-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathgetdetections.cc
314 lines (277 loc) · 11.1 KB
/
getdetections.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#include "mex.h"
enum output_fields {
DET_USE = 0, // current symbol is used
DET_IND, // rule index
DET_X, // x coord (filter and deformation)
DET_Y, // y coord (filter and deformation)
DET_L, // level (filter)
DET_DS, // # of 2x scalings relative to the start symbol location
DET_PX, // x coord of "probe" (deformation)
DET_PY, // y coord of "probe" (deformation)
DET_VAL, // score of current symbol
DET_SZ // <count number of constants above>
};
struct node {
int symbol; // grammar symbol
int x; // x location for symbol
int y; // y location for symbol
int l; // scale level for symbol
int ds; // # of 2x scalings relative to the start symbol location
double val; // score for symbol
};
static const mxArray *model = NULL;
static const mxArray *rules = NULL;
static node *Q = NULL;
static int start_symbol = 0;
static int interval = 0;
static inline double min(double x, double y) { return (x <= y ? x : y); }
static inline double max(double x, double y) { return (x <= y ? y : x); }
static inline int pow2(int p) { return (1<<p); }
// Compute amount of virtual padding needed to align pyramid
// levels with 2*ds scale separation.
static inline int virtpadding(int padding, int ds) {
// subtract one because each level already has a one
// padding wide border around it
return padding*(pow2(ds)-1);
}
// push a symbol onto the stack
static inline void push(const node& n, int& cur, int padx, int pady,
int probex, int probey, int px, int py,
int pl, int ds, int r, const double *rhs,
int rhsind) {
// acccumulate # of 2x rescalings
int pds = n.ds + ds;
// symbol to push onto the stack
int ps = (int)rhs[rhsind]-1;
// locate score (or set to zero if the symbol is hallucinated beyond
// the feature pyramid boundary)
mxArray *mxScore = mxGetCell(mxGetField(mxGetField(model, 0, "symbols"),
ps, "score"), pl);
double *score = mxGetPr(mxScore);
const mwSize *sz = mxGetDimensions(mxScore);
double pval = score[probex*sz[0] + probey];
// push symbol @ (px,py,pl) with score pval onto the stack
cur++;
Q[cur].symbol = ps;
Q[cur].x = px;
Q[cur].y = py;
Q[cur].l = pl;
Q[cur].ds = pds;
Q[cur].val = pval;
}
// trace a single detection
static void trace(int padx, int pady, const double *scales,
int sx, int sy, int sl, double sval,
double *out, double *dets, mwSize *detsdim,
double *boxes, mwSize *boxesdim) {
// initial stack for tracing the detection
int cur = 0;
Q[cur].symbol = start_symbol;
Q[cur].x = sx;
Q[cur].y = sy;
Q[cur].l = sl;
Q[cur].ds = 0;
Q[cur].val = sval;
while (cur >= 0) {
// pop a node off the stack
const node n = Q[cur];
cur--;
// detection information for the current symbol
double *info = out + DET_SZ*n.symbol;
info[DET_USE] = 1;
info[DET_VAL] = n.val;
mxChar type = mxGetChars(mxGetField(mxGetField(model, 0, "symbols"), n.symbol, "type"))[0];
// symbol is a terminal
if (type == 'T') {
// detection info for terminal
info[DET_IND] = -1;
info[DET_X] = n.x + 1;
info[DET_Y] = n.y + 1;
info[DET_L] = n.l + 1;
info[DET_DS] = n.ds;
// terminal symbol
int fi = (int)mxGetScalar(mxGetField(mxGetField(model, 0, "symbols"),
n.symbol, "filter")) - 1;
// filter size
double *fsz = mxGetPr(mxGetField(mxGetField(model, 0, "filters"),
fi, "size"));
// detection scale
double scale = mxGetScalar(mxGetField(model, 0, "sbin"))/scales[n.l];
// compute and record image coordinates for the filter
double x1 = (n.x-padx*pow2(n.ds))*scale;
double y1 = (n.y-pady*pow2(n.ds))*scale;
double x2 = x1 + fsz[1]*scale - 1;
double y2 = y1 + fsz[0]*scale - 1;
boxes[boxesdim[0]*(4*fi + 0)] = x1 + 1;
boxes[boxesdim[0]*(4*fi + 1)] = y1 + 1;
boxes[boxesdim[0]*(4*fi + 2)] = x2 + 1;
boxes[boxesdim[0]*(4*fi + 3)] = y2 + 1;
continue;
}
// find the rule that produced the current node by looking at
// which score table holds n.val at the symbol's location
bool success = false;
const mxArray *symrules = mxGetCell(rules, n.symbol);
const mwSize *rulesdim = mxGetDimensions(symrules);
int r = 0;
for (; r < rulesdim[1]; r++) {
// probe location = symbol location minus virtual padding
int probey = n.y-virtpadding(pady, n.ds);
int probex = n.x-virtpadding(padx, n.ds);
mxArray *mxScore = mxGetCell(mxGetField(symrules, r, "score"), n.l);
const double *score = mxGetPr(mxScore);
const mwSize *sz = mxGetDimensions(mxScore);
// pick this rule if the score at the probe location matches n.val
if (score[probex*sz[0] + probey] == n.val) {
success = true;
break;
}
}
// record the rule index used (same as model "component" for mixtures of
// star models)
info[DET_IND] = r + 1;
// record a detection window for the start symbol
if (n.symbol == start_symbol) {
// get detection window for start_symbol and rule r
mxArray *mxdetwin = mxGetField(symrules, r, "detwindow");
double *detwin = mxGetPr(mxdetwin);
// detection scale
double scale = mxGetScalar(mxGetField(model, 0, "sbin"))/scales[n.l];
// compute and record image coordinates of the detection window
double x1 = (n.x-padx*pow2(n.ds))*scale;
double y1 = (n.y-pady*pow2(n.ds))*scale;
double x2 = x1 + detwin[1]*scale - 1;
double y2 = y1 + detwin[0]*scale - 1;
dets[detsdim[0]*0] = x1 + 1;
dets[detsdim[0]*1] = y1 + 1;
dets[detsdim[0]*2] = x2 + 1;
dets[detsdim[0]*3] = y2 + 1;
dets[detsdim[0]*4] = r + 1;
dets[detsdim[0]*5] = n.val;
boxes[boxesdim[0]*(boxesdim[1]-2)] = r + 1;
boxes[boxesdim[0]*(boxesdim[1]-1)] = n.val;
info[DET_X] = n.x + 1;
info[DET_Y] = n.y + 1;
info[DET_L] = n.l + 1;
info[DET_DS] = n.ds;
}
// push rhs symbols from the selected rule
type = mxGetChars(mxGetField(symrules, r, "type"))[0];
const mxArray *mxrhs = mxGetField(symrules, r, "rhs");
const mwSize *rhsdim = mxGetDimensions(mxrhs);
const double *rhs = mxGetPr(mxrhs);
if (type == 'S') {
// structural rule
for (int j = 0; j < rhsdim[1]; j++) {
const double *anchor = mxGetPr(mxGetCell(mxGetField(symrules, r, "anchor"), j));
int ax = (int)anchor[0];
int ay = (int)anchor[1];
int ds = (int)anchor[2];
// compute location of the rhs symbol
int px = n.x*pow2(ds) + ax;
int py = n.y*pow2(ds) + ay;
int pl = n.l - interval*ds;
int probex = px - virtpadding(padx, n.ds+ds);
// remove virtual padding for to compute the probe location in the
// score table
int probey = py - virtpadding(pady, n.ds+ds);
push(n, cur, padx, pady, probex, probey, px, py, pl, ds, r, rhs, j);
}
} else {
// deformation rule (only 1 rhs symbol)
mxArray *mxIx = mxGetCell(mxGetField(symrules, r, "Ix"), n.l);
mxArray *mxIy = mxGetCell(mxGetField(symrules, r, "Iy"), n.l);
int *Ix = (int *)mxGetPr(mxIx);
int *Iy = (int *)mxGetPr(mxIy);
const mwSize *isz = mxGetDimensions(mxIx);
int px = n.x;
int py = n.y;
// probe location for looking up displacement of rhs symbol
int probex = n.x - virtpadding(padx, n.ds);
int probey = n.y - virtpadding(pady, n.ds);
// probe location for accessing the score of the rhs symbol
int probex2 = probex;
int probey2 = probey;
// if the probe location is in the feature pyramid retrieve the
// deformation location from Ix and Iy
// subtract 1 because Ix/Iy use 1-based indexing
px = Ix[probex*isz[0] + probey] - 1 + virtpadding(padx, n.ds);
py = Iy[probex*isz[0] + probey] - 1 + virtpadding(pady, n.ds);
// remove virtual padding for score look up
probex2 = Ix[probex*isz[0] + probey] - 1;
probey2 = Iy[probex*isz[0] + probey] - 1;
push(n, cur, padx, pady, probex2, probey2, px, py, n.l, 0, r, rhs, 0);
// save detection information
info[DET_X] = px + 1; // actual location (x)
info[DET_Y] = py + 1; // actual location (y)
info[DET_PX] = n.x + 1; // Ix probe location
info[DET_PY] = n.y + 1; // Iy probe location
}
}
}
// matlab entry point
// 0 1 2 3 4 5 6 7
// [dets, fboxes, info] = getdetections(model, padx, pady, scales, X, Y, L, S);
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {
model = prhs[0];
const int padx = (int)mxGetScalar(prhs[1]);
const int pady = (int)mxGetScalar(prhs[2]);
const double *scales = mxGetPr(prhs[3]);
const int *X = (int *)mxGetPr(prhs[4]);
const int *Y = (int *)mxGetPr(prhs[5]);
const int *L = (int *)mxGetPr(prhs[6]);
const double *S = (double *)mxGetPr(prhs[7]);
start_symbol = (int)mxGetScalar(mxGetField(model, 0, "start")) - 1;
rules = mxGetField(model, 0, "rules");
interval = (int)mxGetScalar(mxGetField(model, 0, "interval"));
const int numsymbols = (int)mxGetScalar(mxGetField(model, 0, "numsymbols"));
// Q := stack for parsing detections
Q = (node *)mxCalloc(numsymbols, sizeof(node));
// dim[0] := number of detections to return
const mwSize *dim = mxGetDimensions(prhs[4]);
// build output arrays
// detections
mwSize detsdim[2];
detsdim[0] = dim[0];
detsdim[1] = 4+1+1; // bounding box, component #, score
mxArray *mxdets = mxCreateNumericArray(2, detsdim, mxDOUBLE_CLASS, mxREAL);
double *dets = mxGetPr(mxdets);
plhs[0] = mxdets;
// filter boxes
mwSize boxesdim[2];
boxesdim[0] = dim[0];
boxesdim[1] = 4*(int)mxGetScalar(mxGetField(model, 0, "numfilters")) + 2;
mxArray *mxboxes = mxCreateNumericArray(2, boxesdim, mxDOUBLE_CLASS, mxREAL);
double *boxes = mxGetPr(mxboxes);
plhs[1] = mxboxes;
// detailed detection info
mwSize outdim[3];
outdim[0] = DET_SZ; // one row per output field (see enum output_fields)
outdim[1] = numsymbols; // one column per symbol
outdim[2] = dim[0]; // one "page" per detection
int pagesz = outdim[0]*outdim[1];
mxArray *mxout = mxCreateNumericArray(3, outdim, mxDOUBLE_CLASS, mxREAL);
double *out = mxGetPr(mxout);
plhs[2] = mxout;
// trace detections and write output into out
int count = 0;
for (int i = 0; i < dim[0]; i++) {
trace(padx, pady, scales, X[i]-1, Y[i]-1, L[i]-1, S[i],
out, dets, detsdim, boxes, boxesdim);
out += pagesz;
boxes++;
dets++;
count++;
}
// return empty arrays if there are no detections
if (count == 0) {
mxDestroyArray(plhs[0]);
mxDestroyArray(plhs[1]);
mxDestroyArray(plhs[2]);
plhs[0] = mxCreateDoubleMatrix(0, 0, mxREAL);
plhs[1] = mxCreateDoubleMatrix(0, 0, mxREAL);
plhs[2] = mxCreateDoubleMatrix(0, 0, mxREAL);
}
// cleanup
mxFree(Q);
}