-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathtrain.py
172 lines (142 loc) · 6.81 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""
Training script.
Created on 2019-01-28-12-21
Author: Stephan Rasp, [email protected]
"""
from cbrain.imports import *
from cbrain.utils import *
from cbrain.losses import *
from cbrain.data_generator import DataGenerator
from cbrain.models import *
from cbrain.learning_rate_schedule import LRUpdate
from cbrain.save_weights import save2txt, save_norm
from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.losses import mse
import json
logging.basicConfig(
format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p',
level=logging.DEBUG
)
def main(args):
"""Main training script."""
if args.gpu is not None:
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
limit_mem()
# Load output scaling dictionary
out_scale_dict = load_pickle(args.output_dict)
logging.info('Create training and validation data generators')
train_gen = DataGenerator(
data_fn=args.data_dir + args.train_fn,
input_vars=args.inputs,
output_vars=args.outputs,
norm_fn=args.data_dir + args.norm_fn,
input_transform=(args.input_sub, args.input_div),
output_transform=out_scale_dict,
batch_size=args.batch_size,
shuffle=True,
var_cut_off=args.var_cut_off
)
if args.valid_fn is not None:
valid_gen = DataGenerator(
data_fn=args.data_dir + args.valid_fn,
input_vars=args.inputs,
output_vars=args.outputs,
norm_fn=args.data_dir + args.norm_fn,
input_transform=(args.input_sub, args.input_div),
output_transform=out_scale_dict,
batch_size=args.batch_size * 10,
shuffle=False,
var_cut_off=args.var_cut_off
)
else:
valid_gen = None
logging.info('Build model')
model = fc_model(
input_shape=train_gen.n_inputs,
output_shape=train_gen.n_outputs,
hidden_layers=args.hidden_layers,
activation=args.activation,
conservation_layer=args.conservation_layer,
inp_sub=train_gen.input_transform.sub,
inp_div=train_gen.input_transform.div,
norm_q=out_scale_dict['PHQ']
)
print(model.summary())
logging.info('Compile model')
if args.loss == 'weak_loss':
loss = WeakLoss(model.input, inp_div=train_gen.input_transform.div,
inp_sub=train_gen.input_transform.sub, norm_q=out_scale_dict['PHQ'],
alpha_mass=args.alpha_mass, alpha_ent=args.alpha_ent, noadiab=args.noadiab)
else:
loss = args.loss
metrics = [mse]
if args.conservation_metrics:
mass_loss = WeakLoss(model.input, inp_div=train_gen.input_transform.div,
inp_sub=train_gen.input_transform.sub, norm_q=out_scale_dict['PHQ'],
alpha_mass=1, alpha_ent=0, name='mass_loss', noadiab=args.noadiab)
ent_loss = WeakLoss(model.input, inp_div=train_gen.input_transform.div,
inp_sub=train_gen.input_transform.sub, norm_q=out_scale_dict['PHQ'],
alpha_mass=0, alpha_ent=1, name='ent_loss', noadiab=args.noadiab)
metrics += [mass_loss, ent_loss]
model.compile(args.optimizer, loss=loss, metrics=metrics)
lrs = LearningRateScheduler(LRUpdate(args.lr, args.lr_step, args.lr_divide))
logging.info('Train model')
model.fit_generator(
train_gen, epochs=args.epochs, validation_data=valid_gen, callbacks=[lrs])
if args.exp_name is not None:
exp_dir = args.model_dir + args.exp_name + '/'
os.makedirs(exp_dir, exist_ok=True)
model_fn = exp_dir + 'model.h5'
logging.info(f'Saving model as {model_fn}')
model.save(model_fn)
if args.save_txt:
weights_fn = exp_dir + 'weights.h5'
logging.info(f'Saving weights as {weights_fn}')
model.save_weights(weights_fn)
save2txt(weights_fn, exp_dir)
save_norm(train_gen.input_transform, train_gen.output_transform, exp_dir)
logging.info('Done!')
# Create command line interface
if __name__ == '__main__':
p = ArgParser()
p.add('-c', '--config_file', default='config.yml', is_config_file=True, help='Path to config file.')
# Data arguments
p.add('--data_dir', type=str, help='Path to preprocessed data files.')
p.add('--inputs', type=str, nargs='+', help='List of input variables.')
p.add('--outputs', type=str, nargs='+', help='List of output variables.')
p.add('--train_fn', type=str, help='File name of training file.')
p.add('--norm_fn', type=str, help='File name of normalization file.')
p.add('--input_sub', type=str, help='What to subtract from input array. E.g. "mean"')
p.add('--input_div', type=str, help='What to divide input array by. E.g. "maxrs"')
p.add('--output_dict', type=str, help='Output scaling dictionary.')
p.add('--var_cut_off', type=json.loads, help='Input variable cut off for upper levels.')
p.add('--valid_fn', type=str, default=None, help='File name of training file.')
# Neural network hyperparameteris
p.add('--batch_size', type=int, default=1024, help='Batch size of training generator.')
p.add('--hidden_layers', type=int, nargs='+', help='Hidden layer sizes.')
p.add('--activation', type=str, default='LeakyReLU', help='Activation function.')
p.add('--optimizer', type=str, default='adam', help='Optimizer.')
p.add('--conservation_layer', dest='conservation_layer', action='store_true', help='Add conservation layer.')
p.set_defaults(conservation_layer=False)
# Loss parameters
p.add('--loss', type=str, default='mse', help='Loss function.')
p.add('--conservation_metrics', dest='conservation_metrics', action='store_true', help='Add conservation metrics.')
p.set_defaults(conservation_metrics=False)
p.add('--alpha_mass', type=float, default=0.25, help='If weak_loss, weight of mass loss.')
p.add('--alpha_ent', type=float, default=0.25, help='If weak_loss, weight of ent loss.')
p.add('--noadiab', dest='noadiab', action='store_true',
help='noadiab')
p.set_defaults(noadiab=False)
# Learning rate schedule
p.add('--lr', type=float, default=0.001, help='Initial learning rate.')
p.add('--lr_step', type=int, default=2, help='Divide every step epochs.')
p.add('--lr_divide', type=float, default=5, help='Divide by this number.')
p.add('--epochs', type=int, default=10, help='Number of epochs.')
# Save parameters
p.add('--exp_name', type=str, default=None, help='Experiment identifier.')
p.add('--model_dir', type=str, default='./saved_models/', help='Model save path.')
p.add('--save_txt', dest='save_txt', action='store_true', help='Save F90 txt files.')
p.set_defaults(save_txt=True)
p.add('--gpu', type=str, default=None, help='Which GPU to use.')
args = p.parse_args()
main(args)