We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
great work I would like to be enlightned more about this part if you allow, because I couldnt get to understand its role in prediction part. Thanks in advance: for i in range(7): if i == 0: # reverse first dimension mymat = predict(img[::-1,:,:], model, patch_sz=PATCH_SZ, n_classes=N_CLASSES).transpose([2,0,1]) #print(mymat[0][0][0], mymat[3][12][13]) print("Case 1",img.shape, mymat.shape) elif i == 1: # reverse second dimension temp = predict(img[:,::-1,:], model, patch_sz=PATCH_SZ, n_classes=N_CLASSES).transpose([2,0,1]) #print(temp[0][0][0], temp[3][12][13]) print("Case 2", temp.shape, mymat.shape) mymat = np.mean( np.array([ temp[:,::-1,:], mymat ]), axis=0 ) elif i == 2: # transpose(interchange) first and second dimensions temp = predict(img.transpose([1,0,2]), model, patch_sz=PATCH_SZ, n_classes=N_CLASSES).transpose([2,0,1]) #print(temp[0][0][0], temp[3][12][13]) print("Case 3", temp.shape, mymat.shape) mymat = np.mean( np.array([ temp.transpose(0,2,1), mymat ]), axis=0 ) elif i == 3: temp = predict(np.rot90(img, 1), model, patch_sz=PATCH_SZ, n_classes=N_CLASSES) #print(temp.transpose([2,0,1])[0][0][0], temp.transpose([2,0,1])[3][12][13]) print("Case 4", temp.shape, mymat.shape) mymat = np.mean( np.array([ np.rot90(temp, -1).transpose([2,0,1]), mymat ]), axis=0 ) elif i == 4: temp = predict(np.rot90(img,2), model, patch_sz=PATCH_SZ, n_classes=N_CLASSES) #print(temp.transpose([2,0,1])[0][0][0], temp.transpose([2,0,1])[3][12][13]) print("Case 5", temp.shape, mymat.shape) mymat = np.mean( np.array([ np.rot90(temp,-2).transpose([2,0,1]), mymat ]), axis=0 ) elif i == 5: temp = predict(np.rot90(img,3), model, patch_sz=PATCH_SZ, n_classes=N_CLASSES) #print(temp.transpose([2,0,1])[0][0][0], temp.transpose([2,0,1])[3][12][13]) print("Case 6", temp.shape, mymat.shape) mymat = np.mean( np.array([ np.rot90(temp, -3).transpose(2,0,1), mymat ]), axis=0 ) else: temp = predict(img, model, patch_sz=PATCH_SZ, n_classes=N_CLASSES).transpose([2,0,1]) #print(temp[0][0][0], temp[3][12][13]) print("Case 7", temp.shape, mymat.shape) mymat = np.mean( np.array([ temp, mymat ]), axis=0 )
for i in range(7): if i == 0: # reverse first dimension mymat = predict(img[::-1,:,:], model, patch_sz=PATCH_SZ, n_classes=N_CLASSES).transpose([2,0,1]) #print(mymat[0][0][0], mymat[3][12][13]) print("Case 1",img.shape, mymat.shape) elif i == 1: # reverse second dimension temp = predict(img[:,::-1,:], model, patch_sz=PATCH_SZ, n_classes=N_CLASSES).transpose([2,0,1]) #print(temp[0][0][0], temp[3][12][13]) print("Case 2", temp.shape, mymat.shape) mymat = np.mean( np.array([ temp[:,::-1,:], mymat ]), axis=0 ) elif i == 2: # transpose(interchange) first and second dimensions temp = predict(img.transpose([1,0,2]), model, patch_sz=PATCH_SZ, n_classes=N_CLASSES).transpose([2,0,1]) #print(temp[0][0][0], temp[3][12][13]) print("Case 3", temp.shape, mymat.shape) mymat = np.mean( np.array([ temp.transpose(0,2,1), mymat ]), axis=0 ) elif i == 3: temp = predict(np.rot90(img, 1), model, patch_sz=PATCH_SZ, n_classes=N_CLASSES) #print(temp.transpose([2,0,1])[0][0][0], temp.transpose([2,0,1])[3][12][13]) print("Case 4", temp.shape, mymat.shape) mymat = np.mean( np.array([ np.rot90(temp, -1).transpose([2,0,1]), mymat ]), axis=0 ) elif i == 4: temp = predict(np.rot90(img,2), model, patch_sz=PATCH_SZ, n_classes=N_CLASSES) #print(temp.transpose([2,0,1])[0][0][0], temp.transpose([2,0,1])[3][12][13]) print("Case 5", temp.shape, mymat.shape) mymat = np.mean( np.array([ np.rot90(temp,-2).transpose([2,0,1]), mymat ]), axis=0 ) elif i == 5: temp = predict(np.rot90(img,3), model, patch_sz=PATCH_SZ, n_classes=N_CLASSES) #print(temp.transpose([2,0,1])[0][0][0], temp.transpose([2,0,1])[3][12][13]) print("Case 6", temp.shape, mymat.shape) mymat = np.mean( np.array([ np.rot90(temp, -3).transpose(2,0,1), mymat ]), axis=0 ) else: temp = predict(img, model, patch_sz=PATCH_SZ, n_classes=N_CLASSES).transpose([2,0,1]) #print(temp[0][0][0], temp[3][12][13]) print("Case 7", temp.shape, mymat.shape) mymat = np.mean( np.array([ temp, mymat ]), axis=0 )
The text was updated successfully, but these errors were encountered:
No branches or pull requests
great work
I would like to be enlightned more about this part if you allow, because I couldnt get to understand its role in prediction part.
Thanks in advance:
for i in range(7): if i == 0: # reverse first dimension mymat = predict(img[::-1,:,:], model, patch_sz=PATCH_SZ, n_classes=N_CLASSES).transpose([2,0,1]) #print(mymat[0][0][0], mymat[3][12][13]) print("Case 1",img.shape, mymat.shape) elif i == 1: # reverse second dimension temp = predict(img[:,::-1,:], model, patch_sz=PATCH_SZ, n_classes=N_CLASSES).transpose([2,0,1]) #print(temp[0][0][0], temp[3][12][13]) print("Case 2", temp.shape, mymat.shape) mymat = np.mean( np.array([ temp[:,::-1,:], mymat ]), axis=0 ) elif i == 2: # transpose(interchange) first and second dimensions temp = predict(img.transpose([1,0,2]), model, patch_sz=PATCH_SZ, n_classes=N_CLASSES).transpose([2,0,1]) #print(temp[0][0][0], temp[3][12][13]) print("Case 3", temp.shape, mymat.shape) mymat = np.mean( np.array([ temp.transpose(0,2,1), mymat ]), axis=0 ) elif i == 3: temp = predict(np.rot90(img, 1), model, patch_sz=PATCH_SZ, n_classes=N_CLASSES) #print(temp.transpose([2,0,1])[0][0][0], temp.transpose([2,0,1])[3][12][13]) print("Case 4", temp.shape, mymat.shape) mymat = np.mean( np.array([ np.rot90(temp, -1).transpose([2,0,1]), mymat ]), axis=0 ) elif i == 4: temp = predict(np.rot90(img,2), model, patch_sz=PATCH_SZ, n_classes=N_CLASSES) #print(temp.transpose([2,0,1])[0][0][0], temp.transpose([2,0,1])[3][12][13]) print("Case 5", temp.shape, mymat.shape) mymat = np.mean( np.array([ np.rot90(temp,-2).transpose([2,0,1]), mymat ]), axis=0 ) elif i == 5: temp = predict(np.rot90(img,3), model, patch_sz=PATCH_SZ, n_classes=N_CLASSES) #print(temp.transpose([2,0,1])[0][0][0], temp.transpose([2,0,1])[3][12][13]) print("Case 6", temp.shape, mymat.shape) mymat = np.mean( np.array([ np.rot90(temp, -3).transpose(2,0,1), mymat ]), axis=0 ) else: temp = predict(img, model, patch_sz=PATCH_SZ, n_classes=N_CLASSES).transpose([2,0,1]) #print(temp[0][0][0], temp[3][12][13]) print("Case 7", temp.shape, mymat.shape) mymat = np.mean( np.array([ temp, mymat ]), axis=0 )
The text was updated successfully, but these errors were encountered: