-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
480 lines (389 loc) · 20.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import os
from typing import Optional
import pandas as pd
import torch
import torch.nn.functional as F
from transformers import BertTokenizer, BertForSequenceClassification, TrainingArguments, Trainer, EvalPrediction, TrainerCallback
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
from accelerate import Accelerator, DataLoaderConfiguration
import numpy as np
import csv
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.optim import AdamW
from models.bert import BERT # Custom implementation of BERT from scratch using PyTorch
# Load datasets
train_df = pd.read_csv('./data/train_rotten_tomatoes_movie_reviews.csv')
val_df = pd.read_csv('./data/val_rotten_tomatoes_movie_reviews.csv')
test_df = pd.read_csv('./data/test_rotten_tomatoes_movie_reviews.csv')
# Use a smaller dataset for testing
# train_df = train_df.head(1000)
# Preprocess data
train_texts = train_df['reviewText'].tolist()
train_labels = train_df['label'].tolist()
val_texts = val_df['reviewText'].tolist()
val_labels = val_df['label'].tolist()
test_texts = test_df['reviewText'].tolist()
test_labels = test_df['label'].tolist()
# Tokenization
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
train_encodings = tokenizer(train_texts, truncation=True, padding=True, max_length=512)
val_encodings = tokenizer(val_texts, truncation=True, padding=True, max_length=512)
test_encodings = tokenizer(test_texts, truncation=True, padding=True, max_length=512)
def create_csv_files(base_dir, metrics, datasets):
for metric in metrics:
for dataset in datasets:
file_path = os.path.join(base_dir, f"{metric}_{dataset}.csv")
with open(file_path, mode='w', newline='') as file:
headers = ['epoch', 'value']
writer = csv.writer(file)
writer.writerow(headers)
# Créer le fichier de test pour chaque métrique
test_file_path = os.path.join(base_dir, f"{metric}_test.csv")
with open(test_file_path, mode='w', newline='') as file:
headers = ['epoch', 'value']
writer = csv.writer(file)
writer.writerow(headers)
def append_to_csv(file_path, row):
with open(file_path, mode='a', newline='') as file:
writer = csv.writer(file)
writer.writerow(row)
def create_final_epoch_csv(base_dir):
file_path = os.path.join(base_dir, "final_epoch.csv")
with open(file_path, mode='w', newline='') as file:
headers = ['final_epoch']
writer = csv.writer(file)
writer.writerow(headers)
def setup_output_directory(base_dir, model_type, size, precision=None):
dir_path = f"{base_dir}/{model_type}/bert-{size}-{precision}" if precision else f"{base_dir}/{model_type}/bert-{size}"
os.makedirs(dir_path, exist_ok=True)
return dir_path
#? Define Dataset class
class SentimentDataset(Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item['labels'] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.labels)
# Define metrics computation function
def compute_metrics(eval_pred):
preds, labels = eval_pred
preds = preds.argmax(-1)
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='binary')
acc = accuracy_score(labels, preds)
return {
'accuracy': acc,
'f1': f1,
'precision': precision,
'recall': recall
}
def check_model_dtype(model, expected_dtype):
for name, param in model.named_parameters():
if param.dtype != expected_dtype:
print(f"Parameter {name} is not in {expected_dtype}, it is in {param.dtype}")
assert param.dtype == expected_dtype, f"Parameter {name} is not in {expected_dtype}, it is in {param.dtype}"
for name, buffer in model.named_buffers():
if buffer.dtype != expected_dtype:
print(f"Buffer {name} is not in {expected_dtype}, it is in {buffer.dtype}")
assert buffer.dtype == expected_dtype, f"Buffer {name} is not in {expected_dtype}, it is in {buffer.dtype}"
print("All model parameters and buffers are in the expected dtype.")
def check_optimizer_dtype(optimizer, expected_dtype):
for group in optimizer.param_groups:
for param in group['params']:
if param.dtype != expected_dtype:
print(f"Optimizer parameter is not in {expected_dtype}, it is in {param.dtype}")
assert param.dtype == expected_dtype, f"Optimizer parameter is not in {expected_dtype}, it is in {param.dtype}"
print("All optimizer parameters are in the expected dtype.")
class SavePthCallback(TrainerCallback):
def __init__(self, save_dir):
self.save_dir = save_dir
os.makedirs(self.save_dir, exist_ok=True)
def on_epoch_end(self, args, state, control, **kwargs):
model = kwargs['model']
epoch = state.epoch
if epoch is None:
epoch = state.global_step // (state.max_steps // args.num_train_epochs)
save_path = os.path.join(self.save_dir, f"model_epoch_{int(epoch)}.pth")
torch.save(model.state_dict(), save_path)
print(f"Saved model weights to {save_path}")
class EarlyStopping:
def __init__(self, patience=2, min_delta=0):
self.patience = patience
self.min_delta = min_delta
self.counter = 0
self.best_loss = np.inf
def __call__(self, val_loss):
if val_loss < self.best_loss - self.min_delta:
self.best_loss = val_loss
self.counter = 0
else:
self.counter += 1
if self.counter >= self.patience:
return True
return False
def train(size, train_encodings, train_labels, val_encodings, val_labels, test_encodings, test_labels, precision='bf16', output_results='./resultv2s', model_name='bert-base-uncased', finetuning=False):
train_dataset = SentimentDataset(train_encodings, train_labels)
val_dataset = SentimentDataset(val_encodings, val_labels)
test_dataset = SentimentDataset(test_encodings, test_labels)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sizes_to_process = ['small', 'base', 'large'] if size is None else [size]
for size in sizes_to_process:
if not finetuning:
# Configuration du modèle BERT from scratch
if size == 'tiny':
embed_size, num_layers, heads = 128, 2, 2
elif size == 'small':
embed_size, num_layers, heads = 256, 4, 8
elif size == 'base':
embed_size, num_layers, heads = 768, 12, 8
elif size == 'large':
embed_size, num_layers, heads = 1024, 24, 16
else:
raise ValueError("Size must be one of 'tiny', 'small', 'base', or 'large' for training from scratch")
model = BERT(
vocab_size=30522,
embed_size=embed_size,
num_layers=num_layers,
heads=heads,
device=device,
forward_expansion=4,
dropout=0.1,
max_length=512
).to(device)
optimizer = AdamW(model.parameters(), lr=4e-5, betas=(0.9, 0.95), weight_decay=0.1)
accelerator = Accelerator(mixed_precision='no')
train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=32)
test_dataloader = DataLoader(test_dataset, batch_size=32)
model, optimizer, train_dataloader, val_dataloader, test_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, val_dataloader, test_dataloader
)
if precision == 'bf16':
model.to(torch.bfloat16)
expected_dtype = torch.bfloat16
elif precision == 'fp32':
model.to(torch.float32)
expected_dtype = torch.float32
else:
raise ValueError("Precision must be either 'bf16' or 'fp32'")
check_model_dtype(model, expected_dtype)
num_epochs = 20
num_training_steps = num_epochs * len(train_dataloader)
lr_scheduler = CosineAnnealingLR(optimizer, T_max=num_training_steps, eta_min=5e-6)
check_optimizer_dtype(optimizer, expected_dtype)
result_dir = f'{output_results}/from_scratch/bert-{size}-{precision}'
os.makedirs(result_dir, exist_ok=True)
# Définir les metrics et datasets pour les fichiers CSV
metrics = ['loss', 'accuracy', 'f1', 'precision', 'recall']
datasets = ['train', 'valset', 'test']
create_csv_files(result_dir, metrics, datasets)
early_stopping = EarlyStopping(patience=1, min_delta=0.01)
for epoch in range(num_epochs):
model.train()
progress_bar = tqdm(enumerate(train_dataloader), total=len(train_dataloader), desc=f"Epoch {epoch+1}/{num_epochs}")
train_loss = 0
batch_num = 0
for batch_idx, batch in progress_bar:
fractional_epoch = epoch + (batch_idx + 1) / len(train_dataloader)
batch = {k: v.to(accelerator.device) for k, v in batch.items()}
outputs = model(input_ids=batch['input_ids'], attention_mask=batch['attention_mask'])
loss = F.cross_entropy(outputs, batch['labels'])
train_loss += loss.item()
accelerator.backward(loss)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.set_postfix(loss=loss.item())
# Enregistrer la loss de training pour chaque batch
loss_train_file = os.path.join(result_dir, "loss_train.csv")
append_to_csv(loss_train_file, [fractional_epoch, loss.item()])
torch.save(model.state_dict(), f'{result_dir}/model_epoch_{epoch+1}.pth')
model.eval()
val_loss = 0
val_preds = []
val_labels_list = []
with torch.no_grad():
for batch_idx, batch in enumerate(val_dataloader):
fractional_epoch = epoch + 1 # La validation se fait à la fin de l'epoch
batch = {k: v.to(accelerator.device) for k, v in batch.items()}
outputs = model(input_ids=batch['input_ids'], attention_mask=batch['attention_mask'])
loss = F.cross_entropy(outputs, batch['labels'])
val_loss += loss.item()
logits = outputs
labels = batch['labels']
val_preds.append(logits)
val_labels_list.append(labels)
# Enregistrer la loss de validation pour chaque batch
loss_val_file = os.path.join(result_dir, "loss_valset.csv")
append_to_csv(loss_val_file, [fractional_epoch, loss.item()])
batch_num += 1
val_preds = torch.cat(val_preds).to('cpu')
val_labels_list = torch.cat(val_labels_list).to('cpu')
eval_pred = EvalPrediction(predictions=val_preds, label_ids=val_labels_list)
val_metrics = compute_metrics(eval_pred)
val_loss /= len(val_dataloader)
train_loss /= len(train_dataloader)
if early_stopping(val_loss):
print(f"Early stopping triggered at epoch {epoch+1}")
break
# Enregistrer les metrics de validation
for metric_name, metric_value in val_metrics.items():
metric_file = os.path.join(result_dir, f"{metric_name}_valset.csv")
append_to_csv(metric_file, [epoch + 1, metric_value])
# Enregistrer la loss générale par epoch
loss_epoch_train_file = os.path.join(result_dir, "loss_train.csv")
append_to_csv(loss_epoch_train_file, [epoch + 1, train_loss / len(train_dataloader)])
loss_epoch_val_file = os.path.join(result_dir, "loss_valset.csv")
append_to_csv(loss_epoch_val_file, [epoch + 1, val_loss / len(val_dataloader)])
model.train()
model.eval()
test_loss = 0
test_preds = []
test_labels_list = []
with torch.no_grad():
for batch in test_dataloader:
batch = {k: v.to(accelerator.device) for k, v in batch.items()}
outputs = model(input_ids=batch['input_ids'], attention_mask=batch['attention_mask'])
loss = F.cross_entropy(outputs, batch['labels'])
test_loss += loss.item()
logits = outputs
labels = batch['labels']
test_preds.append(logits)
test_labels_list.append(labels)
test_preds = torch.cat(test_preds).to('cpu')
test_labels_list = torch.cat(test_labels_list).to('cpu')
eval_pred = EvalPrediction(predictions=test_preds, label_ids=test_labels_list)
test_metrics = compute_metrics(eval_pred)
test_loss /= len(test_dataloader)
# Enregistrer les metrics de test
metrics = ['loss', 'accuracy', 'f1', 'precision', 'recall']
for metric_name, metric_value in test_metrics.items():
metric_file = os.path.join(result_dir, f"{metric_name}_test.csv")
append_to_csv(metric_file, [num_epochs, metric_value])
print(f"Training from scratch results for {size} BERT:", test_metrics)
else:
print("Finetuning started!")
if size == 'small':
model_name = 'prajjwal1/bert-small'
elif size == 'base':
model_name = 'bert-base-uncased'
elif size == 'large':
model_name = 'bert-large-uncased'
else:
raise ValueError("Size must be one of 'small', 'base', or 'large' for fine-tuning")
model = BertForSequenceClassification.from_pretrained(model_name, num_labels=2)
finetuning_base_dir = f'{output_results}/finetuning'
finetuning_dir = f'{finetuning_base_dir}/finetuning-{size}'
os.makedirs(finetuning_dir, exist_ok=True)
# Définir les metrics et datasets pour les fichiers CSV
metrics = ['loss', 'accuracy', 'f1', 'precision', 'recall']
datasets = ['train', 'valset']
create_csv_files(finetuning_dir, metrics, datasets)
training_args = TrainingArguments(
output_dir=finetuning_dir,
num_train_epochs=5,
per_device_train_batch_size=32,
per_device_eval_batch_size=32,
learning_rate=2e-5,
weight_decay=0.01,
evaluation_strategy="epoch",
save_strategy="no", # Désactiver la sauvegarde automatique
load_best_model_at_end=False,
logging_dir=f'{finetuning_dir}/logs',
logging_steps=10,
report_to="none",
save_safetensors=False
)
# Instancier le callback personnalisé
save_pth_callback = SavePthCallback(save_dir=finetuning_dir)
class CustomTrainer(Trainer):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.metrics = ['loss', 'accuracy', 'f1', 'precision', 'recall']
self.datasets = ['train', 'valset']
self.metrics_dir = finetuning_dir
def training_step(self, model, inputs):
loss = super().training_step(model, inputs)
# Enregistrer la loss de training
loss_train_file = os.path.join(self.metrics_dir, "loss_train.csv")
append_to_csv(loss_train_file, [self.state.epoch, loss.item()])
return loss
def evaluate(self, eval_dataset=None, ignore_keys=None, metric_key_prefix="eval"):
metrics = super().evaluate(eval_dataset, ignore_keys, metric_key_prefix)
# Enregistrer les metrics d'évaluation
for metric_name, metric_value in metrics.items():
dataset = 'valset' if 'eval' in metric_name else 'test'
metric_file = os.path.join(self.metrics_dir, f"{metric_name.split('_')[-1]}_{dataset}.csv")
append_to_csv(metric_file, [self.state.epoch, metric_value])
return metrics
def save_model(self, output_dir=None, _internal_call=False):
if output_dir is None:
output_dir = self.args.output_dir
# Sauvegarde du modèle au format .pth
torch.save(self.model.state_dict(), f"{output_dir}/model.pth")
# Sauvegarde de la configuration
self.model.config.save_pretrained(output_dir)
# Sauvegarde des arguments d'entraînement
torch.save(self.args, f"{output_dir}/training_args.bin")
def _save(self, output_dir: Optional[str] = None, state_dict=None):
# Override cette méthode pour utiliser votre logique de sauvegarde personnalisée
self.save_model(output_dir)
trainer = CustomTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
compute_metrics=compute_metrics,
callbacks=[save_pth_callback] # Ajouter le callback personnalisé ici
)
trainer.train()
# Évaluer sur l'ensemble de test
test_metrics = trainer.evaluate(test_dataset)
# Enregistrer les metrics de test
for metric_name, metric_value in test_metrics.items():
metric_file = os.path.join(finetuning_dir, f"{metric_name}_test.csv")
append_to_csv(metric_file, [metric_name == 'loss', metric_value])
print(f"Fine-tuning results for {size} BERT:", test_metrics)
# Préparer les datasets
train_dataset = SentimentDataset(train_encodings, train_labels)
val_dataset = SentimentDataset(val_encodings, val_labels)
test_dataset = SentimentDataset(test_encodings, test_labels)
#& Fine-tuning des modèles pré-entraînés
for size in ['small', 'base', 'large']:
print(f"Fine-tuning BERT model of size {size}")
train(
size=size,
train_encodings=train_encodings,
train_labels=train_labels,
val_encodings=val_encodings,
val_labels=val_labels,
test_encodings=test_encodings,
test_labels=test_labels,
precision='fp32',
output_results='./reel_1',
finetuning=True
)
print("finetuning fini")
#& Entraînement from scratch
for size in ['tiny', 'small', 'base', 'large']:
for precision in ['fp32', 'bf16']:
print(f"Training from scratch: size={size}, precision={precision}")
train(
size=size,
train_encodings=train_encodings,
train_labels=train_labels,
val_encodings=val_encodings,
val_labels=val_labels,
test_encodings=test_encodings,
test_labels=test_labels,
precision=precision,
output_results="reel_1",
finetuning=False
)
print("Training from scratch is finished")