forked from chirag-w/qpsq-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathobs.py
70 lines (60 loc) · 1.46 KB
/
obs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#Generate various observables
from util import *
#Identity
def id_obs(n):
obs_str = ''
for i in range(n):
obs_str += '3'
O = {obs_str:1}
return O
#Pauli observable on single qubit
def pauli_one_obs(n,pos, obs = 'Z'):
obs_str = ''
for i in range(pos):
obs_str += '3'
if obs == 'Z':
obs_str += '0'
elif obs == 'X':
obs_str += '1'
elif obs == 'Y':
obs_str += '2'
else:
obs+= '3'
for i in range(n-pos-1):
obs_str += '3'
O = {obs_str:1}
return O
#Pauli observable on all qubits
def pauli_all_obs(n, obs = 'Z'):
c = ''
if obs == 'Z':
c = '0'
elif obs == 'X':
c = '1'
elif obs == 'Y':
c = '2'
else:
c = '3'
obs_str = ''
for i in range(n):
obs_str += c
O = {obs_str:1}
return O
def classical_obs(n):
#For a classical string s, <s|O|s> = s, upto a normalization factor
# <s|O|s> = s/(2**n)
id = ''
for i in range(n):
id+= '3'
O = {id:(2**n-1)/(2**(n+1))}
coeff = -0.5
string = np.zeros(n,dtype = int)
for i in range(n):
string[i] = 3 # string represents identity
for i in range(n):
coeff /= 2
string[i] = 0 #Use string to represent Z_i
obs = ''.join(map(str,string))
O[obs] = coeff
string[i] = 3 #Restore string to identity
return O