-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp10 usefultransform.py
56 lines (40 loc) · 1.32 KB
/
p10 usefultransform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
writer=SummaryWriter("logs")
img=Image.open("images/pytorch_2.jpg")
print(img)
# ToTensor使用
trans_totensor=transforms.ToTensor()
img_tensor=trans_totensor(img)
writer.add_image("ToTensor",img_tensor)
# Normalize
print(img_tensor[0][0][0])
trans_norm=transforms.Normalize([1,2,3],[1,2,3])
img_norm=trans_norm(img_tensor)
print(img_norm[0][0][0])
writer.add_image("normalize",img_norm,2)
# Resize
print(img.size)
trans_resize=transforms.Resize((512,512))
# img PIL->resize->img_resize PIL(还是图片)
img_resize=trans_resize(img)
print(img_resize)
print(type(img_resize))
# img_resize PIL->totensor->img_resize tensor
img_resize=trans_totensor(img_resize)
writer.add_image("Resize",img_resize)
print(img_resize)
# Compose -resize -2
trans_resize_2=transforms.Resize(512)
# PIL -> PIL -> tensor
trans_compose=transforms.Compose([trans_resize_2,trans_totensor])
img_resize_2=trans_compose(img)
writer.add_image("Resize",img_resize,1)
# Randomcrop
trans_random=transforms.RandomCrop(256,512)
trans_compose_2=transforms.Compose([trans_random,trans_totensor])
for i in range(10):
img_crop=trans_compose_2(img)
writer.add_image("RandomCrop",img_crop,i)
writer.close()