-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdqn.py
135 lines (90 loc) · 4.15 KB
/
dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#
#
# DQN
#
#
import gym
import typer
import torch
import random
import numpy as np
import torch.optim as optim
import torch.nn.functional as F
from collections import deque
from common.logger import Logger
from common.utils import seed_everything, play
from common.policies import QNetworkDiscretePolicy
def dqn(env_id="LunarLander-v2", max_timesteps: int = 250_000, discount_rate: float = 0.99, batch_size: int = 64,
train_frequency: int = 16, replay_buffer_size: int = 10_000, exploration_fraction: float = 0.2,
exploration_initial_eps: float = 1.0, exploration_final_eps: float = 0.1, target_update_frequency: int = 600,
learning_rate: float = 4e-3, log_frequency: int = 1_000, device="auto", seed: int = 0, test: bool = True):
if device == "auto":
device = "cuda" if torch.cuda.is_available() else "cpu"
def t(x):
return torch.as_tensor(x, dtype=torch.float32, device=torch.device(device))
env = gym.make(env_id)
env.seed(seed)
seed_everything(seed)
env.action_space.np_random.seed(seed)
online_policy = QNetworkDiscretePolicy(env.observation_space, env.action_space).to(device)
target_policy = QNetworkDiscretePolicy(env.observation_space, env.action_space).to(device)
for param in target_policy.parameters():
param.requires_grad = False
target_policy.load_state_dict(online_policy.state_dict())
online_policy.train()
target_policy.eval()
optimizer = optim.Adam(online_policy.parameters(), lr=learning_rate)
replay_buffer = deque(maxlen=replay_buffer_size)
exploration = EpsilonExploration(int(max_timesteps * exploration_fraction), exploration_initial_eps,
exploration_final_eps)
logger = Logger(log_frequency=log_frequency)
timestep = 0
obs = env.reset()
while timestep < max_timesteps:
if exploration():
action = env.action_space.sample()
else:
action_logits = target_policy(t(obs))
action = action_logits.argmax().item()
next_obs, reward, done, info = env.step(action)
replay_buffer.append((obs, action, next_obs, reward, done))
timestep += 1
logger.log_step(reward, done)
if done:
obs = env.reset()
else:
obs = next_obs
if (timestep % train_frequency) == 0 and len(replay_buffer) >= batch_size:
batch = random.sample(replay_buffer, batch_size)
batch_obs, batch_actions, batch_next_obs, batch_rewards, batch_dones = zip(*batch)
q_values = online_policy(t(batch_obs))
q_values_next_obs = target_policy(t(batch_next_obs))
next_q_values = q_values_next_obs.max(1).values
current_q_values = q_values.gather(1, t(batch_actions).long().view(-1, 1)).squeeze()
expected_q_values = t(batch_rewards) + (1 - t(batch_dones).int()) * discount_rate * next_q_values
loss = F.mse_loss(current_q_values, expected_q_values)
optimizer.zero_grad()
loss.backward()
optimizer.step()
logger.log_metric("train/loss", loss.item())
logger.log_metric("train/epsilon", exploration.epsilon)
if (timestep % target_update_frequency) == 0:
target_policy.load_state_dict(online_policy.state_dict())
if test:
target_policy.eval()
def predict(obs):
return torch.argmax(target_policy(t(obs))).cpu().numpy()
play(env, predict)
class EpsilonExploration:
def __init__(self, exploration_timesteps, exploration_initial_eps, exploration_final_eps):
self.exploration_timesteps = exploration_timesteps
self.exploration_initial_eps = exploration_initial_eps
self.exploration_final_eps = exploration_final_eps
self.epsilon = exploration_initial_eps
self._reduce_rate = (exploration_initial_eps - exploration_final_eps) / exploration_timesteps
def __call__(self):
should_explore = np.random.rand() < self.epsilon
self.epsilon = max(self.exploration_final_eps, self.epsilon - self._reduce_rate)
return should_explore
if __name__ == "__main__":
typer.run(dqn)