-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer.py
465 lines (364 loc) · 17.4 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
from util import sequence_mask, init_weights
def smooth_loss(log_prob, label, pad, eps=0.15):
mask = label == pad
nclass = log_prob.size(1)
smoothed_label = torch.zeros_like(log_prob)
smoothed_label = smoothed_label + eps / (nclass - 1)
class_range = torch.arange(0, nclass).to(log_prob.device)
selected_mask = class_range.view(1, nclass, 1).expand_as(log_prob) \
== label.unsqueeze(1).expand_as(log_prob)
smoothed_label = smoothed_label.masked_fill(selected_mask, 1 - eps)
smoothed_label = smoothed_label.masked_fill(mask.unsqueeze(1), 0.)
loss = torch.sum(-log_prob * smoothed_label)
return loss
class PositionEmbedding(nn.Module):
def __init__(self, emb_size, max_timescale=1.0e4):
super(PositionEmbedding, self).__init__()
self.emb_size = emb_size
self.max_timescale = max_timescale
def forward(self, length=None, step=None):
assert length is not None or step is not None
if length is not None:
pos = torch.arange(0., length).unsqueeze(-1)
if step is not None:
pos = torch.tensor([[step]], dtype=torch.float)
dim = torch.arange(0., self.emb_size, 2.).unsqueeze(0) / self.emb_size
sin = torch.sin(pos / torch.pow(self.max_timescale, dim))
cos = torch.cos(pos / torch.pow(self.max_timescale, dim))
pos_emb = torch.stack((sin, cos), -1).view(pos.size(0), -1)
pos_emb = pos_emb[:, :self.emb_size]
return pos_emb
class FeedForward(nn.Module):
def __init__(self, input_size, hidden_size, dropout=0.1):
super(FeedForward, self).__init__()
self.layer_1 = nn.Linear(input_size, hidden_size)
self.layer_2 = nn.Linear(hidden_size, input_size)
self.dropout = nn.Dropout(dropout)
def forward(self, inputs):
mid = F.relu(self.layer_1(inputs))
return self.layer_2(self.dropout(mid))
class MultiHeadedAttention(nn.Module):
def __init__(self, head_num, hidden_size, dropout=0.1):
super(MultiHeadedAttention, self).__init__()
assert hidden_size % head_num == 0
self.head_size = hidden_size // head_num
self.hidden_size = hidden_size
self.head_num = head_num
self.linear_keys = nn.Linear(hidden_size, head_num * self.head_size)
self.linear_values = nn.Linear(hidden_size, head_num * self.head_size)
self.linear_query = nn.Linear(hidden_size, head_num * self.head_size)
self.final_linear = nn.Linear(hidden_size, hidden_size)
self.softmax = nn.Softmax(dim=-1)
self.dropout = nn.Dropout(dropout)
def forward(self, key, value, query, mask=None, layer_cache=None, attn_type=None, mask_self=False):
batch_size = key.size(0)
head_size = self.head_size
head_num = self.head_num
def shape(x):
"""Projection."""
return x.view(batch_size, -1, head_num, head_size) \
.transpose(1, 2)
def unshape(x):
"""Compute context."""
return x.transpose(1, 2).contiguous() \
.view(batch_size, -1, head_num * head_size)
# 1) Project key, value, and query.
if layer_cache is not None:
if attn_type == "self":
query, key, value = self.linear_query(query),\
self.linear_keys(query),\
self.linear_values(query)
key, value = shape(key), shape(value)
if layer_cache["self_keys"] is not None:
key = torch.cat((layer_cache["self_keys"], key), dim=2)
if layer_cache["self_values"] is not None:
value = torch.cat((layer_cache["self_values"], value), dim=2)
layer_cache["self_keys"] = key
layer_cache["self_values"] = value
elif attn_type == "context":
query = self.linear_query(query)
if layer_cache["memory_keys"] is None:
key, value = self.linear_keys(key),\
self.linear_values(value)
key, value = shape(key), shape(value)
layer_cache["memory_keys"] = key
layer_cache["memory_values"] = value
else:
key, value = layer_cache["memory_keys"],\
layer_cache["memory_values"]
else:
key = self.linear_keys(key)
value = self.linear_values(value)
query = self.linear_query(query)
key, value = shape(key), shape(value)
query = shape(query)
# 2) Calculate and scale scores.
query = query / head_size ** 0.5
scores = torch.matmul(query, key.transpose(2, 3)).float()
if mask is not None:
mask = mask.unsqueeze(1)
scores = scores.masked_fill(mask, -1e18)
if mask_self and attn_type == "self" and layer_cache is None:
diag_mask = torch.diagflat(
torch.ones(
key.size(2),
dtype=torch.uint8,
device=scores.device))
diag_mask = diag_mask.unsqueeze(0).unsqueeze(0)
scores = scores.masked_fill(diag_mask, -1e18)
# 3) Apply attention dropout and compute context vectors.
attn = self.softmax(scores).to(query.dtype)
drop_attn = self.dropout(attn)
context_original = torch.matmul(drop_attn, value)
context = unshape(context_original)
output = self.final_linear(context)
return output
class TransformerEncoderLayer(nn.Module):
def __init__(self, hidden_size, heads, ffn_size, dropout=0.1):
super(TransformerEncoderLayer, self).__init__()
self.self_attn = MultiHeadedAttention(
heads, hidden_size, dropout=dropout)
self.feed_forward = FeedForward(hidden_size, ffn_size, dropout)
self.layer_norm_1 = nn.LayerNorm(hidden_size, eps=1e-6)
self.layer_norm_2 = nn.LayerNorm(hidden_size, eps=1e-6)
self.dropout = nn.Dropout(dropout)
def forward(self, inputs, mask):
input_norm = self.layer_norm_1(inputs)
context = self.self_attn(input_norm, input_norm, input_norm,
mask=mask, attn_type="self")
mid = self.dropout(context) + inputs
mid_norm = self.layer_norm_2(mid)
ffn_out = self.feed_forward(mid_norm)
output = self.dropout(ffn_out) + mid
return output
class TransformerEncoder(nn.Module):
def __init__(self, num_layers, hidden_size, heads, ffn_size, dropout):
super(TransformerEncoder, self).__init__()
self.encoder_layers = nn.ModuleList(
[TransformerEncoderLayer(
hidden_size, heads, ffn_size, dropout)
for i in range(num_layers)])
self.layer_norm = nn.LayerNorm(hidden_size, eps=1e-6)
def forward(self, inputs, input_lens):
max_len = inputs.size(1)
mask = ~sequence_mask(input_lens, max_len).unsqueeze(1).to(inputs.device)
output = inputs
for layer in self.encoder_layers:
output = layer(output, mask)
output = self.layer_norm(output)
return output, mask
class TransformerDecoderLayer(nn.Module):
def __init__(self, hidden_size, heads, ffn_size, dropout):
super(TransformerDecoderLayer, self).__init__()
self.self_attn = MultiHeadedAttention(
heads, hidden_size, dropout=dropout)
self.context_attn = MultiHeadedAttention(
heads, hidden_size, dropout=dropout)
self.feed_forward = FeedForward(hidden_size, ffn_size, dropout)
self.layer_norm_1 = nn.LayerNorm(hidden_size, eps=1e-6)
self.layer_norm_2 = nn.LayerNorm(hidden_size, eps=1e-6)
self.layer_norm_3 = nn.LayerNorm(hidden_size, eps=1e-6)
self.dropout = nn.Dropout(dropout)
def forward(self, inputs, memory_bank, src_pad_mask, tgt_pad_mask,
layer_cache=None, mask_self=False):
input_norm = self.layer_norm_1(inputs)
query = self.self_attn(input_norm, input_norm, input_norm,
mask=tgt_pad_mask,
layer_cache=layer_cache,
attn_type="self",
mask_self=mask_self)
query = self.dropout(query) + inputs
query_norm = self.layer_norm_2(query)
mid = self.context_attn(memory_bank, memory_bank, query_norm,
mask=src_pad_mask,
layer_cache=layer_cache,
attn_type="context")
ffn_in = self.dropout(mid) + query
normed_ffn_in = self.layer_norm_3(ffn_in)
ffn_out = self.feed_forward(normed_ffn_in)
out = self.dropout(ffn_out) + ffn_in
return out
class TransformerDecoder(nn.Module):
def __init__(self, num_layers, hidden_size, head_num, ffn_size, dropout, causal=True):
super(TransformerDecoder, self).__init__()
self.state = {}
self.decoder_layers = nn.ModuleList(
[TransformerDecoderLayer(hidden_size, head_num, ffn_size, dropout)
for i in range(num_layers)])
self.layer_norm = nn.LayerNorm(hidden_size, eps=1e-6)
self.causal = causal
def map_state(self, fn):
def _recursive_map(struct, batch_dim=0):
for k, v in struct.items():
if v is not None:
if isinstance(v, dict):
_recursive_map(v)
else:
struct[k] = fn(v, batch_dim)
if self.state["cache"] is not None:
_recursive_map(self.state["cache"])
def forward(self, tgt, memory_bank, src_pad_mask, tgt_pad_mask, step=None, mask_self=False):
dec_mask = tgt_pad_mask
if self.causal and step is None:
tgt_max_len = tgt_pad_mask.size(-1)
future_mask = torch.ones(
[tgt_max_len, tgt_max_len],
device=tgt_pad_mask.device,
dtype=torch.uint8)
future_mask = future_mask.triu_(1).view(1, tgt_max_len, tgt_max_len)
dec_mask = torch.gt(tgt_pad_mask + future_mask, 0)
if step == 0:
self._init_cache(memory_bank)
output = tgt
for i, layer in enumerate(self.decoder_layers):
layer_cache = self.state["cache"]["layer_{}".format(i)] \
if self.causal and step is not None else None
output = layer(
output,
memory_bank,
src_pad_mask,
dec_mask,
layer_cache=layer_cache,
mask_self=mask_self)
output = self.layer_norm(output)
return output
def _init_cache(self, memory_bank):
self.state["cache"] = {}
batch_size = memory_bank.size(0)
depth = memory_bank.size(-1)
for i, layer in enumerate(self.decoder_layers):
layer_cache = {"memory_keys": None, "memory_values": None}
layer_cache["self_keys"] = None
layer_cache["self_values"] = None
self.state["cache"]["layer_{}".format(i)] = layer_cache
class RNNDecoder(nn.Module):
def __init__(self, input_size, hidden_size, heads, dropout, src_size=None):
super(RNNDecoder, self).__init__()
self.state = {}
if src_size is None:
src_size = input_size
self.rnn = nn.GRU(
input_size=input_size * 2,
hidden_size=hidden_size,
num_layers=1,
batch_first=True,
bidirectional=False)
self.context_attn = MultiHeadedAttention(
heads, hidden_size, dropout=dropout)
self.fc = nn.Linear(hidden_size * 2, hidden_size)
self.layer_norm = nn.LayerNorm(hidden_size, eps=1e-6)
self.hidden_size = hidden_size
def forward(self, tgt, memory_bank, src_pad_mask=None, tgt_pad_mask=None, step=None):
bsz, length, dim = tgt.size()
if step is None or step == 0:
hidden = torch.zeros((bsz, 1, self.hidden_size), dtype=torch.float, device=tgt.device)
attn = torch.zeros((bsz, 1, self.hidden_size), dtype=torch.float, device=tgt.device)
if step is None:
layer_cache = None
elif step == 0:
self._init_cache(memory_bank)
layer_cache = self.state["cache"]["layer_0"]
else:
layer_cache = self.state["cache"]["layer_0"]
hidden, attn = layer_cache["hidden"], layer_cache["attn"]
final_out = None
for t in range(length):
cur_emb = tgt[:, t, :].unsqueeze(1)
out, hidden = self.rnn(torch.cat((attn, cur_emb), dim=-1), hidden.transpose(1, 0))
hidden = torch.transpose(hidden, 1, 0)
attn = self.context_attn(memory_bank, memory_bank, hidden,
mask=src_pad_mask,
layer_cache=layer_cache,
attn_type="context")
out = self.layer_norm(self.fc(torch.cat((hidden, attn), dim=-1)))
if final_out is None:
final_out = out
else:
final_out = torch.cat((final_out, out), dim=1)
if step is not None:
layer_cache["hidden"] = hidden
layer_cache["attn"] = attn
return final_out
def _init_cache(self, memory_bank):
self.state["cache"] = {}
layer_cache = {"hidden": None, "attn": None, "memory_keys": None, "memory_values": None}
self.state["cache"]["layer_0"] = layer_cache
def map_state(self, fn):
def _recursive_map(struct, batch_dim=0):
for k, v in struct.items():
if v is not None:
if isinstance(v, dict):
_recursive_map(v)
else:
struct[k] = fn(v, batch_dim)
if self.state["cache"] is not None:
_recursive_map(self.state["cache"])
class Transformer(nn.Module):
def __init__(self, enc_layers, dec_layers, hidden_size, head_num, ffn_size, src_emb_conf, tgt_emb_conf=None, \
dec_use_rnn=False, dropout=0.1, use_label_smoothing=True, smooth_rate=0.15):
super(Transformer, self).__init__()
if tgt_emb_conf is None:
self.embedding = self._init_embedding(src_emb_conf)
self.src_embedding = self.embedding
self.tgt_embedding = self.embedding
else:
self.src_embedding = self._init_embedding(src_emb_conf)
self.tgt_embedding = self._init_embedding(tgt_emb_conf)
self.pos_embedding = PositionEmbedding(hidden_size)
self.encoder = TransformerEncoder(enc_layers, hidden_size, head_num, ffn_size, dropout)
self.dec_use_rnn = dec_use_rnn
if dec_use_rnn:
self.decoder = RNNDecoder(hidden_size, hidden_size, head_num, dropout)
else:
self.decoder = TransformerDecoder(dec_layers, hidden_size, head_num, ffn_size, dropout)
self.dropout = nn.Dropout(dropout)
self.hidden_size = hidden_size
self.use_label_smoothing = use_label_smoothing
self.smooth_rate = smooth_rate
self.apply(init_weights)
def _init_embedding(self, emb_conf):
vocab_size = emb_conf['vocab_size']
emb_size = emb_conf['emb_size']
padding_idx = emb_conf.get('padding_idx', None)
return nn.Embedding(vocab_size, emb_size, padding_idx)
def forward(self, src_seq, tgt_seq, src_lens, label, scoring=False):
max_len = max(int(src_lens.max()), 1)
src_seq = src_seq[:, :max_len]
src_enc, src_mask = self.encode(src_seq, src_lens)
tgt_dec, logit = self.decode(tgt_seq, src_enc, src_mask)
log_prob = F.log_softmax(logit, dim=-1).transpose(1, 2)
if scoring:
loss_func = nn.NLLLoss(ignore_index=self.tgt_embedding.padding_idx, reduction='none')
loss = loss_func(log_prob, label)
return loss
if self.use_label_smoothing:
loss = smooth_loss(log_prob, label, pad=self.tgt_embedding.padding_idx, eps=self.smooth_rate)
else:
loss_func = nn.NLLLoss(ignore_index=self.tgt_embedding.padding_idx, reduction='sum')
loss = loss_func(log_prob, label)
return loss
def embed(self, input, embedding, step=None):
bsz, length = input.size()
emb = embedding(input) * self.hidden_size ** 0.5
pos_emb = self.pos_embedding(length, step=step).to(input.device)
pos_emb = pos_emb.unsqueeze(0).expand(bsz, -1, -1)
emb = self.dropout(emb + pos_emb)
return emb
def encode(self, src, src_lens):
src_emb = self.embed(src, self.src_embedding)
src_enc, src_mask = self.encoder(src_emb, src_lens)
return src_enc, src_mask
def decode(self, tgt, src_enc, src_mask=None, step=None):
padding_idx = self.tgt_embedding.padding_idx
tgt_mask = tgt.data.eq(padding_idx).unsqueeze(1)
if self.dec_use_rnn:
tgt_emb = self.dropout(self.tgt_embedding(tgt) * self.hidden_size ** 0.5)
else:
tgt_emb = self.embed(tgt, self.tgt_embedding, step=step)
tgt_dec = self.decoder(tgt_emb, src_enc, src_pad_mask=src_mask, tgt_pad_mask=tgt_mask, step=step)
logit = F.linear(tgt_dec, self.tgt_embedding.weight)
return tgt_dec, logit