forked from BatyrM/DeepFashionRetrieval
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathin_shop_eval.py
40 lines (31 loc) · 1.5 KB
/
in_shop_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# -*- coding: utf-8 -*-
from data import Fashion_inshop
from retrieval import load_feat_db, get_deep_color_top_n
import random
def eval(retrieval_top_n=10):
dataset = Fashion_inshop()
length = dataset.test_len
deep_feats, color_feats, labels = load_feat_db()
deep_feats, color_feats, labels = deep_feats[-length:], color_feats[-length:], labels[-length:]
feat_dict = {labels[i]: (deep_feats[i], color_feats[i]) for i in range(len(labels))}
include_once = 0
include_zero = 0
include_times = 0
should_include_times = 0
for iter_id, item_id in enumerate(dataset.test_list):
item_imgs = dataset.test_dict[item_id]
item_img = random.choice(item_imgs)
result = get_deep_color_top_n(feat_dict[item_img], deep_feats, color_feats, labels, retrieval_top_n)
keys = list(map(lambda x: x[0], result))
included = list(map(lambda x: x in item_imgs, keys))
should_include_times += (len(item_imgs) - 1)
include_once += (1 if included.count(True) >= 2 else 0)
include_zero += (1 if included.count(True) <= 1 else 0)
include_times += (included.count(True) - 1)
if iter_id % 10 == 0:
print("{}/{}, is included: {}/{}, included times: {}/{}".format(iter_id, len(dataset.test_list),
include_once, include_once + include_zero,
include_times, should_include_times))
return include_times, should_include_times, include_once, include_zero
if __name__ == '__main__':
print(eval())