forked from daytonaio/devcontainer-generator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
210 lines (183 loc) · 7.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import logging
import os
import json
from datetime import datetime
from fasthtml.common import *
from dotenv import load_dotenv
from supabase_client import supabase
from helpers.openai_helpers import setup_azure_openai, setup_instructor
from helpers.github_helpers import fetch_repo_context, check_url_exists
from helpers.devcontainer_helpers import generate_devcontainer_json, validate_devcontainer_json
from helpers.token_helpers import count_tokens, truncate_to_token_limit
from models import DevContainer
from schemas import DevContainerModel
from content import *
# Set up logging
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
# Load environment variables
load_dotenv()
def check_env_vars():
required_vars = [
"AZURE_OPENAI_ENDPOINT",
"AZURE_OPENAI_API_KEY",
"AZURE_OPENAI_API_VERSION",
"MODEL",
"GITHUB_TOKEN",
"SUPABASE_URL",
"SUPABASE_KEY",
]
missing_vars = [var for var in required_vars if not os.environ.get(var)]
if missing_vars:
print(f"Missing environment variables: {', '.join(missing_vars)}. Please configure the env vars file properly.")
return False
return True
hdrs = [
Script(src="https://www.googletagmanager.com/gtag/js?id=G-Q22LCTCW8Y", aync=True),
Script("""
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-Q22LCTCW8Y');
"""),
Script("""
(function(c,l,a,r,i,t,y){
c[a]=c[a]||function(){(c[a].q=c[a].q||[]).push(arguments)};
t=l.createElement(r);t.async=1;t.src="https://www.clarity.ms/tag/"+i;
y=l.getElementsByTagName(r)[0];y.parentNode.insertBefore(t,y);
})(window, document, "clarity", "script", "o5om7ajkg6");
"""),
picolink,
Meta(charset='UTF-8'),
Meta(name='viewport', content='width=device-width, initial-scale=1.0, maximum-scale=1.0'),
Meta(name='description', content=description),
*Favicon('favicon.ico', 'favicon-dark.ico'),
*Socials(title='DevContainer.ai',
description=description,
site_name='devcontainer.ai',
twitter_site='@daytonaio',
image=f'/assets/og-sq.png',
url=''),
Script(src='https://cdn.jsdelivr.net/gh/gnat/surreal@main/surreal.js'),
scopesrc,
Link(rel="stylesheet", href="/css/main.css"),
]
# Initialize FastHTML app
app, rt = fast_app(
hdrs=hdrs,
live=True,
debug=True
)
scripts = (
Script(src="/js/main.js"),
)
from fastcore.xtras import timed_cache
# Main page composition
@timed_cache(seconds=60)
def home():
return (Title(f"DevContainer.ai - {description}"),
Main(
hero_section(),
generator_section(),
setup_section(),
manifesto(),
benefits_section(),
examples_section(),
faq_section(),
cta_section(),
footer_section()),
*scripts)
# Define routes
@rt("/")
async def get():
return home()
@rt("/generate", methods=["post"])
async def post(repo_url: str, regenerate: bool = False):
logging.info(f"Generating devcontainer.json for: {repo_url}")
# Normalize the repo_url by stripping trailing slashes
repo_url = repo_url.rstrip('/')
try:
exists, existing_record = check_url_exists(repo_url)
logging.info(f"URL check result: exists={exists}, existing_record={existing_record}")
repo_context, existing_devcontainer, devcontainer_url = fetch_repo_context(repo_url)
logging.info(f"Fetched repo context. Existing devcontainer: {'Yes' if existing_devcontainer else 'No'}")
logging.info(f"Devcontainer URL: {devcontainer_url}")
if exists and not regenerate:
logging.info(f"URL already exists in database. Returning existing devcontainer_json for: {repo_url}")
devcontainer_json = existing_record['devcontainer_json']
generated = existing_record['generated']
source = "database"
url = existing_record['devcontainer_url']
else:
devcontainer_json, url = generate_devcontainer_json(instructor_client, repo_url, repo_context, devcontainer_url, regenerate=regenerate)
generated = True
source = "generated" if url is None else "repository"
if not exists or regenerate:
logging.info("Saving to database...")
try:
if hasattr(openai_client.embeddings, "create"):
embedding_model = os.getenv("EMBEDDING", "text-embedding-ada-002")
max_tokens = int(os.getenv("EMBEDDING_MODEL_MAX_TOKENS", 8192))
truncated_context = truncate_to_token_limit(repo_context, embedding_model, max_tokens)
embedding = openai_client.embeddings.create(input=truncated_context, model=embedding_model).data[0].embedding
embedding_json = json.dumps(embedding)
else:
embedding_json = None
new_devcontainer = DevContainer(
url=repo_url,
devcontainer_json=devcontainer_json,
devcontainer_url=devcontainer_url,
repo_context=repo_context,
tokens=count_tokens(repo_context),
model=os.getenv("MODEL"),
embedding=embedding_json,
generated=generated,
created_at=datetime.utcnow().isoformat() # Ensure this is a string
)
# Convert the Pydantic model to a dictionary and handle datetime serialization
devcontainer_dict = json.loads(new_devcontainer.json(exclude_unset=True))
result = supabase.table("devcontainers").insert(devcontainer_dict).execute()
logging.info(f"Successfully saved to database with devcontainer_url: {devcontainer_url}")
except Exception as e:
logging.error(f"Error while saving to database: {str(e)}")
raise
return Div(
Article(f"Devcontainer.json {'found in ' + source if source in ['database', 'repository'] else 'generated'}"),
Pre(
Code(devcontainer_json, id="devcontainer-code", cls="overflow-auto"),
Div(
Button(
Img(cls="w-4 h-4", src="assets/icons/copy-icon.svg", alt="Copy"),
cls="icon-button copy-button",
title="Copy to clipboard",
),
Button(
Img(cls="w-4 h-4", src="assets/icons/regenerate.svg", alt="Regenerate"),
cls="icon-button regenerate-button",
hx_post=f"/generate?regenerate=true&repo_url={repo_url}",
hx_target="#result",
hx_indicator="#action-text",
title="Regenerate",
),
Span(cls="action-text", id="action-text"),
cls="button-group"
),
cls="code-container relative"
)
)
except Exception as e:
logging.error(f"An error occurred: {str(e)}", exc_info=True)
return Div(H2("Error"), P(f"An error occurred: {str(e)}"))
@rt("/manifesto")
async def get():
return manifesto_page()
# Serve static files
@rt("/{fname:path}.{ext:static}")
async def get(fname:str, ext:str):
return FileResponse(f'{fname}.{ext}')
# Initialize clients
if check_env_vars():
openai_client = setup_azure_openai()
instructor_client = setup_instructor(openai_client)
if __name__ == "__main__":
logging.info("Starting FastHTML app...")
serve()