forked from EricGuo5513/TM2T
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_m2t_transformer.py
117 lines (94 loc) · 4.76 KB
/
train_m2t_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
from os.path import join as pjoin
import utils.paramUtil as paramUtil
from options.train_options import TrainT2MOptions
from utils.plot_script import *
from networks.transformer import TransformerV2, TransformerV3
from networks.quantizer import *
from networks.modules import *
from networks.trainers import TransformerM2TTrainer
from data.dataset import TextMotionTokenDataset
from scripts.motion_process import *
from torch.utils.data import DataLoader
from utils.word_vectorizer import WordVectorizerV2
if __name__ == '__main__':
parser = TrainT2MOptions()
opt = parser.parse()
opt.device = torch.device("cpu" if opt.gpu_id==-1 else "cuda:" + str(opt.gpu_id))
torch.autograd.set_detect_anomaly(True)
if opt.gpu_id != -1:
torch.cuda.set_device(opt.gpu_id)
opt.save_root = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name)
opt.model_dir = pjoin(opt.save_root, 'model')
opt.meta_dir = pjoin(opt.save_root, 'meta')
opt.eval_dir = pjoin(opt.save_root, 'animation')
opt.log_dir = pjoin('./log', opt.dataset_name, opt.name)
os.makedirs(opt.model_dir, exist_ok=True)
os.makedirs(opt.meta_dir, exist_ok=True)
os.makedirs(opt.eval_dir, exist_ok=True)
os.makedirs(opt.log_dir, exist_ok=True)
if opt.dataset_name == 't2m':
opt.data_root = './dataset/HumanML3D/'
opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
opt.text_dir = pjoin(opt.data_root, 'texts')
opt.joints_num = 22
opt.max_motion_len = 55
dim_pose = 263
radius = 4
fps = 20
kinematic_chain = paramUtil.t2m_kinematic_chain
elif opt.dataset_name == 'kit':
opt.data_root = './dataset/KIT-ML/'
opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
opt.text_dir = pjoin(opt.data_root, 'texts')
opt.joints_num = 21
radius = 240 * 8
fps = 12.5
dim_pose = 251
opt.max_motion_len = 55
kinematic_chain = paramUtil.kit_kinematic_chain
else:
raise KeyError('Dataset Does Not Exist')
train_split_file = pjoin(opt.data_root, 'train.txt')
val_split_file = pjoin(opt.data_root, 'val.txt')
w_vectorizer = WordVectorizerV2('./glove', 'our_vab')
n_mot_vocab = opt.codebook_size + 3
opt.mot_start_idx = opt.codebook_size
opt.mot_end_idx = opt.codebook_size + 1
opt.mot_pad_idx = opt.codebook_size + 2
n_txt_vocab = len(w_vectorizer) + 1
_, _, opt.txt_start_idx = w_vectorizer['sos/OTHER']
_, _, opt.txt_end_idx = w_vectorizer['eos/OTHER']
opt.txt_pad_idx = len(w_vectorizer)
enc_channels = [1024, opt.dim_vq_latent]
dec_channels = [opt.dim_vq_latent, 1024, dim_pose]
if opt.m2t_v3:
m2t_transformer = TransformerV3(n_mot_vocab, opt.mot_pad_idx, n_txt_vocab, opt.txt_pad_idx,
d_src_word_vec=512, d_trg_word_vec=300,
d_model=opt.d_model, d_inner=opt.d_inner_hid, n_enc_layers=opt.n_enc_layers,
n_dec_layers=opt.n_dec_layers, n_head=opt.n_head, d_k=opt.d_k, d_v=opt.d_v,
dropout=0.1,
n_src_position=100, n_trg_position=50)
else:
m2t_transformer = TransformerV2(n_mot_vocab, opt.mot_pad_idx, n_txt_vocab, opt.txt_pad_idx, d_src_word_vec=512,
d_trg_word_vec=512,
d_model=opt.d_model, d_inner=opt.d_inner_hid, n_enc_layers=opt.n_enc_layers,
n_dec_layers=opt.n_dec_layers, n_head=opt.n_head, d_k=opt.d_k, d_v=opt.d_v,
dropout=0.1,
n_src_position=100, n_trg_position=50,
trg_emb_prj_weight_sharing=opt.proj_share_weight
)
all_params = 0
pc_transformer = sum(param.numel() for param in m2t_transformer.parameters())
print(m2t_transformer)
print("Total parameters of t2m_transformer net: {}".format(pc_transformer))
all_params += pc_transformer
print('Total parameters of all models: {}'.format(all_params))
trainer = TransformerM2TTrainer(opt, m2t_transformer)
train_dataset = TextMotionTokenDataset(opt, train_split_file, w_vectorizer)
val_dataset = TextMotionTokenDataset(opt, val_split_file, w_vectorizer)
train_loader = DataLoader(train_dataset, batch_size=opt.batch_size, drop_last=True, num_workers=4,
shuffle=True, pin_memory=True)
val_loader = DataLoader(val_dataset, batch_size=opt.batch_size, drop_last=True, num_workers=4,
shuffle=True, pin_memory=True)
trainer.train(train_loader, val_loader, w_vectorizer)