.. only:: html
- .. image:: /tutorials/_rendered_examples/dynamo/images/thumb/sphx_glr_torch_compile_resnet_example_thumb.png
+ .. image:: /tutorials/_rendered_examples/dynamo/images/thumb/sphx_glr_torch_export_gpt2_thumb.png
:alt:
- :ref:`sphx_glr_tutorials__rendered_examples_dynamo_torch_compile_resnet_example.py`
+ :ref:`sphx_glr_tutorials__rendered_examples_dynamo_torch_export_gpt2.py`
.. raw:: html
-
Compiling ResNet using the Torch-TensorRT torch.compile Backend
+
Compiling GPT2 using the dynamo backend
.. raw:: html
-
+
.. only:: html
- .. image:: /tutorials/_rendered_examples/dynamo/images/thumb/sphx_glr_torch_export_gpt2_thumb.png
+ .. image:: /tutorials/_rendered_examples/dynamo/images/thumb/sphx_glr_torch_export_llama2_thumb.png
:alt:
- :ref:`sphx_glr_tutorials__rendered_examples_dynamo_torch_export_gpt2.py`
+ :ref:`sphx_glr_tutorials__rendered_examples_dynamo_torch_export_llama2.py`
.. raw:: html
-
Compiling GPT2 using the Torch-TensorRT with dynamo backend
+
Compiling Llama2 using the dynamo backend
@@ -298,10 +282,10 @@ Model Zoo
/tutorials/_rendered_examples/dynamo/torch_compile_transformers_example
/tutorials/_rendered_examples/dynamo/torch_compile_advanced_usage
/tutorials/_rendered_examples/dynamo/engine_caching_bert_example
- /tutorials/_rendered_examples/dynamo/torch_export_llama2
/tutorials/_rendered_examples/dynamo/mutable_torchtrt_module_example
/tutorials/_rendered_examples/dynamo/torch_compile_resnet_example
/tutorials/_rendered_examples/dynamo/torch_export_gpt2
+ /tutorials/_rendered_examples/dynamo/torch_export_llama2
/tutorials/_rendered_examples/dynamo/converter_overloading
/tutorials/_rendered_examples/dynamo/vgg16_ptq
/tutorials/_rendered_examples/dynamo/engine_caching_example
diff --git a/docs/_sources/tutorials/_rendered_examples/dynamo/torch_compile_resnet_example.rst.txt b/docs/_sources/tutorials/_rendered_examples/dynamo/torch_compile_resnet_example.rst.txt
index a223ad9d2d..ca4980988e 100644
--- a/docs/_sources/tutorials/_rendered_examples/dynamo/torch_compile_resnet_example.rst.txt
+++ b/docs/_sources/tutorials/_rendered_examples/dynamo/torch_compile_resnet_example.rst.txt
@@ -20,7 +20,7 @@
.. _torch_compile_resnet:
-Compiling ResNet using the Torch-TensorRT `torch.compile` Backend
+Compiling ResNet with dynamic shapes using the `torch.compile` backend
==========================================================
This interactive script is intended as a sample of the Torch-TensorRT workflow with `torch.compile` on a ResNet model.
diff --git a/docs/_sources/tutorials/_rendered_examples/dynamo/torch_compile_stable_diffusion.rst.txt b/docs/_sources/tutorials/_rendered_examples/dynamo/torch_compile_stable_diffusion.rst.txt
index eb8f53aa4b..30873dcde5 100644
--- a/docs/_sources/tutorials/_rendered_examples/dynamo/torch_compile_stable_diffusion.rst.txt
+++ b/docs/_sources/tutorials/_rendered_examples/dynamo/torch_compile_stable_diffusion.rst.txt
@@ -20,7 +20,7 @@
.. _torch_compile_stable_diffusion:
-Torch Compile Stable Diffusion
+Compiling Stable Diffusion model using the `torch.compile` backend
======================================================
This interactive script is intended as a sample of the Torch-TensorRT workflow with `torch.compile` on a Stable Diffusion model. A sample output is featured below:
diff --git a/docs/_sources/tutorials/_rendered_examples/dynamo/torch_compile_transformers_example.rst.txt b/docs/_sources/tutorials/_rendered_examples/dynamo/torch_compile_transformers_example.rst.txt
index b362e42447..8021e43c34 100644
--- a/docs/_sources/tutorials/_rendered_examples/dynamo/torch_compile_transformers_example.rst.txt
+++ b/docs/_sources/tutorials/_rendered_examples/dynamo/torch_compile_transformers_example.rst.txt
@@ -20,10 +20,10 @@
.. _torch_compile_transformer:
-Compiling a Transformer using torch.compile and TensorRT
+Compiling BERT using the `torch.compile` backend
==============================================================
-This interactive script is intended as a sample of the Torch-TensorRT workflow with `torch.compile` on a transformer-based model.
+This interactive script is intended as a sample of the Torch-TensorRT workflow with `torch.compile` on a BERT model.
.. GENERATED FROM PYTHON SOURCE LINES 10-12
diff --git a/docs/_sources/tutorials/_rendered_examples/dynamo/torch_export_gpt2.rst.txt b/docs/_sources/tutorials/_rendered_examples/dynamo/torch_export_gpt2.rst.txt
index c692ccc2d3..db986554f2 100644
--- a/docs/_sources/tutorials/_rendered_examples/dynamo/torch_export_gpt2.rst.txt
+++ b/docs/_sources/tutorials/_rendered_examples/dynamo/torch_export_gpt2.rst.txt
@@ -20,10 +20,10 @@
.. _torch_export_gpt2:
-Compiling GPT2 using the Torch-TensorRT with dynamo backend
+Compiling GPT2 using the dynamo backend
==========================================================
-This interactive script is intended as a sample of the Torch-TensorRT workflow with dynamo backend on a GPT2 model.
+This script illustrates Torch-TensorRT workflow with dynamo backend on popular GPT2 model.
.. GENERATED FROM PYTHON SOURCE LINES 10-12
@@ -123,7 +123,7 @@ Compilation with `Torch-TensorRT` using dynamo backend and generate TensorRT out
Decode the output sentences of PyTorch and TensorRT
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-.. GENERATED FROM PYTHON SOURCE LINES 80-91
+.. GENERATED FROM PYTHON SOURCE LINES 80-98
.. code-block:: python
@@ -138,23 +138,13 @@ Decode the output sentences of PyTorch and TensorRT
tokenizer.decode(trt_gen_tokens[0], skip_special_tokens=True),
)
+ # Prompt : What is parallel programming ?
-.. GENERATED FROM PYTHON SOURCE LINES 92-95
-
-The output sentences should look like
-=============================
-Pytorch model generated text: What is parallel programming ?
-
-.. GENERATED FROM PYTHON SOURCE LINES 95-101
-
-.. code-block:: python
-
-
- # The parallel programming paradigm is a set of programming languages that are designed to be used in parallel. The main difference between parallel programming and parallel programming is that
# =============================
- # TensorRT model generated text: What is parallel programming ?
+ # Pytorch model generated text: The parallel programming paradigm is a set of programming languages that are designed to be used in parallel. The main difference between parallel programming and parallel programming is that
- # The parallel programming paradigm is a set of programming languages that are designed to be used in parallel. The main difference between parallel programming and parallel programming is that
+ # =============================
+ # TensorRT model generated text: The parallel programming paradigm is a set of programming languages that are designed to be used in parallel. The main difference between parallel programming and parallel programming is that
.. rst-class:: sphx-glr-timing
diff --git a/docs/_sources/tutorials/_rendered_examples/dynamo/torch_export_llama2.rst.txt b/docs/_sources/tutorials/_rendered_examples/dynamo/torch_export_llama2.rst.txt
index 5c86d845a4..c142aa76d4 100644
--- a/docs/_sources/tutorials/_rendered_examples/dynamo/torch_export_llama2.rst.txt
+++ b/docs/_sources/tutorials/_rendered_examples/dynamo/torch_export_llama2.rst.txt
@@ -20,10 +20,10 @@
.. _torch_export_llama2:
-Compiling Llama2 using the Torch-TensorRT with dynamo backend
+Compiling Llama2 using the dynamo backend
==========================================================
-This interactive script is intended as a sample of the Torch-TensorRT workflow with dynamo backend on a Llama2 model.
+This script illustrates Torch-TensorRT workflow with dynamo backend on popular Llama2 model.
.. GENERATED FROM PYTHON SOURCE LINES 10-12
@@ -123,7 +123,7 @@ Compilation with `Torch-TensorRT` using dynamo backend and generate TensorRT out
Decode the output sentences of PyTorch and TensorRT
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-.. GENERATED FROM PYTHON SOURCE LINES 77-94
+.. GENERATED FROM PYTHON SOURCE LINES 77-102
.. code-block:: python
@@ -145,13 +145,13 @@ Decode the output sentences of PyTorch and TensorRT
)
-.. GENERATED FROM PYTHON SOURCE LINES 95-100
+ # Prompt : What is dynamic programming?
-The output sentences should look like
-=============================
-Pytorch model generated text: Dynamic programming is an algorithmic technique used to solve complex problems by breaking them down into smaller subproblems, solving each subproblem only once, and
-=============================
-TensorRT model generated text: Dynamic programming is an algorithmic technique used to solve complex problems by breaking them down into smaller subproblems, solving each subproblem only once, and
+ # =============================
+ # Pytorch model generated text: Dynamic programming is an algorithmic technique used to solve complex problems by breaking them down into smaller subproblems, solving each subproblem only once, and
+
+ # =============================
+ # TensorRT model generated text: Dynamic programming is an algorithmic technique used to solve complex problems by breaking them down into smaller subproblems, solving each subproblem only once, and
.. rst-class:: sphx-glr-timing
diff --git a/docs/_sources/tutorials/_rendered_examples/index.rst.txt b/docs/_sources/tutorials/_rendered_examples/index.rst.txt
index 1f397896e1..0acd41a003 100644
--- a/docs/_sources/tutorials/_rendered_examples/index.rst.txt
+++ b/docs/_sources/tutorials/_rendered_examples/index.rst.txt
@@ -5,10 +5,6 @@
Torch-TensorRT Tutorials
===========================
-The user guide covers the basic concepts and usage of Torch-TensorRT.
-We also provide a number of tutorials to explore specific usecases and advanced concepts
-
-
.. raw:: html
@@ -20,11 +16,7 @@ We also provide a number of tutorials to explore specific usecases and advanced
-Torch-TensorRT Examples
-====================================
-
-Please refer to the following examples which demonstrate the usage of different features of Torch-TensorRT. We also provide
-examples of Torch-TensorRT compilation of select computer vision and language models.
+Here we provide examples of Torch-TensorRT compilation of popular computer vision and language models.
Dependencies
------------------------------------
@@ -36,18 +28,6 @@ Please install the following external dependencies (assuming you already have co
pip install -r requirements.txt
-Compiler Features
-------------------------------------
-* :ref:`torch_compile_advanced_usage`: Advanced usage including making a custom backend to use directly with the ``torch.compile`` API
-* :ref:`torch_export_cudagraphs`: Using the Cudagraphs integration with `ir="dynamo"`
-* :ref:`converter_overloading`: How to write custom converters and overload existing ones
-* :ref:`custom_kernel_plugins`: Creating a plugin to use a custom kernel inside TensorRT engines
-* :ref:`refit_engine_example`: Refitting a compiled TensorRT Graph Module with updated weights
-* :ref:`mutable_torchtrt_module_example`: Compile, use, and modify TensorRT Graph Module with MutableTorchTensorRTModule
-* :ref:`vgg16_fp8_ptq`: Compiling a VGG16 model with FP8 and PTQ using ``torch.compile``
-* :ref:`engine_caching_example`: Utilizing engine caching to speed up compilation times
-* :ref:`engine_caching_bert_example`: Demonstrating engine caching on BERT
-
Model Zoo
------------------------------------
* :ref:`torch_compile_resnet`: Compiling a ResNet model using the Torch Compile Frontend for ``torch_tensorrt.compile``
@@ -75,7 +55,7 @@ Model Zoo
.. raw:: html
-