forked from ugobas/tnm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoutput_tnm.c
405 lines (369 loc) · 12.9 KB
/
output_tnm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#include "nma_para.h"
//#include "Parameters.h"
#include "coord.h"
#include "tnm.h"
#include "nma.h"
#include "vector.h"
#include "buildup.h"
#include "output_tnm.h"
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
extern float Freq_unit;
void Print_modes(int N_print, char *nameout,
char *label, int *select,
int N, float **Mode, float *collectivity,
float *sigma2, double sum_sigma2,
struct axe *axe, int naxe,
atom *atoms, int natoms,
struct residue *seq, int nres,
int *atom_num, int N_ref)
{
int PRINT_ALL=0;
FILE *file_out; int ia, i=0, cart=0, k=0, j=0, ik=0, ires;
char outfile[200], xyz[4];
strcpy(xyz, "xyz");
sprintf(outfile, "%s.Modes_%s.dat", nameout, label);
file_out=fopen(outfile, "w");
printf("Writing normal modes to file %s\n", outfile);
fprintf(file_out, "# %d degrees of freedom: %s\n", N, label);
fprintf(file_out, "# Contribution to fluctuation: ");
for(ia=0; ia<N_print; ia++)
if((select[ia])||PRINT_ALL)
fprintf(file_out, "\t%.3g", sigma2[ia]/sum_sigma2);
fprintf(file_out, "\n");
fprintf(file_out, "# e_values: ");
for(ia=0; ia<N_print; ia++)
if((select[ia])||PRINT_ALL)
fprintf(file_out, "\t%.3g", 1./sigma2[ia]);
fprintf(file_out, "\n");
fprintf(file_out, "# collectivity: ");
for(ia=0; ia<N_print; ia++)
if((select[ia])||PRINT_ALL)
fprintf(file_out, "\t%.3g", collectivity[ia]);
fprintf(file_out, "\n");
if(strncmp(label, "Cart", 4)==0)cart=1;
for(i=0; i<N; i++){
fprintf(file_out, "%4d", i);
for(ia=0; ia<N_print; ia++)
if((select[ia])||PRINT_ALL)
fprintf(file_out, "\t%11.5g", Mode[ia][i]);
if(cart==0){
if(axe[i].type=='f'){fprintf(file_out, "\tphi");}
else if(axe[i].type=='p'){fprintf(file_out, "\tpsi");}
else if(axe[i].type=='l'){fprintf(file_out, "\tlen");}
else if(axe[i].type=='a'){fprintf(file_out, "\tban");}
else if(axe[i].type=='t'){fprintf(file_out, "\ttan");}
else{ fprintf(file_out, "\t%c", axe[i].type);}
sscanf(seq[axe[i].bond->atom->res].pdbres, "%d", &ires);
fprintf(file_out, "%d\n", ires);
}else{
k=i/3; j=i-3*k; ik=atom_num[k];
sscanf(seq[atoms[ik].res].pdbres, "%d", &ires);
fprintf(file_out, "\t%s%d%c\n", atoms[ik].name, ires, xyz[j]);
}
}
fclose(file_out);
}
int Print_PDB_mode_old(char *nameout, int ia, float *Cart_mode,
float Amplitude, float Cart_collectivity,
float Tors_collectivity, float MW_Tors_collectivity,
float eigen_value, float eigen_B,
atom *atoms, int natoms, struct residue *seq, int nres,
int *atom_num, int N_ref)
{
//Print_PDB_3(Cart_mode[ia], eigen_value[ia], eigen_B[ia], atoms,
// N_ref, atom_ref, seq, file_name, ia);
FILE *file_out; char outfile[200];
//~ FILE * CHAIN[2];
int i, j, k; atom *atom1=atoms;
char aaname3[10]; float r[3];
// Amplitude factors
//~ float DTHETA=0;
//~ float AMPL_FACTOR=16; // Amplification with respect to thermal fluctuations
//~ float AMAX=120; // New amplitude factor
//~ float step, dtheta;
//~ int N_STEP=10; // Number of conformations per normal mode
//~ int i_step;
//~ double norm;
for(i=0; i<10; i++)aaname3[i]='\0';
// Opening file
sprintf(outfile, "%s_modes.pdb", nameout);
if(ia<1){
file_out=fopen(outfile, "w");
printf("Writing normal modes in PDB format in %s\n", outfile);
fprintf(file_out, "MODEL 0: Native structure\n");
}else{
file_out=fopen(outfile, "a");
fprintf(file_out, "MODEL %d\n", ia+1);
fprintf(file_out, "REMARK Normal mode %3d Percent fluctuation= %.2f",
ia, eigen_B*100.0);
fprintf(file_out,
"REMARK Collectivity: "
"Cartesian %.3f Torsional %.3f MW_Torsional %.3f\n",
Cart_collectivity, Tors_collectivity, MW_Tors_collectivity);
}
// Compute and print
int jatom=0;
for(i=0; i<N_ref; i++){
int m=3*i;
atom1=atoms+atom_num[i];
for(j=0; j<3; j++){
r[j]=atom1->r[j];
if(ia>=0)r[j]+=Cart_mode[m+j]*Amplitude;
}
k=atom1->res; Name3(aaname3, seq[k].i_aa);
if(jatom <99999)jatom++;
fprintf(file_out,
"ATOM %5d%4s %3s %c%4s %8.3f%8.3f%8.3f%6.2f%6.2f\n",
jatom, atom1->name, aaname3, chain,
seq[k].pdbres, r[0], r[1], r[2], 1.0, atom1->B_factor);
atom1=atoms+atom1->i_next;
}
fprintf(file_out, "ENDMDL\n");
fclose(file_out);
return(0);
}
void Print_mode_summary(char *nameout, char *label, struct Normal_Mode NM,
float M_sqrt,int anharmonic,float xkappa)
{
int i;
FILE *file_out; char outfile[200];
sprintf(outfile, "%s.%s.dat", nameout, label);
file_out=fopen(outfile, "w");
printf("Writing %s\n", outfile);
float kappa=Collectivity_norm1(NM.sigma2, NM.N);
fprintf(file_out, "# Reciprocal collectivity of fluctuations= %.1f\n",kappa);
fprintf(file_out, "# kappa= %.3f\n",xkappa);
//float N_sqrt=sqrt(NM.N_Cart/3);
double norm=0; for(i=0; i<NM.N; i++)norm+=NM.sigma2[i];
if(anharmonic){
double Anhar_ene=0, Anhar_str=0;
for(i=0; i<NM.N; i++){
if(NM.sigma2[i]==0)continue;
Anhar_ene+=NM.Anharmonicity[i]*NM.sigma2[i];
Anhar_str+=NM.Anharm_struct[i]*NM.sigma2[i];
}
fprintf(file_out, "# Frequency weighted anharmonicity (ene)= %.3f\n",
Anhar_ene/norm);
fprintf(file_out, "# Frequency weighted anharmonicity (str)= %.3f\n",
Anhar_str/norm);
}
fprintf(file_out, "# Frequency reported in internal units: %.3f ps^(-1),"
" kT/h/ is %.3g internal units (om-2)= %.3g\n",
Freq_unit, 0.385/Freq_unit, Freq_unit*Freq_unit/0.1482);
fprintf(file_out,"#mode pc_therm cumul ");
fprintf(file_out,"om-2(harm) ");
if(anharmonic)fprintf(file_out, "om-2(corr) om-2(anha) ");
fprintf(file_out," RMSD Coll_cart");
if(NM.MW_Tors_coll)fprintf(file_out, " Coll_MW");
if(NM.Tors_coll)fprintf(file_out, " Coll_tors");
fprintf(file_out, " Max_dev_atom");
/*fprintf(file_out, " Anharmonicity_(ene) Anharmonicity_(str)");
fprintf(file_out, " Max_RMSD(DE<E_THR*E_nat)"); //, E_THR*/
fprintf(file_out, "\n");
double sum=0;
for(i=0; i<NM.N; i++){
if(NM.select[i]==0)fprintf(file_out, "#");
sum+=NM.sigma2[i];
fprintf(file_out, "%5d %6.4f %5.3f ",i, NM.sigma2[i]/norm, sum/norm);
fprintf(file_out, "%7.4g ",NM.sigma2[i]);
if(anharmonic){
fprintf(file_out,"%7.4g %7.4g ",
xkappa*NM.sigma2_anhar[i],NM.sigma2_anhar[i]);
}
fprintf(file_out, " %7.3g", 1./(M_sqrt*NM.omega[i]));
fprintf(file_out, " %5.3f", NM.Cart_coll[i]);
if(NM.MW_Tors_coll)fprintf(file_out, " %5.3f", NM.MW_Tors_coll[i]);
if(NM.Tors_coll)fprintf(file_out, " %5.3f", NM.Tors_coll[i]);
fprintf(file_out, " %5.3f", NM.Max_dev[i]);
/*fprintf(file_out, " %.3f", NM.Anharmonicity[i]);
fprintf(file_out, " %.3f", NM.Anharm_struct[i]);
fprintf(file_out, " %.3f", NM.Max_RMSD[i]);*/
fprintf(file_out, "\n");
}
fclose(file_out);
}
int Check_make_dir(char *outdir){
char name_out[1000]; FILE *file_out;
if(outdir[0]=='\0')return(0);
sprintf(name_out, "%s/%s", outdir, "tmp");
file_out=fopen(name_out, "w");
if(file_out!=NULL){fclose(file_out); return(1);}
sprintf(name_out, "mkdir -p %s\n", outdir);
if(system(name_out)==0)return(1);
return(0);
}
void Print_cart_fluct(int *atom_num, int N_atom, float *fluct,
atom *atoms, struct residue *seq,
char *name, char *type)
{
float MAX_B=50.0;
int i, ia=0, n=1;
FILE *file_out=fopen(name, "w");
printf("Writing %s\n", name);
fprintf(file_out, "REMARK %d B_factor = %s\n",n, type);
{ // Normalize such that max_fluctuation = MAX_B
float max_f=0, norm;
for(i=0; i<N_atom; i++)if(fluct[i]>max_f)max_f=fluct[i];
norm=MAX_B/max_f; for(i=0; i<N_atom; i++)fluct[i]*=norm;
}
for(i=0; i<N_atom; i++){
Print_atom(atoms+atom_num[i], &ia, fluct[i], seq, file_out);
}
fprintf(file_out, "TER\n");
fclose(file_out);
}
void Print_tors_fluct(struct axe *axe, int N_axes, float *fluct,
atom *atoms, struct residue *seq,
char *name, char *type)
{
float MAX_B=100.0, f; int i, ia=0, n=1;
FILE *file_out=fopen(name, "w");
printf("Writing %s\n", name);
fprintf(file_out, "MODEL %d B_factor = %s\n", n, type);
{ // Normalize such that max_fluctuation = MAX_B
float max_f=0, norm;
for(i=0; i<N_axes; i++)if(fluct[i]>max_f)max_f=fluct[i];
norm=MAX_B/max_f;
for(i=0; i<N_axes; i++)fluct[i]*=norm;
}
for(i=0; i<N_axes; i++){
if(axe[i].type=='f'){
Print_atom(axe[i].bond->previous->atom, &ia, fluct[i], seq, file_out);
f=fluct[i]; if(i+1<N_axes)f=0.5*(f+fluct[i+1]);
Print_atom(axe[i].bond->atom, &ia, f, seq, file_out);
}else if(axe[i].type=='p'){
if(ia==0)
Print_atom(axe[i].bond->previous->atom, &ia, fluct[i], seq, file_out);
Print_atom(axe[i].bond->atom, &ia, fluct[i], seq, file_out);
}
}
fprintf(file_out, "ENDMDL\n");
fclose(file_out);
}
void Print_structures(char *pdbout,
double *atom_str1, atom *atoms1,
struct residue *seq1, char chain1,
double *atom_str2, atom *atoms2,
struct residue *seq2, char chain2,
int *atom_num, int N_ref, int N_cart,
float **Cart_mode, float *coeff,
int *sort, int N_MODE_PRINT, int N_modes)
{
double *atom_tmp;
int imod=0, kmod=0, nmod, i;
if(N_MODE_PRINT<=0)return;
if(N_MODE_PRINT < N_modes){nmod = N_MODE_PRINT;}else{nmod= N_modes;}
// Print reference structure
//Write_coord(pdbout,atom_str1,atoms1,atom_num,N_ref,seq1,chain1,kmod);
// kmod++;
atom_tmp=malloc(N_cart*sizeof(double));
for(i=0; i<N_cart; i++)atom_tmp[i]=atom_str1[i];
for(imod=0; imod< nmod; imod++){
int ik=sort[imod];
float *mode=Cart_mode[ik];
/* Update intermediate structure */
for(i=0;i<N_cart;i++)atom_tmp[i]+=coeff[ik]*mode[i];
Write_coord(pdbout,atom_tmp,atoms1,atom_num,N_ref,seq1,chain1,kmod);
kmod++;
}
// Print experimental structure 2
//Write_coord(pdbout,atom_str2,atoms2,atom_num,N_ref,seq2,chain2,-1);
printf("Writing %s\n", pdbout);
free(atom_tmp);
}
int Write_coord(char *name_out, double *atoms_ref,
atom *atoms, int *atom_num, int N_atom_ref,
struct residue *seq, char chain, int i_model)
{
int i, ini=0, m=0, ires=0, iatom=0, print_bb=1, nprint_B, nprint_S;
int *printed=malloc(N_atom_ref*sizeof(int));
struct residue *res;
char aaname3[4]; FILE *fh;
atom *atom1=NULL;
// printf("Printing PDB %d\n", i_model);
if(i_model==0){
fh=fopen(name_out, "w");
}else{
fh=fopen(name_out, "a");
}
fprintf(fh, "MODEL %d: ", i_model+1);
if(i_model==0){
fprintf(fh, "STR.1\n");
}else if(i_model > 0){
fprintf(fh, "%d normal modes\n", i_model);
}else if(i_model<0){
fprintf(fh, "STR.2\n");
}
for(i=0; i<4; i++)aaname3[i]='\0';
int jatom=0;
ires=0; ini=0; print_bb=1; iatom=0;
for (i=ini;i<N_atom_ref;i++)printed[i]=0;
while(iatom < N_atom_ref){
nprint_B=0; nprint_S=0;
for (i=ini;i<N_atom_ref;i++){
if(printed[i])continue;
atom1=atoms+atom_num[i];
if(atom1->res > ires)break;
if((strncmp(atom1->name, "N ", 2)==0)||
(strncmp(atom1->name, "CA", 2)==0)||
(strncmp(atom1->name, "C ", 2)==0)||
(strncmp(atom1->name, "O ", 2)==0)){
if(print_bb){nprint_B=1; break;}
}else{
if(print_bb==0){nprint_S=1; break;}
}
}
if((print_bb) && (nprint_B==0)){print_bb=0; continue;}
if((print_bb==0) && (nprint_S==0)){
ires=ires+1; ini=i; print_bb=1; continue;
}
printed[i]=1; iatom++;
if(jatom < 99999)jatom++;
res=seq+atom1->res;
m=3*i;
Name3(aaname3, res->i_aa);
if (strlen(atom1->name)==4){
fprintf(fh,"%-6s%5d %-4s%1s%3s %c%4d%1s %8.3f%8.3f%8.3f%6.2f\n",
"ATOM", jatom, atom1->name," ", aaname3,chain,
//res->pdbres," ",atoms_ref[m],atoms_ref[m+1],atoms_ref[m+2],
atom1->res+1," ",atoms_ref[m],atoms_ref[m+1],atoms_ref[m+2],
atom1->occupancy);
}else{
fprintf(fh,"%-6s%5d %-3s%1s%3s %c%4d%s %8.3f%8.3f%8.3f%6.2f\n",
"ATOM", jatom, atom1->name," ",aaname3,chain,
//res->pdbres," ",atoms_ref[m],atoms_ref[m+1],atoms_ref[m+2],
atom1->res+1," ",atoms_ref[m],atoms_ref[m+1],atoms_ref[m+2],
atom1->occupancy);
}
}
fprintf(fh,"TER\n");
fclose(fh); free(printed);
return (0);
}
void Print_atom(atom *atom, int *num, float B, struct residue *seq,
FILE *file_out)
{
struct residue *s=seq+atom->res;
char aaname3[4]; Name3(aaname3, s->i_aa);
(*num)++; int jatom=*num; if(jatom>99999)jatom=99999;
fprintf(file_out,
"ATOM %5d %4s%3s %c%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n",
jatom, atom->name, aaname3, 'A', atom->res+1,
atom->r[0], atom->r[1], atom->r[2], 1.0, B);
}
int Print_change(float *Fluct_pred, float *Fluct_obs, int N,
char *nameout, char *what)
{
char namefile[200]; FILE *file_out; int i;
sprintf(namefile, "%s_%s_dev.dat", nameout, what);
file_out=fopen(namefile, "w");
printf("Writing %s\n", namefile);
fprintf(file_out, "# Squared deviation\n# Pred Obs\n");
for(i=0; i<N; i++)
fprintf(file_out, "%.4f %.4f\n", Fluct_pred[i], Fluct_obs[i]);
fclose(file_out);
return(0);
}