forked from nishantsule/Quantum-Tunneling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQMT_main.py
124 lines (116 loc) · 6.19 KB
/
QMT_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# Quantum Tunneling Simulation for ES 170
# This code simulates quantum mechanical tunneling of an electron across a square potential barrier
# The electron is represented by a 1D Gaussian wavefunction
# 1D time-dependent Schrodinger equation is solved using the finite-difference time-domain method
import numpy as np
import scipy.constants as sc
import matplotlib.pyplot as plt
# Class for QMT FDTD
class QMfdtd:
def __init__(self, V0, bw, ke, sig):
self.V0 = V0 * sc.value('electron volt') # height of potential barrier in Joules
self.ke = ke * sc.value('electron volt') # kinetic energy of electron in Joules
self.k0 = np.sqrt(self.ke * 2 * sc.m_e / (sc.hbar ** 2)) # wave vector of electron in m^-1
self.bw = bw * sc.value('Angstrom star') # potential barrier width in m
self.sig = sig * sc.value('Angstrom star') # Initial spread of Gaussian wavefunction
self.dx = np.minimum((self.bw / 25.0), (self.sig / 25.0)) # grid cell size
self.dt = 0.9 * sc.hbar / ((sc.hbar ** 2 / (sc.m_e * self.dx ** 2)) + (self.V0 / 2.0)) # time step size
length = 40 * np.maximum(self.bw, self.sig) # length of the simulation domain
self.ll = int(length / self.dx) # total number of grid points in the domain
vel = sc.hbar * self.k0 / sc.m_e
self.tt = int(0.35 * length / vel / self.dt) # total number of time steps in the simulation
self.lx = np.linspace(0.0, length, self.ll) # 1D position vector along x
# potential barrier
self.Vx = np.zeros(self.ll)
bwgrid = int(self.bw / (2.0 * self.dx))
bposgrid = int(self.ll / 2.0)
bl = bposgrid - bwgrid
br = bposgrid + bwgrid
self.Vx[bl:br] = self.V0
# wavefunction arrays
self.psir = np.zeros((self.ll))
self.psii = np.zeros((self.ll))
self.psimag = np.zeros(self.ll)
ac = 1.0 / np.sqrt((np.sqrt(np.pi)) * self.sig)
x0 = bl * self.dx - 6 * self.sig
psigauss = ac * np.exp(-(self.lx - x0) ** 2 / (2.0 * self.sig ** 2))
self.psir = psigauss * np.cos(self.k0 * self.lx)
self.psii = psigauss * np.sin(self.k0 * self.lx)
self.psimag = self.psir ** 2 + self.psii ** 2
# fdtd update coefficients
self.c1 = sc.hbar * self.dt / (2.0 * sc.m_e * self.dx ** 2)
self.c2 = self.dt / sc.hbar
# The main FDTD update function.
def fdtd_update(self):
self.psii[1:self.ll - 1] = (self.c1 * (self.psir[2:self.ll] - 2.0 * self.psir[1:self.ll - 1]
+ self.psir[0:self.ll - 2])
- self.c2 * self.Vx[1:self.ll - 1] * self.psir[1:self.ll - 1]
+ self.psii[1:self.ll - 1])
self.psir[1:self.ll - 1] = (-self.c1 * (self.psii[2:self.ll] - 2.0 * self.psii[1:self.ll - 1]
+ self.psii[0:self.ll - 2])
+ self.c2 * self.Vx[1:self.ll - 1] * self.psii[1:self.ll - 1]
+ self.psir[1:self.ll - 1])
self.psimag = self.psir ** 2 + self.psii ** 2
def run_sim(V0_in, bw_in, ke_in, sig_in):
q1 = QMfdtd(V0_in, bw_in, ke_in, sig_in)
print('')
print('Potential barrier =', round(q1.V0 / sc.value('electron volt'), 2), 'eV')
print('Potential barrier width =', round(q1.bw / sc.value('Angstrom star'), 2), 'A')
print('(The boundary of the simulation domain is assumed to be an infinite barrier)')
print('Electron energy =', round(q1.ke / sc.value('electron volt'), 2), 'eV')
print('Electron spread =', round(q1.sig / sc.value('Angstrom star'), 2), 'A')
print('')
print('Grid size =', '%.2e' % (q1.dx / sc.value('Angstrom star')), 'A')
print('Time step =', "%.2e" % (q1.dt * 1e15), 'fs')
plt.ion()
fig0 = plt.figure()
ax0 = fig0.add_subplot(111)
ax0.set_xlabel('position ($\AA$)')
ax0.set_ylabel('$\Psi$')
ax0.set_title('Initial wavefunctions (normalized)')
ax0.plot(q1.lx / sc.value('Angstrom star'), q1.psimag / np.amax(q1.psimag), label='$|\Psi|^2$')
ax0.plot(q1.lx / sc.value('Angstrom star'), q1.Vx / np.amax(q1.Vx), label='barrier')
ax0.plot(q1.lx / sc.value('Angstrom star'), q1.psii / np.amax(q1.psii), label='$\Im[\Psi]$', alpha=0.5)
ax0.plot(q1.lx / sc.value('Angstrom star'), q1.psir / np.amax(q1.psir), label='$\Re[\Psi]$', alpha=0.5)
ax0.legend()
fig0.show()
fig0.tight_layout()
fig0.canvas.draw()
input('Press enter to start the simulation...')
fig1 = plt.figure()
ax1 = fig1.add_subplot(111)
ax1.set_xlabel('position ($\AA$)')
ax1.set_ylabel('norm magnitude')
fig1.show()
fig1.canvas.draw()
for nn in range(0, q1.tt):
q1.fdtd_update()
if nn % 50 == 0:
tstr = 'Time = ' + str(round(nn * q1.dt * 1e15, 4)) + ' fs'
ax1.clear()
ax1.plot(q1.lx / sc.value('Angstrom star'), q1.psimag / np.amax(q1.psimag), label='$|\Psi|^2$')
ax1.plot(q1.lx / sc.value('Angstrom star'), q1.Vx / np.amax(q1.Vx), label='barrier')
ax1.legend()
ax1.set_title(tstr)
ax1.set_xlabel('position ($\AA$)')
ax1.set_ylabel('normalized magnitude')
fig1.canvas.draw()
fig2 = plt.figure()
ax2 = fig2.add_subplot(111)
ax2.set_xlabel('position ($\AA$)')
ax2.set_ylabel('$\Psi$')
ax2.set_title('Final wavefunctions (normalized)')
ax2.plot(q1.lx / sc.value('Angstrom star'), q1.psimag / np.amax(q1.psimag), label='$|\Psi|^2$')
ax2.plot(q1.lx / sc.value('Angstrom star'), q1.Vx / np.amax(q1.Vx), label='barrier')
ax2.plot(q1.lx / sc.value('Angstrom star'), q1.psii / np.amax(q1.psii), label='$\Im[\Psi]$', alpha=0.5)
ax2.plot(q1.lx / sc.value('Angstrom star'), q1.psir / np.amax(q1.psir), label='$\Re[\Psi]$', alpha=0.5)
ax2.legend()
fig2.show()
fig2.tight_layout()
fig2.canvas.draw()
print('')
V0_in = float(input('Enter the barrier height in eV (try 600): '))
bw_in = float(input('Enter the barrier width in Angstrom (try 0.25): '))
ke_in = float(input('Enter the electron energy in eV (try 500): '))
sig_in = float(input('Enter the initial electron wavefunction spread in Angstrom (try 0.8): '))
run_sim(V0_in, bw_in, ke_in, sig_in)