-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathpreprocessing.py
81 lines (60 loc) · 2.72 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
"""
Script to preprocess SPCAM data.
Created on 2019-01-23-14-49
Author: Stephan Rasp, [email protected]
"""
from cbrain.imports import *
from cbrain.preprocessing.convert_dataset import preprocess
from cbrain.preprocessing.shuffle_dataset import shuffle
from cbrain.preprocessing.compute_normalization import normalize
# Set up logging, mainly to get timings easily.
logging.basicConfig(
format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p',
level=logging.DEBUG
)
def main(args):
"""
Returns
-------
"""
# Create training dataset
logging.info('Preprocess training dataset')
preprocess(args.in_dir, args.in_fns, args.out_dir, args.out_fn, args.vars)
# Shuffle training dataset
if args.shuffle:
logging.info('Shuffle training dataset')
shuffle(args.out_dir, args.out_fn, args.chunk_size)
# Potentially
if args.val_in_fns is not None:
logging.info('Preprocess validation dataset')
preprocess(args.in_dir, args.val_in_fns, args.out_dir, args.val_out_fn, args.vars)
if args.norm_fn is not None:
logging.info(f'Compute normalization file from {args.norm_train_or_valid}')
normalize(
args.out_dir,
args.out_fn if args.norm_train_or_valid == 'train' else args.val_out_fn,
args.norm_fn
)
logging.info('Finish entire preprocessing script.')
# Create command line interface
if __name__ == '__main__':
p = ArgParser()
p.add('-c', '--config_file', default='config.yml', is_config_file=True, help='Path to config file.')
p.add('--vars', type=str, nargs='+', help='List of variables.')
# For first file
p.add('--in_dir', type=str, help='Directory containing SPCAM files.')
p.add('--in_fns', type=str, help='SPCAM file names, * is allowed.')
p.add('--out_dir', type=str, help='Directory where processed files will be stored.')
p.add('--out_fn', type=str, help='Name of processed file.')
# For shuffling
p.add('--shuffle', dest='shuffle', action='store_true', help='Shuffle data along sample dimension.')
p.set_defaults(shuffle=True)
p.add('--chunk_size', type=int, default=10_000_000, help='Chunk size for shuffling.')
# For potential validation file
p.add('--val_in_fns', type=str, default=None, help='Validation: SPCAM file names, * is allowed.')
p.add('--val_out_fn', type=str, default=None, help='Validation: Name of processed file.')
# For a potential normalization file
p.add('--norm_fn', type=str, default=None, help='Normalization: If given, compute normalization file.')
p.add('--norm_train_or_valid', type=str, default='train', help='Compute normalization values from train or valid?')
args = p.parse_args()
main(args)