, 45, 49, 91], "field": [3, 4, 63, 72, 76, 91], "compilespec": [3, 4, 21, 32, 37, 41, 45, 50, 56, 77, 89, 91, 123], "dataloaderuniqueptr": [4, 44], "libtorch": [4, 36, 60, 66, 68, 89, 91, 122], "dataload": [4, 29, 30, 44, 49, 74, 91, 112], "unique_ptr": [4, 30], "unqiue_ptr": 4, "A": [4, 29, 30, 32, 33, 47, 48, 54, 55, 56, 60, 65, 66, 71, 72, 76, 77, 83, 91, 93, 106, 114, 115, 117], "uniqu": [4, 90], "what": [4, 54, 55, 65, 68, 76, 82, 88, 89, 90, 104, 109, 110, 122], "make_data_load": [4, 91], "factori": [4, 29, 30, 64, 71, 91], "path": [4, 13, 14, 15, 29, 30, 52, 64, 65, 66, 67, 71, 74, 76, 88, 89, 91, 95, 98, 108, 112, 122], "find": [4, 65, 66, 67, 89, 96, 113], "whether": [4, 52, 54, 64, 65, 71, 72, 76, 81, 91, 105, 107, 120], "exist": [4, 31, 32, 37, 54, 63, 64, 65, 67, 71, 74, 76, 77, 91, 98, 116], "There": [4, 53, 54, 59, 60, 62, 63, 65, 66, 83, 88, 91, 102, 114, 115, 116, 117, 118, 120], "consum": [4, 53, 88], "macro": [5, 6, 7, 8, 9, 10, 11, 12, 15, 18, 20, 21, 42, 44, 45, 50, 51], "x": [5, 10, 33, 43, 55, 56, 66, 67, 68, 75, 77, 83, 88, 89, 93, 94, 96, 98, 103, 108, 112, 113, 114, 115, 117, 118, 119, 121], "includ": [13, 15, 16, 34, 36, 42, 43, 44, 45, 51, 52, 54, 56, 57, 58, 59, 62, 64, 65, 66, 67, 68, 71, 72, 75, 76, 80, 82, 88, 89, 91, 96, 111, 120], "parent": [14, 15, 18, 19, 20, 21], "cpp": [14, 15, 42, 43, 44, 45, 51, 55, 59, 66, 89, 91], "log": [15, 16, 19, 20, 38, 44, 50, 51, 55, 60, 64, 65, 69, 70, 71, 72, 76, 93, 94, 105, 107, 119], "emum": [16, 17], "messag": [16, 25, 26, 52, 73], "sever": [16, 26, 73, 108], "kinternal_error": [16, 42], "print": [16, 31, 44, 62, 64, 67, 71, 77, 82, 89, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 107, 109, 110, 112, 113, 114, 115, 117], "error": [16, 49, 52, 53, 55, 59, 64, 65, 71, 73, 76, 77, 82, 89, 93, 118], "kerror": [16, 42], "all": [16, 42, 43, 44, 45, 49, 52, 54, 55, 56, 58, 62, 64, 65, 66, 67, 71, 73, 75, 76, 78, 82, 83, 88, 89, 90, 91, 94, 96, 109, 110, 114, 115, 116, 117, 119, 120, 122], "kwarn": [16, 42], "warn": [16, 44, 52, 60, 73, 75], "kinfo": [16, 42, 44], "info": [16, 32, 37, 45, 52, 60, 73, 75, 76, 119], "kdebug": [16, 42, 44], "debug": [16, 27, 45, 49, 52, 60, 62, 64, 71, 73, 75, 76, 77, 92, 93, 95, 96, 97, 98, 100, 102, 103, 105, 107, 112, 119], "kgraph": [16, 42, 55], "everyth": [16, 64, 71, 76], "intermedi": [16, 49, 52, 54, 64, 71, 73, 76, 77, 88, 119, 122], "graph": [16, 31, 32, 37, 45, 49, 52, 53, 54, 56, 57, 59, 60, 62, 63, 64, 65, 71, 72, 73, 76, 77, 88, 89, 93, 94, 96, 98, 100, 101, 102, 104, 105, 107, 111, 116, 118, 120], "lower": [16, 54, 63, 65, 69, 71, 72, 73, 76, 83, 93, 96, 98, 105, 107, 113, 116, 122], "phase": [16, 60, 63, 89, 94, 101, 102, 108, 118, 122], "class": [17, 29, 30, 44, 45, 46, 51, 58, 60, 64, 65, 73, 77, 82, 83, 88, 89, 90, 91, 93, 94, 96, 98, 103, 104, 108, 111, 112, 116, 118, 119], "int8_t": [17, 45], "select": [17, 29, 30, 37, 49, 52, 58, 64, 65, 66, 70, 71, 76, 77, 81, 84, 90, 91, 96, 111, 122], "capabl": [17, 45, 49, 52, 58, 71, 76, 77, 92, 94, 95], "kstandard": [17, 45, 49], "ksafeti": [17, 45], "kdla_standalon": [17, 45], "directori": [18, 19, 20, 21, 42, 43, 44, 45, 50, 66, 67, 71, 91, 98, 111, 114, 115, 117], "program": [18, 19, 20, 21, 29, 51, 52, 57, 58, 59, 69, 71, 88, 93, 98, 99, 109, 110, 114, 118], "list": [18, 19, 20, 21, 31, 49, 51, 53, 56, 58, 60, 62, 63, 65, 68, 70, 71, 72, 75, 76, 77, 86, 89, 90, 94, 96, 114, 115, 117], "level": [18, 23, 25, 26, 39, 42, 44, 50, 54, 55, 56, 59, 64, 65, 71, 76, 77, 86, 88, 94, 96, 114, 115, 117, 122], "get_is_colored_output_on": [18, 39, 42, 50], "get_logging_prefix": [18, 39, 42, 50], "get_reportable_log_level": [18, 39, 42, 50], "set_is_colored_output_on": [18, 39, 42, 50], "set_logging_prefix": [18, 39, 42, 50], "set_reportable_log_level": [18, 39, 42, 50], "torchscript": [19, 21, 38, 43, 45, 49, 50, 52, 56, 57, 58, 59, 63, 68, 71, 72, 74, 75, 76, 77, 90, 101, 114, 115, 116, 117, 118, 123], "str": [19, 43, 44, 50, 54, 64, 65, 70, 71, 74, 75, 76, 77, 94, 95, 96, 98, 112], "torch_tensorrt_major_vers": [19, 43, 50], "torch_tensorrt_minor_vers": [19, 43, 50], "torch_tensorrt_patch_vers": [19, 43, 50], "torch_tensorrt_vers": [19, 43, 50], "torchtrt_hidden": [19, 43, 50], "xstr": [19, 43, 50], "nvinfer": [20, 44], "fstream": [20, 44], "iostream": [20, 21, 44, 45, 89], "iter": [20, 44, 49, 52, 53, 64, 71, 74, 76, 77, 97, 98, 111, 112, 113], "memori": [20, 21, 44, 45, 55, 60, 71, 76, 77, 89, 90, 93, 96, 98, 101, 108, 109, 110, 113], "sstream": [20, 44], "vector": [20, 21, 33, 44, 45, 47, 48, 49, 56, 58, 76, 89, 91, 123], "templat": [20, 40, 44, 45, 50, 80, 89], "int8cachecalibr": [20, 29, 40, 44, 50], "make_int8_cache_calibr": [20, 40, 44, 50, 91], "make_int8_calibr": [20, 29, 40, 44, 50, 91], "cuda_runtim": [21, 45], "custom_class": [21, 45], "devic": [21, 33, 35, 38, 45, 49, 50, 52, 58, 64, 70, 71, 72, 74, 75, 76, 77, 90, 91, 92, 93, 96, 100, 104, 106, 109, 110, 111, 113, 116, 123], "graphinput": [21, 38, 45, 49, 50], "devicetyp": [21, 38, 45, 46, 50, 75, 76, 77, 91, 92, 96, 123], "tensorformat": [21, 38, 45, 48, 50, 76, 96], "enginecap": [21, 38, 45, 49, 50, 64, 71, 75, 76, 77, 92, 96], "dump_build_info": [21, 38, 45, 50], "get_build_info": [21, 38, 45, 50], "set_devic": [21, 38, 45, 50, 120], "check_method_operator_support": [21, 41, 45, 50], "compil": [21, 31, 37, 41, 45, 49, 50, 52, 54, 55, 56, 58, 60, 62, 65, 71, 72, 73, 75, 76, 77, 78, 80, 88, 90, 91, 92, 93, 94, 96, 97, 99, 100, 112, 114, 115, 117, 120, 123], "convert_method_to_trt_engin": [21, 41, 45, 50, 76, 77, 89, 92], "embed_engine_in_new_modul": [21, 41, 45, 50, 77], "current": [23, 54, 56, 58, 60, 62, 63, 64, 65, 66, 67, 71, 72, 76, 77, 80, 94, 96, 100, 104, 109, 110, 111, 112, 113, 120], "report": [23, 44, 75], "Is": [24, 76], "color": [24, 27, 82, 111], "output": [24, 27, 33, 49, 52, 53, 54, 55, 56, 58, 60, 62, 63, 64, 65, 66, 69, 71, 73, 75, 76, 77, 80, 82, 83, 89, 93, 94, 96, 98, 99, 100, 102, 106, 113, 114, 115, 116, 117, 118, 119, 121], "lvl": [25, 26, 42], "inform": [25, 33, 34, 36, 48, 52, 53, 56, 58, 62, 64, 65, 66, 71, 72, 73, 76, 82, 88, 89, 91, 92, 96, 98, 113, 118], "ad": [25, 52, 53, 54, 56, 62, 65, 66, 93, 96, 100], "abov": [25, 54, 56, 62, 65, 66, 73, 81, 82, 89, 96, 105, 107, 111, 119, 121], "msg": [26, 42], "add": [26, 53, 54, 55, 56, 60, 63, 66, 70, 80, 82, 87, 89, 90, 93, 94, 96], "global": [26, 52, 64, 71, 76, 89], "colored_output_on": [27, 42], "prefix": [27, 28, 42, 82], "help": [27, 52, 53, 60, 64, 65, 89, 95, 98, 108, 112, 113, 116, 120], "when": [27, 44, 45, 46, 52, 53, 55, 56, 57, 58, 59, 60, 64, 65, 66, 71, 75, 76, 77, 80, 82, 84, 88, 89, 91, 94, 96, 98, 100, 101, 102, 108, 113, 116, 118, 120], "termin": [27, 52, 89], "If": [27, 33, 53, 54, 55, 56, 62, 63, 64, 65, 66, 68, 71, 72, 76, 80, 82, 89, 90, 91, 94, 96, 98, 101, 102, 103, 108, 113, 114, 115, 117, 118, 119, 120, 122, 123], "build": [29, 30, 34, 49, 52, 53, 57, 59, 60, 63, 64, 65, 71, 75, 76, 81, 86, 89, 91, 93, 94, 96, 105, 107, 113, 118], "post": [29, 30, 49, 52, 63, 69, 89, 98], "train": [29, 30, 49, 52, 69, 70, 89, 90, 98, 113], "quantiz": [29, 30, 52, 64, 69, 74, 76, 89, 99, 114], "creat": [29, 30, 33, 52, 53, 54, 56, 58, 60, 65, 69, 76, 77, 82, 89, 93, 94, 96, 102, 111, 113, 114, 115, 117], "previous": [29, 33, 89, 93, 98, 102], "therefor": [29, 58, 65, 66, 75, 82, 89, 116, 120], "have": [29, 33, 44, 52, 53, 54, 55, 56, 60, 62, 63, 64, 65, 66, 67, 71, 72, 74, 75, 76, 77, 82, 88, 89, 90, 91, 93, 96, 99, 104, 105, 107, 111, 112, 114, 115, 116, 117, 118], "requir": [29, 49, 52, 53, 54, 55, 63, 64, 65, 66, 67, 71, 76, 77, 80, 89, 91, 94, 95, 96, 99, 101, 104, 108, 111, 112, 113, 114, 115, 117, 118, 120], "dataset": [29, 74, 91, 116], "save": [29, 44, 52, 58, 64, 65, 68, 69, 71, 75, 76, 77, 89, 90, 95, 97, 98, 101, 102, 106, 111, 113, 114, 115, 116, 117, 120, 122], "later": [29, 71, 89, 93, 102, 121, 122], "differ": [29, 55, 56, 59, 64, 65, 66, 71, 76, 80, 88, 94, 96, 98, 100, 109, 113, 116, 120, 122], "scratch": [29, 98, 102], "depend": [29, 34, 53, 59, 64, 65, 67, 68, 71, 89, 90, 104, 111, 113, 115, 117, 120], "howev": [29, 66, 80, 81, 89, 93, 94, 96, 98, 114, 115, 117, 118, 122], "network": [29, 30, 54, 60, 65, 76, 89, 91, 94, 96, 113, 114, 115, 116, 117, 123], "also": [29, 53, 54, 60, 62, 64, 66, 68, 80, 82, 83, 89, 90, 91, 93, 98, 108, 111, 112, 116], "recalibr": 29, "its": [29, 53, 56, 58, 60, 66, 75, 76, 82, 93, 96, 112, 114, 115, 117, 120, 122], "structur": [29, 46, 49, 56, 59, 60, 64, 71, 76, 80, 82, 86, 88, 96, 114, 115, 117], "chang": [29, 55, 56, 59, 62, 64, 65, 75, 76, 77, 80, 91, 93, 94, 98, 100, 101, 102, 111, 114, 115, 117, 120, 122], "respons": [29, 54, 58, 82, 120], "ensur": [29, 54, 55, 56, 62, 64, 66, 67, 71, 75, 93, 101, 108, 109, 110, 111], "By": [29, 30, 51, 56, 64, 66, 71, 80, 88, 98, 118], "entropi": [29, 30, 91], "v2": [29, 30, 82], "perform": [29, 30, 54, 62, 63, 71, 75, 76, 91, 93, 96, 108, 111, 113, 114, 115, 116, 117, 119, 120, 121, 122], "recommend": [29, 30, 65, 66, 76, 82, 89, 96, 114, 115, 117, 118], "feed": [29, 30, 89], "forward": [29, 30, 32, 33, 56, 58, 60, 64, 68, 71, 75, 76, 77, 88, 89, 90, 91, 92, 93, 94, 96, 103, 104, 108, 111, 112, 118, 119], "minmax": [29, 30, 91], "recomend": [29, 30], "nlp": [29, 30, 91], "task": [29, 30, 65, 91, 101, 116], "call": [29, 30, 32, 49, 54, 55, 58, 60, 65, 71, 72, 75, 76, 77, 82, 88, 89, 92, 94, 96, 98, 100, 103, 107, 116, 118, 120, 122], "e": [29, 30, 52, 55, 60, 65, 66, 67, 68, 72, 76, 88, 89, 91, 96, 98, 102, 114, 115, 117], "g": [29, 30, 52, 55, 65, 66, 67, 72, 76, 82, 91, 96, 102, 114, 115, 117], "iint8minmaxcalibr": [29, 30, 91], "calibration_cache_fil": [29, 30, 91], "move": [30, 44, 55, 58, 77, 89, 91, 94, 101, 109, 110], "calibration_dataload": [30, 91], "contain": [30, 31, 52, 53, 54, 55, 56, 60, 65, 66, 72, 75, 76, 82, 83, 88, 89, 91, 96, 98, 101, 111, 114, 115, 117, 120], "jit": [31, 32, 33, 37, 45, 47, 49, 52, 53, 55, 56, 57, 58, 59, 60, 61, 64, 68, 69, 71, 75, 76, 77, 88, 89, 90, 92, 93, 96, 102, 114, 115, 117, 121, 122], "modul": [31, 32, 33, 37, 45, 49, 52, 56, 57, 58, 59, 60, 64, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 77, 81, 82, 83, 90, 91, 92, 93, 94, 95, 96, 99, 101, 102, 103, 104, 111, 112, 114, 116, 118, 119, 121, 123], "method_nam": [31, 37, 45, 52, 76, 77, 89], "see": [31, 55, 56, 58, 62, 64, 65, 66, 76, 77, 82, 88, 89, 90, 93, 94, 96, 98, 102, 103], "fulli": [31, 52, 55, 64, 71, 75, 76, 77, 89, 91, 96, 123], "take": [31, 32, 33, 37, 53, 54, 57, 58, 59, 60, 62, 65, 71, 72, 75, 76, 77, 80, 82, 89, 91, 92, 94, 96, 103, 116, 118], "method": [31, 32, 33, 37, 48, 52, 55, 60, 66, 71, 76, 77, 82, 88, 89, 92, 98, 116], "pure": [31, 71, 76], "Will": 31, "out": [31, 44, 53, 55, 56, 57, 59, 60, 64, 66, 71, 76, 77, 82, 89, 96, 100, 111, 112, 113, 114, 115, 117, 118], "unsupport": [31, 49, 54, 64, 76, 96, 101, 122], "script": [31, 55, 56, 68, 76, 77, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117, 120, 122], "nvidia": [32, 37, 42, 43, 44, 45, 52, 61, 64, 65, 66, 67, 71, 76, 77, 89, 103, 107, 114, 115, 117, 122, 123], "configur": [32, 37, 48, 62, 64, 66, 71, 75, 76, 77, 86, 89, 91, 96, 113, 114, 115, 117, 118], "equival": [32, 57, 59, 60, 71, 76, 77, 88, 89, 91, 94, 96, 105, 107], "specif": [32, 49, 54, 55, 57, 59, 62, 64, 71, 76, 77, 82, 94, 113, 122], "traget": 32, "input_binding_nam": [33, 45, 75, 77], "output_binding_nam": [33, 45, 75, 77], "emb": [33, 52, 63, 77, 83], "pre": [33, 55, 69, 74, 77, 91, 98, 99, 113, 114, 120], "built": [33, 52, 58, 59, 64, 66, 71, 75, 76, 77, 98, 102, 111], "serial": [33, 37, 52, 57, 59, 66, 71, 75, 76, 77, 89, 96, 98, 114, 115, 117, 122], "regist": [33, 54, 58, 60, 65, 75, 77, 93, 94, 96], "execut": [33, 49, 52, 55, 57, 58, 59, 63, 64, 65, 66, 69, 71, 72, 75, 76, 77, 78, 88, 89, 91, 94, 96, 101, 108, 114, 115, 117], "must": [33, 48, 49, 52, 54, 55, 56, 60, 62, 65, 66, 71, 72, 76, 77, 82, 83, 89, 93, 98, 118, 120, 122], "follow": [33, 52, 54, 56, 58, 62, 63, 64, 65, 66, 77, 80, 82, 83, 87, 88, 89, 91, 93, 94, 96, 98, 99, 104, 105, 109, 110, 114, 115, 116, 117, 118, 119, 120], "format": [33, 45, 48, 49, 52, 70, 71, 76, 77, 82, 83, 90, 96, 98, 112, 114, 115, 116, 117, 119, 121], "symbol": [33, 65, 66, 77, 82, 120], "index": [33, 61, 62, 66, 67, 69, 70, 77, 80, 86, 91, 96, 111], "0": [33, 43, 44, 45, 49, 52, 54, 56, 59, 60, 62, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 81, 82, 89, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117, 118, 119, 123], "2": [33, 43, 54, 56, 60, 63, 64, 65, 66, 67, 69, 70, 71, 74, 75, 76, 77, 80, 82, 83, 86, 88, 89, 91, 93, 94, 96, 97, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 118, 121], "y": [33, 56, 77, 83, 93, 94, 96, 103], "compilesepc": 33, "order": [33, 49, 54, 56, 60, 62, 65, 66, 71, 72, 75, 76, 77, 89, 90, 94, 98, 119], "pass": [33, 53, 54, 56, 57, 58, 59, 60, 63, 64, 65, 66, 69, 73, 74, 75, 76, 77, 88, 89, 91, 93, 94, 96, 98, 102], "origin": [33, 65, 72, 76, 96, 98, 100, 111, 122], "pytorch": [33, 48, 49, 52, 54, 55, 56, 57, 58, 59, 60, 63, 64, 66, 67, 68, 71, 74, 75, 76, 77, 88, 89, 90, 91, 94, 98, 100, 101, 102, 111, 112, 114, 115, 117, 118, 119, 120, 121, 122], "assum": [33, 75, 92, 96, 99, 114], "convent": 33, "below": [33, 56, 60, 62, 63, 64, 65, 66, 67, 82, 89, 90, 98, 101, 106, 111, 114, 115, 117], "librari": [34, 42, 43, 44, 45, 52, 54, 57, 58, 59, 60, 76, 89, 93, 96, 99, 114], "version": [34, 36, 59, 62, 64, 65, 67, 71, 76, 80, 83, 96, 114, 115, 116, 117, 121], "gpu_id": [35, 45, 46, 52, 75, 76, 77, 91, 92, 96, 123], "id": [35, 45, 52, 76, 80, 81, 85, 93, 123], "cudasetdevic": 35, "dump": [36, 52, 96], "base": [36, 50, 58, 63, 64, 66, 71, 72, 76, 82, 88, 90, 91, 93, 97, 101, 102, 107, 111, 116, 122], "stdout": [36, 75], "equivil": 37, "document": [42, 43, 44, 45, 50, 59, 80, 82, 83, 87, 88, 89, 91, 92, 114, 115, 117, 118, 120], "copyright": [42, 43, 44, 45, 83, 89], "c": [42, 43, 44, 45, 52, 59, 64, 67, 70, 71, 72, 75, 76, 83, 90, 96, 100, 114, 115, 117, 120, 123], "corpor": [42, 43, 44, 45], "right": [42, 43, 44, 45, 55, 59, 60, 82, 114, 115, 117], "reserv": [42, 43, 44, 45, 109, 110], "licens": [42, 43, 44, 45, 89], "under": [42, 43, 44, 45, 59, 65, 82, 94, 105, 122], "bsd": [42, 43, 44, 45], "style": [42, 43, 44, 45, 64, 68, 80, 82, 83], "found": [42, 43, 44, 45, 63, 66, 75, 82, 89, 91, 94, 96, 98, 120], "root": [42, 43, 44, 45, 66, 80, 91, 112], "sourc": [42, 43, 44, 45, 54, 59, 64, 65, 67, 71, 72, 73, 74, 75, 76, 77, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], "tree": [42, 43, 44, 45, 80, 91, 112, 120], "pragma": [42, 43, 44, 45, 91], "onc": [42, 43, 44, 45, 53, 55, 56, 58, 64, 65, 66, 67, 76, 91, 96, 110, 113, 114, 115, 117, 120], "namespac": [42, 43, 44, 45, 51, 55, 69, 76, 91, 93, 96], "ar": [42, 46, 49, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 66, 71, 74, 75, 76, 77, 80, 82, 83, 84, 88, 89, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 105, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122], "ones": [42, 56, 57, 59, 66, 82, 89, 94, 96, 122], "necessari": [42, 62, 64, 66, 75, 93, 94, 102, 120], "user": [42, 48, 54, 56, 57, 58, 59, 62, 63, 64, 66, 67, 71, 82, 83, 89, 90, 91, 94, 98, 102, 113, 114, 115, 117, 118, 119, 120, 122], "dont": 42, "know": [42, 60, 80, 82, 93, 94, 96, 104], "we": [42, 44, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 72, 75, 80, 82, 88, 89, 91, 93, 94, 96, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122], "want": [42, 56, 65, 66, 67, 68, 72, 88, 89, 91, 92, 94, 96, 102, 103, 114, 115, 117], "use_cmake_generated_export_head": 43, "torch_tensorrt_export": 43, "els": [43, 44, 48, 77, 82, 83, 95, 97, 98, 111, 112], "__gnuc__": 43, "__attribute__": 43, "__visibility__": 43, "hidden": [43, 80], "endif": [43, 44, 45], "doe": [43, 44, 55, 56, 60, 62, 65, 66, 76, 82, 91, 93, 96, 105, 107], "gaurd": 43, "someth": [43, 55, 82, 114, 115, 117], "6": [43, 55, 56, 58, 66, 70, 82, 86, 88, 89, 95, 96, 111], "setup": [43, 67, 91, 114, 115, 117], "alias": 43, "eas": 43, "ts": [43, 52, 56, 68, 69, 76, 88, 89, 90, 92, 118, 121], "torchtrt": [43, 56, 95, 96, 112, 114, 115, 117], "ifndef": [44, 45], "doxygen_should_skip_thi": [44, 45], "get_batch_impl": 44, "element_typ": 44, "super": [44, 88, 93, 94, 96, 103, 111, 112, 118, 119], "batchtyp": 44, "dataloader_": 44, "cache_file_path_": 44, "use_cache_": 44, "auto": [44, 56, 60, 64, 68, 71, 82, 83, 89, 91, 104, 109, 110, 113, 123], "batched_data_": 44, "push_back": [44, 56], "it_": 44, "begin": [44, 65, 66, 82, 103, 108], "hack": 44, "explict": 44, "work": [44, 55, 59, 60, 64, 65, 68, 71, 74, 75, 76, 82, 83, 91, 93, 96, 102, 103, 108, 113, 114, 115, 117, 118], "here": [44, 53, 54, 56, 58, 63, 64, 65, 66, 68, 80, 82, 83, 88, 89, 91, 93, 94, 96, 99, 108, 109, 110, 111, 112, 114, 115, 117, 118, 120, 121], "explic": 44, "just": [44, 45, 55, 56, 64, 65, 69, 73, 75, 82, 84, 88, 89, 90, 92, 93, 96, 98, 100, 116, 120], "still": [44, 56, 65, 66, 91, 94, 103, 122], "static_cast": 44, "option": [44, 48, 52, 56, 57, 59, 62, 63, 64, 65, 71, 75, 76, 77, 82, 86, 91, 94, 96, 97, 98, 103, 104, 106, 108, 119, 120, 121, 123], "batch_siz": [44, 91, 112], "end": [44, 52, 60, 62, 70, 71, 76, 77, 82, 89, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113], "statu": [44, 83], "reset": [44, 97, 98, 103, 107, 120], "incas": 44, "go": [44, 55, 56, 65, 68, 88, 89, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 122], "again": [44, 58, 60, 82, 96, 100], "stringstream": 44, "ss": 44, "cache_": 44, "clear": 44, "ifstream": 44, "io": [44, 67, 114, 115, 117], "binari": [44, 91], "noskipw": 44, "good": [44, 60, 65, 82, 98], "copi": [44, 60, 65, 67, 70, 74, 83, 113], "istream_iter": 44, "back_insert": 44, "nullptr": [44, 45, 49], "ofstream": [44, 89], "cache_fil": [44, 74, 91], "reinterpret_cast": 44, "cache_size_": 44, "arrayref": [45, 48, 49], "friend": 45, "ostream": 45, "os": [45, 67, 98], "dtype": [45, 48, 49, 52, 63, 64, 65, 70, 71, 72, 75, 76, 77, 90, 93, 96, 97, 101, 105, 107, 108, 111, 113, 114, 115, 116, 117, 118, 119], "device_typ": [45, 46, 76, 91, 92, 123], "int64_t": [45, 46, 48, 49, 91, 123], "core": [45, 52, 55, 56, 59, 64, 71, 76, 89, 94, 122, 123], "agx": 45, "platform": [45, 52, 59, 64, 66, 67, 71, 95, 123], "xavier": [45, 123], "dla_cor": [45, 46, 52, 76, 91, 92, 123], "allow_gpu_fallback": [45, 46, 71, 76, 77, 91, 92, 123], "customclasshold": [45, 48], "min_shap": [45, 48, 63, 65, 71, 76, 77, 90, 105, 108, 116, 118], "opt_shap": [45, 48, 63, 71, 76, 77, 90, 105, 108, 116, 118], "max_shap": [45, 48, 63, 65, 71, 76, 77, 90, 105, 108, 116, 118], "shape": [45, 47, 48, 49, 52, 56, 60, 63, 65, 69, 70, 71, 72, 75, 76, 77, 78, 90, 93, 94, 96, 99, 101, 108, 111, 112, 113, 114, 115, 117, 120, 123], "doubl": [45, 48, 49, 52, 63, 71, 76, 77, 82, 120], "tensor_domain": [45, 48, 76], "input_is_dynam": 45, "ivalu": [45, 47, 49, 53, 58, 60, 89], "input_signatur": [45, 47, 49, 77, 90], "nest": [45, 49, 50, 82, 83], "full": [45, 49, 52, 60, 64, 71, 73, 76, 89, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117, 120, 123], "spec": [45, 48, 49, 52, 73, 76, 77, 92, 98], "flatten": [45, 47, 70, 88, 89, 112], "fixed_s": [45, 49], "reflect": [45, 76], "builderconfig": 45, "graph_input": [45, 49], "enabled_precis": [45, 49, 63, 64, 71, 75, 76, 77, 89, 90, 91, 92, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 114, 115, 117, 119, 123], "disable_tf32": [45, 49, 64, 71, 75, 76, 77, 91, 96, 104, 109, 110], "sparse_weight": [45, 49, 64, 65, 71, 75, 76, 77, 96], "refit": [45, 49, 64, 69, 71, 76, 77, 92, 96, 98, 99, 100, 114], "truncate_long_and_doubl": [45, 49, 63, 64, 77, 106], "allow_shape_tensor": [45, 49, 77], "uint64_t": [45, 49], "num_avg_timing_it": [45, 49, 64, 71, 75, 76, 77, 92, 96], "workspace_s": [45, 49, 52, 64, 71, 75, 76, 77, 96, 102, 105, 107], "dla_sram_s": [45, 49, 52, 64, 71, 75, 76, 77, 96], "1048576": [45, 49, 64, 71, 75, 76, 77, 96], "dla_local_dram_s": [45, 49, 52, 64, 71, 75, 76, 77, 96], "1073741824": [45, 49, 64, 71, 75, 76, 77, 96], "dla_global_dram_s": [45, 49, 52, 64, 71, 75, 76, 77, 96], "536870912": [45, 49, 64, 71, 75, 76, 77, 96], "require_full_compil": [45, 49, 64, 71, 75, 76, 77, 96], "min_block_s": [45, 49, 56, 63, 64, 71, 75, 76, 77, 93, 94, 95, 96, 97, 98, 102, 103, 104, 105, 107, 108, 111, 112], "3": [45, 49, 52, 55, 56, 58, 63, 64, 65, 67, 68, 70, 71, 74, 76, 77, 82, 83, 86, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 101, 102, 105, 108, 109, 110, 111, 112, 113, 116, 118, 121, 123], "torch_executed_op": [45, 49, 56, 63, 64, 71, 75, 76, 77, 96, 102, 103, 105, 107, 108], "torch_executed_modul": [45, 49, 56, 71, 76, 77], "member": [46, 47, 48, 49], "hold": [46, 47, 48, 53, 60, 76, 91], "relat": [46, 82, 103, 107], "let": [46, 52, 55, 60, 65, 71, 76, 77, 80, 82, 114, 115, 116, 117, 122], "layer": [46, 49, 52, 53, 55, 60, 62, 64, 65, 71, 75, 76, 77, 89, 91, 94, 96, 109, 110, 112, 114, 115, 116, 117, 118, 119, 122, 123], "thei": [46, 52, 53, 54, 55, 58, 60, 64, 65, 71, 74, 75, 76, 80, 82, 90, 94, 98], "complex": [47, 49, 64, 66, 88, 90, 93, 100, 110], "either": [47, 48, 52, 60, 62, 71, 76, 77, 80, 82, 88, 89, 90, 93, 94, 95, 96, 98, 121], "one": [47, 54, 55, 60, 64, 65, 67, 71, 75, 76, 82, 88, 89, 90, 93, 94, 96, 103, 107, 109, 110, 114, 115, 117], "rang": [48, 49, 52, 65, 76, 93, 96, 97, 98, 101, 104, 105, 113, 116, 118], "optim": [48, 52, 63, 64, 65, 69, 71, 72, 74, 76, 88, 89, 90, 101, 102, 104, 105, 106, 107, 108, 111, 113, 116, 118, 122], "profil": [48, 72, 75, 119], "singl": [48, 52, 55, 56, 65, 76, 82, 88, 89, 91, 108, 111, 113, 120], "repres": [48, 49, 54, 60, 65, 68, 82, 101, 111], "signifi": [48, 55], "static": [48, 49, 53, 60, 63, 64, 71, 76, 77, 80, 89, 101, 112, 118], "three": [48, 57, 59, 65, 72, 76, 82, 83, 114, 115, 116, 117], "min": [48, 52, 60, 70, 76, 98, 104, 105, 118], "optimin": 48, "max": [48, 52, 60, 70, 76, 80, 98, 104, 105, 112, 118], "allow": [48, 49, 52, 53, 54, 55, 56, 62, 64, 65, 66, 71, 76, 77, 80, 93, 94, 96, 98, 101, 102, 105, 107, 108, 113, 120], "argument": [48, 52, 54, 55, 58, 60, 62, 64, 65, 71, 75, 76, 77, 82, 83, 89, 90, 94, 95, 96, 118], "expect": [48, 54, 55, 60, 76, 89, 90, 93, 116], "tradit": [48, 71, 76, 77, 91], "convect": 48, "produc": [48, 53, 54, 58, 60, 63, 76, 82, 89, 116], "low": [48, 65, 94, 100, 111], "high": [48, 55, 56, 80, 94, 96, 122], "weight": [48, 49, 52, 53, 64, 65, 69, 70, 71, 75, 76, 77, 82, 89, 98, 99, 100, 106, 114, 116], "first": [48, 53, 54, 55, 65, 68, 82, 83, 89, 90, 91, 94, 96, 98, 100, 103, 104, 114, 115, 117, 118, 121, 122], "calcul": [48, 53, 56, 89, 96, 113], "detect": [48, 58, 76], "float32": [48, 49, 52, 63, 64, 65, 71, 76, 77, 96, 100, 104, 106, 109, 110, 113, 118, 119], "dynam": [48, 49, 63, 65, 69, 71, 72, 76, 77, 78, 94, 98, 99, 103, 104, 106, 107, 110, 113, 114, 120], "opt": [48, 66, 75, 76, 108], "minimum": [48, 49, 52, 56, 63, 64, 71, 76, 77, 96, 113], "maximum": [48, 49, 52, 64, 65, 71, 72, 76, 77, 104, 105, 107, 113, 114, 115, 117], "accept": [48, 52, 54, 58, 60, 66, 76, 89, 90, 103, 121], "exampl": [48, 56, 58, 59, 60, 65, 66, 71, 73, 75, 76, 77, 78, 80, 81, 83, 86, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 120, 121], "s": [48, 49, 53, 56, 58, 60, 63, 65, 66, 67, 69, 71, 72, 75, 76, 80, 82, 83, 88, 89, 91, 94, 96, 98, 111, 113, 114, 115, 116, 117, 118, 120, 121], "cannot": [48, 55, 56, 65, 66, 71, 75, 76, 77, 81, 88, 93, 95, 96, 101], "through": [48, 53, 54, 55, 56, 58, 64, 65, 71, 73, 74, 82, 89, 90, 96, 100, 102, 116, 122], "altern": [48, 56, 62, 63, 76, 90, 94, 101, 108, 116, 121], "refer": [48, 54, 57, 59, 65, 81, 86, 89, 91, 96, 112, 114, 115, 117, 118, 121], "given": [48, 49, 52, 54, 55, 65, 71, 72, 74, 76, 77, 88, 89, 90, 92, 93, 94, 111, 118], "kernel": [48, 49, 52, 60, 64, 65, 69, 71, 76, 77, 94, 99, 108, 114, 119, 120], "ani": [48, 52, 53, 54, 60, 62, 64, 65, 70, 71, 74, 75, 76, 77, 80, 82, 89, 90, 91, 94, 96, 105, 118], "event": [48, 64, 97, 98], "place": [48, 55, 62, 65, 82, 83, 84, 91, 93, 96, 112], "variabl": [48, 65, 75, 76], "dimens": [48, 55, 65, 72, 76, 105, 116, 118, 119], "domain": [48, 76, 83, 91], "convien": 49, "fix": [49, 65, 82, 93, 96, 120, 123], "describ": [49, 56, 60, 76, 88, 92, 93, 114, 115, 117], "entri": [49, 60, 98], "okai": 49, "ha": [49, 53, 54, 55, 56, 57, 59, 60, 62, 64, 65, 66, 67, 71, 72, 75, 76, 82, 83, 88, 89, 91, 94, 95, 98, 101, 102, 108, 112, 116, 118, 122], "flaten": 49, "precis": [49, 52, 63, 64, 65, 69, 71, 76, 89, 90, 91, 105, 107, 109, 110, 111, 113, 123], "dure": [49, 52, 54, 56, 60, 63, 64, 71, 74, 76, 91, 94, 108, 109, 110, 113, 114, 115, 116, 117, 118, 120], "prevent": [49, 52, 54, 56, 108], "tf32": [49, 52, 64, 71], "comput": [49, 64, 65, 66, 67, 71, 75, 82, 91, 93, 95, 99, 101, 114, 116], "inner": [49, 83, 116], "product": [49, 67, 76], "round": [49, 71, 76, 77, 96], "10": [49, 66, 67, 71, 72, 76, 77, 86, 88, 89, 91, 93, 101, 111, 112, 113, 114, 115, 116, 117, 118, 119], "bit": [49, 60, 65, 66, 71, 76, 77, 89], "mantissa": [49, 71, 76, 77], "befor": [49, 54, 55, 56, 59, 60, 65, 71, 76, 77, 89, 101, 104, 111, 114, 115, 117, 118], "multipli": [49, 71, 76, 77], "accumul": [49, 64, 71, 76, 77, 109, 110, 111], "sum": [49, 65, 70, 71, 76, 77, 96, 112], "23": [49, 55, 71, 76, 77, 83], "behavior": [49, 56, 65, 71, 76, 77, 94, 109, 110, 118, 120, 121], "sparsiti": [49, 52, 65, 71, 76, 77], "conv": [49, 52, 89, 96], "fc": [49, 52, 55], "truncat": [49, 52, 63, 64, 71, 76, 77], "long": [49, 52, 53, 63, 76, 82, 83, 93], "float": [49, 52, 63, 64, 70, 76, 88, 89, 90, 91, 92, 93, 96, 97, 98, 102, 103, 107, 108, 111, 119], "ishap": 49, "restrict": [49, 64, 71, 76, 77, 118], "cuda": [49, 58, 63, 65, 67, 68, 71, 72, 75, 76, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 109, 110, 111, 112, 113, 114, 115, 117, 118, 119, 120, 121], "safeti": [49, 52, 76], "averag": [49, 52, 64, 71, 76, 77, 96], "time": [49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 64, 65, 66, 68, 69, 71, 72, 75, 76, 77, 80, 82, 89, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113], "workspac": [49, 52, 64, 65, 66, 71, 72, 76, 77, 96, 103, 105, 107], "fast": [49, 52, 64, 68, 71, 76, 77], "softwar": [49, 52, 64, 71, 76, 77, 82], "manag": [49, 52, 53, 55, 57, 59, 60, 64, 66, 67, 71, 73, 75, 76, 77, 89, 101, 108, 120], "ram": [49, 52, 64, 71, 76, 77], "commun": [49, 52, 64, 71, 76, 77, 89], "within": [49, 52, 57, 59, 64, 69, 71, 75, 76, 77, 80, 82, 93, 99, 108, 109, 110, 114, 116], "host": [49, 52, 64, 66, 71, 76, 77, 93, 96, 113, 114, 115, 117], "share": [49, 52, 64, 66, 71, 75, 76, 77, 98], "across": [49, 52, 55, 56, 64, 71, 76, 77, 80, 101], "metadata": [49, 52, 54, 58, 60, 64, 71, 76, 77, 80, 102, 118, 119], "quantizatiom": 49, "instead": [49, 52, 53, 54, 55, 66, 71, 75, 76, 89, 94, 102, 111, 112, 120], "potenti": [49, 71, 76, 85, 101], "subgraph": [49, 52, 53, 54, 55, 60, 62, 89, 96, 98, 101, 122], "aten": [49, 54, 55, 56, 60, 61, 64, 69, 70, 71, 76, 77, 89, 94, 103, 108, 122], "thrown": [49, 71, 76, 77], "empti": [49, 71, 72, 76, 77, 83, 88, 96, 111], "torch_tensorrtnamespac": 50, "loggingenum": 50, "levelnamespac": 50, "ptqtemplat": 50, "int8cachecalibratortempl": 50, "int8calibratornamespac": 50, "torchscriptstruct": 50, "compilespecstruct": 50, "deviceclass": 50, "devicetypestruct": 50, "graphinputsstruct": 50, "inputclass": 50, "datatypeclass": 50, "tensorformatenum": 50, "cppdirectori": 50, "includedirectori": 50, "torch_tensorrtfil": 50, "hfile": 50, "relationship": 50, "inherit": [50, 65, 71, 91], "subdirectori": 51, "definit": [51, 54, 60, 82], "cli": [52, 90], "It": [52, 54, 55, 56, 57, 59, 60, 65, 66, 69, 76, 80, 82, 93, 95, 96, 113, 116, 120, 122], "serv": [52, 58, 65, 69, 71, 76], "easi": [52, 53, 55, 89, 91], "wai": [52, 64, 65, 66, 88, 89, 91, 93, 94, 96, 98, 102, 116, 120, 121], "command": [52, 64, 66, 82, 83, 88, 89, 114, 115, 117], "line": [52, 66, 83, 89, 100], "quickli": [52, 89, 91, 114, 115, 117], "part": [52, 56, 59, 65, 75, 80, 81, 82, 93, 96, 98, 101], "deploy": [52, 75, 89, 90, 91, 93, 114, 115, 116, 117, 120, 123], "pipelin": [52, 89, 100, 106, 123], "basic": [52, 56, 65, 83, 114, 115, 117], "featur": [52, 56, 65, 66, 89, 91, 92, 106, 111, 112, 113, 116, 122], "though": [52, 59, 60, 88, 89, 122], "alreadi": [52, 53, 54, 55, 89, 91, 93, 94, 96, 99, 111, 114, 115, 117, 118], "two": [52, 55, 60, 62, 64, 65, 66, 76, 82, 83, 87, 88, 90, 91, 94, 98, 111, 114, 115, 117, 118], "embed": [52, 54, 58, 70, 77, 82, 123], "plan": [52, 59, 63, 64, 71], "after": [52, 53, 55, 56, 62, 65, 71, 75, 76, 88, 89, 90, 101, 103, 107, 114, 115, 117, 120], "link": [52, 53, 62, 69, 80, 81, 86, 89, 96, 120], "against": [52, 89, 94], "libtorchtrt": [52, 66, 89], "python": [52, 56, 59, 62, 64, 65, 67, 71, 72, 75, 76, 77, 82, 83, 89, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 120, 123], "import": [52, 55, 56, 63, 64, 65, 66, 67, 68, 75, 80, 82, 88, 89, 90, 92, 93, 94, 96, 97, 98, 100, 114, 115, 117, 118, 120, 121], "packag": [52, 55, 64, 67, 89], "aspect": 52, "ident": [52, 62, 64, 71, 76, 93, 102], "standard": [52, 58, 66, 69, 71, 75, 76, 77, 82, 92, 93, 94, 96, 100, 111, 116, 120], "load": [52, 56, 58, 64, 65, 68, 71, 74, 75, 76, 77, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 104, 113, 114, 115, 116, 117, 120, 122], "like": [52, 53, 55, 58, 60, 65, 66, 68, 76, 81, 82, 88, 89, 90, 91, 93, 94, 96, 98, 100, 102, 104, 113, 114, 115, 117, 120], "would": [52, 54, 60, 64, 65, 66, 67, 75, 89, 90, 92, 94, 96, 104, 114, 115, 117, 120], "input_file_path": [52, 123], "output_file_path": [52, 123], "input_spec": [52, 65, 72], "displai": [52, 62, 64, 73, 80, 120], "menu": [52, 80, 82], "verbios": 52, "v": [52, 67, 83, 112, 114, 115, 117], "verbos": [52, 64, 65, 71, 72, 83, 105, 107], "about": [52, 53, 58, 60, 66, 75, 80, 89, 111, 114, 115, 117, 118], "process": [52, 56, 64, 76, 81, 82, 88, 91, 92, 93, 101, 102, 103, 108, 114, 115, 116, 117, 120], "onto": [52, 58], "consol": 52, "w": [52, 66, 76, 111], "disabl": [52, 64, 66, 71, 75, 80, 81, 94, 98, 113, 120], "i": [52, 55, 60, 66, 68, 70, 82, 83, 88, 89, 91, 93, 96, 97, 98, 101, 104, 109, 111, 112], "debugg": [52, 71, 76, 77], "fallback": [52, 57, 59, 60, 101, 102, 123], "model": [52, 56, 58, 63, 68, 71, 72, 73, 74, 76, 78, 88, 89, 90, 91, 92, 97, 98, 100, 118, 120, 122], "throw": [52, 55, 76, 89], "spars": [52, 54, 64, 70, 71], "p": [52, 70, 89, 114, 115, 117, 123], "repeat": [52, 70], "f32": [52, 71, 75, 76, 96], "half": [52, 64, 76, 82, 89, 90, 91, 92, 96, 101, 103, 105, 109, 110, 111, 113, 119, 123], "float16": [52, 76, 96, 100, 106, 111, 119], "f16": [52, 76, 89, 114, 115, 117, 123], "i8": [52, 76], "d": [52, 67, 76, 82, 83, 89, 123], "multi": [52, 75], "dlacor": 52, "avail": [52, 54, 60, 62, 64, 65, 66, 67, 71, 75, 76, 80, 96, 104, 111, 113, 116, 122, 123], "dla_standalon": [52, 76], "file_path": [52, 76, 95, 121], "teo": 52, "op_nam": 52, "op": [52, 53, 54, 55, 56, 57, 59, 60, 62, 63, 64, 75, 76, 89, 93, 94, 103, 108, 120, 122], "partial": [52, 82], "tem": 52, "module_nam": 52, "mod": [52, 56, 65, 71, 86, 89, 91, 119], "mb": [52, 78], "num_op": 52, "block": [52, 53, 55, 56, 64, 71, 86, 93, 122], "treat": 52, "num": 52, "avg": 52, "num_it": 52, "sram": 52, "local": [52, 55, 66, 67, 80, 89], "dram": 52, "atol": 52, "absolut": [52, 66], "toler": 52, "threshold": 52, "numer": [52, 65, 83], "deviat": 52, "1e": [52, 100, 102], "rtol": 52, "rel": [52, 56, 101], "5": [52, 56, 58, 59, 64, 65, 66, 67, 71, 75, 76, 82, 83, 86, 88, 89, 94, 96, 100, 101, 103, 108, 111, 113, 114, 115, 117], "skip": 52, "complianc": 52, "64bit": [52, 95], "32bit": 52, "custom": [52, 62, 63, 65, 66, 69, 99, 109, 110, 111, 114], "dll": 52, "n": [52, 60, 62, 76, 89, 91, 93, 94, 96, 97], "min_n": 52, "min_c": 52, "min_h": 52, "min_w": 52, "opt_n": 52, "opt_c": 52, "opt_h": 52, "opt_w": 52, "max_n": 52, "max_c": 52, "max_h": 52, "max_w": 52, "32": [52, 76, 88, 89, 90, 91, 104, 109, 110, 112, 123], "flag": [52, 56, 57, 59, 64, 66, 71, 74, 76, 90, 108, 109, 110, 120, 121], "forc": [52, 63, 65, 71, 76, 77, 80, 111], "posit": [52, 54, 65, 76, 80], "test": [52, 56, 59, 65, 66, 67, 71, 76, 82, 83, 91, 112, 114, 115, 116, 117], "ssd_trace": 52, "pt": [52, 65, 89, 104, 109, 110, 114, 115, 117], "ssd_trt": 52, "300": [52, 92, 93], "512": [52, 71, 76, 77, 112, 116], "1024": [52, 71, 76, 77, 93, 109, 116], "simplifi": [53, 96], "form": [53, 75, 76, 82, 90, 114, 115, 117], "up": [53, 55, 56, 57, 58, 59, 62, 65, 66, 71, 76, 82, 88, 93, 94, 96, 98, 101, 102, 103, 107, 108, 113, 116], "context": [53, 57, 58, 59, 64, 73, 75, 94, 101, 104, 108, 111, 120], "inetworkdefinit": [53, 54], "record": [53, 88, 97, 98, 108, 120], "togeth": [53, 60, 89], "start": [53, 56, 65, 70, 74, 76, 83, 89, 92, 96, 97, 98, 104, 116], "look": [53, 54, 55, 68, 71, 76, 88, 91, 92, 94, 98, 104, 114, 115, 117, 118], "assembl": [53, 62, 89], "resourc": [53, 91, 93, 96, 101], "coupl": [53, 59, 65, 120], "state": [53, 54, 60, 62, 75, 89, 94, 100, 104, 111], "been": [53, 60, 64, 66, 67, 74, 83, 89, 95, 98, 101, 102, 111, 122], "evaluated_value_map": [53, 60], "stage": [53, 65], "arg": [53, 54, 62, 65, 71, 74, 75, 76, 86, 89, 94, 95, 96, 98, 112, 116], "itensor": [53, 54, 60, 65, 89, 94, 96], "value_tensor_map": [53, 60], "typic": [53, 60, 76, 101, 108, 114, 115, 117], "abl": [53, 55, 60, 62, 65, 91, 92, 96, 102, 104], "system": [53, 60, 62, 64, 69, 71, 75, 76, 77, 94, 95, 96, 98, 102, 122], "registri": [53, 54, 89, 96], "enter": [53, 76], "recurs": 53, "resolv": [53, 55, 57, 59, 103, 104, 107], "until": [53, 56, 59, 60, 66, 71, 76, 122], "final": [53, 56, 57, 59, 66, 94, 96, 103, 107, 116], "some": [53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 71, 76, 81, 82, 89, 91, 93, 94, 96, 98, 101, 108, 118, 122], "These": [53, 54, 56, 58, 62, 64, 66, 71, 74, 75, 76, 80, 82, 91, 93, 94, 114, 115, 117, 122], "those": [53, 54, 62, 64, 82], "do": [53, 54, 55, 56, 60, 63, 65, 81, 83, 88, 89, 90, 91, 93, 94, 96, 109, 110, 123], "theori": [53, 82], "kind": [53, 65], "common": [53, 55, 65, 72, 82, 94, 98], "prim": [53, 55, 56, 58, 70, 88, 89], "constant": [53, 54, 55, 56, 89, 96, 101], "emit": 53, "listconstruct": [53, 56, 58, 89], "make": [53, 54, 65, 66, 67, 71, 76, 82, 84, 89, 90, 91, 96, 98, 114, 115, 116, 117, 123], "associ": [53, 60, 89, 98, 120], "where": [53, 54, 55, 60, 62, 64, 65, 71, 75, 76, 77, 83, 89, 91, 93, 94, 102, 108], "result": [53, 55, 56, 66, 68, 71, 73, 75, 76, 77, 80, 88, 90, 93, 95, 96, 100, 101, 102, 108, 113, 114, 115, 117, 119, 122], "done": [53, 56, 59, 96, 102, 114, 115, 117, 121], "mai": [53, 54, 56, 58, 59, 65, 66, 71, 75, 76, 77, 82, 83, 88, 89, 90, 91, 94, 96, 102, 103, 107, 108, 113, 114, 115, 117, 120], "For": [53, 56, 62, 63, 64, 65, 66, 68, 72, 76, 80, 82, 83, 88, 89, 91, 92, 93, 94, 96, 100, 103, 112, 114, 115, 116, 117, 120, 121], "more": [53, 64, 65, 66, 67, 69, 71, 76, 80, 83, 88, 89, 90, 91, 92, 96, 98, 100, 101, 105, 107, 111, 114, 115, 117, 120], "writing_convert": [53, 89], "locat": [54, 62, 66, 91, 94, 96], "py": [54, 55, 59, 62, 65, 66, 67, 78, 80, 82, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117, 118], "convers": [54, 55, 56, 58, 63, 64, 65, 71, 76, 77, 89, 93, 94, 96, 111, 116, 118], "decror": 54, "dynamo_tensorrt_convert": [54, 94, 96], "signatur": [54, 77], "leaky_relu": [54, 70], "def": [54, 62, 65, 82, 88, 90, 93, 94, 96, 97, 98, 101, 103, 108, 111, 112, 113, 114, 115, 117, 118, 119], "leaky_relu_convert": 54, "ctx": [54, 60, 89, 94, 96, 113], "conversionctx": [54, 60, 89, 94], "tupl": [54, 58, 63, 65, 71, 72, 75, 76, 77, 90, 93, 94, 96, 98, 102, 118, 119], "kwarg": [54, 65, 71, 74, 75, 76, 94, 96, 116], "dict": [54, 71, 75, 76, 77, 94, 96, 98], "union": [54, 60, 64, 71, 75, 76, 77, 89, 94], "sequenc": [54, 62, 65, 71, 72, 75, 76, 77, 82, 94, 96, 104, 108, 113, 116], "decor": [54, 62, 65, 94], "kei": [54, 82, 88, 98, 114, 115, 117, 118], "node": [54, 55, 56, 57, 59, 60, 62, 64, 65, 71, 72, 89, 94, 96, 112, 116, 118], "capability_valid": [54, 94], "lambda": [54, 60, 82, 89, 93, 94, 114, 115, 117], "fx": [54, 62, 63, 71, 75, 76, 89, 90, 94, 96, 102, 121], "determin": [54, 55, 64, 65, 76, 93, 94, 113, 118, 120], "properli": [54, 66], "handl": [54, 55, 56, 58, 64, 65, 75, 76, 93, 96, 101, 108], "partition": [54, 71, 76, 96], "sure": [54, 66, 67, 89, 90, 104, 114, 115, 117, 123], "prioriti": [54, 94], "develop": [54, 65, 66, 67, 69, 82, 83, 89, 94, 96], "bodi": [54, 82, 83], "nativ": [54, 59, 61, 89, 93, 94, 96, 102], "numpi": [54, 76, 96, 97, 98, 100, 101, 102, 111, 113, 114, 115, 117], "frozen": 54, "attribut": [54, 55, 56, 58, 65, 76, 82, 89], "previou": [54, 80, 103, 111], "correspond": [54, 60, 65, 66, 75, 76, 94, 98, 100, 104, 112, 120], "edg": [54, 82], "well": [54, 63, 66, 69, 73, 75, 82, 89, 91, 93, 94, 98, 108, 111, 121], "being": [54, 65, 66, 71, 89, 94, 96, 102, 108], "truth": 54, "http": [54, 61, 64, 66, 67, 80, 82, 88, 89, 91, 94, 96, 100, 103, 107, 111, 112, 114, 115, 116, 117, 118, 120], "github": [54, 61, 64, 66, 67, 80, 89, 91, 103, 107, 111, 112, 114, 115, 117, 120], "com": [54, 61, 64, 66, 67, 89, 91, 100, 103, 107, 111, 112, 114, 115, 117, 120], "blob": [54, 61, 66, 80, 91, 98, 111], "main": [54, 55, 56, 57, 58, 59, 60, 63, 65, 66, 80, 82, 84, 89, 94, 96, 109, 111, 112], "src": [54, 58, 61, 70], "native_funct": [54, 61], "yaml": [54, 61], "sinc": [54, 55, 64, 65, 67, 75, 82, 88, 89, 91, 93, 94, 97, 98, 102, 111], "mani": [54, 56, 64, 65, 80, 82, 83, 94, 98, 102, 122], "composit": [54, 89], "raw": [54, 80, 94], "impl": [54, 93, 94], "subpackag": 54, "chain": [54, 60], "primarili": [54, 59, 66, 89, 94], "manipul": [54, 62, 76], "net": [54, 60, 82, 83, 89, 96, 114, 115, 117], "addit": [54, 55, 64, 65, 75, 76, 89, 94, 96, 98, 102, 108, 111, 116, 118], "call_modul": 54, "call_funct": [54, 62, 65], "eg": [54, 114, 115, 117, 119], "aten_": 54, "_leaky_relu": 54, "opoverloadpacket": 54, "while": [54, 56, 66, 75, 91, 94, 100, 101, 113, 114, 115, 116, 117, 120, 122], "opoverload": 54, "particular": [54, 64, 98], "collect": [54, 56, 64, 71, 76, 77, 89, 90, 112], "trtinterpret": [54, 65, 72], "along": [54, 76], "match": [54, 55, 93, 94, 102], "special": [54, 56, 104, 111], "account": [54, 114, 115, 117], "illustr": [54, 65, 104, 105, 109, 110, 111, 116], "scale_grad_by_freq": [54, 70], "embedding_param_valid": 54, "establish": 54, "subset": [54, 64, 71, 76, 91, 116], "converter_util": [54, 96], "enforce_tensor_typ": 54, "dictionari": [54, 76, 77, 92, 103], "between": [54, 55, 56, 60, 66, 76, 82, 83, 91, 93, 98, 100, 109, 113], "possibl": [54, 66, 82, 93, 94, 96, 98, 114, 115, 116, 117], "prefer": [54, 64, 66, 89], "keyword": [54, 62, 71, 75, 76, 77, 94, 103, 107], "both": [54, 56, 64, 66, 69, 71, 72, 75, 76, 80, 82, 88, 91, 94, 96, 98, 114, 115, 117], "enforc": [54, 89], "situat": 54, "partit": [54, 55, 63, 64, 71, 76, 94, 122], "greater": [54, 71, 73, 76], "than": [54, 55, 64, 66, 71, 76, 81, 82, 94, 97, 98, 100, 111, 113, 116, 120], "3d": [54, 65], "autocast": 54, "therebi": [54, 58, 93, 96, 116], "limit": [54, 55, 73, 81, 91, 95, 98, 99, 113, 114, 122], "author": [54, 83], "conv_nod": 54, "7": [54, 56, 58, 59, 75, 76, 86, 89, 93, 96, 103, 105, 107, 112, 118], "ignor": [54, 64, 71, 75, 76, 93, 96], "misc": [54, 93, 96], "trttensor": 54, "np": [54, 94, 96, 97, 98, 100, 101, 102, 111, 113, 114, 115, 117], "ndarrai": [54, 96], "aten_ops_convolut": 54, "conversioncontext": [54, 94, 96], "side": [54, 55, 80, 89, 94], "effect": [54, 55, 64, 65, 71, 80, 89, 91, 94, 96, 101, 116], "term": [54, 76, 82, 83, 91, 93, 94, 96, 116], "getitem": 54, "categor": 54, "modif": [54, 62, 76, 111], "op_evalu": 54, "capbility_valid": 54, "opcod": 54, "decompos": 54, "suboper": 54, "separ": [54, 56, 57, 59, 66], "Such": 54, "via": [54, 64, 65, 67, 69, 71, 75, 76, 77, 80, 86, 90, 91, 103, 105, 107, 109, 110, 111, 116, 118, 120, 121, 122], "register_torch_trt_decomposit": 54, "addmm_replac": 54, "replac": [54, 56, 62, 66, 67, 74, 93, 96, 112, 122], "input_": 54, "mat1": 54, "mat2": [54, 70], "beta": [54, 65, 70, 77], "alpha": [54, 65, 70, 83], "mul": [54, 56, 70, 94, 108], "matmul": [54, 55, 64, 70, 71, 89, 109, 110, 111, 118], "modifi": [54, 56, 62, 65, 83, 100, 118], "edit": [54, 66, 80], "torch_enabled_decomposit": 54, "torch_disabled_decomposit": 54, "disjoint": 54, "preced": [54, 82], "over": [54, 57, 59, 65, 82, 112, 113, 114, 115, 117, 122], "much": [54, 60, 80, 82, 91], "significantli": [54, 55, 80, 93, 98], "easier": [54, 57, 59, 60, 65, 71, 75, 76, 89, 91, 96, 100], "tri": 54, "made": [55, 57, 59, 76, 82], "represent": [55, 60, 65, 88, 104, 111, 116, 122], "instanc": [55, 62, 64, 66, 71, 74, 75, 88, 89, 94, 116, 120], "idea": [55, 82, 94], "reduc": [55, 56, 57, 59, 65, 71, 76, 91, 93, 96, 98, 101, 108, 116, 120], "actual": [55, 58, 60, 65, 88, 89, 96], "aim": [55, 122], "closer": 55, "scope": [55, 96, 103, 107], "csrc": [55, 61], "common_subexpression_elimin": 55, "subexpress": 55, "dead_code_elimin": 55, "exception_elimin": 55, "wa": [55, 58, 62, 64, 65, 71, 75, 76, 82, 89, 94, 95, 122], "1013": 55, "ne": [55, 70], "1012": 55, "24": [55, 67, 114, 115, 117], "lib": [55, 66, 67, 89], "python3": [55, 66, 89], "site": [55, 66, 82, 89], "nn": [55, 61, 65, 71, 72, 75, 76, 77, 88, 89, 90, 93, 94, 96, 103, 108, 111, 112, 118, 119, 122], "batchnorm": 55, "248": 55, "11": [55, 66, 82, 86, 89, 114, 115, 117], "block0": 55, "raiseexcept": 55, "249": 55, "12": [55, 56, 67, 82, 86, 88, 89, 105, 114, 115, 117, 118], "block1": 55, "guard_elimin": 55, "whose": [55, 65, 105], "freeze_modul": 55, "propag": 55, "fuse_addmm_branch": 55, "variant": [55, 120], "caught": 55, "ret": 55, "622": 55, "self": [55, 58, 60, 70, 75, 76, 88, 89, 90, 93, 94, 96, 98, 103, 108, 111, 112, 116, 118, 119, 123], "bia": [55, 70, 89, 112], "x9": 55, "3677": 55, "output0": [55, 114, 115, 117, 119], "add_": [55, 70, 89, 94], "fuse_linear": 55, "back": [55, 56, 58, 59, 75, 76, 82, 88, 89, 93, 96, 122], "fuse_flatten_linear": 55, "implicitli": [55, 76], "connect": [55, 71, 76, 77, 82, 100, 114, 115, 117, 123], "higher": [55, 64, 71, 76, 80, 82, 88, 113], "1d": 55, "lower_graph": 55, "access": [55, 60, 65, 80, 89, 92, 122], "rather": [55, 111], "getattr": [55, 58, 88, 89], "trainabl": 55, "remain": [55, 76, 91, 122], "lower_tupl": 55, "lowersimpletupl": 55, "tupleconstruct": [55, 58], "tupleunpack": 55, "leav": [55, 62, 64, 71], "statement": [55, 82, 94], "loweralltupl": 55, "_all_": 55, "rais": [55, 65, 76, 95], "onnx": 55, "module_fallback": 55, "consist": [55, 65, 82, 96, 101, 108, 111, 120, 122], "pair": [55, 60, 66, 82, 91, 116], "delimit": 55, "around": [55, 58, 60, 64, 66, 71, 75, 82, 85, 88, 96, 101], "second": [55, 65, 82, 90, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113], "mark": [55, 56, 80, 98, 104], "notatemoduleforfallback": 55, "marknodesforfallback": 55, "tell": [55, 56, 57, 58, 59, 60, 82, 93, 122], "them": [55, 56, 58, 63, 64, 65, 66, 71, 75, 80, 89, 93, 96, 98, 110, 111, 116, 118, 122], "peephole_optimz": 55, "intent": [55, 82], "catch": [55, 76, 89], "small": [55, 96, 97, 101, 114, 115, 117], "might": [55, 66, 80, 102, 118], "interest": [55, 82], "now": [55, 56, 59, 60, 65, 66, 76, 82, 89, 92, 93, 94, 96, 98, 102, 113, 119, 120], "expand": [55, 70], "simpli": [55, 103, 116], "remove_contigu": 55, "remove_dropout": 55, "infer": [55, 64, 65, 71, 76, 77, 89, 91, 95, 102, 103, 113, 116, 118, 120, 121, 122], "remove_to": 55, "unpack_addmm": 55, "reus": [55, 65, 71, 91, 93, 98, 101], "dedic": [55, 83], "unpack_log_softmax": 55, "softmax": [55, 65, 70, 112], "loop_unrol": 55, "suffici": [55, 66, 76], "short": [55, 64, 71, 82, 83, 102], "tile_to_repeat": 55, "instruct": [56, 57, 59, 65, 66, 89, 111, 114, 115, 117], "criteria": [56, 57, 59, 64], "lack": [56, 57, 59, 65, 93, 96, 113], "explicitli": [56, 57, 59, 66, 77, 90, 91, 92, 109, 110, 119], "On": 56, "segment": [56, 63, 96, 105, 107, 111, 116], "verifi": [56, 71, 94, 96, 102], "Then": [56, 91, 92, 102, 114, 115, 117], "roughli": [56, 114, 115, 117], "analysi": 56, "everi": [56, 72, 75, 76, 89, 120], "complet": [56, 63, 71, 76, 88, 89], "mean": [56, 60, 64, 65, 70, 71, 72, 103, 113, 114, 115, 117, 122], "trace": [56, 65, 71, 75, 77, 88, 89, 114, 115, 117, 118, 121, 122], "tensorlist": [56, 60], "figur": [56, 83, 85, 111], "our": [56, 59, 63, 88, 89, 114, 115, 117], "stitch": [56, 89], "altogeth": [56, 80], "brief": 56, "descript": [56, 83, 95, 112], "partitioninfo": 56, "api": [56, 59, 60, 62, 63, 64, 65, 75, 76, 77, 81, 89, 90, 91, 92, 96, 103, 104, 105, 108, 113, 114, 115, 116, 117, 118, 120, 121], "maintain": [56, 58, 60, 76, 100, 108, 122], "code": [56, 59, 62, 64, 65, 66, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118], "mymodel": [56, 63, 68, 90, 93, 96, 118, 121], "ts_model": [56, 89], "trt_model": [56, 92, 96, 105, 109, 110, 111, 112, 113, 114, 115, 117, 121], "off": [56, 58, 108, 111], "consecut": [56, 63], "satisfi": [56, 62, 65], "forced_fallback_op": 56, "randn": [56, 63, 68, 71, 76, 77, 89, 92, 94, 98, 105, 108, 118, 119, 121], "224": [56, 63, 68, 71, 72, 76, 77, 89, 95, 98, 100, 102, 105, 108, 114, 115, 116, 117, 118, 121], "trt_ts_modul": [56, 90], "input_s": 56, "inputrang": 56, "cfg": [56, 89], "relu": [56, 70, 88, 89, 103, 108, 112], "trt_mod": [56, 68, 89, 91, 123], "consid": [56, 77, 89, 96, 119], "segmentmodelwithdependencyawar": 56, "test_segment": 56, "20": [56, 67, 86, 102, 105, 107], "x_lgamma": 56, "lgamma": 56, "y_lgamma": 56, "div": [56, 70], "div_lgamma": 56, "27": [56, 89], "cat": [56, 66, 67, 70, 112, 113], "greedi": [56, 104, 109, 110, 113], "strategi": [56, 76], "travers": [56, 57, 59, 64], "gather": 56, "same": [56, 58, 62, 64, 65, 66, 71, 76, 80, 82, 88, 89, 92, 93, 95, 96, 98, 102, 105, 107, 114, 115, 117, 118, 120, 121], "encount": [56, 64, 66, 94, 103, 104, 107], "4": [56, 58, 63, 64, 65, 66, 70, 76, 78, 80, 82, 83, 86, 89, 96, 103, 106, 107, 108, 112, 118], "suboptim": 56, "arithmet": 56, "split": [56, 65, 70], "own": [56, 60, 64, 66, 71, 82, 89, 98, 112, 114, 115, 117], "could": [56, 64, 65, 96, 105, 107, 120], "rewrit": [56, 62], "portion": [56, 82, 96, 106], "without": [56, 60, 68, 71, 80, 82, 89, 91, 96, 97, 98, 102, 120], "reorder": 56, "seri": 56, "cleanli": 56, "approach": [56, 98], "achiev": [56, 116], "hit": 56, "larger": [56, 71, 76, 80, 113, 116], "boundari": [56, 74, 76], "guarante": [56, 75], "trigger": [56, 64, 65, 76, 89, 98, 100, 102, 122], "appear": [56, 82], "adjac": [56, 71, 76, 82], "As": [56, 65, 66, 76, 89, 93, 94, 96, 98, 102, 108, 122], "clean": [56, 62, 82, 103, 107], "step": [56, 65, 67, 70, 76, 91, 96, 102, 111, 116], "consolid": [56, 88], "further": [56, 64, 65, 120, 122], "merg": 56, "identifi": 56, "do_not_merg": 56, "combin": [56, 64, 65], "condit": [56, 82, 122], "loop": [56, 64, 65, 104, 109, 110], "ir": [57, 59, 60, 63, 64, 68, 71, 76, 88, 89, 90, 99, 101, 103, 105, 107, 108, 114, 118], "larg": [57, 59, 80, 82, 89, 91, 101, 102, 104, 111, 113, 116], "opset": [57, 59, 94], "compon": [57, 59, 66, 67, 74, 88, 120, 122], "evalu": [57, 58, 59, 112], "deploi": [57, 59, 69, 71, 89, 91, 99, 114, 115, 117], "instanti": [57, 58, 59, 60, 89, 106], "wrap": [57, 58, 59, 65, 82, 85, 89, 92, 103, 107, 108], "extend": [57, 59, 60, 70, 89, 98, 116], "providi": [57, 59], "stand": [58, 82], "interpret": [58, 65, 82], "execute_engin": [58, 75, 89], "stack": [58, 70, 91, 112, 122], "machin": [58, 66, 91, 95, 114, 115, 117], "pop": 58, "push": 58, "element": [58, 65, 82, 83, 86, 93], "realiz": 58, "abstract": [58, 60, 83, 94], "__torch__": [58, 88, 89], "portabl": [58, 66, 77], "serializ": [58, 64, 88, 122], "instnanti": 58, "whatev": [58, 65, 96], "self_1": [58, 89], "torchvis": [58, 91, 92, 95, 98, 100, 102, 105, 108, 112, 114, 115, 117], "resnet": [58, 69, 78, 95, 99, 100, 114, 115, 116, 117], "___torch_mangle_4847": 58, "resnet_trt": 58, "input_0": [58, 89], "__torch___torchvision_models_resnet____torch_mangle_4847_resnet_trt_engin": 58, "listunpack": [58, 89], "multipl": [58, 66, 71, 75, 76, 82, 83, 91, 93, 101, 113, 114, 115, 117, 120], "repack": 58, "ssd": 58, "ssd300_trt": 58, "__torch___pytorch_detection_ssd_src_model_ssd300_trt_engin": 58, "holder": [58, 84], "torchbind": 58, "pickler": 58, "seril": 58, "zip": [58, 66, 100, 102, 111, 114], "depickl": 58, "encod": [58, 111, 116], "sm": 58, "correct": [58, 66, 80, 99, 100, 102, 112, 114, 115, 117], "bazel": [59, 66, 67], "linux": [59, 64, 67, 71, 89, 95], "x86_64": [59, 66], "aarch64": 59, "gcc": [59, 89], "untest": 59, "try": [59, 76, 82, 83, 89, 92, 96, 98, 111, 114, 115, 117, 122], "older": 59, "repositori": [59, 66, 80, 87, 111, 114, 115, 117], "notebook": [59, 69, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], "doc": [59, 61, 66, 67, 80, 81, 82, 87, 94, 96, 118], "docsrc": 59, "third_parti": [59, 66], "toolchain": [59, 66, 67], "unstabl": 59, "subject": [59, 62, 122], "matur": 59, "most": [59, 65, 66, 72, 96, 102, 114, 115, 117, 120, 122], "hood": [59, 105, 122], "major": [59, 65, 76], "top": [59, 80, 84], "coordin": [59, 76, 111], "ingest": 59, "flow": [60, 65, 82, 88, 116], "ilay": 60, "analogu": 60, "goal": [60, 64, 98], "registernodeconversionpattern": [60, 89], "helper": [60, 94], "pattern": [60, 76, 89, 113], "schema": [60, 89, 94, 96], "caus": [60, 64, 80, 103, 105, 107, 113, 120], "acthardtanh": 60, "torchtrt_unus": 60, "hardtanh": [60, 70], "scalar": [60, 70], "min_val": [60, 70], "max_val": [60, 70], "unwraptodoubl": 60, "new_lay": 60, "addactiv": 60, "activationtyp": [60, 65], "kclip": 60, "torchtrt_check": 60, "unabl": [60, 89, 96], "setalpha": 60, "setbeta": 60, "setnam": [60, 89], "util": [60, 62, 74, 77, 89, 91, 103, 107, 109, 110, 111, 112, 113, 114, 115, 116, 117, 122], "node_info": [60, 89], "c_str": [60, 89], "out_tensor": [60, 89], "associatevalueandtensor": [60, 89], "getoutput": [60, 89], "log_debug": 60, "getdimens": [60, 89], "accord": [60, 64, 77, 95], "unwrap": 60, "tool": [60, 64, 65, 66, 89, 94, 98, 116], "don": [60, 65, 80, 82, 83, 91, 94, 112, 114, 115, 117, 118], "annot": [60, 89], "your": [60, 63, 64, 66, 67, 68, 75, 80, 82, 83, 87, 88, 89, 90, 92, 98, 111, 118, 120], "Its": [60, 82], "track": [60, 91], "sort": [60, 70, 92, 111], "live": [60, 82], "directli": [60, 62, 63, 66, 69, 74, 76, 91, 94, 96, 103, 111, 121], "associatevalueandivalu": 60, "inspect": [60, 88, 89], "dataflow": [60, 89], "mechan": [60, 64, 65, 96, 101, 102, 116], "safe": [60, 64, 71, 75, 76, 77, 111], "unsur": 60, "deep": [60, 64, 69, 80, 91, 96, 123], "straight": 60, "chanc": 60, "none": [60, 64, 65, 70, 71, 72, 74, 75, 76, 77, 80, 82, 94, 96, 98, 103, 104, 111, 112, 113], "wrapper": [60, 65, 101, 108, 121], "similar": [60, 63, 64, 65, 66, 89, 92, 93, 96, 109, 110, 111], "tocustomclass": 60, "tensorcontain": 60, "istensor": 60, "iscustomclass": 60, "lot": [60, 63], "singular": 60, "becaus": [60, 65, 66, 72, 88, 89, 93, 94, 96, 97, 98, 101, 108, 113, 119], "alloc": [60, 69, 99, 108, 114], "freed": 60, "destructor": 60, "destroi": [60, 83], "realli": 60, "think": [60, 82], "becom": [60, 66, 100], "benefit": [60, 89, 98, 108, 113], "deal": [60, 98], "quit": [60, 66, 89, 116], "effici": [60, 101, 108, 111], "batch_norm": [60, 70], "fusion": [60, 62, 65], "deeplearn": [61, 65, 67], "sdk": [61, 67, 114, 115, 117, 122], "matrix": 61, "html": [61, 66, 67, 82, 88, 91, 94, 96, 118], "c_api": 61, "python_api": 61, "org": [61, 66, 80, 82, 88, 89, 91, 94, 96, 118, 120], "stabl": [61, 67, 69, 77, 78, 80, 99, 114, 118], "master": [61, 66, 91, 120], "overview": [61, 69, 103, 108], "md": 61, "appli": [62, 63, 91, 102, 104, 108, 111], "desir": [62, 71, 83, 91, 98], "coalesc": 62, "insert": [62, 64, 71, 89, 91, 94, 98, 102], "graphmodul": [62, 63, 71, 72, 76, 89, 90, 96, 102, 121, 122], "caller": 62, "invok": [62, 64, 65, 88, 89, 120], "lint": 62, "recompil": [62, 71, 76, 94, 98, 102, 104, 107, 118, 122], "repair": 62, "disallow": 62, "repair_input_as_output": 62, "gm": [62, 71], "sample_input": [62, 65, 103], "scenario": [62, 64, 100, 101, 113], "clone": [62, 66, 70, 96], "modified_graph": 62, "extract": [62, 89, 111, 116], "placehold": [62, 94], "isinst": [62, 65, 96, 112], "issubclass": 62, "direct": [62, 86, 102, 120], "len": [62, 70, 96, 111], "direct_output": 62, "inserting_aft": 62, "cloned_placehold": 62, "replace_input_with": 62, "date": [62, 83, 122], "eliminate_dead_cod": 62, "logger": [62, 73], "f": [62, 64, 65, 67, 76, 82, 88, 94, 95, 96, 101, 111, 112, 113], "__init__": [62, 75, 76, 82, 88, 93, 94, 96, 98, 103, 111, 112, 118, 119], "pass_manag": 62, "passmanag": 62, "backend": [62, 68, 69, 77, 78, 81, 92, 97, 98, 99, 103, 104, 108, 112, 114, 115, 117, 118], "offer": [62, 64], "registr": [62, 65], "conveni": [62, 91, 107, 116, 120, 122], "control": [62, 65, 88, 102, 113, 120], "_aten_lowering_pass": 62, "my_custom_pass": 62, "front": [62, 71], "passlist": 62, "arbitrari": [62, 75], "remov": [62, 63, 71, 80, 97, 98, 101, 111, 112], "dump_lowering_pass": 62, "apply_lowering_pass": 62, "graph_modul": [62, 71], "_remove_lowering_pass": 62, "evolv": 62, "introduc": [63, 65, 108, 116], "exportedprogram": [63, 68, 71, 76, 102, 109, 110, 113, 118, 122], "dynamo": [63, 64, 66, 68, 74, 75, 76, 78, 89, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 107, 108, 112, 113, 114, 115, 117, 118, 119], "frontend": [63, 71, 74, 90, 93, 96, 99, 105, 107, 112, 114, 115, 117, 118], "simpl": [63, 64, 65, 82, 83, 88, 93, 114, 115, 116, 117, 118], "usag": [63, 65, 69, 74, 78, 82, 89, 93, 99, 113, 114, 118, 121], "eval": [63, 68, 89, 90, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117, 118, 119, 121], "exp_program": [63, 98, 102, 111, 112, 118], "trt_gm": [63, 68, 98, 102, 118, 119, 121], "interact": [63, 82, 100, 103, 105, 106, 107, 108], "ideal": 63, "discuss": [63, 64, 114, 115, 117], "section": [63, 65, 80, 82, 83, 84, 86, 89, 91, 114, 115, 117, 121], "frequent": [63, 101], "builder": [63, 64, 65, 71], "respect": [63, 64, 66, 71, 76, 109, 110, 119], "releas": [63, 64, 67, 82], "insid": [63, 82, 93, 96], "decomposit": [63, 64, 71, 76, 93, 96], "downstream": [63, 116], "constraint": [63, 113], "guid": [64, 81], "present": [64, 102], "learn": [64, 66, 69, 89, 91, 96, 114, 115, 117, 123], "acceler": [64, 72, 76, 120, 122, 123], "workflow": [64, 65, 68, 69, 71, 72, 76, 89, 92, 98, 99, 100, 105, 106, 107, 109, 110, 114, 116], "wide": [64, 76, 86], "varieti": [64, 114, 115, 117], "primari": [64, 94, 98, 121], "simplic": 64, "optimized_model": [64, 68, 97, 101, 103, 105, 107], "depth": [64, 80, 116], "challeng": [64, 100, 114, 115, 117], "addition": [64, 96], "fit": [64, 82], "compilationset": [64, 71, 75, 94, 96, 103], "_enum": [64, 71], "callabl": [64, 71, 76], "pass_through_build_failur": [64, 71, 75, 76, 96, 108], "max_aux_stream": [64, 71, 75, 76, 96], "version_compat": [64, 71, 75, 76, 96], "optimization_level": [64, 71, 75, 76, 96, 103], "use_python_runtim": [64, 71, 75, 76, 96, 97, 98, 100, 102, 103], "truncate_doubl": [64, 71, 75, 76, 96, 97, 109, 110, 113], "use_fast_partition": [64, 71, 75, 76, 96], "enable_experimental_decomposit": [64, 71, 75, 76, 96], "_devic": [64, 71], "assume_dynamic_shape_support": [64, 71, 75, 76], "engine_cap": [64, 71, 75, 76, 96], "dryrun": [64, 71, 75, 76, 96], "hardware_compat": [64, 71, 75, 76, 96], "timing_cache_path": [64, 71, 75, 76, 98], "tmp": [64, 71, 75, 76, 89, 97], "torch_tensorrt_engine_cach": [64, 71, 75, 76], "timing_cach": [64, 65, 71, 75, 76], "bin": [64, 66, 67, 71, 75, 76], "lazy_engine_init": [64, 71, 75, 76], "cache_built_engin": [64, 71, 75, 97, 98], "reuse_cached_engin": [64, 71, 75, 97, 98, 102], "use_explicit_typ": [64, 71, 75, 109, 110, 113, 119], "use_fp32_acc": [64, 71, 75, 109, 110, 111], "refit_identical_engine_weight": [64, 71, 75], "strip_engine_weight": [64, 71, 75], "immutable_weight": [64, 71, 75, 76, 97, 98, 100, 102], "enable_weight_stream": [64, 71, 75, 113], "enable_cross_compile_for_window": [64, 71, 75], "dpython": [64, 71, 76, 77], "per": [64, 71, 96, 120], "regardless": [64, 71, 83, 105, 107], "fail": [64, 71, 76, 89, 100, 102, 112, 123], "auxiliari": [64, 71], "stream": [64, 69, 71, 76, 93, 96, 99, 114], "impli": [64, 71], "longer": [64, 66, 71, 76, 80, 95, 120], "search": [64, 69, 71, 76, 80], "strictli": [64, 71], "runtim": [64, 66, 68, 69, 71, 76, 89, 94, 99, 100, 103, 107, 108, 113, 114, 122], "presenc": [64, 71, 108], "preferenti": [64, 71], "choos": [64, 65, 71, 88], "float64": [64, 71, 76, 77], "toggl": [64, 71, 76], "mode": [64, 65, 71, 75, 76, 90, 91, 94, 108, 111, 112], "detail": [64, 65, 67, 71, 88, 89, 96, 98, 114, 115, 117, 120], "natur": [64, 71, 82], "architectur": [64, 66, 69, 71, 76, 95, 98, 116], "amper": [64, 71, 76], "newer": [64, 66, 71, 76], "storag": [64, 71, 91], "use_strong_typ": [64, 71], "strong": [64, 71, 82], "mix": [64, 69, 71], "happen": [64, 65, 71, 88, 100, 105, 118], "strip": [64, 71], "non": [64, 66, 71, 76, 83, 85, 111, 120], "refitt": [64, 71, 76, 98], "were": [64, 71, 96, 102, 120], "cross": [64, 71, 82, 99, 114], "window": [64, 71, 82], "sub": [64, 70, 82, 88, 103], "slate": 64, "futur": [64, 65, 71, 76, 77, 104, 120], "occur": [64, 108, 113], "first_output": 64, "subsequ": [64, 98, 101, 108], "second_output": 64, "session": [64, 68, 82, 98, 108], "point": [64, 66, 76, 80, 81, 82, 89, 93, 111, 112, 114, 115, 117], "cover": [64, 93, 94], "benchmark": [64, 70], "automat": [64, 67, 76, 82, 89, 99, 102, 114, 118, 122], "vari": [64, 72, 113, 118], "distribut": [64, 67, 89, 91, 113, 120], "inf": 64, "dynamo_convers": 64, "contribut": [64, 101], "demonstr": [64, 82, 83, 84, 91, 93, 94, 96, 98, 100, 112, 114, 115, 116, 117], "break": [64, 65, 71, 75, 76, 82, 93, 96, 101, 110, 111], "successfulli": [64, 95, 100, 102, 111], "_dynamo": [64, 97, 98, 103, 104, 105, 107, 118], "explain": [64, 65, 69], "veri": [64, 65, 83, 84, 91, 92, 104, 109, 110, 114, 115, 117], "explan": [64, 65], "graph_break_count": 64, "furthermor": 64, "durat": [64, 82], "latter": [64, 75], "logic": [64, 65, 94], "guard": 64, "compos": [65, 88, 91, 94, 112, 114, 115, 117], "variou": [65, 123], "etc": [65, 80, 82, 96, 123], "environ": [65, 68, 71, 114, 115, 117], "research": 65, "few": [65, 66, 76, 94], "nightli": 65, "lower_exampl": 65, "welcom": [65, 89], "finish": 65, "converison": 65, "pleas": [65, 67, 76, 82, 89, 99, 111, 112, 114, 115, 117, 118], "max_batch_s": [65, 72, 114, 115, 117], "2048": [65, 72], "max_workspace_s": [65, 72], "33554432": [65, 72], "explicit_batch_dimens": [65, 72], "lower_precis": [65, 72], "lowerprecis": [65, 72], "verbose_log": [65, 72], "timing_cache_prefix": [65, 72], "save_timing_cach": [65, 72], "cuda_graph_batch_s": [65, 72], "dynamic_batch": [65, 72], "turn": [65, 72, 108], "trtmodul": [65, 72], "otherwis": [65, 66, 72, 98, 120], "implicit": [65, 70, 72, 82], "config": [65, 66, 72, 114, 115, 117], "updat": [65, 66, 67, 71, 72, 76, 96, 102], "dim": [65, 70, 72, 96, 98, 112, 113, 114, 115, 117, 118], "fx2trt_exampl": 65, "acc_trac": 65, "come": [65, 66, 81, 93, 96, 100, 114, 115, 117], "my_pytorch_model": 65, "build_model": 65, "prepar": [65, 114, 115, 117], "acc_mod": 65, "earli": [65, 102], "deprec": [65, 70], "continu": [65, 82, 108, 120], "backward": [65, 75, 96, 122], "vision": [65, 99, 114, 115, 117], "activ": [65, 77, 82, 89, 91, 94, 116, 120, 123], "except": [65, 71, 76], "permut": [65, 70, 111], "transpos": [65, 70, 118], "ll": [65, 98, 104], "inputtensorspec": [65, 72, 76], "experiment": [65, 76, 77], "dataclass": [65, 103], "re": [65, 76, 82, 93, 98, 100, 108, 120], "manual": [65, 76, 81, 82, 102, 113], "sampl": [65, 71, 82, 90, 91, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 114, 115, 117], "rand": [65, 89, 95, 98, 100, 102, 103, 114, 115, 117], "from_tensor": [65, 76], "slightli": [65, 66, 96], "promis": 65, "optimize_target_shap": 65, "input_tensor_spec": 65, "shape_rang": [65, 72], "100": [65, 72, 96, 98, 112, 113], "accordingli": [65, 80, 118, 120], "trtinterpreterresult": [65, 72], "namedtupl": 65, "input_nam": [65, 72], "output_nam": [65, 72], "serialized_cach": [65, 72], "bytearrai": [65, 75, 77], "afford": 65, "temporari": [65, 98], "best": [65, 71, 76, 82, 100, 113, 119], "perforamnc": 65, "examin": 65, "suitabl": [65, 94, 101], "force_fp32_output": 65, "strict_type_constraint": 65, "usual": [65, 66, 80, 104], "unless": 65, "certain": [65, 66, 103, 109, 110, 111, 113, 120], "algorithm_selector": 65, "profiling_verbos": 65, "trt_interpreter_result": 65, "64": [65, 76, 90, 93, 110, 111, 112, 118], "25": [65, 72, 89, 111], "runtimeerror": [65, 112], "xxx": 65, "One": [65, 82, 83, 89, 116, 120], "reload_trt_mod": 65, "reload_model_output": 65, "far": [65, 82], "give": [65, 80, 82], "convtert": 65, "scheme": [65, 71, 76], "action": [65, 82], "tensort": [65, 122], "thing": [65, 66, 82], "compar": [65, 71, 76, 90, 101, 102], "vanilla": 65, "mainli": 65, "builtin": 65, "purpos": [65, 114, 115, 116, 117], "acc_op": 65, "leverag": [65, 91], "power": [65, 82, 89, 113, 116], "goe": [65, 82], "whole": [65, 108], "sigmoid": [65, 70], "tensorrt_convert": 65, "acc_ops_sigmoid": 65, "rest": [65, 82, 83], "input_v": [65, 94], "receiv": 65, "region": 65, "add_activ": 65, "get_output": [65, 96], "wherev": 65, "rememb": [65, 66, 114, 115, 117], "mapper": 65, "todo": [65, 67, 80], "logist": 65, "down": [65, 66, 80, 110], "acc_norm": 65, "foo": [65, 82, 83], "register_acc_op": 65, "register_acc_op_map": 65, "this_arg_is_opt": 65, "op_and_target": 65, "arg_replacement_tupl": 65, "rule": [65, 66, 77], "third": [65, 83], "boolean": [65, 76, 94], "matter": [65, 96], "register_custom_acc_mapper_fn": 65, "design": [65, 74, 94, 100, 109, 113, 116, 123], "redund": 65, "throught": 65, "custom_mapp": 65, "_": [65, 82, 93, 96, 101, 111, 112, 113, 119], "foo_kwarg": 65, "inserting_befor": 65, "foo_nod": 65, "meta": [65, 67, 86, 93, 110, 113], "children": 65, "unit": [65, 76, 108], "test_acc_trac": 65, "acc_op_convert": 65, "essenti": 65, "plugin": [65, 96], "yet": [65, 116], "folder": 65, "center": 66, "pypi": 66, "m": [66, 67, 83, 93, 104, 112], "pip": [66, 67, 99, 104, 111, 114, 115, 117], "upload": [66, 114, 115, 117], "x86": [66, 120], "extra": [66, 75, 89, 96, 100], "url": [66, 80, 114, 115, 117], "download": [66, 67, 86, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117], "whl": [66, 67], "cu118": 66, "cu124": 66, "tarbal": [66, 89, 91], "easiest": [66, 93, 96], "bazelisk": [66, 67], "bazelbuild": [66, 67], "export": [66, 67, 69, 71, 76, 98, 99, 102, 105, 109, 110, 111, 112, 113, 114, 115, 117, 119, 121, 122], "bazel_vers": 66, "path_to_torchtrt_root": 66, "bazelvers": 66, "mkdir": 66, "cd": [66, 114, 115, 117], "curl": [66, 82], "fssl": 66, "o": [66, 82, 114, 115, 117], "dist": 66, "unzip": 66, "bash": [66, 114, 115, 117], "sh": 66, "cp": [66, 67, 96], "usr": [66, 67], "driver": 66, "branch": [66, 67], "4e5b0f6e860910eb510fa70a76ee3eb9825e7a4d": 66, "l46": 66, "pull": [66, 98, 114, 115, 117], "latest": [66, 67, 80], "l53c1": 66, "fact": 66, "reproduc": 66, "l71": 66, "http_archiv": 66, "build_fil": 66, "archiv": [66, 67], "sha256": 66, "strip_prefix": 66, "OR": 66, "TO": [66, 89], "gnu": 66, "tar": [66, 67, 82, 91], "gz": [66, 82, 83, 91], "ld_library_path": 66, "comment": [66, 82], "uncom": 66, "l114c1": 66, "l124c3": 66, "uv": 66, "astral": 66, "project": [66, 81, 86], "simpler": [66, 91], "wheel": [66, 67], "dep": 66, "lighter": 66, "executor": 66, "avoid": [66, 93, 94, 96, 102, 111, 118], "implic": 66, "python_onli": 66, "legaci": [66, 74], "mainten": 66, "torchdynamo": [66, 118, 122], "technolog": [66, 122], "exclud": [66, 96], "speed": [66, 98, 102], "no_torchscript": 66, "dbg": 66, "pre_cxx11_abi": 66, "complic": 66, "incompat": 66, "popular": [66, 81, 99, 109, 110, 114, 116], "ngc": [66, 67, 114, 115, 117], "tabl": [66, 86], "bdist_wheel": 66, "preinstal": 66, "forum": 66, "correctli": [66, 96], "declar": 66, "intend": [66, 103, 105, 106, 107, 108], "microsoft": 66, "2022": [66, 69], "open": [66, 111, 114, 115, 116, 117], "app": 66, "x64": 66, "prompt": [66, 100, 104, 106, 109, 110, 111], "admin": 66, "privileg": 66, "launcher": 66, "chocolatei": 66, "navig": [66, 80], "ninja": 66, "setuptool": 66, "r": [66, 67, 82, 99, 104, 111, 114], "txt": [66, 67, 99, 104, 111, 114], "distutils_use_sdk": 66, "cuda_win": 66, "libtorch_win": 66, "tensorrt_win": 66, "similarli": [66, 98, 108, 120], "ci_workspac": 66, "win": 66, "tmpl": [66, 67], "torchtrtc": [66, 69, 123], "websit": 66, "finder": 66, "dcmake_module_path": 66, "doesn": [66, 82, 88, 89], "dtorch_dir": 66, "dtensorrt_root": 66, "choic": [66, 74], "b": [66, 70, 76, 83, 93, 113, 114, 115, 117], "dcmake_build_typ": 66, "72048": 66, "jp_workspac": [66, 67], "new_local_repositori": 66, "sudo": [66, 67], "home": 66, "unlik": [66, 92], "libtorch_pre_cxx11_abi": 66, "shift": [66, 70, 82], "jetpack": 66, "jetpack_x": 66, "jetpack_5": 66, "drop": [66, 80, 112], "nvida": 67, "ofjetpack": 67, "With": [67, 80, 82, 89, 91, 93, 98, 114, 115, 117], "incorpor": [67, 83], "cudnn": 67, "9": [67, 86, 89, 95, 96, 114, 115, 117], "dlfw": 67, "09": 67, "jetson": [67, 116], "framework": 67, "instal": [67, 69, 86, 89, 99, 104, 111, 114, 115, 117, 120], "kit": 67, "flash": 67, "board": 67, "apt": 67, "show": [67, 80, 82, 98, 106, 113, 116], "dev": 67, "everth": 67, "nvcc": 67, "cmd": 67, "toolkit": [67, 74], "libcusparselt": 67, "lib64": 67, "wget": [67, 114, 115, 117], "cusparselt": 67, "redist": 67, "libcusparse_lt": 67, "sbsa": 67, "xz": 67, "xf": 67, "v1": [67, 100, 106], "arm64": 67, "mv": 67, "chmod": 67, "pypa": 67, "en": [67, 80], "bootstrap": 67, "jp": 67, "v61": 67, "0a0": 67, "872d972e41": 67, "nv24": 67, "08": [67, 114, 115, 117], "17622132": 67, "cp310": 67, "linux_aarch64": 67, "test_requir": 67, "jetpack6": 67, "lanl": 67, "cuda_vers": 67, "grep": 67, "cut": [67, 82, 102], "sed": [67, 83, 85], "torch_install_path": 67, "dirnam": 67, "__file__": 67, "site_package_path": 67, "cuda_hom": 67, "envsubst": 67, "cxx11": [67, 120], "abi": [67, 120], "anywher": 68, "ahead": [68, 69, 89, 100, 108], "ep": [68, 70, 95, 102, 119, 121], "output_format": [68, 76, 121], "input_tensor": [68, 96, 112, 113], "fill": 68, "aot": [69, 89, 99, 100, 102, 108, 114, 122], "integr": [69, 100, 103], "seamlessli": [69, 76], "ecosystem": [69, 122], "hybrid": [69, 71, 76, 77, 122], "advanc": [69, 78, 83, 91, 99, 104, 114], "bert": [69, 78, 99, 101, 114], "triton": [69, 93, 96], "cudagraph": [69, 99, 114], "overload": [69, 99, 114], "mutabl": [69, 99, 114], "diffus": [69, 78, 99, 114], "gpt2": [69, 99, 114], "llama2": [69, 99, 114], "sam2": [69, 99, 114], "page": [69, 84, 86, 114, 115, 117], "introductori": 69, "blog": [69, 120], "gtc": 69, "2020": [69, 89], "talk": 69, "fall": [69, 76, 93, 96], "2021": 69, "dai": 69, "confer": 69, "_convolut": [70, 89], "stride": [70, 76, 96, 112], "pad": [70, 76, 96, 112], "dilat": 70, "output_pad": 70, "group": [70, 82, 83], "determinist": 70, "cudnn_en": 70, "allow_tf32": 70, "ab": 70, "aco": 70, "acosh": 70, "adaptive_avg_pool1d": 70, "output_s": 70, "adaptive_avg_pool2d": 70, "adaptive_avg_pool3d": 70, "adaptive_max_pool1d": 70, "adaptive_max_pool2d": 70, "adaptive_max_pool3d": 70, "argmax": [70, 113], "keepdim": 70, "argmin": 70, "asin": 70, "asinh": 70, "atan": 70, "atanh": 70, "avg_pool1d": 70, "kernel_s": [70, 96, 112], "ceil_mod": 70, "count_include_pad": 70, "avg_pool2d": 70, "divisor_overrid": 70, "avg_pool3d": 70, "gamma": 70, "var": 70, "momentum": 70, "bitwise_not": 70, "bmm": 70, "ceil": 70, "clamp": 70, "clamp_max": 70, "clamp_min": 70, "constant_pad_nd": 70, "co": [70, 83, 116], "cosh": 70, "cumsum": 70, "tensor_mod": 70, "rounding_mod": 70, "div_": 70, "elu": 70, "scale": [70, 91, 116], "input_scal": 70, "indic": [70, 71, 80, 82, 93, 94, 102, 105, 118, 119], "padding_idx": 70, "eq": [70, 82], "erf": [70, 94], "exp": 70, "expand_a": 70, "fake_quantize_per_channel_affin": 70, "zero_point": 70, "axi": [70, 76, 111], "quant_min": 70, "quant_max": 70, "fake_quantize_per_tensor_affin": 70, "using_int": [70, 89], "start_dim": [70, 89], "end_dim": [70, 89], "floor": 70, "floor_divid": 70, "ge": 70, "gru_cel": 70, "hx": 70, "w_ih": 70, "w_hh": 70, "b_ih": 70, "b_hh": 70, "gt": 70, "hardtanh_": 70, "instance_norm": 70, "running_mean": 70, "running_var": 70, "use_input_stat": 70, "layer_norm": 70, "normalized_shap": 70, "le": 70, "negative_slop": 70, "01": [70, 83, 89, 111, 112], "leaky_relu_": 70, "lstm_cell": 70, "lt": 70, "masked_fil": 70, "mask": [70, 96, 111], "max_pool1d": 70, "max_pool2d": [70, 88, 89], "max_pool3d": 70, "mul_": [70, 94], "narrow": 70, "neg": [70, 100], "norm": 70, "scalaropt_dim": 70, "pixel_shuffl": 70, "upscale_factor": 70, "pow": 70, "tensor_scalar": 70, "expon": 70, "tensor_tensor": 70, "prelu": 70, "prod": [70, 96], "dim_int": 70, "reciproc": 70, "reflection_pad1d": 70, "reflection_pad2d": 70, "relu_": 70, "repeat_interleav": 70, "self_int": 70, "replication_pad1d": 70, "replication_pad2d": 70, "replication_pad3d": 70, "reshap": [70, 96, 111], "roll": 70, "rsub": 70, "scatter": [70, 111], "sigmoid_": 70, "sin": [70, 82], "sinh": 70, "slice": 70, "split_siz": 70, "split_with_s": 70, "sqrt": 70, "squar": 70, "squeez": [70, 111, 116], "sub_": 70, "dim_intlist": 70, "tan": 70, "tanh": [70, 94], "tanh_": [70, 94], "non_block": [70, 112], "memory_format": [70, 76], "prim_devic": 70, "topk": 70, "k": [70, 91, 112], "largest": 70, "dim0": [70, 98], "dim1": 70, "unbind": 70, "unsqueez": [70, 111, 114, 115, 117], "upsample_bilinear2d": 70, "align_corn": 70, "scales_h": 70, "scales_w": 70, "vec": 70, "scale_factor": 70, "upsample_linear1d": 70, "upsample_nearest1d": 70, "upsample_nearest2d": 70, "upsample_nearest3d": 70, "scales_d": 70, "upsample_trilinear3d": 70, "view": [70, 80, 111], "__and__": 70, "__derive_index": 70, "idx": 70, "__getitem__": 70, "__is__": 70, "t1": 70, "t2": 70, "obj": 70, "__isnot__": 70, "__not__": 70, "__or__": 70, "__range_length": 70, "lo": 70, "hi": [70, 82, 83], "__round_to_zero_floordiv": 70, "__xor__": 70, "append": [70, 94, 97, 98, 101, 112, 113], "el": 70, "arang": [70, 93, 96], "pin_memori": 70, "start_step": 70, "copy_": 70, "float_int": 70, "int_float": 70, "floordiv": 70, "is_floating_point": 70, "numel": [70, 93], "l": [70, 112], "9223372036854775807": 70, "requires_grad": 70, "tupleindex": 70, "tup": 70, "exported_program": [71, 76, 121], "arg_input": [71, 76, 94, 102], "kwarg_input": [71, 76, 102], "engine_cache_dir": [71, 97, 98], "engine_cache_s": [71, 97, 98], "5368709120": 71, "custom_engine_cach": [71, 98], "baseenginecach": [71, 98], "int32": [71, 76, 77, 96, 97, 101, 107, 116], "channel_last": [71, 76, 77, 116], "244": [71, 76, 77], "alia": [71, 76], "better": [71, 76, 88, 111, 116, 122], "understand": [71, 76, 118], "convolut": [71, 76, 77, 91, 96, 123], "_c": [71, 76, 77, 92], "oppos": [71, 76, 77], "lean": [71, 76], "spend": [71, 76], "integ": [71, 76, 85], "faster": [71, 76, 97, 98, 101, 111, 116], "parition": [71, 76], "increas": [71, 76, 98, 113], "amount": [71, 76, 113], "defer": [71, 76, 122], "lead": [71, 76, 82, 101, 113, 120], "oversubscript": [71, 76], "hard": [71, 102], "disk": [71, 76, 98], "space": [71, 82, 83, 91], "byte": [71, 75, 76, 77, 96, 98, 113, 116], "1gb": [71, 97, 98], "exce": 71, "oldest": 71, "gear": [71, 91], "toward": [71, 91, 111], "cross_compile_flag": 71, "cross_compil": 71, "refit_module_weight": [71, 102], "compiled_modul": [71, 102], "new_weight_modul": [71, 102], "verify_output": [71, 102], "use_weight_map_cach": [71, 102], "in_plac": [71, 102], "compmil": 71, "coverag": [71, 96], "min_acc_module_s": 72, "is_aten": 72, "use_experimental_fx_rt": 72, "correctness_atol": 72, "correctness_rtol": 72, "minim": [72, 91, 96, 101], "submodul": [72, 88, 96, 108], "fx2trt": 72, "cpu": [72, 101, 109, 110, 111, 113], "has_batch_dim": 72, "dtyep": 72, "prop": 72, "min_input_shap": 72, "optimized_input_shap": 72, "max_input_shap": 72, "popul": 72, "225": [72, 114, 115, 117], "explicit_precis": 72, "logger_level": 72, "model_trt": [73, 93], "model_torchtrt": 73, "internal_error": 73, "dataloadercalibr": [74, 91], "preprocess": [74, 91, 114, 115, 117], "algo_typ": [74, 91], "calibrationalgo": [74, 91], "cachecalibr": [74, 91], "qualnam": [74, 76], "entropy_calibr": 74, "entropy_calibration_2": [74, 91], "legacy_calibr": 74, "minmax_calibr": 74, "set_multi_device_safe_mod": [75, 120], "_multidevicesafemodecontextmanag": 75, "impact": 75, "suppress": 75, "unsaf": 75, "trt_compiled_modul": 75, "torchtensorrtmodul": [75, 96], "encompass": [75, 77], "simpili": 75, "de": 75, "initi": [75, 76, 82, 102, 103, 105, 107, 108, 109, 110], "scriptmodul": [75, 76, 77, 89, 90, 121, 122], "overridden": [75, 76], "subclass": 75, "although": [75, 82], "recip": [75, 91], "afterward": 75, "former": 75, "care": 75, "hook": 75, "silent": 75, "get_extra_st": 75, "state_dict": [75, 76, 100], "set_extra_st": 75, "picklabl": 75, "pickl": [75, 96, 98], "load_state_dict": [75, 100, 112], "pythontorchtensorrtmodul": 75, "serialized_engin": [75, 77], "_set": [75, 103], "weight_name_map": 75, "trt_modul": [75, 120], "engine_str": 75, "my_modul": 75, "current_devic": 75, "disable_profil": 75, "enable_profil": 75, "iprofil": 75, "spent": 75, "get_layer_info": 75, "validate_input_shap": 75, "request": [76, 89, 114, 115, 117], "decid": 76, "deseri": [76, 77, 89, 96], "retrac": 76, "cudagraphstorchtensorrtmodul": 76, "strict": [76, 111, 120], "valueerror": [76, 95], "mutabletorchtensorrtmodul": [76, 100], "pytorch_model": 76, "regular": 76, "whenev": 76, "refit_gm": 76, "shape_mod": 76, "_shapemod": 76, "interv": 76, "notat": 76, "bound": 76, "torch_tensor": 76, "tracer": 76, "example_tensor": 76, "optimization_profile_field": 76, "classmethod": 76, "disable_memory_format_check": 76, "core_id": 76, "schedul": [76, 114, 115, 117], "use_default": 76, "try_to": 76, "anoth": [76, 82, 83, 88, 90, 102], "typeerror": 76, "unknown": 76, "succe": 76, "float_dtyp": 76, "failur": 76, "bf16": 76, "try_from": [76, 96], "complex128": 76, "16": [76, 86, 88, 89, 90, 105, 108], "brain": 76, "bfloat16": 76, "f64": 76, "f8": 76, "fp8": 76, "float8": 76, "i32": 76, "sign": [76, 114, 115, 117], "i64": 76, "u8": 76, "unsign": 76, "uint8": [76, 111], "trt_dla": 76, "torchtrt_dla": 76, "_from": 76, "torchtrt_dla_ec": 76, "torchtrt_safety_ec": 76, "saefti": 76, "trt_dla_ec": 76, "standalon": [76, 82, 111], "certifi": 76, "tf": 76, "torchtrt_linear": 76, "cdhw32": 76, "thirti": 76, "row": [76, 83], "spatial": 76, "31": [76, 89], "subscript": [76, 82], "chw16": 76, "sixteen": 76, "15": [76, 82, 86], "chw2": 76, "chw32": 76, "chw4": 76, "four": [76, 82, 83], "dhwc": 76, "equivi": 76, "channels_last_3d": 76, "dhwc8": 76, "eight": 76, "dla_hwc4": 76, "imag": [76, 91, 96, 100, 106, 112, 114, 115, 117], "roundup": 76, "elements": 76, "dla_linear": 76, "planar": 76, "hwc": 76, "channels_last": 76, "hwc16": 76, "hwc8": 76, "least": [76, 82, 83], "ishapelay": 77, "check_method_op_support": 77, "seriali": 77, "put_binding_nam": 77, "tensorrtcompilespec": [77, 92], "scriptclass": 77, "0x7fa3dde966b0": 77, "_jit_to_tensorrt": 77, "00": 78, "000": [78, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113], "total": [78, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113], "galleri": [78, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], "mem": 78, "torch_compile_advanced_usag": [78, 103], "torch_compile_resnet_exampl": [78, 105], "torch_compile_stable_diffus": [78, 106], "torch_compile_transformers_exampl": [78, 107], "v0": [79, 114, 115, 117], "pytorch_sphinx_them": [80, 87], "conf": [80, 87], "html_theme_opt": 80, "canonical_url": 80, "analytics_id": 80, "logo_onli": 80, "display_vers": 80, "prev_next_buttons_loc": 80, "bottom": 80, "style_external_link": 80, "vcs_pageview_mod": 80, "collapse_navig": 80, "sticky_navig": [80, 84], "navigation_depth": 80, "includehidden": 80, "titles_onli": 80, "canon": 80, "rank": 80, "trail": 80, "slash": 80, "googl": 80, "analyt": 80, "isn": [80, 82, 93, 96], "shown": [80, 82, 89, 111, 119], "sidebar": [80, 86], "button": [80, 82], "icon": [80, 82], "extern": [80, 82, 99, 114], "display_github": 80, "display_gitlab": 80, "gitlab": 80, "bitbucket": 80, "bar": [80, 82], "www": [80, 82, 89, 91, 114, 115, 117], "sphinx": [80, 81, 82, 83, 87, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], "toctre": 80, "lose": 80, "scroll": [80, 84], "unlimit": 80, "header": [80, 82, 83, 89, 114, 115, 117], "render": 80, "github_url": 80, "bitbucket_url": 80, "gitlab_url": 80, "left": [80, 82], "upon": [80, 103, 107], "rst": [80, 82], "visitor": 80, "revert": 80, "misbuild": 80, "properti": [80, 96], "stick": 80, "screen": 80, "vertic": [80, 82], "too": [80, 82, 83], "sticki": [80, 86], "nav": [80, 86], "At": [81, 94, 102], "django": 81, "payment": 81, "dotpai": 81, "dotpayprovid": 81, "seller_id": 81, "pin": 81, "lock": 81, "lang": 81, "pl": 81, "polish": 81, "gatewai": 81, "transfer": 81, "purchas": 81, "item": [81, 83, 112], "param": 81, "seller": 81, "consult": 81, "ui": 81, "languag": [81, 82, 83, 88, 93, 96, 99, 104, 109, 114, 115, 117], "data_item_1": 81, "emphasi": 82, "hyperlink": 82, "uri": 82, "web": 82, "anonym": 82, "label": [82, 91, 111, 112, 114, 115, 116, 117], "substitut": 82, "charact": 82, "exceedingli": 82, "ugli": 82, "problem": [82, 110], "problemat": 82, "ext": [82, 83], "autodoc": [82, 83], "demo": [82, 91, 111], "test_py_modul": [82, 86], "my": [82, 104, 109], "role": 82, "pep": 82, "287": 82, "rfc": 82, "2822": 82, "superscript": 82, "gui": 82, "taken": [82, 101], "height": [82, 111], "interfer": 82, "press": 82, "keyboard": 82, "mous": 82, "mmb": 82, "menuselect": 82, "seen": [82, 83], "whitespac": 82, "signific": [82, 96], "strang": 82, "hyphen": 82, "word": [82, 116], "adjust": 82, "width": [82, 111, 116], "browser": 82, "sentenc": [82, 113, 116], "suppli": [82, 102], "258": 82, "equat": 82, "x_": 82, "x_0": 82, "x_1": 82, "x_2": 82, "x_3": 82, "x_4": 82, "nabla": 82, "frac": 82, "theta": 82, "phi": 82, "restructuredtext": [82, 83], "parser": [82, 95, 112], "colon": 82, "indent": 82, "literal_block": 82, "spaces_and_linebreak": 82, "preserv": [82, 88, 91, 111], "markup_process": 82, "Or": 82, "great": [82, 89, 93, 96, 98, 122], "why": [82, 120], "didn": 82, "blank": 82, "align": 82, "permit": 82, "awai": 82, "eric": 82, "orchestra": 82, "leader": 82, "bee": 82, "philosoph": 82, "ipso": 82, "facto": 82, "But": [82, 89, 102, 113], "got": [82, 89], "vi": 82, "entiti": 82, "said": 82, "entir": [82, 108, 111, 122], "ancient": 82, "injuri": 82, "sing": 82, "elk": 82, "bracket": 82, "miss": [82, 89], "brontosaurus": 82, "thin": 82, "thicker": 82, "middl": 82, "That": [82, 89], "mine": 82, "belong": 82, "me": [82, 83], "ann": 82, "begun": 82, "past": 82, "pars": [82, 89], "someurl": 82, "dev0": 82, "50f29cb": 82, "caption": [82, 85], "pane": 82, "shell_command": 82, "echo": 82, "did": 82, "window_nam": 82, "session_nam": 82, "shorthand": 82, "some_funct": 82, "highlight": 82, "THE": 82, "heaven": 82, "hexagram": 82, "six": 82, "unbroken": 82, "primal": 82, "light": [82, 121], "spirit": 82, "weak": 82, "essenc": 82, "energi": 82, "unrestrict": 82, "conceiv": 82, "motion": 82, "regard": [82, 122], "basi": 82, "thu": 82, "persist": 82, "dual": 82, "sens": [82, 89], "univers": 82, "world": 82, "men": 82, "express": 82, "deiti": 82, "human": 82, "denot": [82, 96], "holi": 82, "man": [82, 83], "sage": 82, "ruler": 82, "who": 82, "awaken": 82, "utf": [82, 83], "sphinx_rtd_them": [82, 83], "docstr": [82, 83, 90], "dl": 82, "dt": 82, "tag": [82, 114, 115, 117], "tt": 82, "descnam": 82, "descclassnam": 82, "wrote": 82, "anyth": [82, 83, 111, 120], "programm": 82, "myclass": 82, "dothismethod": 82, "flush": 82, "meth": 82, "capit": 82, "flox": 82, "unreferenc": 82, "nonexist": 82, "extrem": 82, "stuff": 82, "mayb": 82, "bold": 82, "ital": 82, "heck": 82, "put": [82, 93, 116], "13": [82, 86], "backlink": 82, "knowledg": 82, "mind": 82, "ey": 82, "thought": 82, "medium": 82, "peopl": 82, "subsect": 82, "interpol": 82, "indirect": 82, "phrase": 82, "docutil": [82, 83], "sourceforg": [82, 83], "ref": 82, "clickabl": 82, "legend": 82, "revis": [82, 83, 100, 106], "revisit": 82, "enhanc": [82, 101, 111], "structuredtext": 82, "wooden": 82, "nickel": 82, "mad": 82, "scientist": 82, "bigger": 82, "bread": 82, "box": [82, 111, 118, 122], "wash": 82, "behind": 82, "ear": 82, "room": 82, "closet": 82, "bathroom": 82, "trash": 82, "sink": 82, "mother": 82, "g_": 82, "mu": 82, "nu": 82, "pi": 82, "t_": 82, "rho_": 82, "servic": 82, "thing1": 82, "thing2": 82, "thing3": 82, "prose": 82, "provok": 82, "mental": 82, "exert": 82, "reader": 82, "discret": 82, "strongli": [82, 113], "advis": 82, "subtitl": 82, "outsid": 82, "often": 82, "besid": 82, "border": [82, 111], "background": [82, 88], "ok": [82, 89], "transmit": 82, "disconnect": 82, "nonetheless": 82, "semant": 82, "blue": [82, 96], "white": [82, 111], "arab": 83, "roman": 83, "upper": 83, "iii": 83, "iv": 83, "classifi": [83, 88, 89, 112, 116], "paragraph": [83, 86], "z": [83, 93], "commonli": 83, "vm": 83, "david": 83, "goodger": 83, "address": [83, 96, 100], "123": 83, "street": 83, "canada": 83, "a1b": 83, "2c3": 83, "contact": 83, "myself": 83, "organ": 83, "humankind": 83, "2012": 83, "03": 83, "19": [83, 86], "53": 83, "0000": 83, "tue": 83, "jan": 83, "progress": 83, "7302": 83, "wish": 83, "redistribut": 83, "reattribut": 83, "sell": 83, "bui": 83, "rent": 83, "leas": 83, "improv": [83, 101, 108, 111, 120], "quot": 83, "excerpt": 83, "collat": 83, "fold": 83, "stapl": 83, "mutil": 83, "anyon": 83, "heart": 83, "bibliograph": 83, "markup": [83, 86], "literal": 83, "yahoo": 83, "oh": 83, "liter": 83, "heh": 83, "child": 83, "beat": 83, "text": [83, 85, 104, 109, 110, 116], "hehe": 83, "kept": 83, "sai": [83, 116], "cackl": 83, "night": 83, "lone": 83, "guangzhou": 83, "destini": 83, "hope": 83, "dream": 83, "forth": 83, "fifth": 83, "sixth": 83, "lorem": [83, 85], "ipsum": [83, 85], "dolor": [83, 85], "sit": [83, 85], "amet": [83, 85], "consectetur": [83, 85], "adipisc": [83, 85], "elit": [83, 85], "donec": [83, 85], "porttitor": [83, 85], "odio": [83, 85], "posuer": [83, 85], "vita": [83, 85], "ornar": [83, 85], "libero": [83, 85], "matti": 83, "loborti": [83, 85], "justo": [83, 85], "vestibulum": [83, 85], "nibh": [83, 85], "aliquet": [83, 85], "feugiat": [83, 85], "sagitti": [83, 85], "nequ": [83, 85], "qui": [83, 85], "eleifend": 83, "dui": [83, 85], "rutrum": [83, 85], "lectu": [83, 85], "suscipit": [83, 85], "letter": [83, 116], "column": 83, "cell": 83, "span": 83, "nam": [83, 85], "mauri": [83, 85], "arcu": [83, 85], "stub": 83, "behav": 84, "area": 84, "interdum": 85, "nec": 85, "finibu": 85, "dictum": 85, "velit": 85, "ut": 85, "eu": 85, "efficitur": 85, "aliquam": 85, "erat": 85, "diam": 85, "gravida": 85, "imperdiet": 85, "tellu": 85, "nisl": 85, "praesent": 85, "eget": 85, "elementum": 85, "rhoncu": 85, "tincidunt": 85, "suspendiss": 85, "volutpat": 85, "scelerisqu": 85, "tristiqu": 85, "aenean": 85, "condimentum": 85, "risu": 85, "accumsan": 85, "laoreet": 85, "maximu": 85, "sapien": 85, "ligula": 85, "fringilla": 85, "commodo": 85, "proin": 85, "et": 85, "pharetra": 85, "etiam": 85, "turpi": 85, "ant": 85, "luctu": 85, "vel": 85, "malesuada": 85, "dignissim": 85, "mi": 85, "nunc": 85, "augu": 85, "sem": 85, "cursu": 85, "nulla": 85, "pellentesqu": 85, "habit": 85, "morbi": 85, "senectu": 85, "netu": 85, "fame": 85, "ac": 85, "egesta": 85, "placerat": 85, "tortor": 85, "iaculi": 85, "venenati": 85, "cra": 85, "puru": 85, "ero": 85, "vehicula": 85, "fusc": 85, "auctor": 85, "phasellu": 85, "est": 85, "viverra": 85, "conval": 85, "faucibu": 85, "vulput": 85, "feli": 85, "sodal": 85, "maecena": 85, "congu": 85, "semper": 85, "enim": 85, "blandit": 85, "sollicitudin": 85, "urna": 85, "orci": 85, "lacu": 85, "quisqu": 85, "facilisi": 85, "hendrerit": 85, "curabitur": 85, "variu": 85, "bibendum": 85, "massa": 85, "magna": 85, "tempu": 85, "metu": 85, "nisi": 85, "pretium": 85, "leo": 85, "euismod": 85, "ultric": 85, "dapibu": 85, "lacinia": 85, "vivamu": 85, "molesti": 85, "hac": 85, "habitass": 85, "platea": 85, "dictumst": 85, "git": 86, "content": [86, 91, 114, 115, 117], "changelog": 86, "math": 86, "14": [86, 97, 107, 114, 115, 117], "17": 86, "18": [86, 89, 100, 111], "submenu": 86, "symlink": 87, "subtre": 87, "_theme": 87, "html_theme": 87, "html_theme_path": 87, "optimiz": 88, "tutori": [88, 91, 93, 94, 96, 98, 100, 102, 115, 117], "beginn": 88, "intro_to_torchscript_tutori": 88, "briefli": 88, "lenet": [88, 89], "lenetfeatextractor": 88, "conv1": [88, 89], "conv2d": [88, 96, 112], "conv2": [88, 89], "lenetclassifi": 88, "fc1": [88, 89], "120": [88, 89], "fc2": [88, 89], "84": [88, 89], "fc3": [88, 89], "feat": [88, 89, 111], "obvious": 88, "pathwai": 88, "input_data": [88, 90], "traced_model": 88, "pick": [88, 119], "script_model": [88, 92], "perspect": 88, "___torch_mangle_10": 88, "129": 88, "___torch_mangle_9": 88, "119": 88, "___torch_mangle_5": 88, "137": 88, "callmethod": 88, "138": 88, "38": 88, "39": 88, "torch_script_modul": [88, 89], "in_tensor": 88, "fly": 88, "lenet_script": [88, 89], "haven": 89, "acquir": 89, "dyanmo": 89, "almost": [89, 122], "trt_lenet_script": 89, "apr": 89, "56": 89, "04": 89, "credit": 89, "stop": 89, "argc": 89, "argv": 89, "cerr": 89, "cout": 89, "even": [89, 100, 108], "cppdoc": 89, "pretti": 89, "fashion": [89, 116], "enable_precis": 89, "And": 89, "convertgraphtotrtengin": 89, "engine_converted_from_jit": 89, "close": [89, 94, 111], "saw": 89, "576": 89, "346": 89, "539": 89, "0464": 89, "0383": 89, "0678": 89, "0932": 89, "1045": 89, "0805": 89, "0435": 89, "0818": 89, "0208": 89, "0358": 89, "cudafloattyp": 89, "0530": 89, "1691": 89, "2802": 89, "1502": 89, "1056": 89, "1549": 89, "input0": [89, 90], "1063": 89, "input1": [89, 90], "input2": 89, "28": 89, "29": 89, "33": 89, "35": 89, "36": 89, "37": 89, "compilegraph": [89, 91], "transform": [89, 91, 93, 97, 99, 101, 102, 104, 107, 109, 110, 111, 112, 113, 114, 115, 117, 121], "laid": 89, "translat": [89, 102], "aren": 89, "techniqu": [89, 91, 110, 120], "checkmethodoperatorsupport": 89, "modular": 89, "ship": [89, 120], "exhaust": 89, "109": 89, "addlay": 89, "yourself": 89, "question": [89, 94], "outself": 89, "flatten_convert": 89, "unwraptoint": 89, "in_shap": 89, "tovec": 89, "out_shap": 89, "shuffl": [89, 91, 112], "addshuffl": 89, "setreshapedimens": 89, "todim": 89, "extens": [89, 122], "ctype": 89, "cdll": 89, "contributor": 89, "upstream": 89, "pr": 89, "usecas": 90, "sole": [90, 91, 122], "individu": 90, "accuraci": [91, 111, 116], "loss": [91, 116], "infrastructur": [91, 114, 115, 117], "streamlin": [91, 93], "expos": [91, 96], "cpp_frontend": 91, "loading_data_recip": 91, "cifar10": [91, 112], "cstddef": 91, "ktrain": 91, "ktest": 91, "un": 91, "cs": 91, "toronto": 91, "edu": 91, "kriz": 91, "cifar": 91, "is_train": 91, "trim": 91, "use_subset": 91, "new_siz": 91, "mode_": 91, "images_": 91, "targets_": 91, "calibration_dataset": 91, "data_dir": 91, "320": 91, "4914": [91, 112], "4822": [91, 112], "4465": [91, 112], "2023": [91, 112], "1994": [91, 112], "2010": [91, 112], "dataloaderopt": 91, "worker": 91, "virtual": 91, "input_shap": [91, 123], "compile_spec": [91, 95, 105, 123], "kf16": [91, 123], "ki8": 91, "vgg16": [91, 112], "testing_dataset": [91, 112], "totensor": [91, 112, 114, 115, 117], "testing_dataload": [91, 112], "num_work": [91, 112], "vgg": [91, 112], "test_ptq_dataloader_calibr": 91, "test_ptq_trt_calibr": 91, "krizhevski": 91, "hinton": 91, "2009": 91, "tini": 91, "simonyan": 91, "zisserman": 91, "2014": 91, "recognit": [91, 116], "arxiv": 91, "preprint": 91, "1409": 91, "1556": 91, "_jit_to_backend": 92, "mobilenet_v2": 92, "pretrain": [92, 98, 100, 104, 105, 108, 114, 115, 116, 117], "cost": [93, 96, 98, 102, 120], "perhap": [93, 96], "overhead": [93, 96, 101, 108, 113, 120], "involv": [93, 101, 102, 108], "greatli": 93, "perviou": 93, "elementwis": [93, 94], "launch": [93, 96, 108, 114, 115, 117], "tensorrt_bind": 93, "trtp": 93, "tl": [93, 96], "elementwise_mul_kernel": 93, "block_siz": [93, 96], "thread": [93, 120], "pid": [93, 96], "program_id": [93, 96], "block_start": 93, "offset": 93, "x_val": 93, "y_val": 93, "wise": 93, "z_val": 93, "custom_op": [93, 96], "torchtrt_ex": [93, 96], "elementwise_mul": 93, "mutates_arg": [93, 96], "assert": [93, 96, 100, 102], "is_cuda": 93, "empty_lik": 93, "grid": 93, "cours": 93, "register_fak": [93, 96], "creation": 93, "less": 93, "boilerpl": [93, 94], "tensordesc": 93, "prior": [93, 94, 98, 118, 120], "x_t": 93, "as_tensor": [93, 96, 111], "y_t": 93, "z_t": 93, "generate_plugin_convert": 93, "supports_dynamic_shap": [93, 94], "my_model": [93, 96], "allclos": [93, 94, 100, 102], "ran": 93, "minut": [93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113], "auto_generate_convert": 93, "jupyt": [93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], "ipynb": [93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113], "gelu": 94, "sy": 94, "approxim": 94, "suppos": 94, "my_mod": 94, "ex_input": [94, 96], "baselin": 94, "my_standard_gelu": 94, "supersed": 94, "converterprior": 94, "vers": 94, "distinct": 94, "prepend": 94, "candid": 94, "primit": 94, "compiler_ir": 94, "focu": [94, 100], "interoper": 94, "aten_ops_gelu": 94, "sourceir": 94, "cheap": 94, "unqiu": 94, "op_count": 94, "get_op_count": 94, "nonloc": 94, "source_ir": 94, "lhs_val": 94, "rhs_val": 94, "x_7": 94, "x_8": 94, "79788456080000003": 94, "x_9": 94, "044714999999999998": 94, "x_10": 94, "x_11": 94, "x_12": 94, "x_13": 94, "x_14": 94, "x_15": 94, "my_custom_gelu": 94, "my_mod_erf": 94, "my_gelu_erf": 94, "notic": [94, 101], "converter_overload": 94, "geforcertx": 95, "4080": 95, "3080": 95, "cross_runtime_compilation_for_window": 95, "trt_resnet": 95, "argpars": [95, 112], "argumentpars": [95, 112], "comil": 95, "add_argu": [95, 112], "parse_arg": [95, 112], "manual_se": [95, 97, 98, 100, 102], "resnet18": [95, 98, 100, 102, 105, 108], "amd64": 95, "loaded_model": 95, "load_cross_compiled_exported_program": 95, "trt_output": 95, "cross_compile_for_window": 95, "sake": 96, "circular": 96, "red": [96, 111], "green": [96, 111], "twice": 96, "written": 96, "openai": 96, "formal": 96, "circ_pad_kernel": 96, "all_pads_0": 96, "all_pads_2": 96, "all_pads_4": 96, "all_pads_6": 96, "orig_dims_0": 96, "orig_dims_1": 96, "orig_dims_2": 96, "orig_dims_3": 96, "y_shape_1": 96, "y_shape_2": 96, "y_shape_3": 96, "x_len": 96, "y_len": 96, "mask_i": 96, "i3": 96, "i2": 96, "i1": 96, "i0": 96, "j0": 96, "j1": 96, "j2": 96, "j3": 96, "load_idx": 96, "mask_x": 96, "triton_circular_pad": 96, "out_dim": 96, "tolist": 96, "all_pad": 96, "zero": 96, "orig_dim": 96, "blocksiz": 96, "256": [96, 111, 112, 113, 114, 115, 117], "numblock": 96, "tracabl": 96, "prerequisit": 96, "fake": 96, "real": 96, "faketensor": 96, "autograd": 96, "beyond": 96, "register_autograd": 96, "padded_x": 96, "2604": 96, "4232": 96, "3041": 96, "0833": 96, "2461": 96, "1270": 96, "2450": 96, "4079": 96, "2887": 96, "2828": 96, "0373": 96, "0332": 96, "3143": 96, "6344": 96, "5638": 96, "1867": 96, "5068": 96, "4363": 96, "7937": 96, "3488": 96, "1350": 96, "7966": 96, "3517": 96, "1379": 96, "5537": 96, "1088": 96, "8950": 96, "0550": 96, "6163": 96, "0109": 96, "5245": 96, "9632": 96, "5686": 96, "3775": 96, "8162": 96, "4216": 96, "4311": 96, "1649": 96, "2091": 96, "3668": 96, "1006": 96, "1447": 96, "0352": 96, "7689": 96, "8131": 96, "_run_on_gpu_0": 96, "_run_on_acc_1": 96, "dry": 96, "50": [96, 116], "count": 96, "__": 96, "aggreg": 96, "stat": 96, "latenc": [96, 111, 113, 120], "abstractli": 96, "pkl": [96, 100], "cupi": 96, "gap": 96, "prealloc": 96, "circularpaddingplugin": 96, "ipluginv2dynamicext": 96, "field_collect": 96, "pluginfieldcollect": 96, "x_shape": 96, "num_output": 96, "plugin_namespac": 96, "plugin_typ": 96, "plugin_vers": 96, "get_output_datatyp": 96, "input_typ": 96, "get_output_dimens": 96, "output_index": 96, "dimsexpr": 96, "exprbuild": 96, "iexprbuild": 96, "output_dim": 96, "dimensionoper": 96, "configure_plugin": 96, "inp": 96, "dynamicplugintensordesc": 96, "x_dim": 96, "desc": 96, "supports_format_combin": 96, "po": 96, "in_out": 96, "plugintensordesc": 96, "num_input": 96, "enqueu": 96, "input_desc": 96, "output_desc": 96, "in_dtyp": 96, "a_mem": 96, "unownedmemori": 96, "items": 96, "c_mem": 96, "a_ptr": 96, "memorypoint": 96, "c_ptr": 96, "a_d": 96, "memptr": 96, "c_d": 96, "a_t": 96, "c_t": 96, "cloned_plugin": 96, "__dict__": 96, "circularpaddingplugincr": 96, "iplugincr": 96, "field_nam": 96, "pluginfield": 96, "pluginfieldtyp": 96, "create_plugin": 96, "pluginfieldcollection_": 96, "deserialize_plugin": 96, "pads_dict": 96, "creator": 96, "trt_plugin_registri": 96, "get_plugin_registri": 96, "register_cr": 96, "untyp": 96, "get_trt_tensor": 96, "set_layer_nam": 96, "recal": 96, "intlist": 96, "circular_padding_convert": 96, "retriev": 96, "elsewher": 96, "plugin_registri": 96, "plugin_cr": 96, "get_plugin_cr": 96, "field_config": 96, "eventu": 96, "freez": 96, "_input": 96, "add_plugin_v2": 96, "circular_padding_plugin": 96, "_run_on_acc_0": 96, "grad_fn": 96, "subbackward0": 96, "custom_kernel_plugin": 96, "engine_caching_exampl": [97, 98], "remove_timing_cach": [97, 98], "bertmodel": [97, 101, 107], "random": [97, 98, 100, 102, 111, 113], "seed": [97, 98, 100, 102], "from_pretrain": [97, 100, 101, 104, 106, 107, 109, 110, 111, 113], "uncas": [97, 101, 107, 116], "return_dict": 97, "randint": [97, 101, 107, 113], "compile_bert": 97, "enable_tim": [97, 98], "1st": [97, 98], "measur": [97, 98, 113], "2nd": [97, 98], "3rd": [97, 98], "slower": [97, 98], "messur": [97, 98], "compilation_kwarg": [97, 107], "torch_trt_bert_engine_cach": 97, "30": [97, 98, 100, 102, 105, 107, 111, 119], "synchron": [97, 98, 101, 113], "elapsed_tim": [97, 98], "millisecond": 97, "__name__": [97, 103, 107], "__main__": [97, 103, 107], "engine_caching_bert_exampl": 97, "paid": 98, "upfront": 98, "invalid": 98, "repeatedli": 98, "mitig": [98, 101], "explor": 98, "torch_trt": [98, 100, 102], "_default": 98, "_engine_cach": 98, "flexibl": [98, 122], "histor": 98, "barrier": 98, "reconstruct": 98, "ti": 98, "hash": 98, "magnitud": 98, "torch_compil": [98, 103, 105, 107, 108, 118, 122], "compiled_model": 98, "ms": [98, 101, 113], "dynamo_compil": 98, "example_input": 98, "200": 98, "dynamic_shap": [98, 118], "remot": 98, "systen": 98, "agnost": 98, "implent": 98, "ramenginecach": 98, "held": 98, "engine_cach": 98, "torch_compile_my_cach": 98, "_torch_compile_gpt2": [99, 114], "_torch_export_gpt2": [99, 114], "_torch_export_llama2": [99, 114], "_torch_export_sam2": [99, 114], "sphx_glr_tutorials__rendered_examples_dynamo_cross_runtime_compilation_for_window": [99, 114], "straightforward": 100, "especi": [100, 101], "hug": [100, 104, 109, 110], "face": [100, 104, 109, 110], "difficult": 100, "ever": [100, 104], "walk": [100, 102, 104, 109], "lora": [100, 102], "use_python": 100, "mutable_modul": 100, "model2": [100, 102], "expected_output": [100, 102], "refitted_output": [100, 102], "reload": [100, 122], "checkpoint": [100, 112], "civitai": 100, "12597": 100, "moxin": 100, "diffusionpipelin": [100, 106], "no_grad": [100, 101, 104, 109, 110, 112, 113], "model_id": [100, 106], "runwayml": 100, "hous": 100, "forest": 100, "shuimobysim": 100, "wuchangshuo": 100, "qualiti": 100, "worst": 100, "lowr": 100, "cloudi": 100, "watermark": 100, "pipe": [100, 106], "torch_dtyp": [100, 106], "unet": [100, 106], "negative_prompt": 100, "num_inference_step": 100, "without_lora_mut": 100, "jpg": [100, 111, 114, 115, 117], "procedur": 100, "load_lora_weight": 100, "stablediffusionapi": 100, "load_lora_embed": 100, "weight_nam": 100, "safetensor": 100, "adapter_nam": 100, "lora1": 100, "set_adapt": 100, "adapter_weight": 100, "fuse_lora": 100, "unload_lora_weight": 100, "with_lora_mut": 100, "mutable_torchtrt_module_exampl": 100, "act": 101, "concurr": [101, 114, 115, 117], "overlap": 101, "particularli": 101, "cycl": 101, "overal": [101, 116], "workload": 101, "enough": 101, "overshadow": 101, "cumul": 101, "priorit": 101, "comprehens": 101, "infrequ": 101, "timeit": [101, 113], "test_module_perf": 101, "warm": [101, 108, 113], "accur": 101, "start_tim": [101, 113], "default_tim": [101, 113], "end_tim": [101, 113], "time_m": 101, "median": 101, "metric": 101, "128": [101, 111, 112, 113], "enable_pre_allocated_output": 101, "out_trt": [101, 108], "pre_allocated_output_ctx": 101, "set_pre_allocated_output": 101, "time_opt": 101, "time_norm": 101, "time_opt_m": 101, "1000": [101, 112, 113, 114, 115, 117], "time_normal_m": 101, "3f": [101, 111], "pre_allocated_output_exampl": 101, "expens": 102, "occasion": [102, 103, 107], "adapt": 102, "infeas": 102, "focus": 102, "mostli": 102, "recogn": 102, "behalf": 102, "init": [102, 112], "sett": 102, "randomli": 102, "exp_program2": 102, "compiled_trt_ep": 102, "new_trt_gm": 102, "accomplish": 102, "gaurente": 102, "attempt": [102, 112, 118], "rebuild": 102, "heurist": 102, "refit_engine_exampl": 102, "x_out": 103, "y_out": 103, "x_y_out": 103, "invoc": 103, "sample_inputs_half": 103, "model_half": 103, "backend_kwarg": 103, "optimized_model_custom": 103, "exit": [103, 107], "2052": [103, 107], "compile_engine_and_inf": [103, 107], "art": [104, 111], "causal": 104, "unidirect": 104, "corpu": [104, 116], "huggingfac": [104, 109, 110, 116], "automodelforcausallm": [104, 109, 110, 113], "autotoken": [104, 109, 110], "success": 104, "max_length": 104, "token": [104, 109, 110, 116], "kv_cach": [104, 109, 110], "pad_token_id": [104, 109], "eos_token_id": [104, 109, 110], "attn_implement": [104, 109, 110, 113], "eager": [104, 109, 110, 113], "enjoi": [104, 109], "cute": [104, 109], "dog": [104, 109], "model_input": [104, 109, 110], "return_tensor": [104, 109, 110], "input_id": [104, 109, 110], "regress": [104, 109, 110], "pyt_gen_token": [104, 109, 110], "mark_dynam": [104, 105, 118], "1023": 104, "trt_gen_token": [104, 109, 110], "skip_special_token": [104, 109, 110], "torch_compile_gpt2": 104, "new_input": [105, 107], "new_output": [105, 107], "new_batch_size_input": 105, "new_batch_size_output": 105, "inputs_bs8": 105, "outputs_bs8": 105, "No": [105, 118], "inputs_bs12": 105, "outputs_bs12": 105, "compvi": 106, "majest": 106, "castl": 106, "cloud": 106, "majestic_castl": 106, "png": [106, 111], "enable_cudagraph": [108, 120], "cudagraphs_modul": 108, "set_cudagraphs_mod": [108, 120], "inputs_2": 108, "inputs_3": 108, "out_trt_2": 108, "out_trt_3": 108, "diminish": 108, "encapsul": 108, "wrapped_modul": 108, "captur": 108, "replai": 108, "samplemodel": 108, "intention": 108, "Of": 108, "manner": 108, "opt_with_graph_break": 108, "torch_export_cudagraph": 108, "export_llm": [109, 110, 113], "max_token": [109, 110, 113], "gpt2_ep": 109, "max_seq_len": [109, 110, 113], "parallel": 109, "paradigm": 109, "torch_export_gpt2": 109, "llama_path": [110, 113], "llama": [110, 113], "7b": [110, 113], "chat": [110, 113], "hf": [110, 113], "llama2_ep": [110, 113], "batch_decod": 110, "clean_up_tokenization_spac": 110, "solv": [110, 111, 114, 115, 117], "smaller": [110, 116], "subproblem": 110, "torch_export_llama2": 110, "foundat": 111, "promptabl": 111, "video": 111, "fork": 111, "condition": 111, "concaten": 111, "layernorm": 111, "reli": 111, "stabil": 111, "matplotlib": 111, "pyplot": 111, "plt": 111, "panda": 111, "pd": 111, "pil": [111, 114, 115, 117], "sam2_image_predictor": 111, "sam2imagepredictor": 111, "sam_compon": 111, "sam2fullmodel": 111, "agg": 111, "facebook": 111, "hiera": 111, "set_imag": 111, "predict": 111, "predictor": 111, "image_encod": 111, "forward_imag": 111, "_prepare_backbone_featur": 111, "directly_add_no_mem_emb": 111, "no_mem_emb": 111, "_featur": 111, "prompt_encod": 111, "sam_prompt_encod": 111, "mask_decod": 111, "sam_mask_decod": 111, "_bb_feat_siz": 111, "point_coord": 111, "point_label": 111, "backbone_out": 111, "vision_feat": 111, "feat_siz": 111, "image_emb": 111, "high_res_feat": 111, "high_res_featur": 111, "feat_level": 111, "sparse_embed": 111, "dense_embed": 111, "low_res_mask": 111, "iou_predict": 111, "image_embed": 111, "image_p": 111, "get_dense_p": 111, "sparse_prompt_embed": 111, "dense_prompt_embed": 111, "multimask_output": 111, "repeat_imag": 111, "sam_model": 111, "input_imag": 111, "truck": 111, "rgb": 111, "sam2transform": 111, "facebookresearch": 111, "preprocess_input": 111, "orig_hw": 111, "_transform": 111, "500": 111, "375": 111, "unnorm_coord": 111, "transform_coord": 111, "postprocess": 111, "plot": 111, "confid": 111, "score": 111, "postprocess_mask": 111, "resolut": [111, 116], "sorted_indic": 111, "argsort": 111, "show_mask": 111, "ax": 111, "random_color": 111, "255": 111, "144": 111, "astyp": 111, "mask_imag": 111, "cv2": 111, "contour": 111, "findcontour": 111, "retr_extern": 111, "chain_approx_non": 111, "smooth": 111, "approxpolydp": 111, "epsilon": 111, "drawcontour": 111, "thick": 111, "imshow": 111, "show_point": 111, "coord": 111, "marker_s": 111, "pos_point": 111, "neg_point": 111, "marker": 111, "edgecolor": 111, "linewidth": 111, "visualize_mask": 111, "title_prefix": 111, "overlaid": 111, "figsiz": 111, "gca": 111, "titl": 111, "fontsiz": 111, "savefig": 111, "_output_mask_": 111, "snippet": 111, "torchtrt_input": 111, "unnormalized_coordin": 111, "foreground": 111, "trt_out": 111, "trt_mask": 111, "trt_score": 111, "sam": 111, "torch_export_sam2": 111, "modelopt": 112, "mtq": 112, "export_torch_mod": 112, "layer_spec": 112, "num_class": 112, "init_weight": 112, "in_channel": 112, "pool": [112, 123], "maxpool2d": 112, "batchnorm2d": 112, "sequenti": 112, "avgpool": 112, "adaptiveavgpool2d": 112, "4096": 112, "dropout": 112, "_initialize_weight": 112, "kaiming_normal_": 112, "fan_out": 112, "nonlinear": 112, "constant_": 112, "elif": 112, "normal_": 112, "vgg16_cfg": 112, "ckpt": 112, "model_state_dict": 112, "device_count": 112, "ordereddict": 112, "new_state_dict": 112, "forget": 112, "training_dataset": 112, "randomcrop": 112, "randomhorizontalflip": 112, "training_dataload": 112, "drop_last": 112, "crit": 112, "crossentropyloss": 112, "calibrate_loop": 112, "pred": 112, "5f": 112, "acc": 112, "2f": 112, "quantize_typ": 112, "quant_cfg": 112, "int8_default_cfg": 112, "fp8_default_cfg": 112, "forward_loop": 112, "qdq": 112, "incomplet": 112, "functionaltensor": 112, "functionaltensormod": 112, "_trace": 112, "_export": 112, "float8_e4m3fn": 112, "class_prob": 112, "class_pr": 112, "test_prob": 112, "test_pr": 112, "test_loss": 112, "test_acc": 112, "vgg16_ptq": 112, "overcom": 113, "throughput": 113, "sometim": [113, 118], "outweigh": 113, "slowdown": 113, "hardwar": [113, 123], "experi": 113, "balanc": 113, "time_gener": 113, "output_seq_length": 113, "seq_len": [113, 118], "llm": 113, "input_seq": 113, "inputs_copi": 113, "decod": 113, "logit": 113, "next_token_logit": 113, "next_token": 113, "time_mean_m": 113, "isl": 113, "osl": 113, "solut": 113, "insight": 113, "weight_streaming_ctx": 113, "weight_stream": 113, "mean_lat": 113, "percentag": 113, "weight_budget_pct": 113, "device_budget": 113, "total_device_budget": 113, "permiss": 113, "equal": 113, "proportion": 113, "streamabl": 113, "streamable_budget": 113, "requested_budget": 113, "get_automatic_weight_streaming_budget": 113, "weight_streaming_exampl": 113, "hand": [114, 115, 117], "consider": [114, 115, 117], "grpc": [114, 115, 117], "aforement": [114, 115, 117], "familiar": [114, 115, 117], "resnet50": [114, 115, 117], "torchhub": [114, 115, 117], "docker": [114, 115, 117], "login": [114, 115, 117], "xx": [114, 115], "yy": [114, 115, 117], "mm": [114, 115, 117], "publish": [114, 115, 117], "pwd": [114, 115, 117], "scratch_spac": [114, 115, 117], "nvcr": [114, 115, 117], "py3": [114, 115, 117], "hub": [114, 115, 117], "_validate_not_a_forked_repo": [114, 115, 117], "ts_trt_model": [114, 115, 117], "triton_exampl": [114, 115, 117], "model_repositori": [114, 115, 117], "rm": [114, 115, 117], "highli": [114, 115, 116, 117], "suggest": [114, 115, 117], "simplest": [114, 115, 117], "pbtxt": [114, 115, 117], "data_typ": [114, 115, 117], "type_fp32": [114, 115, 117], "exact": [114, 115, 117], "encourag": [114, 115, 117], "proce": [114, 115, 117], "8000": [114, 115, 117], "8001": [114, 115, 117], "8002": [114, 115, 117], "tritonserv": [114, 115, 117], "spin": [114, 115, 117], "proceed": [114, 115, 117], "flesh": [114, 115, 117], "img1": [114, 115, 117], "hakaimagazin": [114, 115, 117], "wp": [114, 115, 117], "gulf": [114, 115, 117], "bird": [114, 115, 117], "attrdict": [114, 115, 117], "pyindex": [114, 115, 117], "tritoncli": [114, 115, 117], "jump": [114, 115, 117], "firstli": [114, 115, 117], "resiz": [114, 115, 117], "httpclient": [114, 115, 117], "triton_to_np_dtyp": [114, 115, 117], "rn50_preprocess": [114, 115, 117], "img_path": [114, 115, 117], "img": [114, 115, 117], "centercrop": [114, 115, 117], "485": [114, 115, 117], "456": [114, 115, 117], "406": [114, 115, 117], "229": [114, 115, 117], "transformed_img": [114, 115, 117], "inferenceservercli": [114, 115, 117], "localhost": [114, 115, 117], "secondli": [114, 115, 117], "obtain": [114, 115, 116, 117, 121], "inferinput": [114, 115, 117], "set_data_from_numpi": [114, 115, 117], "binary_data": [114, 115, 117], "inferrequestedoutput": [114, 115, 117], "class_count": [114, 115, 117], "lastli": [114, 115, 117], "send": [114, 115, 117], "model_nam": [114, 115, 117], "inference_output": [114, 115, 117], "as_numpi": [114, 115, 117], "468750": [114, 115, 117], "90": [114, 115, 117], "523438": [114, 115, 117], "92": [114, 115, 117], "664062": [114, 115, 117], "429688": [114, 115, 117], "136": [114, 115, 117], "234375": [114, 115, 117], "confidence_scor": [114, 115, 117], "classification_index": [114, 115, 117], "_rendered_examples_python": 114, "_rendered_examples_jupyt": 114, "acoust": 116, "speech": 116, "quartznet": 116, "contextnet": 116, "subword": 116, "piec": 116, "excit": 116, "se": 116, "audio": 116, "transcrib": 116, "speedup": 116, "feedforward": 116, "cnn": 116, "uniformli": 116, "compound": 116, "coeffici": 116, "b0": 116, "english": 116, "supervis": 116, "walkthrough": 116, "adopt": 116, "mobilenetv2": 116, "classif": 116, "imagenet": 116, "imagenett": 116, "qat": 116, "simul": 116, "eagerli": 118, "swap": 118, "exactli": 118, "_tracer": 118, "queri": 118, "attn_weight": 118, "compiler_dynamic_shap": 118, "inputs_bs2": 118, "mymodul": 119, "linear1": 119, "linear2": 119, "linear3": 119, "40": 119, "__myl_mulsum_myl0_0": 119, "layertyp": 119, "kgen": 119, "__mye116_dconst": 119, "__myln_k_arg__bb1_2": 119, "tacticnam": 119, "__myl_mulsum_0xfa6c1858aea1b13b03f90165d7149ec6": 119, "streamid": 119, "__myl_addresmulsum_myl0_1": 119, "__mye131_dconst": 119, "addmm_constant_0": 119, "addmm_add_broadcast_to_same_shape_lhs_broadcast_constantfloat": 119, "__myln_k_arg__bb1_3": 119, "__myl_addresmulsum_0xb3915d7ebfe48be45b6d49083479e12f": 119, "__myl_addresmulsumadd_myl0_2": 119, "__mye146_dconst": 119, "addmm_2_constant_0": 119, "addmm_2_add_broadcast_to_same_shape_lhs_broadcast_constantfloat": 119, "addmm_1_constant_0": 119, "addmm_1_add_broadcast_to_same_shape_lhs_broadcast_constantfloat": 119, "__myl_addresmulsumadd_0xcdd0085ad25f5f45ac5fafb72acbffd6": 119, "__myl_mulsumaddcas_myl0_0": 119, "__mye112_dconst": 119, "__myl_mulsumaddcas_0xacf8f5dd9be2f3e7bb09cdddeac6c936": 119, "__myl_resmulsumaddcas_myl0_1": 119, "__mye127_dconst": 119, "addmm_1_add_broadcast_to_same_shape_lhs_broadcast_constanthalf": 119, "__myl_resmulsumaddcas_0x5a3b318b5a1c97b7d5110c0291481337": 119, "__myl_resmulsumadd_myl0_2": 119, "__mye142_dconst": 119, "__myl_resmulsumadd_0x3fad91127c640fd6db771aa9cde67db0": 119, "libtorchtrt_runtim": 120, "dl_open": 120, "ld_preload": 120, "load_librari": 120, "wl": 120, "ltorchtrt": 120, "torchtrt_runtime_exampl": 120, "libtorchtrt_plugin": 120, "neglig": 120, "alert": 120, "switch": 120, "mismatch": 120, "crash": 120, "sacrif": 120, "incur": 120, "intens": 120, "trt_ep": 121, "stai": 121, "trt_t": 121, "ergonom": 122, "deleg": 122, "believ": 122, "amen": 122, "artifact": 122, "pack": 122, "year": 122, "superset": 122, "codebas": 122, "immedi": 122, "traceabl": 122, "scriptabl": 122, "neural": 123, "deconvolut": 123, "scripted_model": 123}, "objects": {"": [[5, 0, 1, "c.STR", "STR"], [9, 0, 1, "c.TORCHTRT_API", "TORCHTRT_API"], [11, 0, 1, "c.TORCHTRT_HIDDEN", "TORCHTRT_HIDDEN"], [7, 0, 1, "c.TORCH_TENSORRT_MAJOR_VERSION", "TORCH_TENSORRT_MAJOR_VERSION"], [8, 0, 1, "c.TORCH_TENSORRT_MINOR_VERSION", "TORCH_TENSORRT_MINOR_VERSION"], [6, 0, 1, "c.TORCH_TENSORRT_PATCH_VERSION", "TORCH_TENSORRT_PATCH_VERSION"], [12, 0, 1, "c.TORCH_TENSORRT_VERSION", "TORCH_TENSORRT_VERSION"], [10, 0, 1, "c.XSTR", "XSTR"], [0, 1, 1, "_CPPv4N14torch_tensorrt8DataTypeE", "torch_tensorrt::DataType"], [0, 2, 1, "_CPPv4N14torch_tensorrt8DataType8DataTypeE5Value", "torch_tensorrt::DataType::DataType"], [0, 2, 1, "_CPPv4N14torch_tensorrt8DataType8DataTypeEN3c1010ScalarTypeE", "torch_tensorrt::DataType::DataType"], [0, 2, 1, "_CPPv4N14torch_tensorrt8DataType8DataTypeEv", "torch_tensorrt::DataType::DataType"], [0, 3, 1, "_CPPv4N14torch_tensorrt8DataType8DataTypeE5Value", "torch_tensorrt::DataType::DataType::t"], [0, 3, 1, "_CPPv4N14torch_tensorrt8DataType8DataTypeEN3c1010ScalarTypeE", "torch_tensorrt::DataType::DataType::t"], [0, 4, 1, "_CPPv4N14torch_tensorrt8DataType5ValueE", "torch_tensorrt::DataType::Value"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value5kBoolE", "torch_tensorrt::DataType::Value::kBool"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value5kCharE", "torch_tensorrt::DataType::Value::kChar"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value7kDoubleE", "torch_tensorrt::DataType::Value::kDouble"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value6kFloatE", "torch_tensorrt::DataType::Value::kFloat"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value5kHalfE", "torch_tensorrt::DataType::Value::kHalf"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value4kIntE", "torch_tensorrt::DataType::Value::kInt"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value5kLongE", "torch_tensorrt::DataType::Value::kLong"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value8kUnknownE", "torch_tensorrt::DataType::Value::kUnknown"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value5kBoolE", "torch_tensorrt::DataType::kBool"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value5kCharE", "torch_tensorrt::DataType::kChar"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value7kDoubleE", "torch_tensorrt::DataType::kDouble"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value6kFloatE", "torch_tensorrt::DataType::kFloat"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value5kHalfE", "torch_tensorrt::DataType::kHalf"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value4kIntE", "torch_tensorrt::DataType::kInt"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value5kLongE", "torch_tensorrt::DataType::kLong"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value8kUnknownE", "torch_tensorrt::DataType::kUnknown"], [0, 2, 1, "_CPPv4NK14torch_tensorrt8DataTypecv5ValueEv", "torch_tensorrt::DataType::operator Value"], [0, 2, 1, "_CPPv4N14torch_tensorrt8DataTypecvbEv", "torch_tensorrt::DataType::operator bool"], [0, 2, 1, "_CPPv4NK14torch_tensorrt8DataTypeneE8DataType", "torch_tensorrt::DataType::operator!="], [0, 2, 1, "_CPPv4NK14torch_tensorrt8DataTypeneEN8DataType5ValueE", "torch_tensorrt::DataType::operator!="], [0, 3, 1, "_CPPv4NK14torch_tensorrt8DataTypeneE8DataType", "torch_tensorrt::DataType::operator!=::other"], [0, 3, 1, "_CPPv4NK14torch_tensorrt8DataTypeneEN8DataType5ValueE", "torch_tensorrt::DataType::operator!=::other"], [0, 2, 1, "_CPPv4NK14torch_tensorrt8DataTypeeqE8DataType", "torch_tensorrt::DataType::operator=="], [0, 2, 1, "_CPPv4NK14torch_tensorrt8DataTypeeqEN8DataType5ValueE", "torch_tensorrt::DataType::operator=="], [0, 3, 1, "_CPPv4NK14torch_tensorrt8DataTypeeqE8DataType", "torch_tensorrt::DataType::operator==::other"], [0, 3, 1, "_CPPv4NK14torch_tensorrt8DataTypeeqEN8DataType5ValueE", "torch_tensorrt::DataType::operator==::other"], [46, 1, 1, "_CPPv4N14torch_tensorrt6DeviceE", "torch_tensorrt::Device"], [46, 2, 1, "_CPPv4N14torch_tensorrt6Device6DeviceEv", "torch_tensorrt::Device::Device"], [1, 1, 1, "_CPPv4N14torch_tensorrt6Device10DeviceTypeE", "torch_tensorrt::Device::DeviceType"], [46, 1, 1, "_CPPv4N14torch_tensorrt6Device10DeviceTypeE", "torch_tensorrt::Device::DeviceType"], [1, 2, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value", "torch_tensorrt::Device::DeviceType::DeviceType"], [1, 2, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE", "torch_tensorrt::Device::DeviceType::DeviceType"], [1, 2, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEv", "torch_tensorrt::Device::DeviceType::DeviceType"], [46, 2, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value", "torch_tensorrt::Device::DeviceType::DeviceType"], [46, 2, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE", "torch_tensorrt::Device::DeviceType::DeviceType"], [46, 2, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEv", "torch_tensorrt::Device::DeviceType::DeviceType"], [1, 3, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value", "torch_tensorrt::Device::DeviceType::DeviceType::t"], [1, 3, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE", "torch_tensorrt::Device::DeviceType::DeviceType::t"], [46, 3, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value", "torch_tensorrt::Device::DeviceType::DeviceType::t"], [46, 3, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE", "torch_tensorrt::Device::DeviceType::DeviceType::t"], [1, 4, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType5ValueE", "torch_tensorrt::Device::DeviceType::Value"], [46, 4, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType5ValueE", "torch_tensorrt::Device::DeviceType::Value"], [1, 5, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kDLAE", "torch_tensorrt::Device::DeviceType::Value::kDLA"], [46, 5, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kDLAE", "torch_tensorrt::Device::DeviceType::Value::kDLA"], [1, 5, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kGPUE", "torch_tensorrt::Device::DeviceType::Value::kGPU"], [46, 5, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kGPUE", "torch_tensorrt::Device::DeviceType::Value::kGPU"], [1, 5, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kDLAE", "torch_tensorrt::Device::DeviceType::kDLA"], [1, 5, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kGPUE", "torch_tensorrt::Device::DeviceType::kGPU"], [1, 2, 1, "_CPPv4NK14torch_tensorrt6Device10DeviceTypecv5ValueEv", "torch_tensorrt::Device::DeviceType::operator Value"], [46, 2, 1, "_CPPv4NK14torch_tensorrt6Device10DeviceTypecv5ValueEv", "torch_tensorrt::Device::DeviceType::operator Value"], [1, 2, 1, "_CPPv4N14torch_tensorrt6Device10DeviceTypecvbEv", "torch_tensorrt::Device::DeviceType::operator bool"], [46, 2, 1, "_CPPv4N14torch_tensorrt6Device10DeviceTypecvbEv", "torch_tensorrt::Device::DeviceType::operator bool"], [1, 2, 1, "_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType", "torch_tensorrt::Device::DeviceType::operator!="], [46, 2, 1, "_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType", "torch_tensorrt::Device::DeviceType::operator!="], [1, 3, 1, "_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType", "torch_tensorrt::Device::DeviceType::operator!=::other"], [46, 3, 1, "_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType", "torch_tensorrt::Device::DeviceType::operator!=::other"], [1, 2, 1, "_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType", "torch_tensorrt::Device::DeviceType::operator=="], [46, 2, 1, "_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType", "torch_tensorrt::Device::DeviceType::operator=="], [1, 3, 1, "_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType", "torch_tensorrt::Device::DeviceType::operator==::other"], [46, 3, 1, "_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType", "torch_tensorrt::Device::DeviceType::operator==::other"], [46, 6, 1, "_CPPv4N14torch_tensorrt6Device18allow_gpu_fallbackE", "torch_tensorrt::Device::allow_gpu_fallback"], [46, 6, 1, "_CPPv4N14torch_tensorrt6Device11device_typeE", "torch_tensorrt::Device::device_type"], [46, 6, 1, "_CPPv4N14torch_tensorrt6Device8dla_coreE", "torch_tensorrt::Device::dla_core"], [46, 6, 1, "_CPPv4N14torch_tensorrt6Device6gpu_idE", "torch_tensorrt::Device::gpu_id"], [17, 4, 1, "_CPPv4N14torch_tensorrt16EngineCapabilityE", "torch_tensorrt::EngineCapability"], [17, 5, 1, "_CPPv4N14torch_tensorrt16EngineCapability15kDLA_STANDALONEE", "torch_tensorrt::EngineCapability::kDLA_STANDALONE"], [17, 5, 1, "_CPPv4N14torch_tensorrt16EngineCapability7kSAFETYE", "torch_tensorrt::EngineCapability::kSAFETY"], [17, 5, 1, "_CPPv4N14torch_tensorrt16EngineCapability9kSTANDARDE", "torch_tensorrt::EngineCapability::kSTANDARD"], [47, 1, 1, "_CPPv4N14torch_tensorrt11GraphInputsE", "torch_tensorrt::GraphInputs"], [47, 6, 1, "_CPPv4N14torch_tensorrt11GraphInputs15input_signatureE", "torch_tensorrt::GraphInputs::input_signature"], [47, 6, 1, "_CPPv4N14torch_tensorrt11GraphInputs6inputsE", "torch_tensorrt::GraphInputs::inputs"], [48, 1, 1, "_CPPv4N14torch_tensorrt5InputE", "torch_tensorrt::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputEN2at6TensorE", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputEv", "torch_tensorrt::Input::Input"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::dtype"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::dtype"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::dtype"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::dtype"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::dtype"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::dtype"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::dtype"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::dtype"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::max_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::max_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::max_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::max_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::max_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::max_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::max_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::max_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::min_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::min_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::min_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::min_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::min_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::min_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::min_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::min_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::opt_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::opt_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::opt_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::opt_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::opt_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::opt_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::opt_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::opt_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN2at6TensorE", "torch_tensorrt::Input::Input::tensor"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::tensor_domain"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::tensor_domain"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::tensor_domain"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::tensor_domain"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::tensor_domain"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::tensor_domain"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::tensor_domain"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::tensor_domain"], [48, 6, 1, "_CPPv4N14torch_tensorrt5Input5dtypeE", "torch_tensorrt::Input::dtype"], [48, 6, 1, "_CPPv4N14torch_tensorrt5Input6formatE", "torch_tensorrt::Input::format"], [48, 6, 1, "_CPPv4N14torch_tensorrt5Input9max_shapeE", "torch_tensorrt::Input::max_shape"], [48, 6, 1, "_CPPv4N14torch_tensorrt5Input9min_shapeE", "torch_tensorrt::Input::min_shape"], [48, 6, 1, "_CPPv4N14torch_tensorrt5Input9opt_shapeE", "torch_tensorrt::Input::opt_shape"], [48, 6, 1, "_CPPv4N14torch_tensorrt5Input5shapeE", "torch_tensorrt::Input::shape"], [48, 6, 1, "_CPPv4N14torch_tensorrt5Input13tensor_domainE", "torch_tensorrt::Input::tensor_domain"], [2, 1, 1, "_CPPv4N14torch_tensorrt12TensorFormatE", "torch_tensorrt::TensorFormat"], [2, 2, 1, "_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatE5Value", "torch_tensorrt::TensorFormat::TensorFormat"], [2, 2, 1, "_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatEN2at12MemoryFormatE", "torch_tensorrt::TensorFormat::TensorFormat"], [2, 2, 1, "_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatEv", "torch_tensorrt::TensorFormat::TensorFormat"], [2, 3, 1, "_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatE5Value", "torch_tensorrt::TensorFormat::TensorFormat::t"], [2, 3, 1, "_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatEN2at12MemoryFormatE", "torch_tensorrt::TensorFormat::TensorFormat::t"], [2, 4, 1, "_CPPv4N14torch_tensorrt12TensorFormat5ValueE", "torch_tensorrt::TensorFormat::Value"], [2, 5, 1, "_CPPv4N14torch_tensorrt12TensorFormat5Value13kChannelsLastE", "torch_tensorrt::TensorFormat::Value::kChannelsLast"], [2, 5, 1, "_CPPv4N14torch_tensorrt12TensorFormat5Value11kContiguousE", "torch_tensorrt::TensorFormat::Value::kContiguous"], [2, 5, 1, "_CPPv4N14torch_tensorrt12TensorFormat5Value8kUnknownE", "torch_tensorrt::TensorFormat::Value::kUnknown"], [2, 5, 1, "_CPPv4N14torch_tensorrt12TensorFormat5Value13kChannelsLastE", "torch_tensorrt::TensorFormat::kChannelsLast"], [2, 5, 1, "_CPPv4N14torch_tensorrt12TensorFormat5Value11kContiguousE", "torch_tensorrt::TensorFormat::kContiguous"], [2, 5, 1, "_CPPv4N14torch_tensorrt12TensorFormat5Value8kUnknownE", "torch_tensorrt::TensorFormat::kUnknown"], [2, 2, 1, "_CPPv4NK14torch_tensorrt12TensorFormatcv5ValueEv", "torch_tensorrt::TensorFormat::operator Value"], [2, 2, 1, "_CPPv4N14torch_tensorrt12TensorFormatcvbEv", "torch_tensorrt::TensorFormat::operator bool"], [2, 2, 1, "_CPPv4NK14torch_tensorrt12TensorFormatneE12TensorFormat", "torch_tensorrt::TensorFormat::operator!="], [2, 2, 1, "_CPPv4NK14torch_tensorrt12TensorFormatneEN12TensorFormat5ValueE", "torch_tensorrt::TensorFormat::operator!="], [2, 3, 1, "_CPPv4NK14torch_tensorrt12TensorFormatneE12TensorFormat", "torch_tensorrt::TensorFormat::operator!=::other"], [2, 3, 1, "_CPPv4NK14torch_tensorrt12TensorFormatneEN12TensorFormat5ValueE", "torch_tensorrt::TensorFormat::operator!=::other"], [2, 2, 1, "_CPPv4NK14torch_tensorrt12TensorFormateqE12TensorFormat", "torch_tensorrt::TensorFormat::operator=="], [2, 2, 1, "_CPPv4NK14torch_tensorrt12TensorFormateqEN12TensorFormat5ValueE", "torch_tensorrt::TensorFormat::operator=="], [2, 3, 1, "_CPPv4NK14torch_tensorrt12TensorFormateqE12TensorFormat", "torch_tensorrt::TensorFormat::operator==::other"], [2, 3, 1, "_CPPv4NK14torch_tensorrt12TensorFormateqEN12TensorFormat5ValueE", "torch_tensorrt::TensorFormat::operator==::other"], [36, 2, 1, "_CPPv4N14torch_tensorrt15dump_build_infoEv", "torch_tensorrt::dump_build_info"], [34, 2, 1, "_CPPv4N14torch_tensorrt14get_build_infoEv", "torch_tensorrt::get_build_info"], [16, 4, 1, "_CPPv4N14torch_tensorrt7logging5LevelE", "torch_tensorrt::logging::Level"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level6kDEBUGE", "torch_tensorrt::logging::Level::kDEBUG"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level6kERRORE", "torch_tensorrt::logging::Level::kERROR"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level6kGRAPHE", "torch_tensorrt::logging::Level::kGRAPH"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level5kINFOE", "torch_tensorrt::logging::Level::kINFO"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level15kINTERNAL_ERRORE", "torch_tensorrt::logging::Level::kINTERNAL_ERROR"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level8kWARNINGE", "torch_tensorrt::logging::Level::kWARNING"], [24, 2, 1, "_CPPv4N14torch_tensorrt7logging24get_is_colored_output_onEv", "torch_tensorrt::logging::get_is_colored_output_on"], [22, 2, 1, "_CPPv4N14torch_tensorrt7logging18get_logging_prefixEv", "torch_tensorrt::logging::get_logging_prefix"], [23, 2, 1, "_CPPv4N14torch_tensorrt7logging24get_reportable_log_levelEv", "torch_tensorrt::logging::get_reportable_log_level"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level6kDEBUGE", "torch_tensorrt::logging::kDEBUG"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level6kERRORE", "torch_tensorrt::logging::kERROR"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level6kGRAPHE", "torch_tensorrt::logging::kGRAPH"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level5kINFOE", "torch_tensorrt::logging::kINFO"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level15kINTERNAL_ERRORE", "torch_tensorrt::logging::kINTERNAL_ERROR"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level8kWARNINGE", "torch_tensorrt::logging::kWARNING"], [26, 2, 1, "_CPPv4N14torch_tensorrt7logging3logE5LevelNSt6stringE", "torch_tensorrt::logging::log"], [26, 3, 1, "_CPPv4N14torch_tensorrt7logging3logE5LevelNSt6stringE", "torch_tensorrt::logging::log::lvl"], [26, 3, 1, "_CPPv4N14torch_tensorrt7logging3logE5LevelNSt6stringE", "torch_tensorrt::logging::log::msg"], [27, 2, 1, "_CPPv4N14torch_tensorrt7logging24set_is_colored_output_onEb", "torch_tensorrt::logging::set_is_colored_output_on"], [27, 3, 1, "_CPPv4N14torch_tensorrt7logging24set_is_colored_output_onEb", "torch_tensorrt::logging::set_is_colored_output_on::colored_output_on"], [28, 2, 1, "_CPPv4N14torch_tensorrt7logging18set_logging_prefixENSt6stringE", "torch_tensorrt::logging::set_logging_prefix"], [28, 3, 1, "_CPPv4N14torch_tensorrt7logging18set_logging_prefixENSt6stringE", "torch_tensorrt::logging::set_logging_prefix::prefix"], [25, 2, 1, "_CPPv4N14torch_tensorrt7logging24set_reportable_log_levelE5Level", "torch_tensorrt::logging::set_reportable_log_level"], [25, 3, 1, "_CPPv4N14torch_tensorrt7logging24set_reportable_log_levelE5Level", "torch_tensorrt::logging::set_reportable_log_level::lvl"], [3, 1, 1, "_CPPv4I0EN14torch_tensorrt3ptq19Int8CacheCalibratorE", "torch_tensorrt::ptq::Int8CacheCalibrator"], [3, 7, 1, "_CPPv4I0EN14torch_tensorrt3ptq19Int8CacheCalibratorE", "torch_tensorrt::ptq::Int8CacheCalibrator::Algorithm"], [3, 2, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator19Int8CacheCalibratorERKNSt6stringE", "torch_tensorrt::ptq::Int8CacheCalibrator::Int8CacheCalibrator"], [3, 3, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator19Int8CacheCalibratorERKNSt6stringE", "torch_tensorrt::ptq::Int8CacheCalibrator::Int8CacheCalibrator::cache_file_path"], [3, 2, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci", "torch_tensorrt::ptq::Int8CacheCalibrator::getBatch"], [3, 3, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci", "torch_tensorrt::ptq::Int8CacheCalibrator::getBatch::bindings"], [3, 3, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci", "torch_tensorrt::ptq::Int8CacheCalibrator::getBatch::names"], [3, 3, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci", "torch_tensorrt::ptq::Int8CacheCalibrator::getBatch::nbBindings"], [3, 2, 1, "_CPPv4NK14torch_tensorrt3ptq19Int8CacheCalibrator12getBatchSizeEv", "torch_tensorrt::ptq::Int8CacheCalibrator::getBatchSize"], [3, 2, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibratorcvPN8nvinfer115IInt8CalibratorEEv", "torch_tensorrt::ptq::Int8CacheCalibrator::operator nvinfer1::IInt8Calibrator*"], [3, 2, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator20readCalibrationCacheER6size_t", "torch_tensorrt::ptq::Int8CacheCalibrator::readCalibrationCache"], [3, 3, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator20readCalibrationCacheER6size_t", "torch_tensorrt::ptq::Int8CacheCalibrator::readCalibrationCache::length"], [3, 2, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator21writeCalibrationCacheEPKv6size_t", "torch_tensorrt::ptq::Int8CacheCalibrator::writeCalibrationCache"], [3, 3, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator21writeCalibrationCacheEPKv6size_t", "torch_tensorrt::ptq::Int8CacheCalibrator::writeCalibrationCache::cache"], [3, 3, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator21writeCalibrationCacheEPKv6size_t", "torch_tensorrt::ptq::Int8CacheCalibrator::writeCalibrationCache::length"], [4, 1, 1, "_CPPv4I00EN14torch_tensorrt3ptq14Int8CalibratorE", "torch_tensorrt::ptq::Int8Calibrator"], [4, 7, 1, "_CPPv4I00EN14torch_tensorrt3ptq14Int8CalibratorE", "torch_tensorrt::ptq::Int8Calibrator::Algorithm"], [4, 7, 1, "_CPPv4I00EN14torch_tensorrt3ptq14Int8CalibratorE", "torch_tensorrt::ptq::Int8Calibrator::DataLoaderUniquePtr"], [4, 2, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb", "torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator"], [4, 3, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb", "torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator::cache_file_path"], [4, 3, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb", "torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator::dataloader"], [4, 3, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb", "torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator::use_cache"], [4, 2, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci", "torch_tensorrt::ptq::Int8Calibrator::getBatch"], [4, 3, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci", "torch_tensorrt::ptq::Int8Calibrator::getBatch::bindings"], [4, 3, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci", "torch_tensorrt::ptq::Int8Calibrator::getBatch::names"], [4, 3, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci", "torch_tensorrt::ptq::Int8Calibrator::getBatch::nbBindings"], [4, 2, 1, "_CPPv4NK14torch_tensorrt3ptq14Int8Calibrator12getBatchSizeEv", "torch_tensorrt::ptq::Int8Calibrator::getBatchSize"], [4, 2, 1, "_CPPv4N14torch_tensorrt3ptq14Int8CalibratorcvPN8nvinfer115IInt8CalibratorEEv", "torch_tensorrt::ptq::Int8Calibrator::operator nvinfer1::IInt8Calibrator*"], [4, 2, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator20readCalibrationCacheER6size_t", "torch_tensorrt::ptq::Int8Calibrator::readCalibrationCache"], [4, 3, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator20readCalibrationCacheER6size_t", "torch_tensorrt::ptq::Int8Calibrator::readCalibrationCache::length"], [4, 2, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator21writeCalibrationCacheEPKv6size_t", "torch_tensorrt::ptq::Int8Calibrator::writeCalibrationCache"], [4, 3, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator21writeCalibrationCacheEPKv6size_t", "torch_tensorrt::ptq::Int8Calibrator::writeCalibrationCache::cache"], [4, 3, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator21writeCalibrationCacheEPKv6size_t", "torch_tensorrt::ptq::Int8Calibrator::writeCalibrationCache::length"], [29, 2, 1, "_CPPv4I0EN14torch_tensorrt3ptq26make_int8_cache_calibratorE19Int8CacheCalibratorI9AlgorithmERKNSt6stringE", "torch_tensorrt::ptq::make_int8_cache_calibrator"], [29, 7, 1, "_CPPv4I0EN14torch_tensorrt3ptq26make_int8_cache_calibratorE19Int8CacheCalibratorI9AlgorithmERKNSt6stringE", "torch_tensorrt::ptq::make_int8_cache_calibrator::Algorithm"], [29, 3, 1, "_CPPv4I0EN14torch_tensorrt3ptq26make_int8_cache_calibratorE19Int8CacheCalibratorI9AlgorithmERKNSt6stringE", "torch_tensorrt::ptq::make_int8_cache_calibrator::cache_file_path"], [30, 2, 1, "_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb", "torch_tensorrt::ptq::make_int8_calibrator"], [30, 7, 1, "_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb", "torch_tensorrt::ptq::make_int8_calibrator::Algorithm"], [30, 7, 1, "_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb", "torch_tensorrt::ptq::make_int8_calibrator::DataLoader"], [30, 3, 1, "_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb", "torch_tensorrt::ptq::make_int8_calibrator::cache_file_path"], [30, 3, 1, "_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb", "torch_tensorrt::ptq::make_int8_calibrator::dataloader"], [30, 3, 1, "_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb", "torch_tensorrt::ptq::make_int8_calibrator::use_cache"], [35, 2, 1, "_CPPv4N14torch_tensorrt10set_deviceEKi", "torch_tensorrt::set_device"], [35, 3, 1, "_CPPv4N14torch_tensorrt10set_deviceEKi", "torch_tensorrt::set_device::gpu_id"], [49, 1, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpecE", "torch_tensorrt::torchscript::CompileSpec"], [49, 2, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecEN5torch3jit6IValueE", "torch_tensorrt::torchscript::CompileSpec::CompileSpec"], [49, 2, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorI5InputEE", "torch_tensorrt::torchscript::CompileSpec::CompileSpec"], [49, 2, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorIN3c108ArrayRefI7int64_tEEEE", "torch_tensorrt::torchscript::CompileSpec::CompileSpec"], [49, 2, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorINSt6vectorI7int64_tEEEE", "torch_tensorrt::torchscript::CompileSpec::CompileSpec"], [49, 3, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorIN3c108ArrayRefI7int64_tEEEE", "torch_tensorrt::torchscript::CompileSpec::CompileSpec::fixed_sizes"], [49, 3, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorINSt6vectorI7int64_tEEEE", "torch_tensorrt::torchscript::CompileSpec::CompileSpec::fixed_sizes"], [49, 3, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecEN5torch3jit6IValueE", "torch_tensorrt::torchscript::CompileSpec::CompileSpec::input_signature"], [49, 3, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorI5InputEE", "torch_tensorrt::torchscript::CompileSpec::CompileSpec::inputs"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec19allow_shape_tensorsE", "torch_tensorrt::torchscript::CompileSpec::allow_shape_tensors"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec10capabilityE", "torch_tensorrt::torchscript::CompileSpec::capability"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec5debugE", "torch_tensorrt::torchscript::CompileSpec::debug"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec6deviceE", "torch_tensorrt::torchscript::CompileSpec::device"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec12disable_tf32E", "torch_tensorrt::torchscript::CompileSpec::disable_tf32"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec20dla_global_dram_sizeE", "torch_tensorrt::torchscript::CompileSpec::dla_global_dram_size"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec19dla_local_dram_sizeE", "torch_tensorrt::torchscript::CompileSpec::dla_local_dram_size"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec13dla_sram_sizeE", "torch_tensorrt::torchscript::CompileSpec::dla_sram_size"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec18enabled_precisionsE", "torch_tensorrt::torchscript::CompileSpec::enabled_precisions"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec12graph_inputsE", "torch_tensorrt::torchscript::CompileSpec::graph_inputs"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec14min_block_sizeE", "torch_tensorrt::torchscript::CompileSpec::min_block_size"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec20num_avg_timing_itersE", "torch_tensorrt::torchscript::CompileSpec::num_avg_timing_iters"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec14ptq_calibratorE", "torch_tensorrt::torchscript::CompileSpec::ptq_calibrator"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec5refitE", "torch_tensorrt::torchscript::CompileSpec::refit"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec24require_full_compilationE", "torch_tensorrt::torchscript::CompileSpec::require_full_compilation"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec14sparse_weightsE", "torch_tensorrt::torchscript::CompileSpec::sparse_weights"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec22torch_executed_modulesE", "torch_tensorrt::torchscript::CompileSpec::torch_executed_modules"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec18torch_executed_opsE", "torch_tensorrt::torchscript::CompileSpec::torch_executed_ops"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec24truncate_long_and_doubleE", "torch_tensorrt::torchscript::CompileSpec::truncate_long_and_double"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec14workspace_sizeE", "torch_tensorrt::torchscript::CompileSpec::workspace_size"], [31, 2, 1, "_CPPv4N14torch_tensorrt11torchscript29check_method_operator_supportERKN5torch3jit6ModuleENSt6stringE", "torch_tensorrt::torchscript::check_method_operator_support"], [31, 3, 1, "_CPPv4N14torch_tensorrt11torchscript29check_method_operator_supportERKN5torch3jit6ModuleENSt6stringE", "torch_tensorrt::torchscript::check_method_operator_support::method_name"], [31, 3, 1, "_CPPv4N14torch_tensorrt11torchscript29check_method_operator_supportERKN5torch3jit6ModuleENSt6stringE", "torch_tensorrt::torchscript::check_method_operator_support::module"], [32, 2, 1, "_CPPv4N14torch_tensorrt11torchscript7compileERKN5torch3jit6ModuleE11CompileSpec", "torch_tensorrt::torchscript::compile"], [32, 3, 1, "_CPPv4N14torch_tensorrt11torchscript7compileERKN5torch3jit6ModuleE11CompileSpec", "torch_tensorrt::torchscript::compile::info"], [32, 3, 1, "_CPPv4N14torch_tensorrt11torchscript7compileERKN5torch3jit6ModuleE11CompileSpec", "torch_tensorrt::torchscript::compile::module"], [37, 2, 1, "_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec", "torch_tensorrt::torchscript::convert_method_to_trt_engine"], [37, 3, 1, "_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec", "torch_tensorrt::torchscript::convert_method_to_trt_engine::info"], [37, 3, 1, "_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec", "torch_tensorrt::torchscript::convert_method_to_trt_engine::method_name"], [37, 3, 1, "_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec", "torch_tensorrt::torchscript::convert_method_to_trt_engine::module"], [33, 2, 1, "_CPPv4N14torch_tensorrt11torchscript26embed_engine_in_new_moduleERKNSt6stringE6DeviceRKNSt6vectorINSt6stringEEERKNSt6vectorINSt6stringEEE", "torch_tensorrt::torchscript::embed_engine_in_new_module"], [33, 3, 1, "_CPPv4N14torch_tensorrt11torchscript26embed_engine_in_new_moduleERKNSt6stringE6DeviceRKNSt6vectorINSt6stringEEERKNSt6vectorINSt6stringEEE", "torch_tensorrt::torchscript::embed_engine_in_new_module::device"], [33, 3, 1, "_CPPv4N14torch_tensorrt11torchscript26embed_engine_in_new_moduleERKNSt6stringE6DeviceRKNSt6vectorINSt6stringEEERKNSt6vectorINSt6stringEEE", "torch_tensorrt::torchscript::embed_engine_in_new_module::engine"], [33, 3, 1, "_CPPv4N14torch_tensorrt11torchscript26embed_engine_in_new_moduleERKNSt6stringE6DeviceRKNSt6vectorINSt6stringEEERKNSt6vectorINSt6stringEEE", "torch_tensorrt::torchscript::embed_engine_in_new_module::input_binding_names"], [33, 3, 1, "_CPPv4N14torch_tensorrt11torchscript26embed_engine_in_new_moduleERKNSt6stringE6DeviceRKNSt6vectorINSt6stringEEERKNSt6vectorINSt6stringEEE", "torch_tensorrt::torchscript::embed_engine_in_new_module::output_binding_names"], [76, 8, 0, "-", "torch_tensorrt"]], "torch_tensorrt": [[76, 9, 1, "", "Device"], [76, 9, 1, "", "DeviceType"], [76, 9, 1, "", "EngineCapability"], [76, 9, 1, "", "Input"], [76, 9, 1, "", "MutableTorchTensorRTModule"], [76, 12, 1, "", "compile"], [76, 12, 1, "", "convert_method_to_trt_engine"], [76, 9, 1, "", "dtype"], [121, 8, 0, "-", "dynamo"], [72, 8, 0, "-", "fx"], [76, 12, 1, "", "load"], [73, 8, 0, "-", "logging"], [76, 9, 1, "", "memory_format"], [75, 8, 0, "-", "runtime"], [76, 12, 1, "", "save"], [77, 8, 0, "-", "ts"]], "torch_tensorrt.Device": [[76, 10, 1, "", "__init__"], [76, 11, 1, "", "device_type"], [76, 11, 1, "", "dla_core"], [76, 11, 1, "", "gpu_id"]], "torch_tensorrt.DeviceType": [[76, 11, 1, "", "DLA"], [76, 11, 1, "", "GPU"], [76, 11, 1, "", "UNKNOWN"], [76, 10, 1, "", "to"], [76, 10, 1, "", "try_from"], [76, 10, 1, "", "try_to"]], "torch_tensorrt.EngineCapability": [[76, 11, 1, "", "DLA_STANDALONE"], [76, 11, 1, "", "SAFETY"], [76, 11, 1, "", "STANDARD"], [76, 10, 1, "", "to"], [76, 10, 1, "", "try_from"], [76, 10, 1, "", "try_to"]], "torch_tensorrt.Input": [[76, 10, 1, "", "__init__"], [76, 11, 1, "", "dtype"], [76, 10, 1, "", "example_tensor"], [76, 11, 1, "", "format"], [76, 10, 1, "", "from_tensor"], [76, 10, 1, "", "from_tensors"]], "torch_tensorrt.MutableTorchTensorRTModule": [[76, 10, 1, "", "__init__"], [76, 10, 1, "", "compile"], [76, 10, 1, "", "refit_gm"]], "torch_tensorrt.dtype": [[76, 11, 1, "", "b"], [76, 11, 1, "", "bf16"], [76, 11, 1, "", "f16"], [76, 11, 1, "", "f32"], [76, 11, 1, "", "f64"], [76, 11, 1, "", "f8"], [76, 11, 1, "", "i32"], [76, 11, 1, "", "i64"], [76, 11, 1, "", "i8"], [76, 10, 1, "", "to"], [76, 10, 1, "", "try_from"], [76, 10, 1, "", "try_to"], [76, 11, 1, "", "u8"], [76, 11, 1, "", "unknown"]], "torch_tensorrt.dynamo": [[71, 9, 1, "", "CompilationSettings"], [71, 12, 1, "", "compile"], [71, 12, 1, "", "export"], [71, 12, 1, "", "refit_module_weights"], [71, 12, 1, "", "trace"]], "torch_tensorrt.fx": [[72, 9, 1, "", "InputTensorSpec"], [72, 9, 1, "", "TRTInterpreter"], [72, 9, 1, "", "TRTInterpreterResult"], [72, 9, 1, "", "TRTModule"], [72, 12, 1, "", "compile"]], "torch_tensorrt.logging": [[73, 9, 1, "", "debug"], [73, 9, 1, "", "errors"], [73, 9, 1, "", "graphs"], [73, 9, 1, "", "info"], [73, 9, 1, "", "internal_errors"], [73, 9, 1, "", "warnings"]], "torch_tensorrt.memory_format": [[76, 11, 1, "", "cdhw32"], [76, 11, 1, "", "chw16"], [76, 11, 1, "", "chw2"], [76, 11, 1, "", "chw32"], [76, 11, 1, "", "chw4"], [76, 11, 1, "", "dhwc"], [76, 11, 1, "", "dhwc8"], [76, 11, 1, "", "dla_hwc4"], [76, 11, 1, "", "dla_linear"], [76, 11, 1, "", "hwc"], [76, 11, 1, "", "hwc16"], [76, 11, 1, "", "hwc8"], [76, 11, 1, "", "linear"], [76, 10, 1, "", "to"], [76, 10, 1, "", "try_from"], [76, 10, 1, "", "try_to"]], "torch_tensorrt.runtime": [[75, 9, 1, "", "PythonTorchTensorRTModule"], [75, 9, 1, "", "TorchTensorRTModule"], [75, 12, 1, "", "set_multi_device_safe_mode"]], "torch_tensorrt.runtime.PythonTorchTensorRTModule": [[75, 10, 1, "", "__init__"], [75, 10, 1, "", "disable_profiling"], [75, 10, 1, "", "enable_profiling"], [75, 10, 1, "", "forward"], [75, 10, 1, "", "get_layer_info"], [75, 10, 1, "", "validate_input_shapes"]], "torch_tensorrt.runtime.TorchTensorRTModule": [[75, 10, 1, "", "__init__"], [75, 10, 1, "", "forward"], [75, 10, 1, "", "get_extra_state"], [75, 10, 1, "", "set_extra_state"]], "torch_tensorrt.ts": [[77, 12, 1, "", "TensorRTCompileSpec"], [77, 12, 1, "", "check_method_op_support"], [77, 12, 1, "", "compile"], [77, 12, 1, "", "convert_method_to_trt_engine"], [77, 12, 1, "", "embed_engine_in_new_module"], [74, 8, 0, "-", "ptq"]], "torch_tensorrt.ts.ptq": [[74, 9, 1, "", "CacheCalibrator"], [74, 9, 1, "", "CalibrationAlgo"], [74, 9, 1, "", "DataLoaderCalibrator"]], "torch_tensorrt.ts.ptq.CalibrationAlgo": [[74, 11, 1, "", "ENTROPY_CALIBRATION"], [74, 11, 1, "", "ENTROPY_CALIBRATION_2"], [74, 11, 1, "", "LEGACY_CALIBRATION"], [74, 11, 1, "", "MINMAX_CALIBRATION"]]}, "objtypes": {"0": "c:macro", "1": "cpp:class", "2": "cpp:function", "3": "cpp:functionParam", "4": "cpp:enum", "5": "cpp:enumerator", "6": "cpp:member", "7": "cpp:templateParam", "8": "py:module", "9": "py:class", "10": "py:method", "11": "py:attribute", "12": "py:function"}, "objnames": {"0": ["c", "macro", "C macro"], "1": ["cpp", "class", "C++ class"], "2": ["cpp", "function", "C++ function"], "3": ["cpp", "functionParam", "C++ function parameter"], "4": ["cpp", "enum", "C++ enum"], "5": ["cpp", "enumerator", "C++ enumerator"], "6": ["cpp", "member", "C++ member"], "7": ["cpp", "templateParam", "C++ template parameter"], "8": ["py", "module", "Python module"], "9": ["py", "class", "Python class"], "10": ["py", "method", "Python method"], "11": ["py", "attribute", "Python attribute"], "12": ["py", "function", "Python function"]}, "titleterms": {"class": [0, 1, 2, 3, 4, 20, 21, 38, 40, 41, 50, 71, 72, 74, 75, 76], "datatyp": 0, "document": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 17, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 46, 47, 48, 49, 61, 69, 85, 86], "devic": [1, 46, 120], "devicetyp": 1, "nest": [1, 46], "relationship": [1, 3, 4, 46, 48], "tensorformat": 2, "templat": [3, 4, 29, 30], "int8cachecalibr": 3, "inherit": [3, 4, 48], "base": [3, 4, 48, 80], "type": [3, 4, 46, 48, 54], "int8calibr": 4, "defin": [5, 6, 7, 8, 9, 10, 11, 12, 19, 50, 101, 104, 111, 112], "str": 5, "torch_tensorrt_patch_vers": 6, "torch_tensorrt_major_vers": 7, "torch_tensorrt_minor_vers": 8, "torchtrt_api": 9, "xstr": 10, "torchtrt_hidden": 11, "torch_tensorrt_vers": 12, "directori": [13, 14, 15, 51], "cpp": [13, 18, 19, 20, 21, 56], "subdirectori": [13, 14], "includ": [14, 18, 19, 20, 21], "torch_tensorrt": [15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 67, 71, 72, 73, 74, 75, 76, 77, 105, 107, 108, 122], "file": [15, 18, 19, 20, 21, 42, 43, 44, 45, 50, 51], "enum": [16, 17, 18, 21, 38, 39, 50, 74, 76], "level": [16, 80, 82, 83], "enginecap": 17, "log": [18, 22, 23, 24, 25, 26, 27, 28, 39, 42, 73], "h": [18, 19, 20, 21, 42, 43, 44, 45, 56], "content": [18, 19, 20, 21, 38, 39, 40, 41, 80, 81, 82, 83, 84, 85], "definit": [18, 19, 20, 21, 83, 95, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113], "By": [18, 19], "namespac": [18, 19, 20, 21, 38, 39, 40, 41, 50], "function": [18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 50, 61, 71, 72, 75, 76, 77, 101, 112], "macro": [19, 43], "ptq": [20, 29, 30, 40, 44, 74, 91, 112], "get_logging_prefix": 22, "get_reportable_log_level": 23, "get_is_colored_output_on": 24, "set_reportable_log_level": 25, "set_is_colored_output_on": 27, "set_logging_prefix": 28, "make_int8_cache_calibr": 29, "make_int8_calibr": 30, "torchscript": [31, 32, 33, 37, 41, 60, 66, 69, 88, 89, 92, 121, 122], "check_method_operator_support": 31, "compil": [32, 57, 59, 63, 64, 66, 68, 69, 89, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 113, 116, 118, 119, 121, 122], "embed_engine_in_new_modul": 33, "get_build_info": 34, "set_devic": 35, "dump_build_info": 36, "convert_method_to_trt_engin": 37, "program": [42, 43, 44, 45, 63, 102, 120], "list": [42, 43, 44, 45, 83], "struct": [46, 47, 48, 49, 50], "graphinput": 47, "input": [48, 105, 107, 111], "compilespec": 49, "torch": [50, 61, 63, 64, 65, 66, 68, 69, 89, 90, 92, 94, 96, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122], "tensorrt": [50, 58, 61, 63, 64, 65, 66, 69, 89, 90, 92, 93, 94, 96, 100, 102, 104, 109, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122], "c": [50, 61, 66, 68, 69, 89, 91, 116], "api": [50, 51, 61, 66, 69, 101], "hierarchi": 50, "full": [50, 51], "torchtrtc": [52, 89], "convers": [53, 57, 59, 60], "phase": [53, 55, 56, 57, 58, 59], "node": 53, "evalu": [53, 54, 70], "convert": [53, 54, 60, 65, 70, 89, 93, 94], "write": [54, 60, 62, 93, 94, 96], "dynamo": [54, 62, 69, 71, 109, 110, 111, 121, 122], "implement": [54, 94], "registr": 54, "capabl": 54, "valid": 54, "contract": [54, 60], "exampl": [54, 62, 82, 84, 95], "convolut": 54, "oper": [54, 64, 70, 89, 93, 96], "decomposit": 54, "addmm": [54, 55], "lower": [55, 57, 59, 62], "pass": [55, 62], "us": [55, 61, 89, 90, 92, 93, 94, 96, 101, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 116, 118], "eliminatecommonsubexpress": 55, "elimin": 55, "dead": 55, "code": [55, 69, 82], "except": 55, "Or": 55, "pattern": 55, "redund": 55, "guard": 55, "freez": 55, "modul": [55, 88, 89, 100, 108, 122], "fuse": 55, "branch": 55, "linear": 55, "flatten": 55, "graph": [55, 58, 108, 122], "tupl": 55, "fallback": [55, 56], "peephol": 55, "optim": [55, 68, 114, 115, 117], "remov": 55, "contigu": 55, "dropout": 55, "To": 55, "unpack": 55, "logsoftmax": 55, "unrol": 55, "loop": [55, 112], "replac": [55, 82], "tile": 55, "repeat": 55, "partit": [56, 57, 59], "partitoninfo": 56, "segmentedblock": 56, "shape_analysi": 56, "automat": [56, 93, 113], "depend": [56, 66, 99, 114], "awar": [56, 116], "runtim": [57, 58, 59, 75, 95, 101, 120], "background": [58, 60], "engin": [58, 65, 96, 97, 98], "executor": 58, "op": [58, 65, 96], "construct": 58, "result": 58, "serial": [58, 64, 68], "deseri": 58, "abi": [58, 66], "version": [58, 66], "format": [58, 122], "system": [59, 66, 93], "overview": [59, 67], "what": 60, "guarante": 60, "respons": 60, "context": [60, 80, 113], "arg": [60, 81], "weight": [60, 102, 111, 112, 113], "other": 60, "advic": 60, "link": [61, 82], "develop": 61, "avail": 61, "layer": 61, "expect": 61, "dimens": 61, "python": [61, 66, 68, 69, 88, 90, 91], "sometim": 61, "easier": 61, "read": 61, "pytorch": [61, 65, 69, 92, 93, 96, 104, 109, 110, 116], "native_op": 61, "ir": [61, 121, 122], "aten": 62, "basic": 62, "requir": 62, "regist": [62, 89], "export": [63, 68, 108, 118], "customiz": [63, 64], "set": [63, 64, 100, 103, 108, 114, 115, 117], "under": [63, 89, 118], "hood": [63, 89, 118], "trace": 63, "backend": [64, 105, 106, 107, 109, 110, 111], "kei": 64, "featur": [64, 101], "custom": [64, 89, 93, 94, 96, 98, 103, 118], "usag": [64, 102, 103], "after": 64, "model": [64, 65, 69, 93, 95, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 119, 121], "perform": [64, 101], "coverag": 64, "feasibl": 64, "dynam": [64, 105, 116, 118], "shape": [64, 105, 116, 118], "support": [64, 70], "recompil": [64, 105], "condit": 64, "fx": [65, 69, 72, 116, 122], "frontend": [65, 66, 69, 92, 104, 116, 122], "user": [65, 69], "guid": [65, 69], "acc": 65, "tracer": 65, "fx2trt": 65, "how": [65, 80, 91], "add": 65, "miss": 65, "instal": [66, 87], "precompil": 66, "binari": 66, "specif": 66, "cuda": [66, 103, 107, 108], "nightli": 66, "build": [66, 67, 80, 114, 115, 117], "onli": 66, "from": [66, 92], "sourc": 66, "linux": 66, "packag": [66, 120], "addit": 66, "option": [66, 68, 80, 81, 83, 105, 107, 113, 122], "distribut": 66, "No": 66, "librari": [66, 104, 111, 120], "standalon": 66, "releas": 66, "debug": 66, "pre": [66, 101, 112], "cxx11": 66, "choos": 66, "right": 66, "window": [66, 95], "step": [66, 68, 114, 115, 117], "advanc": [66, 102, 103], "setup": 66, "troubleshoot": 66, "altern": 66, "cmake": 66, "nativ": 66, "aarch64": 66, "jetson": 66, "prerequisit": [66, 67], "environ": 66, "cli": [66, 69], "jetpack": 67, "6": [67, 84], "1": [67, 68, 84, 114, 115, 117], "quick": [68, 93], "start": [68, 69], "2": [68, 84, 85, 114, 115, 117], "deploi": [68, 93, 112, 116, 120], "deploy": 68, "In": [69, 102], "framework": 69, "infer": [69, 101, 104, 105, 106, 107, 108, 112, 114, 115, 117], "nvidia": 69, "gpu": 69, "get": 69, "tutori": [69, 114], "zoo": [69, 99, 114], "contributor": 69, "indic": 69, "legaci": [69, 116, 122], "further": 69, "inform": 69, "current": 70, "through": 70, "ts": [74, 77, 122], "submodul": 76, "comput": 78, "time": [78, 122], "changelog": 79, "configur": 80, "project": 80, "wide": 80, "html": 80, "theme": [80, 86], "toc": 80, "page": 80, "tabl": [80, 81, 82, 83, 84, 85], "mod": 81, "test_py_modul": 81, "gener": [81, 93, 109, 110], "index": 81, "paramet": [81, 104], "data": 81, "paragraph": [82, 85], "markup": 82, "inlin": 82, "math": 82, "meta": 82, "block": 82, "liter": 82, "line": 82, "quot": 82, "doctest": 82, "emphas": 82, "number": [82, 83], "sidebar": 82, "ch": 82, "ien": 82, "The": [82, 89], "creativ": 82, "A": 82, "refer": [82, 111], "footnot": 82, "citat": [82, 91], "glossari": 82, "target": 82, "direct": 82, "center": 82, "text": 82, "imag": [82, 83, 111], "figur": 82, "admonit": 82, "And": 82, "wai": 82, "topic": 82, "rubric": 82, "titl": 82, "compound": 82, "download": [82, 87], "enumer": 83, "field": 83, "bullet": 83, "second": 83, "But": 83, "deeper": 83, "down": 83, "rabbit": 83, "hole": 83, "hlist": 83, "grid": 83, "giant": 83, "can": 83, "have": 83, "caption": [83, 86], "like": 83, "thi": [83, 86], "one": 83, "long": [84, 86], "sticki": 84, "nav": 84, "menu": [84, 86], "3": [84, 114, 115, 117], "4": 84, "5": 84, "7": 84, "8": 84, "9": 84, "10": 84, "11": 84, "12": 84, "13": 84, "14": 84, "15": 84, "16": 84, "17": 84, "18": 84, "19": 84, "20": 84, "submenu": 84, "subsubmenu": 84, "structur": 85, "element": 85, "section": 85, "subsect": 85, "subsubsect": 85, "demo": 86, "an": [86, 111], "incred": 86, "via": 87, "git": 87, "creat": [88, 91], "work": [88, 89], "save": [88, 100, 121], "disk": 88, "quickstart": 89, "unsupport": 89, "post": [91, 111], "train": [91, 112, 116], "quantiz": [91, 112, 116], "your": [91, 114, 115, 117], "own": 91, "applic": 91, "directli": 92, "kernel": [93, 96], "plugin": [93, 120], "our": [93, 94, 96], "overload": 94, "metadata": 94, "cross": 95, "import": [95, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113], "within": 96, "test": 96, "wrap": 96, "insert": 96, "cach": [97, 98, 102], "bert": [97, 107, 116], "jit": [98, 118], "aot": [98, 118], "mutabl": 100, "initi": [100, 111], "make": [100, 102], "modif": 100, "stabl": [100, 106], "diffus": [100, 106], "huggingfac": 100, "alloc": 101, "output": [101, 104, 109, 110, 111], "buffer": 101, "measur": 101, "load": [101, 111, 112, 121], "enabl": 101, "disabl": 101, "refit": 102, "new": 102, "standard": 102, "workflow": 102, "refitt": 102, "pretrain": [102, 111], "map": 102, "place": 102, "default": [103, 108], "cleanup": [103, 107], "driver": [103, 107], "error": [103, 107], "note": [103, 107], "gpt2": [104, 109], "necessari": 104, "decod": [104, 109, 110], "sentenc": [104, 109, 110], "resnet": 105, "argument": [105, 107], "avoid": 105, "specifi": 105, "befor": 105, "trt": 105, "cudagraph": [108, 120], "integr": 108, "contain": 108, "break": 108, "llama2": 110, "sam2": 111, "follow": 111, "preprocess": 111, "compon": 111, "process": 111, "visual": 111, "dataset": 112, "loss": 112, "calibr": 112, "tune": 112, "fp8": 112, "stream": 113, "run": 113, "budget": 113, "size": 113, "manag": 113, "serv": [114, 115, 116, 117], "triton": [114, 115, 117], "up": [114, 115, 117], "server": [114, 115, 117], "client": [114, 115, 117], "queri": [114, 115, 117], "notebook": 116, "citrinet": 116, "efficientnet": 116, "mask": 116, "languag": 116, "mlm": 116, "hug": 116, "face": 116, "transform": 116, "acceler": 116, "resnet50": 116, "lenet": 116, "deep": 116, "learn": 116, "object": 116, "detect": 116, "ssd": 116, "int8": 116, "constraint": 118, "mix": 119, "precis": 119, "libtorchtrt": 120, "so": 120, "multi": 120, "safe": 120, "mode": 120, "exportedprogram": 121, "b": 121, "explain": 122, "just": 122, "accept": 122, "return": 122, "ahead": 122, "dla": 123}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.intersphinx": 1, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1, "sphinx": 56}}) \ No newline at end of file +Search.setIndex({"docnames": ["_cpp_api/classtorch__tensorrt_1_1DataType", "_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType", "_cpp_api/classtorch__tensorrt_1_1TensorFormat", "_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator", "_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator", "_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502", "_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268", "_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e", "_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827", "_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b", "_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da", "_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59", "_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883", "_cpp_api/dir_cpp", "_cpp_api/dir_cpp_include", "_cpp_api/dir_cpp_include_torch_tensorrt", "_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558", "_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb", "_cpp_api/file_cpp_include_torch_tensorrt_logging.h", "_cpp_api/file_cpp_include_torch_tensorrt_macros.h", "_cpp_api/file_cpp_include_torch_tensorrt_ptq.h", "_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h", "_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3", "_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650", "_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a", "_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2", "_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8", "_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5", "_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc", "_cpp_api/function_ptq_8h_1a226e3c83379d1012cde8578c1c86b16c", "_cpp_api/function_ptq_8h_1a6186e305f47c1d94b6130ef6c7f7e178", "_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797", "_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9", "_cpp_api/function_torch__tensorrt_8h_1a81f9783517335dda877d8cfcf38987c9", "_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528", "_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384", "_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1", "_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2", "_cpp_api/namespace_torch_tensorrt", "_cpp_api/namespace_torch_tensorrt__logging", "_cpp_api/namespace_torch_tensorrt__ptq", "_cpp_api/namespace_torch_tensorrt__torchscript", "_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h", "_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h", "_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h", "_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h", "_cpp_api/structtorch__tensorrt_1_1Device", "_cpp_api/structtorch__tensorrt_1_1GraphInputs", "_cpp_api/structtorch__tensorrt_1_1Input", "_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec", "_cpp_api/torch_tensort_cpp", "_cpp_api/unabridged_orphan", "cli/torchtrtc", "contributors/conversion", "contributors/dynamo_converters", "contributors/lowering", "contributors/partitioning", "contributors/phases", "contributors/runtime", "contributors/system_overview", "contributors/ts_converters", "contributors/useful_links", "contributors/writing_dynamo_aten_lowering_passes", "dynamo/dynamo_export", "dynamo/torch_compile", "fx/getting_started_with_fx_path", "getting_started/installation", "getting_started/jetpack", "getting_started/quick_start", "index", "indices/supported_ops", "py_api/dynamo", "py_api/fx", "py_api/logging", "py_api/ptq", "py_api/runtime", "py_api/torch_tensorrt", "py_api/ts", "sg_execution_times", "src/pytorch-sphinx-theme/docs/changelog", "src/pytorch-sphinx-theme/docs/configuring", "src/pytorch-sphinx-theme/docs/demo/api", "src/pytorch-sphinx-theme/docs/demo/demo", "src/pytorch-sphinx-theme/docs/demo/lists_tables", "src/pytorch-sphinx-theme/docs/demo/long", "src/pytorch-sphinx-theme/docs/demo/structure", "src/pytorch-sphinx-theme/docs/index", "src/pytorch-sphinx-theme/docs/installing", "ts/creating_torchscript_module_in_python", "ts/getting_started_with_cpp_api", "ts/getting_started_with_python_api", "ts/ptq", "ts/torchscript_frontend_from_pytorch", "tutorials/_rendered_examples/dynamo/auto_generate_converters", "tutorials/_rendered_examples/dynamo/converter_overloading", "tutorials/_rendered_examples/dynamo/cross_runtime_compilation_for_windows", "tutorials/_rendered_examples/dynamo/custom_kernel_plugins", "tutorials/_rendered_examples/dynamo/engine_caching_bert_example", "tutorials/_rendered_examples/dynamo/engine_caching_example", "tutorials/_rendered_examples/dynamo/index", "tutorials/_rendered_examples/dynamo/mutable_torchtrt_module_example", "tutorials/_rendered_examples/dynamo/pre_allocated_output_example", "tutorials/_rendered_examples/dynamo/refit_engine_example", "tutorials/_rendered_examples/dynamo/torch_compile_advanced_usage", "tutorials/_rendered_examples/dynamo/torch_compile_gpt2", "tutorials/_rendered_examples/dynamo/torch_compile_resnet_example", "tutorials/_rendered_examples/dynamo/torch_compile_stable_diffusion", "tutorials/_rendered_examples/dynamo/torch_compile_transformers_example", "tutorials/_rendered_examples/dynamo/torch_export_cudagraphs", "tutorials/_rendered_examples/dynamo/torch_export_gpt2", "tutorials/_rendered_examples/dynamo/torch_export_llama2", "tutorials/_rendered_examples/dynamo/torch_export_sam2", "tutorials/_rendered_examples/dynamo/vgg16_ptq", "tutorials/_rendered_examples/dynamo/weight_streaming_example", "tutorials/_rendered_examples/index", "tutorials/_rendered_examples/triton/index", "tutorials/notebooks", "tutorials/serving_torch_tensorrt_with_triton", "user_guide/dynamic_shapes", "user_guide/mixed_precision", "user_guide/runtime", "user_guide/saving_models", "user_guide/torch_tensorrt_explained", "user_guide/using_dla"], "filenames": ["_cpp_api/classtorch__tensorrt_1_1DataType.rst", "_cpp_api/classtorch__tensorrt_1_1Device_1_1DeviceType.rst", "_cpp_api/classtorch__tensorrt_1_1TensorFormat.rst", "_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8CacheCalibrator.rst", "_cpp_api/classtorch__tensorrt_1_1ptq_1_1Int8Calibrator.rst", "_cpp_api/define_macros_8h_1a18d295a837ac71add5578860b55e5502.rst", "_cpp_api/define_macros_8h_1a282fd3c0b1c3a215148ae372070e1268.rst", "_cpp_api/define_macros_8h_1a31398a6d4d27e28817afb0f0139e909e.rst", "_cpp_api/define_macros_8h_1a35703561b26b1a9d2738ad7d58b27827.rst", "_cpp_api/define_macros_8h_1abd1465eb38256d3f22cc1426b23d516b.rst", "_cpp_api/define_macros_8h_1abe87b341f562fd1cf40b7672e4d759da.rst", "_cpp_api/define_macros_8h_1ad19939408f7be171a74a89928b36eb59.rst", "_cpp_api/define_macros_8h_1adad592a7b1b7eed529cdf6acd584c883.rst", "_cpp_api/dir_cpp.rst", "_cpp_api/dir_cpp_include.rst", "_cpp_api/dir_cpp_include_torch_tensorrt.rst", "_cpp_api/enum_logging_8h_1a130f65408ad8cbaee060f05e8db69558.rst", "_cpp_api/enum_torch__tensorrt_8h_1a3fbe5d72e4fc624dbd038853079620eb.rst", "_cpp_api/file_cpp_include_torch_tensorrt_logging.h.rst", "_cpp_api/file_cpp_include_torch_tensorrt_macros.h.rst", "_cpp_api/file_cpp_include_torch_tensorrt_ptq.h.rst", "_cpp_api/file_cpp_include_torch_tensorrt_torch_tensorrt.h.rst", "_cpp_api/function_logging_8h_1a0593f776f469c20469e2f729fc7861a3.rst", "_cpp_api/function_logging_8h_1a0c012cb374addd90eb1f42eaec570650.rst", "_cpp_api/function_logging_8h_1a56e110feaaba2c3fd44bd201fd21a76a.rst", "_cpp_api/function_logging_8h_1a7cb50492421ea9de4e3db895819df6f2.rst", "_cpp_api/function_logging_8h_1ac46ac0901cb97e3ae6e93b45f24e90b8.rst", "_cpp_api/function_logging_8h_1ad2efd47b6c3689e58ccc595680579ae5.rst", "_cpp_api/function_logging_8h_1af8f3443813315af7901903d25dd495cc.rst", "_cpp_api/function_ptq_8h_1a226e3c83379d1012cde8578c1c86b16c.rst", "_cpp_api/function_ptq_8h_1a6186e305f47c1d94b6130ef6c7f7e178.rst", "_cpp_api/function_torch__tensorrt_8h_1a5b405fd3bf3c8fc2e2a54cbbab979797.rst", "_cpp_api/function_torch__tensorrt_8h_1a6e19490a08fb1553c9dd347a5ae79db9.rst", "_cpp_api/function_torch__tensorrt_8h_1a81f9783517335dda877d8cfcf38987c9.rst", "_cpp_api/function_torch__tensorrt_8h_1ac4ab8313ae72c2c899ea31548b528528.rst", "_cpp_api/function_torch__tensorrt_8h_1ad1acd06eaeaffbbcf6e7ebf426891384.rst", "_cpp_api/function_torch__tensorrt_8h_1ad6a4ee8ca6c8f6e5519eb1128ec7f4a1.rst", "_cpp_api/function_torch__tensorrt_8h_1ae8d56472106eeef37fbe51ff7f40c9b2.rst", "_cpp_api/namespace_torch_tensorrt.rst", "_cpp_api/namespace_torch_tensorrt__logging.rst", "_cpp_api/namespace_torch_tensorrt__ptq.rst", "_cpp_api/namespace_torch_tensorrt__torchscript.rst", "_cpp_api/program_listing_file_cpp_include_torch_tensorrt_logging.h.rst", "_cpp_api/program_listing_file_cpp_include_torch_tensorrt_macros.h.rst", "_cpp_api/program_listing_file_cpp_include_torch_tensorrt_ptq.h.rst", "_cpp_api/program_listing_file_cpp_include_torch_tensorrt_torch_tensorrt.h.rst", "_cpp_api/structtorch__tensorrt_1_1Device.rst", "_cpp_api/structtorch__tensorrt_1_1GraphInputs.rst", "_cpp_api/structtorch__tensorrt_1_1Input.rst", "_cpp_api/structtorch__tensorrt_1_1torchscript_1_1CompileSpec.rst", "_cpp_api/torch_tensort_cpp.rst", "_cpp_api/unabridged_orphan.rst", "cli/torchtrtc.rst", "contributors/conversion.rst", "contributors/dynamo_converters.rst", "contributors/lowering.rst", "contributors/partitioning.rst", "contributors/phases.rst", "contributors/runtime.rst", "contributors/system_overview.rst", "contributors/ts_converters.rst", "contributors/useful_links.rst", "contributors/writing_dynamo_aten_lowering_passes.rst", "dynamo/dynamo_export.rst", "dynamo/torch_compile.rst", "fx/getting_started_with_fx_path.rst", "getting_started/installation.rst", "getting_started/jetpack.rst", "getting_started/quick_start.rst", "index.rst", "indices/supported_ops.rst", "py_api/dynamo.rst", "py_api/fx.rst", "py_api/logging.rst", "py_api/ptq.rst", "py_api/runtime.rst", "py_api/torch_tensorrt.rst", "py_api/ts.rst", "sg_execution_times.rst", "src/pytorch-sphinx-theme/docs/changelog.rst", "src/pytorch-sphinx-theme/docs/configuring.rst", "src/pytorch-sphinx-theme/docs/demo/api.rst", "src/pytorch-sphinx-theme/docs/demo/demo.rst", "src/pytorch-sphinx-theme/docs/demo/lists_tables.rst", "src/pytorch-sphinx-theme/docs/demo/long.rst", "src/pytorch-sphinx-theme/docs/demo/structure.rst", "src/pytorch-sphinx-theme/docs/index.rst", "src/pytorch-sphinx-theme/docs/installing.rst", "ts/creating_torchscript_module_in_python.rst", "ts/getting_started_with_cpp_api.rst", "ts/getting_started_with_python_api.rst", "ts/ptq.rst", "ts/torchscript_frontend_from_pytorch.rst", "tutorials/_rendered_examples/dynamo/auto_generate_converters.rst", "tutorials/_rendered_examples/dynamo/converter_overloading.rst", "tutorials/_rendered_examples/dynamo/cross_runtime_compilation_for_windows.rst", "tutorials/_rendered_examples/dynamo/custom_kernel_plugins.rst", "tutorials/_rendered_examples/dynamo/engine_caching_bert_example.rst", "tutorials/_rendered_examples/dynamo/engine_caching_example.rst", "tutorials/_rendered_examples/dynamo/index.rst", "tutorials/_rendered_examples/dynamo/mutable_torchtrt_module_example.rst", "tutorials/_rendered_examples/dynamo/pre_allocated_output_example.rst", "tutorials/_rendered_examples/dynamo/refit_engine_example.rst", "tutorials/_rendered_examples/dynamo/torch_compile_advanced_usage.rst", "tutorials/_rendered_examples/dynamo/torch_compile_gpt2.rst", "tutorials/_rendered_examples/dynamo/torch_compile_resnet_example.rst", "tutorials/_rendered_examples/dynamo/torch_compile_stable_diffusion.rst", "tutorials/_rendered_examples/dynamo/torch_compile_transformers_example.rst", "tutorials/_rendered_examples/dynamo/torch_export_cudagraphs.rst", "tutorials/_rendered_examples/dynamo/torch_export_gpt2.rst", "tutorials/_rendered_examples/dynamo/torch_export_llama2.rst", "tutorials/_rendered_examples/dynamo/torch_export_sam2.rst", "tutorials/_rendered_examples/dynamo/vgg16_ptq.rst", "tutorials/_rendered_examples/dynamo/weight_streaming_example.rst", "tutorials/_rendered_examples/index.rst", "tutorials/_rendered_examples/triton/index.rst", "tutorials/notebooks.rst", "tutorials/serving_torch_tensorrt_with_triton.rst", "user_guide/dynamic_shapes.rst", "user_guide/mixed_precision.rst", "user_guide/runtime.rst", "user_guide/saving_models.rst", "user_guide/torch_tensorrt_explained.rst", "user_guide/using_dla.rst"], "titles": ["Class DataType", "Class Device::DeviceType", "Class TensorFormat", "Template Class Int8CacheCalibrator", "Template Class Int8Calibrator", "Define STR", "Define TORCH_TENSORRT_PATCH_VERSION", "Define TORCH_TENSORRT_MAJOR_VERSION", "Define TORCH_TENSORRT_MINOR_VERSION", "Define TORCHTRT_API", "Define XSTR", "Define TORCHTRT_HIDDEN", "Define TORCH_TENSORRT_VERSION", "Directory cpp", "Directory include", "Directory torch_tensorrt", "Enum Level", "Enum EngineCapability", "File logging.h", "File macros.h", "File ptq.h", "File torch_tensorrt.h", "Function torch_tensorrt::logging::get_logging_prefix", "Function torch_tensorrt::logging::get_reportable_log_level", "Function torch_tensorrt::logging::get_is_colored_output_on", "Function torch_tensorrt::logging::set_reportable_log_level", "Function torch_tensorrt::logging::log", "Function torch_tensorrt::logging::set_is_colored_output_on", "Function torch_tensorrt::logging::set_logging_prefix", "Template Function torch_tensorrt::ptq::make_int8_cache_calibrator", "Template Function torch_tensorrt::ptq::make_int8_calibrator", "Function torch_tensorrt::torchscript::check_method_operator_support", "Function torch_tensorrt::torchscript::compile", "Function torch_tensorrt::torchscript::embed_engine_in_new_module", "Function torch_tensorrt::get_build_info", "Function torch_tensorrt::set_device", "Function torch_tensorrt::dump_build_info", "Function torch_tensorrt::torchscript::convert_method_to_trt_engine", "Namespace torch_tensorrt", "Namespace torch_tensorrt::logging", "Namespace torch_tensorrt::ptq", "Namespace torch_tensorrt::torchscript", "Program Listing for File logging.h", "Program Listing for File macros.h", "Program Listing for File ptq.h", "Program Listing for File torch_tensorrt.h", "Struct Device", "Struct GraphInputs", "Struct Input", "Struct CompileSpec", "Torch-TensorRT C++ API", "Full API", "torchtrtc", "Conversion Phase", "Writing Dynamo Converters", "Lowering Phase", "Partitioning Phase", "Compiler Phases", "Runtime Phase", "System Overview", "Writing TorchScript Converters", "Useful Links for Torch-TensorRT Development", "Writing Dynamo ATen Lowering Passes", "Compiling Exported Programs with Torch-TensorRT", "TensorRT Backend for torch.compile", "Torch-TensorRT (FX Frontend) User Guide", "Installation", "Overview", "Quick Start", "Torch-TensorRT", "Operators Supported", "torch_tensorrt.dynamo", "torch_tensorrt.fx", "torch_tensorrt.logging", "torch_tensorrt.ts.ptq", "torch_tensorrt.runtime", "torch_tensorrt", "torch_tensorrt.ts", "Computation times", "Changelog", "Configuration", "5. :mod:`test_py_module`", "3. Paragraph Level Markup", "4. Lists & Tables", "1. Long Sticky Nav", "1. Structural Elements", "<no title>", "Installation", "Creating a TorchScript Module", "Using Torch-TensorRT in C++", "Using Torch-TensorRT in Python", "Post Training Quantization (PTQ)", "Using Torch-TensorRT TorchScript Frontend Directly From PyTorch", "Automatically Generate a Converter for a Custom Kernel", "Overloading Torch-TensorRT Converters with Custom Converters", "Cross runtime compilation for windows example", "Using Custom Kernels within TensorRT Engines with Torch-TensorRT", "Engine Caching (BERT)", "Engine Caching", "Dependencies", "Mutable Torch TensorRT Module", "Pre-allocated output buffer", "Refitting Torch-TensorRT Programs with New Weights", "Torch Compile Advanced Usage", "Compiling GPT2 using the Torch-TensorRT torch.compile frontend", "Compiling ResNet with dynamic shapes using the torch.compile backend", "Compiling Stable Diffusion model using the torch.compile backend", "Compiling BERT using the torch.compile backend", "Torch Export with Cudagraphs", "Compiling GPT2 using the dynamo backend", "Compiling Llama2 using the dynamo backend", "Compiling SAM2 using the dynamo backend", "Deploy Quantized Models using Torch-TensorRT", "Weight Streaming", "Torch-TensorRT Tutorials", "Serving a Torch-TensorRT model with Triton", "Legacy notebooks", "Serving a Torch-TensorRT model with Triton", "Dynamic shapes with Torch-TensorRT", "Compile Mixed Precision models with Torch-TensorRT", "Deploying Torch-TensorRT Programs", "Saving models compiled with Torch-TensorRT", "Torch-TensorRT Explained", "DLA"], "terms": {"defin": [0, 1, 2, 3, 4, 16, 17, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 43, 46, 47, 48, 49, 51, 52, 54, 65, 68, 75, 76, 80, 88, 89, 90, 91, 93, 94, 96, 98, 103, 107, 108, 109, 110, 116], "file": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 17, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 46, 47, 48, 49, 52, 54, 56, 58, 59, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 78, 80, 81, 83, 87, 89, 91, 95, 114, 115, 117, 118, 121], "torch_tensorrt": [0, 1, 2, 14, 16, 17, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 54, 56, 62, 63, 64, 65, 68, 69, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 106, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 123], "h": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 46, 47, 48, 49, 50, 51, 52, 55, 68, 76, 89, 91, 111], "support": [0, 1, 2, 27, 31, 46, 48, 49, 52, 54, 56, 61, 63, 65, 67, 68, 69, 72, 75, 76, 77, 80, 81, 88, 89, 90, 93, 94, 96, 101, 102, 104, 105, 107, 109, 110, 112, 113, 114, 115, 117, 119, 122, 123], "data": [0, 2, 3, 4, 29, 30, 44, 46, 48, 49, 52, 53, 56, 57, 59, 60, 64, 65, 70, 71, 72, 74, 76, 77, 82, 86, 90, 91, 93, 96, 98, 104, 111, 112, 113, 116], "type": [0, 1, 2, 30, 49, 50, 52, 53, 56, 58, 60, 62, 63, 64, 65, 71, 72, 74, 75, 76, 77, 82, 89, 90, 91, 93, 94, 95, 96, 98, 111, 112, 113, 116, 119, 121], "can": [0, 1, 4, 29, 30, 37, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 71, 74, 75, 76, 77, 80, 82, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 100, 101, 102, 103, 104, 107, 108, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122], "us": [0, 1, 2, 3, 4, 29, 30, 32, 35, 37, 43, 44, 45, 46, 48, 49, 52, 53, 54, 56, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83, 88, 91, 95, 98, 99, 100, 102, 113, 114, 115, 117, 119, 120, 121, 122, 123], "tensorrt": [0, 1, 3, 4, 29, 30, 31, 32, 33, 36, 37, 44, 45, 46, 48, 49, 52, 53, 54, 55, 56, 57, 59, 60, 62, 67, 68, 71, 72, 74, 75, 76, 77, 88, 91, 95, 98, 99, 101, 103, 105, 106, 107, 108, 113], "engin": [0, 1, 17, 32, 33, 37, 45, 46, 48, 49, 52, 53, 56, 57, 59, 62, 63, 64, 69, 71, 72, 75, 76, 77, 80, 89, 90, 91, 92, 93, 94, 99, 101, 102, 104, 105, 107, 113, 114, 118, 120, 122, 123], "thi": [0, 1, 2, 29, 30, 42, 43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 71, 72, 75, 76, 77, 80, 81, 82, 84, 85, 88, 89, 91, 92, 93, 94, 96, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122], "compat": [0, 1, 46, 55, 58, 64, 65, 71, 75, 76, 77, 111, 122], "c10": [0, 1, 45, 46, 48, 49, 89, 91], "check": [0, 1, 31, 46, 52, 55, 60, 65, 67, 71, 75, 77, 89, 96, 100, 102, 114, 115, 117, 120], "trt": [0, 1, 3, 4, 46, 48, 53, 55, 58, 60, 62, 64, 65, 67, 68, 70, 71, 75, 76, 89, 94, 96, 101, 104, 107, 109, 110, 111, 113, 118, 120, 121], "so": [0, 44, 52, 53, 54, 55, 58, 59, 60, 62, 64, 65, 66, 67, 72, 75, 76, 81, 82, 83, 89, 91, 93, 94, 96, 98, 103, 104, 105, 107, 109, 110, 118], "should": [0, 3, 4, 29, 45, 49, 52, 53, 54, 55, 56, 57, 59, 60, 63, 64, 65, 67, 71, 75, 76, 77, 80, 82, 85, 91, 94, 96, 97, 98, 101, 102, 104, 108, 111, 114, 115, 117], "reason": [0, 65, 88, 94, 96, 98, 122], "you": [0, 1, 2, 29, 30, 46, 48, 49, 52, 53, 54, 55, 56, 58, 59, 60, 63, 65, 66, 67, 68, 71, 75, 76, 77, 80, 82, 83, 84, 88, 89, 90, 91, 92, 93, 94, 96, 98, 99, 100, 102, 108, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122], "need": [0, 1, 2, 25, 29, 43, 46, 53, 54, 55, 60, 65, 66, 67, 71, 72, 75, 76, 82, 89, 90, 91, 93, 94, 96, 97, 98, 100, 102, 114, 115, 116, 117, 118, 120], "explictli": 0, "public": [0, 1, 2, 3, 4, 44, 45, 46, 47, 48, 49, 83, 91], "enum": [0, 1, 2, 42, 45, 46, 51, 71, 77, 91, 94], "valu": [0, 1, 2, 16, 17, 45, 46, 48, 53, 56, 58, 60, 63, 70, 71, 74, 76, 80, 89, 100, 103, 104, 105, 107, 113, 116], "underli": [0, 1, 2, 46, 60], "In": [0, 1, 2, 46, 53, 54, 56, 57, 58, 59, 60, 64, 65, 66, 75, 76, 82, 83, 85, 90, 91, 93, 94, 96, 100, 104, 111, 114, 115, 116, 117, 118, 119, 120, 121], "case": [0, 1, 2, 46, 49, 53, 54, 56, 58, 60, 62, 64, 65, 66, 67, 75, 76, 91, 93, 94, 96, 100, 101, 102, 118, 119, 120], "itself": [0, 1, 2, 46, 52, 55, 92, 94, 114, 115, 117], "interfac": [0, 1, 2, 46, 58, 59, 60, 64, 69, 91], "vs": [0, 1, 2, 46, 55, 66, 71, 76, 77, 92], "normal": [0, 1, 2, 46, 65, 82, 88, 89, 91, 94, 100, 101, 102, 108, 111, 112, 114, 115, 117, 123], "instatin": [0, 1, 2, 46], "ex": [0, 1, 2, 33, 46, 67, 77, 83, 85], "kfloat": [0, 45, 49], "enumer": [0, 1, 2, 16, 17, 46, 111], "klong": [0, 45], "int64": [0, 76, 77, 113], "kdoubl": [0, 45], "fp64": [0, 76], "fp32": [0, 48, 49, 52, 64, 65, 71, 76, 77, 91, 109, 110, 111, 114, 115, 116, 117, 119], "khalf": [0, 45, 89], "fp16": [0, 48, 49, 52, 64, 65, 71, 72, 76, 89, 90, 100, 106, 109, 110, 111, 113, 119, 123], "kchar": [0, 45], "int8": [0, 44, 48, 49, 52, 64, 71, 76, 77, 91, 112, 123], "kint": [0, 45], "int": [0, 3, 4, 35, 44, 45, 49, 52, 54, 56, 63, 64, 70, 71, 72, 76, 77, 80, 89, 93, 96, 111, 112, 113], "kbool": [0, 45], "bool": [0, 1, 2, 3, 4, 24, 27, 30, 31, 42, 44, 45, 46, 49, 55, 60, 64, 70, 71, 72, 74, 75, 76, 77, 80, 89, 91, 95, 96], "kunknown": [0, 2, 45], "sentinel": [0, 2, 76], "function": [0, 1, 2, 3, 4, 46, 48, 49, 51, 54, 55, 56, 58, 60, 62, 64, 65, 66, 88, 89, 91, 92, 93, 94, 96, 102, 103, 107, 108, 109, 110, 111, 114, 115, 116, 117, 118, 120, 122, 123], "default": [0, 1, 2, 3, 4, 16, 29, 30, 33, 43, 45, 46, 48, 49, 52, 54, 56, 62, 64, 65, 66, 71, 72, 75, 76, 77, 80, 81, 82, 89, 90, 91, 92, 93, 94, 95, 96, 98, 112, 118, 120, 121, 122], "construct": [0, 1, 2, 3, 4, 46, 48, 49, 53, 54, 55, 57, 59, 60, 65, 74, 75, 76, 82, 83, 89, 91, 94, 96, 98, 118], "new": [0, 1, 2, 3, 4, 32, 33, 46, 48, 49, 56, 58, 59, 60, 62, 64, 65, 68, 69, 71, 77, 82, 89, 93, 98, 99, 100, 101, 104, 105, 107, 108, 114, 115, 117, 120], "object": [0, 1, 2, 3, 4, 46, 48, 49, 52, 58, 60, 62, 63, 64, 71, 75, 76, 77, 91, 92, 94, 101, 118, 121], "inlin": [0, 1, 2, 3, 4, 29, 30, 44, 46, 48, 55, 83, 86, 89], "constexpr": [0, 1, 2, 45, 46, 93, 96], "t": [0, 1, 2, 45, 46, 55, 60, 65, 66, 70, 76, 80, 82, 83, 88, 89, 91, 93, 94, 96, 112, 114, 115, 117, 118], "constructor": [0, 2, 46, 48, 49, 58, 88], "from": [0, 1, 2, 3, 4, 29, 30, 44, 46, 48, 49, 52, 53, 55, 56, 57, 58, 59, 60, 63, 64, 65, 67, 69, 71, 72, 75, 76, 77, 78, 80, 81, 82, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 120, 121, 122], "torchtrt_api": [0, 2, 19, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 42, 43, 44, 45, 48, 49, 50], "scalartyp": [0, 45, 70], "torch": [0, 1, 2, 4, 20, 21, 29, 30, 31, 32, 33, 36, 37, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 67, 71, 72, 74, 75, 76, 77, 78, 88, 91, 93, 95, 97, 98, 99, 101, 113, 123], "paramet": [0, 1, 2, 3, 4, 25, 26, 27, 29, 30, 31, 32, 33, 35, 37, 46, 48, 49, 53, 54, 55, 60, 64, 65, 71, 72, 74, 75, 76, 77, 86, 88, 89, 102, 109, 110], "oper": [0, 1, 2, 3, 4, 31, 44, 45, 46, 49, 52, 53, 55, 56, 57, 58, 59, 60, 62, 63, 65, 69, 71, 76, 77, 90, 91, 94, 101, 102, 105, 107, 108, 111, 122, 123], "const": [0, 1, 2, 3, 4, 29, 30, 31, 32, 33, 35, 37, 44, 45, 46, 55, 60, 70, 89, 91], "get": [0, 1, 2, 3, 4, 23, 34, 44, 46, 55, 56, 60, 62, 63, 65, 67, 75, 76, 89, 91, 93, 94, 98, 104, 109, 110, 113, 114, 115, 116, 117], "return": [0, 1, 2, 3, 4, 23, 24, 29, 30, 31, 32, 33, 34, 37, 42, 43, 44, 45, 46, 54, 55, 56, 57, 58, 59, 60, 62, 64, 65, 71, 72, 75, 76, 77, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 108, 111, 112, 113, 114, 115, 117, 118, 119], "explicit": [0, 1, 2, 3, 4, 45, 46, 55, 65, 72, 75, 82, 91, 122], "delet": [0, 1, 2, 45, 46, 55], "other": [0, 1, 2, 45, 46, 52, 53, 55, 58, 62, 64, 65, 66, 70, 71, 75, 76, 81, 82, 89, 90, 94, 120], "comparis": [0, 2], "true": [0, 1, 2, 4, 46, 49, 55, 56, 60, 62, 64, 65, 70, 71, 72, 75, 76, 77, 80, 83, 89, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117, 119, 120, 123], "fals": [0, 1, 2, 3, 4, 44, 45, 46, 49, 54, 62, 64, 65, 70, 71, 72, 75, 76, 77, 80, 81, 82, 83, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 106, 107, 108, 109, 110, 111, 112, 113, 120], "struct": [1, 21, 38, 41, 45, 54, 91], "onli": [1, 3, 4, 16, 29, 44, 46, 48, 52, 54, 55, 56, 59, 60, 64, 65, 67, 68, 71, 72, 75, 76, 82, 91, 93, 94, 95, 96, 100, 102, 110, 113, 119, 120, 123], "applic": [1, 29, 46, 52, 55, 59, 64, 71, 75, 76, 89, 90, 92, 120, 123], "kcuda": [1, 46, 56, 89], "which": [1, 2, 29, 32, 37, 46, 49, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 71, 72, 74, 75, 76, 77, 80, 82, 83, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 103, 104, 105, 108, 109, 110, 111, 114, 115, 116, 117, 118, 119, 120, 121, 122], "map": [1, 46, 53, 54, 55, 57, 59, 60, 65, 75, 76, 89, 91, 92, 98, 103, 114, 115, 116, 117], "kgpu": [1, 45, 46], "To": [1, 46, 52, 54, 56, 64, 66, 71, 80, 88, 89, 90, 92, 96, 102, 109, 110, 111, 114, 115, 117], "datatyp": [1, 21, 38, 45, 46, 48, 49, 50, 71, 76, 77, 90, 96, 114, 115, 117, 119], "target": [1, 33, 45, 46, 48, 49, 52, 54, 56, 58, 59, 64, 65, 66, 69, 71, 75, 76, 77, 90, 91, 92, 94, 96, 102, 122, 123], "gpu": [1, 32, 35, 37, 45, 46, 52, 64, 65, 71, 75, 76, 77, 89, 91, 92, 93, 96, 101, 104, 109, 110, 113, 114, 115, 117, 120, 122, 123], "run": [1, 37, 46, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 64, 65, 66, 67, 68, 71, 72, 75, 76, 77, 82, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123], "kdla": [1, 45, 46, 123], "dla": [1, 45, 46, 49, 52, 64, 69, 71, 76, 77], "intern": [1, 16, 46, 60, 63, 73, 75, 82, 89], "note": [1, 46, 48, 54, 60, 62, 65, 66, 67, 75, 76, 80, 82, 89, 96, 102, 108, 114, 115, 117, 118, 123], "The": [1, 46, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 71, 75, 76, 77, 80, 83, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 108, 109, 111, 113, 114, 115, 116, 117, 118, 121, 122], "valid": [1, 46, 56, 60, 62, 71, 75, 76, 94], "kcpu": [1, 46], "comparison": [1, 46], "an": [2, 3, 4, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 64, 65, 66, 68, 71, 72, 74, 75, 76, 77, 80, 82, 83, 88, 89, 90, 91, 93, 94, 96, 98, 102, 103, 104, 108, 109, 110, 113, 114, 115, 116, 117, 118, 120, 121, 122], "memeori": 2, "layout": [2, 48, 70, 71, 76, 77], "store": [2, 4, 49, 52, 53, 58, 60, 64, 65, 71, 75, 76, 77, 88, 89, 93, 96, 98, 102, 111], "tensor": [2, 33, 44, 45, 48, 49, 52, 53, 54, 55, 56, 58, 60, 62, 63, 64, 65, 70, 71, 72, 75, 76, 77, 88, 89, 90, 91, 93, 94, 96, 101, 103, 108, 111, 113, 116], "kcontigu": [2, 45, 48], "contigu": [2, 48, 49, 52, 71, 76, 77], "nchw": [2, 71, 76, 77], "linear": [2, 56, 70, 76, 88, 96, 112, 119], "kchannelslast": [2, 45], "channel": [2, 76, 81], "last": [2, 55, 65, 76, 112], "nhwc": [2, 52], "memoryformat": [2, 45], "ptq": [3, 4, 15, 18, 19, 38, 50, 51, 52, 69, 71, 76, 77], "privat": [3, 4, 44, 45, 91], "algorithm": [3, 4, 29, 30, 44, 65, 74, 91, 110], "typenam": [3, 4, 29, 30, 44], "gener": [3, 4, 29, 52, 55, 58, 59, 60, 62, 64, 65, 66, 71, 72, 80, 82, 83, 86, 88, 89, 91, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 111, 112, 113, 114, 120], "int8calibr": [3, 20, 30, 40, 44, 50], "implement": [3, 4, 55, 56, 58, 63, 65, 75, 81, 89, 91, 93, 96, 98, 111, 120], "specifi": [3, 4, 33, 52, 54, 60, 64, 65, 66, 71, 76, 77, 80, 82, 90, 92, 113, 114, 115, 117, 118, 119, 121, 122], "calibr": [3, 4, 29, 30, 44, 49, 52, 71, 74, 76, 77, 89, 91], "read": [3, 4, 29, 30, 44, 80, 82, 91, 111], "nvinfer1": [3, 4, 29, 30, 44, 45, 49, 60, 91], "iint8calibr": [3, 4, 29, 30, 44, 45, 49, 71, 76, 77, 91], "iint8entropycalibrator2": [3, 4, 29, 30, 44, 91], "std": [3, 4, 22, 26, 28, 29, 30, 31, 33, 34, 37, 42, 44, 45, 47, 48, 49, 56, 89, 91, 114, 115, 117, 123], "string": [3, 4, 18, 20, 21, 22, 26, 28, 29, 30, 31, 33, 34, 37, 42, 44, 45, 49, 54, 56, 58, 60, 64, 71, 76, 80, 89, 91], "cache_file_path": [3, 4, 29, 30, 44], "8": [3, 52, 55, 63, 64, 66, 75, 76, 82, 83, 86, 89, 95, 96, 105, 108, 114, 115, 117, 118], "cach": [3, 4, 29, 30, 44, 52, 64, 65, 69, 71, 72, 74, 76, 89, 91, 99, 101, 114, 120], "getbatchs": [3, 4, 44], "noexcept": [3, 4, 44, 91], "overrid": [3, 4, 29, 30, 44, 54, 65, 91], "batch": [3, 4, 44, 64, 65, 72, 75, 91, 98, 105, 107, 112, 113, 114, 115, 117, 118, 123], "size": [3, 4, 44, 48, 49, 52, 55, 56, 64, 65, 70, 71, 72, 76, 77, 80, 89, 91, 93, 96, 98, 105, 107, 111, 112, 116, 118], "next": [3, 4, 53, 54, 58, 63, 72, 76, 80, 82, 83, 91, 94, 101, 103, 108, 112, 114, 115, 117], "alwai": [3, 4, 27, 52, 76, 82, 102, 113], "1": [3, 4, 33, 44, 45, 48, 49, 52, 54, 55, 56, 58, 60, 62, 63, 64, 65, 66, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 83, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 107, 108, 109, 110, 111, 112, 113, 116, 118, 119, 121, 123], "due": [3, 4, 66, 81, 82, 104, 112], "issu": [3, 4, 64, 71, 76, 89, 103, 104, 107], "getbatch": [3, 4, 44], "void": [3, 4, 25, 26, 27, 28, 35, 36, 42, 44, 45], "bind": [3, 4, 33, 44, 75, 77, 82], "char": [3, 4, 44, 52, 89], "name": [3, 4, 31, 33, 37, 44, 54, 56, 58, 60, 65, 66, 67, 72, 74, 75, 76, 77, 82, 83, 88, 89, 92, 93, 94, 96, 102, 108, 112, 114, 115, 117, 119], "nbbind": [3, 4, 44], "Not": 3, "arrai": [3, 4, 33, 53, 54, 76, 77, 94, 96, 101, 111, 113], "pointer": [3, 4, 91], "fed": [3, 4, 48], "buffer": [3, 4, 65, 69, 96, 99, 114], "each": [3, 4, 49, 53, 55, 56, 58, 60, 64, 65, 66, 71, 72, 75, 80, 82, 89, 93, 94, 102, 108, 110, 120], "input": [3, 4, 21, 29, 33, 38, 44, 45, 47, 49, 50, 52, 53, 54, 55, 56, 58, 60, 62, 63, 64, 65, 68, 70, 71, 72, 73, 75, 76, 77, 83, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123], "number": [3, 4, 49, 52, 54, 55, 56, 60, 63, 64, 65, 71, 72, 76, 77, 80, 89, 90, 96, 102, 104, 105, 107, 113, 116, 122], "readcalibrationcach": [3, 4, 44], "size_t": [3, 4, 44, 91], "length": [3, 4, 44, 65, 70, 83, 104, 113], "how": [3, 4, 66, 67, 82, 84, 86, 88, 92, 93, 94, 96, 98, 100, 103, 112, 113, 114, 115, 116, 117, 118, 120], "enabl": [3, 4, 24, 49, 52, 54, 56, 57, 59, 64, 65, 66, 71, 72, 74, 75, 76, 77, 80, 98, 100, 102, 105, 107, 108, 109, 110, 111, 113, 119, 120], "use_cach": [3, 4, 30, 44, 74, 91, 104, 109, 110, 113], "set": [3, 4, 16, 21, 25, 27, 29, 32, 35, 37, 45, 46, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59, 65, 66, 71, 72, 75, 76, 77, 80, 84, 87, 88, 89, 90, 91, 93, 94, 96, 101, 102, 109, 112, 113, 116, 118, 119, 120, 122, 123], "writecalibrationcach": [3, 4, 44], "write": [3, 4, 29, 30, 44, 65, 69, 82, 89, 91, 114, 115, 117], "provid": [3, 4, 49, 52, 54, 56, 58, 60, 62, 64, 65, 66, 68, 71, 72, 75, 76, 77, 82, 89, 90, 91, 92, 93, 94, 98, 99, 102, 103, 104, 108, 111, 113, 114, 115, 117, 118, 120, 121, 122], "cast": [3, 4, 55, 64, 71, 109, 110, 111, 119], "convienc": [3, 4, 49], "convert": [3, 4, 31, 32, 37, 52, 55, 56, 57, 59, 63, 64, 69, 71, 76, 77, 90, 92, 96, 99, 104, 105, 107, 111, 113, 114, 116, 120], "easili": [3, 4, 100], "assign": [3, 4, 81], "ptq_calibr": [3, 4, 45, 49, 91], "field": [3, 4, 63, 72, 76, 91], "compilespec": [3, 4, 21, 32, 37, 41, 45, 50, 56, 77, 89, 91, 123], "dataloaderuniqueptr": [4, 44], "libtorch": [4, 36, 60, 66, 68, 89, 91, 122], "dataload": [4, 29, 30, 44, 49, 74, 91, 112], "unique_ptr": [4, 30], "unqiue_ptr": 4, "A": [4, 29, 30, 32, 33, 47, 48, 54, 55, 56, 60, 65, 66, 71, 72, 76, 77, 83, 91, 93, 106, 114, 115, 117], "uniqu": [4, 90], "what": [4, 54, 55, 65, 68, 76, 82, 88, 89, 90, 104, 109, 110, 122], "make_data_load": [4, 91], "factori": [4, 29, 30, 64, 71, 91], "path": [4, 13, 14, 15, 29, 30, 52, 64, 65, 66, 67, 71, 74, 76, 88, 89, 91, 95, 98, 108, 112, 122], "find": [4, 65, 66, 67, 89, 96, 113], "whether": [4, 52, 54, 64, 65, 71, 72, 76, 81, 91, 105, 107, 120], "exist": [4, 31, 32, 37, 54, 63, 64, 65, 67, 71, 74, 76, 77, 91, 98, 116], "There": [4, 53, 54, 59, 60, 62, 63, 65, 66, 83, 88, 91, 102, 114, 115, 116, 117, 118, 120], "consum": [4, 53, 88], "macro": [5, 6, 7, 8, 9, 10, 11, 12, 15, 18, 20, 21, 42, 44, 45, 50, 51], "x": [5, 10, 33, 43, 55, 56, 66, 67, 68, 75, 77, 83, 88, 89, 93, 94, 96, 98, 103, 108, 112, 113, 114, 115, 117, 118, 119, 121], "includ": [13, 15, 16, 34, 36, 42, 43, 44, 45, 51, 52, 54, 56, 57, 58, 59, 62, 64, 65, 66, 67, 68, 71, 72, 75, 76, 80, 82, 88, 89, 91, 96, 111, 120], "parent": [14, 15, 18, 19, 20, 21], "cpp": [14, 15, 42, 43, 44, 45, 51, 55, 59, 66, 89, 91], "log": [15, 16, 19, 20, 38, 44, 50, 51, 55, 60, 64, 65, 69, 70, 71, 72, 76, 93, 94, 105, 107, 119], "emum": [16, 17], "messag": [16, 25, 26, 52, 73], "sever": [16, 26, 73, 108], "kinternal_error": [16, 42], "print": [16, 31, 44, 62, 64, 67, 71, 77, 82, 89, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 107, 109, 110, 112, 113, 114, 115, 117], "error": [16, 49, 52, 53, 55, 59, 64, 65, 71, 73, 76, 77, 82, 89, 93, 118], "kerror": [16, 42], "all": [16, 42, 43, 44, 45, 49, 52, 54, 55, 56, 58, 62, 64, 65, 66, 67, 71, 73, 75, 76, 78, 82, 83, 88, 89, 90, 91, 94, 96, 109, 110, 114, 115, 116, 117, 119, 120, 122], "kwarn": [16, 42], "warn": [16, 44, 52, 60, 73, 75], "kinfo": [16, 42, 44], "info": [16, 32, 37, 45, 52, 60, 73, 75, 76, 119], "kdebug": [16, 42, 44], "debug": [16, 27, 45, 49, 52, 60, 62, 64, 71, 73, 75, 76, 77, 92, 93, 95, 96, 97, 98, 100, 102, 103, 105, 107, 112, 119], "kgraph": [16, 42, 55], "everyth": [16, 64, 71, 76], "intermedi": [16, 49, 52, 54, 64, 71, 73, 76, 77, 88, 119, 122], "graph": [16, 31, 32, 37, 45, 49, 52, 53, 54, 56, 57, 59, 60, 62, 63, 64, 65, 71, 72, 73, 76, 77, 88, 89, 93, 94, 96, 98, 100, 101, 102, 104, 105, 107, 111, 116, 118, 120], "lower": [16, 54, 63, 65, 69, 71, 72, 73, 76, 83, 93, 96, 98, 105, 107, 113, 116, 122], "phase": [16, 60, 63, 89, 94, 101, 102, 108, 118, 122], "class": [17, 29, 30, 44, 45, 46, 51, 58, 60, 64, 65, 73, 77, 82, 83, 88, 89, 90, 91, 93, 94, 96, 98, 103, 104, 108, 111, 112, 116, 118, 119], "int8_t": [17, 45], "select": [17, 29, 30, 37, 49, 52, 58, 64, 65, 66, 70, 71, 76, 77, 81, 84, 90, 91, 96, 111, 122], "capabl": [17, 45, 49, 52, 58, 71, 76, 77, 92, 94, 95], "kstandard": [17, 45, 49], "ksafeti": [17, 45], "kdla_standalon": [17, 45], "directori": [18, 19, 20, 21, 42, 43, 44, 45, 50, 66, 67, 71, 91, 98, 111, 114, 115, 117], "program": [18, 19, 20, 21, 29, 51, 52, 57, 58, 59, 69, 71, 88, 93, 98, 99, 109, 110, 114, 118], "list": [18, 19, 20, 21, 31, 49, 51, 53, 56, 58, 60, 62, 63, 65, 68, 70, 71, 72, 75, 76, 77, 86, 89, 90, 94, 96, 114, 115, 117], "level": [18, 23, 25, 26, 39, 42, 44, 50, 54, 55, 56, 59, 64, 65, 71, 76, 77, 86, 88, 94, 96, 114, 115, 117, 122], "get_is_colored_output_on": [18, 39, 42, 50], "get_logging_prefix": [18, 39, 42, 50], "get_reportable_log_level": [18, 39, 42, 50], "set_is_colored_output_on": [18, 39, 42, 50], "set_logging_prefix": [18, 39, 42, 50], "set_reportable_log_level": [18, 39, 42, 50], "torchscript": [19, 21, 38, 43, 45, 49, 50, 52, 56, 57, 58, 59, 63, 68, 71, 72, 74, 75, 76, 77, 90, 101, 114, 115, 116, 117, 118, 123], "str": [19, 43, 44, 50, 54, 64, 65, 70, 71, 74, 75, 76, 77, 94, 95, 96, 98, 112], "torch_tensorrt_major_vers": [19, 43, 50], "torch_tensorrt_minor_vers": [19, 43, 50], "torch_tensorrt_patch_vers": [19, 43, 50], "torch_tensorrt_vers": [19, 43, 50], "torchtrt_hidden": [19, 43, 50], "xstr": [19, 43, 50], "nvinfer": [20, 44], "fstream": [20, 44], "iostream": [20, 21, 44, 45, 89], "iter": [20, 44, 49, 52, 53, 64, 71, 74, 76, 77, 97, 98, 111, 112, 113], "memori": [20, 21, 44, 45, 55, 60, 71, 76, 77, 89, 90, 93, 96, 98, 101, 108, 109, 110, 113], "sstream": [20, 44], "vector": [20, 21, 33, 44, 45, 47, 48, 49, 56, 58, 76, 89, 91, 123], "templat": [20, 40, 44, 45, 50, 80, 89], "int8cachecalibr": [20, 29, 40, 44, 50], "make_int8_cache_calibr": [20, 40, 44, 50, 91], "make_int8_calibr": [20, 29, 40, 44, 50, 91], "cuda_runtim": [21, 45], "custom_class": [21, 45], "devic": [21, 33, 35, 38, 45, 49, 50, 52, 58, 64, 70, 71, 72, 74, 75, 76, 77, 90, 91, 92, 93, 96, 100, 104, 106, 109, 110, 111, 113, 116, 123], "graphinput": [21, 38, 45, 49, 50], "devicetyp": [21, 38, 45, 46, 50, 75, 76, 77, 91, 92, 96, 123], "tensorformat": [21, 38, 45, 48, 50, 76, 96], "enginecap": [21, 38, 45, 49, 50, 64, 71, 75, 76, 77, 92, 96], "dump_build_info": [21, 38, 45, 50], "get_build_info": [21, 38, 45, 50], "set_devic": [21, 38, 45, 50, 120], "check_method_operator_support": [21, 41, 45, 50], "compil": [21, 31, 37, 41, 45, 49, 50, 52, 54, 55, 56, 58, 60, 62, 65, 71, 72, 73, 75, 76, 77, 78, 80, 88, 90, 91, 92, 93, 94, 96, 97, 99, 100, 112, 114, 115, 117, 120, 123], "convert_method_to_trt_engin": [21, 41, 45, 50, 76, 77, 89, 92], "embed_engine_in_new_modul": [21, 41, 45, 50, 77], "current": [23, 54, 56, 58, 60, 62, 63, 64, 65, 66, 67, 71, 72, 76, 77, 80, 94, 96, 100, 104, 109, 110, 111, 112, 113, 120], "report": [23, 44, 75], "Is": [24, 76], "color": [24, 27, 82, 111], "output": [24, 27, 33, 49, 52, 53, 54, 55, 56, 58, 60, 62, 63, 64, 65, 66, 69, 71, 73, 75, 76, 77, 80, 82, 83, 89, 93, 94, 96, 98, 99, 100, 102, 106, 113, 114, 115, 116, 117, 118, 119, 121], "lvl": [25, 26, 42], "inform": [25, 33, 34, 36, 48, 52, 53, 56, 58, 62, 64, 65, 66, 71, 72, 73, 76, 82, 88, 89, 91, 92, 96, 98, 113, 118], "ad": [25, 52, 53, 54, 56, 62, 65, 66, 93, 96, 100], "abov": [25, 54, 56, 62, 65, 66, 73, 81, 82, 89, 96, 105, 107, 111, 119, 121], "msg": [26, 42], "add": [26, 53, 54, 55, 56, 60, 63, 66, 70, 80, 82, 87, 89, 90, 93, 94, 96], "global": [26, 52, 64, 71, 76, 89], "colored_output_on": [27, 42], "prefix": [27, 28, 42, 82], "help": [27, 52, 53, 60, 64, 65, 89, 95, 98, 108, 112, 113, 116, 120], "when": [27, 44, 45, 46, 52, 53, 55, 56, 57, 58, 59, 60, 64, 65, 66, 71, 75, 76, 77, 80, 82, 84, 88, 89, 91, 94, 96, 98, 100, 101, 102, 108, 113, 116, 118, 120], "termin": [27, 52, 89], "If": [27, 33, 53, 54, 55, 56, 62, 63, 64, 65, 66, 68, 71, 72, 76, 80, 82, 89, 90, 91, 94, 96, 98, 101, 102, 103, 108, 113, 114, 115, 117, 118, 119, 120, 122, 123], "build": [29, 30, 34, 49, 52, 53, 57, 59, 60, 63, 64, 65, 71, 75, 76, 81, 86, 89, 91, 93, 94, 96, 105, 107, 113, 118], "post": [29, 30, 49, 52, 63, 69, 89, 98], "train": [29, 30, 49, 52, 69, 70, 89, 90, 98, 113], "quantiz": [29, 30, 52, 64, 69, 74, 76, 89, 99, 114], "creat": [29, 30, 33, 52, 53, 54, 56, 58, 60, 65, 69, 76, 77, 82, 89, 93, 94, 96, 102, 111, 113, 114, 115, 117], "previous": [29, 33, 89, 93, 98, 102], "therefor": [29, 58, 65, 66, 75, 82, 89, 116, 120], "have": [29, 33, 44, 52, 53, 54, 55, 56, 60, 62, 63, 64, 65, 66, 67, 71, 72, 74, 75, 76, 77, 82, 88, 89, 90, 91, 93, 96, 99, 104, 105, 107, 111, 112, 114, 115, 116, 117, 118], "requir": [29, 49, 52, 53, 54, 55, 63, 64, 65, 66, 67, 71, 76, 77, 80, 89, 91, 94, 95, 96, 99, 101, 104, 108, 111, 112, 113, 114, 115, 117, 118, 120], "dataset": [29, 74, 91, 116], "save": [29, 44, 52, 58, 64, 65, 68, 69, 71, 75, 76, 77, 89, 90, 95, 97, 98, 101, 102, 106, 111, 113, 114, 115, 116, 117, 120, 122], "later": [29, 71, 89, 93, 102, 121, 122], "differ": [29, 55, 56, 59, 64, 65, 66, 71, 76, 80, 88, 94, 96, 98, 100, 109, 113, 116, 120, 122], "scratch": [29, 98, 102], "depend": [29, 34, 53, 59, 64, 65, 67, 68, 71, 89, 90, 104, 111, 113, 115, 117, 120], "howev": [29, 66, 80, 81, 89, 93, 94, 96, 98, 114, 115, 117, 118, 122], "network": [29, 30, 54, 60, 65, 76, 89, 91, 94, 96, 113, 114, 115, 116, 117, 123], "also": [29, 53, 54, 60, 62, 64, 66, 68, 80, 82, 83, 89, 90, 91, 93, 98, 108, 111, 112, 116], "recalibr": 29, "its": [29, 53, 56, 58, 60, 66, 75, 76, 82, 93, 96, 112, 114, 115, 117, 120, 122], "structur": [29, 46, 49, 56, 59, 60, 64, 71, 76, 80, 82, 86, 88, 96, 114, 115, 117], "chang": [29, 55, 56, 59, 62, 64, 65, 75, 76, 77, 80, 91, 93, 94, 98, 100, 101, 102, 111, 114, 115, 117, 120, 122], "respons": [29, 54, 58, 82, 120], "ensur": [29, 54, 55, 56, 62, 64, 66, 67, 71, 75, 93, 101, 108, 109, 110, 111], "By": [29, 30, 51, 56, 64, 66, 71, 80, 88, 98, 118], "entropi": [29, 30, 91], "v2": [29, 30, 82], "perform": [29, 30, 54, 62, 63, 71, 75, 76, 91, 93, 96, 108, 111, 113, 114, 115, 116, 117, 119, 120, 121, 122], "recommend": [29, 30, 65, 66, 76, 82, 89, 96, 114, 115, 117, 118], "feed": [29, 30, 89], "forward": [29, 30, 32, 33, 56, 58, 60, 64, 68, 71, 75, 76, 77, 88, 89, 90, 91, 92, 93, 94, 96, 103, 104, 108, 111, 112, 118, 119], "minmax": [29, 30, 91], "recomend": [29, 30], "nlp": [29, 30, 91], "task": [29, 30, 65, 91, 101, 116], "call": [29, 30, 32, 49, 54, 55, 58, 60, 65, 71, 72, 75, 76, 77, 82, 88, 89, 92, 94, 96, 98, 100, 103, 107, 116, 118, 120, 122], "e": [29, 30, 52, 55, 60, 65, 66, 67, 68, 72, 76, 88, 89, 91, 96, 98, 102, 114, 115, 117], "g": [29, 30, 52, 55, 65, 66, 67, 72, 76, 82, 91, 96, 102, 114, 115, 117], "iint8minmaxcalibr": [29, 30, 91], "calibration_cache_fil": [29, 30, 91], "move": [30, 44, 55, 58, 77, 89, 91, 94, 101, 109, 110], "calibration_dataload": [30, 91], "contain": [30, 31, 52, 53, 54, 55, 56, 60, 65, 66, 72, 75, 76, 82, 83, 88, 89, 91, 96, 98, 101, 111, 114, 115, 117, 120], "jit": [31, 32, 33, 37, 45, 47, 49, 52, 53, 55, 56, 57, 58, 59, 60, 61, 64, 68, 69, 71, 75, 76, 77, 88, 89, 90, 92, 93, 96, 102, 114, 115, 117, 121, 122], "modul": [31, 32, 33, 37, 45, 49, 52, 56, 57, 58, 59, 60, 64, 65, 66, 67, 68, 69, 71, 72, 74, 75, 76, 77, 81, 82, 83, 90, 91, 92, 93, 94, 95, 96, 99, 101, 102, 103, 104, 111, 112, 114, 116, 118, 119, 121, 123], "method_nam": [31, 37, 45, 52, 76, 77, 89], "see": [31, 55, 56, 58, 62, 64, 65, 66, 76, 77, 82, 88, 89, 90, 93, 94, 96, 98, 102, 103], "fulli": [31, 52, 55, 64, 71, 75, 76, 77, 89, 91, 96, 123], "take": [31, 32, 33, 37, 53, 54, 57, 58, 59, 60, 62, 65, 71, 72, 75, 76, 77, 80, 82, 89, 91, 92, 94, 96, 103, 116, 118], "method": [31, 32, 33, 37, 48, 52, 55, 60, 66, 71, 76, 77, 82, 88, 89, 92, 98, 116], "pure": [31, 71, 76], "Will": 31, "out": [31, 44, 53, 55, 56, 57, 59, 60, 64, 66, 71, 76, 77, 82, 89, 96, 100, 111, 112, 113, 114, 115, 117, 118], "unsupport": [31, 49, 54, 64, 76, 96, 101, 122], "script": [31, 55, 56, 68, 76, 77, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117, 120, 122], "nvidia": [32, 37, 42, 43, 44, 45, 52, 61, 64, 65, 66, 67, 71, 76, 77, 89, 103, 107, 114, 115, 117, 122, 123], "configur": [32, 37, 48, 62, 64, 66, 71, 75, 76, 77, 86, 89, 91, 96, 113, 114, 115, 117, 118], "equival": [32, 57, 59, 60, 71, 76, 77, 88, 89, 91, 94, 96, 105, 107], "specif": [32, 49, 54, 55, 57, 59, 62, 64, 71, 76, 77, 82, 94, 113, 122], "traget": 32, "input_binding_nam": [33, 45, 75, 77], "output_binding_nam": [33, 45, 75, 77], "emb": [33, 52, 63, 77, 83], "pre": [33, 55, 69, 74, 77, 91, 98, 99, 113, 114, 120], "built": [33, 52, 58, 59, 64, 66, 71, 75, 76, 77, 98, 102, 111], "serial": [33, 37, 52, 57, 59, 66, 71, 75, 76, 77, 89, 96, 98, 114, 115, 117, 122], "regist": [33, 54, 58, 60, 65, 75, 77, 93, 94, 96], "execut": [33, 49, 52, 55, 57, 58, 59, 63, 64, 65, 66, 69, 71, 72, 75, 76, 77, 78, 88, 89, 91, 94, 96, 101, 108, 114, 115, 117], "must": [33, 48, 49, 52, 54, 55, 56, 60, 62, 65, 66, 71, 72, 76, 77, 82, 83, 89, 93, 98, 118, 120, 122], "follow": [33, 52, 54, 56, 58, 62, 63, 64, 65, 66, 77, 80, 82, 83, 87, 88, 89, 91, 93, 94, 96, 98, 99, 104, 105, 109, 110, 114, 115, 116, 117, 118, 119, 120], "format": [33, 45, 48, 49, 52, 70, 71, 76, 77, 82, 83, 90, 96, 98, 112, 114, 115, 116, 117, 119, 121], "symbol": [33, 65, 66, 77, 82, 120], "index": [33, 61, 62, 66, 67, 69, 70, 77, 80, 86, 91, 96, 111], "0": [33, 43, 44, 45, 49, 52, 54, 56, 59, 60, 62, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 81, 82, 89, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117, 118, 119, 123], "2": [33, 43, 54, 56, 60, 63, 64, 65, 66, 67, 69, 70, 71, 74, 75, 76, 77, 80, 82, 83, 86, 88, 89, 91, 93, 94, 96, 97, 98, 100, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 118, 121], "y": [33, 56, 77, 83, 93, 94, 96, 103], "compilesepc": 33, "order": [33, 49, 54, 56, 60, 62, 65, 66, 71, 72, 75, 76, 77, 89, 90, 94, 98, 119], "pass": [33, 53, 54, 56, 57, 58, 59, 60, 63, 64, 65, 66, 69, 73, 74, 75, 76, 77, 88, 89, 91, 93, 94, 96, 98, 102], "origin": [33, 65, 72, 76, 96, 98, 100, 111, 122], "pytorch": [33, 48, 49, 52, 54, 55, 56, 57, 58, 59, 60, 63, 64, 66, 67, 68, 71, 74, 75, 76, 77, 88, 89, 90, 91, 94, 98, 100, 101, 102, 111, 112, 114, 115, 117, 118, 119, 120, 121, 122], "assum": [33, 75, 92, 96, 99, 114], "convent": 33, "below": [33, 56, 60, 62, 63, 64, 65, 66, 67, 82, 89, 90, 98, 101, 106, 111, 114, 115, 117], "librari": [34, 42, 43, 44, 45, 52, 54, 57, 58, 59, 60, 76, 89, 93, 96, 99, 114], "version": [34, 36, 59, 62, 64, 65, 67, 71, 76, 80, 83, 96, 114, 115, 116, 117, 121], "gpu_id": [35, 45, 46, 52, 75, 76, 77, 91, 92, 96, 123], "id": [35, 45, 52, 76, 80, 81, 85, 93, 123], "cudasetdevic": 35, "dump": [36, 52, 96], "base": [36, 50, 58, 63, 64, 66, 71, 72, 76, 82, 88, 90, 91, 93, 97, 101, 102, 107, 111, 116, 122], "stdout": [36, 75], "equivil": 37, "document": [42, 43, 44, 45, 50, 59, 80, 82, 83, 87, 88, 89, 91, 92, 114, 115, 117, 118, 120], "copyright": [42, 43, 44, 45, 83, 89], "c": [42, 43, 44, 45, 52, 59, 64, 67, 70, 71, 72, 75, 76, 83, 90, 96, 100, 114, 115, 117, 120, 123], "corpor": [42, 43, 44, 45], "right": [42, 43, 44, 45, 55, 59, 60, 82, 114, 115, 117], "reserv": [42, 43, 44, 45, 109, 110], "licens": [42, 43, 44, 45, 89], "under": [42, 43, 44, 45, 59, 65, 82, 94, 105, 122], "bsd": [42, 43, 44, 45], "style": [42, 43, 44, 45, 64, 68, 80, 82, 83], "found": [42, 43, 44, 45, 63, 66, 75, 82, 89, 91, 94, 96, 98, 120], "root": [42, 43, 44, 45, 66, 80, 91, 112], "sourc": [42, 43, 44, 45, 54, 59, 64, 65, 67, 71, 72, 73, 74, 75, 76, 77, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], "tree": [42, 43, 44, 45, 80, 91, 112, 120], "pragma": [42, 43, 44, 45, 91], "onc": [42, 43, 44, 45, 53, 55, 56, 58, 64, 65, 66, 67, 76, 91, 96, 110, 113, 114, 115, 117, 120], "namespac": [42, 43, 44, 45, 51, 55, 69, 76, 91, 93, 96], "ar": [42, 46, 49, 52, 53, 54, 55, 56, 58, 59, 60, 62, 63, 64, 65, 66, 71, 74, 75, 76, 77, 80, 82, 83, 84, 88, 89, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 105, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122], "ones": [42, 56, 57, 59, 66, 82, 89, 94, 96, 122], "necessari": [42, 62, 64, 66, 75, 93, 94, 102, 120], "user": [42, 48, 54, 56, 57, 58, 59, 62, 63, 64, 66, 67, 71, 82, 83, 89, 90, 91, 94, 98, 102, 113, 114, 115, 117, 118, 119, 120, 122], "dont": 42, "know": [42, 60, 80, 82, 93, 94, 96, 104], "we": [42, 44, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 72, 75, 80, 82, 88, 89, 91, 93, 94, 96, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122], "want": [42, 56, 65, 66, 67, 68, 72, 88, 89, 91, 92, 94, 96, 102, 103, 114, 115, 117], "use_cmake_generated_export_head": 43, "torch_tensorrt_export": 43, "els": [43, 44, 48, 64, 71, 77, 82, 83, 95, 97, 98, 111, 112], "__gnuc__": 43, "__attribute__": 43, "__visibility__": 43, "hidden": [43, 80], "endif": [43, 44, 45], "doe": [43, 44, 55, 56, 60, 62, 65, 66, 76, 82, 91, 93, 96, 105, 107], "gaurd": 43, "someth": [43, 55, 82, 114, 115, 117], "6": [43, 55, 56, 58, 66, 70, 82, 86, 88, 89, 95, 96, 111], "setup": [43, 67, 91, 114, 115, 117], "alias": 43, "eas": 43, "ts": [43, 52, 56, 68, 69, 76, 88, 89, 90, 92, 118, 121], "torchtrt": [43, 56, 95, 96, 112, 114, 115, 117], "ifndef": [44, 45], "doxygen_should_skip_thi": [44, 45], "get_batch_impl": 44, "element_typ": 44, "super": [44, 88, 93, 94, 96, 103, 111, 112, 118, 119], "batchtyp": 44, "dataloader_": 44, "cache_file_path_": 44, "use_cache_": 44, "auto": [44, 56, 60, 64, 68, 71, 82, 83, 89, 91, 104, 109, 110, 113, 123], "batched_data_": 44, "push_back": [44, 56], "it_": 44, "begin": [44, 65, 66, 82, 103, 108], "hack": 44, "explict": 44, "work": [44, 55, 59, 60, 64, 65, 68, 71, 74, 75, 76, 82, 83, 91, 93, 96, 102, 103, 108, 113, 114, 115, 117, 118], "here": [44, 53, 54, 56, 58, 63, 64, 65, 66, 68, 80, 82, 83, 88, 89, 91, 93, 94, 96, 99, 108, 109, 110, 111, 112, 114, 115, 117, 118, 120, 121], "explic": 44, "just": [44, 45, 55, 56, 64, 65, 69, 73, 75, 82, 84, 88, 89, 90, 92, 93, 96, 98, 100, 116, 120], "still": [44, 56, 65, 66, 91, 94, 103, 122], "static_cast": 44, "option": [44, 48, 52, 56, 57, 59, 62, 63, 64, 65, 71, 75, 76, 77, 82, 86, 91, 94, 96, 97, 98, 103, 104, 106, 108, 119, 120, 121, 123], "batch_siz": [44, 91, 112], "end": [44, 52, 60, 62, 70, 71, 76, 77, 82, 89, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113], "statu": [44, 83], "reset": [44, 97, 98, 103, 107, 120], "incas": 44, "go": [44, 55, 56, 65, 68, 88, 89, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 122], "again": [44, 58, 60, 82, 96, 100], "stringstream": 44, "ss": 44, "cache_": 44, "clear": 44, "ifstream": 44, "io": [44, 67, 114, 115, 117], "binari": [44, 91], "noskipw": 44, "good": [44, 60, 65, 82, 98], "copi": [44, 60, 65, 67, 70, 74, 83, 113], "istream_iter": 44, "back_insert": 44, "nullptr": [44, 45, 49], "ofstream": [44, 89], "cache_fil": [44, 74, 91], "reinterpret_cast": 44, "cache_size_": 44, "arrayref": [45, 48, 49], "friend": 45, "ostream": 45, "os": [45, 67, 98], "dtype": [45, 48, 49, 52, 63, 64, 65, 70, 71, 72, 75, 76, 77, 90, 93, 96, 97, 101, 105, 107, 108, 111, 113, 114, 115, 116, 117, 118, 119], "device_typ": [45, 46, 76, 91, 92, 123], "int64_t": [45, 46, 48, 49, 91, 123], "core": [45, 52, 55, 56, 59, 64, 71, 76, 89, 94, 122, 123], "agx": 45, "platform": [45, 52, 59, 64, 66, 67, 71, 95, 123], "xavier": [45, 123], "dla_cor": [45, 46, 52, 76, 91, 92, 123], "allow_gpu_fallback": [45, 46, 71, 76, 77, 91, 92, 123], "customclasshold": [45, 48], "min_shap": [45, 48, 63, 65, 71, 76, 77, 90, 105, 108, 116, 118], "opt_shap": [45, 48, 63, 71, 76, 77, 90, 105, 108, 116, 118], "max_shap": [45, 48, 63, 65, 71, 76, 77, 90, 105, 108, 116, 118], "shape": [45, 47, 48, 49, 52, 56, 60, 63, 65, 69, 70, 71, 72, 75, 76, 77, 78, 90, 93, 94, 96, 99, 101, 108, 111, 112, 113, 114, 115, 117, 120, 123], "doubl": [45, 48, 49, 52, 63, 71, 76, 77, 82, 120], "tensor_domain": [45, 48, 76], "input_is_dynam": 45, "ivalu": [45, 47, 49, 53, 58, 60, 89], "input_signatur": [45, 47, 49, 77, 90], "nest": [45, 49, 50, 82, 83], "full": [45, 49, 52, 60, 64, 71, 73, 76, 89, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117, 120, 123], "spec": [45, 48, 49, 52, 73, 76, 77, 92, 98], "flatten": [45, 47, 70, 88, 89, 112], "fixed_s": [45, 49], "reflect": [45, 76], "builderconfig": 45, "graph_input": [45, 49], "enabled_precis": [45, 49, 63, 64, 71, 75, 76, 77, 89, 90, 91, 92, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 109, 110, 111, 112, 113, 114, 115, 117, 119, 123], "disable_tf32": [45, 49, 64, 71, 75, 76, 77, 91, 96, 104, 109, 110], "sparse_weight": [45, 49, 64, 65, 71, 75, 76, 77, 96], "refit": [45, 49, 64, 69, 71, 76, 77, 92, 96, 98, 99, 100, 114], "truncate_long_and_doubl": [45, 49, 63, 64, 77, 106], "allow_shape_tensor": [45, 49, 77], "uint64_t": [45, 49], "num_avg_timing_it": [45, 49, 64, 71, 75, 76, 77, 92, 96], "workspace_s": [45, 49, 52, 64, 71, 75, 76, 77, 96, 102, 105, 107], "dla_sram_s": [45, 49, 52, 64, 71, 75, 76, 77, 96], "1048576": [45, 49, 64, 71, 75, 76, 77, 96], "dla_local_dram_s": [45, 49, 52, 64, 71, 75, 76, 77, 96], "1073741824": [45, 49, 64, 71, 75, 76, 77, 96], "dla_global_dram_s": [45, 49, 52, 64, 71, 75, 76, 77, 96], "536870912": [45, 49, 64, 71, 75, 76, 77, 96], "require_full_compil": [45, 49, 64, 71, 75, 76, 77, 96], "min_block_s": [45, 49, 56, 63, 64, 71, 75, 76, 77, 93, 94, 95, 96, 97, 98, 102, 103, 104, 105, 107, 108, 111, 112], "3": [45, 49, 52, 55, 56, 58, 63, 64, 65, 67, 68, 70, 71, 74, 76, 77, 82, 83, 86, 88, 89, 91, 92, 93, 95, 96, 97, 98, 100, 101, 102, 105, 108, 109, 110, 111, 112, 113, 116, 118, 121, 123], "torch_executed_op": [45, 49, 56, 63, 64, 71, 75, 76, 77, 96, 102, 103, 105, 107, 108], "torch_executed_modul": [45, 49, 56, 71, 76, 77], "member": [46, 47, 48, 49], "hold": [46, 47, 48, 53, 60, 76, 91], "relat": [46, 82, 103, 107], "let": [46, 52, 55, 60, 65, 71, 76, 77, 80, 82, 114, 115, 116, 117, 122], "layer": [46, 49, 52, 53, 55, 60, 62, 64, 65, 71, 75, 76, 77, 89, 91, 94, 96, 109, 110, 112, 114, 115, 116, 117, 118, 119, 122, 123], "thei": [46, 52, 53, 54, 55, 58, 60, 64, 65, 71, 74, 75, 76, 80, 82, 90, 94, 98], "complex": [47, 49, 64, 66, 88, 90, 93, 100, 110], "either": [47, 48, 52, 60, 62, 71, 76, 77, 80, 82, 88, 89, 90, 93, 94, 95, 96, 98, 121], "one": [47, 54, 55, 60, 64, 65, 67, 71, 75, 76, 82, 88, 89, 90, 93, 94, 96, 103, 107, 109, 110, 114, 115, 117], "rang": [48, 49, 52, 65, 76, 93, 96, 97, 98, 101, 104, 105, 113, 116, 118], "optim": [48, 52, 63, 64, 65, 69, 71, 72, 74, 76, 88, 89, 90, 101, 102, 104, 105, 106, 107, 108, 111, 113, 116, 118, 122], "profil": [48, 72, 75, 119], "singl": [48, 52, 55, 56, 65, 76, 82, 88, 89, 91, 108, 111, 113, 120], "repres": [48, 49, 54, 60, 65, 68, 82, 101, 111], "signifi": [48, 55], "static": [48, 49, 53, 60, 63, 64, 71, 76, 77, 80, 89, 101, 112, 118], "three": [48, 57, 59, 65, 72, 76, 82, 83, 114, 115, 116, 117], "min": [48, 52, 60, 70, 76, 98, 104, 105, 118], "optimin": 48, "max": [48, 52, 60, 70, 76, 80, 98, 104, 105, 112, 118], "allow": [48, 49, 52, 53, 54, 55, 56, 62, 64, 65, 66, 71, 76, 77, 80, 93, 94, 96, 98, 101, 102, 105, 107, 108, 113, 120], "argument": [48, 52, 54, 55, 58, 60, 62, 64, 65, 71, 75, 76, 77, 82, 83, 89, 90, 94, 95, 96, 118], "expect": [48, 54, 55, 60, 76, 89, 90, 93, 116], "tradit": [48, 71, 76, 77, 91], "convect": 48, "produc": [48, 53, 54, 58, 60, 63, 76, 82, 89, 116], "low": [48, 65, 94, 100, 111], "high": [48, 55, 56, 80, 94, 96, 122], "weight": [48, 49, 52, 53, 64, 65, 69, 70, 71, 75, 76, 77, 82, 89, 98, 99, 100, 106, 114, 116], "first": [48, 53, 54, 55, 65, 68, 82, 83, 89, 90, 91, 94, 96, 98, 100, 103, 104, 114, 115, 117, 118, 121, 122], "calcul": [48, 53, 56, 89, 96, 113], "detect": [48, 58, 76], "float32": [48, 49, 52, 63, 64, 65, 71, 76, 77, 96, 100, 104, 106, 109, 110, 113, 118, 119], "dynam": [48, 49, 63, 65, 69, 71, 72, 76, 77, 78, 94, 98, 99, 103, 104, 106, 107, 110, 113, 114, 120], "opt": [48, 66, 75, 76, 108], "minimum": [48, 49, 52, 56, 63, 64, 71, 76, 77, 96, 113], "maximum": [48, 49, 52, 64, 65, 71, 72, 76, 77, 104, 105, 107, 113, 114, 115, 117], "accept": [48, 52, 54, 58, 60, 66, 76, 89, 90, 103, 121], "exampl": [48, 56, 58, 59, 60, 65, 66, 71, 73, 75, 76, 77, 78, 80, 81, 83, 86, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 120, 121], "s": [48, 49, 53, 56, 58, 60, 63, 65, 66, 67, 69, 71, 72, 75, 76, 80, 82, 83, 88, 89, 91, 94, 96, 98, 111, 113, 114, 115, 116, 117, 118, 120, 121], "cannot": [48, 55, 56, 65, 66, 71, 75, 76, 77, 81, 88, 93, 95, 96, 101], "through": [48, 53, 54, 55, 56, 58, 64, 65, 71, 73, 74, 82, 89, 90, 96, 100, 102, 116, 122], "altern": [48, 56, 62, 63, 76, 90, 94, 101, 108, 116, 121], "refer": [48, 54, 57, 59, 65, 81, 86, 89, 91, 96, 112, 114, 115, 117, 118, 121], "given": [48, 49, 52, 54, 55, 65, 71, 72, 74, 76, 77, 88, 89, 90, 92, 93, 94, 111, 118], "kernel": [48, 49, 52, 60, 64, 65, 69, 71, 76, 77, 94, 99, 108, 114, 119, 120], "ani": [48, 52, 53, 54, 60, 62, 64, 65, 70, 71, 74, 75, 76, 77, 80, 82, 89, 90, 91, 94, 96, 105, 118], "event": [48, 64, 97, 98], "place": [48, 55, 62, 65, 82, 83, 84, 91, 93, 96, 112], "variabl": [48, 65, 75, 76], "dimens": [48, 55, 65, 72, 76, 105, 116, 118, 119], "domain": [48, 76, 83, 91], "convien": 49, "fix": [49, 65, 82, 93, 96, 120, 123], "describ": [49, 56, 60, 76, 88, 92, 93, 114, 115, 117], "entri": [49, 60, 98], "okai": 49, "ha": [49, 53, 54, 55, 56, 57, 59, 60, 62, 64, 65, 66, 67, 71, 72, 75, 76, 82, 83, 88, 89, 91, 94, 95, 98, 101, 102, 108, 112, 116, 118, 122], "flaten": 49, "precis": [49, 52, 63, 64, 65, 69, 71, 76, 89, 90, 91, 105, 107, 109, 110, 111, 113, 123], "dure": [49, 52, 54, 56, 60, 63, 64, 71, 74, 76, 91, 94, 108, 109, 110, 113, 114, 115, 116, 117, 118, 120], "prevent": [49, 52, 54, 56, 108], "tf32": [49, 52, 64, 71], "comput": [49, 64, 65, 66, 67, 71, 75, 82, 91, 93, 95, 99, 101, 114, 116], "inner": [49, 83, 116], "product": [49, 67, 76], "round": [49, 71, 76, 77, 96], "10": [49, 66, 67, 71, 72, 76, 77, 86, 88, 89, 91, 93, 101, 111, 112, 113, 114, 115, 116, 117, 118, 119], "bit": [49, 60, 65, 66, 71, 76, 77, 89], "mantissa": [49, 71, 76, 77], "befor": [49, 54, 55, 56, 59, 60, 65, 71, 76, 77, 89, 101, 104, 111, 114, 115, 117, 118], "multipli": [49, 71, 76, 77], "accumul": [49, 64, 71, 76, 77, 109, 110, 111], "sum": [49, 65, 70, 71, 76, 77, 96, 112], "23": [49, 55, 71, 76, 77, 83], "behavior": [49, 56, 65, 71, 76, 77, 94, 109, 110, 118, 120, 121], "sparsiti": [49, 52, 65, 71, 76, 77], "conv": [49, 52, 89, 96], "fc": [49, 52, 55], "truncat": [49, 52, 63, 64, 71, 76, 77], "long": [49, 52, 53, 63, 76, 82, 83, 93], "float": [49, 52, 63, 64, 70, 76, 88, 89, 90, 91, 92, 93, 96, 97, 98, 102, 103, 107, 108, 111, 119], "ishap": 49, "restrict": [49, 64, 71, 76, 77, 118], "cuda": [49, 58, 63, 65, 67, 68, 71, 72, 75, 76, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 109, 110, 111, 112, 113, 114, 115, 117, 118, 119, 120, 121], "safeti": [49, 52, 76], "averag": [49, 52, 64, 71, 76, 77, 96], "time": [49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 64, 65, 66, 68, 69, 71, 72, 75, 76, 77, 80, 82, 89, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113], "workspac": [49, 52, 64, 65, 66, 71, 72, 76, 77, 96, 103, 105, 107], "fast": [49, 52, 64, 68, 71, 76, 77], "softwar": [49, 52, 64, 71, 76, 77, 82], "manag": [49, 52, 53, 55, 57, 59, 60, 64, 66, 67, 71, 73, 75, 76, 77, 89, 101, 108, 120], "ram": [49, 52, 64, 71, 76, 77], "commun": [49, 52, 64, 71, 76, 77, 89], "within": [49, 52, 57, 59, 64, 69, 71, 75, 76, 77, 80, 82, 93, 99, 108, 109, 110, 114, 116], "host": [49, 52, 64, 66, 71, 76, 77, 93, 96, 113, 114, 115, 117], "share": [49, 52, 64, 66, 71, 75, 76, 77, 98], "across": [49, 52, 55, 56, 64, 71, 76, 77, 80, 101], "metadata": [49, 52, 54, 58, 60, 64, 71, 76, 77, 80, 102, 118, 119], "quantizatiom": 49, "instead": [49, 52, 53, 54, 55, 66, 71, 75, 76, 89, 94, 102, 111, 112, 120], "potenti": [49, 71, 76, 85, 101], "subgraph": [49, 52, 53, 54, 55, 60, 62, 89, 96, 98, 101, 122], "aten": [49, 54, 55, 56, 60, 61, 64, 69, 70, 71, 76, 77, 89, 94, 103, 108, 122], "thrown": [49, 71, 76, 77], "empti": [49, 71, 72, 76, 77, 83, 88, 96, 111], "torch_tensorrtnamespac": 50, "loggingenum": 50, "levelnamespac": 50, "ptqtemplat": 50, "int8cachecalibratortempl": 50, "int8calibratornamespac": 50, "torchscriptstruct": 50, "compilespecstruct": 50, "deviceclass": 50, "devicetypestruct": 50, "graphinputsstruct": 50, "inputclass": 50, "datatypeclass": 50, "tensorformatenum": 50, "cppdirectori": 50, "includedirectori": 50, "torch_tensorrtfil": 50, "hfile": 50, "relationship": 50, "inherit": [50, 65, 71, 91], "subdirectori": 51, "definit": [51, 54, 60, 82], "cli": [52, 90], "It": [52, 54, 55, 56, 57, 59, 60, 65, 66, 69, 76, 80, 82, 93, 95, 96, 113, 116, 120, 122], "serv": [52, 58, 65, 69, 71, 76], "easi": [52, 53, 55, 89, 91], "wai": [52, 64, 65, 66, 88, 89, 91, 93, 94, 96, 98, 102, 116, 120, 121], "command": [52, 64, 66, 82, 83, 88, 89, 114, 115, 117], "line": [52, 66, 83, 89, 100], "quickli": [52, 89, 91, 114, 115, 117], "part": [52, 56, 59, 65, 75, 80, 81, 82, 93, 96, 98, 101], "deploy": [52, 75, 89, 90, 91, 93, 114, 115, 116, 117, 120, 123], "pipelin": [52, 89, 100, 106, 123], "basic": [52, 56, 65, 83, 114, 115, 117], "featur": [52, 56, 65, 66, 89, 91, 92, 106, 111, 112, 113, 116, 122], "though": [52, 59, 60, 88, 89, 122], "alreadi": [52, 53, 54, 55, 89, 91, 93, 94, 96, 99, 111, 114, 115, 117, 118], "two": [52, 55, 60, 62, 64, 65, 66, 76, 82, 83, 87, 88, 90, 91, 94, 98, 111, 114, 115, 117, 118], "embed": [52, 54, 58, 70, 77, 82, 123], "plan": [52, 59, 63, 64, 71], "after": [52, 53, 55, 56, 62, 65, 71, 75, 76, 88, 89, 90, 101, 103, 107, 114, 115, 117, 120], "link": [52, 53, 62, 69, 80, 81, 86, 89, 96, 120], "against": [52, 89, 94], "libtorchtrt": [52, 66, 89], "python": [52, 56, 59, 62, 64, 65, 67, 71, 72, 75, 76, 77, 82, 83, 89, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 120, 123], "import": [52, 55, 56, 63, 64, 65, 66, 67, 68, 75, 80, 82, 88, 89, 90, 92, 93, 94, 96, 97, 98, 100, 114, 115, 117, 118, 120, 121], "packag": [52, 55, 64, 67, 89], "aspect": 52, "ident": [52, 62, 64, 71, 76, 93, 102], "standard": [52, 58, 66, 69, 71, 75, 76, 77, 82, 92, 93, 94, 96, 100, 111, 116, 120], "load": [52, 56, 58, 64, 65, 68, 71, 74, 75, 76, 77, 89, 90, 91, 92, 93, 95, 96, 97, 98, 100, 102, 104, 113, 114, 115, 116, 117, 120, 122], "like": [52, 53, 55, 58, 60, 65, 66, 68, 76, 81, 82, 88, 89, 90, 91, 93, 94, 96, 98, 100, 102, 104, 113, 114, 115, 117, 120], "would": [52, 54, 60, 64, 65, 66, 67, 75, 89, 90, 92, 94, 96, 104, 114, 115, 117, 120], "input_file_path": [52, 123], "output_file_path": [52, 123], "input_spec": [52, 65, 72], "displai": [52, 62, 64, 73, 80, 120], "menu": [52, 80, 82], "verbios": 52, "v": [52, 67, 83, 112, 114, 115, 117], "verbos": [52, 64, 65, 71, 72, 83, 105, 107], "about": [52, 53, 58, 60, 66, 75, 80, 89, 111, 114, 115, 117, 118], "process": [52, 56, 64, 76, 81, 82, 88, 91, 92, 93, 101, 102, 103, 108, 114, 115, 116, 117, 120], "onto": [52, 58], "consol": 52, "w": [52, 66, 76, 111], "disabl": [52, 64, 66, 71, 75, 80, 81, 94, 98, 113, 120], "i": [52, 55, 60, 66, 68, 70, 82, 83, 88, 89, 91, 93, 96, 97, 98, 101, 104, 109, 111, 112], "debugg": [52, 71, 76, 77], "fallback": [52, 57, 59, 60, 101, 102, 123], "model": [52, 56, 58, 63, 68, 71, 72, 73, 74, 76, 78, 88, 89, 90, 91, 92, 97, 98, 100, 118, 120, 122], "throw": [52, 55, 76, 89], "spars": [52, 54, 64, 70, 71], "p": [52, 70, 89, 114, 115, 117, 123], "repeat": [52, 70], "f32": [52, 71, 75, 76, 96], "half": [52, 64, 76, 82, 89, 90, 91, 92, 96, 101, 103, 105, 109, 110, 111, 113, 119, 123], "float16": [52, 76, 96, 100, 106, 111, 119], "f16": [52, 76, 89, 114, 115, 117, 123], "i8": [52, 76], "d": [52, 67, 76, 82, 83, 89, 123], "multi": [52, 75], "dlacor": 52, "avail": [52, 54, 60, 62, 64, 65, 66, 67, 71, 75, 76, 80, 96, 104, 111, 113, 116, 122, 123], "dla_standalon": [52, 76], "file_path": [52, 76, 95, 121], "teo": 52, "op_nam": 52, "op": [52, 53, 54, 55, 56, 57, 59, 60, 62, 63, 64, 75, 76, 89, 93, 94, 103, 108, 120, 122], "partial": [52, 82], "tem": 52, "module_nam": 52, "mod": [52, 56, 65, 71, 86, 89, 91, 119], "mb": [52, 78], "num_op": 52, "block": [52, 53, 55, 56, 64, 71, 86, 93, 122], "treat": 52, "num": 52, "avg": 52, "num_it": 52, "sram": 52, "local": [52, 55, 66, 67, 80, 89], "dram": 52, "atol": 52, "absolut": [52, 66], "toler": 52, "threshold": 52, "numer": [52, 65, 83], "deviat": 52, "1e": [52, 100, 102], "rtol": 52, "rel": [52, 56, 101], "5": [52, 56, 58, 59, 64, 65, 66, 67, 71, 75, 76, 82, 83, 86, 88, 89, 94, 96, 100, 101, 103, 108, 111, 113, 114, 115, 117], "skip": 52, "complianc": 52, "64bit": [52, 95], "32bit": 52, "custom": [52, 62, 63, 65, 66, 69, 99, 109, 110, 111, 114], "dll": 52, "n": [52, 60, 62, 76, 89, 91, 93, 94, 96, 97], "min_n": 52, "min_c": 52, "min_h": 52, "min_w": 52, "opt_n": 52, "opt_c": 52, "opt_h": 52, "opt_w": 52, "max_n": 52, "max_c": 52, "max_h": 52, "max_w": 52, "32": [52, 76, 88, 89, 90, 91, 104, 109, 110, 112, 123], "flag": [52, 56, 57, 59, 64, 66, 71, 74, 76, 90, 108, 109, 110, 120, 121], "forc": [52, 63, 65, 71, 76, 77, 80, 111], "posit": [52, 54, 65, 76, 80], "test": [52, 56, 59, 65, 66, 67, 71, 76, 82, 83, 91, 112, 114, 115, 116, 117], "ssd_trace": 52, "pt": [52, 65, 89, 104, 109, 110, 114, 115, 117], "ssd_trt": 52, "300": [52, 92, 93], "512": [52, 71, 76, 77, 112, 116], "1024": [52, 71, 76, 77, 93, 109, 116], "simplifi": [53, 96], "form": [53, 75, 76, 82, 90, 114, 115, 117], "up": [53, 55, 56, 57, 58, 59, 62, 65, 66, 71, 76, 82, 88, 93, 94, 96, 98, 101, 102, 103, 107, 108, 113, 116], "context": [53, 57, 58, 59, 64, 73, 75, 94, 101, 104, 108, 111, 120], "inetworkdefinit": [53, 54], "record": [53, 88, 97, 98, 108, 120], "togeth": [53, 60, 89], "start": [53, 56, 65, 70, 74, 76, 83, 89, 92, 96, 97, 98, 104, 116], "look": [53, 54, 55, 68, 71, 76, 88, 91, 92, 94, 98, 104, 114, 115, 117, 118], "assembl": [53, 62, 89], "resourc": [53, 91, 93, 96, 101], "coupl": [53, 59, 65, 120], "state": [53, 54, 60, 62, 75, 89, 94, 100, 104, 111], "been": [53, 60, 64, 66, 67, 74, 83, 89, 95, 98, 101, 102, 111, 122], "evaluated_value_map": [53, 60], "stage": [53, 65], "arg": [53, 54, 62, 65, 71, 74, 75, 76, 86, 89, 94, 95, 96, 98, 112, 116], "itensor": [53, 54, 60, 65, 89, 94, 96], "value_tensor_map": [53, 60], "typic": [53, 60, 76, 101, 108, 114, 115, 117], "abl": [53, 55, 60, 62, 65, 91, 92, 96, 102, 104], "system": [53, 60, 62, 64, 69, 71, 75, 76, 77, 94, 95, 96, 98, 102, 122], "registri": [53, 54, 89, 96], "enter": [53, 76], "recurs": 53, "resolv": [53, 55, 57, 59, 103, 104, 107], "until": [53, 56, 59, 60, 66, 71, 76, 122], "final": [53, 56, 57, 59, 66, 94, 96, 103, 107, 116], "some": [53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 71, 76, 81, 82, 89, 91, 93, 94, 96, 98, 101, 108, 118, 122], "These": [53, 54, 56, 58, 62, 64, 66, 71, 74, 75, 76, 80, 82, 91, 93, 94, 114, 115, 117, 122], "those": [53, 54, 62, 64, 82], "do": [53, 54, 55, 56, 60, 63, 65, 81, 83, 88, 89, 90, 91, 93, 94, 96, 109, 110, 123], "theori": [53, 82], "kind": [53, 65], "common": [53, 55, 65, 72, 82, 94, 98], "prim": [53, 55, 56, 58, 70, 88, 89], "constant": [53, 54, 55, 56, 89, 96, 101], "emit": 53, "listconstruct": [53, 56, 58, 89], "make": [53, 54, 65, 66, 67, 71, 76, 82, 84, 89, 90, 91, 96, 98, 114, 115, 116, 117, 123], "associ": [53, 60, 89, 98, 120], "where": [53, 54, 55, 60, 62, 64, 65, 71, 75, 76, 77, 83, 89, 91, 93, 94, 102, 108], "result": [53, 55, 56, 66, 68, 71, 73, 75, 76, 77, 80, 88, 90, 93, 95, 96, 100, 101, 102, 108, 113, 114, 115, 117, 119, 122], "done": [53, 56, 59, 96, 102, 114, 115, 117, 121], "mai": [53, 54, 56, 58, 59, 65, 66, 71, 75, 76, 77, 82, 83, 88, 89, 90, 91, 94, 96, 102, 103, 107, 108, 113, 114, 115, 117, 120], "For": [53, 56, 62, 63, 64, 65, 66, 68, 72, 76, 80, 82, 83, 88, 89, 91, 92, 93, 94, 96, 100, 103, 112, 114, 115, 116, 117, 120, 121], "more": [53, 64, 65, 66, 67, 69, 71, 76, 80, 83, 88, 89, 90, 91, 92, 96, 98, 100, 101, 105, 107, 111, 114, 115, 117, 120], "writing_convert": [53, 89], "locat": [54, 62, 66, 91, 94, 96], "py": [54, 55, 59, 62, 65, 66, 67, 78, 80, 82, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117, 118], "convers": [54, 55, 56, 58, 63, 64, 65, 71, 76, 77, 89, 93, 94, 96, 111, 116, 118], "decror": 54, "dynamo_tensorrt_convert": [54, 94, 96], "signatur": [54, 77], "leaky_relu": [54, 70], "def": [54, 62, 65, 82, 88, 90, 93, 94, 96, 97, 98, 101, 103, 108, 111, 112, 113, 114, 115, 117, 118, 119], "leaky_relu_convert": 54, "ctx": [54, 60, 89, 94, 96, 113], "conversionctx": [54, 60, 89, 94], "tupl": [54, 58, 63, 65, 71, 72, 75, 76, 77, 90, 93, 94, 96, 98, 102, 118, 119], "kwarg": [54, 65, 71, 74, 75, 76, 94, 96, 116], "dict": [54, 71, 75, 76, 77, 94, 96, 98], "union": [54, 60, 64, 71, 75, 76, 77, 89, 94], "sequenc": [54, 62, 65, 71, 72, 75, 76, 77, 82, 94, 96, 104, 108, 113, 116], "decor": [54, 62, 65, 94], "kei": [54, 82, 88, 98, 114, 115, 117, 118], "node": [54, 55, 56, 57, 59, 60, 62, 64, 65, 71, 72, 89, 94, 96, 112, 116, 118], "capability_valid": [54, 94], "lambda": [54, 60, 82, 89, 93, 94, 114, 115, 117], "fx": [54, 62, 63, 71, 75, 76, 89, 90, 94, 96, 102, 121], "determin": [54, 55, 64, 65, 76, 93, 94, 113, 118, 120], "properli": [54, 66], "handl": [54, 55, 56, 58, 64, 65, 75, 76, 93, 96, 101, 108], "partition": [54, 71, 76, 96], "sure": [54, 66, 67, 89, 90, 104, 114, 115, 117, 123], "prioriti": [54, 94], "develop": [54, 65, 66, 67, 69, 82, 83, 89, 94, 96], "bodi": [54, 82, 83], "nativ": [54, 59, 61, 89, 93, 94, 96, 102], "numpi": [54, 76, 96, 97, 98, 100, 101, 102, 111, 113, 114, 115, 117], "frozen": 54, "attribut": [54, 55, 56, 58, 65, 76, 82, 89], "previou": [54, 80, 103, 111], "correspond": [54, 60, 65, 66, 75, 76, 94, 98, 100, 104, 112, 120], "edg": [54, 82], "well": [54, 63, 66, 69, 73, 75, 82, 89, 91, 93, 94, 98, 108, 111, 121], "being": [54, 65, 66, 71, 89, 94, 96, 102, 108], "truth": 54, "http": [54, 61, 64, 66, 67, 80, 82, 88, 89, 91, 94, 96, 100, 103, 107, 111, 112, 114, 115, 116, 117, 118, 120], "github": [54, 61, 64, 66, 67, 80, 89, 91, 103, 107, 111, 112, 114, 115, 117, 120], "com": [54, 61, 64, 66, 67, 89, 91, 100, 103, 107, 111, 112, 114, 115, 117, 120], "blob": [54, 61, 66, 80, 91, 98, 111], "main": [54, 55, 56, 57, 58, 59, 60, 63, 65, 66, 80, 82, 84, 89, 94, 96, 109, 111, 112], "src": [54, 58, 61, 70], "native_funct": [54, 61], "yaml": [54, 61], "sinc": [54, 55, 64, 65, 67, 75, 82, 88, 89, 91, 93, 94, 97, 98, 102, 111], "mani": [54, 56, 64, 65, 80, 82, 83, 94, 98, 102, 122], "composit": [54, 89], "raw": [54, 80, 94], "impl": [54, 93, 94], "subpackag": 54, "chain": [54, 60], "primarili": [54, 59, 66, 89, 94], "manipul": [54, 62, 76], "net": [54, 60, 82, 83, 89, 96, 114, 115, 117], "addit": [54, 55, 64, 65, 75, 76, 89, 94, 96, 98, 102, 108, 111, 116, 118], "call_modul": 54, "call_funct": [54, 62, 65], "eg": [54, 114, 115, 117, 119], "aten_": 54, "_leaky_relu": 54, "opoverloadpacket": 54, "while": [54, 56, 66, 75, 91, 94, 100, 101, 113, 114, 115, 116, 117, 120, 122], "opoverload": 54, "particular": [54, 64, 98], "collect": [54, 56, 64, 71, 76, 77, 89, 90, 112], "trtinterpret": [54, 65, 72], "along": [54, 76], "match": [54, 55, 93, 94, 102], "special": [54, 56, 104, 111], "account": [54, 114, 115, 117], "illustr": [54, 65, 104, 105, 109, 110, 111, 116], "scale_grad_by_freq": [54, 70], "embedding_param_valid": 54, "establish": 54, "subset": [54, 64, 71, 76, 91, 116], "converter_util": [54, 96], "enforce_tensor_typ": 54, "dictionari": [54, 76, 77, 92, 103], "between": [54, 55, 56, 60, 66, 76, 82, 83, 91, 93, 98, 100, 109, 113], "possibl": [54, 66, 82, 93, 94, 96, 98, 114, 115, 116, 117], "prefer": [54, 64, 66, 89], "keyword": [54, 62, 71, 75, 76, 77, 94, 103, 107], "both": [54, 56, 64, 66, 69, 71, 72, 75, 76, 80, 82, 88, 91, 94, 96, 98, 114, 115, 117], "enforc": [54, 89], "situat": 54, "partit": [54, 55, 63, 64, 71, 76, 94, 122], "greater": [54, 71, 73, 76], "than": [54, 55, 64, 66, 71, 76, 81, 82, 94, 97, 98, 100, 111, 113, 116, 120], "3d": [54, 65], "autocast": 54, "therebi": [54, 58, 93, 96, 116], "limit": [54, 55, 73, 81, 91, 95, 98, 99, 113, 114, 122], "author": [54, 83], "conv_nod": 54, "7": [54, 56, 58, 59, 75, 76, 86, 89, 93, 96, 103, 105, 107, 112, 118], "ignor": [54, 64, 71, 75, 76, 93, 96], "misc": [54, 93, 96], "trttensor": 54, "np": [54, 94, 96, 97, 98, 100, 101, 102, 111, 113, 114, 115, 117], "ndarrai": [54, 96], "aten_ops_convolut": 54, "conversioncontext": [54, 94, 96], "side": [54, 55, 80, 89, 94], "effect": [54, 55, 64, 65, 71, 80, 89, 91, 94, 96, 101, 116], "term": [54, 76, 82, 83, 91, 93, 94, 96, 116], "getitem": 54, "categor": 54, "modif": [54, 62, 76, 111], "op_evalu": 54, "capbility_valid": 54, "opcod": 54, "decompos": 54, "suboper": 54, "separ": [54, 56, 57, 59, 66], "Such": 54, "via": [54, 64, 65, 67, 69, 71, 75, 76, 77, 80, 86, 90, 91, 103, 105, 107, 109, 110, 111, 116, 118, 120, 121, 122], "register_torch_trt_decomposit": 54, "addmm_replac": 54, "replac": [54, 56, 62, 66, 67, 74, 93, 96, 112, 122], "input_": 54, "mat1": 54, "mat2": [54, 70], "beta": [54, 65, 70, 77], "alpha": [54, 65, 70, 83], "mul": [54, 56, 70, 94, 108], "matmul": [54, 55, 64, 70, 71, 89, 109, 110, 111, 118], "modifi": [54, 56, 62, 65, 83, 100, 118], "edit": [54, 66, 80], "torch_enabled_decomposit": 54, "torch_disabled_decomposit": 54, "disjoint": 54, "preced": [54, 82], "over": [54, 57, 59, 65, 82, 112, 113, 114, 115, 117, 122], "much": [54, 60, 80, 82, 91], "significantli": [54, 55, 80, 93, 98], "easier": [54, 57, 59, 60, 65, 71, 75, 76, 89, 91, 96, 100], "tri": 54, "made": [55, 57, 59, 76, 82], "represent": [55, 60, 65, 88, 104, 111, 116, 122], "instanc": [55, 62, 64, 66, 71, 74, 75, 88, 89, 94, 116, 120], "idea": [55, 82, 94], "reduc": [55, 56, 57, 59, 65, 71, 76, 91, 93, 96, 98, 101, 108, 116, 120], "actual": [55, 58, 60, 65, 88, 89, 96], "aim": [55, 122], "closer": 55, "scope": [55, 96, 103, 107], "csrc": [55, 61], "common_subexpression_elimin": 55, "subexpress": 55, "dead_code_elimin": 55, "exception_elimin": 55, "wa": [55, 58, 62, 64, 65, 71, 75, 76, 82, 89, 94, 95, 122], "1013": 55, "ne": [55, 70], "1012": 55, "24": [55, 67, 114, 115, 117], "lib": [55, 66, 67, 89], "python3": [55, 66, 89], "site": [55, 66, 82, 89], "nn": [55, 61, 65, 71, 72, 75, 76, 77, 88, 89, 90, 93, 94, 96, 103, 108, 111, 112, 118, 119, 122], "batchnorm": 55, "248": 55, "11": [55, 66, 82, 86, 89, 114, 115, 117], "block0": 55, "raiseexcept": 55, "249": 55, "12": [55, 56, 67, 82, 86, 88, 89, 105, 114, 115, 117, 118], "block1": 55, "guard_elimin": 55, "whose": [55, 65, 105], "freeze_modul": 55, "propag": 55, "fuse_addmm_branch": 55, "variant": [55, 120], "caught": 55, "ret": 55, "622": 55, "self": [55, 58, 60, 70, 75, 76, 88, 89, 90, 93, 94, 96, 98, 103, 108, 111, 112, 116, 118, 119, 123], "bia": [55, 70, 89, 112], "x9": 55, "3677": 55, "output0": [55, 114, 115, 117, 119], "add_": [55, 70, 89, 94], "fuse_linear": 55, "back": [55, 56, 58, 59, 75, 76, 82, 88, 89, 93, 96, 122], "fuse_flatten_linear": 55, "implicitli": [55, 76], "connect": [55, 71, 76, 77, 82, 100, 114, 115, 117, 123], "higher": [55, 64, 71, 76, 80, 82, 88, 113], "1d": 55, "lower_graph": 55, "access": [55, 60, 65, 80, 89, 92, 122], "rather": [55, 111], "getattr": [55, 58, 88, 89], "trainabl": 55, "remain": [55, 76, 91, 122], "lower_tupl": 55, "lowersimpletupl": 55, "tupleconstruct": [55, 58], "tupleunpack": 55, "leav": [55, 62, 64, 71], "statement": [55, 82, 94], "loweralltupl": 55, "_all_": 55, "rais": [55, 65, 76, 95], "onnx": 55, "module_fallback": 55, "consist": [55, 65, 82, 96, 101, 108, 111, 120, 122], "pair": [55, 60, 66, 82, 91, 116], "delimit": 55, "around": [55, 58, 60, 64, 66, 71, 75, 82, 85, 88, 96, 101], "second": [55, 65, 82, 90, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113], "mark": [55, 56, 80, 98, 104], "notatemoduleforfallback": 55, "marknodesforfallback": 55, "tell": [55, 56, 57, 58, 59, 60, 82, 93, 122], "them": [55, 56, 58, 63, 64, 65, 66, 71, 75, 80, 89, 93, 96, 98, 110, 111, 116, 118, 122], "peephole_optimz": 55, "intent": [55, 82], "catch": [55, 76, 89], "small": [55, 96, 97, 101, 114, 115, 117], "might": [55, 66, 80, 102, 118], "interest": [55, 82], "now": [55, 56, 59, 60, 65, 66, 76, 82, 89, 92, 93, 94, 96, 98, 102, 113, 119, 120], "expand": [55, 70], "simpli": [55, 103, 116], "remove_contigu": 55, "remove_dropout": 55, "infer": [55, 64, 65, 71, 76, 77, 89, 91, 95, 102, 103, 113, 116, 118, 120, 121, 122], "remove_to": 55, "unpack_addmm": 55, "reus": [55, 65, 71, 91, 93, 98, 101], "dedic": [55, 83], "unpack_log_softmax": 55, "softmax": [55, 65, 70, 112], "loop_unrol": 55, "suffici": [55, 66, 76], "short": [55, 64, 71, 82, 83, 102], "tile_to_repeat": 55, "instruct": [56, 57, 59, 65, 66, 89, 111, 114, 115, 117], "criteria": [56, 57, 59, 64], "lack": [56, 57, 59, 65, 93, 96, 113], "explicitli": [56, 57, 59, 66, 77, 90, 91, 92, 109, 110, 119], "On": 56, "segment": [56, 63, 96, 105, 107, 111, 116], "verifi": [56, 71, 94, 96, 102], "Then": [56, 91, 92, 102, 114, 115, 117], "roughli": [56, 114, 115, 117], "analysi": 56, "everi": [56, 72, 75, 76, 89, 120], "complet": [56, 63, 71, 76, 88, 89], "mean": [56, 60, 64, 65, 70, 71, 72, 103, 113, 114, 115, 117, 122], "trace": [56, 65, 71, 75, 77, 88, 89, 114, 115, 117, 118, 121, 122], "tensorlist": [56, 60], "figur": [56, 83, 85, 111], "our": [56, 59, 63, 88, 89, 114, 115, 117], "stitch": [56, 89], "altogeth": [56, 80], "brief": 56, "descript": [56, 83, 95, 112], "partitioninfo": 56, "api": [56, 59, 60, 62, 63, 64, 65, 75, 76, 77, 81, 89, 90, 91, 92, 96, 103, 104, 105, 108, 113, 114, 115, 116, 117, 118, 120, 121], "maintain": [56, 58, 60, 76, 100, 108, 122], "code": [56, 59, 62, 64, 65, 66, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 118], "mymodel": [56, 63, 68, 90, 93, 96, 118, 121], "ts_model": [56, 89], "trt_model": [56, 92, 96, 105, 109, 110, 111, 112, 113, 114, 115, 117, 121], "off": [56, 58, 108, 111], "consecut": [56, 63], "satisfi": [56, 62, 65], "forced_fallback_op": 56, "randn": [56, 63, 68, 71, 76, 77, 89, 92, 94, 98, 105, 108, 118, 119, 121], "224": [56, 63, 68, 71, 72, 76, 77, 89, 95, 98, 100, 102, 105, 108, 114, 115, 116, 117, 118, 121], "trt_ts_modul": [56, 90], "input_s": 56, "inputrang": 56, "cfg": [56, 89], "relu": [56, 70, 88, 89, 103, 108, 112], "trt_mod": [56, 68, 89, 91, 123], "consid": [56, 77, 89, 96, 119], "segmentmodelwithdependencyawar": 56, "test_segment": 56, "20": [56, 67, 86, 102, 105, 107], "x_lgamma": 56, "lgamma": 56, "y_lgamma": 56, "div": [56, 70], "div_lgamma": 56, "27": [56, 89], "cat": [56, 66, 67, 70, 112, 113], "greedi": [56, 104, 109, 110, 113], "strategi": [56, 76], "travers": [56, 57, 59, 64], "gather": 56, "same": [56, 58, 62, 64, 65, 66, 71, 76, 80, 82, 88, 89, 92, 93, 95, 96, 98, 102, 105, 107, 114, 115, 117, 118, 120, 121], "encount": [56, 64, 66, 94, 103, 104, 107], "4": [56, 58, 63, 64, 65, 66, 70, 76, 78, 80, 82, 83, 86, 89, 96, 103, 106, 107, 108, 112, 118], "suboptim": 56, "arithmet": 56, "split": [56, 65, 70], "own": [56, 60, 64, 66, 71, 82, 89, 98, 112, 114, 115, 117], "could": [56, 64, 65, 96, 105, 107, 120], "rewrit": [56, 62], "portion": [56, 82, 96, 106], "without": [56, 60, 68, 71, 80, 82, 89, 91, 96, 97, 98, 102, 120], "reorder": 56, "seri": 56, "cleanli": 56, "approach": [56, 98], "achiev": [56, 116], "hit": 56, "larger": [56, 71, 76, 80, 113, 116], "boundari": [56, 74, 76], "guarante": [56, 75], "trigger": [56, 64, 65, 76, 89, 98, 100, 102, 122], "appear": [56, 82], "adjac": [56, 71, 76, 82], "As": [56, 65, 66, 76, 89, 93, 94, 96, 98, 102, 108, 122], "clean": [56, 62, 82, 103, 107], "step": [56, 65, 67, 70, 76, 91, 96, 102, 111, 116], "consolid": [56, 88], "further": [56, 64, 65, 120, 122], "merg": 56, "identifi": 56, "do_not_merg": 56, "combin": [56, 64, 65], "condit": [56, 82, 122], "loop": [56, 64, 65, 104, 109, 110], "ir": [57, 59, 60, 63, 64, 68, 71, 76, 88, 89, 90, 99, 101, 103, 105, 107, 108, 114, 118], "larg": [57, 59, 80, 82, 89, 91, 101, 102, 104, 111, 113, 116], "opset": [57, 59, 94], "compon": [57, 59, 66, 67, 74, 88, 120, 122], "evalu": [57, 58, 59, 112], "deploi": [57, 59, 69, 71, 89, 91, 99, 114, 115, 117], "instanti": [57, 58, 59, 60, 89, 106], "wrap": [57, 58, 59, 64, 65, 71, 82, 85, 89, 92, 103, 107, 108], "extend": [57, 59, 60, 70, 89, 98, 116], "providi": [57, 59], "stand": [58, 82], "interpret": [58, 65, 82], "execute_engin": [58, 75, 89], "stack": [58, 70, 91, 112, 122], "machin": [58, 66, 91, 95, 114, 115, 117], "pop": 58, "push": 58, "element": [58, 65, 82, 83, 86, 93], "realiz": 58, "abstract": [58, 60, 83, 94], "__torch__": [58, 88, 89], "portabl": [58, 66, 77], "serializ": [58, 64, 88, 122], "instnanti": 58, "whatev": [58, 65, 96], "self_1": [58, 89], "torchvis": [58, 91, 92, 95, 98, 100, 102, 105, 108, 112, 114, 115, 117], "resnet": [58, 69, 78, 95, 99, 100, 114, 115, 116, 117], "___torch_mangle_4847": 58, "resnet_trt": 58, "input_0": [58, 89], "__torch___torchvision_models_resnet____torch_mangle_4847_resnet_trt_engin": 58, "listunpack": [58, 89], "multipl": [58, 66, 71, 75, 76, 82, 83, 91, 93, 101, 113, 114, 115, 117, 120], "repack": 58, "ssd": 58, "ssd300_trt": 58, "__torch___pytorch_detection_ssd_src_model_ssd300_trt_engin": 58, "holder": [58, 84], "torchbind": 58, "pickler": 58, "seril": 58, "zip": [58, 66, 100, 102, 111, 114], "depickl": 58, "encod": [58, 111, 116], "sm": 58, "correct": [58, 66, 80, 99, 100, 102, 112, 114, 115, 117], "bazel": [59, 66, 67], "linux": [59, 64, 67, 71, 89, 95], "x86_64": [59, 66], "aarch64": 59, "gcc": [59, 89], "untest": 59, "try": [59, 76, 82, 83, 89, 92, 96, 98, 111, 114, 115, 117, 122], "older": 59, "repositori": [59, 66, 80, 87, 111, 114, 115, 117], "notebook": [59, 69, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], "doc": [59, 61, 66, 67, 80, 81, 82, 87, 94, 96, 118], "docsrc": 59, "third_parti": [59, 66], "toolchain": [59, 66, 67], "unstabl": 59, "subject": [59, 62, 122], "matur": 59, "most": [59, 65, 66, 72, 96, 102, 114, 115, 117, 120, 122], "hood": [59, 105, 122], "major": [59, 65, 76], "top": [59, 80, 84], "coordin": [59, 76, 111], "ingest": 59, "flow": [60, 65, 82, 88, 116], "ilay": 60, "analogu": 60, "goal": [60, 64, 98], "registernodeconversionpattern": [60, 89], "helper": [60, 94], "pattern": [60, 76, 89, 113], "schema": [60, 89, 94, 96], "caus": [60, 64, 80, 103, 105, 107, 113, 120], "acthardtanh": 60, "torchtrt_unus": 60, "hardtanh": [60, 70], "scalar": [60, 70], "min_val": [60, 70], "max_val": [60, 70], "unwraptodoubl": 60, "new_lay": 60, "addactiv": 60, "activationtyp": [60, 65], "kclip": 60, "torchtrt_check": 60, "unabl": [60, 89, 96], "setalpha": 60, "setbeta": 60, "setnam": [60, 89], "util": [60, 62, 74, 77, 89, 91, 103, 107, 109, 110, 111, 112, 113, 114, 115, 116, 117, 122], "node_info": [60, 89], "c_str": [60, 89], "out_tensor": [60, 89], "associatevalueandtensor": [60, 89], "getoutput": [60, 89], "log_debug": 60, "getdimens": [60, 89], "accord": [60, 64, 77, 95], "unwrap": 60, "tool": [60, 64, 65, 66, 89, 94, 98, 116], "don": [60, 65, 80, 82, 83, 91, 94, 112, 114, 115, 117, 118], "annot": [60, 89], "your": [60, 63, 64, 66, 67, 68, 75, 80, 82, 83, 87, 88, 89, 90, 92, 98, 111, 118, 120], "Its": [60, 82], "track": [60, 91], "sort": [60, 70, 92, 111], "live": [60, 82], "directli": [60, 62, 63, 66, 69, 74, 76, 91, 94, 96, 103, 111, 121], "associatevalueandivalu": 60, "inspect": [60, 88, 89], "dataflow": [60, 89], "mechan": [60, 64, 65, 96, 101, 102, 116], "safe": [60, 64, 71, 75, 76, 77, 111], "unsur": 60, "deep": [60, 64, 69, 80, 91, 96, 123], "straight": 60, "chanc": 60, "none": [60, 64, 65, 70, 71, 72, 74, 75, 76, 77, 80, 82, 94, 96, 98, 103, 104, 111, 112, 113], "wrapper": [60, 65, 101, 108, 121], "similar": [60, 63, 64, 65, 66, 89, 92, 93, 96, 109, 110, 111], "tocustomclass": 60, "tensorcontain": 60, "istensor": 60, "iscustomclass": 60, "lot": [60, 63], "singular": 60, "becaus": [60, 65, 66, 72, 88, 89, 93, 94, 96, 97, 98, 101, 108, 113, 119], "alloc": [60, 69, 99, 108, 114], "freed": 60, "destructor": 60, "destroi": [60, 83], "realli": 60, "think": [60, 82], "becom": [60, 66, 100], "benefit": [60, 89, 98, 108, 113], "deal": [60, 98], "quit": [60, 66, 89, 116], "effici": [60, 101, 108, 111], "batch_norm": [60, 70], "fusion": [60, 62, 65], "deeplearn": [61, 65, 67], "sdk": [61, 67, 114, 115, 117, 122], "matrix": 61, "html": [61, 66, 67, 82, 88, 91, 94, 96, 118], "c_api": 61, "python_api": 61, "org": [61, 66, 80, 82, 88, 89, 91, 94, 96, 118, 120], "stabl": [61, 67, 69, 77, 78, 80, 99, 114, 118], "master": [61, 66, 91, 120], "overview": [61, 69, 103, 108], "md": 61, "appli": [62, 63, 91, 102, 104, 108, 111], "desir": [62, 71, 83, 91, 98], "coalesc": 62, "insert": [62, 64, 71, 89, 91, 94, 98, 102], "graphmodul": [62, 63, 71, 72, 76, 89, 90, 96, 102, 121, 122], "caller": 62, "invok": [62, 64, 65, 88, 89, 120], "lint": 62, "recompil": [62, 71, 76, 94, 98, 102, 104, 107, 118, 122], "repair": 62, "disallow": 62, "repair_input_as_output": 62, "gm": [62, 71], "sample_input": [62, 65, 103], "scenario": [62, 64, 100, 101, 113], "clone": [62, 66, 70, 96], "modified_graph": 62, "extract": [62, 89, 111, 116], "placehold": [62, 94], "isinst": [62, 65, 96, 112], "issubclass": 62, "direct": [62, 86, 102, 120], "len": [62, 70, 96, 111], "direct_output": 62, "inserting_aft": 62, "cloned_placehold": 62, "replace_input_with": 62, "date": [62, 83, 122], "eliminate_dead_cod": 62, "logger": [62, 73], "f": [62, 64, 65, 67, 76, 82, 88, 94, 95, 96, 101, 111, 112, 113], "__init__": [62, 75, 76, 82, 88, 93, 94, 96, 98, 103, 111, 112, 118, 119], "pass_manag": 62, "passmanag": 62, "backend": [62, 68, 69, 71, 77, 78, 81, 92, 97, 98, 99, 103, 104, 108, 112, 114, 115, 117, 118], "offer": [62, 64], "registr": [62, 65], "conveni": [62, 91, 107, 116, 120, 122], "control": [62, 65, 88, 102, 113, 120], "_aten_lowering_pass": 62, "my_custom_pass": 62, "front": [62, 71], "passlist": 62, "arbitrari": [62, 75], "remov": [62, 63, 71, 80, 97, 98, 101, 111, 112], "dump_lowering_pass": 62, "apply_lowering_pass": 62, "graph_modul": [62, 71], "_remove_lowering_pass": 62, "evolv": 62, "introduc": [63, 65, 108, 116], "exportedprogram": [63, 68, 71, 76, 102, 109, 110, 113, 118, 122], "dynamo": [63, 64, 66, 68, 74, 75, 76, 78, 89, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 107, 108, 112, 113, 114, 115, 117, 118, 119], "frontend": [63, 71, 74, 90, 93, 96, 99, 105, 107, 112, 114, 115, 117, 118], "simpl": [63, 64, 65, 82, 83, 88, 93, 114, 115, 116, 117, 118], "usag": [63, 65, 69, 74, 78, 82, 89, 93, 99, 113, 114, 118, 121], "eval": [63, 68, 89, 90, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117, 118, 119, 121], "exp_program": [63, 98, 102, 111, 112, 118], "trt_gm": [63, 68, 98, 102, 118, 119, 121], "interact": [63, 82, 100, 103, 105, 106, 107, 108], "ideal": 63, "discuss": [63, 64, 114, 115, 117], "section": [63, 65, 80, 82, 83, 84, 86, 89, 91, 114, 115, 117, 121], "frequent": [63, 101], "builder": [63, 64, 65, 71], "respect": [63, 64, 66, 71, 76, 109, 110, 119], "releas": [63, 64, 67, 82], "insid": [63, 82, 93, 96], "decomposit": [63, 64, 71, 76, 93, 96], "downstream": [63, 116], "constraint": [63, 113], "guid": [64, 81], "present": [64, 102], "learn": [64, 66, 69, 89, 91, 96, 114, 115, 117, 123], "acceler": [64, 72, 76, 120, 122, 123], "workflow": [64, 65, 68, 69, 71, 72, 76, 89, 92, 98, 99, 100, 105, 106, 107, 109, 110, 114, 116], "wide": [64, 76, 86], "varieti": [64, 114, 115, 117], "primari": [64, 94, 98, 121], "simplic": 64, "optimized_model": [64, 68, 97, 101, 103, 105, 107], "depth": [64, 80, 116], "challeng": [64, 100, 114, 115, 117], "addition": [64, 96], "fit": [64, 82], "compilationset": [64, 71, 75, 94, 96, 103], "_enum": [64, 71], "callabl": [64, 71, 76], "pass_through_build_failur": [64, 71, 75, 76, 96, 108], "max_aux_stream": [64, 71, 75, 76, 96], "version_compat": [64, 71, 75, 76, 96], "optimization_level": [64, 71, 75, 76, 96, 103], "use_python_runtim": [64, 71, 75, 76, 96, 97, 98, 100, 102, 103], "truncate_doubl": [64, 71, 75, 76, 96, 97, 109, 110, 113], "use_fast_partition": [64, 71, 75, 76, 96], "enable_experimental_decomposit": [64, 71, 75, 76, 96], "_devic": [64, 71], "assume_dynamic_shape_support": [64, 71, 75, 76], "engine_cap": [64, 71, 75, 76, 96], "dryrun": [64, 71, 75, 76, 96], "hardware_compat": [64, 71, 75, 76, 96], "timing_cache_path": [64, 71, 75, 76, 98], "tmp": [64, 71, 75, 76, 89, 97], "torch_tensorrt_engine_cach": [64, 71, 75, 76], "timing_cach": [64, 65, 71, 75, 76], "bin": [64, 66, 67, 71, 75, 76], "lazy_engine_init": [64, 71, 75, 76], "cache_built_engin": [64, 71, 75, 97, 98], "reuse_cached_engin": [64, 71, 75, 97, 98, 102], "use_explicit_typ": [64, 71, 75, 109, 110, 113, 119], "use_fp32_acc": [64, 71, 75, 109, 110, 111], "refit_identical_engine_weight": [64, 71, 75], "strip_engine_weight": [64, 71, 75], "immutable_weight": [64, 71, 75, 76, 97, 98, 100, 102], "enable_weight_stream": [64, 71, 75, 113], "enable_cross_compile_for_window": [64, 71, 75], "use_aot_joint_export": [64, 71, 75], "dpython": [64, 71, 76, 77], "per": [64, 71, 96, 120], "regardless": [64, 71, 83, 105, 107], "fail": [64, 71, 76, 89, 100, 102, 112, 123], "auxiliari": [64, 71], "stream": [64, 69, 71, 76, 93, 96, 99, 114], "impli": [64, 71], "longer": [64, 66, 71, 76, 80, 95, 120], "search": [64, 69, 71, 76, 80], "strictli": [64, 71], "runtim": [64, 66, 68, 69, 71, 76, 89, 94, 99, 100, 103, 107, 108, 113, 114, 122], "presenc": [64, 71, 108], "preferenti": [64, 71], "choos": [64, 65, 71, 88], "float64": [64, 71, 76, 77], "toggl": [64, 71, 76], "mode": [64, 65, 71, 75, 76, 90, 91, 94, 108, 111, 112], "detail": [64, 65, 67, 71, 88, 89, 96, 98, 114, 115, 117, 120], "natur": [64, 71, 82], "architectur": [64, 66, 69, 71, 76, 95, 98, 116], "amper": [64, 71, 76], "newer": [64, 66, 71, 76], "storag": [64, 71, 91], "use_strong_typ": [64, 71], "strong": [64, 71, 82], "mix": [64, 69, 71], "happen": [64, 65, 71, 88, 100, 105, 118], "strip": [64, 71], "non": [64, 66, 71, 76, 83, 85, 111, 120], "refitt": [64, 71, 76, 98], "were": [64, 71, 96, 102, 120], "cross": [64, 71, 82, 99, 114], "window": [64, 71, 82], "aot_export_joint_simpl": [64, 71], "aot_autograd": [64, 71], "distribut": [64, 67, 71, 89, 91, 113, 120], "sub": [64, 70, 82, 88, 103], "slate": 64, "futur": [64, 65, 71, 76, 77, 104, 120], "occur": [64, 108, 113], "first_output": 64, "subsequ": [64, 98, 101, 108], "second_output": 64, "session": [64, 68, 82, 98, 108], "point": [64, 66, 76, 80, 81, 82, 89, 93, 111, 112, 114, 115, 117], "cover": [64, 93, 94], "benchmark": [64, 70], "automat": [64, 67, 76, 82, 89, 99, 102, 114, 118, 122], "vari": [64, 72, 113, 118], "inf": 64, "dynamo_convers": 64, "contribut": [64, 101], "demonstr": [64, 82, 83, 84, 91, 93, 94, 96, 98, 100, 112, 114, 115, 116, 117], "break": [64, 65, 71, 75, 76, 82, 93, 96, 101, 110, 111], "successfulli": [64, 95, 100, 102, 111], "_dynamo": [64, 97, 98, 103, 104, 105, 107, 118], "explain": [64, 65, 69], "veri": [64, 65, 83, 84, 91, 92, 104, 109, 110, 114, 115, 117], "explan": [64, 65], "graph_break_count": 64, "furthermor": 64, "durat": [64, 82], "latter": [64, 75], "logic": [64, 65, 94], "guard": 64, "compos": [65, 88, 91, 94, 112, 114, 115, 117], "variou": [65, 123], "etc": [65, 80, 82, 96, 123], "environ": [65, 68, 71, 114, 115, 117], "research": 65, "few": [65, 66, 76, 94], "nightli": 65, "lower_exampl": 65, "welcom": [65, 89], "finish": 65, "converison": 65, "pleas": [65, 67, 76, 82, 89, 99, 111, 112, 114, 115, 117, 118], "max_batch_s": [65, 72, 114, 115, 117], "2048": [65, 72], "max_workspace_s": [65, 72], "33554432": [65, 72], "explicit_batch_dimens": [65, 72], "lower_precis": [65, 72], "lowerprecis": [65, 72], "verbose_log": [65, 72], "timing_cache_prefix": [65, 72], "save_timing_cach": [65, 72], "cuda_graph_batch_s": [65, 72], "dynamic_batch": [65, 72], "turn": [65, 72, 108], "trtmodul": [65, 72], "otherwis": [65, 66, 72, 98, 120], "implicit": [65, 70, 72, 82], "config": [65, 66, 72, 114, 115, 117], "updat": [65, 66, 67, 71, 72, 76, 96, 102], "dim": [65, 70, 72, 96, 98, 112, 113, 114, 115, 117, 118], "fx2trt_exampl": 65, "acc_trac": 65, "come": [65, 66, 81, 93, 96, 100, 114, 115, 117], "my_pytorch_model": 65, "build_model": 65, "prepar": [65, 114, 115, 117], "acc_mod": 65, "earli": [65, 102], "deprec": [65, 70], "continu": [65, 82, 108, 120], "backward": [65, 75, 96, 122], "vision": [65, 99, 114, 115, 117], "activ": [65, 77, 82, 89, 91, 94, 116, 120, 123], "except": [65, 71, 76], "permut": [65, 70, 111], "transpos": [65, 70, 118], "ll": [65, 98, 104], "inputtensorspec": [65, 72, 76], "experiment": [65, 76, 77], "dataclass": [65, 103], "re": [65, 76, 82, 93, 98, 100, 108, 120], "manual": [65, 76, 81, 82, 102, 113], "sampl": [65, 71, 82, 90, 91, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 114, 115, 117], "rand": [65, 89, 95, 98, 100, 102, 103, 114, 115, 117], "from_tensor": [65, 76], "slightli": [65, 66, 96], "promis": 65, "optimize_target_shap": 65, "input_tensor_spec": 65, "shape_rang": [65, 72], "100": [65, 72, 96, 98, 112, 113], "accordingli": [65, 80, 118, 120], "trtinterpreterresult": [65, 72], "namedtupl": 65, "input_nam": [65, 72], "output_nam": [65, 72], "serialized_cach": [65, 72], "bytearrai": [65, 75, 77], "afford": 65, "temporari": [65, 98], "best": [65, 71, 76, 82, 100, 113, 119], "perforamnc": 65, "examin": 65, "suitabl": [65, 94, 101], "force_fp32_output": 65, "strict_type_constraint": 65, "usual": [65, 66, 80, 104], "unless": 65, "certain": [65, 66, 103, 109, 110, 111, 113, 120], "algorithm_selector": 65, "profiling_verbos": 65, "trt_interpreter_result": 65, "64": [65, 76, 90, 93, 110, 111, 112, 118], "25": [65, 72, 89, 111], "runtimeerror": [65, 112], "xxx": 65, "One": [65, 82, 83, 89, 116, 120], "reload_trt_mod": 65, "reload_model_output": 65, "far": [65, 82], "give": [65, 80, 82], "convtert": 65, "scheme": [65, 71, 76], "action": [65, 82], "tensort": [65, 122], "thing": [65, 66, 82], "compar": [65, 71, 76, 90, 101, 102], "vanilla": 65, "mainli": 65, "builtin": 65, "purpos": [65, 114, 115, 116, 117], "acc_op": 65, "leverag": [65, 91], "power": [65, 82, 89, 113, 116], "goe": [65, 82], "whole": [65, 108], "sigmoid": [65, 70], "tensorrt_convert": 65, "acc_ops_sigmoid": 65, "rest": [65, 82, 83], "input_v": [65, 94], "receiv": 65, "region": 65, "add_activ": 65, "get_output": [65, 96], "wherev": 65, "rememb": [65, 66, 114, 115, 117], "mapper": 65, "todo": [65, 67, 80], "logist": 65, "down": [65, 66, 80, 110], "acc_norm": 65, "foo": [65, 82, 83], "register_acc_op": 65, "register_acc_op_map": 65, "this_arg_is_opt": 65, "op_and_target": 65, "arg_replacement_tupl": 65, "rule": [65, 66, 77], "third": [65, 83], "boolean": [65, 76, 94], "matter": [65, 96], "register_custom_acc_mapper_fn": 65, "design": [65, 74, 94, 100, 109, 113, 116, 123], "redund": 65, "throught": 65, "custom_mapp": 65, "_": [65, 82, 93, 96, 101, 111, 112, 113, 119], "foo_kwarg": 65, "inserting_befor": 65, "foo_nod": 65, "meta": [65, 67, 86, 93, 110, 113], "children": 65, "unit": [65, 76, 108], "test_acc_trac": 65, "acc_op_convert": 65, "essenti": 65, "plugin": [65, 96], "yet": [65, 116], "folder": 65, "center": 66, "pypi": 66, "m": [66, 67, 83, 93, 104, 112], "pip": [66, 67, 99, 104, 111, 114, 115, 117], "upload": [66, 114, 115, 117], "x86": [66, 120], "extra": [66, 75, 89, 96, 100], "url": [66, 80, 114, 115, 117], "download": [66, 67, 86, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117], "whl": [66, 67], "cu118": 66, "cu124": 66, "tarbal": [66, 89, 91], "easiest": [66, 93, 96], "bazelisk": [66, 67], "bazelbuild": [66, 67], "export": [66, 67, 69, 71, 76, 98, 99, 102, 105, 109, 110, 111, 112, 113, 114, 115, 117, 119, 121, 122], "bazel_vers": 66, "path_to_torchtrt_root": 66, "bazelvers": 66, "mkdir": 66, "cd": [66, 114, 115, 117], "curl": [66, 82], "fssl": 66, "o": [66, 82, 114, 115, 117], "dist": 66, "unzip": 66, "bash": [66, 114, 115, 117], "sh": 66, "cp": [66, 67, 96], "usr": [66, 67], "driver": 66, "branch": [66, 67], "4e5b0f6e860910eb510fa70a76ee3eb9825e7a4d": 66, "l46": 66, "pull": [66, 98, 114, 115, 117], "latest": [66, 67, 80], "l53c1": 66, "fact": 66, "reproduc": 66, "l71": 66, "http_archiv": 66, "build_fil": 66, "archiv": [66, 67], "sha256": 66, "strip_prefix": 66, "OR": 66, "TO": [66, 89], "gnu": 66, "tar": [66, 67, 82, 91], "gz": [66, 82, 83, 91], "ld_library_path": 66, "comment": [66, 82], "uncom": 66, "l114c1": 66, "l124c3": 66, "uv": 66, "astral": 66, "project": [66, 81, 86], "simpler": [66, 91], "wheel": [66, 67], "dep": 66, "lighter": 66, "executor": 66, "avoid": [66, 93, 94, 96, 102, 111, 118], "implic": 66, "python_onli": 66, "legaci": [66, 74], "mainten": 66, "torchdynamo": [66, 118, 122], "technolog": [66, 122], "exclud": [66, 96], "speed": [66, 98, 102], "no_torchscript": 66, "dbg": 66, "pre_cxx11_abi": 66, "complic": 66, "incompat": 66, "popular": [66, 81, 99, 109, 110, 114, 116], "ngc": [66, 67, 114, 115, 117], "tabl": [66, 86], "bdist_wheel": 66, "preinstal": 66, "forum": 66, "correctli": [66, 96], "declar": 66, "intend": [66, 103, 105, 106, 107, 108], "microsoft": 66, "2022": [66, 69], "open": [66, 111, 114, 115, 116, 117], "app": 66, "x64": 66, "prompt": [66, 100, 104, 106, 109, 110, 111], "admin": 66, "privileg": 66, "launcher": 66, "chocolatei": 66, "navig": [66, 80], "ninja": 66, "setuptool": 66, "r": [66, 67, 82, 99, 104, 111, 114], "txt": [66, 67, 99, 104, 111, 114], "distutils_use_sdk": 66, "cuda_win": 66, "libtorch_win": 66, "tensorrt_win": 66, "similarli": [66, 98, 108, 120], "ci_workspac": 66, "win": 66, "tmpl": [66, 67], "torchtrtc": [66, 69, 123], "websit": 66, "finder": 66, "dcmake_module_path": 66, "doesn": [66, 82, 88, 89], "dtorch_dir": 66, "dtensorrt_root": 66, "choic": [66, 74], "b": [66, 70, 76, 83, 93, 113, 114, 115, 117], "dcmake_build_typ": 66, "72048": 66, "jp_workspac": [66, 67], "new_local_repositori": 66, "sudo": [66, 67], "home": 66, "unlik": [66, 92], "libtorch_pre_cxx11_abi": 66, "shift": [66, 70, 82], "jetpack": 66, "jetpack_x": 66, "jetpack_5": 66, "drop": [66, 80, 112], "nvida": 67, "ofjetpack": 67, "With": [67, 80, 82, 89, 91, 93, 98, 114, 115, 117], "incorpor": [67, 83], "cudnn": 67, "9": [67, 86, 89, 95, 96, 114, 115, 117], "dlfw": 67, "09": 67, "jetson": [67, 116], "framework": 67, "instal": [67, 69, 86, 89, 99, 104, 111, 114, 115, 117, 120], "kit": 67, "flash": 67, "board": 67, "apt": 67, "show": [67, 80, 82, 98, 106, 113, 116], "dev": 67, "everth": 67, "nvcc": 67, "cmd": 67, "toolkit": [67, 74], "libcusparselt": 67, "lib64": 67, "wget": [67, 114, 115, 117], "cusparselt": 67, "redist": 67, "libcusparse_lt": 67, "sbsa": 67, "xz": 67, "xf": 67, "v1": [67, 100, 106], "arm64": 67, "mv": 67, "chmod": 67, "pypa": 67, "en": [67, 80], "bootstrap": 67, "jp": 67, "v61": 67, "0a0": 67, "872d972e41": 67, "nv24": 67, "08": [67, 114, 115, 117], "17622132": 67, "cp310": 67, "linux_aarch64": 67, "test_requir": 67, "jetpack6": 67, "lanl": 67, "cuda_vers": 67, "grep": 67, "cut": [67, 82, 102], "sed": [67, 83, 85], "torch_install_path": 67, "dirnam": 67, "__file__": 67, "site_package_path": 67, "cuda_hom": 67, "envsubst": 67, "cxx11": [67, 120], "abi": [67, 120], "anywher": 68, "ahead": [68, 69, 89, 100, 108], "ep": [68, 70, 95, 102, 119, 121], "output_format": [68, 76, 121], "input_tensor": [68, 96, 112, 113], "fill": 68, "aot": [69, 89, 99, 100, 102, 108, 114, 122], "integr": [69, 100, 103], "seamlessli": [69, 76], "ecosystem": [69, 122], "hybrid": [69, 71, 76, 77, 122], "advanc": [69, 78, 83, 91, 99, 104, 114], "bert": [69, 78, 99, 101, 114], "triton": [69, 93, 96], "cudagraph": [69, 99, 114], "overload": [69, 99, 114], "mutabl": [69, 99, 114], "diffus": [69, 78, 99, 114], "gpt2": [69, 99, 114], "llama2": [69, 99, 114], "sam2": [69, 99, 114], "page": [69, 84, 86, 114, 115, 117], "introductori": 69, "blog": [69, 120], "gtc": 69, "2020": [69, 89], "talk": 69, "fall": [69, 76, 93, 96], "2021": 69, "dai": 69, "confer": 69, "_convolut": [70, 89], "stride": [70, 76, 96, 112], "pad": [70, 76, 96, 112], "dilat": 70, "output_pad": 70, "group": [70, 82, 83], "determinist": 70, "cudnn_en": 70, "allow_tf32": 70, "ab": 70, "aco": 70, "acosh": 70, "adaptive_avg_pool1d": 70, "output_s": 70, "adaptive_avg_pool2d": 70, "adaptive_avg_pool3d": 70, "adaptive_max_pool1d": 70, "adaptive_max_pool2d": 70, "adaptive_max_pool3d": 70, "argmax": [70, 113], "keepdim": 70, "argmin": 70, "asin": 70, "asinh": 70, "atan": 70, "atanh": 70, "avg_pool1d": 70, "kernel_s": [70, 96, 112], "ceil_mod": 70, "count_include_pad": 70, "avg_pool2d": 70, "divisor_overrid": 70, "avg_pool3d": 70, "gamma": 70, "var": 70, "momentum": 70, "bitwise_not": 70, "bmm": 70, "ceil": 70, "clamp": 70, "clamp_max": 70, "clamp_min": 70, "constant_pad_nd": 70, "co": [70, 83, 116], "cosh": 70, "cumsum": 70, "tensor_mod": 70, "rounding_mod": 70, "div_": 70, "elu": 70, "scale": [70, 91, 116], "input_scal": 70, "indic": [70, 71, 80, 82, 93, 94, 102, 105, 118, 119], "padding_idx": 70, "eq": [70, 82], "erf": [70, 94], "exp": 70, "expand_a": 70, "fake_quantize_per_channel_affin": 70, "zero_point": 70, "axi": [70, 76, 111], "quant_min": 70, "quant_max": 70, "fake_quantize_per_tensor_affin": 70, "using_int": [70, 89], "start_dim": [70, 89], "end_dim": [70, 89], "floor": 70, "floor_divid": 70, "ge": 70, "gru_cel": 70, "hx": 70, "w_ih": 70, "w_hh": 70, "b_ih": 70, "b_hh": 70, "gt": 70, "hardtanh_": 70, "instance_norm": 70, "running_mean": 70, "running_var": 70, "use_input_stat": 70, "layer_norm": 70, "normalized_shap": 70, "le": 70, "negative_slop": 70, "01": [70, 83, 89, 111, 112], "leaky_relu_": 70, "lstm_cell": 70, "lt": 70, "masked_fil": 70, "mask": [70, 96, 111], "max_pool1d": 70, "max_pool2d": [70, 88, 89], "max_pool3d": 70, "mul_": [70, 94], "narrow": 70, "neg": [70, 100], "norm": 70, "scalaropt_dim": 70, "pixel_shuffl": 70, "upscale_factor": 70, "pow": 70, "tensor_scalar": 70, "expon": 70, "tensor_tensor": 70, "prelu": 70, "prod": [70, 96], "dim_int": 70, "reciproc": 70, "reflection_pad1d": 70, "reflection_pad2d": 70, "relu_": 70, "repeat_interleav": 70, "self_int": 70, "replication_pad1d": 70, "replication_pad2d": 70, "replication_pad3d": 70, "reshap": [70, 96, 111], "roll": 70, "rsub": 70, "scatter": [70, 111], "sigmoid_": 70, "sin": [70, 82], "sinh": 70, "slice": 70, "split_siz": 70, "split_with_s": 70, "sqrt": 70, "squar": 70, "squeez": [70, 111, 116], "sub_": 70, "dim_intlist": 70, "tan": 70, "tanh": [70, 94], "tanh_": [70, 94], "non_block": [70, 112], "memory_format": [70, 76], "prim_devic": 70, "topk": 70, "k": [70, 91, 112], "largest": 70, "dim0": [70, 98], "dim1": 70, "unbind": 70, "unsqueez": [70, 111, 114, 115, 117], "upsample_bilinear2d": 70, "align_corn": 70, "scales_h": 70, "scales_w": 70, "vec": 70, "scale_factor": 70, "upsample_linear1d": 70, "upsample_nearest1d": 70, "upsample_nearest2d": 70, "upsample_nearest3d": 70, "scales_d": 70, "upsample_trilinear3d": 70, "view": [70, 80, 111], "__and__": 70, "__derive_index": 70, "idx": 70, "__getitem__": 70, "__is__": 70, "t1": 70, "t2": 70, "obj": 70, "__isnot__": 70, "__not__": 70, "__or__": 70, "__range_length": 70, "lo": 70, "hi": [70, 82, 83], "__round_to_zero_floordiv": 70, "__xor__": 70, "append": [70, 94, 97, 98, 101, 112, 113], "el": 70, "arang": [70, 93, 96], "pin_memori": 70, "start_step": 70, "copy_": 70, "float_int": 70, "int_float": 70, "floordiv": 70, "is_floating_point": 70, "numel": [70, 93], "l": [70, 112], "9223372036854775807": 70, "requires_grad": 70, "tupleindex": 70, "tup": 70, "exported_program": [71, 76, 121], "arg_input": [71, 76, 94, 102], "kwarg_input": [71, 76, 102], "engine_cache_dir": [71, 97, 98], "engine_cache_s": [71, 97, 98], "5368709120": 71, "custom_engine_cach": [71, 98], "baseenginecach": [71, 98], "int32": [71, 76, 77, 96, 97, 101, 107, 116], "channel_last": [71, 76, 77, 116], "244": [71, 76, 77], "alia": [71, 76], "better": [71, 76, 88, 111, 116, 122], "understand": [71, 76, 118], "convolut": [71, 76, 77, 91, 96, 123], "_c": [71, 76, 77, 92], "oppos": [71, 76, 77], "lean": [71, 76], "spend": [71, 76], "integ": [71, 76, 85], "faster": [71, 76, 97, 98, 101, 111, 116], "parition": [71, 76], "increas": [71, 76, 98, 113], "amount": [71, 76, 113], "defer": [71, 76, 122], "lead": [71, 76, 82, 101, 113, 120], "oversubscript": [71, 76], "hard": [71, 102], "disk": [71, 76, 98], "space": [71, 82, 83, 91], "byte": [71, 75, 76, 77, 96, 98, 113, 116], "1gb": [71, 97, 98], "exce": 71, "oldest": 71, "gear": [71, 91], "toward": [71, 91, 111], "cross_compile_flag": 71, "cross_compil": 71, "refit_module_weight": [71, 102], "compiled_modul": [71, 102], "new_weight_modul": [71, 102], "verify_output": [71, 102], "use_weight_map_cach": [71, 102], "in_plac": [71, 102], "compmil": 71, "coverag": [71, 96], "min_acc_module_s": 72, "is_aten": 72, "use_experimental_fx_rt": 72, "correctness_atol": 72, "correctness_rtol": 72, "minim": [72, 91, 96, 101], "submodul": [72, 88, 96, 108], "fx2trt": 72, "cpu": [72, 101, 109, 110, 111, 113], "has_batch_dim": 72, "dtyep": 72, "prop": 72, "min_input_shap": 72, "optimized_input_shap": 72, "max_input_shap": 72, "popul": 72, "225": [72, 114, 115, 117], "explicit_precis": 72, "logger_level": 72, "model_trt": [73, 93], "model_torchtrt": 73, "internal_error": 73, "dataloadercalibr": [74, 91], "preprocess": [74, 91, 114, 115, 117], "algo_typ": [74, 91], "calibrationalgo": [74, 91], "cachecalibr": [74, 91], "qualnam": [74, 76], "entropy_calibr": 74, "entropy_calibration_2": [74, 91], "legacy_calibr": 74, "minmax_calibr": 74, "set_multi_device_safe_mod": [75, 120], "_multidevicesafemodecontextmanag": 75, "impact": 75, "suppress": 75, "unsaf": 75, "trt_compiled_modul": 75, "torchtensorrtmodul": [75, 96], "encompass": [75, 77], "simpili": 75, "de": 75, "initi": [75, 76, 82, 102, 103, 105, 107, 108, 109, 110], "scriptmodul": [75, 76, 77, 89, 90, 121, 122], "overridden": [75, 76], "subclass": 75, "although": [75, 82], "recip": [75, 91], "afterward": 75, "former": 75, "care": 75, "hook": 75, "silent": 75, "get_extra_st": 75, "state_dict": [75, 76, 100], "set_extra_st": 75, "picklabl": 75, "pickl": [75, 96, 98], "load_state_dict": [75, 100, 112], "pythontorchtensorrtmodul": 75, "serialized_engin": [75, 77], "_set": [75, 103], "weight_name_map": 75, "trt_modul": [75, 120], "engine_str": 75, "my_modul": 75, "current_devic": 75, "disable_profil": 75, "enable_profil": 75, "iprofil": 75, "spent": 75, "get_layer_info": 75, "validate_input_shap": 75, "request": [76, 89, 114, 115, 117], "decid": 76, "deseri": [76, 77, 89, 96], "retrac": 76, "cudagraphstorchtensorrtmodul": 76, "strict": [76, 111, 120], "valueerror": [76, 95], "mutabletorchtensorrtmodul": [76, 100], "pytorch_model": 76, "regular": 76, "whenev": 76, "refit_gm": 76, "shape_mod": 76, "_shapemod": 76, "interv": 76, "notat": 76, "bound": 76, "torch_tensor": 76, "tracer": 76, "example_tensor": 76, "optimization_profile_field": 76, "classmethod": 76, "disable_memory_format_check": 76, "core_id": 76, "schedul": [76, 114, 115, 117], "use_default": 76, "try_to": 76, "anoth": [76, 82, 83, 88, 90, 102], "typeerror": 76, "unknown": 76, "succe": 76, "float_dtyp": 76, "failur": 76, "bf16": 76, "try_from": [76, 96], "complex128": 76, "16": [76, 86, 88, 89, 90, 105, 108], "brain": 76, "bfloat16": 76, "f64": 76, "f8": 76, "fp8": 76, "float8": 76, "i32": 76, "sign": [76, 114, 115, 117], "i64": 76, "u8": 76, "unsign": 76, "uint8": [76, 111], "trt_dla": 76, "torchtrt_dla": 76, "_from": 76, "torchtrt_dla_ec": 76, "torchtrt_safety_ec": 76, "saefti": 76, "trt_dla_ec": 76, "standalon": [76, 82, 111], "certifi": 76, "tf": 76, "torchtrt_linear": 76, "cdhw32": 76, "thirti": 76, "row": [76, 83], "spatial": 76, "31": [76, 89], "subscript": [76, 82], "chw16": 76, "sixteen": 76, "15": [76, 82, 86], "chw2": 76, "chw32": 76, "chw4": 76, "four": [76, 82, 83], "dhwc": 76, "equivi": 76, "channels_last_3d": 76, "dhwc8": 76, "eight": 76, "dla_hwc4": 76, "imag": [76, 91, 96, 100, 106, 112, 114, 115, 117], "roundup": 76, "elements": 76, "dla_linear": 76, "planar": 76, "hwc": 76, "channels_last": 76, "hwc16": 76, "hwc8": 76, "least": [76, 82, 83], "ishapelay": 77, "check_method_op_support": 77, "seriali": 77, "put_binding_nam": 77, "tensorrtcompilespec": [77, 92], "scriptclass": 77, "0x7f2630ede1f0": 77, "_jit_to_tensorrt": 77, "00": 78, "000": [78, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113], "total": [78, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113], "galleri": [78, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], "mem": 78, "torch_compile_advanced_usag": [78, 103], "torch_compile_resnet_exampl": [78, 105], "torch_compile_stable_diffus": [78, 106], "torch_compile_transformers_exampl": [78, 107], "v0": [79, 114, 115, 117], "pytorch_sphinx_them": [80, 87], "conf": [80, 87], "html_theme_opt": 80, "canonical_url": 80, "analytics_id": 80, "logo_onli": 80, "display_vers": 80, "prev_next_buttons_loc": 80, "bottom": 80, "style_external_link": 80, "vcs_pageview_mod": 80, "collapse_navig": 80, "sticky_navig": [80, 84], "navigation_depth": 80, "includehidden": 80, "titles_onli": 80, "canon": 80, "rank": 80, "trail": 80, "slash": 80, "googl": 80, "analyt": 80, "isn": [80, 82, 93, 96], "shown": [80, 82, 89, 111, 119], "sidebar": [80, 86], "button": [80, 82], "icon": [80, 82], "extern": [80, 82, 99, 114], "display_github": 80, "display_gitlab": 80, "gitlab": 80, "bitbucket": 80, "bar": [80, 82], "www": [80, 82, 89, 91, 114, 115, 117], "sphinx": [80, 81, 82, 83, 87, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], "toctre": 80, "lose": 80, "scroll": [80, 84], "unlimit": 80, "header": [80, 82, 83, 89, 114, 115, 117], "render": 80, "github_url": 80, "bitbucket_url": 80, "gitlab_url": 80, "left": [80, 82], "upon": [80, 103, 107], "rst": [80, 82], "visitor": 80, "revert": 80, "misbuild": 80, "properti": [80, 96], "stick": 80, "screen": 80, "vertic": [80, 82], "too": [80, 82, 83], "sticki": [80, 86], "nav": [80, 86], "At": [81, 94, 102], "django": 81, "payment": 81, "dotpai": 81, "dotpayprovid": 81, "seller_id": 81, "pin": 81, "lock": 81, "lang": 81, "pl": 81, "polish": 81, "gatewai": 81, "transfer": 81, "purchas": 81, "item": [81, 83, 112], "param": 81, "seller": 81, "consult": 81, "ui": 81, "languag": [81, 82, 83, 88, 93, 96, 99, 104, 109, 114, 115, 117], "data_item_1": 81, "emphasi": 82, "hyperlink": 82, "uri": 82, "web": 82, "anonym": 82, "label": [82, 91, 111, 112, 114, 115, 116, 117], "substitut": 82, "charact": 82, "exceedingli": 82, "ugli": 82, "problem": [82, 110], "problemat": 82, "ext": [82, 83], "autodoc": [82, 83], "demo": [82, 91, 111], "test_py_modul": [82, 86], "my": [82, 104, 109], "role": 82, "pep": 82, "287": 82, "rfc": 82, "2822": 82, "superscript": 82, "gui": 82, "taken": [82, 101], "height": [82, 111], "interfer": 82, "press": 82, "keyboard": 82, "mous": 82, "mmb": 82, "menuselect": 82, "seen": [82, 83], "whitespac": 82, "signific": [82, 96], "strang": 82, "hyphen": 82, "word": [82, 116], "adjust": 82, "width": [82, 111, 116], "browser": 82, "sentenc": [82, 113, 116], "suppli": [82, 102], "258": 82, "equat": 82, "x_": 82, "x_0": 82, "x_1": 82, "x_2": 82, "x_3": 82, "x_4": 82, "nabla": 82, "frac": 82, "theta": 82, "phi": 82, "restructuredtext": [82, 83], "parser": [82, 95, 112], "colon": 82, "indent": 82, "literal_block": 82, "spaces_and_linebreak": 82, "preserv": [82, 88, 91, 111], "markup_process": 82, "Or": 82, "great": [82, 89, 93, 96, 98, 122], "why": [82, 120], "didn": 82, "blank": 82, "align": 82, "permit": 82, "awai": 82, "eric": 82, "orchestra": 82, "leader": 82, "bee": 82, "philosoph": 82, "ipso": 82, "facto": 82, "But": [82, 89, 102, 113], "got": [82, 89], "vi": 82, "entiti": 82, "said": 82, "entir": [82, 108, 111, 122], "ancient": 82, "injuri": 82, "sing": 82, "elk": 82, "bracket": 82, "miss": [82, 89], "brontosaurus": 82, "thin": 82, "thicker": 82, "middl": 82, "That": [82, 89], "mine": 82, "belong": 82, "me": [82, 83], "ann": 82, "begun": 82, "past": 82, "pars": [82, 89], "someurl": 82, "dev0": 82, "69c83d4": 82, "caption": [82, 85], "pane": 82, "shell_command": 82, "echo": 82, "did": 82, "window_nam": 82, "session_nam": 82, "shorthand": 82, "some_funct": 82, "highlight": 82, "THE": 82, "heaven": 82, "hexagram": 82, "six": 82, "unbroken": 82, "primal": 82, "light": [82, 121], "spirit": 82, "weak": 82, "essenc": 82, "energi": 82, "unrestrict": 82, "conceiv": 82, "motion": 82, "regard": [82, 122], "basi": 82, "thu": 82, "persist": 82, "dual": 82, "sens": [82, 89], "univers": 82, "world": 82, "men": 82, "express": 82, "deiti": 82, "human": 82, "denot": [82, 96], "holi": 82, "man": [82, 83], "sage": 82, "ruler": 82, "who": 82, "awaken": 82, "utf": [82, 83], "sphinx_rtd_them": [82, 83], "docstr": [82, 83, 90], "dl": 82, "dt": 82, "tag": [82, 114, 115, 117], "tt": 82, "descnam": 82, "descclassnam": 82, "wrote": 82, "anyth": [82, 83, 111, 120], "programm": 82, "myclass": 82, "dothismethod": 82, "flush": 82, "meth": 82, "capit": 82, "flox": 82, "unreferenc": 82, "nonexist": 82, "extrem": 82, "stuff": 82, "mayb": 82, "bold": 82, "ital": 82, "heck": 82, "put": [82, 93, 116], "13": [82, 86], "backlink": 82, "knowledg": 82, "mind": 82, "ey": 82, "thought": 82, "medium": 82, "peopl": 82, "subsect": 82, "interpol": 82, "indirect": 82, "phrase": 82, "docutil": [82, 83], "sourceforg": [82, 83], "ref": 82, "clickabl": 82, "legend": 82, "revis": [82, 83, 100, 106], "revisit": 82, "enhanc": [82, 101, 111], "structuredtext": 82, "wooden": 82, "nickel": 82, "mad": 82, "scientist": 82, "bigger": 82, "bread": 82, "box": [82, 111, 118, 122], "wash": 82, "behind": 82, "ear": 82, "room": 82, "closet": 82, "bathroom": 82, "trash": 82, "sink": 82, "mother": 82, "g_": 82, "mu": 82, "nu": 82, "pi": 82, "t_": 82, "rho_": 82, "servic": 82, "thing1": 82, "thing2": 82, "thing3": 82, "prose": 82, "provok": 82, "mental": 82, "exert": 82, "reader": 82, "discret": 82, "strongli": [82, 113], "advis": 82, "subtitl": 82, "outsid": 82, "often": 82, "besid": 82, "border": [82, 111], "background": [82, 88], "ok": [82, 89], "transmit": 82, "disconnect": 82, "nonetheless": 82, "semant": 82, "blue": [82, 96], "white": [82, 111], "arab": 83, "roman": 83, "upper": 83, "iii": 83, "iv": 83, "classifi": [83, 88, 89, 112, 116], "paragraph": [83, 86], "z": [83, 93], "commonli": 83, "vm": 83, "david": 83, "goodger": 83, "address": [83, 96, 100], "123": 83, "street": 83, "canada": 83, "a1b": 83, "2c3": 83, "contact": 83, "myself": 83, "organ": 83, "humankind": 83, "2012": 83, "03": 83, "19": [83, 86], "53": 83, "0000": 83, "tue": 83, "jan": 83, "progress": 83, "7302": 83, "wish": 83, "redistribut": 83, "reattribut": 83, "sell": 83, "bui": 83, "rent": 83, "leas": 83, "improv": [83, 101, 108, 111, 120], "quot": 83, "excerpt": 83, "collat": 83, "fold": 83, "stapl": 83, "mutil": 83, "anyon": 83, "heart": 83, "bibliograph": 83, "markup": [83, 86], "literal": 83, "yahoo": 83, "oh": 83, "liter": 83, "heh": 83, "child": 83, "beat": 83, "text": [83, 85, 104, 109, 110, 116], "hehe": 83, "kept": 83, "sai": [83, 116], "cackl": 83, "night": 83, "lone": 83, "guangzhou": 83, "destini": 83, "hope": 83, "dream": 83, "forth": 83, "fifth": 83, "sixth": 83, "lorem": [83, 85], "ipsum": [83, 85], "dolor": [83, 85], "sit": [83, 85], "amet": [83, 85], "consectetur": [83, 85], "adipisc": [83, 85], "elit": [83, 85], "donec": [83, 85], "porttitor": [83, 85], "odio": [83, 85], "posuer": [83, 85], "vita": [83, 85], "ornar": [83, 85], "libero": [83, 85], "matti": 83, "loborti": [83, 85], "justo": [83, 85], "vestibulum": [83, 85], "nibh": [83, 85], "aliquet": [83, 85], "feugiat": [83, 85], "sagitti": [83, 85], "nequ": [83, 85], "qui": [83, 85], "eleifend": 83, "dui": [83, 85], "rutrum": [83, 85], "lectu": [83, 85], "suscipit": [83, 85], "letter": [83, 116], "column": 83, "cell": 83, "span": 83, "nam": [83, 85], "mauri": [83, 85], "arcu": [83, 85], "stub": 83, "behav": 84, "area": 84, "interdum": 85, "nec": 85, "finibu": 85, "dictum": 85, "velit": 85, "ut": 85, "eu": 85, "efficitur": 85, "aliquam": 85, "erat": 85, "diam": 85, "gravida": 85, "imperdiet": 85, "tellu": 85, "nisl": 85, "praesent": 85, "eget": 85, "elementum": 85, "rhoncu": 85, "tincidunt": 85, "suspendiss": 85, "volutpat": 85, "scelerisqu": 85, "tristiqu": 85, "aenean": 85, "condimentum": 85, "risu": 85, "accumsan": 85, "laoreet": 85, "maximu": 85, "sapien": 85, "ligula": 85, "fringilla": 85, "commodo": 85, "proin": 85, "et": 85, "pharetra": 85, "etiam": 85, "turpi": 85, "ant": 85, "luctu": 85, "vel": 85, "malesuada": 85, "dignissim": 85, "mi": 85, "nunc": 85, "augu": 85, "sem": 85, "cursu": 85, "nulla": 85, "pellentesqu": 85, "habit": 85, "morbi": 85, "senectu": 85, "netu": 85, "fame": 85, "ac": 85, "egesta": 85, "placerat": 85, "tortor": 85, "iaculi": 85, "venenati": 85, "cra": 85, "puru": 85, "ero": 85, "vehicula": 85, "fusc": 85, "auctor": 85, "phasellu": 85, "est": 85, "viverra": 85, "conval": 85, "faucibu": 85, "vulput": 85, "feli": 85, "sodal": 85, "maecena": 85, "congu": 85, "semper": 85, "enim": 85, "blandit": 85, "sollicitudin": 85, "urna": 85, "orci": 85, "lacu": 85, "quisqu": 85, "facilisi": 85, "hendrerit": 85, "curabitur": 85, "variu": 85, "bibendum": 85, "massa": 85, "magna": 85, "tempu": 85, "metu": 85, "nisi": 85, "pretium": 85, "leo": 85, "euismod": 85, "ultric": 85, "dapibu": 85, "lacinia": 85, "vivamu": 85, "molesti": 85, "hac": 85, "habitass": 85, "platea": 85, "dictumst": 85, "git": 86, "content": [86, 91, 114, 115, 117], "changelog": 86, "math": 86, "14": [86, 97, 107, 114, 115, 117], "17": 86, "18": [86, 89, 100, 111], "submenu": 86, "symlink": 87, "subtre": 87, "_theme": 87, "html_theme": 87, "html_theme_path": 87, "optimiz": 88, "tutori": [88, 91, 93, 94, 96, 98, 100, 102, 115, 117], "beginn": 88, "intro_to_torchscript_tutori": 88, "briefli": 88, "lenet": [88, 89], "lenetfeatextractor": 88, "conv1": [88, 89], "conv2d": [88, 96, 112], "conv2": [88, 89], "lenetclassifi": 88, "fc1": [88, 89], "120": [88, 89], "fc2": [88, 89], "84": [88, 89], "fc3": [88, 89], "feat": [88, 89, 111], "obvious": 88, "pathwai": 88, "input_data": [88, 90], "traced_model": 88, "pick": [88, 119], "script_model": [88, 92], "perspect": 88, "___torch_mangle_10": 88, "129": 88, "___torch_mangle_9": 88, "119": 88, "___torch_mangle_5": 88, "137": 88, "callmethod": 88, "138": 88, "38": 88, "39": 88, "torch_script_modul": [88, 89], "in_tensor": 88, "fly": 88, "lenet_script": [88, 89], "haven": 89, "acquir": 89, "dyanmo": 89, "almost": [89, 122], "trt_lenet_script": 89, "apr": 89, "56": 89, "04": 89, "credit": 89, "stop": 89, "argc": 89, "argv": 89, "cerr": 89, "cout": 89, "even": [89, 100, 108], "cppdoc": 89, "pretti": 89, "fashion": [89, 116], "enable_precis": 89, "And": 89, "convertgraphtotrtengin": 89, "engine_converted_from_jit": 89, "close": [89, 94, 111], "saw": 89, "576": 89, "346": 89, "539": 89, "0464": 89, "0383": 89, "0678": 89, "0932": 89, "1045": 89, "0805": 89, "0435": 89, "0818": 89, "0208": 89, "0358": 89, "cudafloattyp": 89, "0530": 89, "1691": 89, "2802": 89, "1502": 89, "1056": 89, "1549": 89, "input0": [89, 90], "1063": 89, "input1": [89, 90], "input2": 89, "28": 89, "29": 89, "33": 89, "35": 89, "36": 89, "37": 89, "compilegraph": [89, 91], "transform": [89, 91, 93, 97, 99, 101, 102, 104, 107, 109, 110, 111, 112, 113, 114, 115, 117, 121], "laid": 89, "translat": [89, 102], "aren": 89, "techniqu": [89, 91, 110, 120], "checkmethodoperatorsupport": 89, "modular": 89, "ship": [89, 120], "exhaust": 89, "109": 89, "addlay": 89, "yourself": 89, "question": [89, 94], "outself": 89, "flatten_convert": 89, "unwraptoint": 89, "in_shap": 89, "tovec": 89, "out_shap": 89, "shuffl": [89, 91, 112], "addshuffl": 89, "setreshapedimens": 89, "todim": 89, "extens": [89, 122], "ctype": 89, "cdll": 89, "contributor": 89, "upstream": 89, "pr": 89, "usecas": 90, "sole": [90, 91, 122], "individu": 90, "accuraci": [91, 111, 116], "loss": [91, 116], "infrastructur": [91, 114, 115, 117], "streamlin": [91, 93], "expos": [91, 96], "cpp_frontend": 91, "loading_data_recip": 91, "cifar10": [91, 112], "cstddef": 91, "ktrain": 91, "ktest": 91, "un": 91, "cs": 91, "toronto": 91, "edu": 91, "kriz": 91, "cifar": 91, "is_train": 91, "trim": 91, "use_subset": 91, "new_siz": 91, "mode_": 91, "images_": 91, "targets_": 91, "calibration_dataset": 91, "data_dir": 91, "320": 91, "4914": [91, 112], "4822": [91, 112], "4465": [91, 112], "2023": [91, 112], "1994": [91, 112], "2010": [91, 112], "dataloaderopt": 91, "worker": 91, "virtual": 91, "input_shap": [91, 123], "compile_spec": [91, 95, 105, 123], "kf16": [91, 123], "ki8": 91, "vgg16": [91, 112], "testing_dataset": [91, 112], "totensor": [91, 112, 114, 115, 117], "testing_dataload": [91, 112], "num_work": [91, 112], "vgg": [91, 112], "test_ptq_dataloader_calibr": 91, "test_ptq_trt_calibr": 91, "krizhevski": 91, "hinton": 91, "2009": 91, "tini": 91, "simonyan": 91, "zisserman": 91, "2014": 91, "recognit": [91, 116], "arxiv": 91, "preprint": 91, "1409": 91, "1556": 91, "_jit_to_backend": 92, "mobilenet_v2": 92, "pretrain": [92, 98, 100, 104, 105, 108, 114, 115, 116, 117], "cost": [93, 96, 98, 102, 120], "perhap": [93, 96], "overhead": [93, 96, 101, 108, 113, 120], "involv": [93, 101, 102, 108], "greatli": 93, "perviou": 93, "elementwis": [93, 94], "launch": [93, 96, 108, 114, 115, 117], "tensorrt_bind": 93, "trtp": 93, "tl": [93, 96], "elementwise_mul_kernel": 93, "block_siz": [93, 96], "thread": [93, 120], "pid": [93, 96], "program_id": [93, 96], "block_start": 93, "offset": 93, "x_val": 93, "y_val": 93, "wise": 93, "z_val": 93, "custom_op": [93, 96], "torchtrt_ex": [93, 96], "elementwise_mul": 93, "mutates_arg": [93, 96], "assert": [93, 96, 100, 102], "is_cuda": 93, "empty_lik": 93, "grid": 93, "cours": 93, "register_fak": [93, 96], "creation": 93, "less": 93, "boilerpl": [93, 94], "tensordesc": 93, "prior": [93, 94, 98, 118, 120], "x_t": 93, "as_tensor": [93, 96, 111], "y_t": 93, "z_t": 93, "generate_plugin_convert": 93, "supports_dynamic_shap": [93, 94], "my_model": [93, 96], "allclos": [93, 94, 100, 102], "ran": 93, "minut": [93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113], "auto_generate_convert": 93, "jupyt": [93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], "ipynb": [93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113], "gelu": 94, "sy": 94, "approxim": 94, "suppos": 94, "my_mod": 94, "ex_input": [94, 96], "baselin": 94, "my_standard_gelu": 94, "supersed": 94, "converterprior": 94, "vers": 94, "distinct": 94, "prepend": 94, "candid": 94, "primit": 94, "compiler_ir": 94, "focu": [94, 100], "interoper": 94, "aten_ops_gelu": 94, "sourceir": 94, "cheap": 94, "unqiu": 94, "op_count": 94, "get_op_count": 94, "nonloc": 94, "source_ir": 94, "lhs_val": 94, "rhs_val": 94, "x_7": 94, "x_8": 94, "79788456080000003": 94, "x_9": 94, "044714999999999998": 94, "x_10": 94, "x_11": 94, "x_12": 94, "x_13": 94, "x_14": 94, "x_15": 94, "my_custom_gelu": 94, "my_mod_erf": 94, "my_gelu_erf": 94, "notic": [94, 101], "converter_overload": 94, "geforcertx": 95, "4080": 95, "3080": 95, "cross_runtime_compilation_for_window": 95, "trt_resnet": 95, "argpars": [95, 112], "argumentpars": [95, 112], "comil": 95, "add_argu": [95, 112], "parse_arg": [95, 112], "manual_se": [95, 97, 98, 100, 102], "resnet18": [95, 98, 100, 102, 105, 108], "amd64": 95, "loaded_model": 95, "load_cross_compiled_exported_program": 95, "trt_output": 95, "cross_compile_for_window": 95, "sake": 96, "circular": 96, "red": [96, 111], "green": [96, 111], "twice": 96, "written": 96, "openai": 96, "formal": 96, "circ_pad_kernel": 96, "all_pads_0": 96, "all_pads_2": 96, "all_pads_4": 96, "all_pads_6": 96, "orig_dims_0": 96, "orig_dims_1": 96, "orig_dims_2": 96, "orig_dims_3": 96, "y_shape_1": 96, "y_shape_2": 96, "y_shape_3": 96, "x_len": 96, "y_len": 96, "mask_i": 96, "i3": 96, "i2": 96, "i1": 96, "i0": 96, "j0": 96, "j1": 96, "j2": 96, "j3": 96, "load_idx": 96, "mask_x": 96, "triton_circular_pad": 96, "out_dim": 96, "tolist": 96, "all_pad": 96, "zero": 96, "orig_dim": 96, "blocksiz": 96, "256": [96, 111, 112, 113, 114, 115, 117], "numblock": 96, "tracabl": 96, "prerequisit": 96, "fake": 96, "real": 96, "faketensor": 96, "autograd": 96, "beyond": 96, "register_autograd": 96, "padded_x": 96, "2604": 96, "4232": 96, "3041": 96, "0833": 96, "2461": 96, "1270": 96, "2450": 96, "4079": 96, "2887": 96, "2828": 96, "0373": 96, "0332": 96, "3143": 96, "6344": 96, "5638": 96, "1867": 96, "5068": 96, "4363": 96, "7937": 96, "3488": 96, "1350": 96, "7966": 96, "3517": 96, "1379": 96, "5537": 96, "1088": 96, "8950": 96, "0550": 96, "6163": 96, "0109": 96, "5245": 96, "9632": 96, "5686": 96, "3775": 96, "8162": 96, "4216": 96, "4311": 96, "1649": 96, "2091": 96, "3668": 96, "1006": 96, "1447": 96, "0352": 96, "7689": 96, "8131": 96, "_run_on_gpu_0": 96, "_run_on_acc_1": 96, "dry": 96, "50": [96, 116], "count": 96, "__": 96, "aggreg": 96, "stat": 96, "latenc": [96, 111, 113, 120], "abstractli": 96, "pkl": [96, 100], "cupi": 96, "gap": 96, "prealloc": 96, "circularpaddingplugin": 96, "ipluginv2dynamicext": 96, "field_collect": 96, "pluginfieldcollect": 96, "x_shape": 96, "num_output": 96, "plugin_namespac": 96, "plugin_typ": 96, "plugin_vers": 96, "get_output_datatyp": 96, "input_typ": 96, "get_output_dimens": 96, "output_index": 96, "dimsexpr": 96, "exprbuild": 96, "iexprbuild": 96, "output_dim": 96, "dimensionoper": 96, "configure_plugin": 96, "inp": 96, "dynamicplugintensordesc": 96, "x_dim": 96, "desc": 96, "supports_format_combin": 96, "po": 96, "in_out": 96, "plugintensordesc": 96, "num_input": 96, "enqueu": 96, "input_desc": 96, "output_desc": 96, "in_dtyp": 96, "a_mem": 96, "unownedmemori": 96, "items": 96, "c_mem": 96, "a_ptr": 96, "memorypoint": 96, "c_ptr": 96, "a_d": 96, "memptr": 96, "c_d": 96, "a_t": 96, "c_t": 96, "cloned_plugin": 96, "__dict__": 96, "circularpaddingplugincr": 96, "iplugincr": 96, "field_nam": 96, "pluginfield": 96, "pluginfieldtyp": 96, "create_plugin": 96, "pluginfieldcollection_": 96, "deserialize_plugin": 96, "pads_dict": 96, "creator": 96, "trt_plugin_registri": 96, "get_plugin_registri": 96, "register_cr": 96, "untyp": 96, "get_trt_tensor": 96, "set_layer_nam": 96, "recal": 96, "intlist": 96, "circular_padding_convert": 96, "retriev": 96, "elsewher": 96, "plugin_registri": 96, "plugin_cr": 96, "get_plugin_cr": 96, "field_config": 96, "eventu": 96, "freez": 96, "_input": 96, "add_plugin_v2": 96, "circular_padding_plugin": 96, "_run_on_acc_0": 96, "grad_fn": 96, "subbackward0": 96, "custom_kernel_plugin": 96, "engine_caching_exampl": [97, 98], "remove_timing_cach": [97, 98], "bertmodel": [97, 101, 107], "random": [97, 98, 100, 102, 111, 113], "seed": [97, 98, 100, 102], "from_pretrain": [97, 100, 101, 104, 106, 107, 109, 110, 111, 113], "uncas": [97, 101, 107, 116], "return_dict": 97, "randint": [97, 101, 107, 113], "compile_bert": 97, "enable_tim": [97, 98], "1st": [97, 98], "measur": [97, 98, 113], "2nd": [97, 98], "3rd": [97, 98], "slower": [97, 98], "messur": [97, 98], "compilation_kwarg": [97, 107], "torch_trt_bert_engine_cach": 97, "30": [97, 98, 100, 102, 105, 107, 111, 119], "synchron": [97, 98, 101, 113], "elapsed_tim": [97, 98], "millisecond": 97, "__name__": [97, 103, 107], "__main__": [97, 103, 107], "engine_caching_bert_exampl": 97, "paid": 98, "upfront": 98, "invalid": 98, "repeatedli": 98, "mitig": [98, 101], "explor": 98, "torch_trt": [98, 100, 102], "_default": 98, "_engine_cach": 98, "flexibl": [98, 122], "histor": 98, "barrier": 98, "reconstruct": 98, "ti": 98, "hash": 98, "magnitud": 98, "torch_compil": [98, 103, 105, 107, 108, 118, 122], "compiled_model": 98, "ms": [98, 101, 113], "dynamo_compil": 98, "example_input": 98, "200": 98, "dynamic_shap": [98, 118], "remot": 98, "systen": 98, "agnost": 98, "implent": 98, "ramenginecach": 98, "held": 98, "engine_cach": 98, "torch_compile_my_cach": 98, "_torch_compile_gpt2": [99, 114], "_torch_export_gpt2": [99, 114], "_torch_export_llama2": [99, 114], "_torch_export_sam2": [99, 114], "sphx_glr_tutorials__rendered_examples_dynamo_cross_runtime_compilation_for_window": [99, 114], "straightforward": 100, "especi": [100, 101], "hug": [100, 104, 109, 110], "face": [100, 104, 109, 110], "difficult": 100, "ever": [100, 104], "walk": [100, 102, 104, 109], "lora": [100, 102], "use_python": 100, "mutable_modul": 100, "model2": [100, 102], "expected_output": [100, 102], "refitted_output": [100, 102], "reload": [100, 122], "checkpoint": [100, 112], "civitai": 100, "12597": 100, "moxin": 100, "diffusionpipelin": [100, 106], "no_grad": [100, 101, 104, 109, 110, 112, 113], "model_id": [100, 106], "runwayml": 100, "hous": 100, "forest": 100, "shuimobysim": 100, "wuchangshuo": 100, "qualiti": 100, "worst": 100, "lowr": 100, "cloudi": 100, "watermark": 100, "pipe": [100, 106], "torch_dtyp": [100, 106], "unet": [100, 106], "negative_prompt": 100, "num_inference_step": 100, "without_lora_mut": 100, "jpg": [100, 111, 114, 115, 117], "procedur": 100, "load_lora_weight": 100, "stablediffusionapi": 100, "load_lora_embed": 100, "weight_nam": 100, "safetensor": 100, "adapter_nam": 100, "lora1": 100, "set_adapt": 100, "adapter_weight": 100, "fuse_lora": 100, "unload_lora_weight": 100, "with_lora_mut": 100, "mutable_torchtrt_module_exampl": 100, "act": 101, "concurr": [101, 114, 115, 117], "overlap": 101, "particularli": 101, "cycl": 101, "overal": [101, 116], "workload": 101, "enough": 101, "overshadow": 101, "cumul": 101, "priorit": 101, "comprehens": 101, "infrequ": 101, "timeit": [101, 113], "test_module_perf": 101, "warm": [101, 108, 113], "accur": 101, "start_tim": [101, 113], "default_tim": [101, 113], "end_tim": [101, 113], "time_m": 101, "median": 101, "metric": 101, "128": [101, 111, 112, 113], "enable_pre_allocated_output": 101, "out_trt": [101, 108], "pre_allocated_output_ctx": 101, "set_pre_allocated_output": 101, "time_opt": 101, "time_norm": 101, "time_opt_m": 101, "1000": [101, 112, 113, 114, 115, 117], "time_normal_m": 101, "3f": [101, 111], "pre_allocated_output_exampl": 101, "expens": 102, "occasion": [102, 103, 107], "adapt": 102, "infeas": 102, "focus": 102, "mostli": 102, "recogn": 102, "behalf": 102, "init": [102, 112], "sett": 102, "randomli": 102, "exp_program2": 102, "compiled_trt_ep": 102, "new_trt_gm": 102, "accomplish": 102, "gaurente": 102, "attempt": [102, 112, 118], "rebuild": 102, "heurist": 102, "refit_engine_exampl": 102, "x_out": 103, "y_out": 103, "x_y_out": 103, "invoc": 103, "sample_inputs_half": 103, "model_half": 103, "backend_kwarg": 103, "optimized_model_custom": 103, "exit": [103, 107], "2052": [103, 107], "compile_engine_and_inf": [103, 107], "art": [104, 111], "causal": 104, "unidirect": 104, "corpu": [104, 116], "huggingfac": [104, 109, 110, 116], "automodelforcausallm": [104, 109, 110, 113], "autotoken": [104, 109, 110], "success": 104, "max_length": 104, "token": [104, 109, 110, 116], "kv_cach": [104, 109, 110], "pad_token_id": [104, 109], "eos_token_id": [104, 109, 110], "attn_implement": [104, 109, 110, 113], "eager": [104, 109, 110, 113], "enjoi": [104, 109], "cute": [104, 109], "dog": [104, 109], "model_input": [104, 109, 110], "return_tensor": [104, 109, 110], "input_id": [104, 109, 110], "regress": [104, 109, 110], "pyt_gen_token": [104, 109, 110], "mark_dynam": [104, 105, 118], "1023": 104, "trt_gen_token": [104, 109, 110], "skip_special_token": [104, 109, 110], "torch_compile_gpt2": 104, "new_input": [105, 107], "new_output": [105, 107], "new_batch_size_input": 105, "new_batch_size_output": 105, "inputs_bs8": 105, "outputs_bs8": 105, "No": [105, 118], "inputs_bs12": 105, "outputs_bs12": 105, "compvi": 106, "majest": 106, "castl": 106, "cloud": 106, "majestic_castl": 106, "png": [106, 111], "enable_cudagraph": [108, 120], "cudagraphs_modul": 108, "set_cudagraphs_mod": [108, 120], "inputs_2": 108, "inputs_3": 108, "out_trt_2": 108, "out_trt_3": 108, "diminish": 108, "encapsul": 108, "wrapped_modul": 108, "captur": 108, "replai": 108, "samplemodel": 108, "intention": 108, "Of": 108, "manner": 108, "opt_with_graph_break": 108, "torch_export_cudagraph": 108, "export_llm": [109, 110, 113], "max_token": [109, 110, 113], "gpt2_ep": 109, "max_seq_len": [109, 110, 113], "parallel": 109, "paradigm": 109, "torch_export_gpt2": 109, "llama_path": [110, 113], "llama": [110, 113], "7b": [110, 113], "chat": [110, 113], "hf": [110, 113], "llama2_ep": [110, 113], "batch_decod": 110, "clean_up_tokenization_spac": 110, "solv": [110, 111, 114, 115, 117], "smaller": [110, 116], "subproblem": 110, "torch_export_llama2": 110, "foundat": 111, "promptabl": 111, "video": 111, "fork": 111, "condition": 111, "concaten": 111, "layernorm": 111, "reli": 111, "stabil": 111, "matplotlib": 111, "pyplot": 111, "plt": 111, "panda": 111, "pd": 111, "pil": [111, 114, 115, 117], "sam2_image_predictor": 111, "sam2imagepredictor": 111, "sam_compon": 111, "sam2fullmodel": 111, "agg": 111, "facebook": 111, "hiera": 111, "set_imag": 111, "predict": 111, "predictor": 111, "image_encod": 111, "forward_imag": 111, "_prepare_backbone_featur": 111, "directly_add_no_mem_emb": 111, "no_mem_emb": 111, "_featur": 111, "prompt_encod": 111, "sam_prompt_encod": 111, "mask_decod": 111, "sam_mask_decod": 111, "_bb_feat_siz": 111, "point_coord": 111, "point_label": 111, "backbone_out": 111, "vision_feat": 111, "feat_siz": 111, "image_emb": 111, "high_res_feat": 111, "high_res_featur": 111, "feat_level": 111, "sparse_embed": 111, "dense_embed": 111, "low_res_mask": 111, "iou_predict": 111, "image_embed": 111, "image_p": 111, "get_dense_p": 111, "sparse_prompt_embed": 111, "dense_prompt_embed": 111, "multimask_output": 111, "repeat_imag": 111, "sam_model": 111, "input_imag": 111, "truck": 111, "rgb": 111, "sam2transform": 111, "facebookresearch": 111, "preprocess_input": 111, "orig_hw": 111, "_transform": 111, "500": 111, "375": 111, "unnorm_coord": 111, "transform_coord": 111, "postprocess": 111, "plot": 111, "confid": 111, "score": 111, "postprocess_mask": 111, "resolut": [111, 116], "sorted_indic": 111, "argsort": 111, "show_mask": 111, "ax": 111, "random_color": 111, "255": 111, "144": 111, "astyp": 111, "mask_imag": 111, "cv2": 111, "contour": 111, "findcontour": 111, "retr_extern": 111, "chain_approx_non": 111, "smooth": 111, "approxpolydp": 111, "epsilon": 111, "drawcontour": 111, "thick": 111, "imshow": 111, "show_point": 111, "coord": 111, "marker_s": 111, "pos_point": 111, "neg_point": 111, "marker": 111, "edgecolor": 111, "linewidth": 111, "visualize_mask": 111, "title_prefix": 111, "overlaid": 111, "figsiz": 111, "gca": 111, "titl": 111, "fontsiz": 111, "savefig": 111, "_output_mask_": 111, "snippet": 111, "torchtrt_input": 111, "unnormalized_coordin": 111, "foreground": 111, "trt_out": 111, "trt_mask": 111, "trt_score": 111, "sam": 111, "torch_export_sam2": 111, "modelopt": 112, "mtq": 112, "export_torch_mod": 112, "layer_spec": 112, "num_class": 112, "init_weight": 112, "in_channel": 112, "pool": [112, 123], "maxpool2d": 112, "batchnorm2d": 112, "sequenti": 112, "avgpool": 112, "adaptiveavgpool2d": 112, "4096": 112, "dropout": 112, "_initialize_weight": 112, "kaiming_normal_": 112, "fan_out": 112, "nonlinear": 112, "constant_": 112, "elif": 112, "normal_": 112, "vgg16_cfg": 112, "ckpt": 112, "model_state_dict": 112, "device_count": 112, "ordereddict": 112, "new_state_dict": 112, "forget": 112, "training_dataset": 112, "randomcrop": 112, "randomhorizontalflip": 112, "training_dataload": 112, "drop_last": 112, "crit": 112, "crossentropyloss": 112, "calibrate_loop": 112, "pred": 112, "5f": 112, "acc": 112, "2f": 112, "quantize_typ": 112, "quant_cfg": 112, "int8_default_cfg": 112, "fp8_default_cfg": 112, "forward_loop": 112, "qdq": 112, "incomplet": 112, "functionaltensor": 112, "functionaltensormod": 112, "_trace": 112, "_export": 112, "float8_e4m3fn": 112, "class_prob": 112, "class_pr": 112, "test_prob": 112, "test_pr": 112, "test_loss": 112, "test_acc": 112, "vgg16_ptq": 112, "overcom": 113, "throughput": 113, "sometim": [113, 118], "outweigh": 113, "slowdown": 113, "hardwar": [113, 123], "experi": 113, "balanc": 113, "time_gener": 113, "output_seq_length": 113, "seq_len": [113, 118], "llm": 113, "input_seq": 113, "inputs_copi": 113, "decod": 113, "logit": 113, "next_token_logit": 113, "next_token": 113, "time_mean_m": 113, "isl": 113, "osl": 113, "solut": 113, "insight": 113, "weight_streaming_ctx": 113, "weight_stream": 113, "mean_lat": 113, "percentag": 113, "weight_budget_pct": 113, "device_budget": 113, "total_device_budget": 113, "permiss": 113, "equal": 113, "proportion": 113, "streamabl": 113, "streamable_budget": 113, "requested_budget": 113, "get_automatic_weight_streaming_budget": 113, "weight_streaming_exampl": 113, "hand": [114, 115, 117], "consider": [114, 115, 117], "grpc": [114, 115, 117], "aforement": [114, 115, 117], "familiar": [114, 115, 117], "resnet50": [114, 115, 117], "torchhub": [114, 115, 117], "docker": [114, 115, 117], "login": [114, 115, 117], "xx": [114, 115], "yy": [114, 115, 117], "mm": [114, 115, 117], "publish": [114, 115, 117], "pwd": [114, 115, 117], "scratch_spac": [114, 115, 117], "nvcr": [114, 115, 117], "py3": [114, 115, 117], "hub": [114, 115, 117], "_validate_not_a_forked_repo": [114, 115, 117], "ts_trt_model": [114, 115, 117], "triton_exampl": [114, 115, 117], "model_repositori": [114, 115, 117], "rm": [114, 115, 117], "highli": [114, 115, 116, 117], "suggest": [114, 115, 117], "simplest": [114, 115, 117], "pbtxt": [114, 115, 117], "data_typ": [114, 115, 117], "type_fp32": [114, 115, 117], "exact": [114, 115, 117], "encourag": [114, 115, 117], "proce": [114, 115, 117], "8000": [114, 115, 117], "8001": [114, 115, 117], "8002": [114, 115, 117], "tritonserv": [114, 115, 117], "spin": [114, 115, 117], "proceed": [114, 115, 117], "flesh": [114, 115, 117], "img1": [114, 115, 117], "hakaimagazin": [114, 115, 117], "wp": [114, 115, 117], "gulf": [114, 115, 117], "bird": [114, 115, 117], "attrdict": [114, 115, 117], "pyindex": [114, 115, 117], "tritoncli": [114, 115, 117], "jump": [114, 115, 117], "firstli": [114, 115, 117], "resiz": [114, 115, 117], "httpclient": [114, 115, 117], "triton_to_np_dtyp": [114, 115, 117], "rn50_preprocess": [114, 115, 117], "img_path": [114, 115, 117], "img": [114, 115, 117], "centercrop": [114, 115, 117], "485": [114, 115, 117], "456": [114, 115, 117], "406": [114, 115, 117], "229": [114, 115, 117], "transformed_img": [114, 115, 117], "inferenceservercli": [114, 115, 117], "localhost": [114, 115, 117], "secondli": [114, 115, 117], "obtain": [114, 115, 116, 117, 121], "inferinput": [114, 115, 117], "set_data_from_numpi": [114, 115, 117], "binary_data": [114, 115, 117], "inferrequestedoutput": [114, 115, 117], "class_count": [114, 115, 117], "lastli": [114, 115, 117], "send": [114, 115, 117], "model_nam": [114, 115, 117], "inference_output": [114, 115, 117], "as_numpi": [114, 115, 117], "468750": [114, 115, 117], "90": [114, 115, 117], "523438": [114, 115, 117], "92": [114, 115, 117], "664062": [114, 115, 117], "429688": [114, 115, 117], "136": [114, 115, 117], "234375": [114, 115, 117], "confidence_scor": [114, 115, 117], "classification_index": [114, 115, 117], "_rendered_examples_python": 114, "_rendered_examples_jupyt": 114, "acoust": 116, "speech": 116, "quartznet": 116, "contextnet": 116, "subword": 116, "piec": 116, "excit": 116, "se": 116, "audio": 116, "transcrib": 116, "speedup": 116, "feedforward": 116, "cnn": 116, "uniformli": 116, "compound": 116, "coeffici": 116, "b0": 116, "english": 116, "supervis": 116, "walkthrough": 116, "adopt": 116, "mobilenetv2": 116, "classif": 116, "imagenet": 116, "imagenett": 116, "qat": 116, "simul": 116, "eagerli": 118, "swap": 118, "exactli": 118, "_tracer": 118, "queri": 118, "attn_weight": 118, "compiler_dynamic_shap": 118, "inputs_bs2": 118, "mymodul": 119, "linear1": 119, "linear2": 119, "linear3": 119, "40": 119, "__myl_mulsum_myl0_0": 119, "layertyp": 119, "kgen": 119, "__mye116_dconst": 119, "__myln_k_arg__bb1_2": 119, "tacticnam": 119, "__myl_mulsum_0xfa6c1858aea1b13b03f90165d7149ec6": 119, "streamid": 119, "__myl_addresmulsum_myl0_1": 119, "__mye131_dconst": 119, "addmm_constant_0": 119, "addmm_add_broadcast_to_same_shape_lhs_broadcast_constantfloat": 119, "__myln_k_arg__bb1_3": 119, "__myl_addresmulsum_0xb3915d7ebfe48be45b6d49083479e12f": 119, "__myl_addresmulsumadd_myl0_2": 119, "__mye146_dconst": 119, "addmm_2_constant_0": 119, "addmm_2_add_broadcast_to_same_shape_lhs_broadcast_constantfloat": 119, "addmm_1_constant_0": 119, "addmm_1_add_broadcast_to_same_shape_lhs_broadcast_constantfloat": 119, "__myl_addresmulsumadd_0xcdd0085ad25f5f45ac5fafb72acbffd6": 119, "__myl_mulsumaddcas_myl0_0": 119, "__mye112_dconst": 119, "__myl_mulsumaddcas_0xacf8f5dd9be2f3e7bb09cdddeac6c936": 119, "__myl_resmulsumaddcas_myl0_1": 119, "__mye127_dconst": 119, "addmm_1_add_broadcast_to_same_shape_lhs_broadcast_constanthalf": 119, "__myl_resmulsumaddcas_0x5a3b318b5a1c97b7d5110c0291481337": 119, "__myl_resmulsumadd_myl0_2": 119, "__mye142_dconst": 119, "__myl_resmulsumadd_0x3fad91127c640fd6db771aa9cde67db0": 119, "libtorchtrt_runtim": 120, "dl_open": 120, "ld_preload": 120, "load_librari": 120, "wl": 120, "ltorchtrt": 120, "torchtrt_runtime_exampl": 120, "libtorchtrt_plugin": 120, "neglig": 120, "alert": 120, "switch": 120, "mismatch": 120, "crash": 120, "sacrif": 120, "incur": 120, "intens": 120, "trt_ep": 121, "stai": 121, "trt_t": 121, "ergonom": 122, "deleg": 122, "believ": 122, "amen": 122, "artifact": 122, "pack": 122, "year": 122, "superset": 122, "codebas": 122, "immedi": 122, "traceabl": 122, "scriptabl": 122, "neural": 123, "deconvolut": 123, "scripted_model": 123}, "objects": {"": [[5, 0, 1, "c.STR", "STR"], [9, 0, 1, "c.TORCHTRT_API", "TORCHTRT_API"], [11, 0, 1, "c.TORCHTRT_HIDDEN", "TORCHTRT_HIDDEN"], [7, 0, 1, "c.TORCH_TENSORRT_MAJOR_VERSION", "TORCH_TENSORRT_MAJOR_VERSION"], [8, 0, 1, "c.TORCH_TENSORRT_MINOR_VERSION", "TORCH_TENSORRT_MINOR_VERSION"], [6, 0, 1, "c.TORCH_TENSORRT_PATCH_VERSION", "TORCH_TENSORRT_PATCH_VERSION"], [12, 0, 1, "c.TORCH_TENSORRT_VERSION", "TORCH_TENSORRT_VERSION"], [10, 0, 1, "c.XSTR", "XSTR"], [0, 1, 1, "_CPPv4N14torch_tensorrt8DataTypeE", "torch_tensorrt::DataType"], [0, 2, 1, "_CPPv4N14torch_tensorrt8DataType8DataTypeE5Value", "torch_tensorrt::DataType::DataType"], [0, 2, 1, "_CPPv4N14torch_tensorrt8DataType8DataTypeEN3c1010ScalarTypeE", "torch_tensorrt::DataType::DataType"], [0, 2, 1, "_CPPv4N14torch_tensorrt8DataType8DataTypeEv", "torch_tensorrt::DataType::DataType"], [0, 3, 1, "_CPPv4N14torch_tensorrt8DataType8DataTypeE5Value", "torch_tensorrt::DataType::DataType::t"], [0, 3, 1, "_CPPv4N14torch_tensorrt8DataType8DataTypeEN3c1010ScalarTypeE", "torch_tensorrt::DataType::DataType::t"], [0, 4, 1, "_CPPv4N14torch_tensorrt8DataType5ValueE", "torch_tensorrt::DataType::Value"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value5kBoolE", "torch_tensorrt::DataType::Value::kBool"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value5kCharE", "torch_tensorrt::DataType::Value::kChar"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value7kDoubleE", "torch_tensorrt::DataType::Value::kDouble"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value6kFloatE", "torch_tensorrt::DataType::Value::kFloat"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value5kHalfE", "torch_tensorrt::DataType::Value::kHalf"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value4kIntE", "torch_tensorrt::DataType::Value::kInt"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value5kLongE", "torch_tensorrt::DataType::Value::kLong"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value8kUnknownE", "torch_tensorrt::DataType::Value::kUnknown"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value5kBoolE", "torch_tensorrt::DataType::kBool"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value5kCharE", "torch_tensorrt::DataType::kChar"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value7kDoubleE", "torch_tensorrt::DataType::kDouble"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value6kFloatE", "torch_tensorrt::DataType::kFloat"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value5kHalfE", "torch_tensorrt::DataType::kHalf"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value4kIntE", "torch_tensorrt::DataType::kInt"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value5kLongE", "torch_tensorrt::DataType::kLong"], [0, 5, 1, "_CPPv4N14torch_tensorrt8DataType5Value8kUnknownE", "torch_tensorrt::DataType::kUnknown"], [0, 2, 1, "_CPPv4NK14torch_tensorrt8DataTypecv5ValueEv", "torch_tensorrt::DataType::operator Value"], [0, 2, 1, "_CPPv4N14torch_tensorrt8DataTypecvbEv", "torch_tensorrt::DataType::operator bool"], [0, 2, 1, "_CPPv4NK14torch_tensorrt8DataTypeneE8DataType", "torch_tensorrt::DataType::operator!="], [0, 2, 1, "_CPPv4NK14torch_tensorrt8DataTypeneEN8DataType5ValueE", "torch_tensorrt::DataType::operator!="], [0, 3, 1, "_CPPv4NK14torch_tensorrt8DataTypeneE8DataType", "torch_tensorrt::DataType::operator!=::other"], [0, 3, 1, "_CPPv4NK14torch_tensorrt8DataTypeneEN8DataType5ValueE", "torch_tensorrt::DataType::operator!=::other"], [0, 2, 1, "_CPPv4NK14torch_tensorrt8DataTypeeqE8DataType", "torch_tensorrt::DataType::operator=="], [0, 2, 1, "_CPPv4NK14torch_tensorrt8DataTypeeqEN8DataType5ValueE", "torch_tensorrt::DataType::operator=="], [0, 3, 1, "_CPPv4NK14torch_tensorrt8DataTypeeqE8DataType", "torch_tensorrt::DataType::operator==::other"], [0, 3, 1, "_CPPv4NK14torch_tensorrt8DataTypeeqEN8DataType5ValueE", "torch_tensorrt::DataType::operator==::other"], [46, 1, 1, "_CPPv4N14torch_tensorrt6DeviceE", "torch_tensorrt::Device"], [46, 2, 1, "_CPPv4N14torch_tensorrt6Device6DeviceEv", "torch_tensorrt::Device::Device"], [1, 1, 1, "_CPPv4N14torch_tensorrt6Device10DeviceTypeE", "torch_tensorrt::Device::DeviceType"], [46, 1, 1, "_CPPv4N14torch_tensorrt6Device10DeviceTypeE", "torch_tensorrt::Device::DeviceType"], [1, 2, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value", "torch_tensorrt::Device::DeviceType::DeviceType"], [1, 2, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE", "torch_tensorrt::Device::DeviceType::DeviceType"], [1, 2, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEv", "torch_tensorrt::Device::DeviceType::DeviceType"], [46, 2, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value", "torch_tensorrt::Device::DeviceType::DeviceType"], [46, 2, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE", "torch_tensorrt::Device::DeviceType::DeviceType"], [46, 2, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEv", "torch_tensorrt::Device::DeviceType::DeviceType"], [1, 3, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value", "torch_tensorrt::Device::DeviceType::DeviceType::t"], [1, 3, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE", "torch_tensorrt::Device::DeviceType::DeviceType::t"], [46, 3, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeE5Value", "torch_tensorrt::Device::DeviceType::DeviceType::t"], [46, 3, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType10DeviceTypeEN3c1010DeviceTypeE", "torch_tensorrt::Device::DeviceType::DeviceType::t"], [1, 4, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType5ValueE", "torch_tensorrt::Device::DeviceType::Value"], [46, 4, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType5ValueE", "torch_tensorrt::Device::DeviceType::Value"], [1, 5, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kDLAE", "torch_tensorrt::Device::DeviceType::Value::kDLA"], [46, 5, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kDLAE", "torch_tensorrt::Device::DeviceType::Value::kDLA"], [1, 5, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kGPUE", "torch_tensorrt::Device::DeviceType::Value::kGPU"], [46, 5, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kGPUE", "torch_tensorrt::Device::DeviceType::Value::kGPU"], [1, 5, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kDLAE", "torch_tensorrt::Device::DeviceType::kDLA"], [1, 5, 1, "_CPPv4N14torch_tensorrt6Device10DeviceType5Value4kGPUE", "torch_tensorrt::Device::DeviceType::kGPU"], [1, 2, 1, "_CPPv4NK14torch_tensorrt6Device10DeviceTypecv5ValueEv", "torch_tensorrt::Device::DeviceType::operator Value"], [46, 2, 1, "_CPPv4NK14torch_tensorrt6Device10DeviceTypecv5ValueEv", "torch_tensorrt::Device::DeviceType::operator Value"], [1, 2, 1, "_CPPv4N14torch_tensorrt6Device10DeviceTypecvbEv", "torch_tensorrt::Device::DeviceType::operator bool"], [46, 2, 1, "_CPPv4N14torch_tensorrt6Device10DeviceTypecvbEv", "torch_tensorrt::Device::DeviceType::operator bool"], [1, 2, 1, "_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType", "torch_tensorrt::Device::DeviceType::operator!="], [46, 2, 1, "_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType", "torch_tensorrt::Device::DeviceType::operator!="], [1, 3, 1, "_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType", "torch_tensorrt::Device::DeviceType::operator!=::other"], [46, 3, 1, "_CPPv4NK14torch_tensorrt6Device10DeviceTypeneE10DeviceType", "torch_tensorrt::Device::DeviceType::operator!=::other"], [1, 2, 1, "_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType", "torch_tensorrt::Device::DeviceType::operator=="], [46, 2, 1, "_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType", "torch_tensorrt::Device::DeviceType::operator=="], [1, 3, 1, "_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType", "torch_tensorrt::Device::DeviceType::operator==::other"], [46, 3, 1, "_CPPv4NK14torch_tensorrt6Device10DeviceTypeeqE10DeviceType", "torch_tensorrt::Device::DeviceType::operator==::other"], [46, 6, 1, "_CPPv4N14torch_tensorrt6Device18allow_gpu_fallbackE", "torch_tensorrt::Device::allow_gpu_fallback"], [46, 6, 1, "_CPPv4N14torch_tensorrt6Device11device_typeE", "torch_tensorrt::Device::device_type"], [46, 6, 1, "_CPPv4N14torch_tensorrt6Device8dla_coreE", "torch_tensorrt::Device::dla_core"], [46, 6, 1, "_CPPv4N14torch_tensorrt6Device6gpu_idE", "torch_tensorrt::Device::gpu_id"], [17, 4, 1, "_CPPv4N14torch_tensorrt16EngineCapabilityE", "torch_tensorrt::EngineCapability"], [17, 5, 1, "_CPPv4N14torch_tensorrt16EngineCapability15kDLA_STANDALONEE", "torch_tensorrt::EngineCapability::kDLA_STANDALONE"], [17, 5, 1, "_CPPv4N14torch_tensorrt16EngineCapability7kSAFETYE", "torch_tensorrt::EngineCapability::kSAFETY"], [17, 5, 1, "_CPPv4N14torch_tensorrt16EngineCapability9kSTANDARDE", "torch_tensorrt::EngineCapability::kSTANDARD"], [47, 1, 1, "_CPPv4N14torch_tensorrt11GraphInputsE", "torch_tensorrt::GraphInputs"], [47, 6, 1, "_CPPv4N14torch_tensorrt11GraphInputs15input_signatureE", "torch_tensorrt::GraphInputs::input_signature"], [47, 6, 1, "_CPPv4N14torch_tensorrt11GraphInputs6inputsE", "torch_tensorrt::GraphInputs::inputs"], [48, 1, 1, "_CPPv4N14torch_tensorrt5InputE", "torch_tensorrt::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputEN2at6TensorE", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input"], [48, 2, 1, "_CPPv4N14torch_tensorrt5Input5InputEv", "torch_tensorrt::Input::Input"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::dtype"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::dtype"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::dtype"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::dtype"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::dtype"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::dtype"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::dtype"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::dtype"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::format"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::max_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::max_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::max_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::max_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::max_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::max_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::max_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::max_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::min_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::min_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::min_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::min_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::min_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::min_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::min_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::min_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::opt_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::opt_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::opt_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::opt_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::opt_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::opt_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::opt_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::opt_shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE12TensorFormat", "torch_tensorrt::Input::Input::shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataType12TensorFormat", "torch_tensorrt::Input::Input::shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::shape"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN2at6TensorE", "torch_tensorrt::Input::Input::tensor"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::tensor_domain"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::tensor_domain"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEEN3c108ArrayRefI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::tensor_domain"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputEN3c108ArrayRefI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::tensor_domain"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::tensor_domain"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEE8DataTypeNSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::tensor_domain"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::tensor_domain"], [48, 3, 1, "_CPPv4N14torch_tensorrt5Input5InputENSt6vectorI7int64_tEENSt6vectorIdEE12TensorFormat", "torch_tensorrt::Input::Input::tensor_domain"], [48, 6, 1, "_CPPv4N14torch_tensorrt5Input5dtypeE", "torch_tensorrt::Input::dtype"], [48, 6, 1, "_CPPv4N14torch_tensorrt5Input6formatE", "torch_tensorrt::Input::format"], [48, 6, 1, "_CPPv4N14torch_tensorrt5Input9max_shapeE", "torch_tensorrt::Input::max_shape"], [48, 6, 1, "_CPPv4N14torch_tensorrt5Input9min_shapeE", "torch_tensorrt::Input::min_shape"], [48, 6, 1, "_CPPv4N14torch_tensorrt5Input9opt_shapeE", "torch_tensorrt::Input::opt_shape"], [48, 6, 1, "_CPPv4N14torch_tensorrt5Input5shapeE", "torch_tensorrt::Input::shape"], [48, 6, 1, "_CPPv4N14torch_tensorrt5Input13tensor_domainE", "torch_tensorrt::Input::tensor_domain"], [2, 1, 1, "_CPPv4N14torch_tensorrt12TensorFormatE", "torch_tensorrt::TensorFormat"], [2, 2, 1, "_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatE5Value", "torch_tensorrt::TensorFormat::TensorFormat"], [2, 2, 1, "_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatEN2at12MemoryFormatE", "torch_tensorrt::TensorFormat::TensorFormat"], [2, 2, 1, "_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatEv", "torch_tensorrt::TensorFormat::TensorFormat"], [2, 3, 1, "_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatE5Value", "torch_tensorrt::TensorFormat::TensorFormat::t"], [2, 3, 1, "_CPPv4N14torch_tensorrt12TensorFormat12TensorFormatEN2at12MemoryFormatE", "torch_tensorrt::TensorFormat::TensorFormat::t"], [2, 4, 1, "_CPPv4N14torch_tensorrt12TensorFormat5ValueE", "torch_tensorrt::TensorFormat::Value"], [2, 5, 1, "_CPPv4N14torch_tensorrt12TensorFormat5Value13kChannelsLastE", "torch_tensorrt::TensorFormat::Value::kChannelsLast"], [2, 5, 1, "_CPPv4N14torch_tensorrt12TensorFormat5Value11kContiguousE", "torch_tensorrt::TensorFormat::Value::kContiguous"], [2, 5, 1, "_CPPv4N14torch_tensorrt12TensorFormat5Value8kUnknownE", "torch_tensorrt::TensorFormat::Value::kUnknown"], [2, 5, 1, "_CPPv4N14torch_tensorrt12TensorFormat5Value13kChannelsLastE", "torch_tensorrt::TensorFormat::kChannelsLast"], [2, 5, 1, "_CPPv4N14torch_tensorrt12TensorFormat5Value11kContiguousE", "torch_tensorrt::TensorFormat::kContiguous"], [2, 5, 1, "_CPPv4N14torch_tensorrt12TensorFormat5Value8kUnknownE", "torch_tensorrt::TensorFormat::kUnknown"], [2, 2, 1, "_CPPv4NK14torch_tensorrt12TensorFormatcv5ValueEv", "torch_tensorrt::TensorFormat::operator Value"], [2, 2, 1, "_CPPv4N14torch_tensorrt12TensorFormatcvbEv", "torch_tensorrt::TensorFormat::operator bool"], [2, 2, 1, "_CPPv4NK14torch_tensorrt12TensorFormatneE12TensorFormat", "torch_tensorrt::TensorFormat::operator!="], [2, 2, 1, "_CPPv4NK14torch_tensorrt12TensorFormatneEN12TensorFormat5ValueE", "torch_tensorrt::TensorFormat::operator!="], [2, 3, 1, "_CPPv4NK14torch_tensorrt12TensorFormatneE12TensorFormat", "torch_tensorrt::TensorFormat::operator!=::other"], [2, 3, 1, "_CPPv4NK14torch_tensorrt12TensorFormatneEN12TensorFormat5ValueE", "torch_tensorrt::TensorFormat::operator!=::other"], [2, 2, 1, "_CPPv4NK14torch_tensorrt12TensorFormateqE12TensorFormat", "torch_tensorrt::TensorFormat::operator=="], [2, 2, 1, "_CPPv4NK14torch_tensorrt12TensorFormateqEN12TensorFormat5ValueE", "torch_tensorrt::TensorFormat::operator=="], [2, 3, 1, "_CPPv4NK14torch_tensorrt12TensorFormateqE12TensorFormat", "torch_tensorrt::TensorFormat::operator==::other"], [2, 3, 1, "_CPPv4NK14torch_tensorrt12TensorFormateqEN12TensorFormat5ValueE", "torch_tensorrt::TensorFormat::operator==::other"], [36, 2, 1, "_CPPv4N14torch_tensorrt15dump_build_infoEv", "torch_tensorrt::dump_build_info"], [34, 2, 1, "_CPPv4N14torch_tensorrt14get_build_infoEv", "torch_tensorrt::get_build_info"], [16, 4, 1, "_CPPv4N14torch_tensorrt7logging5LevelE", "torch_tensorrt::logging::Level"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level6kDEBUGE", "torch_tensorrt::logging::Level::kDEBUG"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level6kERRORE", "torch_tensorrt::logging::Level::kERROR"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level6kGRAPHE", "torch_tensorrt::logging::Level::kGRAPH"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level5kINFOE", "torch_tensorrt::logging::Level::kINFO"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level15kINTERNAL_ERRORE", "torch_tensorrt::logging::Level::kINTERNAL_ERROR"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level8kWARNINGE", "torch_tensorrt::logging::Level::kWARNING"], [24, 2, 1, "_CPPv4N14torch_tensorrt7logging24get_is_colored_output_onEv", "torch_tensorrt::logging::get_is_colored_output_on"], [22, 2, 1, "_CPPv4N14torch_tensorrt7logging18get_logging_prefixEv", "torch_tensorrt::logging::get_logging_prefix"], [23, 2, 1, "_CPPv4N14torch_tensorrt7logging24get_reportable_log_levelEv", "torch_tensorrt::logging::get_reportable_log_level"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level6kDEBUGE", "torch_tensorrt::logging::kDEBUG"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level6kERRORE", "torch_tensorrt::logging::kERROR"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level6kGRAPHE", "torch_tensorrt::logging::kGRAPH"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level5kINFOE", "torch_tensorrt::logging::kINFO"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level15kINTERNAL_ERRORE", "torch_tensorrt::logging::kINTERNAL_ERROR"], [16, 5, 1, "_CPPv4N14torch_tensorrt7logging5Level8kWARNINGE", "torch_tensorrt::logging::kWARNING"], [26, 2, 1, "_CPPv4N14torch_tensorrt7logging3logE5LevelNSt6stringE", "torch_tensorrt::logging::log"], [26, 3, 1, "_CPPv4N14torch_tensorrt7logging3logE5LevelNSt6stringE", "torch_tensorrt::logging::log::lvl"], [26, 3, 1, "_CPPv4N14torch_tensorrt7logging3logE5LevelNSt6stringE", "torch_tensorrt::logging::log::msg"], [27, 2, 1, "_CPPv4N14torch_tensorrt7logging24set_is_colored_output_onEb", "torch_tensorrt::logging::set_is_colored_output_on"], [27, 3, 1, "_CPPv4N14torch_tensorrt7logging24set_is_colored_output_onEb", "torch_tensorrt::logging::set_is_colored_output_on::colored_output_on"], [28, 2, 1, "_CPPv4N14torch_tensorrt7logging18set_logging_prefixENSt6stringE", "torch_tensorrt::logging::set_logging_prefix"], [28, 3, 1, "_CPPv4N14torch_tensorrt7logging18set_logging_prefixENSt6stringE", "torch_tensorrt::logging::set_logging_prefix::prefix"], [25, 2, 1, "_CPPv4N14torch_tensorrt7logging24set_reportable_log_levelE5Level", "torch_tensorrt::logging::set_reportable_log_level"], [25, 3, 1, "_CPPv4N14torch_tensorrt7logging24set_reportable_log_levelE5Level", "torch_tensorrt::logging::set_reportable_log_level::lvl"], [3, 1, 1, "_CPPv4I0EN14torch_tensorrt3ptq19Int8CacheCalibratorE", "torch_tensorrt::ptq::Int8CacheCalibrator"], [3, 7, 1, "_CPPv4I0EN14torch_tensorrt3ptq19Int8CacheCalibratorE", "torch_tensorrt::ptq::Int8CacheCalibrator::Algorithm"], [3, 2, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator19Int8CacheCalibratorERKNSt6stringE", "torch_tensorrt::ptq::Int8CacheCalibrator::Int8CacheCalibrator"], [3, 3, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator19Int8CacheCalibratorERKNSt6stringE", "torch_tensorrt::ptq::Int8CacheCalibrator::Int8CacheCalibrator::cache_file_path"], [3, 2, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci", "torch_tensorrt::ptq::Int8CacheCalibrator::getBatch"], [3, 3, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci", "torch_tensorrt::ptq::Int8CacheCalibrator::getBatch::bindings"], [3, 3, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci", "torch_tensorrt::ptq::Int8CacheCalibrator::getBatch::names"], [3, 3, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator8getBatchEA_PvA_PKci", "torch_tensorrt::ptq::Int8CacheCalibrator::getBatch::nbBindings"], [3, 2, 1, "_CPPv4NK14torch_tensorrt3ptq19Int8CacheCalibrator12getBatchSizeEv", "torch_tensorrt::ptq::Int8CacheCalibrator::getBatchSize"], [3, 2, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibratorcvPN8nvinfer115IInt8CalibratorEEv", "torch_tensorrt::ptq::Int8CacheCalibrator::operator nvinfer1::IInt8Calibrator*"], [3, 2, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator20readCalibrationCacheER6size_t", "torch_tensorrt::ptq::Int8CacheCalibrator::readCalibrationCache"], [3, 3, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator20readCalibrationCacheER6size_t", "torch_tensorrt::ptq::Int8CacheCalibrator::readCalibrationCache::length"], [3, 2, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator21writeCalibrationCacheEPKv6size_t", "torch_tensorrt::ptq::Int8CacheCalibrator::writeCalibrationCache"], [3, 3, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator21writeCalibrationCacheEPKv6size_t", "torch_tensorrt::ptq::Int8CacheCalibrator::writeCalibrationCache::cache"], [3, 3, 1, "_CPPv4N14torch_tensorrt3ptq19Int8CacheCalibrator21writeCalibrationCacheEPKv6size_t", "torch_tensorrt::ptq::Int8CacheCalibrator::writeCalibrationCache::length"], [4, 1, 1, "_CPPv4I00EN14torch_tensorrt3ptq14Int8CalibratorE", "torch_tensorrt::ptq::Int8Calibrator"], [4, 7, 1, "_CPPv4I00EN14torch_tensorrt3ptq14Int8CalibratorE", "torch_tensorrt::ptq::Int8Calibrator::Algorithm"], [4, 7, 1, "_CPPv4I00EN14torch_tensorrt3ptq14Int8CalibratorE", "torch_tensorrt::ptq::Int8Calibrator::DataLoaderUniquePtr"], [4, 2, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb", "torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator"], [4, 3, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb", "torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator::cache_file_path"], [4, 3, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb", "torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator::dataloader"], [4, 3, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator14Int8CalibratorE19DataLoaderUniquePtrRKNSt6stringEb", "torch_tensorrt::ptq::Int8Calibrator::Int8Calibrator::use_cache"], [4, 2, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci", "torch_tensorrt::ptq::Int8Calibrator::getBatch"], [4, 3, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci", "torch_tensorrt::ptq::Int8Calibrator::getBatch::bindings"], [4, 3, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci", "torch_tensorrt::ptq::Int8Calibrator::getBatch::names"], [4, 3, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator8getBatchEA_PvA_PKci", "torch_tensorrt::ptq::Int8Calibrator::getBatch::nbBindings"], [4, 2, 1, "_CPPv4NK14torch_tensorrt3ptq14Int8Calibrator12getBatchSizeEv", "torch_tensorrt::ptq::Int8Calibrator::getBatchSize"], [4, 2, 1, "_CPPv4N14torch_tensorrt3ptq14Int8CalibratorcvPN8nvinfer115IInt8CalibratorEEv", "torch_tensorrt::ptq::Int8Calibrator::operator nvinfer1::IInt8Calibrator*"], [4, 2, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator20readCalibrationCacheER6size_t", "torch_tensorrt::ptq::Int8Calibrator::readCalibrationCache"], [4, 3, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator20readCalibrationCacheER6size_t", "torch_tensorrt::ptq::Int8Calibrator::readCalibrationCache::length"], [4, 2, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator21writeCalibrationCacheEPKv6size_t", "torch_tensorrt::ptq::Int8Calibrator::writeCalibrationCache"], [4, 3, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator21writeCalibrationCacheEPKv6size_t", "torch_tensorrt::ptq::Int8Calibrator::writeCalibrationCache::cache"], [4, 3, 1, "_CPPv4N14torch_tensorrt3ptq14Int8Calibrator21writeCalibrationCacheEPKv6size_t", "torch_tensorrt::ptq::Int8Calibrator::writeCalibrationCache::length"], [29, 2, 1, "_CPPv4I0EN14torch_tensorrt3ptq26make_int8_cache_calibratorE19Int8CacheCalibratorI9AlgorithmERKNSt6stringE", "torch_tensorrt::ptq::make_int8_cache_calibrator"], [29, 7, 1, "_CPPv4I0EN14torch_tensorrt3ptq26make_int8_cache_calibratorE19Int8CacheCalibratorI9AlgorithmERKNSt6stringE", "torch_tensorrt::ptq::make_int8_cache_calibrator::Algorithm"], [29, 3, 1, "_CPPv4I0EN14torch_tensorrt3ptq26make_int8_cache_calibratorE19Int8CacheCalibratorI9AlgorithmERKNSt6stringE", "torch_tensorrt::ptq::make_int8_cache_calibrator::cache_file_path"], [30, 2, 1, "_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb", "torch_tensorrt::ptq::make_int8_calibrator"], [30, 7, 1, "_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb", "torch_tensorrt::ptq::make_int8_calibrator::Algorithm"], [30, 7, 1, "_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb", "torch_tensorrt::ptq::make_int8_calibrator::DataLoader"], [30, 3, 1, "_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb", "torch_tensorrt::ptq::make_int8_calibrator::cache_file_path"], [30, 3, 1, "_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb", "torch_tensorrt::ptq::make_int8_calibrator::dataloader"], [30, 3, 1, "_CPPv4I00EN14torch_tensorrt3ptq20make_int8_calibratorE14Int8CalibratorI9Algorithm10DataLoaderE10DataLoaderRKNSt6stringEb", "torch_tensorrt::ptq::make_int8_calibrator::use_cache"], [35, 2, 1, "_CPPv4N14torch_tensorrt10set_deviceEKi", "torch_tensorrt::set_device"], [35, 3, 1, "_CPPv4N14torch_tensorrt10set_deviceEKi", "torch_tensorrt::set_device::gpu_id"], [49, 1, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpecE", "torch_tensorrt::torchscript::CompileSpec"], [49, 2, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecEN5torch3jit6IValueE", "torch_tensorrt::torchscript::CompileSpec::CompileSpec"], [49, 2, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorI5InputEE", "torch_tensorrt::torchscript::CompileSpec::CompileSpec"], [49, 2, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorIN3c108ArrayRefI7int64_tEEEE", "torch_tensorrt::torchscript::CompileSpec::CompileSpec"], [49, 2, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorINSt6vectorI7int64_tEEEE", "torch_tensorrt::torchscript::CompileSpec::CompileSpec"], [49, 3, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorIN3c108ArrayRefI7int64_tEEEE", "torch_tensorrt::torchscript::CompileSpec::CompileSpec::fixed_sizes"], [49, 3, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorINSt6vectorI7int64_tEEEE", "torch_tensorrt::torchscript::CompileSpec::CompileSpec::fixed_sizes"], [49, 3, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecEN5torch3jit6IValueE", "torch_tensorrt::torchscript::CompileSpec::CompileSpec::input_signature"], [49, 3, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec11CompileSpecENSt6vectorI5InputEE", "torch_tensorrt::torchscript::CompileSpec::CompileSpec::inputs"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec19allow_shape_tensorsE", "torch_tensorrt::torchscript::CompileSpec::allow_shape_tensors"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec10capabilityE", "torch_tensorrt::torchscript::CompileSpec::capability"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec5debugE", "torch_tensorrt::torchscript::CompileSpec::debug"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec6deviceE", "torch_tensorrt::torchscript::CompileSpec::device"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec12disable_tf32E", "torch_tensorrt::torchscript::CompileSpec::disable_tf32"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec20dla_global_dram_sizeE", "torch_tensorrt::torchscript::CompileSpec::dla_global_dram_size"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec19dla_local_dram_sizeE", "torch_tensorrt::torchscript::CompileSpec::dla_local_dram_size"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec13dla_sram_sizeE", "torch_tensorrt::torchscript::CompileSpec::dla_sram_size"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec18enabled_precisionsE", "torch_tensorrt::torchscript::CompileSpec::enabled_precisions"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec12graph_inputsE", "torch_tensorrt::torchscript::CompileSpec::graph_inputs"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec14min_block_sizeE", "torch_tensorrt::torchscript::CompileSpec::min_block_size"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec20num_avg_timing_itersE", "torch_tensorrt::torchscript::CompileSpec::num_avg_timing_iters"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec14ptq_calibratorE", "torch_tensorrt::torchscript::CompileSpec::ptq_calibrator"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec5refitE", "torch_tensorrt::torchscript::CompileSpec::refit"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec24require_full_compilationE", "torch_tensorrt::torchscript::CompileSpec::require_full_compilation"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec14sparse_weightsE", "torch_tensorrt::torchscript::CompileSpec::sparse_weights"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec22torch_executed_modulesE", "torch_tensorrt::torchscript::CompileSpec::torch_executed_modules"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec18torch_executed_opsE", "torch_tensorrt::torchscript::CompileSpec::torch_executed_ops"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec24truncate_long_and_doubleE", "torch_tensorrt::torchscript::CompileSpec::truncate_long_and_double"], [49, 6, 1, "_CPPv4N14torch_tensorrt11torchscript11CompileSpec14workspace_sizeE", "torch_tensorrt::torchscript::CompileSpec::workspace_size"], [31, 2, 1, "_CPPv4N14torch_tensorrt11torchscript29check_method_operator_supportERKN5torch3jit6ModuleENSt6stringE", "torch_tensorrt::torchscript::check_method_operator_support"], [31, 3, 1, "_CPPv4N14torch_tensorrt11torchscript29check_method_operator_supportERKN5torch3jit6ModuleENSt6stringE", "torch_tensorrt::torchscript::check_method_operator_support::method_name"], [31, 3, 1, "_CPPv4N14torch_tensorrt11torchscript29check_method_operator_supportERKN5torch3jit6ModuleENSt6stringE", "torch_tensorrt::torchscript::check_method_operator_support::module"], [32, 2, 1, "_CPPv4N14torch_tensorrt11torchscript7compileERKN5torch3jit6ModuleE11CompileSpec", "torch_tensorrt::torchscript::compile"], [32, 3, 1, "_CPPv4N14torch_tensorrt11torchscript7compileERKN5torch3jit6ModuleE11CompileSpec", "torch_tensorrt::torchscript::compile::info"], [32, 3, 1, "_CPPv4N14torch_tensorrt11torchscript7compileERKN5torch3jit6ModuleE11CompileSpec", "torch_tensorrt::torchscript::compile::module"], [37, 2, 1, "_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec", "torch_tensorrt::torchscript::convert_method_to_trt_engine"], [37, 3, 1, "_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec", "torch_tensorrt::torchscript::convert_method_to_trt_engine::info"], [37, 3, 1, "_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec", "torch_tensorrt::torchscript::convert_method_to_trt_engine::method_name"], [37, 3, 1, "_CPPv4N14torch_tensorrt11torchscript28convert_method_to_trt_engineERKN5torch3jit6ModuleENSt6stringE11CompileSpec", "torch_tensorrt::torchscript::convert_method_to_trt_engine::module"], [33, 2, 1, "_CPPv4N14torch_tensorrt11torchscript26embed_engine_in_new_moduleERKNSt6stringE6DeviceRKNSt6vectorINSt6stringEEERKNSt6vectorINSt6stringEEE", "torch_tensorrt::torchscript::embed_engine_in_new_module"], [33, 3, 1, "_CPPv4N14torch_tensorrt11torchscript26embed_engine_in_new_moduleERKNSt6stringE6DeviceRKNSt6vectorINSt6stringEEERKNSt6vectorINSt6stringEEE", "torch_tensorrt::torchscript::embed_engine_in_new_module::device"], [33, 3, 1, "_CPPv4N14torch_tensorrt11torchscript26embed_engine_in_new_moduleERKNSt6stringE6DeviceRKNSt6vectorINSt6stringEEERKNSt6vectorINSt6stringEEE", "torch_tensorrt::torchscript::embed_engine_in_new_module::engine"], [33, 3, 1, "_CPPv4N14torch_tensorrt11torchscript26embed_engine_in_new_moduleERKNSt6stringE6DeviceRKNSt6vectorINSt6stringEEERKNSt6vectorINSt6stringEEE", "torch_tensorrt::torchscript::embed_engine_in_new_module::input_binding_names"], [33, 3, 1, "_CPPv4N14torch_tensorrt11torchscript26embed_engine_in_new_moduleERKNSt6stringE6DeviceRKNSt6vectorINSt6stringEEERKNSt6vectorINSt6stringEEE", "torch_tensorrt::torchscript::embed_engine_in_new_module::output_binding_names"], [76, 8, 0, "-", "torch_tensorrt"]], "torch_tensorrt": [[76, 9, 1, "", "Device"], [76, 9, 1, "", "DeviceType"], [76, 9, 1, "", "EngineCapability"], [76, 9, 1, "", "Input"], [76, 9, 1, "", "MutableTorchTensorRTModule"], [76, 12, 1, "", "compile"], [76, 12, 1, "", "convert_method_to_trt_engine"], [76, 9, 1, "", "dtype"], [121, 8, 0, "-", "dynamo"], [72, 8, 0, "-", "fx"], [76, 12, 1, "", "load"], [73, 8, 0, "-", "logging"], [76, 9, 1, "", "memory_format"], [75, 8, 0, "-", "runtime"], [76, 12, 1, "", "save"], [77, 8, 0, "-", "ts"]], "torch_tensorrt.Device": [[76, 10, 1, "", "__init__"], [76, 11, 1, "", "device_type"], [76, 11, 1, "", "dla_core"], [76, 11, 1, "", "gpu_id"]], "torch_tensorrt.DeviceType": [[76, 11, 1, "", "DLA"], [76, 11, 1, "", "GPU"], [76, 11, 1, "", "UNKNOWN"], [76, 10, 1, "", "to"], [76, 10, 1, "", "try_from"], [76, 10, 1, "", "try_to"]], "torch_tensorrt.EngineCapability": [[76, 11, 1, "", "DLA_STANDALONE"], [76, 11, 1, "", "SAFETY"], [76, 11, 1, "", "STANDARD"], [76, 10, 1, "", "to"], [76, 10, 1, "", "try_from"], [76, 10, 1, "", "try_to"]], "torch_tensorrt.Input": [[76, 10, 1, "", "__init__"], [76, 11, 1, "", "dtype"], [76, 10, 1, "", "example_tensor"], [76, 11, 1, "", "format"], [76, 10, 1, "", "from_tensor"], [76, 10, 1, "", "from_tensors"]], "torch_tensorrt.MutableTorchTensorRTModule": [[76, 10, 1, "", "__init__"], [76, 10, 1, "", "compile"], [76, 10, 1, "", "refit_gm"]], "torch_tensorrt.dtype": [[76, 11, 1, "", "b"], [76, 11, 1, "", "bf16"], [76, 11, 1, "", "f16"], [76, 11, 1, "", "f32"], [76, 11, 1, "", "f64"], [76, 11, 1, "", "f8"], [76, 11, 1, "", "i32"], [76, 11, 1, "", "i64"], [76, 11, 1, "", "i8"], [76, 10, 1, "", "to"], [76, 10, 1, "", "try_from"], [76, 10, 1, "", "try_to"], [76, 11, 1, "", "u8"], [76, 11, 1, "", "unknown"]], "torch_tensorrt.dynamo": [[71, 9, 1, "", "CompilationSettings"], [71, 12, 1, "", "compile"], [71, 12, 1, "", "export"], [71, 12, 1, "", "refit_module_weights"], [71, 12, 1, "", "trace"]], "torch_tensorrt.fx": [[72, 9, 1, "", "InputTensorSpec"], [72, 9, 1, "", "TRTInterpreter"], [72, 9, 1, "", "TRTInterpreterResult"], [72, 9, 1, "", "TRTModule"], [72, 12, 1, "", "compile"]], "torch_tensorrt.logging": [[73, 9, 1, "", "debug"], [73, 9, 1, "", "errors"], [73, 9, 1, "", "graphs"], [73, 9, 1, "", "info"], [73, 9, 1, "", "internal_errors"], [73, 9, 1, "", "warnings"]], "torch_tensorrt.memory_format": [[76, 11, 1, "", "cdhw32"], [76, 11, 1, "", "chw16"], [76, 11, 1, "", "chw2"], [76, 11, 1, "", "chw32"], [76, 11, 1, "", "chw4"], [76, 11, 1, "", "dhwc"], [76, 11, 1, "", "dhwc8"], [76, 11, 1, "", "dla_hwc4"], [76, 11, 1, "", "dla_linear"], [76, 11, 1, "", "hwc"], [76, 11, 1, "", "hwc16"], [76, 11, 1, "", "hwc8"], [76, 11, 1, "", "linear"], [76, 10, 1, "", "to"], [76, 10, 1, "", "try_from"], [76, 10, 1, "", "try_to"]], "torch_tensorrt.runtime": [[75, 9, 1, "", "PythonTorchTensorRTModule"], [75, 9, 1, "", "TorchTensorRTModule"], [75, 12, 1, "", "set_multi_device_safe_mode"]], "torch_tensorrt.runtime.PythonTorchTensorRTModule": [[75, 10, 1, "", "__init__"], [75, 10, 1, "", "disable_profiling"], [75, 10, 1, "", "enable_profiling"], [75, 10, 1, "", "forward"], [75, 10, 1, "", "get_layer_info"], [75, 10, 1, "", "validate_input_shapes"]], "torch_tensorrt.runtime.TorchTensorRTModule": [[75, 10, 1, "", "__init__"], [75, 10, 1, "", "forward"], [75, 10, 1, "", "get_extra_state"], [75, 10, 1, "", "set_extra_state"]], "torch_tensorrt.ts": [[77, 12, 1, "", "TensorRTCompileSpec"], [77, 12, 1, "", "check_method_op_support"], [77, 12, 1, "", "compile"], [77, 12, 1, "", "convert_method_to_trt_engine"], [77, 12, 1, "", "embed_engine_in_new_module"], [74, 8, 0, "-", "ptq"]], "torch_tensorrt.ts.ptq": [[74, 9, 1, "", "CacheCalibrator"], [74, 9, 1, "", "CalibrationAlgo"], [74, 9, 1, "", "DataLoaderCalibrator"]], "torch_tensorrt.ts.ptq.CalibrationAlgo": [[74, 11, 1, "", "ENTROPY_CALIBRATION"], [74, 11, 1, "", "ENTROPY_CALIBRATION_2"], [74, 11, 1, "", "LEGACY_CALIBRATION"], [74, 11, 1, "", "MINMAX_CALIBRATION"]]}, "objtypes": {"0": "c:macro", "1": "cpp:class", "2": "cpp:function", "3": "cpp:functionParam", "4": "cpp:enum", "5": "cpp:enumerator", "6": "cpp:member", "7": "cpp:templateParam", "8": "py:module", "9": "py:class", "10": "py:method", "11": "py:attribute", "12": "py:function"}, "objnames": {"0": ["c", "macro", "C macro"], "1": ["cpp", "class", "C++ class"], "2": ["cpp", "function", "C++ function"], "3": ["cpp", "functionParam", "C++ function parameter"], "4": ["cpp", "enum", "C++ enum"], "5": ["cpp", "enumerator", "C++ enumerator"], "6": ["cpp", "member", "C++ member"], "7": ["cpp", "templateParam", "C++ template parameter"], "8": ["py", "module", "Python module"], "9": ["py", "class", "Python class"], "10": ["py", "method", "Python method"], "11": ["py", "attribute", "Python attribute"], "12": ["py", "function", "Python function"]}, "titleterms": {"class": [0, 1, 2, 3, 4, 20, 21, 38, 40, 41, 50, 71, 72, 74, 75, 76], "datatyp": 0, "document": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 17, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 46, 47, 48, 49, 61, 69, 85, 86], "devic": [1, 46, 120], "devicetyp": 1, "nest": [1, 46], "relationship": [1, 3, 4, 46, 48], "tensorformat": 2, "templat": [3, 4, 29, 30], "int8cachecalibr": 3, "inherit": [3, 4, 48], "base": [3, 4, 48, 80], "type": [3, 4, 46, 48, 54], "int8calibr": 4, "defin": [5, 6, 7, 8, 9, 10, 11, 12, 19, 50, 101, 104, 111, 112], "str": 5, "torch_tensorrt_patch_vers": 6, "torch_tensorrt_major_vers": 7, "torch_tensorrt_minor_vers": 8, "torchtrt_api": 9, "xstr": 10, "torchtrt_hidden": 11, "torch_tensorrt_vers": 12, "directori": [13, 14, 15, 51], "cpp": [13, 18, 19, 20, 21, 56], "subdirectori": [13, 14], "includ": [14, 18, 19, 20, 21], "torch_tensorrt": [15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 45, 67, 71, 72, 73, 74, 75, 76, 77, 105, 107, 108, 122], "file": [15, 18, 19, 20, 21, 42, 43, 44, 45, 50, 51], "enum": [16, 17, 18, 21, 38, 39, 50, 74, 76], "level": [16, 80, 82, 83], "enginecap": 17, "log": [18, 22, 23, 24, 25, 26, 27, 28, 39, 42, 73], "h": [18, 19, 20, 21, 42, 43, 44, 45, 56], "content": [18, 19, 20, 21, 38, 39, 40, 41, 80, 81, 82, 83, 84, 85], "definit": [18, 19, 20, 21, 83, 95, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113], "By": [18, 19], "namespac": [18, 19, 20, 21, 38, 39, 40, 41, 50], "function": [18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 50, 61, 71, 72, 75, 76, 77, 101, 112], "macro": [19, 43], "ptq": [20, 29, 30, 40, 44, 74, 91, 112], "get_logging_prefix": 22, "get_reportable_log_level": 23, "get_is_colored_output_on": 24, "set_reportable_log_level": 25, "set_is_colored_output_on": 27, "set_logging_prefix": 28, "make_int8_cache_calibr": 29, "make_int8_calibr": 30, "torchscript": [31, 32, 33, 37, 41, 60, 66, 69, 88, 89, 92, 121, 122], "check_method_operator_support": 31, "compil": [32, 57, 59, 63, 64, 66, 68, 69, 89, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 113, 116, 118, 119, 121, 122], "embed_engine_in_new_modul": 33, "get_build_info": 34, "set_devic": 35, "dump_build_info": 36, "convert_method_to_trt_engin": 37, "program": [42, 43, 44, 45, 63, 102, 120], "list": [42, 43, 44, 45, 83], "struct": [46, 47, 48, 49, 50], "graphinput": 47, "input": [48, 105, 107, 111], "compilespec": 49, "torch": [50, 61, 63, 64, 65, 66, 68, 69, 89, 90, 92, 94, 96, 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122], "tensorrt": [50, 58, 61, 63, 64, 65, 66, 69, 89, 90, 92, 93, 94, 96, 100, 102, 104, 109, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122], "c": [50, 61, 66, 68, 69, 89, 91, 116], "api": [50, 51, 61, 66, 69, 101], "hierarchi": 50, "full": [50, 51], "torchtrtc": [52, 89], "convers": [53, 57, 59, 60], "phase": [53, 55, 56, 57, 58, 59], "node": 53, "evalu": [53, 54, 70], "convert": [53, 54, 60, 65, 70, 89, 93, 94], "write": [54, 60, 62, 93, 94, 96], "dynamo": [54, 62, 69, 71, 109, 110, 111, 121, 122], "implement": [54, 94], "registr": 54, "capabl": 54, "valid": 54, "contract": [54, 60], "exampl": [54, 62, 82, 84, 95], "convolut": 54, "oper": [54, 64, 70, 89, 93, 96], "decomposit": 54, "addmm": [54, 55], "lower": [55, 57, 59, 62], "pass": [55, 62], "us": [55, 61, 89, 90, 92, 93, 94, 96, 101, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 116, 118], "eliminatecommonsubexpress": 55, "elimin": 55, "dead": 55, "code": [55, 69, 82], "except": 55, "Or": 55, "pattern": 55, "redund": 55, "guard": 55, "freez": 55, "modul": [55, 88, 89, 100, 108, 122], "fuse": 55, "branch": 55, "linear": 55, "flatten": 55, "graph": [55, 58, 108, 122], "tupl": 55, "fallback": [55, 56], "peephol": 55, "optim": [55, 68, 114, 115, 117], "remov": 55, "contigu": 55, "dropout": 55, "To": 55, "unpack": 55, "logsoftmax": 55, "unrol": 55, "loop": [55, 112], "replac": [55, 82], "tile": 55, "repeat": 55, "partit": [56, 57, 59], "partitoninfo": 56, "segmentedblock": 56, "shape_analysi": 56, "automat": [56, 93, 113], "depend": [56, 66, 99, 114], "awar": [56, 116], "runtim": [57, 58, 59, 75, 95, 101, 120], "background": [58, 60], "engin": [58, 65, 96, 97, 98], "executor": 58, "op": [58, 65, 96], "construct": 58, "result": 58, "serial": [58, 64, 68], "deseri": 58, "abi": [58, 66], "version": [58, 66], "format": [58, 122], "system": [59, 66, 93], "overview": [59, 67], "what": 60, "guarante": 60, "respons": 60, "context": [60, 80, 113], "arg": [60, 81], "weight": [60, 102, 111, 112, 113], "other": 60, "advic": 60, "link": [61, 82], "develop": 61, "avail": 61, "layer": 61, "expect": 61, "dimens": 61, "python": [61, 66, 68, 69, 88, 90, 91], "sometim": 61, "easier": 61, "read": 61, "pytorch": [61, 65, 69, 92, 93, 96, 104, 109, 110, 116], "native_op": 61, "ir": [61, 121, 122], "aten": 62, "basic": 62, "requir": 62, "regist": [62, 89], "export": [63, 68, 108, 118], "customiz": [63, 64], "set": [63, 64, 100, 103, 108, 114, 115, 117], "under": [63, 89, 118], "hood": [63, 89, 118], "trace": 63, "backend": [64, 105, 106, 107, 109, 110, 111], "kei": 64, "featur": [64, 101], "custom": [64, 89, 93, 94, 96, 98, 103, 118], "usag": [64, 102, 103], "after": 64, "model": [64, 65, 69, 93, 95, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 119, 121], "perform": [64, 101], "coverag": 64, "feasibl": 64, "dynam": [64, 105, 116, 118], "shape": [64, 105, 116, 118], "support": [64, 70], "recompil": [64, 105], "condit": 64, "fx": [65, 69, 72, 116, 122], "frontend": [65, 66, 69, 92, 104, 116, 122], "user": [65, 69], "guid": [65, 69], "acc": 65, "tracer": 65, "fx2trt": 65, "how": [65, 80, 91], "add": 65, "miss": 65, "instal": [66, 87], "precompil": 66, "binari": 66, "specif": 66, "cuda": [66, 103, 107, 108], "nightli": 66, "build": [66, 67, 80, 114, 115, 117], "onli": 66, "from": [66, 92], "sourc": 66, "linux": 66, "packag": [66, 120], "addit": 66, "option": [66, 68, 80, 81, 83, 105, 107, 113, 122], "distribut": 66, "No": 66, "librari": [66, 104, 111, 120], "standalon": 66, "releas": 66, "debug": 66, "pre": [66, 101, 112], "cxx11": 66, "choos": 66, "right": 66, "window": [66, 95], "step": [66, 68, 114, 115, 117], "advanc": [66, 102, 103], "setup": 66, "troubleshoot": 66, "altern": 66, "cmake": 66, "nativ": 66, "aarch64": 66, "jetson": 66, "prerequisit": [66, 67], "environ": 66, "cli": [66, 69], "jetpack": 67, "6": [67, 84], "1": [67, 68, 84, 114, 115, 117], "quick": [68, 93], "start": [68, 69], "2": [68, 84, 85, 114, 115, 117], "deploi": [68, 93, 112, 116, 120], "deploy": 68, "In": [69, 102], "framework": 69, "infer": [69, 101, 104, 105, 106, 107, 108, 112, 114, 115, 117], "nvidia": 69, "gpu": 69, "get": 69, "tutori": [69, 114], "zoo": [69, 99, 114], "contributor": 69, "indic": 69, "legaci": [69, 116, 122], "further": 69, "inform": 69, "current": 70, "through": 70, "ts": [74, 77, 122], "submodul": 76, "comput": 78, "time": [78, 122], "changelog": 79, "configur": 80, "project": 80, "wide": 80, "html": 80, "theme": [80, 86], "toc": 80, "page": 80, "tabl": [80, 81, 82, 83, 84, 85], "mod": 81, "test_py_modul": 81, "gener": [81, 93, 109, 110], "index": 81, "paramet": [81, 104], "data": 81, "paragraph": [82, 85], "markup": 82, "inlin": 82, "math": 82, "meta": 82, "block": 82, "liter": 82, "line": 82, "quot": 82, "doctest": 82, "emphas": 82, "number": [82, 83], "sidebar": 82, "ch": 82, "ien": 82, "The": [82, 89], "creativ": 82, "A": 82, "refer": [82, 111], "footnot": 82, "citat": [82, 91], "glossari": 82, "target": 82, "direct": 82, "center": 82, "text": 82, "imag": [82, 83, 111], "figur": 82, "admonit": 82, "And": 82, "wai": 82, "topic": 82, "rubric": 82, "titl": 82, "compound": 82, "download": [82, 87], "enumer": 83, "field": 83, "bullet": 83, "second": 83, "But": 83, "deeper": 83, "down": 83, "rabbit": 83, "hole": 83, "hlist": 83, "grid": 83, "giant": 83, "can": 83, "have": 83, "caption": [83, 86], "like": 83, "thi": [83, 86], "one": 83, "long": [84, 86], "sticki": 84, "nav": 84, "menu": [84, 86], "3": [84, 114, 115, 117], "4": 84, "5": 84, "7": 84, "8": 84, "9": 84, "10": 84, "11": 84, "12": 84, "13": 84, "14": 84, "15": 84, "16": 84, "17": 84, "18": 84, "19": 84, "20": 84, "submenu": 84, "subsubmenu": 84, "structur": 85, "element": 85, "section": 85, "subsect": 85, "subsubsect": 85, "demo": 86, "an": [86, 111], "incred": 86, "via": 87, "git": 87, "creat": [88, 91], "work": [88, 89], "save": [88, 100, 121], "disk": 88, "quickstart": 89, "unsupport": 89, "post": [91, 111], "train": [91, 112, 116], "quantiz": [91, 112, 116], "your": [91, 114, 115, 117], "own": 91, "applic": 91, "directli": 92, "kernel": [93, 96], "plugin": [93, 120], "our": [93, 94, 96], "overload": 94, "metadata": 94, "cross": 95, "import": [95, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113], "within": 96, "test": 96, "wrap": 96, "insert": 96, "cach": [97, 98, 102], "bert": [97, 107, 116], "jit": [98, 118], "aot": [98, 118], "mutabl": 100, "initi": [100, 111], "make": [100, 102], "modif": 100, "stabl": [100, 106], "diffus": [100, 106], "huggingfac": 100, "alloc": 101, "output": [101, 104, 109, 110, 111], "buffer": 101, "measur": 101, "load": [101, 111, 112, 121], "enabl": 101, "disabl": 101, "refit": 102, "new": 102, "standard": 102, "workflow": 102, "refitt": 102, "pretrain": [102, 111], "map": 102, "place": 102, "default": [103, 108], "cleanup": [103, 107], "driver": [103, 107], "error": [103, 107], "note": [103, 107], "gpt2": [104, 109], "necessari": 104, "decod": [104, 109, 110], "sentenc": [104, 109, 110], "resnet": 105, "argument": [105, 107], "avoid": 105, "specifi": 105, "befor": 105, "trt": 105, "cudagraph": [108, 120], "integr": 108, "contain": 108, "break": 108, "llama2": 110, "sam2": 111, "follow": 111, "preprocess": 111, "compon": 111, "process": 111, "visual": 111, "dataset": 112, "loss": 112, "calibr": 112, "tune": 112, "fp8": 112, "stream": 113, "run": 113, "budget": 113, "size": 113, "manag": 113, "serv": [114, 115, 116, 117], "triton": [114, 115, 117], "up": [114, 115, 117], "server": [114, 115, 117], "client": [114, 115, 117], "queri": [114, 115, 117], "notebook": 116, "citrinet": 116, "efficientnet": 116, "mask": 116, "languag": 116, "mlm": 116, "hug": 116, "face": 116, "transform": 116, "acceler": 116, "resnet50": 116, "lenet": 116, "deep": 116, "learn": 116, "object": 116, "detect": 116, "ssd": 116, "int8": 116, "constraint": 118, "mix": 119, "precis": 119, "libtorchtrt": 120, "so": 120, "multi": 120, "safe": 120, "mode": 120, "exportedprogram": 121, "b": 121, "explain": 122, "just": 122, "accept": 122, "return": 122, "ahead": 122, "dla": 123}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.intersphinx": 1, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1, "sphinx": 56}}) \ No newline at end of file diff --git a/docs/sg_execution_times.html b/docs/sg_execution_times.html index 2c94b618fe..f1a54aa2cc 100644 --- a/docs/sg_execution_times.html +++ b/docs/sg_execution_times.html @@ -10,7 +10,7 @@ - Computation times — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Computation times — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/src/pytorch-sphinx-theme/docs/changelog.html b/docs/src/pytorch-sphinx-theme/docs/changelog.html index f607ae42fa..e00fd7e95e 100644 --- a/docs/src/pytorch-sphinx-theme/docs/changelog.html +++ b/docs/src/pytorch-sphinx-theme/docs/changelog.html @@ -10,7 +10,7 @@ - Changelog — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Changelog — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/src/pytorch-sphinx-theme/docs/configuring.html b/docs/src/pytorch-sphinx-theme/docs/configuring.html index 210afca395..f9e9a102ab 100644 --- a/docs/src/pytorch-sphinx-theme/docs/configuring.html +++ b/docs/src/pytorch-sphinx-theme/docs/configuring.html @@ -10,7 +10,7 @@ - Configuration — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Configuration — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/src/pytorch-sphinx-theme/docs/demo/api.html b/docs/src/pytorch-sphinx-theme/docs/demo/api.html index 489e2be837..862fe8a1fd 100644 --- a/docs/src/pytorch-sphinx-theme/docs/demo/api.html +++ b/docs/src/pytorch-sphinx-theme/docs/demo/api.html @@ -10,7 +10,7 @@ - 5. :mod:`test_py_module` — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + 5. :mod:`test_py_module` — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/src/pytorch-sphinx-theme/docs/demo/demo.html b/docs/src/pytorch-sphinx-theme/docs/demo/demo.html index 98f090cfda..0854f182f3 100644 --- a/docs/src/pytorch-sphinx-theme/docs/demo/demo.html +++ b/docs/src/pytorch-sphinx-theme/docs/demo/demo.html @@ -12,7 +12,7 @@ - 3. Paragraph Level Markup — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + 3. Paragraph Level Markup — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -668,7 +668,7 @@

    3.4.4.

    3.4.5. Code Blocks

    # parsed-literal test
    -curl -O http://someurl/release-v2.6.0.dev0+50f29cb.tar-gz
    +curl -O http://someurl/release-v2.6.0.dev0+69c83d4.tar-gz

    Code Blocks can have captions.
    {
    @@ -696,7 +696,7 @@ 

    3.4.5.

    3.4.5.1. Emphasized lines with line numbers

    -
    1def some_function():
    +
    1def some_function():
     2    interesting = False
     3    print 'This line is highlighted.'
     4    print 'This one is not...'
    @@ -736,7 +736,7 @@ 

    3.5.1. 2"""Test Module for sphinx_rtd_theme.""" 3 4 - 5class Foo: + 5class Foo: 6 7 """Docstring for class Foo. 8 diff --git a/docs/src/pytorch-sphinx-theme/docs/demo/lists_tables.html b/docs/src/pytorch-sphinx-theme/docs/demo/lists_tables.html index 68589158d8..1c51249434 100644 --- a/docs/src/pytorch-sphinx-theme/docs/demo/lists_tables.html +++ b/docs/src/pytorch-sphinx-theme/docs/demo/lists_tables.html @@ -10,7 +10,7 @@ - 4. Lists & Tables — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + 4. Lists & Tables — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -698,7 +698,7 @@

    4.1.5.1. 2"""Test Module for sphinx_rtd_theme.""" 3 4 - 5class Foo: + 5class Foo: 6 7 """Docstring for class Foo. 8 diff --git a/docs/src/pytorch-sphinx-theme/docs/demo/long.html b/docs/src/pytorch-sphinx-theme/docs/demo/long.html index 5f31db58df..11a691a854 100644 --- a/docs/src/pytorch-sphinx-theme/docs/demo/long.html +++ b/docs/src/pytorch-sphinx-theme/docs/demo/long.html @@ -10,7 +10,7 @@ - 1. Long Sticky Nav — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + 1. Long Sticky Nav — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/src/pytorch-sphinx-theme/docs/demo/structure.html b/docs/src/pytorch-sphinx-theme/docs/demo/structure.html index 1f5e7eefa1..a3860962b2 100644 --- a/docs/src/pytorch-sphinx-theme/docs/demo/structure.html +++ b/docs/src/pytorch-sphinx-theme/docs/demo/structure.html @@ -10,7 +10,7 @@ - 1. Structural Elements — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + 1. Structural Elements — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/src/pytorch-sphinx-theme/docs/index.html b/docs/src/pytorch-sphinx-theme/docs/index.html index f7993f258a..16a1142103 100644 --- a/docs/src/pytorch-sphinx-theme/docs/index.html +++ b/docs/src/pytorch-sphinx-theme/docs/index.html @@ -10,7 +10,7 @@ - <no title> — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + <no title> — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/src/pytorch-sphinx-theme/docs/installing.html b/docs/src/pytorch-sphinx-theme/docs/installing.html index c51a4c6f58..563e6e0e5f 100644 --- a/docs/src/pytorch-sphinx-theme/docs/installing.html +++ b/docs/src/pytorch-sphinx-theme/docs/installing.html @@ -10,7 +10,7 @@ - Installation — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Installation — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/ts/creating_torchscript_module_in_python.html b/docs/ts/creating_torchscript_module_in_python.html index 3a4b800ccb..58eae88f63 100644 --- a/docs/ts/creating_torchscript_module_in_python.html +++ b/docs/ts/creating_torchscript_module_in_python.html @@ -10,7 +10,7 @@ - Creating a TorchScript Module — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Creating a TorchScript Module — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -479,30 +479,30 @@

    PyTorch programs are based around Module s which can be used to compose higher level modules. Modules contain a constructor to set up the modules, parameters and sub-modules and a forward function which describes how to use the parameters and submodules when the module is invoked.

    For example, we can define a LeNet module like this:

    -
     1import torch.nn as nn
    - 2import torch.nn.functional as F
    +
     1import torch.nn as nn
    + 2import torch.nn.functional as F
      3
      4
    - 5class LeNetFeatExtractor(nn.Module):
    - 6    def __init__(self):
    + 5class LeNetFeatExtractor(nn.Module):
    + 6    def __init__(self):
      7        super(LeNetFeatExtractor, self).__init__()
      8        self.conv1 = nn.Conv2d(1, 6, 3)
      9        self.conv2 = nn.Conv2d(6, 16, 3)
     10
    -11    def forward(self, x):
    +11    def forward(self, x):
     12        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
     13        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
     14        return x
     15
     16
    -17class LeNetClassifier(nn.Module):
    -18    def __init__(self):
    +17class LeNetClassifier(nn.Module):
    +18    def __init__(self):
     19        super(LeNetClassifier, self).__init__()
     20        self.fc1 = nn.Linear(16 * 6 * 6, 120)
     21        self.fc2 = nn.Linear(120, 84)
     22        self.fc3 = nn.Linear(84, 10)
     23
    -24    def forward(self, x):
    +24    def forward(self, x):
     25        x = torch.flatten(x, 1)
     26        x = F.relu(self.fc1(x))
     27        x = F.relu(self.fc2(x))
    @@ -510,13 +510,13 @@
     29        return x
     30
     31
    -32class LeNet(nn.Module):
    -33    def __init__(self):
    +32class LeNet(nn.Module):
    +33    def __init__(self):
     34        super(LeNet, self).__init__()
     35        self.feat = LeNetFeatExtractor()
     36        self.classifier = LeNetClassifier()
     37
    -38    def forward(self, x):
    +38    def forward(self, x):
     39        x = self.feat(x)
     40        x = self.classifier(x)
     41        return x
    @@ -529,7 +529,7 @@
     

    From here are two pathways for going from PyTorch Python code to TorchScript code: Tracing and Scripting.

    Tracing follows the path of execution when the module is called and records what happens. To trace an instance of our LeNet module, we can call torch.jit.trace with an example input.

    -
    import torch
    +
    import torch
     
     model = LeNet()
     input_data = torch.empty([1, 1, 32, 32])
    @@ -539,7 +539,7 @@
     

    Scripting actually inspects your code with a compiler and generates an equivalent TorchScript program. The difference is that since tracing is following the execution of your module, it cannot pick up control flow for instance. By working from the Python code, the compiler can include these components. We can run the script compiler on our LeNet module by calling torch.jit.script

    -
    import torch
    +
    import torch
     
     model = LeNet()
     script_model = torch.jit.script(model)
    @@ -581,7 +581,7 @@
     

    Saving TorchScript Module to Disk

    For either traced or scripted modules, you can save the module to disk with the following command

    -
    import torch
    +
    import torch
     
     model = LeNet()
     script_model = torch.jit.script(model)
    diff --git a/docs/ts/getting_started_with_cpp_api.html b/docs/ts/getting_started_with_cpp_api.html
    index 4654afc709..13e633b0b4 100644
    --- a/docs/ts/getting_started_with_cpp_api.html
    +++ b/docs/ts/getting_started_with_cpp_api.html
    @@ -10,7 +10,7 @@
     
       
       
    -  Using Torch-TensorRT in C++ — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
    +  Using Torch-TensorRT in C++ — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
       
     
       
    @@ -275,7 +275,7 @@
                   
                   
                     
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/ts/getting_started_with_python_api.html b/docs/ts/getting_started_with_python_api.html index 2e07765f42..e9fe650948 100644 --- a/docs/ts/getting_started_with_python_api.html +++ b/docs/ts/getting_started_with_python_api.html @@ -10,7 +10,7 @@ - Using Torch-TensorRT in Python — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Using Torch-TensorRT in Python — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -483,7 +483,7 @@ to Torch-TensorRT and you will be returned an optimized TorchScript module to run or add into another PyTorch module. Inputs is a list of torch_tensorrt.Input classes which define input Tensors’ shape, datatype and memory format. Alternatively, if your input is a more complex data type, such as a tuple or list of Tensors, you can use the input_signature argument to specify a collection-based input, such as (List[Tensor], Tuple[Tensor, Tensor]). See the second sample below for an example. You can also specify settings such as operating precision for the engine or target device. After compilation you can save the module just like any other module to load in a deployment application. In order to load a TensorRT/TorchScript module, make sure you first import torch_tensorrt.

    -
    import torch_tensorrt
    +
    import torch_tensorrt
     
     ...
     
    @@ -509,7 +509,7 @@
     
    # Sample using collection-based inputs via the input_signature argument
    -import torch_tensorrt
    +import torch_tensorrt
     
     ...
     
    @@ -534,8 +534,8 @@
     
    # Deployment application
    -import torch
    -import torch_tensorrt
    +import torch
    +import torch_tensorrt
     
     trt_ts_module = torch.jit.load("trt_ts_module.ts")
     input_data = input_data.to("cuda").half()
    diff --git a/docs/ts/ptq.html b/docs/ts/ptq.html
    index 3ec6d3d17a..d2543124dd 100644
    --- a/docs/ts/ptq.html
    +++ b/docs/ts/ptq.html
    @@ -10,7 +10,7 @@
     
       
       
    -  Post Training Quantization (PTQ) — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
    +  Post Training Quantization (PTQ) — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
       
     
       
    @@ -275,7 +275,7 @@
                   
                   
                     
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/ts/torchscript_frontend_from_pytorch.html b/docs/ts/torchscript_frontend_from_pytorch.html index c33bc75618..cc7c18e999 100644 --- a/docs/ts/torchscript_frontend_from_pytorch.html +++ b/docs/ts/torchscript_frontend_from_pytorch.html @@ -10,7 +10,7 @@ - Using Torch-TensorRT TorchScript Frontend Directly From PyTorch — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Using Torch-TensorRT TorchScript Frontend Directly From PyTorch — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -474,12 +474,12 @@

    You will now be able to directly access TensorRT from PyTorch APIs. The process to use this feature is very similar to the compilation workflow described in Using Torch-TensorRT in Python

    Start by loading torch_tensorrt into your application.

    -
    import torch
    -import torch_tensorrt
    +
    import torch
    +import torch_tensorrt
     

    Then given a TorchScript module, you can compile it with TensorRT using the torch._C._jit_to_backend("tensorrt", ...) API.

    -
    import torchvision.models as models
    +
    import torchvision.models as models
     
     model = models.mobilenet_v2(pretrained=True)
     script_model = torch.jit.script(model)
    diff --git a/docs/tutorials/_rendered_examples/dynamo/auto_generate_converters.html b/docs/tutorials/_rendered_examples/dynamo/auto_generate_converters.html
    index 79be79c4de..0024b6a1bc 100644
    --- a/docs/tutorials/_rendered_examples/dynamo/auto_generate_converters.html
    +++ b/docs/tutorials/_rendered_examples/dynamo/auto_generate_converters.html
    @@ -10,7 +10,7 @@
     
       
       
    -  Automatically Generate a Converter for a Custom Kernel — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
    +  Automatically Generate a Converter for a Custom Kernel — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
       
     
       
    @@ -275,7 +275,7 @@
                   
                   
                     
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -503,17 +503,17 @@

    Writing Custom Operators in PyTorch
    from typing import Tuple
    +
    @@ -568,7 +568,7 @@

    Writing Plugins for TensorRT using the Quick Deploy Plugin system

    @trtp.impl("torchtrt_ex::elementwise_mul")
    -def _(
    +def _(
         x: trtp.Tensor,
         y: trtp.Tensor,
         b: float,
    @@ -614,11 +614,11 @@ 

    Using our converter with a model
    class MyModel(torch.nn.Module):  # type: ignore[misc]
    -    def __init__(self):
    +
    class MyModel(torch.nn.Module):  # type: ignore[misc]
    +    def __init__(self):
             super().__init__()
     
    -    def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
    +    def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
             z = torch.add(x, y)
             res = torch.ops.torchtrt_ex.elementwise_mul.default(x, z, a=1)
     
    diff --git a/docs/tutorials/_rendered_examples/dynamo/converter_overloading.html b/docs/tutorials/_rendered_examples/dynamo/converter_overloading.html
    index 35a7bb7f8d..7f422325c2 100644
    --- a/docs/tutorials/_rendered_examples/dynamo/converter_overloading.html
    +++ b/docs/tutorials/_rendered_examples/dynamo/converter_overloading.html
    @@ -10,7 +10,7 @@
     
       
       
    -  Overloading Torch-TensorRT Converters with Custom Converters — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
    +  Overloading Torch-TensorRT Converters with Custom Converters — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
       
     
       
    @@ -275,7 +275,7 @@
                   
                   
                     
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -483,21 +483,21 @@ Torch-TensorRT would normally use.

    In this tutorial, we will demonstrate how to overload Torch-TensorRT’s conversion of the torch.nn.functional.gelu operation to TensorRT with a custom converter that uses a different implementation of the GeLU layer.

    -
    import logging
    -import sys
    +
    import logging
    +import sys
     
    -import torch
    -import torch_tensorrt
    +import torch
    +import torch_tensorrt
     

    GeLU has 2 modes in PyTorch, one using the erf function and the other using the tanh approximation. TensorRT natively supports both implementations as an activation layer, but suppose we want to use a custom implementation of GeLU in TensorRT only for tanh mode.

    -
    class GeLU(torch.nn.Module):
    -    def __init__(self, mode="tanh"):
    +
    class GeLU(torch.nn.Module):
    +    def __init__(self, mode="tanh"):
             super().__init__()
             self.mode = mode
     
    -    def forward(self, x):
    +    def forward(self, x):
             return torch.nn.functional.gelu(x, approximate=self.mode)
     
     
    @@ -519,13 +519,13 @@ 

    Writing a Custom Converter@torch_tensorrt.dynamo.conversion.dynamo_tensorrt_converter decorator. At a code level, converter takes the current conversion state (ConversionCtx), the next operator in the graph to convert, and the arguments to that node and returns the placeholder outputs for that operation, while as side-effect inserting the necessary TensorRT layers into the TensorRT network.

    -
    from typing import Dict, Sequence, Tuple, Union
    +
    from typing import Dict, Sequence, Tuple, Union
     
    -from torch.fx.node import Argument, Node, Target
    -from torch_tensorrt.dynamo import CompilationSettings
    -from torch_tensorrt.dynamo.conversion import ConversionContext
    +from torch.fx.node import Argument, Node, Target
    +from torch_tensorrt.dynamo import CompilationSettings
    +from torch_tensorrt.dynamo.conversion import ConversionContext
     
    -import tensorrt as trt
    +import tensorrt as trt
     
    @@ -567,7 +567,7 @@

    Converter Implementationtorch_tensorrt.dynamo.conversion.impl module and are designed to be composable and interoperable with raw-TensorRT implementations. In this case, we will use the Torch-TensorRT mul, add and tanh functions from impl to implement our alternative GeLU layer.

    -
    def aten_ops_gelu(
    +
    def aten_ops_gelu(
         ctx: ConversionContext,
         target: Target,
         args: Tuple[Argument, ...],
    @@ -576,13 +576,13 @@ 

    Converter Implementation) -> Union[trt.ITensor, Sequence[trt.ITensor]]: # The schema for torch.ops.aten.gelu.default is gelu(Tensor self, *, str approximate=’none’) -> Tensor - from torch_tensorrt.dynamo import SourceIR - from torch_tensorrt.dynamo.conversion import impl + from torch_tensorrt.dynamo import SourceIR + from torch_tensorrt.dynamo.conversion import impl # Cheap way to allow layer names to be unqiue op_count = 0 - def get_op_count(): + def get_op_count(): nonlocal op_count op_count += 1 return op_count diff --git a/docs/tutorials/_rendered_examples/dynamo/cross_runtime_compilation_for_windows.html b/docs/tutorials/_rendered_examples/dynamo/cross_runtime_compilation_for_windows.html index a3c2510eb8..6ecff409da 100644 --- a/docs/tutorials/_rendered_examples/dynamo/cross_runtime_compilation_for_windows.html +++ b/docs/tutorials/_rendered_examples/dynamo/cross_runtime_compilation_for_windows.html @@ -10,7 +10,7 @@ - Cross runtime compilation for windows example — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Cross runtime compilation for windows example — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -487,12 +487,12 @@

    Cross runtime compilation for windows example

    Imports and Model Definition

    -
    import argparse
    -import platform
    +
    import argparse
    +import platform
     
    -import torch
    -import torch_tensorrt as torchtrt
    -import torchvision.models as models
    +import torch
    +import torch_tensorrt as torchtrt
    +import torchvision.models as models
     
     PARSER = argparse.ArgumentParser(
         description="Cross runtime comilation for windows example: Resnet Model"
    diff --git a/docs/tutorials/_rendered_examples/dynamo/custom_kernel_plugins.html b/docs/tutorials/_rendered_examples/dynamo/custom_kernel_plugins.html
    index 048b1cdb5d..247e25e269 100644
    --- a/docs/tutorials/_rendered_examples/dynamo/custom_kernel_plugins.html
    +++ b/docs/tutorials/_rendered_examples/dynamo/custom_kernel_plugins.html
    @@ -10,7 +10,7 @@
     
       
       
    -  Using Custom Kernels within TensorRT Engines with Torch-TensorRT — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
    +  Using Custom Kernels within TensorRT Engines with Torch-TensorRT — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
       
     
       
    @@ -275,7 +275,7 @@
                   
                   
                     
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -497,18 +497,18 @@

    Writing Custom Operators in PyTorchOpenAI Triton

    When using custom kernels with PyTorch, it is recommended to take the additional step of registering them as formal operators in PyTorch. This will both make it easier to handle the operation in Torch-TensorRT and simplify its use in PyTorch. This could either be done as part of a C++ library or in Python. (see: Custom ops in C++ and Python custom ops for more details )

    -
    from typing import Any, Sequence
    +
    from typing import Any, Sequence
     
    -import numpy as np
    -import torch
    -import triton
    -import triton.language as tl
    -from torch.library import custom_op
    +import numpy as np
    +import torch
    +import triton
    +import triton.language as tl
    +from torch.library import custom_op
     
     
     # Defining the kernel to be run on the GPU
     @triton.jit  # type: ignore
    -def circ_pad_kernel(
    +def circ_pad_kernel(
         X: torch.Tensor,
         all_pads_0: tl.int32,
         all_pads_2: tl.int32,
    @@ -556,7 +556,7 @@ 

    Writing Custom Operators in PyTorch# The launch code wrapped to expose it as a custom operator in our namespace @custom_op("torchtrt_ex::triton_circular_pad", mutates_args=()) # type: ignore[misc] -def triton_circular_pad(x: torch.Tensor, padding: Sequence[int]) -> torch.Tensor: +def triton_circular_pad(x: torch.Tensor, padding: Sequence[int]) -> torch.Tensor: out_dims = np.ones(len(x.shape), dtype=np.int32) for i in range(np.size(padding) // 2): out_dims[len(out_dims) - i - 1] = ( @@ -633,7 +633,7 @@

    Testing our custom ophere). In our case we can just use the native circular pad operation as our FakeTensor implementation.

    @torch.library.register_fake("torchtrt_ex::triton_circular_pad")  # type: ignore[misc]
    -def _(x: torch.Tensor, padding: Sequence[int]) -> torch.Tensor:
    +def _(x: torch.Tensor, padding: Sequence[int]) -> torch.Tensor:
         return torch.nn.functional.pad(x, padding, "circular")
     
     
    @@ -644,19 +644,19 @@ 

    Testing our custom op

    Using the Custom Operator in a Model

    We can now create models using our custom op. Here is a small example one that uses both natively supported operators (Convolution) and our custom op.

    -
    from typing import Sequence
    +
    from typing import Sequence
     
    -from torch import nn
    +from torch import nn
     
     
    -class MyModel(nn.Module):  # type: ignore[misc]
    -    def __init__(self, padding: Sequence[int]):
    +class MyModel(nn.Module):  # type: ignore[misc]
    +    def __init__(self, padding: Sequence[int]):
             super().__init__()
     
             self.padding = padding
             self.conv = nn.Conv2d(1, 5, kernel_size=3)
     
    -    def forward(self, x: torch.Tensor) -> torch.Tensor:
    +    def forward(self, x: torch.Tensor) -> torch.Tensor:
             padded_x = torch.ops.torchtrt_ex.triton_circular_pad(x, self.padding)
             y = self.conv(padded_x)
     
    @@ -689,7 +689,7 @@ 

    Using the Custom Operator in a Model
    import torch_tensorrt as torchtrt
    +
    import torch_tensorrt as torchtrt
     
     torchtrt.compile(
         my_model,
    @@ -748,17 +748,17 @@ 

    Wrapping Custom Kernels to use in TensorRThere. From a high level, similar to PyTorch you will need to define systems to handle setting up the operator, calculating the effect of the operation abstractly, serializing the op and the actual mechanics of calling the implementation of the op in the engine.

    -
    import pickle as pkl
    -from typing import Any, List, Optional, Self
    +
    import pickle as pkl
    +from typing import Any, List, Optional, Self
     
    -import cupy as cp  # Needed to work around API gaps in PyTorch to build torch.Tensors around preallocated CUDA memory
    -import numpy as np
    +import cupy as cp  # Needed to work around API gaps in PyTorch to build torch.Tensors around preallocated CUDA memory
    +import numpy as np
     
    -import tensorrt as trt
    +import tensorrt as trt
     
     
    -class CircularPaddingPlugin(trt.IPluginV2DynamicExt):  # type: ignore[misc]
    -    def __init__(
    +class CircularPaddingPlugin(trt.IPluginV2DynamicExt):  # type: ignore[misc]
    +    def __init__(
             self, field_collection: Optional[List[trt.PluginFieldCollection]] = None
         ):
             super().__init__()
    @@ -774,12 +774,12 @@ 

    Wrapping Custom Kernels to use in TensorRTassert field_collection[0].name == "pads" self.pads = field_collection[0].data - def get_output_datatype( + def get_output_datatype( self, index: int, input_types: List[trt.DataType] ) -> trt.DataType: return input_types[0] - def get_output_dimensions( + def get_output_dimensions( self, output_index: int, inputs: List[trt.DimsExprs], @@ -797,7 +797,7 @@

    Wrapping Custom Kernels to use in TensorRTreturn output_dims - def configure_plugin( + def configure_plugin( self, inp: List[trt.DynamicPluginTensorDesc], out: List[trt.DynamicPluginTensorDesc], @@ -807,10 +807,10 @@

    Wrapping Custom Kernels to use in TensorRTfor i in range(len(X_dims)): self.X_shape[i] = X_dims[i] - def serialize(self) -> bytes: + def serialize(self) -> bytes: return pkl.dumps({"pads": self.pads}) - def supports_format_combination( + def supports_format_combination( self, pos: int, in_out: List[trt.PluginTensorDesc], num_inputs: int ) -> bool: assert num_inputs == 1 @@ -832,7 +832,7 @@

    Wrapping Custom Kernels to use in TensorRTreturn False - def enqueue( + def enqueue( self, input_desc: List[trt.PluginTensorDesc], output_desc: List[trt.PluginTensorDesc], @@ -900,14 +900,14 @@

    Wrapping Custom Kernels to use in TensorRTBLOCK_SIZE=256, ) - def clone(self) -> Self: + def clone(self) -> Self: cloned_plugin = CircularPaddingPlugin() cloned_plugin.__dict__.update(self.__dict__) return cloned_plugin -class CircularPaddingPluginCreator(trt.IPluginCreator): # type: ignore[misc] - def __init__(self): +class CircularPaddingPluginCreator(trt.IPluginCreator): # type: ignore[misc] + def __init__(self): super().__init__() self.name = "CircularPaddingPlugin" @@ -917,12 +917,12 @@

    Wrapping Custom Kernels to use in TensorRT[trt.PluginField("pads", np.array([]), trt.PluginFieldType.INT32)] ) - def create_plugin( + def create_plugin( self, name: str, field_collection: trt.PluginFieldCollection_ ) -> CircularPaddingPlugin: return CircularPaddingPlugin(field_collection) - def deserialize_plugin(self, name: str, data: bytes) -> CircularPaddingPlugin: + def deserialize_plugin(self, name: str, data: bytes) -> CircularPaddingPlugin: pads_dict = pkl.loads(data) print(pads_dict) deserialized = CircularPaddingPlugin() @@ -941,15 +941,15 @@

    Wrapping Custom Kernels to use in TensorRT

    Now with our TensorRT plugin, we can create a converter so that Torch-TensorRT knows to insert our plugin in place of our custom circular padding operator. More information on writing converters can be found here

    -
    from typing import Dict, Tuple
    +
    from typing import Dict, Tuple
     
    -from torch.fx.node import Argument, Target
    -from torch_tensorrt.dynamo.conversion import (
    +from torch.fx.node import Argument, Target
    +from torch_tensorrt.dynamo.conversion import (
         ConversionContext,
         dynamo_tensorrt_converter,
     )
    -from torch_tensorrt.dynamo.conversion.converter_utils import get_trt_tensor
    -from torch_tensorrt.fx.converters.converter_utils import set_layer_name
    +from torch_tensorrt.dynamo.conversion.converter_utils import get_trt_tensor
    +from torch_tensorrt.fx.converters.converter_utils import set_layer_name
     
     
     @dynamo_tensorrt_converter(
    @@ -957,7 +957,7 @@ 

    Using Torch-TensorRT to Insert the Kernel) # type: ignore # Recall the schema defined above: # torch.ops.torchtrt_ex.triton_circular_pad.default(Tensor x, IntList padding) -> Tensor -def circular_padding_converter( +def circular_padding_converter( ctx: ConversionContext, target: Target, args: Tuple[Argument, ...], diff --git a/docs/tutorials/_rendered_examples/dynamo/engine_caching_bert_example.html b/docs/tutorials/_rendered_examples/dynamo/engine_caching_bert_example.html index 1c3b0bcdaf..1d53ee0068 100644 --- a/docs/tutorials/_rendered_examples/dynamo/engine_caching_bert_example.html +++ b/docs/tutorials/_rendered_examples/dynamo/engine_caching_bert_example.html @@ -10,7 +10,7 @@ - Engine Caching (BERT) — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Engine Caching (BERT) — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -479,11 +479,11 @@

    Engine Caching (BERT)

    Small caching example on BERT.

    -
    import numpy as np
    -import torch
    -import torch_tensorrt
    -from engine_caching_example import remove_timing_cache
    -from transformers import BertModel
    +
    import numpy as np
    +import torch
    +import torch_tensorrt
    +from engine_caching_example import remove_timing_cache
    +from transformers import BertModel
     
     np.random.seed(0)
     torch.manual_seed(0)
    @@ -495,7 +495,7 @@
     ]
     
     
    -def compile_bert(iterations=3):
    +def compile_bert(iterations=3):
         times = []
         start = torch.cuda.Event(enable_timing=True)
         end = torch.cuda.Event(enable_timing=True)
    diff --git a/docs/tutorials/_rendered_examples/dynamo/engine_caching_example.html b/docs/tutorials/_rendered_examples/dynamo/engine_caching_example.html
    index adc5937cef..c36f999cb6 100644
    --- a/docs/tutorials/_rendered_examples/dynamo/engine_caching_example.html
    +++ b/docs/tutorials/_rendered_examples/dynamo/engine_caching_example.html
    @@ -10,7 +10,7 @@
     
       
       
    -  Engine Caching — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
    +  Engine Caching — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
       
     
       
    @@ -275,7 +275,7 @@
                   
                   
                     
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -496,15 +496,15 @@

    The example uses a pre-trained ResNet18 model and shows the differences between compilation without caching, with caching enabled, and when reusing cached engines.

    -
    import os
    -from typing import Dict, Optional
    +
    import os
    +from typing import Dict, Optional
     
    -import numpy as np
    -import torch
    -import torch_tensorrt as torch_trt
    -import torchvision.models as models
    -from torch_tensorrt.dynamo._defaults import TIMING_CACHE_PATH
    -from torch_tensorrt.dynamo._engine_cache import BaseEngineCache
    +import numpy as np
    +import torch
    +import torch_tensorrt as torch_trt
    +import torchvision.models as models
    +from torch_tensorrt.dynamo._defaults import TIMING_CACHE_PATH
    +from torch_tensorrt.dynamo._engine_cache import BaseEngineCache
     
     np.random.seed(0)
     torch.manual_seed(0)
    @@ -516,7 +516,7 @@
     use_python_runtime = False
     
     
    -def remove_timing_cache(path=TIMING_CACHE_PATH):
    +def remove_timing_cache(path=TIMING_CACHE_PATH):
         if os.path.exists(path):
             os.remove(path)
     
    @@ -534,7 +534,7 @@

    Engine Caching for JIT Compilationcache_built_engines=True), the engine must be refittable (immutable_weights=False). See Refitting Torch-TensorRT Programs with New Weights for more details.

    -
    def torch_compile(iterations=3):
    +
    def torch_compile(iterations=3):
         times = []
         start = torch.cuda.Event(enable_timing=True)
         end = torch.cuda.Event(enable_timing=True)
    @@ -590,7 +590,7 @@ 

    Engine Caching for AOT Compilation
    def dynamo_compile(iterations=3):
    +
    def dynamo_compile(iterations=3):
         times = []
         start = torch.cuda.Event(enable_timing=True)
         end = torch.cuda.Event(enable_timing=True)
    @@ -660,8 +660,8 @@ 

    Custom Engine CacheRAMEngineCache.

    -
    class RAMEngineCache(BaseEngineCache):
    -    def __init__(
    +
    class RAMEngineCache(BaseEngineCache):
    +    def __init__(
             self,
         ) -> None:
             """
    @@ -669,7 +669,7 @@ 

    Custom Engine Cache """ self.engine_cache: Dict[str, bytes] = {} - def save( + def save( self, hash: str, blob: bytes, @@ -686,7 +686,7 @@

    Custom Engine Cache """ self.engine_cache[hash] = blob - def load(self, hash: str) -> Optional[bytes]: + def load(self, hash: str) -> Optional[bytes]: """ Load the engine blob from the cache. @@ -702,7 +702,7 @@

    Custom Engine Cachereturn None -def torch_compile_my_cache(iterations=3): +def torch_compile_my_cache(iterations=3): times = [] engine_cache = RAMEngineCache() start = torch.cuda.Event(enable_timing=True) diff --git a/docs/tutorials/_rendered_examples/dynamo/index.html b/docs/tutorials/_rendered_examples/dynamo/index.html index 1a8b6d73be..bcfee9b65e 100644 --- a/docs/tutorials/_rendered_examples/dynamo/index.html +++ b/docs/tutorials/_rendered_examples/dynamo/index.html @@ -10,7 +10,7 @@ - Dependencies — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Dependencies — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/tutorials/_rendered_examples/dynamo/mutable_torchtrt_module_example.html b/docs/tutorials/_rendered_examples/dynamo/mutable_torchtrt_module_example.html index 95d9afb60c..8e210b12f3 100644 --- a/docs/tutorials/_rendered_examples/dynamo/mutable_torchtrt_module_example.html +++ b/docs/tutorials/_rendered_examples/dynamo/mutable_torchtrt_module_example.html @@ -10,7 +10,7 @@ - Mutable Torch TensorRT Module — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Mutable Torch TensorRT Module — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -486,10 +486,10 @@ 1. Sample workflow of Mutable Torch TensorRT Module with ResNet 18 2. Save a Mutable Torch TensorRT Module 3. Integration with Huggingface pipeline in LoRA use case

    -
    import numpy as np
    -import torch
    -import torch_tensorrt as torch_trt
    -import torchvision.models as models
    +
    import numpy as np
    +import torch
    +import torch_tensorrt as torch_trt
    +import torchvision.models as models
     
     np.random.seed(5)
     torch.manual_seed(5)
    @@ -542,7 +542,7 @@ 

    Saving Mutable Torch TensorRT Module

    # The LoRA checkpoint is from https://civitai.com/models/12597/moxin
     
    -from diffusers import DiffusionPipeline
    +from diffusers import DiffusionPipeline
     
     with torch.no_grad():
         settings = {
    diff --git a/docs/tutorials/_rendered_examples/dynamo/pre_allocated_output_example.html b/docs/tutorials/_rendered_examples/dynamo/pre_allocated_output_example.html
    index 8c173b3bce..56dab19485 100644
    --- a/docs/tutorials/_rendered_examples/dynamo/pre_allocated_output_example.html
    +++ b/docs/tutorials/_rendered_examples/dynamo/pre_allocated_output_example.html
    @@ -10,7 +10,7 @@
     
       
       
    -  Pre-allocated output buffer — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
    +  Pre-allocated output buffer — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
       
     
       
    @@ -275,7 +275,7 @@
                   
                   
                     
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -508,18 +508,18 @@

    Imports and Model Definition

    -
    import timeit
    +
    import timeit
     
    -import numpy as np
    -import torch
    -import torch_tensorrt
    -from transformers import BertModel
    +import numpy as np
    +import torch
    +import torch_tensorrt
    +from transformers import BertModel
     

    Define function to measure inference performance

    -
    def test_module_perf(model, *input):
    +
    def test_module_perf(model, *input):
         timings = []
     
         # Warm-up phase to ensure consistent and accurate performance measurements.
    diff --git a/docs/tutorials/_rendered_examples/dynamo/refit_engine_example.html b/docs/tutorials/_rendered_examples/dynamo/refit_engine_example.html
    index f42b1085d7..dd73f282a8 100644
    --- a/docs/tutorials/_rendered_examples/dynamo/refit_engine_example.html
    +++ b/docs/tutorials/_rendered_examples/dynamo/refit_engine_example.html
    @@ -10,7 +10,7 @@
     
       
       
    -  Refitting Torch-TensorRT Programs with New Weights — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
    +  Refitting Torch-TensorRT Programs with New Weights — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
       
     
       
    @@ -275,7 +275,7 @@
                   
                   
                     
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -500,11 +500,11 @@

    Standard Workflow

    Imports and model definition

    -
    import numpy as np
    -import torch
    -import torch_tensorrt as torch_trt
    -import torchvision.models as models
    -from torch_tensorrt.dynamo import refit_module_weights
    +
    import numpy as np
    +import torch
    +import torch_tensorrt as torch_trt
    +import torchvision.models as models
    +from torch_tensorrt.dynamo import refit_module_weights
     
     np.random.seed(0)
     torch.manual_seed(0)
    diff --git a/docs/tutorials/_rendered_examples/dynamo/torch_compile_advanced_usage.html b/docs/tutorials/_rendered_examples/dynamo/torch_compile_advanced_usage.html
    index e3a5f53625..782d706007 100644
    --- a/docs/tutorials/_rendered_examples/dynamo/torch_compile_advanced_usage.html
    +++ b/docs/tutorials/_rendered_examples/dynamo/torch_compile_advanced_usage.html
    @@ -10,7 +10,7 @@
     
       
       
    -  Torch Compile Advanced Usage — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
    +  Torch Compile Advanced Usage — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
       
     
       
    @@ -275,7 +275,7 @@
                   
                   
                     
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -481,17 +481,17 @@

    This interactive script is intended as an overview of the process by which torch_tensorrt.compile(…, ir=”torch_compile”, …) works, and how it integrates with the torch.compile API.

    Imports and Model Definition

    -
    import torch
    -import torch_tensorrt
    +
    import torch
    +import torch_tensorrt
     
    # We begin by defining a model
    -class Model(torch.nn.Module):
    -    def __init__(self) -> None:
    +class Model(torch.nn.Module):
    +    def __init__(self) -> None:
             super().__init__()
             self.relu = torch.nn.ReLU()
     
    -    def forward(self, x: torch.Tensor, y: torch.Tensor):
    +    def forward(self, x: torch.Tensor, y: torch.Tensor):
             x_out = self.relu(x)
             y_out = self.relu(y)
             x_y_out = x_out + y_out
    diff --git a/docs/tutorials/_rendered_examples/dynamo/torch_compile_gpt2.html b/docs/tutorials/_rendered_examples/dynamo/torch_compile_gpt2.html
    index f78c2ef592..77cd5b02a9 100644
    --- a/docs/tutorials/_rendered_examples/dynamo/torch_compile_gpt2.html
    +++ b/docs/tutorials/_rendered_examples/dynamo/torch_compile_gpt2.html
    @@ -10,7 +10,7 @@
     
       
       
    -  Compiling GPT2 using the Torch-TensorRT torch.compile frontend — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
    +  Compiling GPT2 using the Torch-TensorRT torch.compile frontend — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
       
     
       
    @@ -275,7 +275,7 @@
                   
                   
                     
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -487,9 +487,9 @@ get the graph module representation of the graph. Torch-TensorRT converts this graph into an optimized TensorRT engine.

    Import necessary libraries

    -
    import torch
    -import torch_tensorrt
    -from transformers import AutoModelForCausalLM, AutoTokenizer
    +
    import torch
    +import torch_tensorrt
    +from transformers import AutoModelForCausalLM, AutoTokenizer
     
    diff --git a/docs/tutorials/_rendered_examples/dynamo/torch_compile_resnet_example.html b/docs/tutorials/_rendered_examples/dynamo/torch_compile_resnet_example.html index 4b11098cfd..3fc813a3a1 100644 --- a/docs/tutorials/_rendered_examples/dynamo/torch_compile_resnet_example.html +++ b/docs/tutorials/_rendered_examples/dynamo/torch_compile_resnet_example.html @@ -10,7 +10,7 @@ - Compiling ResNet with dynamic shapes using the torch.compile backend — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Compiling ResNet with dynamic shapes using the torch.compile backend — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -481,9 +481,9 @@

    This interactive script is intended as a sample of the Torch-TensorRT workflow with torch.compile on a ResNet model.

    Imports and Model Definition

    -
    import torch
    -import torch_tensorrt
    -import torchvision.models as models
    +
    import torch
    +import torch_tensorrt
    +import torchvision.models as models
     
    # Initialize model with half precision and sample inputs
    diff --git a/docs/tutorials/_rendered_examples/dynamo/torch_compile_stable_diffusion.html b/docs/tutorials/_rendered_examples/dynamo/torch_compile_stable_diffusion.html
    index f1465751e3..6de61136ef 100644
    --- a/docs/tutorials/_rendered_examples/dynamo/torch_compile_stable_diffusion.html
    +++ b/docs/tutorials/_rendered_examples/dynamo/torch_compile_stable_diffusion.html
    @@ -10,7 +10,7 @@
     
       
       
    -  Compiling Stable Diffusion model using the torch.compile backend — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
    +  Compiling Stable Diffusion model using the torch.compile backend — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
       
     
       
    @@ -275,7 +275,7 @@
                   
                   
                     
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -482,9 +482,9 @@ ../../../_images/majestic_castle.png

    Imports and Model Definition

    -
    import torch
    -import torch_tensorrt
    -from diffusers import DiffusionPipeline
    +
    import torch
    +import torch_tensorrt
    +from diffusers import DiffusionPipeline
     
     model_id = "CompVis/stable-diffusion-v1-4"
     device = "cuda:0"
    diff --git a/docs/tutorials/_rendered_examples/dynamo/torch_compile_transformers_example.html b/docs/tutorials/_rendered_examples/dynamo/torch_compile_transformers_example.html
    index 54b59a7d9b..6501ed11a9 100644
    --- a/docs/tutorials/_rendered_examples/dynamo/torch_compile_transformers_example.html
    +++ b/docs/tutorials/_rendered_examples/dynamo/torch_compile_transformers_example.html
    @@ -10,7 +10,7 @@
     
       
       
    -  Compiling BERT using the torch.compile backend — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
    +  Compiling BERT using the torch.compile backend — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
       
     
       
    @@ -275,7 +275,7 @@
                   
                   
                     
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -481,9 +481,9 @@

    This interactive script is intended as a sample of the Torch-TensorRT workflow with torch.compile on a BERT model.

    Imports and Model Definition

    -
    import torch
    -import torch_tensorrt
    -from transformers import BertModel
    +
    import torch
    +import torch_tensorrt
    +from transformers import BertModel
     
    # Initialize model with float precision and sample inputs
    diff --git a/docs/tutorials/_rendered_examples/dynamo/torch_export_cudagraphs.html b/docs/tutorials/_rendered_examples/dynamo/torch_export_cudagraphs.html
    index ad16c51877..4b135c7a66 100644
    --- a/docs/tutorials/_rendered_examples/dynamo/torch_export_cudagraphs.html
    +++ b/docs/tutorials/_rendered_examples/dynamo/torch_export_cudagraphs.html
    @@ -10,7 +10,7 @@
     
       
       
    -  Torch Export with Cudagraphs — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
    +  Torch Export with Cudagraphs — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
       
     
       
    @@ -275,7 +275,7 @@
                   
                   
                     
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -481,9 +481,9 @@

    This interactive script is intended as an overview of the process by which the Torch-TensorRT Cudagraphs integration can be used in the ir=”dynamo” path. The functionality works similarly in the torch.compile path as well.

    Imports and Model Definition

    -
    import torch
    -import torch_tensorrt
    -import torchvision.models as models
    +
    import torch
    +import torch_tensorrt
    +import torchvision.models as models
     
    @@ -550,8 +550,8 @@

    Cuda graphs with module that contains graph breaks -
    class SampleModel(torch.nn.Module):
    -    def forward(self, x):
    +
    class SampleModel(torch.nn.Module):
    +    def forward(self, x):
             return torch.relu((x + 2) * 0.5)
     
     
    diff --git a/docs/tutorials/_rendered_examples/dynamo/torch_export_gpt2.html b/docs/tutorials/_rendered_examples/dynamo/torch_export_gpt2.html
    index 4e34a787cc..806126913e 100644
    --- a/docs/tutorials/_rendered_examples/dynamo/torch_export_gpt2.html
    +++ b/docs/tutorials/_rendered_examples/dynamo/torch_export_gpt2.html
    @@ -10,7 +10,7 @@
     
       
       
    -  Compiling GPT2 using the dynamo backend — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
    +  Compiling GPT2 using the dynamo backend — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
       
     
       
    @@ -275,7 +275,7 @@
                   
                   
                     
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -481,10 +481,10 @@

    This script illustrates Torch-TensorRT workflow with dynamo backend on popular GPT2 model.

    Imports and Model Definition

    -
    import torch
    -import torch_tensorrt
    -from transformers import AutoModelForCausalLM, AutoTokenizer
    -from utils import export_llm, generate
    +
    import torch
    +import torch_tensorrt
    +from transformers import AutoModelForCausalLM, AutoTokenizer
    +from utils import export_llm, generate
     
    # Define the parameters and initialize the model
    diff --git a/docs/tutorials/_rendered_examples/dynamo/torch_export_llama2.html b/docs/tutorials/_rendered_examples/dynamo/torch_export_llama2.html
    index f27cbe9397..dade0de143 100644
    --- a/docs/tutorials/_rendered_examples/dynamo/torch_export_llama2.html
    +++ b/docs/tutorials/_rendered_examples/dynamo/torch_export_llama2.html
    @@ -10,7 +10,7 @@
     
       
       
    -  Compiling Llama2 using the dynamo backend — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
    +  Compiling Llama2 using the dynamo backend — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
       
     
       
    @@ -275,7 +275,7 @@
                   
                   
                     
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -481,10 +481,10 @@

    This script illustrates Torch-TensorRT workflow with dynamo backend on popular Llama2 model.

    Imports and Model Definition

    -
    import torch
    -import torch_tensorrt
    -from transformers import AutoModelForCausalLM, AutoTokenizer
    -from utils import export_llm, generate
    +
    import torch
    +import torch_tensorrt
    +from transformers import AutoModelForCausalLM, AutoTokenizer
    +from utils import export_llm, generate
     

    Define the parameters and initialize the model

    diff --git a/docs/tutorials/_rendered_examples/dynamo/torch_export_sam2.html b/docs/tutorials/_rendered_examples/dynamo/torch_export_sam2.html index 97ec2edde9..1c4d3d0b80 100644 --- a/docs/tutorials/_rendered_examples/dynamo/torch_export_sam2.html +++ b/docs/tutorials/_rendered_examples/dynamo/torch_export_sam2.html @@ -10,7 +10,7 @@ - Compiling SAM2 using the dynamo backend — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Compiling SAM2 using the dynamo backend — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -495,15 +495,15 @@

    Import the following libraries

    -
    import matplotlib
    -import matplotlib.pyplot as plt
    -import numpy as np
    -import pandas as pd
    -import torch
    -import torch_tensorrt
    -from PIL import Image
    -from sam2.sam2_image_predictor import SAM2ImagePredictor
    -from sam_components import SAM2FullModel
    +
    import matplotlib
    +import matplotlib.pyplot as plt
    +import numpy as np
    +import pandas as pd
    +import torch
    +import torch_tensorrt
    +from PIL import Image
    +from sam2.sam2_image_predictor import SAM2ImagePredictor
    +from sam_components import SAM2FullModel
     
     matplotlib.use("Agg")
     
    @@ -521,8 +521,8 @@

    Define the SAM2 modelSAM2FullModel which uses these utilities from SAM2ImagePredictor class. SAM2FullModel performs feature extraction and mask prediction in a single step instead of two step process of SAM2ImagePredictor (set_image and predict functions)

    -
    class SAM2FullModel(torch.nn.Module):
    -    def __init__(self, model):
    +
    class SAM2FullModel(torch.nn.Module):
    +    def __init__(self, model):
             super().__init__()
             self.image_encoder = model.forward_image
             self._prepare_backbone_features = model._prepare_backbone_features
    @@ -535,7 +535,7 @@ 

    Define the SAM2 modelself._bb_feat_sizes = [(256, 256), (128, 128), (64, 64)] - def forward(self, image, point_coords, point_labels): + def forward(self, image, point_coords, point_labels): backbone_out = self.image_encoder(image) _, vision_feats, _, _ = self._prepare_backbone_features(backbone_out) @@ -602,7 +602,7 @@

    Preprocessing componentshttps://github.com/facebookresearch/sam2/blob/main/sam2/utils/transforms.py

    -
    def preprocess_inputs(image, predictor):
    +
    def preprocess_inputs(image, predictor):
         w, h = image.size
         orig_hw = [(h, w)]
         input_image = predictor._transforms(np.array(image))[None, ...].to("cuda:0")
    @@ -631,7 +631,7 @@ 

    Preprocessing components

    The following functions implement postprocessing components which include plotting and visualizing masks and points. We use the SAM2Transforms to post process these masks and sort them via confidence score.

    -
    def postprocess_masks(out, predictor, image):
    +
    def postprocess_masks(out, predictor, image):
         """Postprocess low-resolution masks and convert them for visualization."""
         orig_hw = (image.size[1], image.size[0])  # (height, width)
         masks = predictor._transforms.postprocess_masks(out["low_res_masks"], orig_hw)
    @@ -641,7 +641,7 @@ 

    Post Processing componentsreturn masks[sorted_indices], scores[sorted_indices] -def show_mask(mask, ax, random_color=False, borders=True): +def show_mask(mask, ax, random_color=False, borders=True): if random_color: color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: @@ -650,7 +650,7 @@

    Post Processing componentsmask = mask.astype(np.uint8) mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) if borders: - import cv2 + import cv2 contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # Try to smooth contours @@ -663,7 +663,7 @@

    Post Processing componentsax.imshow(mask_image) -def show_points(coords, labels, ax, marker_size=375): +def show_points(coords, labels, ax, marker_size=375): pos_points = coords[labels == 1] neg_points = coords[labels == 0] ax.scatter( @@ -686,7 +686,7 @@

    Post Processing components) -def visualize_masks( +def visualize_masks( image, masks, scores, point_coords, point_labels, title_prefix="", save=True ): """Visualize and save masks overlaid on the original image.""" diff --git a/docs/tutorials/_rendered_examples/dynamo/vgg16_ptq.html b/docs/tutorials/_rendered_examples/dynamo/vgg16_ptq.html index ee04b1c828..05a45564ec 100644 --- a/docs/tutorials/_rendered_examples/dynamo/vgg16_ptq.html +++ b/docs/tutorials/_rendered_examples/dynamo/vgg16_ptq.html @@ -10,7 +10,7 @@ - Deploy Quantized Models using Torch-TensorRT — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Deploy Quantized Models using Torch-TensorRT — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -481,20 +481,20 @@

    Here we demonstrate how to deploy a model quantized to INT8 or FP8 using the Dynamo frontend of Torch-TensorRT

    Imports and Model Definition

    -
    import argparse
    +
    import argparse
     
    -import modelopt.torch.quantization as mtq
    -import torch
    -import torch.nn as nn
    -import torch.nn.functional as F
    -import torch_tensorrt as torchtrt
    -import torchvision.datasets as datasets
    -import torchvision.transforms as transforms
    -from modelopt.torch.quantization.utils import export_torch_mode
    +import modelopt.torch.quantization as mtq
    +import torch
    +import torch.nn as nn
    +import torch.nn.functional as F
    +import torch_tensorrt as torchtrt
    +import torchvision.datasets as datasets
    +import torchvision.transforms as transforms
    +from modelopt.torch.quantization.utils import export_torch_mode
     
     
    -class VGG(nn.Module):
    -    def __init__(self, layer_spec, num_classes=1000, init_weights=False):
    +class VGG(nn.Module):
    +    def __init__(self, layer_spec, num_classes=1000, init_weights=False):
             super(VGG, self).__init__()
     
             layers = []
    @@ -524,7 +524,7 @@ 

    Imports and Model Definitionif init_weights: self._initialize_weights() - def _initialize_weights(self): + def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") @@ -537,7 +537,7 @@

    Imports and Model Definitionnn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) - def forward(self, x): + def forward(self, x): x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) @@ -545,7 +545,7 @@

    Imports and Model Definitionreturn x -def vgg16(num_classes=1000, init_weights=False): +def vgg16(num_classes=1000, init_weights=False): vgg16_cfg = [ 64, 64, @@ -600,7 +600,7 @@

    Load the pre-trained model weightsweights = ckpt["model_state_dict"] if torch.cuda.device_count() > 1: - from collections import OrderedDict + from collections import OrderedDict new_state_dict = OrderedDict() for k, v in weights.items(): @@ -646,7 +646,7 @@

    Load training dataset and define loss function for PTQ

    Define Calibration Loop for quantization

    -
    def calibrate_loop(model):
    +

    Imports and Model Definition

    -
    import copy
    -import timeit
    +
    import copy
    +import timeit
     
    -import numpy as np
    -import torch
    -import torch_tensorrt
    -from transformers import AutoModelForCausalLM
    -from utils import export_llm
    +import numpy as np
    +import torch
    +import torch_tensorrt
    +from transformers import AutoModelForCausalLM
    +from utils import export_llm
     
     
    -def time_generate(model, inputs, output_seq_length, iterations=10):
    +def time_generate(model, inputs, output_seq_length, iterations=10):
         """
         Measure the time for generating a sentence over certain number of iterations
         """
    diff --git a/docs/tutorials/_rendered_examples/index.html b/docs/tutorials/_rendered_examples/index.html
    index c7f90f8268..bddaebd607 100644
    --- a/docs/tutorials/_rendered_examples/index.html
    +++ b/docs/tutorials/_rendered_examples/index.html
    @@ -10,7 +10,7 @@
     
       
       
    -  Torch-TensorRT Tutorials — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
    +  Torch-TensorRT Tutorials — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
       
     
       
    @@ -273,7 +273,7 @@
                   
                   
                     
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/tutorials/_rendered_examples/triton/index.html b/docs/tutorials/_rendered_examples/triton/index.html index 13e3fdb113..4905326818 100644 --- a/docs/tutorials/_rendered_examples/triton/index.html +++ b/docs/tutorials/_rendered_examples/triton/index.html @@ -10,7 +10,7 @@ - Serving a Torch-TensorRT model with Triton — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Serving a Torch-TensorRT model with Triton — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -273,7 +273,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/tutorials/notebooks.html b/docs/tutorials/notebooks.html index 8ca84e2126..b97d919eee 100644 --- a/docs/tutorials/notebooks.html +++ b/docs/tutorials/notebooks.html @@ -10,7 +10,7 @@ - Legacy notebooks — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Legacy notebooks — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/tutorials/serving_torch_tensorrt_with_triton.html b/docs/tutorials/serving_torch_tensorrt_with_triton.html index 8ebe4b3b21..95390bc8f8 100644 --- a/docs/tutorials/serving_torch_tensorrt_with_triton.html +++ b/docs/tutorials/serving_torch_tensorrt_with_triton.html @@ -10,7 +10,7 @@ - Serving a Torch-TensorRT model with Triton — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Serving a Torch-TensorRT model with Triton — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/user_guide/dynamic_shapes.html b/docs/user_guide/dynamic_shapes.html index 8359dbbac0..d9ccc6a275 100644 --- a/docs/user_guide/dynamic_shapes.html +++ b/docs/user_guide/dynamic_shapes.html @@ -10,7 +10,7 @@ - Dynamic shapes with Torch-TensorRT — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Dynamic shapes with Torch-TensorRT — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -480,8 +480,8 @@

    Dynamic shapes using torch.export (AOT)ir=dynamo with ir=ts and the behavior is exactly the same.

    -
    import torch
    -import torch_tensorrt
    +
    import torch
    +import torch_tensorrt
     
     model = MyModel().eval().cuda()
     # Compile with static shapes
    @@ -518,14 +518,14 @@ 

    Custom Dynamic Shape Constraintsdocumentation to export the Pytorch module with dynamic shapes. Here’s a simple example that exports a matmul layer with some restrictions on dynamic dimensions.

    -
    import torch
    -import torch_tensorrt
    +
    import torch
    +import torch_tensorrt
     
    -class MatMul(torch.nn.Module):
    -    def __init__(self):
    +class MatMul(torch.nn.Module):
    +    def __init__(self):
             super().__init__()
     
    -    def forward(self, query, key):
    +    def forward(self, query, key):
             attn_weight = torch.matmul(query, key.transpose(-1, -2))
             return attn_weight
     
    @@ -546,8 +546,8 @@ 

    Dynamic shapes using torch.compile (JIT)torch_tensorrt.compile(model, inputs, ir="torch_compile") returns a torch.compile boxed function with the backend configured to TensorRT. In the case of ir=torch_compile, users can provide dynamic shape information for the inputs using torch._dynamo.mark_dynamic API (https://pytorch.org/docs/stable/torch.compiler_dynamic_shapes.html) to avoid recompilation of TensorRT engines.

    -
    import torch
    -import torch_tensorrt
    +
    import torch
    +import torch_tensorrt
     
     model = MyModel().eval().cuda()
     inputs = torch.randn((1, 3, 224, 224), dtype=float32)
    diff --git a/docs/user_guide/mixed_precision.html b/docs/user_guide/mixed_precision.html
    index e99d10ed2a..9672ece186 100644
    --- a/docs/user_guide/mixed_precision.html
    +++ b/docs/user_guide/mixed_precision.html
    @@ -10,7 +10,7 @@
     
       
       
    -  Compile Mixed Precision models with Torch-TensorRT — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
    +  Compile Mixed Precision models with Torch-TensorRT — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
       
     
       
    @@ -275,7 +275,7 @@
                   
                   
                     
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -474,14 +474,14 @@

    Compile Mixed Precision models with Torch-TensorRT

    Consider the following Pytorch model which explicitly casts intermediate layer to run in FP16.

    -
    class MyModule(torch.nn.Module):
    -    def __init__(self):
    +
    class MyModule(torch.nn.Module):
    +    def __init__(self):
             super().__init__()
             self.linear1 = torch.nn.Linear(10,10)
             self.linear2 = torch.nn.Linear(10,30).half()
             self.linear3 = torch.nn.Linear(30,40)
     
    -    def forward(self, x):
    +    def forward(self, x):
             x = self.linear1(x)
             x = x.to(torch.float16)
             x = self.linear2(x)
    diff --git a/docs/user_guide/runtime.html b/docs/user_guide/runtime.html
    index aa91350e2d..a12542326e 100644
    --- a/docs/user_guide/runtime.html
    +++ b/docs/user_guide/runtime.html
    @@ -10,7 +10,7 @@
     
       
       
    -  Deploying Torch-TensorRT Programs — Torch-TensorRT v2.6.0.dev0+50f29cb documentation
    +  Deploying Torch-TensorRT Programs — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation
       
     
       
    @@ -275,7 +275,7 @@
                   
                   
                     
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    diff --git a/docs/user_guide/saving_models.html b/docs/user_guide/saving_models.html index 68173ee98e..b8de877138 100644 --- a/docs/user_guide/saving_models.html +++ b/docs/user_guide/saving_models.html @@ -10,7 +10,7 @@ - Saving models compiled with Torch-TensorRT — Torch-TensorRT v2.6.0.dev0+50f29cb documentation + Saving models compiled with Torch-TensorRT — Torch-TensorRT v2.6.0.dev0+69c83d4 documentation @@ -275,7 +275,7 @@
    - v2.6.0.dev0+50f29cb + v2.6.0.dev0+69c83d4
    @@ -486,8 +486,8 @@

    Dynamo IR

    a) ExportedProgram

    Here’s an example usage

    -
    import torch
    -import torch_tensorrt
    +
    import torch
    +import torch_tensorrt
     
     model = MyModel().eval().cuda()
     inputs = [torch.randn((1, 3, 224, 224)).cuda()]
    @@ -503,8 +503,8 @@ 

    a) ExportedProgram

    b) Torchscript

    -
    import torch
    -import torch_tensorrt
    +
    import torch
    +import torch_tensorrt
     
     model = MyModel().eval().cuda()
     inputs = [torch.randn((1, 3, 224, 224)).cuda()]
    @@ -523,8 +523,8 @@ 

    b) Torchscript

    In Torch-TensorRT 1.X versions, the primary way to compile and run inference with Torch-TensorRT is using Torchscript IR. For ir=ts, this behavior stays the same in 2.X versions as well.

    -