-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path034_SearchForARange34.java
201 lines (165 loc) · 5.65 KB
/
034_SearchForARange34.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/**
* Given an array of integers sorted in ascending order, find the starting and
* ending position of a given target value.
*
* Your algorithm's runtime complexity must be in the order of O(log n).
*
* If the target is not found in the array, return [-1, -1].
*
* For example,
* Given [5, 7, 7, 8, 8, 10] and target value 8,
* return [3, 4].
*/
public class SearchForARange34 {
public int[] searchRange(int[] nums, int target) {
int start = 0;
int end = nums.length - 1;
while (start <= end) {
if (nums[start] < target) {
start++;
} else if (nums[end] > target) {
end--;
} else {
break;
}
}
if (start > nums.length - 1 || end < 0 || start > end) {
return new int[]{-1, -1};
}
return new int[]{start, end};
}
public int[] searchRange2(int[] nums, int target) {
int start = 0;
int end = nums.length - 1;
int mid = (end - start) >> 1 + start;
while (start <= end) {
if (nums[mid] < target) {
start = mid + 1;
} else if (nums[mid] > target) {
end = mid - 1;
} else {
break;
}
mid = (end - start) / 2 + start;
}
while (start <= end) {
if (nums[start] < target) {
start++;
} else if (nums[end] > target) {
end--;
} else {
break;
}
}
if (start > nums.length - 1 || end < 0 || start > end) {
return new int[]{-1, -1};
}
return new int[]{start, end};
}
/**
* https://discuss.leetcode.com/topic/6327/a-very-simple-java-solution-with-only-one-binary-search-algorithm
*/
public int[] searchRange3(int[] A, int target) {
int start = Solution.firstGreaterEqual(A, target);
if (start == A.length || A[start] != target) {
return new int[]{-1, -1};
}
return new int[]{start, Solution.firstGreaterEqual(A, target + 1) - 1};
}
//find the first number that is greater than or equal to target.
//could return A.length if target is greater than A[A.length-1].
//actually this is the same as lower_bound in C++ STL.
private static int firstGreaterEqual(int[] A, int target) {
int low = 0, high = A.length;
while (low < high) {
int mid = low + ((high - low) >> 1);
//low <= mid < high
if (A[mid] < target) {
low = mid + 1;
} else {
//should not be mid-1 when A[mid]==target.
//could be mid even if A[mid]>target because mid<high.
high = mid;
}
}
return low;
}
/**
* https://discuss.leetcode.com/topic/10692/simple-and-strict-o-logn-solution-in-java-using-recursion
*/
public int[] searchRange4(int[] A, int target) {
int[] range = {A.length, -1};
searchRange(A, target, 0, A.length - 1, range);
if (range[0] > range[1]) range[0] = -1;
return range;
}
public void searchRange(int[] A, int target, int left, int right, int[] range) {
if (left > right) return;
int mid = left + (right - left) / 2;
if (A[mid] == target) {
if (mid < range[0]) {
range[0] = mid;
searchRange(A, target, left, mid - 1, range);
}
if (mid > range[1]) {
range[1] = mid;
searchRange(A, target, mid + 1, right, range);
}
} else if (A[mid] < target) {
searchRange(A, target, mid + 1, right, range);
} else {
searchRange(A, target, left, mid - 1, range);
}
}
public int[] searchRange5(int[] nums, int target) {
if (nums == null || nums.length == 0) return new int[]{-1, -1};
return searchRange(nums, target, 0, nums.length-1);
}
public int[] searchRange(int[] nums, int target, int lo, int hi) {
if (lo > hi) return new int[]{-1, -1};
int mid = (lo + hi) / 2;
if (nums[mid] > target) {
return searchRange(nums, target, lo, mid-1);
} else if (nums[mid] < target) {
return searchRange(nums, target, mid+1, hi);
} else {
int[] res = new int[]{mid, mid};
int[] left = searchRange(nums, target, lo, mid-1);
int[] right = searchRange(nums, target, mid+1, hi);
if (left[0] != -1) res[0] = left[0];
if (right[1] != -1) res[1] = right[1];
return res;
}
}
/**
* https://leetcode.com/problems/search-for-a-range/solution/
*/
// returns leftmost (or rightmost) index at which `target` should be
// inserted in sorted array `nums` via binary search.
private int extremeInsertionIndex(int[] nums, int target, boolean left) {
int lo = 0;
int hi = nums.length;
while (lo < hi) {
int mid = (lo+hi)/2;
if (nums[mid] > target || (left && target == nums[mid])) {
hi = mid;
}
else {
lo = mid+1;
}
}
return lo;
}
public int[] searchRange6(int[] nums, int target) {
int[] targetRange = {-1, -1};
int leftIdx = extremeInsertionIndex(nums, target, true);
// assert that `leftIdx` is within the array bounds and that `target`
// is actually in `nums`.
if (leftIdx == nums.length || nums[leftIdx] != target) {
return targetRange;
}
targetRange[0] = leftIdx;
targetRange[1] = extremeInsertionIndex(nums, target, false)-1;
return targetRange;
}
}