-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnat.py
324 lines (249 loc) · 14.6 KB
/
nat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import torch
import torch.nn as nn
from transformer import *
from util import sequence_mask, mean, init_weights
class NATBase(nn.Module):
def __init__(self, hidden_size, src_emb_conf, tgt_emb_conf=None, dropout=0.1):
super(NATBase, self).__init__()
if tgt_emb_conf is None:
self.embedding = self._init_embedding(src_emb_conf)
self.src_embedding = self.embedding
self.tgt_embedding = self.embedding
else:
self.src_embedding = self._init_embedding(src_emb_conf)
self.tgt_embedding = self._init_embedding(tgt_emb_conf)
self.pos_embedding = PositionEmbedding(hidden_size)
self.dropout = nn.Dropout(dropout)
self.hidden_size = hidden_size
def _init_embedding(self, emb_conf):
vocab_size = emb_conf['vocab_size']
emb_size = emb_conf['emb_size']
padding_idx = emb_conf.get('padding_idx', None)
return nn.Embedding(vocab_size, emb_size, padding_idx)
def add_pos_emb(self, emb, step=None):
bsz, length, _ = emb.size()
pos_emb = self.pos_embedding(length=length, step=step).to(emb.device)
pos_emb = pos_emb.unsqueeze(0).expand(bsz, -1, -1)
emb = emb + pos_emb
return emb
def embed(self, input, embedding, step=None):
bsz, length = input.size()
emb = embedding(input) * self.hidden_size ** 0.5
pos_emb = self.pos_embedding(length, step=step).to(input.device)
pos_emb = pos_emb.unsqueeze(0).expand(bsz, -1, -1)
emb = self.dropout(emb + pos_emb)
return emb
def encode(self, src, src_lens):
src_emb = self.embed(src, self.src_embedding)
src_enc, src_mask = self.encoder(src_emb, src_lens)
return src_enc, src_mask
# uniform copy
def get_copied_src(self, src_seq, src_lens, tgt_lens):
bsz = src_seq.size(0)
tgt_mask = ~sequence_mask(tgt_lens).to(src_seq.device)
tgt_max_len, _ = torch.max(tgt_lens.view(-1), dim=0)
pos = torch.arange(0., tgt_max_len).unsqueeze(0).expand(bsz, -1)
pos = pos.to(src_seq.device)
src_lens = src_lens.float().to(src_seq.device) - 1
tgt_lens = tgt_lens.float().to(src_seq.device) - 1
tgt_lens = torch.clamp(tgt_lens, min=1)
pos = pos / tgt_lens.unsqueeze(-1) * src_lens.unsqueeze(-1)
pos = pos.round().long().masked_fill(tgt_mask, 0)
copied_src_seq = torch.gather(src_seq, 1, pos)
copied_src_seq = copied_src_seq.masked_fill(tgt_mask, self.src_embedding.padding_idx)
copied_src = self.embed(copied_src_seq, self.src_embedding)
return copied_src, tgt_mask
def predict_length(self, src_enc, src_lens, is_training=True):
src_mean = mean(src_enc, src_lens.to(src_enc.device))
logit = self.len_pred_fc(src_mean)
if is_training:
return logit
max_len_dif = (logit.size(-1) - 1) // 2
len_dif_mask = sequence_mask(
torch.clamp(max_len_dif - src_lens, min=1),
logit.size(-1))
len_dif_mask = len_dif_mask.to(src_enc.device)
masked_len_logit = logit.masked_fill(len_dif_mask, float('-inf'))
_, pred_tgt_lens = masked_len_logit.max(dim=1)
pred_tgt_lens = pred_tgt_lens - max_len_dif + src_lens.to(src_enc.device)
return logit, pred_tgt_lens
class NAT(NATBase):
def __init__(self, enc_layers, dec_layers, hidden_size, head_num, ffn_size, \
src_emb_conf, tgt_emb_conf=None, max_len_dif=50, dropout=0.1, \
use_label_smoothing=True, smooth_rate=0.15):
super(NAT, self).__init__(hidden_size, src_emb_conf, tgt_emb_conf, dropout)
self.encoder = TransformerEncoder(enc_layers, hidden_size, head_num, ffn_size, dropout)
self.decoder = TransformerDecoder(dec_layers, hidden_size, head_num, ffn_size, dropout, causal=False)
self.len_pred_fc = nn.Linear(hidden_size, 2 * max_len_dif + 1)
self.use_label_smoothing = use_label_smoothing
self.smooth_rate = smooth_rate
self.apply(init_weights)
def forward(self, src_seq, src_lens, tgt_lens, label=None, len_label=None):
src_max_len = max(int(src_lens.max()), 1)
src_seq = src_seq[:, :src_max_len]
tgt_max_len = max(int(tgt_lens.max()), 1)
label = label[:, :tgt_max_len]
src_enc, src_mask = self.encode(src_seq, src_lens)
tgt_len_logit = self.predict_length(src_enc.detach(), src_lens)
len_log_prob = F.log_softmax(tgt_len_logit, dim=-1)
copied_src, tgt_mask = self.get_copied_src(src_seq, src_lens, tgt_lens)
tgt_dec, w_logit = self.decode(copied_src, src_enc, src_mask, tgt_mask.unsqueeze(1))
w_log_prob = F.log_softmax(w_logit, dim=-1).transpose(1, 2)
w_loss, len_loss = self.compute_loss(w_log_prob, label, len_log_prob, len_label)
return w_loss, len_loss
def compute_loss(self, w_log_prob, label, len_log_prob, len_label):
if self.use_label_smoothing:
w_loss = smooth_loss(w_log_prob, label, pad=self.tgt_embedding.padding_idx, eps=self.smooth_rate)
else:
loss_func = nn.NLLLoss(ignore_index=self.tgt_embedding.padding_idx, reduction='sum')
w_loss = loss_func(w_log_prob, label)
len_loss_func = nn.NLLLoss(reduction='sum')
len_loss = len_loss_func(len_log_prob, len_label)
return w_loss, len_loss
def decode(self, copied_src, src_enc, src_mask=None, tgt_mask=None):
tgt_dec = self.decoder(copied_src, src_enc, src_pad_mask=src_mask, tgt_pad_mask=tgt_mask, mask_self=True)
logit = F.linear(tgt_dec, self.tgt_embedding.weight)
return tgt_dec, logit
class ReorderNAT(NATBase):
def __init__(self, enc_layers, dec_layers, hidden_size, head_num, ffn_size, src_emb_conf, tgt_emb_conf=None,
reorder_layers=1, use_ar_reorder=True, ndgd_temp=1., use_ndgd=False, max_len_dif=50, dropout=0.1, \
use_label_smoothing=True, smooth_rate=0.15):
super(ReorderNAT, self).__init__(hidden_size, src_emb_conf, tgt_emb_conf, dropout)
self.encoder = TransformerEncoder(enc_layers, hidden_size, head_num, ffn_size, dropout)
if use_ar_reorder:
reorder_layers = 1
self.ar_reorder_module = RNNDecoder(hidden_size, hidden_size, head_num, dropout)
else:
self.nar_reorder_module = TransformerDecoder(reorder_layers, hidden_size, head_num, ffn_size, dropout, causal=False)
self.len_pred_fc = nn.Linear(hidden_size, 2 * max_len_dif + 1)
nat_dec_layers = dec_layers - reorder_layers
self.decoder = TransformerDecoder(nat_dec_layers, hidden_size, head_num, ffn_size, dropout, causal=False)
self.use_ar_reorder = use_ar_reorder
self.use_label_smoothing = use_label_smoothing
self.smooth_rate = smooth_rate
assert ndgd_temp > 0
self.ndgd_temp = ndgd_temp
self.use_ndgd = use_ndgd
self.apply(init_weights)
def forward(self, src_seq, src_lens, tgt_lens, align_pos, pseudo_vocab, label, align_pos_label, len_label=None):
src_max_len = max(int(src_lens.max()), 1)
tgt_max_len = max(int(tgt_lens.max()), 1)
src_seq = src_seq[:, :src_max_len]
label = label[:, :tgt_max_len]
align_pos = align_pos[:, :tgt_max_len + 1, :]
if self.use_ar_reorder:
align_pos_label = align_pos_label[:, :tgt_max_len + 1, :]
else:
align_pos_label = align_pos_label[:, :tgt_max_len, :]
src_enc, src_mask = self.encode(src_seq, src_lens)
pseudo_vocab_mat, pseudo_vocab_mask = self.get_pseudo_vocab_matrix(pseudo_vocab)
pseudo_vocab_mat_T = torch.transpose(pseudo_vocab_mat, 1, 2)
pseudo_trans_emb, pseudo_trans_mask = self.get_pseudo_trans_emb(pseudo_vocab=pseudo_vocab, align_pos=align_pos)
pseudo_trans_emb = pseudo_trans_emb * self.hidden_size ** 0.5
if self.use_ar_reorder:
pos_logit = self.ar_reorder(pseudo_trans_emb, pseudo_vocab_mat_T, src_enc, \
pseudo_trans_mask=pseudo_trans_mask, pseudo_vocab_mask=pseudo_vocab_mask, src_mask=src_mask)
else:
copied_src_for_reorder, tgt_mask = self.get_copied_src(src_seq, src_lens, tgt_lens)
pos_logit = self.nar_reorder(pseudo_vocab_mat_T, copied_src_for_reorder, src_enc, \
pseudo_vocab_mask=pseudo_vocab_mask, src_mask=src_mask, tgt_mask=tgt_mask.unsqueeze(1))
pos_log_prob = F.log_softmax(pos_logit, dim=-1).transpose(1, 2)
if self.use_ndgd:
weight = F.softmax(pos_logit / self.ndgd_temp, dim=-1)
pseudo_trans_emb = torch.matmul(weight, pseudo_vocab_mat * self.hidden_size ** 0.5)
if self.use_ar_reorder:
pseudo_trans_emb = pseudo_trans_emb[:, :-1, :]
else:
pseudo_trans_emb = pseudo_trans_emb[:, 1:, :]
tgt_mask = ~sequence_mask(tgt_lens).to(src_seq.device)
pseudo_trans_emb = self.dropout(self.add_pos_emb(pseudo_trans_emb))
pseudo_trans_emb = pseudo_trans_emb.masked_fill(tgt_mask.unsqueeze(-1), 0)
tgt_dec, w_logit = self.decode(pseudo_trans_emb, src_enc, src_mask, tgt_mask.unsqueeze(1))
w_log_prob = F.log_softmax(w_logit, dim=-1).transpose(1, 2)
len_log_prob = None
if not self.use_ar_reorder:
tgt_len_logit = self.predict_length(src_enc.detach(), src_lens)
len_log_prob = F.log_softmax(tgt_len_logit, dim=-1)
w_loss, pos_loss, len_loss = self.compute_loss(w_log_prob, label, pos_log_prob, align_pos_label, \
pos_cls_mask=pseudo_vocab_mask.squeeze(1), len_log_prob=len_log_prob, len_label=len_label)
return w_loss, pos_loss, len_loss
def compute_loss(self, w_log_prob, label, pos_log_prob, align_pos_label, pos_cls_mask, len_log_prob=None, len_label=None):
if self.use_label_smoothing:
w_loss = smooth_loss(w_log_prob, label, pad=self.tgt_embedding.padding_idx, eps=self.smooth_rate)
pos_loss = self.smooth_pos_loss(pos_log_prob, pos_cls_mask, align_pos_label.squeeze(-1), eps=self.smooth_rate)
else:
loss_func = nn.NLLLoss(ignore_index=self.tgt_embedding.padding_idx, reduction='sum')
w_loss = loss_func(w_log_prob, label)
align_pos_label = align_pos_label.transpose(1, 2)
align_pos_mask = align_pos_label >= 0
align_pos_num = torch.sum(align_pos_mask, dim=1).float()
align_pos_label = torch.clamp(align_pos_label, min=0)
selected_pos_log_prob = torch.gather(
pos_log_prob,
1,
align_pos_label)
pos_loss = -torch.sum(selected_pos_log_prob.masked_fill(1 - align_pos_mask, 0.), dim=1)
pos_loss = torch.sum(pos_loss / torch.clamp(align_pos_num, min=1.))
len_loss = None
if len_log_prob is not None:
len_loss_func = nn.NLLLoss(reduction='sum')
len_loss = len_loss_func(len_log_prob, len_label)
return w_loss, pos_loss, len_loss
def smooth_pos_loss(self, log_prob, cls_mask, label, eps=0.15):
bsz, max_nclass, _ = log_prob.size()
mask = label < 0
label = torch.clamp(label, min=0)
ncls = torch.sum(1 - cls_mask, dim=-1).float().view(bsz, 1, 1).expand_as(log_prob)
smoothed_label = torch.zeros_like(log_prob)
smoothed_label = smoothed_label + eps / torch.clamp((ncls - 1), 1.)
smoothed_label = smoothed_label.masked_fill(cls_mask.unsqueeze(-1), 0)
class_range = torch.arange(0, max_nclass).to(log_prob.device)
selected_mask = class_range.view(1, max_nclass, 1).expand_as(log_prob) == label.unsqueeze(1).expand_as(log_prob)
smoothed_label = smoothed_label.masked_fill(selected_mask, 1 - eps)
smoothed_label = smoothed_label.masked_fill(mask.unsqueeze(1), 0.)
loss = torch.sum(-log_prob * smoothed_label)
return loss
def get_pseudo_vocab_matrix(self, pseudo_vocab):
pseudo_vocab_mask = pseudo_vocab.data.eq(self.src_embedding.padding_idx).unsqueeze(1)
pseudo_vocab_mat = self.src_embedding(pseudo_vocab)
return pseudo_vocab_mat, pseudo_vocab_mask
def get_pseudo_trans_emb(self, pseudo_vocab=None, align_pos=None, memory=None, align_weight=None):
if align_pos is not None:
align_pos_mask = align_pos >= 0
align_pos_num = torch.sum(align_pos_mask, dim=-1).float()
pseudo_trans_mask = align_pos_num <= 0
bsz, length, num = align_pos.size()
align_pos = torch.clamp(align_pos, min=0)
pseudo_trans_seq = torch.gather(
pseudo_vocab,
1,
align_pos.view(bsz, -1)).view(bsz, length, num)
pseudo_trans_emb = self.src_embedding(pseudo_trans_seq)
pseudo_trans_emb = pseudo_trans_emb.masked_fill(1 - align_pos_mask.unsqueeze(-1), 0.)
pseudo_trans_emb = torch.sum(pseudo_trans_emb, dim=2) / torch.clamp(align_pos_num, min=1.).unsqueeze(-1)
elif align_weight is not None:
pseudo_trans_emb = torch.matmul(align_weight, memory)
pseudo_trans_mask = torch.zeros(align_weight.size()[:2], dtype=torch.uint8, device=memory.device)
else:
assert False
return pseudo_trans_emb, pseudo_trans_mask
def decode(self, pseudo_trans_emb, src_enc, src_mask=None, tgt_mask=None):
tgt_dec = self.decoder(pseudo_trans_emb, src_enc, src_pad_mask=src_mask, tgt_pad_mask=tgt_mask, mask_self=True)
logit = F.linear(tgt_dec, self.tgt_embedding.weight)
return tgt_dec, logit
def nar_reorder(self, pseudo_vocab_mat_T, copied_src, src_enc, pseudo_vocab_mask=None, src_mask=None, tgt_mask=None):
dec = self.nar_reorder_module(copied_src, src_enc, src_pad_mask=src_mask, tgt_pad_mask=tgt_mask, mask_self=True)
logit = torch.matmul(dec, pseudo_vocab_mat_T)
if pseudo_vocab_mask is not None:
logit = logit.masked_fill(pseudo_vocab_mask, -1e18)
return logit
def ar_reorder(self, pseudo_trans_emb, pseudo_vocab_mat_T, src_enc, pseudo_trans_mask=None, pseudo_vocab_mask=None, src_mask=None, step=None):
pseudo_trans_emb = self.dropout(pseudo_trans_emb)
if pseudo_trans_mask is not None:
pseudo_trans_emb = pseudo_trans_emb.masked_fill(pseudo_trans_mask.unsqueeze(-1), 0.)
pseudo_trans_mask = pseudo_trans_mask.unsqueeze(1)
dec = self.ar_reorder_module(pseudo_trans_emb, src_enc, src_pad_mask=src_mask, tgt_pad_mask=pseudo_trans_mask, step=step)
logit = torch.matmul(dec, pseudo_vocab_mat_T)
if pseudo_vocab_mask is not None:
logit = logit.masked_fill(pseudo_vocab_mask, -1e18)
return logit