-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
585 lines (544 loc) · 18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
import argparse
import gc
import itertools
import os
import sys
import time
from datetime import timedelta
import torch
import torch.nn.functional as F
from lightning.pytorch import Trainer, seed_everything
from lightning.pytorch.accelerators import CUDAAccelerator
from lightning.pytorch.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning import LightningDataModule
from torch import nn
# Cat imports
import torch
import torch.nn.functional as F
from PIL import Image
import os
import json
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
import torchvision
from torchvision import models
from torchvision import transforms
from captum.attr import IntegratedGradients
from captum.attr import GradientShap
from captum.attr import Occlusion
from captum.attr import NoiseTunnel
from captum.attr import visualization as viz
import matplotlib.pyplot as plt
# Steven's imports continued
from data import StratifiedGroupKFoldDataModule, StratifiedGroupDataModule
from logs import aggregate_logs, generate_logs, get_row, log_to_gsheet, log_to_json
from losses import (
BinaryExpectedCostLoss,
BinaryMacroSoftFBetaLoss,
BinarySurrogateFBetaLoss,
HybridLoss,
)
from models.all_negative import AllNegativeModel
from models.all_positive import AllPositiveModel
from models.densenet import DenseNetModel
from models.random import RandomModel
from models.resnet import ResNetModel
from models.vit import ViTModel
from models.yolo import YoloModel
NO_TRAIN_MODELS = {
"AllPositive": (AllPositiveModel, None),
"AllNegative": (AllNegativeModel, None),
"Random": (RandomModel, None),
"SuperLearner": (None, None),
}
SUPER_LEARNER_MODELS = {
"ResNet18": (ResNetModel, 18),
"ResNet34": (ResNetModel, 34),
"ResNet50": (ResNetModel, 50),
# "ResNet101": (ResNetModel, 101),
# "ResNet152": (ResNetModel, 152),
"ViT-B/16": (ViTModel, "B/16"),
# "ViT-B/32": (ViTModel, "B/32"),
# "ViT-L/16": (ViTModel, "L/16"),
# "ViT-L/32": (ViTModel, "L/32"),
"DenseNet121": (DenseNetModel, 121),
# "DenseNet161": (DenseNetModel, 161),
# "DenseNet169": (DenseNetModel, 169),
# "DenseNet201": (DenseNetModel, 201),
# "yolov8n-cls.pt": (YoloModel, "yolov8n-cls.pt"),
"yolov8s-cls.pt": (YoloModel, "yolov8s-cls.pt"),
# "yolov8m-cls.pt": (YoloModel, "yolov8m-cls.pt"),
# "yolov8l-cls.pt": (YoloModel, "yolov8l-cls.pt"),
# "yolov8x-cls.pt": (YoloModel, "yolov8x-cls.pt"),
}
MODELS = {**NO_TRAIN_MODELS, **SUPER_LEARNER_MODELS}
LEARNING_RATES = {
# 0.001,
0.0001,
# 0.00001,
"--auto_lr_find",
}
BATCH_SIZES = {
# 16,
32,
}
CRITERIONS = {
"awBCELoss",
"dwBCELoss",
"BCELoss",
"ExpectedCostLoss",
# "wBCELoss",
# "MacroSoftFBetaLoss",
# "SurrogateFBetaLoss",
"HybridLoss",
}
def parse_args(argv=None):
parser = argparse.ArgumentParser()
parser = Trainer.add_argparse_args(parser)
group = parser.add_argument_group("qt.coyote")
group.add_argument(
"--model",
help="Which model to use",
type=str,
choices=list(MODELS.keys()),
default="ResNet34",
)
group.add_argument(
"--criterion",
help="Which criterion to use",
type=str,
choices=CRITERIONS,
default="ExpectedCostLoss",
)
group.add_argument("--batch_size", help="Batch size", type=int, default=32)
group.add_argument(
"--learning_rate", help="Learning rate", type=float, default=1e-3
)
group.add_argument(
"--k",
help="Number of folds in k-fold cross validation",
type=int,
default=5,
)
group.add_argument(
"--internal_k",
help="Number of folds for train/test split",
type=int,
default=5,
)
group.add_argument(
"--no_external_group",
help="Use grouped k-fold cross validation in external k-fold cross validation",
action="store_true",
)
group.add_argument(
"--internal_group",
help="Use grouped k-fold cross validation in internal k-fold cross validation",
action="store_true",
)
group.add_argument(
"--data_path",
help="Path to images",
type=str,
default="data",
)
group.add_argument(
"--metadata_path",
help="Path to COCO metadata file",
type=str,
default="data/qt-coyotes-merged.json",
)
group.add_argument(
"--num_workers",
help="Number of workers for dataloader",
type=int,
default=os.cpu_count() - 2,
)
group.add_argument(
"--persistent_workers",
help="If True, the data loader will not shutdown the worker processes "
"after a dataset has been consumed once. This allows to maintain the "
"workers Dataset instances alive.",
type=bool,
default=True,
)
group.add_argument(
"--shuffle",
help="Whether to shuffle each class's samples before splitting into "
"batches. Note that the samples within each split will not be "
"shuffled. This implementation can only shuffle groups that have "
"approximately the same y distribution, no global shuffle will be "
"performed.",
type=bool,
default=True,
)
group.add_argument(
"--random_state",
help="When shuffle is True, random_state affects the ordering of the "
"indices, which controls the randomness of each fold for each class. "
"Otherwise, leave random_state as None. Pass an int for reproducible "
"output across multiple function calls.",
type=int,
default=42,
)
group.add_argument(
"--nondeterministic",
help="This flag sets the torch.backends.cudnn.deterministic flag to false",
action="store_true",
)
group.add_argument(
"--nonpretrained",
help="Do not use pretrained weights, train from scratch",
action="store_true",
)
group.add_argument(
"--use_pt",
help="Use pt files instead of jpg files",
action="store_true",
)
group.add_argument(
"--compile",
help="Compile the model",
action="store_true",
)
group.add_argument(
"--no_early_stopping",
help="Disable early stopping",
action="store_true",
)
group.add_argument(
"--no_crop",
help="Disable cropping",
action="store_true",
)
group.add_argument(
"--no_data_augmentation",
help="Disable data augmentation",
action="store_true",
)
group.add_argument(
"--patience",
help="Number of checks with no improvement after which training will be stopped.",
type=int,
default=5,
)
group.add_argument(
"--scheduler_factor",
help="Factor by which the lr will be decreased",
type=float,
default=0.5,
)
group.add_argument(
"--scheduler_patience",
help="Number of checks with no improvement after which lr will decrease",
type=int,
default=4,
)
group.add_argument(
"--crop_size",
help="Crop size",
type=int,
default=224,
)
group.add_argument(
"--criterion_pos_weight",
help="Weight for positive class for BCEWithLogitsLoss",
type=float,
default=10.0,
)
group.add_argument(
"--criterion_beta", help="Beta for F-beta loss", type=float, default=5.0
)
group.add_argument(
"--criterion_cfn",
help="Cost false negative",
type=float,
default=5.0,
)
group.add_argument(
"--tabular_hidden_size",
help="Size of the tabular hidden layers",
type=int,
default=32,
)
group.add_argument(
"--no_tabular_features",
help="Do not use tabular features",
action="store_true",
)
group.add_argument(
"--captum_load",
help="Load weights from else where",
type=str,
default=None,
)
group.add_argument(
"--captum_on",
help="Load weights from else where",
type=str,
action="append",
)
group.add_argument(
"--monitor",
help="Metric to monitor",
type=str,
default="val_EC5",
)
group.add_argument(
"--no_save_checkpoint",
action="store_true",
help="Backup the checkpoint",
)
group.add_argument(
"--train_final_model",
action="store_true",
help="Train final model",
)
group.add_argument(
"--no_equal_size_transform",
action="store_true",
help="Train final model",
)
group.add_argument("--message", help="Message to log", type=str)
args = parser.parse_args(argv)
if args.accelerator is None:
args.accelerator = "auto"
return args
def main():
args = parse_args()
print(args)
if args.captum_load is not None:
captum_identify(args)
elif args.train_final_model:
train_final_model(args)
else:
external_cross_validation(args)
def model_from_args(args: argparse.Namespace, datamodule_i: LightningDataModule):
torch.backends.cudnn.deterministic = not args.nondeterministic
Model, architecture = MODELS[args.model]
criterions = {
"BCELoss": nn.BCEWithLogitsLoss(),
"wBCELoss": nn.BCEWithLogitsLoss(
pos_weight=torch.tensor(args.criterion_pos_weight)
),
"dwBCELoss": "dwBCELoss",
"awBCELoss": "awBCELoss",
"MacroSoftFBetaLoss": BinaryMacroSoftFBetaLoss(args.criterion_beta),
"ExpectedCostLoss": BinaryExpectedCostLoss(cfn=args.criterion_cfn),
"SurrogateFBetaLoss": BinarySurrogateFBetaLoss(args.criterion_beta),
"HybridLoss": "HybridLoss",
}
criterion = criterions[args.criterion]
callbacks = []
if not args.no_early_stopping:
callbacks.append(
EarlyStopping(args.monitor, patience=args.patience, mode="min")
)
model_checkpoint = ModelCheckpoint(
monitor=args.monitor,
)
callbacks.append(model_checkpoint)
trainer = Trainer.from_argparse_args(
args,
callbacks=callbacks,
log_every_n_steps=1000,
)
if args.criterion == "awBCELoss" or args.criterion == "HybridLoss":
datamodule_i.setup(None)
p = datamodule_i.train_dataset().pos_weight * args.criterion_cfn
criterion = nn.BCEWithLogitsLoss(pos_weight=torch.tensor(p))
if args.criterion == "HybridLoss":
criterion = HybridLoss(
criterion, BinaryExpectedCostLoss(cfn=args.criterion_cfn)
)
elif criterion == "dwBCELoss":
criterion = "dwBCELoss"
if architecture is not None:
model = Model(criterion, args, architecture=architecture)
else:
model = Model(criterion, args)
if args.compile and isinstance(trainer.accelerator, CUDAAccelerator):
model = torch.compile(model)
if args.auto_scale_batch_size or args.auto_lr_find:
datamodule_i.setup(None)
X, *_ = next(iter(datamodule_i.train_dataloader()))
_ = model(X)
trainer.tune(model, datamodule=datamodule_i)
print(f"Automatically found learning rate: {model.learning_rate}")
args.learning_rate = model.learning_rate
if args.auto_scale_batch_size:
print(f"Automatically found batch size: P={model.batch_size}")
args.batch_size = model.batch_size
if not args.max_epochs:
args.max_epochs = 100
return model, trainer, model_checkpoint
def internal_cross_validation(datamodule: LightningDataModule):
best_EC5 = torch.inf
best_args = None
best_checkpoint = None
argvs = list(
itertools.product(
("--model",),
SUPER_LEARNER_MODELS,
("--criterion",),
CRITERIONS,
("--learning_rate",),
map(str, LEARNING_RATES),
("--batch_size",),
map(str, BATCH_SIZES),
("--no_crop", ""),
("--no_data_augmentation", ""),
("--no_tabular_features", ""),
)
)
print(f"Number of hyperparameter configurations: {len(argvs)}")
for c, argv in enumerate(argvs):
argv = list(argv)
if "--auto_lr_find" in argv:
argv.remove("--learning_rate")
argv = list(filter(len, argv))
print(f"Hyperparameter configuration: {c}/{len(argvs)}")
args = parse_args(argv)
model = model_from_args(args, datamodule)
model, trainer, model_checkpoint = model_from_args(args, datamodule)
# internal leakage of pos_weight and early stopping
trainer.fit(model, datamodule=datamodule)
EC5 = model_checkpoint.best_model_score
print(f"EC5: {EC5}")
log_to_gsheet(
[
f"{EC5}",
f"{c / len(argvs)}",
f"{c}",
f"{len(argvs)}",
f"{' '.join(argv)}",
],
"SuperLearner!A1:A1",
)
if EC5 < best_EC5:
best_EC5 = EC5
best_args = args
best_checkpoint = model_checkpoint
print(f"Best EC5: {best_EC5}")
print(f"Best args: {best_args}")
log_to_gsheet([f"{best_EC5}", f"{best_args}"], "SuperLearner!A1:A1")
return best_args, best_checkpoint
def external_cross_validation(args: argparse.Namespace):
start_time = time.perf_counter()
test_metrics = []
datamodule = StratifiedGroupKFoldDataModule(args)
args_copy = args
for datamodule_i in datamodule:
seed_everything(args.random_state, workers=True)
if args_copy.model == "SuperLearner":
args, model_checkpoint = internal_cross_validation(datamodule_i)
model, trainer, _ = model_from_args(args, datamodule_i)
else:
model, trainer, model_checkpoint = model_from_args(args, datamodule_i)
if args.model not in NO_TRAIN_MODELS:
trainer.fit(model=model, train_dataloaders=datamodule_i)
if args.fast_dev_run or args.model in NO_TRAIN_MODELS:
test_metric = trainer.test(model, dataloaders=datamodule)
elif not args.no_early_stopping:
test_metric = trainer.test(
model=model,
ckpt_path=model_checkpoint.best_model_path,
dataloaders=datamodule,
)
else:
test_metric = trainer.test(ckpt_path="best", dataloaders=datamodule)
test_metrics.append(test_metric)
if args.fast_dev_run:
break
del trainer
del model
gc.collect()
end_time = time.perf_counter()
time_elapsed = timedelta(seconds=end_time - start_time)
logs = generate_logs(test_metrics, time_elapsed, args_copy)
log_to_json(logs)
aggregate_logs()
row = get_row(logs)
if logs["args"]["metadata_path"] == "data/CHIL/CHIL_uwin_mange_Marit_07242020.json":
gsheet_range = "CHIL!A1:A1"
else:
gsheet_range = "v17!A1:A1"
log_to_gsheet(row, gsheet_range)
def train_final_model(args: argparse.Namespace):
start_time = time.perf_counter()
datamodule = StratifiedGroupDataModule(args)
args_copy = args
seed_everything(args.random_state, workers=True)
if args_copy.model == "SuperLearner":
args, model_checkpoint = internal_cross_validation(datamodule)
model, trainer, _ = model_from_args(args, datamodule)
else:
model, trainer, model_checkpoint = model_from_args(args, datamodule)
if args.model not in NO_TRAIN_MODELS:
trainer.fit(model=model, train_dataloaders=datamodule)
end_time = time.perf_counter()
time_elapsed = timedelta(seconds=end_time - start_time)
print(f"Time elapsed: {time_elapsed}")
def captum_identify(args: argparse.Namespace):
if not args.captum_on:
print("No images provided to captum on", file=sys.stderr)
exit(1)
for i in StratifiedGroupKFoldDataModule(args):
data_mod = i
break
model, _, _ = model_from_args(args, data_mod)
model.load_state_dict(
torch.load(args.captum_load, map_location=torch.device("cpu"))["state_dict"],
strict=False,
)
model.eval()
for onn in args.captum_on:
print(f"Interpreting image {onn}")
image = Image.open(onn)
transform = transforms.Compose(
[
transforms.Resize(224),
# transforms.CenterCrop(224),
transforms.ToTensor(),
]
)
integrated_gradients = IntegratedGradients(model)
noise_tunnel = NoiseTunnel(integrated_gradients)
input = transform(image)
input = input.unsqueeze(0)
output = model.forward(input)
output = F.softmax(output, dim=0)
label = torch.tensor(
[[1 if torch.sigmoid(output) > 0.5 else 0]]
).squeeze()
attributions_ig = integrated_gradients.attribute(input, n_steps=200)
attributions_ig_nt = noise_tunnel.attribute(
input, nt_samples=10, nt_type="smoothgrad_sq"
)
default_cmap = LinearSegmentedColormap.from_list(
"custom blue", [(0, "#ffffff"), (0.25, "#000000"), (1, "#000000")], N=256
)
fig, ax = viz.visualize_image_attr_multiple(
np.transpose(
attributions_ig.squeeze().cpu().detach().numpy(), (1, 2, 0)
),
np.transpose(input.squeeze().cpu().detach().numpy(), (1, 2, 0)),
["original_image", "heat_map"],
["all", "positive"],
cmap=default_cmap,
show_colorbar=True,
)
plt.savefig(f"{onn}_ig.out.png")
fig, ax = viz.visualize_image_attr_multiple(
np.transpose(
attributions_ig_nt.squeeze().cpu().detach().numpy(), (1, 2, 0)
),
np.transpose(input.squeeze().cpu().detach().numpy(), (1, 2, 0)),
["original_image", "heat_map"],
["all", "positive"],
cmap=default_cmap,
show_colorbar=True,
)
plt.savefig(f"{onn}_ig_nt.out.png")
if __name__ == "__main__":
main()