-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathatp_winners_analysis.Rmd
867 lines (673 loc) · 30.7 KB
/
atp_winners_analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
---
title: An Analysis of Probabilistic Factors in Association of Tennis Professionals
Winners
author: "Rares Finatan"
output:
html_document:
df_print: paged
pdf_document: default
html_notebook: default
---
```{r}
#Import dependencies
library(tidyverse)
library(caret)
library(kernlab)
library(lubridate)
library(DataExplorer)
library(skimr)
library(lares)
```
### SECTION 1 - ELEMENTARY DATA ANALYSIS
#### 1.1 - Data Import
```{r}
#Extract relevant file names from local forked repo
df <- data.frame(list.files(path = "~/Documents/Masters/Syracuse/IST 687/FINAL_PROJECT/tennis_atp-master", pattern = "*.csv"))
df <- df %>% rename(file_name = list.files.path......Documents.Masters.Syracuse.IST.687.FINAL_PROJECT.tennis_atp.master...)
df <- df %>% filter(grepl('atp_matches_20', file_name))
file_list <- paste('./tennis_atp-master/', df$file_name, sep = '')
file_list
```
```{r}
#Merge the contents of the files into singular data frame
merged_df <- file_list %>% map_df(~read_csv(., show_col_types = FALSE, col_types = list(winner_seed = 'd', loser_seed = 'd')))
```
#### 1.2 - Exploratory Data Analysis
```{r}
# Basic analysis of data set
plot_intro(merged_df)
```
#### 1.3 - Distribution of Data
##### Distribution by Year
```{r}
#Apply consistent date formatting
merged_df$tourney_date <- ymd(merged_df$tourney_date)
#Create year, month, and date columns
merged_df$tourney_year <- as.numeric(strftime(merged_df$tourney_date, '%Y'))
merged_df$tourney_month <- as.numeric(strftime(merged_df$tourney_date, '%m'))
merged_df$tourney_day <- as.numeric(strftime(merged_df$tourney_date, '%d'))
#Create variable inclusive of summary statistics
mean <- round(mean(merged_df$tourney_year),2)
median <- median(merged_df$tourney_year)
mode <- table(merged_df$tourney_year)
mode <- as.numeric(names(mode[which(mode == max(mode))]))
central_tendency_metrics <- paste(sprintf('Mean: %s', mean), sprintf('Median: %s', median), sprintf('Mode: %s', mode), sep = ' | ')
#Plot distribution of match data, by year
ggplot(merged_df, aes(x = tourney_year)) +
geom_histogram(color = 'black', fill = 'greenyellow', bins = 23) +
scale_x_continuous(breaks=seq(2000,2022,1)) +
theme(axis.text.x = element_text(angle = 45), plot.title = element_text(hjust = 0.5)) +
ggtitle('Distribution of Matches by Calendar Year') +
xlab('Number of Matches') +
ylab('Calendar Year') +
labs(caption = central_tendency_metrics)
```
##### Distribution by Surface
```{r}
#Create variable inclusive of summary statistics
mean <- round(mean(merged_df$surface),2)
median <- median(merged_df$surface)
mode <- table(merged_df$surface)
mode <- as.numeric(names(mode[which(mode == max(mode))]))
central_tendency_metrics <- paste(sprintf('Mean: %s', mean), sprintf('Median: %s', median), sprintf('Mode: %s', mode), sep = ' | ')
#Plot distribution of match data, by surface
ggplot(merged_df, aes(y = surface, fill = surface)) +
geom_bar(color = 'black') +
theme(axis.text.x = element_text(angle = 0), plot.title = element_text(hjust = 0.5)) +
ggtitle('Distribution of Matches by Surface') +
xlab('Number of Matches') +
ylab('Type of Surface') +
labs(caption = central_tendency_metrics)
```
##### Distribution of all Variables
```{r}
#Create a histogram of all attributes' distributions using the DataExplorer package
plot_histogram(merged_df)
```
### SECTION 2 - ELEMENTARY DATA CLEANING AND DIMENSIONALITY REDUCTION
#### 2.1 - Remove Attributes with High NA Percentages
```{r}
# Identify high NA %age attributes
skim_df <- data.frame(skim(merged_df))
high_NA_perc <- skim_df %>% filter(complete_rate < 0.9)
high_NA_perc_list <- high_NA_perc$skim_variable
high_NA_df <- merged_df %>% select(high_NA_perc_list)
# Visualize high NA %age attributes
plot_missing(high_NA_df) +
ggtitle('Concerning Attributes due to High % of NAs') +
theme(plot.title = element_text(hjust = 0.5))
```
##### Drop High NA % Attributes
```{r}
#Drop high NA %age attributes
merged_df <- subset(merged_df, select = -c(winner_seed,loser_seed,loser_entry,winner_entry))
```
#### 2.2 - Analyze Highly Correlated Variables
```{r}
# Analyze correlations for all variables
correlation_df <- (cor(merged_df[, unlist(lapply(merged_df, is.numeric))], use = 'complete.obs'))
```
```{r}
# Filter for only highly correlated variables
highly_correlated <- findCorrelation(correlation_df, cutoff = 0.9, verbose = TRUE)
# Correlation plot for all top 10 highly correlated variables
highly_correlated_df <- subset(merged_df, select = highly_correlated)
corr_cross(highly_correlated_df, max_pvalue = 0.05, top = 10)
```
#### 2.3 - Addressing NAs and Zeros
```{r}
#Remove winners with less than 100 matches and no rank
winners <- table(merged_df$winner_name)
winners_less_100 <- merged_df[merged_df$winner_name %in% names(winners[winners < 100]), ]
winners_less_100_no_rank <- winners_less_100 %>% subset(is.na(winners_less_100$winner_rank))
merged_df <- anti_join(merged_df, winners_less_100_no_rank, by = "winner_id")
#Remove losers with less than 100 matches and no rank
losers <- table(merged_df$loser_name)
losers_less_100 <- merged_df[merged_df$loser_name %in% names(losers[losers < 100]), ]
losers_less_100_no_rank <- losers_less_100 %>% subset(is.na(losers_less_100$loser_rank))
merged_df <- anti_join(merged_df, losers_less_100_no_rank, by = "loser_id")
#Additionally, there are some rows where no minute data is available for the meaning, meaning it wasn't played or cancelled during the proceedings. Remove these rows.
merged_df <- merged_df[complete.cases(merged_df[, "minutes"]),]
```
#### 2.4 - COVID-19 ATP Interruptions
```{r}
#Due to COVID-19, match data is noisy and incomplete, whereby all matches in 2020 will be removed from the dataset.
str(merged_df$tourney_date)
matches_in_2020 <- filter(merged_df, merged_df$tourney_date >= '2020-01-01' & merged_df$tourney_date <= '2020-12-31')
merged_df <- anti_join(merged_df, matches_in_2020, by = "tourney_date")
```
#### 2.5 - Obscuring Target Variables
```{r}
#Create target variable
merged_df$result <- merged_df$winner_name
#Create function for sorting players in player_1
first_player_sort = function(x,y) {paste(sort(c(x, y))[1])}
first_player_sort = Vectorize(first_player_sort)
#Assign player_1 values to the player occurring first in the alphabetical comparison
merged_df <- merged_df %>% mutate(player_1 = first_player_sort(winner_name, loser_name))
#Create function for sorting players in player_1
second_player_sort = function(x,y) {paste(sort(c(x, y))[2])}
second_player_sort = Vectorize(second_player_sort)
#Assign player_2 values to the player occurring second in the alphabetical comparison
merged_df <- merged_df %>% mutate(player_2 = second_player_sort(winner_name, loser_name))
#Rename winner columns to player_1 columns, rename loser columns to player_2 columns
colnames(merged_df) <- gsub("winner", "player_1", colnames(merged_df))
colnames(merged_df) <- gsub("loser", "player_2", colnames(merged_df))
```
#### 2.6 - Administrative Attribute Removal
```{r}
#Additionally remove scores including alpha characters, which are indicative of a player retirement, default, or walkover as
alpha_rows <- grep("[A-Za-z]", merged_df$score)
merged_df <- subset(merged_df, !(row.names(merged_df) %in% alpha_rows))
```
```{r}
#The merged data frame also contains many hyper-granular statistics about the match pertaining to each player. For macro-level analysis of who is likely to win, these statistics won't serve as useful primary dimensions and are to be removed to avoid hyperdimensionality of the model.
#Remove granular attributes for winners
granular_w_stat_columns <- grep("w_", names(merged_df))
merged_df <- subset(merged_df, select = -granular_w_stat_columns)
#Remove granular attributes for losers
granular_l_stat_columns <- grep("l_", names(merged_df))
merged_df <- subset(merged_df, select = -granular_l_stat_columns)
```
```{r}
#There are also some administrative attributes that have no added predictive value and are simply for record purposes. These are to be removed.
merged_df <- select(merged_df, -c("player_1_ioc", "player_2_ioc", "player_1_id", "player_2_id"))
```
#### 2.7 - Non-Imputable NA Removal
```{r}
#A small number of rows of player's heights and hand preference is missing. They are for players ranked very low and have low number of matches played. Player's height could be imputed using the mean height value of the group, but height is important in tennis and to not bias the data, the rows are removed. Similarly, hand preference can be imputed using the mode, but it would not be an accurate method of imputation. Given that these are the only NA values remaining, one can use a sweeping na.omit() function to eliminate the observations.
merged_df <- na.omit(merged_df)
```
### SECTION 3 - FEATURE ENGINEERING
#### 3.1 - Head to Head Feature
```{r}
#To create a record of who has an advantage going into a match, create a head-to-head feature quantifying the victories of a player against another if a previous matchup(s) exists
#Register total encounters
total_encounters <- data.frame(table(merged_df$player_1, merged_df$player_2))
merged_df <- merge(merged_df, total_encounters, by.x = c("player_1", "player_2"), by.y = c("Var1", "Var2"), all.x = TRUE)
merged_df <- rename(merged_df, total_encounters = Freq)
```
```{r}
#Register player_1 victories
player_1_h2h_w <- data.frame(
table(
merged_df$player_1[merged_df$result == merged_df$player_1], merged_df$player_2[merged_df$result == merged_df$player_1]
)
)
player_1_h2h_w <- rename(player_1_h2h_w, player_1_h2h = Freq)
merged_df <- merge(merged_df, player_1_h2h_w, by.x = c("player_1", "player_2"), by.y = c("Var1", "Var2"), all.x = TRUE)
# Replace NAs in the player_1_h2h column with the value 0
library(imputeTS)
merged_df$player_1_h2h <- na_replace(merged_df$player_1_h2h, 0)
#Register player_2 victories
player_2_h2h_w <- data.frame(
table(
merged_df$player_1[merged_df$result == merged_df$player_2], merged_df$player_2[merged_df$result == merged_df$player_2]
)
)
player_2_h2h_w <- rename(player_2_h2h_w, player_2_h2h = Freq)
merged_df <- merge(merged_df, player_2_h2h_w, by.x = c("player_1", "player_2"), by.y = c("Var1", "Var2"), all.x = TRUE)
# Replace NAs in the player_2_h2h column with the value 0
merged_df$player_2_h2h <- na_replace(merged_df$player_2_h2h, 0)
```
#### 3.2 - % Win on Surface
```{r}
#For player_1:
#Calculate number of matches per player per surface
player_1_surface <- data.frame(
table(
merged_df$player_1, merged_df$surface
)
)
#Calculate number of wins per player per surface
player_1_surface_wins <- data.frame(
table(
merged_df$player_1[merged_df$result == merged_df$player_1], merged_df$surface[merged_df$result == merged_df$player_1]
)
)
#Calculate win % per player per surface
player_1_surface_w_perc <- merge(player_1_surface, player_1_surface_wins, by.x = c("Var1", "Var2"), by.y = c("Var1", "Var2"), all.x = TRUE)
player_1_surface_w_perc$Freq.y <- na_replace(player_1_surface_w_perc$Freq.y, 0)
player_1_surface_w_perc$w_perc <- round((player_1_surface_w_perc$Freq.y/player_1_surface_w_perc$Freq.x), 2)
player_1_surface_w_perc$w_perc <- na_replace(player_1_surface_w_perc$w_perc, 0)
#Drop columns used for calculation
player_1_surface_w_perc <- player_1_surface_w_perc %>% select(-Freq.x, -Freq.y)
#Rename player 1 win % data frame columns
player_1_surface_w_perc <- player_1_surface_w_perc %>% rename(player_1_surface_perc = w_perc)
#For player_2:
#Calculate number of matches per player per surface
player_2_surface <- data.frame(
table(
merged_df$player_2, merged_df$surface
)
)
#Calculate number of wins per player per surface
player_2_surface_wins <- data.frame(
table(
merged_df$player_2[merged_df$result == merged_df$player_2], merged_df$surface[merged_df$result == merged_df$player_2]
)
)
#Calculate win % per player per surface
player_2_surface_w_perc <- merge(player_2_surface, player_2_surface_wins, by.x = c("Var1", "Var2"), by.y = c("Var1", "Var2"), all.x = TRUE)
player_2_surface_w_perc$Freq.y <- na_replace(player_2_surface_w_perc$Freq.y, 0)
player_2_surface_w_perc$w_perc <- round((player_2_surface_w_perc$Freq.y/player_2_surface_w_perc$Freq.x), 2)
player_2_surface_w_perc$w_perc <- na_replace(player_2_surface_w_perc$w_perc, 0)
#Drop columns used for calculation
player_2_surface_w_perc <- player_2_surface_w_perc %>% select(-Freq.x, -Freq.y)
#Rename player 2 win % data frame columns
player_2_surface_w_perc <- player_2_surface_w_perc %>% rename(player_2_surface_perc = w_perc)
#Consolidate player_1 and player_2 data into merged_df
merged_df <- merge(merged_df, player_1_surface_w_perc, by.x = c("player_1", "surface"), by.y = c("Var1", "Var2"), all.x = TRUE)
merged_df <- merge(merged_df, player_2_surface_w_perc, by.x = c("player_2", "surface"), by.y = c("Var1", "Var2"), all.x = TRUE)
```
#### 3.3 - % Win at General Tournament Stage
```{r}
#For player_1:
#Calculate number of matches per player per tournament stage
player_1_round <- data.frame(
table(
merged_df$player_1, merged_df$round
)
)
#Calculate number of wins per player per tournament stage
player_1_round_wins <- data.frame(
table(
merged_df$player_1[merged_df$result == merged_df$player_1], merged_df$round[merged_df$result == merged_df$player_1]
)
)
#Calculate win % per player per tournament stage
player_1_round_w_perc <- merge(player_1_round, player_1_round_wins, by.x = c("Var1", "Var2"), by.y = c("Var1", "Var2"), all.x = TRUE)
player_1_round_w_perc$Freq.y <- na_replace(player_1_round_w_perc$Freq.y, 0)
player_1_round_w_perc$w_perc <- round((player_1_round_w_perc$Freq.y/player_1_round_w_perc$Freq.x), 2)
player_1_round_w_perc$w_perc <- na_replace(player_1_round_w_perc$w_perc, 0)
#Drop columns used for calculation
player_1_round_w_perc <- player_1_round_w_perc %>% select(-Freq.x, -Freq.y)
#Rename player 1 win % data frame columns
player_1_round_w_perc <- player_1_round_w_perc %>% rename(player_1_round_perc = w_perc)
#For player_2:
#Calculate number of matches per player per tournament stage
player_2_round <- data.frame(
table(
merged_df$player_2, merged_df$round
)
)
#Calculate number of wins per player per tournament stage
player_2_round_wins <- data.frame(
table(
merged_df$player_2[merged_df$result == merged_df$player_2], merged_df$round[merged_df$result == merged_df$player_2]
)
)
#Calculate win % per player per tournament stage
player_2_round_w_perc <- merge(player_2_round, player_2_round_wins, by.x = c("Var1", "Var2"), by.y = c("Var1", "Var2"), all.x = TRUE)
player_2_round_w_perc$Freq.y <- na_replace(player_2_round_w_perc$Freq.y, 0)
player_2_round_w_perc$w_perc <- round((player_2_round_w_perc$Freq.y/player_2_round_w_perc$Freq.x), 2)
player_2_round_w_perc$w_perc <- na_replace(player_2_round_w_perc$w_perc, 0)
#Drop columns used for calculation
player_2_round_w_perc <- player_2_round_w_perc %>% select(-Freq.x, -Freq.y)
#Rename player 2 win % data frame columns
player_2_round_w_perc <- player_2_round_w_perc %>% rename(player_2_round_perc = w_perc)
#Consolidate player_1 and player_2 data into merged_df
merged_df <- merge(merged_df, player_1_round_w_perc, by.x = c("player_1", "round"), by.y = c("Var1", "Var2"), all.x = TRUE)
merged_df <- merge(merged_df, player_2_round_w_perc, by.x = c("player_2", "round"), by.y = c("Var1", "Var2"), all.x = TRUE)
```
#### 3.4 - % Win at Tournament Level
```{r}
#For player_1:
#Calculate number of matches per player per tournament level
player_1_tourney_level <- data.frame(
table(
merged_df$player_1, merged_df$tourney_level
)
)
#Calculate number of wins per player per tournament level
player_1_tourney_level_wins <- data.frame(
table(
merged_df$player_1[merged_df$result == merged_df$player_1], merged_df$tourney_level[merged_df$result == merged_df$player_1]
)
)
#Calculate win % per player per tournament level
player_1_tourney_level_w_perc <- merge(player_1_tourney_level, player_1_tourney_level_wins, by.x = c("Var1", "Var2"), by.y = c("Var1", "Var2"), all.x = TRUE)
player_1_tourney_level_w_perc$Freq.y <- na_replace(player_1_tourney_level_w_perc$Freq.y, 0)
player_1_tourney_level_w_perc$w_perc <- round((player_1_tourney_level_w_perc$Freq.y/player_1_tourney_level_w_perc$Freq.x), 2)
player_1_tourney_level_w_perc$w_perc <- na_replace(player_1_tourney_level_w_perc$w_perc, 0)
#Drop columns used for calculation
player_1_tourney_level_w_perc <- player_1_tourney_level_w_perc %>% select(-Freq.x, -Freq.y)
#Rename player 1 win % data frame columns
player_1_tourney_level_w_perc <- player_1_tourney_level_w_perc %>% rename(player_1_tourney_level_perc = w_perc)
#For player_2:
#Calculate number of matches per player per tournament level
player_2_tourney_level <- data.frame(
table(
merged_df$player_2, merged_df$tourney_level
)
)
#Calculate number of wins per player per tournament level
player_2_tourney_level_wins <- data.frame(
table(
merged_df$player_2[merged_df$result == merged_df$player_2], merged_df$tourney_level[merged_df$result == merged_df$player_2]
)
)
#Calculate win % per player per tournament level
player_2_tourney_level_w_perc <- merge(player_2_tourney_level, player_2_tourney_level_wins, by.x = c("Var1", "Var2"), by.y = c("Var1", "Var2"), all.x = TRUE)
player_2_tourney_level_w_perc$Freq.y <- na_replace(player_2_tourney_level_w_perc$Freq.y, 0)
player_2_tourney_level_w_perc$w_perc <- round((player_2_tourney_level_w_perc$Freq.y/player_2_tourney_level_w_perc$Freq.x), 2)
player_2_tourney_level_w_perc$w_perc <- na_replace(player_2_tourney_level_w_perc$w_perc, 0)
#Drop columns used for calculation
player_2_tourney_level_w_perc <- player_2_tourney_level_w_perc %>% select(-Freq.x, -Freq.y)
#Rename player 2 win % data frame columns
player_2_tourney_level_w_perc <- player_2_tourney_level_w_perc %>% rename(player_2_tourney_level_perc = w_perc)
#Consolidate player_1 and player_2 data into merged_df
merged_df <- merge(merged_df, player_1_tourney_level_w_perc, by.x = c("player_1", "tourney_level"), by.y = c("Var1", "Var2"), all.x = TRUE)
merged_df <- merge(merged_df, player_2_tourney_level_w_perc, by.x = c("player_2", "tourney_level"), by.y = c("Var1", "Var2"), all.x = TRUE)
```
#### 3.5 - % Win at Specific Tournament Stage
```{r}
#Calculate win %age of player 1 at x tournament in the nth round
merged_df$player_1_tourney_round_perc <- round((merged_df$player_1_tourney_level_perc * merged_df$player_1_round_perc), 2)
#Calculate win %age of player 2 at x tournament in the nth round
merged_df$player_2_tourney_round_perc <- round((merged_df$player_2_tourney_level_perc * merged_df$player_2_round_perc), 2)
```
#### 3.6 - Removal of Redundant Features used in Feature Engineering Calculations
```{r}
redundant_features <- c('tourney_month', 'tourney_year', 'tourney_day', 'tourney_id', 'match_num')
merged_df <- merged_df %>% select(-redundant_features)
features_to_keep <- c('player_1_age',
'player_2_age',
'player_1_rank',
'player_2_rank',
'player_1_h2h',
'player_2_h2h',
'player_1_round_perc',
'player_1_surface_perc',
'player_1_tourney_level_perc',
'player_1_tourney_round_perc',
'player_2_round_perc',
'player_2_surface_perc',
'player_2_tourney_level_perc',
'player_2_tourney_round_perc',
'surface',
'tourney_level',
'result')
merged_df <- merged_df %>% select(features_to_keep)
```
#### 3.7 - Removing Result Levels with Low Counts
```{r}
#To simplify future classification, remove noisy results from $results where few counts are detected
less_than_5_wins <- data.frame(table(merged_df$result))
less_than_5_wins <- less_than_5_wins %>% filter(Freq < 5)
merged_df <- merged_df[!merged_df$result %in% less_than_5_wins$Var1,]
```
#### 3.8 - Final Organization of Data
```{r}
#Order the columns alphabetically
merged_df <- merged_df[, order(names(merged_df))]
```
### SECTION 4 - DATA SPLITTING
```{r}
#Load the caret package
library(caret)
#Set the seed for reproducibility
set.seed(123)
#Set target variable as factor
merged_df$result <- as.factor(merged_df$result)
#Split the data into a training set (70%) and a testing set (30%)
train_idx <- createDataPartition(merged_df$result, p = 0.7, list = FALSE)
train <- merged_df[train_idx, ]
test <- merged_df[-train_idx, ]
#Split the data into x_train, x_test, y_train, y_test sets
x_train <- train %>% select(-result)
y_train <- train %>% select(result)
y_train <- as.factor(y_train$result)
x_test <- test %>% select(-result)
y_test <- test %>% select(result)
y_test <- as.factor(y_test$result)
```
### SECTION 5 - MODEL CREATION
#### 5.1 - Random Forest Classifier, Default Settings
```{r}
library(caret)
library(ranger)
#Set seed for replicability
set.seed(123)
#Create model, measuring variable importance while building forest
rf_ranger <- ranger(result ~., data = train, importance = "impurity")
```
```{r}
#Print the model results
print(rf_ranger)
#Print the model's most important variables
rf_ranger_vi <- data.frame(importance(rf_ranger))
rf_ranger_vi <- rownames_to_column(rf_ranger_vi)
#Plot the model's most important variables
rf_ranger_vi %>%
ggplot(aes(reorder(rowname, importance.rf_ranger.), importance.rf_ranger.)) +
geom_col(aes(fill = importance.rf_ranger.)) +
scale_fill_gradient(low = "red", high = "green") +
coord_flip() +
labs(x = "Feature", y = "Importance (Gini Impurity") +
ggtitle("Feature Importance for Random Forests Model")
```
```{r}
#Determine default model accuracy on train data
library(MLmetrics)
y_pred <- rf_ranger$predictions
round((Accuracy(y_pred, y_train)), 4)
```
#### 5.2 - Random Forest Classifier, Grid-Search Optimized Settings
```{r}
n_features = rf_ranger$num.independent.variables
hyper_grid <- expand.grid(
mtry = floor(n_features * c(.15, .25, .35)),
min.node.size = c(1, 3, 5),
num.trees = n_features * c(5, 10, 15)
)
for(i in seq_len(nrow(hyper_grid))) {
rf_ranger_opt <- ranger(
formula = result ~ .,
data = train,
num.trees = n_features * 10,
mtry = hyper_grid$mtry[i],
min.node.size = hyper_grid$min.node.size[i],
verbose = FALSE,
seed = 123,
respect.unordered.factors = 'order',
)
#store results
hyper_grid$rmse[i] <- sqrt(rf_ranger_opt$prediction.error)
}
```
```{r}
#Compare grid-search optimized settings to model defaults
rf_ranger_rmse <- sqrt(rf_ranger_opt$prediction.error)
hyper_grid$default_rmse <- rf_ranger_rmse
hyper_grid <- hyper_grid %>% arrange(rmse) %>% mutate(percentage_gain = (rmse - rf_ranger_rmse) / rf_ranger$prediction.error * 100)
print(hyper_grid)
```
```{r}
#A lower RMSE score is better, meaning the model is able to fit the data better. With mtry = 5, min.node.size = 1, num.trees = 160, the RMSE from the default model decreases marginally by 2.11%.
#Generate the model with the grid-search optimized parameters
rf_ranger_opt_final <- ranger(result ~.,
data = train,
importance = "impurity",
mtry = 5,
min.node.size = 1,
num.trees = 160)
```
```{r}
#Print the optimized model's results
print(rf_ranger_opt_final)
print(paste("RMSE:", sqrt(rf_ranger_opt_final$prediction.error)))
#Determine optimized model accuracy on train data
y_pred_opt <- rf_ranger_opt_final$predictions
round((Accuracy(y_pred_opt, y_train)), 4)
```
#### 5.3 - Random Forest Classifier, Manually Optimized Settings
```{r}
#Using the grid-search model as a starting point, create a new model using higher mtry values.
#Generate the model with the manually optimized parameters
rf_ranger_opt_manual <- ranger(result ~.,
data = train,
importance = "impurity",
mtry = 10,
min.node.size = 1,
num.trees = 160)
```
```{r}
#Print the optimized model's results
print(rf_ranger_opt_manual)
print(paste("RMSE:", sqrt(rf_ranger_opt_manual$prediction.error)))
#Determine optimized model accuracy on train data
y_pred_manual <- rf_ranger_opt_manual$predictions
round((Accuracy(y_pred_manual, y_train)), 4)
```
#### 5.4 - Random Forest Classifier, Manually Optimized Settings, Truncated Features
```{r}
#Analyze the manually optimized model's feature importance and truncate the features that are least important
#Print the model's most important variables
rf_ranger_vi_opt_manual <- data.frame(importance(rf_ranger_opt_manual))
rf_ranger_vi_opt_manual <- rownames_to_column(rf_ranger_vi_opt_manual)
#Plot the model's most important variables
rf_ranger_vi_opt_manual %>%
ggplot(aes(reorder(rowname, importance.rf_ranger_opt_manual.), importance.rf_ranger_opt_manual.)) +
geom_col(aes(fill = importance.rf_ranger_opt_manual.)) +
scale_fill_gradient(low = "red", high = "green") +
coord_flip() +
labs(x = "Feature", y = "Importance (Gini Impurity") +
ggtitle("Feature Importance for Manually-Optimized Random Forests Model")
#Truncate the least important feature from the training and test data sets
trunc_train <- subset(train, select = -tourney_level)
trunc_test <- subset(test, select = -tourney_level)
```
```{r}
#Generate the model with the manually optimized parameters for the truncated data sets
rf_ranger_opt_manual_red <- ranger(result ~.,
data = trunc_train,
importance = "impurity",
mtry = 10,
min.node.size = 1,
num.trees = 160)
```
```{r}
#Determine optimized model accuracy on truncated train data
y_pred_manual_red <- rf_ranger_opt_manual_red$predictions
round((Accuracy(y_pred_manual_red, y_train)), 4)
```
#### 5.5 - Naive Bayes Classifier
```{r}
library(naivebayes)
#Create naive Bayes model
nb <- naive_bayes(result ~., data = train, usekernel = T, laplace = 1)
```
```{r}
#Create naive Bayes model predictions on training data
y_pred_nb <- predict(nb, newdata = train)
#Assess accuracy of naive Bayes model on training data
Accuracy(y_pred_nb, y_train)
```
#### 5.6 - Model Evaluation and Comparison
```{r}
#Create data frame to store model comparisons
columns <- c("Model", "OOB Error", "RMSE", "Accuracy_Train", "Accuracy_Test")
model_comparison <- data.frame(matrix(nrow = 0, ncol = length(columns)))
colnames(model_comparison) = columns
```
```{r}
#Evaluate default random forest model
#On train data
y_pred_train <- rf_ranger$predictions
train_acc <- round((Accuracy(y_pred_train, y_train)), 4)
#On test data
pred_ranger <- predict(rf_ranger, test)
y_pred_test <- pred_ranger$predictions
test_acc <- round((Accuracy(y_pred_test, y_test)), 4)
#Model data
oob_error <- round((rf_ranger$prediction.error), 4)
rmse <- round((sqrt(oob_error)), 4)
model_comparison[1,] <- c("Random Forest - Default",
oob_error,
rmse,
train_acc,
test_acc)
```
```{r}
#Evaluate grid-search optimized random forest model
#On train data
y_pred_train <- rf_ranger_opt_final$predictions
train_acc <- round((Accuracy(y_pred_train, y_train)), 4)
#On test data
pred_ranger <- predict(rf_ranger_opt_final, test)
y_pred_test <- pred_ranger$predictions
test_acc <- round((Accuracy(y_pred_test, y_test)), 4)
#Model data
oob_error <- round((rf_ranger_opt_final$prediction.error), 4)
rmse <- round((sqrt(oob_error)), 4)
model_comparison[2,] <- c("Random Forest - Grid Search Optimized",
oob_error,
rmse,
train_acc,
test_acc)
```
```{r}
#Evaluate manually optimized random forest model
#On train data
y_pred_train <- rf_ranger_opt_manual$predictions
train_acc <- round((Accuracy(y_pred_train, y_train)), 4)
#On test data
pred_ranger <- predict(rf_ranger_opt_manual, test)
y_pred_test <- pred_ranger$predictions
test_acc <- round((Accuracy(y_pred_test, y_test)), 4)
#Model data
oob_error <- round((rf_ranger_opt_manual$prediction.error), 4)
rmse <- round((sqrt(oob_error)), 4)
model_comparison[3,] <- c("Random Forest - Manually Optimized",
oob_error,
rmse,
train_acc,
test_acc)
```
```{r}
#Evaluate truncated features random forest model
#On train data
y_pred_train <- rf_ranger_opt_manual_red$predictions
train_acc <- round((Accuracy(y_pred_train, y_train)), 4)
#On test data
pred_ranger <- predict(rf_ranger_opt_manual_red, test)
y_pred_test <- pred_ranger$predictions
test_acc <- round((Accuracy(y_pred_test, y_test)), 4)
#Model data
oob_error <- round((rf_ranger_opt_manual_red$prediction.error), 4)
rmse <- round((sqrt(oob_error)), 4)
model_comparison[4,] <- c("Random Forest - Truncated Features",
oob_error,
rmse,
train_acc,
test_acc)
```
```{r}
#Evaluate naive bayes model
#On train data
y_pred_train <- predict(nb, newdata = train)
train_acc <- round((Accuracy(y_pred_train, y_train)), 4)
#On test data
y_pred_test <- predict(nb, newdata = test)
test_acc <- round((Accuracy(y_pred_test, y_test)), 4)
#Model data
oob_error <- "NA"
rmse <- "NA"
model_comparison[5,] <- c("Naive Bayes Classifier",
oob_error,
rmse,
train_acc,
test_acc)
```
```{r}
#Visualize Model Performance
model_comparison$Accuracy_Test <- as.numeric(model_comparison$Accuracy_Test)
model_comparison
ggplot(data = model_comparison, aes(x = Model, y = Accuracy_Test)) +
geom_col(aes(fill = Model)) +
scale_y_continuous(limits = c(0, .8)) +
ggtitle("Model Comparison by Test Accuracy Scores") +
theme(axis.text.x=element_blank(),
axis.ticks.x=element_blank())
```