Skip to content

Commit

Permalink
Merge remote-tracking branch 'origin/main' into register-data-hooks
Browse files Browse the repository at this point in the history
  • Loading branch information
vmoens committed Apr 30, 2024
2 parents 04bcce0 + 68101b0 commit 2117f73
Show file tree
Hide file tree
Showing 2 changed files with 92 additions and 2 deletions.
89 changes: 89 additions & 0 deletions examples/envs/gym-async-info-reader.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

"""
A toy example of executing a Gym environment asynchronously and gathering the info properly.
"""
import argparse

import gymnasium as gym
import numpy as np
from gymnasium import spaces

parser = argparse.ArgumentParser()
parser.add_argument("--use_wrapper", action="store_true")

# Create the dummy environment
class CustomEnv(gym.Env):
def __init__(self, render_mode=None):
self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=(3,))
self.action_space = spaces.Box(low=-np.inf, high=np.inf, shape=(1,))

def _get_info(self):
return {"field1": self.state**2}

def _get_obs(self):
return self.state.copy()

def reset(self, seed=None, options=None):
# We need the following line to seed self.np_random
super().reset(seed=seed)
self.state = np.zeros(self.observation_space.shape)
observation = self._get_obs()
info = self._get_info()
return observation, info

def step(self, action):
self.state += action.item()
truncated = False
terminated = False
reward = 1 if terminated else 0 # Binary sparse rewards
observation = self._get_obs()
info = self._get_info()
return observation, reward, terminated, truncated, info


if __name__ == "__main__":
import torch
from torchrl.data.tensor_specs import UnboundedContinuousTensorSpec
from torchrl.envs import check_env_specs, GymEnv, GymWrapper

args = parser.parse_args()

num_envs = 10

if args.use_wrapper:
# Option 1: using GymWrapper
env = gym.vector.AsyncVectorEnv([lambda: CustomEnv() for _ in range(num_envs)])
env = GymWrapper(env, device="cpu")
else:
# Option 2: using GymEnv directly, no need to call AsyncVectorEnv
gym.register("Custom-v0", CustomEnv)
env = GymEnv("Custom-v0", num_envs=num_envs)

keys = ["field1"]
specs = [
UnboundedContinuousTensorSpec(shape=(num_envs, 3), dtype=torch.float64),
]

# Create an info reader: this object will read the info and write its content to the tensordict
def reader(info, tensordict):
return tensordict.set("field1", np.stack(info["field1"]))
env.set_info_dict_reader(info_dict_reader=reader)

# Print the info readers (there should be 2: one to read the terminal states and another to read the 'field1')
print("readers", env.info_dict_reader)

# We need to unlock the specs to make them writable
env.observation_spec.unlock_()
env.observation_spec["field1"] = specs[0]
env.observation_spec.lock_()

# Check that we did a good job
check_env_specs(env)

td = env.reset()
print("reset data", td)
print("content of field1 (should be a 10x3 tensor)", td["field1"])
5 changes: 3 additions & 2 deletions torchrl/envs/gym_like.py
Original file line number Diff line number Diff line change
Expand Up @@ -162,8 +162,9 @@ class GymLikeEnv(_EnvWrapper):

@classmethod
def __new__(cls, *args, **kwargs):
cls._info_dict_reader = []
return super().__new__(cls, *args, _batch_locked=True, **kwargs)
self = super().__new__(cls, *args, _batch_locked=True, **kwargs)
self._info_dict_reader = []
return self

def read_action(self, action):
"""Reads the action obtained from the input TensorDict and transforms it in the format expected by the contained environment.
Expand Down

0 comments on commit 2117f73

Please sign in to comment.